WorldWideScience

Sample records for energy spectrum adjustment

  1. Simultaneous neutron and gamma spectrum adjustment

    International Nuclear Information System (INIS)

    Remec, I.

    1996-01-01

    The spectrum adjustment procedure was extended to simultaneous neutron and gamma spectrum adjustment, and the feasibility of this technique is demonstrated in the analysis of HFIR dosimetry experiments. Conditions in which gamma rays may contribute considerably to radiation damage in steels are discussed. Beryllium helium accumulation fluence monitors (HAFMs) were found to be good monitors in gamma fields of intensities high enough to contribute to steel embrittlement. Use of 237 Np, 238 U, and 9 Be HAFM as gamma dosimeters is proposed for high-dose irradiations in high-energy, high-intensity gamma fields

  2. Adjustment of the 235U Fission Spectrum

    International Nuclear Information System (INIS)

    GRIFFIN, PATRICK J.; WILLIAMS, J.G.

    1999-01-01

    The latest nuclear data are used to examine the sensitivity of the least squares adjustment of the 235 U fission spectrum to the measured reaction rates, dosimetry cross sections, and prior spectrum covariance matrix. All of these parameters were found to be very important in the spectrum adjustment. The most significant deficiency in the nuclear data is the absence of a good prior covariance matrix. Covariance matrices generated from analytic models of the fission spectra have been used in the past. This analysis reveals some unusual features in the covariance matrix produced with this approach. Specific needs are identified for improved nuclear data to better determine the 235 U spectrum. An improved 235 U covariance matrix and adjusted spectrum are recommended for use in radiation transport sensitivity analyses

  3. Neutron spectrum adjustment. The role of covariances

    International Nuclear Information System (INIS)

    Remec, I.

    1992-01-01

    Neutron spectrum adjustment method is shortly reviewed. Practical example dealing with power reactor pressure vessel exposure rates determination is analysed. Adjusted exposure rates are found only slightly affected by the covariances of measured reaction rates and activation cross sections, while the multigroup spectra covariances were found important. Approximate spectra covariance matrices, as suggested in Astm E944-89, were found useful but care is advised if they are applied in adjustments of spectra at locations without dosimetry. (author) [sl

  4. A design of calibration single star simulator with adjustable magnitude and optical spectrum output system

    Science.gov (United States)

    Hu, Guansheng; Zhang, Tao; Zhang, Xuan; Shi, Gentai; Bai, Haojie

    2018-03-01

    In order to achieve multi-color temperature and multi-magnitude output, magnitude and temperature can real-time adjust, a new type of calibration single star simulator was designed with adjustable magnitude and optical spectrum output in this article. xenon lamp and halogen tungsten lamp were used as light source. The control of spectrum band and temperature of star was realized with different multi-beam narrow band spectrum with light of varying intensity. When light source with different spectral characteristics and color temperature go into the magnitude regulator, the light energy attenuation were under control by adjusting the light luminosity. This method can completely satisfy the requirements of calibration single star simulator with adjustable magnitude and optical spectrum output in order to achieve the adjustable purpose of magnitude and spectrum.

  5. Effect of normalization on the neutron spectrum adjustment procedure

    International Nuclear Information System (INIS)

    Zsolnay, E.M.; Zijp, W.L.; Nolthenius, H.J.

    1983-10-01

    Various computer programs currently applied for neutron spectrum adjustment based on multifoil activation data, use different ways to determine the normalization factor to be applied to an unnormalized input spectrum. The influence is shown of the various definitions of the normalization factor on the adjusted results for the case of the ORR and YAYOI spectra considered in the international REAL-80 exercise. The actual expression for defining the normalization factor is more important than previously assumed. The theory of the generalized least squares principle provides an optimal definition for the normalization factor

  6. Family adjustment across cultural groups in autistic spectrum disorders.

    Science.gov (United States)

    Lobar, Sandra L

    2014-01-01

    This pilot ethnomethodological study examined perceptions of parents/caregivers of children diagnosed with autistic spectrum disorders concerning actions, norms, understandings, and assumptions related to adjustment to this chronic illness. The sample included 14 caregivers (75% Hispanic of various ethnic groups). Maximum variation sampling was used to compare participants on variables that were inductively derived via constant comparative methods of analysis. The following action categories emerged: "Seeking Diagnosis," "Engaging in Routines to Control behavior," "Finding Therapies (Types of Therapies)," "Finding School Accommodations," "Educating Others," "Rising to Challenges," and "Finding the Role of Spiritual and Religious Belief."

  7. Least-squares adjustment of a 'known' neutron spectrum: The importance of the covariance matrix of the input spectrum

    International Nuclear Information System (INIS)

    Mannhart, W.

    1986-01-01

    Based on the responses of 25 different neutron activation detectors, the neutron spectrum of Cf-252 hs been adjusted with least-squares methods. For a fixed input neutron spectrum, the covariance matrix of this spectrum has been systematically varied to investigate the influence of this matrix on the final result. The investigation showed that the adjusted neutron spectrum is rather sensitive to the structure of the covariance matrix for the input spectrum. (author)

  8. Energy spectrum of buoyancy-driven turbulence

    KAUST Repository

    Kumar, Abhishek; Chatterjee, Anando G.; Verma, Mahendra K.

    2014-01-01

    Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux Πu, we demonstrate that, for stably stratified flows, the kinetic energy spectrum Eu(k)∼k-11/5, the potential energy spectrum Eθ(k)∼k-7/5, and Πu(k)∼k-4

  9. Frequency adjustable MEMS vibration energy harvester

    Science.gov (United States)

    Podder, P.; Constantinou, P.; Amann, A.; Roy, S.

    2016-10-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.

  10. Frequency adjustable MEMS vibration energy harvester

    International Nuclear Information System (INIS)

    Podder, P; Constantinou, P; Roy, S; Amann, A

    2016-01-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators. (paper)

  11. Measurement of 235U fission spectrum-averaged cross sections and neutron spectrum adjusted with the activation data

    International Nuclear Information System (INIS)

    Kobayashi, Katsuhei; Kobayashi, Tooru

    1992-01-01

    The 235 U fission spectrum-averaged cross sections for 13 threshold reactions were measured with the fission plate (27 cm in diameter and 1.1 cm thick) at the heavy water thermal neutron facility of the Kyoto University Reactor. The Monte Carlo code MCNP was applied to check the deviation from the 235 U fission neutron spectrum due to the room-scattered neutrons, and it was found that the resultant spectrum was close to that of 235 U fission neutrons. Supplementally, the relations to derive the absorbed dose rates with the fission plate were also given using the calculated neutron spectra and the neutron Kerma factors. Finally, the present values of the fission spectrum-averaged cross sections were employed to adjust the 235 U fission neutron spectrum with the NEUPAC code. The adjusted spectrum showed a good agreement with the Watt-type fission neutron spectrum. (author)

  12. Ultrahigh-energy cosmic-ray spectrum

    International Nuclear Information System (INIS)

    Hill, C.T.; Schramm, D.N.

    1985-01-01

    We analyze the evolution of the ultrahigh-energy cosmic-ray spectrum upon traversing the 2.7 0 K microwave background with respect to pion photoproduction, pair-production reactions, and cosmological effects. Our approach employs exact transport equations which manifestly conserve nucleon number and embody the laboratory details of these reactions. A spectrum enhancement appears around 6 x 10 19 eV due to the ''pile-up'' of energy-degraded nucleons, and a ''dip'' occurs around 10 19 eV due to combined effects. Both of these features appear in the observational spectrum. We analyze the resulting neutrino spectrum and the effects of cosmological source distributions. We present a complete model of the ultrahigh-energy spectrum and anisotropy in reasonable agreement with observation and which predicts an observable electron-neutrino spectrum

  13. Analytical energy spectrum for hybrid mechanical systems

    International Nuclear Information System (INIS)

    Zhong, Honghua; Xie, Qiongtao; Lee, Chaohong; Guan, Xiwen; Gao, Kelin; Batchelor, Murray T

    2014-01-01

    We investigate the energy spectrum for hybrid mechanical systems described by non-parity-symmetric quantum Rabi models. A set of analytical solutions in terms of the confluent Heun functions and their analytical energy spectrum is obtained. The analytical energy spectrum includes regular and exceptional parts, which are both confirmed by direct numerical simulation. The regular part is determined by the zeros of the Wronskian for a pair of analytical solutions. The exceptional part is relevant to the isolated exact solutions and its energy eigenvalues are obtained by analyzing the truncation conditions for the confluent Heun functions. By analyzing the energy eigenvalues for exceptional points, we obtain the analytical conditions for the energy-level crossings, which correspond to two-fold energy degeneracy. (paper)

  14. Energy spectrum of lightning gamma emission

    Energy Technology Data Exchange (ETDEWEB)

    Chubenko, A.P. [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Karashtin, A.N. [Research Radiophysics Institute, Nizhny Novgorod (Russian Federation); Ryabov, V.A., E-mail: ryabov@x4u.lebedev.r [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Shepetov, A.L. [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Antonova, V.P.; Kryukov, S.V. [Ionosphere Institute, Almaty (Kazakhstan); Mitko, G.G.; Naumov, A.S.; Pavljuchenko, L.V. [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Ptitsyn, M.O., E-mail: ptitsyn@lpi.r [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Shalamova, S.Ya. [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Shlyugaev, Yu.V. [Research Radiophysics Institute, Nizhny Novgorod (Russian Federation); Vildanova, L.I. [Tien-Shan Mountain Cosmic Ray Station, Almaty (Kazakhstan); Zybin, K.P. [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation); Gurevich, A.V., E-mail: alex@lpi.r [P.N. Lebedev Physical Institute of RAS, Moscow (Russian Federation)

    2009-08-10

    The results of gamma emission observations obtained during thunderstorms at Tien-Shan Mountain Cosmic Ray Station are presented. The energy spectrum radiation of the stepped leader gamma radiation is measured. The total energy of stepped leader emitted in gamma rays is estimated as 10{sup -3}-10{sup -2} J. The experimental results are in an agreement with the runaway breakdown mechanism.

  15. Energy spectrum of lightning gamma emission

    International Nuclear Information System (INIS)

    Chubenko, A.P.; Karashtin, A.N.; Ryabov, V.A.; Shepetov, A.L.; Antonova, V.P.; Kryukov, S.V.; Mitko, G.G.; Naumov, A.S.; Pavljuchenko, L.V.; Ptitsyn, M.O.; Shalamova, S.Ya.; Shlyugaev, Yu.V.; Vildanova, L.I.; Zybin, K.P.; Gurevich, A.V.

    2009-01-01

    The results of gamma emission observations obtained during thunderstorms at Tien-Shan Mountain Cosmic Ray Station are presented. The energy spectrum radiation of the stepped leader gamma radiation is measured. The total energy of stepped leader emitted in gamma rays is estimated as 10 -3 -10 -2 J. The experimental results are in an agreement with the runaway breakdown mechanism.

  16. Psychological Adjustment of Siblings of Children with Autism Spectrum Disorder in Hong Kong.

    Science.gov (United States)

    Chan, J Yn; Lai, K Yc

    2016-12-01

    Findings about the psychological adjustment of siblings of children with autism spectrum disorder have been inconsistent in western literature and little is known among non-western societies. This study explored the psychological adjustment of siblings of children with autism spectrum disorder in Hong Kong. A total of 116 families with siblings of children with autism spectrum disorders co-morbid with learning disability were included in the study. Parents completed questionnaires about sibling emotional and behavioural adjustment, and their own mental well-being, quality of life, and family functioning. Siblings completed a questionnaire on their relationship with the autistic proband. Parent ratings did not reveal any significant negative impact on the emotional and behavioural adjustment of the typically developing siblings of children with autism spectrum disorder, but there were concerns about their peer relationships and weak prosocial behaviours. When cut-off scores were used to screen for risk of mental health problems, a quarter of the siblings warranted further assessment. Parents' quality of life and family functioning were significant predictors of sibling adjustment. In managing children with autism spectrum disorder, it is necessary to bear in mind the adjustment of their siblings, especially their peer relationships and prosocial behaviour. Adopting a holistic approach to address the psychosocial needs of the parents can facilitate sibling adjustment.

  17. Energy spectrum control for modulated proton beams

    International Nuclear Information System (INIS)

    Hsi, Wen C.; Moyers, Michael F.; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.; Schreuder, Andries N.

    2009-01-01

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to ±21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than ±3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.

  18. Factors Influencing Adjustment in Siblings of Children with Autism Spectrum Disorders

    Science.gov (United States)

    Meyer, Katherine A.; Ingersoll, Brooke; Hambrick, David Z.

    2011-01-01

    Siblings of children with autism spectrum disorders (ASD) may be at an increased risk of adjustment problems. To examine possible predictors of adjustment difficulties in siblings, 70 mothers with at least one child with ASD and one typical child completed surveys of symptom severity in the child with ASD, impact of the child with ASD on the…

  19. Energy spectrum of buoyancy-driven turbulence

    KAUST Repository

    Kumar, Abhishek

    2014-08-25

    Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux Πu, we demonstrate that, for stably stratified flows, the kinetic energy spectrum Eu(k)∼k-11/5, the potential energy spectrum Eθ(k)∼k-7/5, and Πu(k)∼k-4/5 are consistent with the Bolgiano-Obukhov scaling. This scaling arises due to the conversion of kinetic energy to the potential energy by buoyancy. For weaker buoyancy, this conversion is weak, hence Eu(k) follows Kolmogorov\\'s spectrum with a constant energy flux. For Rayleigh-Bénard convection, we show that the energy supply rate by buoyancy is positive, which leads to an increasing Πu(k) with k, thus ruling out Bolgiano-Obukhov scaling for the convective turbulence. Our numerical results show that convective turbulence for unit Prandt number exhibits a constant Πu(k) and Eu(k)∼k-5/3 for a narrow band of wave numbers. © 2014 American Physical Society.

  20. Adaptive, full-spectrum solar energy system

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  1. FACT. Energy spectrum of the Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Temme, Fabian; Einecke, Sabrina; Buss, Jens [TU Dortmund, Experimental Physics 5, Otto-Hahn-Str.4, 44221 Dortmund (Germany); Collaboration: FACT-Collaboration

    2016-07-01

    The First G-APD Cherenkov Telescope is the first Imaging Air Cherenkov Telescope which uses silicon photon detectors (G-APDs aka SiPM) as photo sensors. With more than four years of operation, FACT proved an application of SiPMs is suitable for the field of ground-based gamma-ray astronomy. Due to the stable flux at TeV energies, the Crab Nebula is handled as a ''standard candle'' in Cherenkov astronomy. The analysis of its energy spectrum and comparison with other experiments, allows to evaluate the performance of FACT. A modern analysis chain, based on data stream handling and multivariate analysis methods was developed in close cooperation with the department of computer science at the TU Dortmund. In this talk, this analysis chain and its application are presented. Further to this, results, including the energy spectrum of the Crab Nebula, measured with FACT, are shown.

  2. Siblings of Youth with Autism Spectrum Disorders: Theoretical Perspectives on Sibling Relationships and Individual Adjustment

    Science.gov (United States)

    McHale, Susan M.; Updegraff, Kimberly A.; Feinberg, Mark E.

    2016-01-01

    A burgeoning research literature investigates the sibling relationships of youth with autism spectrum disorder (ASD) and their implications for individual adjustment. Focusing on four relationship domains--behaviors, emotions, cognitions and involvement--and toward advancing this generally atheoretical literature, we review and apply tenets from a…

  3. Resource management for energy and spectrum harvesting sensor networks

    CERN Document Server

    Zhang, Deyu; Zhou, Haibo; Shen, Xuemin (Sherman)

    2017-01-01

    This SpringerBrief offers a comprehensive review and in-depth discussion of the current research on resource management. The authors explain how to best utilize harvested energy and temporally available licensed spectrum. Throughout the brief, the primary focus is energy and spectrum harvesting sensor networks (ESHNs) including energy harvesting (EH)-powered spectrum sensing and dynamic spectrum access. To efficiently collect data through the available licensed spectrum, this brief examines the joint management of energy and spectrum. An EH-powered spectrum sensing and management scheme for Heterogeneous Spectrum Harvesting Sensor Networks (HSHSNs) is presented in this brief. The scheme dynamically schedules the data sensing and spectrum access of sensors in ESHSNs to optimize the network utility, while considering the stochastic nature of EH process, PU activities and channel conditions. This brief also provides useful insights for the practical resource management scheme design for ESHSNs and motivates a ne...

  4. Energy-efficient adjustable speed double inverter-fed woundrotor ...

    African Journals Online (AJOL)

    Energy-efficient adjustable speed double inverter-fed woundrotor induction motor ... at speeds up to double rated without the magnetic flux reducing is presented. ... Keywords: power, double-fed wound-rotor induction motor drive, steel and ...

  5. Probing dark energy using convergence power spectrum and bi-spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Dinda, Bikash R., E-mail: bikash@ctp-jamia.res.in [Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi-110025 (India)

    2017-09-01

    Weak lensing convergence statistics is a powerful tool to probe dark energy. Dark energy plays an important role to the structure formation and the effects can be detected through the convergence power spectrum, bi-spectrum etc. One of the most promising and simplest dark energy model is the ΛCDM . However, it is worth investigating different dark energy models with evolving equation of state of the dark energy. In this work, detectability of different dark energy models from ΛCDM model has been explored through convergence power spectrum and bi-spectrum.

  6. ADAPTIVE FULL-SPECTRUM SOLOR ENERGY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Byard D. Wood

    2004-04-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports solar light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of solar lighting and electric lighting. A benchmark prototype system has been developed to evaluate the HSL system. Sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. A secondary mirror consisting of eight planar-segmented mirrors directs the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic (TPV) array to produce electricity. During this reporting period, the project team made advancements in the design of the second generation (Alpha) system. For the Alpha system, the eight individual 12 mm fibers have been replaced with a centralized bundle of 3 mm fibers. The TRNSYS Full-Spectrum Solar Energy System model has been updated and new components have been added. The TPV array and nonimaging device have been tested and progress has been made in the fiber transmission models. A test plan was developed for both the high-lumen tests and the study to determine the non-energy benefits of daylighting. The photobioreactor team also made major advancements in the testing of model scale and bench top lab-scale systems.

  7. Neutron metrology file NMF-90. An integrated database for performing neutron spectrum adjustment calculations

    International Nuclear Information System (INIS)

    Kocherov, N.P.

    1996-01-01

    The Neutron Metrology File NMF-90 is an integrated database for performing neutron spectrum adjustment (unfolding) calculations. It contains 4 different adjustment codes, the dosimetry reaction cross-section library IRDF-90/NMF-G with covariances files, 6 input data sets for reactor benchmark neutron fields and a number of utility codes for processing and plotting the input and output data. The package consists of 9 PC HD diskettes and manuals for the codes. It is distributed by the Nuclear Data Section of the IAEA on request free of charge. About 10 MB of diskspace is needed to install and run a typical reactor neutron dosimetry unfolding problem. (author). 8 refs

  8. SLC energy spectrum monitor using synchrotron radiation

    International Nuclear Information System (INIS)

    Seeman, J.; Brunk, W.; Early, R.; Ross, M.; Tillmann, E.; Walz, D.

    1986-01-01

    The SLAC linac is being upgraded for the use in the SLAC Linear Collider (SLC). The improved linac must accelerate electron and positron bunches from 1.2 GeV to 50 GeV while producing output energy spectra of about 0.2%. The energy spectra must be maintained during operation to provide for good beam transmission and to minimize chromatic effects in the SLC ARCs and Final Focus. The energy spectra of these beams are determined by the bunch length and intensity, the RF phase and waveform and the intra-bunch longitudinal wakefields. A non-destructive energy spectrum monitor has been designed using a vertical wiggler magnet located downstream of the horizontal beam splitter at the end of the SLC linac. It produces synchrotron radiation which is viewed in an off-axis x-ray position sensitive detector. The expected resolution is 0.08 %. The design considerations of this monitor are presented. A pair of these monitors is under construction with an installation data set for late summer 1986

  9. SLC energy spectrum monitor using synchrotron radiation

    International Nuclear Information System (INIS)

    Seeman, J.; Brunk, W.; Early, R.; Ross, M.; Tillmann, E.; Walz, D.

    1986-04-01

    The SLAC Linac is being upgraded for the use in the SLAC Linear Collider (SLC). The improved Linac must accelerate electron and positron bunches from 1.2 GeV to 50 GeV while producing output energy spectra of about 0.2%. The energy spectra must be maintained during operation to provide for good beam transmission and to minimize chromatic effects in the SLC ARCs and Final Focus. the energy spectra of these beams are determined by the bunch length and intensity, the RF phase and waveform and the intra-bunch longitudinal wakefields. A non-destructive energy spectrum monitor has been designed using a vertical wiggler magnet located downstream of the horizontal beam splitter at the end of the SLC Linac. It produces synchrotron radiation which is viewed in an off-axis x-ray position sensitive detector. The expected resolution is 0.08%. The design considerations of this monitor are presented in this paper. A pair of these monitors is under construction with an installation date set for late summer 1986. 5 refs., 6 figs

  10. Siblings of Youth with Autism Spectrum Disorders: Theoretical Perspectives on Sibling Relationships and Individual Adjustment

    Science.gov (United States)

    McHale, Susan M.; Updegraff, Kimberly A.; Feinberg, Mark E.

    2015-01-01

    A burgeoning research literature investigates the sibling relationships of youth with Autism Spectrum Disorder (ASD) and their implications for individual adjustment. Focusing on four relationship domains-- behaviors, emotions, cognitions and involvement—and toward advancing this generally atheoretical literature, we review and apply tenets from a range of theoretical perspectives in an effort to illuminate the mechanisms underlying sibling relationship experiences and their adjustment implications. Our review suggests new directions for research to test theoretically-grounded hypotheses about how sibling relationships develop and are linked to individual adjustment. In addition, we consider how identifying underlying bio-psycho-social processes can aid in the development of interventions to promote warm and involved sibling relationships and positive youth development. PMID:26476737

  11. Energy efficient cross layer design for spectrum sharing systems

    KAUST Repository

    Alabbasi, AbdulRahman; Shihada, Basem

    2016-01-01

    We propose a cross layer design that optimizes the energy efficiency of spectrum sharing systems. The energy per good bit (EPG) is considered as an energy efficiency metric. We optimize the secondary user's transmission power and media access frame

  12. Spectrum and energy levels of Y VI

    International Nuclear Information System (INIS)

    Persson, W.; Reader, J.

    1986-01-01

    The spectrum of the five-times-ionized yttrium atom (Y VI), excited in a sliding-spark discharge, was studied in the 160--2500 A-circle range. About 900 Y VI lines were classified as transitions between 101 odd and 69 even energy levels.The energy-level system established includes almost all levels of the 4s 2 4p 4 , 4s4p 5 , 4s 2 4p 3 4d, 5d, 5s, 6s, and 5p configurations and a number of levels of the 7s, 4f, and 4s4p 4 4d configurations. The observed level system has been theoretically interpreted by means of Hartree--Fock calculations and least-squares parametric fits. Strong configuration mixings are found between the 4s4p 5 and 4s 2 4p 3 4d configurations, between the 4s 2 4p 3 5p and 4s4p 4 4d configurations, and between the 4s 2 4p 3 4f and 4s4p 4 4d configurations. From the optimized energy-level values, a system of Ritz-type wavelength standards with accuracies varying from 0.0003 to 0.003 A-circle in the range 179--500 A-circle has been determined. The ionization energy as determined from 4s 2 4p 3 ns levels (n = 5-7) is 737 110 +- 200 cm/sup -1/ (91.390 +- 0.025 eV)

  13. BEHAVIOURAL, EMOTIONAL AND SOCIAL ADJUSTMENT IN SIBLINGS OF CHILDREN WITH AUTISM SPECTRUM DISORDER. A THEORETICAL REVIEW

    Directory of Open Access Journals (Sweden)

    Raquel Ruiz Aparicio

    2015-09-01

    Full Text Available Many individuals with Autism Spectrum Disorder (ASD have unique characteristics and very little is known about how these characteristics may influence the family and the behavioural, social and emotional adjustment of their siblings. The purpose of the current study is to focus on the siblings and to review the literature related to the behavioural, social and emotional adjustment of siblings of individuals with ASD. We have identified and analysed 24 articles to find the relevant results that may help us to understand the needs of these siblings. The findings suggest mixed results but they also bring to light a number of risk factors that could have an impact on the entire family and particularly on the siblings of children with ASD.

  14. Psychosocial Adjustment and Sibling Relationships in Siblings of Children with Autism Spectrum Disorder: Risk and Protective Factors

    Science.gov (United States)

    Walton, Katherine M.; Ingersoll, Brooke R.

    2015-01-01

    This study compared sibling adjustment and relationships in siblings of children with Autism Spectrum Disorder (ASD-Sibs; n = 69) and siblings of children with typical development (TD-Sibs; n = 93). ASD-Sibs and TD-Sibs demonstrated similar emotional/behavioral adjustment. Older male ASD-Sibs were at increased risk for difficulties. Sibling…

  15. Formation of a superhigh energy electron spectrum in the Galaxy

    International Nuclear Information System (INIS)

    Agaronyan, F.A.; Ambartsumyan, A.S.

    1985-01-01

    The formation of superhigh energy electron spectrum in the disk of the galaxy and halo is considered. A different behaviour of the electron spectrum within the framework of capture models in disk or halo, in the energy region E> or approximately 10 5 GeV is revealed due to the account of relativistic corrections ir the energy losses of electrons during the inverse Compton scattering. A comparison with the existing experimental data is carried out

  16. Environment-adjusted regional energy efficiency in Taiwan

    International Nuclear Information System (INIS)

    Hu, Jin-Li; Lio, Mon-Chi; Yeh, Fang-Yu; Lin, Cheng-Hsun

    2011-01-01

    This study applies the four-stage DEA procedure to calculate the energy efficiency of 23 regions in Taiwan from 1998 to 2007. After controlling for the effects of external environments, only Taipei City, Chiayi City, and Kaohsiung City are energy efficient. Note that Kaohsiung City reaches the efficiency frontier due to the adjustment via partial environmental factors such as higher education attainment and transport vehicles. We also find a worsening trend for Taiwan's energy efficiency. Not only is there a gap of energy efficiency between Taiwan's metropolitan areas and the other regions, but the gap has also widened in recent years. Those inefficient counties should be given priority and the savings potential. Except for road density, the evidence indicates that each environmental factor has partial incremental effects on input slacks. As more cars and motorcycles are unfavorable externalities affecting partial energy efficiency, the central government should help local governments retire inefficient old motor vehicles, encourage energy-saving vehicle models, and provide convenient mass transportation systems. Besides, people with higher education cause industrial energy inefficient in Taiwan. The conscious of effective energy saving is necessary to schools, communities, and employee accordingly.

  17. Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry

    Science.gov (United States)

    Al Jaafari, Khaled Ali

    Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a

  18. Electron energy spectrum in core-shell elliptic quantum wire

    Directory of Open Access Journals (Sweden)

    V.Holovatsky

    2007-01-01

    Full Text Available The electron energy spectrum in core-shell elliptic quantum wire and elliptic semiconductor nanotubes are investigated within the effective mass approximation. The solution of Schrodinger equation based on the Mathieu functions is obtained in elliptic coordinates. The dependencies of the electron size quantization spectrum on the size and shape of the core-shell nanowire and nanotube are calculated. It is shown that the ellipticity of a quantum wire leads to break of degeneration of quasiparticle energy spectrum. The dependences of the energy of odd and even electron states on the ratio between semiaxes are of a nonmonotonous character. The anticrosing effects are observed at the dependencies of electron energy spectrum on the transversal size of the core-shell nanowire.

  19. Energy detection for spectrum sensing in cognitive radio

    CERN Document Server

    Atapattu, Saman; Jiang, Hai

    2014-01-01

    This Springer Brief focuses on the current state-of-the-art research on spectrum sensing by using energy detection, a low-complexity and low-cost technique. It includes a comprehensive summary of recent research, fundamental theories, possible architectures, useful performance measurements of energy detection and applications of energy detection. Concise, practical chapters explore conventional energy detectors, alternative forms of energy detectors, performance measurements, diversity techniques and cooperative networks. The careful analysis enables reader to identify the most efficient techn

  20. Neutron spectrum adjustment using reaction rate data acquired with a liquid dosimetry system

    International Nuclear Information System (INIS)

    Smith, D.L.; Ikeda, Y.; Uno, Y.; Maekawa, F.

    1997-01-01

    A dosimetry technique based on neutron activation of circulating water with dissolved salts is discussed. The neutron source was the FNS accelerator at JAERI, Tokai, Japan. Yttrium chloride hexahydrate (YCl 3· 6H 2 O) was the salt (264.9 grams dissolved in 16.094 liters of water). Gamma-ray yields were measured with an intrinsic Ge detector. The following reactions were examined: (1) 16 O(n,p) 16 N (E thresh = 10.245 MeV, t 1/2 = 7.13 sec, E γ = 6.129 MeV); (2) 37 Cl(n,p) 37 S (E thresh = 4.194 MeV, t 1/2 = 5.05 min, E γ = 3.104 MeV); (3) 89 Y(n,n') 89m Y (E thresh = 0.919 MeV, t 1/2 = 16.06 sec, E γ = 0.909 MeV). This paper describes use of the generalized least-squares (GLS) method to adjust the neutron spectrum

  1. NREL Spectrum of Clean Energy Innovation: Issue 3 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-11-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on the NREL Spectrum of Clean Energy Innovation.

  2. Partial decay energy of 51Cr from inner bremsstrahlung spectrum

    International Nuclear Information System (INIS)

    Sanjeeviah, H.; Sanjeevaiah, B.

    1980-01-01

    The inner bremsstrahlung spectrum accompanying orbital electron capture decay of 51 Cr to the first excited state in 51 V was measured in coincidence with 320 keV gamma rays. From the Jauch plot of the spectrum the partial decay energy was deduced to be 433 +- 18 keV in good agreement with the previously measured value and the accepted mass difference. The overall shape factor of the inner bremsstrahlung spectrum was found to be a constant X(1.1 +- 0.1). (author)

  3. Multislot Simultaneous Spectrum Sensing and Energy Harvesting in Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-07-01

    Full Text Available In cognitive radio (CR, the spectrum sensing of the primary user (PU may consume some electrical power from the battery capacity of the secondary user (SU, resulting in a decrease in the transmission power of the SU. In this paper, a multislot simultaneous spectrum sensing and energy harvesting model is proposed, which uses the harvested radio frequency (RF energy of the PU signal to supply the spectrum sensing. In the proposed model, the sensing duration is divided into multiple sensing slots consisting of one local-sensing subslot and one energy-harvesting subslot. If the PU is detected to be present in the local-sensing subslot, the SU will harvest RF energy of the PU signal in the energy-harvesting slot, otherwise, the SU will continue spectrum sensing. The global decision on the presence of the PU is obtained through combining local sensing results from all the sensing slots by adopting “Or-logic Rule”. A joint optimization problem of sensing time and time splitter factor is proposed to maximize the throughput of the SU under the constraints of probabilities of false alarm and detection and energy harvesting. The simulation results have shown that the proposed model can clearly improve the maximal throughput of the SU compared to the traditional sensing-throughput tradeoff model.

  4. Interference Energy Spectrum of the Infinite Square Well

    Directory of Open Access Journals (Sweden)

    Mordecai Waegell

    2016-04-01

    Full Text Available Certain superposition states of the 1-D infinite square well have transient zeros at locations other than the nodes of the eigenstates that comprise them. It is shown that if an infinite potential barrier is suddenly raised at some or all of these zeros, the well can be split into multiple adjacent infinite square wells without affecting the wavefunction. This effects a change of the energy eigenbasis of the state to a basis that does not commute with the original, and a subsequent measurement of the energy now reveals a completely different spectrum, which we call the interference energy spectrum of the state. This name is appropriate because the same splitting procedure applied at the stationary nodes of any eigenstate does not change the measurable energy of the state. Of particular interest, this procedure can result in measurable energies that are greater than the energy of the highest mode in the original superposition, raising questions about the conservation of energy akin to those that have been raised in the study of superoscillations. An analytic derivation is given for the interference spectrum of a given wavefunction Ψ ( x , t with N known zeros located at points s i = ( x i , t i . Numerical simulations were used to verify that a barrier can be rapidly raised at a zero of the wavefunction without significantly affecting it. The interpretation of this result with respect to the conservation of energy and the energy-time uncertainty relation is discussed, and the idea of alternate energy eigenbases is fleshed out. The question of whether or not a preferred discrete energy spectrum is an inherent feature of a particle’s quantum state is examined.

  5. Decay energy of 55Fe from its inner Bremsstrahlung spectrum

    Science.gov (United States)

    Keshava, S. L.; Gopala, K.; Venkataramaiah, P.

    2001-06-01

    Several measurements of decay energy using the inner Bremsstrahlung spectrum (IB) due to radiative electron capture in 55Fe has been made. But the results are not uniform. Hence another attempt has been made at the same. Experimental data was obtained with a 4.445 cm. dia ' 5.08 cm thick NaI (Tl) detector. It was subjected to suitable statistical treatment and various corrections using Liden and Starfelt procedure. The corrected spectrum agrees well with the Glauber and Martin theory for 1s electron capture beyond 100 keV. From the Jauch plot, the decay energy of 232.36 +/-0.64 keV was obtained.

  6. Application of an iterative methodology for cross-section and variance/covariance data adjustment to the analysis of fast spectrum systems accounting for non-linearity

    International Nuclear Information System (INIS)

    Pelloni, Sandro

    2014-01-01

    Highlights: • Our data adjustment is based on a Generalized Linear Least-Squares approach. • The computed sensitivity coefficients are converged within an iterative procedure. • The corresponding multistep adjustment thus accounts for non-linearity. • It provides a more accurate simulation of fast-spectrum experiments. - Abstract: The data assimilation benchmark launched by the “Subgroup 33” on “Methods and issues for the combined use of integral experiments and covariance data” of the Working Party on Evaluation Cooperation (WPEC) of the OECD Nuclear Energy Agency Nuclear Science Committee is recalculated by means of a multistep adjustment procedure using the deterministic code system ERANOS in conjunction with a dedicated Generalized Linear Least-Squares approach based on the Bayesian parameter estimation method. Nuclear data in terms of multi-group cross-sections as well as their variances and covariances, are adjusted for 11 nuclides, namely 10 B, 16 O, 23 Na, 56 Fe, 52 Cr, 58 Ni, 235 U, 238 U, 239 Pu, 240 Pu and 241 Pu and 6 nuclear reactions which are elastic and inelastic scattering, lumped (n,2n) and (n,3n), capture, fission and ν ¯ . The adjustment is carried out by making use of experimental data for 19 integral parameters obtained in 7 different fast spectrum systems. In the determination of a posteriori values for these integral parameters including effective multiplication factors, spectral indices and void effects, along with their nuclear data uncertainty, the required adjusted data for these nuclides and reactions are generated in conjunction with pre-computed sensitivity coefficients of the analytical integral parameters to the nuclear data to adjust. The suggested multistep scheme aims at accounting for non-linear effects. Correspondingly, the sensitivity coefficients are recalculated within an iterative procedure on the basis of the a posteriori analytical values and adjusted cross-sections. The adjustment is thus repeated

  7. Energy spectrum of tearing mode turbulence in sheared background field

    Science.gov (United States)

    Hu, Di; Bhattacharjee, Amitava; Huang, Yi-Min

    2018-06-01

    The energy spectrum of tearing mode turbulence in a sheared background magnetic field is studied in this work. We consider the scenario where the nonlinear interaction of overlapping large-scale modes excites a broad spectrum of small-scale modes, generating tearing mode turbulence. The spectrum of such turbulence is of interest since it is relevant to the small-scale back-reaction on the large-scale field. The turbulence we discuss here differs from traditional MHD turbulence mainly in two aspects. One is the existence of many linearly stable small-scale modes which cause an effective damping during the energy cascade. The other is the scale-independent anisotropy induced by the large-scale modes tilting the sheared background field, as opposed to the scale-dependent anisotropy frequently encountered in traditional critically balanced turbulence theories. Due to these two differences, the energy spectrum deviates from a simple power law and takes the form of a power law multiplied by an exponential falloff. Numerical simulations are carried out using visco-resistive MHD equations to verify our theoretical predictions, and a reasonable agreement is found between the numerical results and our model.

  8. Spectrum and energy levels of four-times-ionized niobium

    International Nuclear Information System (INIS)

    Kagan, D.T.; Conway, J.G.; Meinders, E.

    1981-01-01

    The 4p 6 nl spectrum of Nb 4+ was measured and analyzed. The spectrum was excited in a vacuum sliding spark source with a peak current of 800 A and a pulse width of 70 μsec. The analysis of the spectrum has extended the 12 known lines to 84 and the 10 known levels to 30. The ionization energy was calculated to be 407897 +- 40 cm -1 . There is strong evidence that the 4p 5 4d 2 configurations interacts strongly with the 4p 6 nf configuration. In addition, the hyperfine splitting of the 4p 6 6s level has been observed and measured to be 1.1 cm -1

  9. Determination of neutron energy spectrum at a pneumatic rabbit station of a typical swimming pool type material test research reactor

    International Nuclear Information System (INIS)

    Malkawi, S.R.; Ahmad, N.

    2002-01-01

    The method of multiple foil activation was used to measure the neutron energy spectrum, experimentally, at a rabbit station of Pakistan Research Reactor-1 (PARR-1), which is a typical swimming pool type material test research reactor. The computer codes MSITER and SANDBP were used to adjust the spectrum. The pre-information required by the adjustment codes was obtained by modelling the core and its surroundings in three-dimensions by using the one dimensional transport theory code WIMS-D/4 and the multidimensional finite difference diffusion theory code CITATION. The input spectrum covariance information required by MSITER code was also calculated from the CITATION output. A comparison between calculated and adjusted spectra shows a good agreement

  10. Dynamic energy spectrum and energy deposition in solid target by intense pulsed ion beams

    Institute of Scientific and Technical Information of China (English)

    Xiao Yu; Xiao-Yun Le; Zheng Liu; Jie Shen; Yu I.Isakova; Hao-Wen Zhong; Jie Zhang; Sha Yan; Gao-Long Zhang; Xiao-Fu Zhang

    2017-01-01

    A method for analyzing the dynamic energy spectrum of intense pulsed ion beam (IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes (MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450 (active MID) and TEMP-4M (passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.

  11. Wavelet Spatial Energy Spectrums Studies on Drag Reduction by Micro-bubble Injection

    International Nuclear Information System (INIS)

    Ling Zhen; Yassin Hassan

    2006-01-01

    In this study, continuous wavelet transforms and spatial correlation techniques are employed to determine the space-localized wavenumber energy spectrum of the velocity signals in turbulent channel flow. The flow conditions correspond to single phase flow and micro-bubbles injected two phase flow. The wavelet energy spectrums demonstrate that the wavenumber (eddy size) content of the velocity signals is not only space-dependent but also micro-bubbles can impact the eddy size content. Visual observations of the wavelet energy spectrum spatial distribution was realized by using Particle Image Velocimetry (PIV) measurement technique. The two phase flow condition corresponds to a drag reduction of 38.4% with void fraction of 4.9%. The present results provide evidence that micro-bubbles in the boundary layer of a turbulent channel flow can help adjust the eddy size distributions near the wall. This can assist in explaining that micro-bubbles are performing as buffers to keep the energy of fluid particles going in stream-wise direction and reducing the energy of fluid particles going in normal direction. (authors)

  12. On the Energy Spectrum of Strong Magnetohydrodynamic Turbulence

    Directory of Open Access Journals (Sweden)

    Jean Carlos Perez

    2012-10-01

    Full Text Available The energy spectrum of magnetohydrodynamic turbulence attracts interest due to its fundamental importance and its relevance for interpreting astrophysical data. Here we present measurements of the energy spectra from a series of high-resolution direct numerical simulations of magnetohydrodynamics turbulence with a strong guide field and for increasing Reynolds number. The presented simulations, with numerical resolutions up to 2048^{3} mesh points and statistics accumulated over 30 to 150 eddy turnover times, constitute, to the best of our knowledge, the largest statistical sample of steady state magnetohydrodynamics turbulence to date. We study both the balanced case, where the energies associated with Alfvén modes propagating in opposite directions along the guide field, E^{+}(k_{⊥} and E^{-}(k_{⊥}, are equal, and the imbalanced case where the energies are different. In the balanced case, we find that the energy spectrum converges to a power law with exponent -3/2 as the Reynolds number is increased, which is consistent with phenomenological models that include scale-dependent dynamic alignment. For the imbalanced case, with E^{+}>E^{-}, the simulations show that E^{-}∝k_{⊥}^{-3/2} for all Reynolds numbers considered, while E^{+} has a slightly steeper spectrum at small Re. As the Reynolds number increases, E^{+} flattens. Since E^{±} are pinned at the dissipation scale and anchored at the driving scales, we postulate that at sufficiently high Re the spectra will become parallel in the inertial range and scale as E^{+}∝E^{-}∝k_{⊥}^{-3/2}. Questions regarding the universality of the spectrum and the value of the “Kolmogorov constant” are discussed.

  13. Decay energy of 55Fe from its inner Bremsstrahlung spectrum

    International Nuclear Information System (INIS)

    Keshava, S.L.; Gopala, K.; Venkataramaiah, P.

    2001-01-01

    Several measurements of decay energy using the inner Bremsstrahlung spectrum (IB) due to radiative electron capture in 55 Fe has been made. But the results are not uniform. Hence another attempt has been made at the same. Experimental data was obtained with a 4.445 cm dia x 5.08 cm thick NaI (Tl) detector. It was subjected to suitable statistical treatment and various corrections using Liden and Starfelt procedure. The corrected spectrum agrees well with the Glauber and Martin theory for l s electron capture beyond 100 keV. From the Jauch plot, the decay energy of 232.36±0.64 keV was obtained. (author)

  14. Ground level enhancement (GLE) energy spectrum parameters model

    Science.gov (United States)

    Qin, G.; Wu, S.

    2017-12-01

    We study the ground level enhancement (GLE) events in solar cycle 23 with the four energy spectra parameters, the normalization parameter C, low-energy power-law slope γ 1, high-energy power-law slope γ 2, and break energy E0, obtained by Mewaldt et al. 2012 who fit the observations to the double power-law equation. we divide the GLEs into two groups, one with strong acceleration by interplanetary (IP) shocks and another one without strong acceleration according to the condition of solar eruptions. We next fit the four parameters with solar event conditions to get models of the parameters for the two groups of GLEs separately. So that we would establish a model of energy spectrum for GLEs for the future space weather prediction.

  15. Gamma ray energy spectrum of a buried radioactive source

    Energy Technology Data Exchange (ETDEWEB)

    Massey, N B

    1957-07-01

    Because of current attempts to utilize airborne gamma-ray scintillation spectrometers as a means of detecting and identifying buried radioactive mineral deposits, it has become important to study the effects of multiple scattering on the gamma-ray energy spectrum of a source buried in a semi-infinite medium. A series of ten experiments was made. First a scintillation detector was located in air at a fixed distance above a 250 microcurie cobalt-60 source suspended in a large tank. The level of water was raised from 25 cm below the source to 50 cm above, and the gamma-ray energy spectrum was observed. It was found that the high energy portion of the cobalt-60 spectrum remained identifiable even when the source was submerged more than five half-lengths. Further, the ratio of the counting rate of the total incident gamma radiation to the counting rate of the primary 1.33 MeV radiation was found to be very nearly linearly proportional to the depth of water cover. This leads to an empirical method for determining the depth of burial of a cobalt-60 point source. (author)

  16. Adjustment, Sibling Problems and Coping Strategies of Brothers and Sisters of Children with Autistic Spectrum Disorder

    Science.gov (United States)

    Ross, Penelope; Cuskelly, Monica

    2006-01-01

    Background: Siblings of children with autistic spectrum disorder (ASD) express more problem behaviours and experience more difficulties in their relationships than do children in families where all children are developing typically. We know little about what contributes to these difficulties. Method: Mothers of a child with ASD completed the…

  17. D{sup -} energy spectrum in toroidal quantum ring

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, C A; Gutierrez, W; Garcia, L F [Universidad Industrial de Santander, Bucaramanga (Colombia); Marin, J H, E-mail: jhmarin@unal.edu.c [Universidad Nacional-Colombia, Medellin-Colombia, AA3840 (Colombia)

    2009-05-01

    The structure of energy spectrum of the negative donor centre in a toroidal-shaped quantum ring with two different morphologies of the cross-section is analyzed. By using the adiabatic procedure we have deduced a one-dimensional wave equation with periodic conditions which describes the low-lying energy levels related to the electrons rotation around the symmetry axis. Our results are in good agreement with those previously obtained as the size of the ring cross-section tends to zero.

  18. Measurements of the energy spectrum of backscattered fast neutrons

    International Nuclear Information System (INIS)

    Segal, Y.

    1976-03-01

    Experimental measurements have been made of the energy spectra of neutrons transmitted through slabs of iron, lead and perspex for incident neutron energies of 0.5, 1.0, 1.5 and 1.8 MeV. The neutron energy measurements were made using a He-3 spectrometer. The dependence of the neutrons energy spectrum as a function of scattering thickness was determined. The neutrons source used was a 3MeV Van de Graaff accelerator with a tritium target using the H 3 (p,n) He 3 reaction. The results obtained by the investigator on energy dependence of transmitted neutrons as a function of thickness of scattering material were compared, where possible, with the results obtained by other workers. The comparisons indicated good agreement. The experiment's results are compared with MORSE Monte Carlo calculated values. It is worthwhile to note that direct comparison between measured cross section values and the recommended ones are very far from satisfactory. In almost all cases the calculated spectrum is harder than the experimental one, a situation common to the penetrating and the back-scattered flux

  19. Reduction of peak energy demand based on smart appliances energy consumption adjustment

    Science.gov (United States)

    Powroźnik, P.; Szulim, R.

    2017-08-01

    In the paper the concept of elastic model of energy management for smart grid and micro smart grid is presented. For the proposed model a method for reducing peak demand in micro smart grid has been defined. The idea of peak demand reduction in elastic model of energy management is to introduce a balance between demand and supply of current power for the given Micro Smart Grid in the given moment. The results of the simulations studies were presented. They were carried out on real household data available on UCI Machine Learning Repository. The results may have practical application in the smart grid networks, where there is a need for smart appliances energy consumption adjustment. The article presents a proposal to implement the elastic model of energy management as the cloud computing solution. This approach of peak demand reduction might have application particularly in a large smart grid.

  20. Neutron flux uncertainty and covariances for spectrum adjustment and estimation of WWER-1000 pressure vessel fluences

    International Nuclear Information System (INIS)

    Boehmer, Bertram

    2000-01-01

    Results of estimation of the covariance matrix of the neutron spectrum in the WWER-1000 reactor cavity and pressure vessel positions are presented. Two-dimensional calculations with the discrete ordinates transport code DORT in r-theta and r-z-geometry used to determine the neutron group spectrum covariances including gross-correlations between interesting positions. The new Russian ABBN-93 data set and CONSYST code used to supply all transport calculations with group neutron data. All possible sources of uncertainties namely caused by the neutron gross sections, fission sources, geometrical dimensions and material densities considered, whereas the uncertainty of the calculation method was considered negligible in view of the available precision of Monte Carlo simulation used for more precise evaluation of the neutron fluence. (Authors)

  1. Adjustable Nonlinear Springs to Improve Efficiency of Vibration Energy Harvesters

    OpenAIRE

    Boisseau, S.; Despesse, G.; Seddik, B. Ahmed

    2012-01-01

    Vibration Energy Harvesting is an emerging technology aimed at turning mechanical energy from vibrations into electricity to power microsystems of the future. Most of present vibration energy harvesters are based on a mass spring structure introducing a resonance phenomenon that allows to increase the output power compared to non-resonant systems, but limits the working frequency bandwidth. Therefore, they are not able to harvest energy when ambient vibrations' frequencies shift. To follow sh...

  2. Network characteristics, perceived social support, and psychological adjustment in mothers of children with autism spectrum disorder.

    Science.gov (United States)

    Benson, Paul R

    2012-12-01

    This study examined the characteristics of the support networks of 106 mothers of children with ASD and their relationship to perceived social support, depressed mood, and subjective well-being. Using structural equation modeling, two competing sets of hypotheses were assessed: (1) that network characteristics would impact psychological adjustment directly, and (2) that network effects on adjustment would be indirect, mediated by perceived social support. Results primarily lent support to the latter hypotheses, with measures of network structure (network size) and function (proportion of network members providing emotional support) predicting increased levels of perceived social support which, in turn, predicted decreased depressed mood and increased well-being. Results also indicated that increased interpersonal strain in the maternal network was directly and indirectly associated with increased maternal depression, while being indirectly linked to reduced well-being. Study limitations and implications are discussed.

  3. Energy efficient cross layer design for spectrum sharing systems

    KAUST Repository

    Alabbasi, Abdulrahman

    2016-10-06

    We propose a cross layer design that optimizes the energy efficiency of spectrum sharing systems. The energy per good bit (EPG) is considered as an energy efficiency metric. We optimize the secondary user\\'s transmission power and media access frame length to minimize the EPG metric. We protect the primary user transmission via an outage probability constraint. The non-convex targeted problem is optimized by utilizing the generalized convexity theory and verifying the strictly pseudo-convex structure of the problem. Analytical results of the optimal power and frame length are derived. We also used these results in proposing an algorithm, which guarantees the existence of a global optimal solution. Selected numerical results show the improvement of the proposed system compared to other systems. © 2016 IEEE.

  4. Dose rate constant and energy spectrum of interstitial brachytherapy sources

    International Nuclear Information System (INIS)

    Chen Zhe; Nath, Ravinder

    2001-01-01

    In the past two years, several new manufacturers have begun to market low-energy interstitial brachytherapy seeds containing 125 I and 103 Pd. Parallel to this development, the National Institute of Standards and Technology (NIST) has implemented a modification to the air-kerma strength (S K ) standard for 125 I seeds and has also established an S K standard for 103 Pd seeds. These events have generated a considerable number of investigations on the determination of the dose rate constants (Λ) of interstitial brachytherapy seeds. The aim of this work is to study the general properties underlying the determination of Λ and to develop a simple method for a quick and accurate estimation of Λ. As the dose rate constant of clinical seeds is defined at a fixed reference point, we postulated that Λ may be calculated by treating the seed as an effective point source when the seed's source strength is specified in S K and its source characteristics are specified by the photon energy spectrum measured in air at the reference point. Using a semi-analytic approach, an analytic expression for Λ was derived for point sources with known photon energy spectra. This approach enabled a systematic study of Λ as a function of energy. Using the measured energy spectra, the calculated Λ for 125 I model 6711 and 6702 seeds and for 192 Ir seed agreed with the AAPM recommended values within ±1%. For the 103 Pd model 200 seed, the agreement was 5% with a recently measured value (within the ±7% experimental uncertainty) and was within 1% with the Monte Carlo simulations. The analytic expression for Λ proposed here can be evaluated using a programmable calculator or a simple spreadsheet and it provides an efficient method for checking the measured dose rate constant for any interstitial brachytherapy seed once the energy spectrum of the seed is known

  5. Spectrum and energy levels of kryptonlike ion Nb VI

    International Nuclear Information System (INIS)

    Reader, J.; Ekberg, J.O.

    1993-01-01

    The spectrum of five-times ionized niobium, Nb, VI, was observed from 238 to 2700 angstrom with sliding spark discharges on 10.7-m normal- and grazing-incidence spectrographs. Experimental energies were determined for all levels of the 4s 2 4p 6 , 4s 2 4p 6 , 4s 2 4p 5 4d, 4f, 5s, 5p, 5g, 6s, and 4s4p 6 4d configurations as well as some levels of 4p 5 6g. A total of 291 lines were classified as transitions between 88 observed levels. A previous analysis of this spectrum was found to be totally erroneous. Large hyperfine splittings were found for several levels of the 4p 5 5s and 5p configurations. The observed configurations were theoretically interpreted by means of Hartree-Fock calculations and least squares fits of the energy parameters to the observed levels. A revised value of the ionization energy was obtained from the 4p 5 5g and 6g configurations

  6. The vacuum profile of the energy spectrum compressor

    International Nuclear Information System (INIS)

    Kuijsten, W.J.

    1988-12-01

    A finite element model has been made of the vacuum system of the Energy Spectrum Compressor. It gives the possibility to calculate the average pressure profile of the system in a fast way. It is required that the average pressure in the system does not influence the present performance of the linac nor the performance of the beam switch yard. Calculations show that with standard pumps of 60 l/s an average pressure of -5 Pa can be obtained. 7 refs.; 8 figs.; 2 tabs

  7. Search for the end of the cosmic ray energy spectrum

    International Nuclear Information System (INIS)

    Linsley, John

    1998-01-01

    The title I was asked to speak about expresses an idea that occurred rather recently in the history of cosmic ray studies. I argue that the idea of a possible end of the cosmic ray energy spectrum came into being after a sequence of three rapid advances in knowledge which I describe, calling them 'breakthroughs'. I suggest that the present workshop be regarded as a step toward a fourth breakthrough. I argue that this may occur through application of the Space Airwatch concept--the earth atmosphere as target and signal generator--as embodied in the NASA OWL project

  8. Effects of fault heterogeneity on seismic energy and spectrum

    Science.gov (United States)

    Dragoni, Michele; Santini, Stefano

    2017-12-01

    We study the effects of friction heterogeneity on the dynamics of a seismogenic fault. To this aim, we consider a fault model containing two asperities with different static frictions and a rate-dependent dynamic friction. We consider the seismic events produced by the consecutive failure of the two asperities and study their properties as functions of the ratio between static frictions. In particular, we calculate the moment rate, the stress evolution during fault slip, the average stress drop, the partitioning of energy release, the seismic energy, the far-field waveforms and the spectrum of seismic waves. These quantities depend to various extent on the friction distribution on the fault. In particular, the stress distribution on the fault is always strongly heterogeneous at the beginning of the seismic event. Seismic energy and frictional heat decrease with increasing friction heterogeneity, while seismic efficiency is constant. We obtain an equation relating seismic efficiency to the parameters of the friction law, showing that the efficiency is maximum for smaller values of dynamic friction. The seismic spectrum depends on the friction distribution as to the positions and the values of the minima. However, under the model assumption that the slip durations are the same for both asperities, the corner frequency is independent of the friction distribution, but it depends on the friction law and on the coupling between asperities. The model provides a relation between the total radiated energy and the seismic moment that is consistent with the empirical relation between the two quantities. The fault model with one asperity is also considered as a particular case. The model is applied to the 1965 Rat Islands (Alaska) earthquake and shows the role of fault heterogeneity in controlling the spatial distribution of stress drop as well as the time dependence and the final amount of radiated energy.

  9. DSM-5 PTSD and posttraumatic stress spectrum in Italian emergency personnel: correlations with work and social adjustment

    Directory of Open Access Journals (Sweden)

    Carmassi C

    2016-02-01

    Full Text Available Claudia Carmassi,1 Camilla Gesi,1 Marly Simoncini,1 Luca Favilla,1 Gabriele Massimetti,1 Maria Cristina Olivieri,1 Ciro Conversano,2 Massimo Santini,2 Liliana Dell’Osso1 1Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy; 2Emergency Medicine and Emergency Room Unit, Azienda Ospedaliero-Universitaria Pisana (AOUP, Pisa, Italy Abstract: The Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-5 has recently recognized a particular risk for posttraumatic stress disorder (PTSD among first responders (criterion A4, acknowledging emergency units as stressful places of employment. Little data is yet available on DSM-5 among emergency health operators. The aim of this study was to assess DSM-5 symptomatological PTSD and posttraumatic stress spectrum, as well as their impact on work and social functioning, in the emergency staff of a major university hospital in Italy. One hundred and ten subjects (doctors, nurses, and health-care assistants were recruited at the Emergency Unit of the Azienda Ospedaliero-Universitaria Pisana (Italy and assessed by the Trauma and Loss Spectrum-Self Report (TALS-SR and Work and Social Adjustment Scale (WSAS. A 15.7% DSM-5 symptomatological PTSD prevalence rate was found. Nongraduated persons reported significantly higher TALS-SR Domain IV (reaction to loss or traumatic events scores and a significantly higher proportion of individuals presenting at least one maladaptive behavior (TALS-SR Domain VII, with respect to graduate ones. Women reported significantly higher WSAS scores. Significant correlations emerged between PTSD symptoms and WSAS total scores among health-care assistants, nongraduates and women. Our results showed emergency workers to be at risk for posttraumatic stress spectrum and related work and social impairment, particularly among women and nongraduated subjects. Keywords: posttraumatic stress disorder (PTSD, emergency, emergency

  10. Dark Energy Constraints from the Thermal Sunyaev Zeldovich Power Spectrum

    Science.gov (United States)

    Bolliet, Boris; Comis, Barbara; Komatsu, Eiichiro; Macías-Pérez, Juan Francisco

    2018-03-01

    We constrain the dark energy equation of state parameter, w, using the power spectrum of the thermal Sunyaev-Zeldovich (tSZ) effect. We improve upon previous analyses by taking into account the trispectrum in the covariance matrix and marginalising over the foreground parameters, the correlated noise, the mass bias B in the Planck universal pressure profile, and all the relevant cosmological parameters (i.e., not just Ωm and σ8). We find that the amplitude of the tSZ power spectrum at ℓ ≲ 103 depends primarily on F ≡ σ8(Ωm/B)0.40h-0.21, where B is related to more commonly used variable b by B = (1 - b)-1. We measure this parameter with 2.6% precision, F = 0.460 ± 0.012 (68% CL). By fixing the bias to B = 1.25 and adding the local determination of the Hubble constant H0 and the amplitude of the primordial power spectrum constrained by the Planck Cosmic Microwave Background (CMB) data, we find w = -1.10 ± 0.12, σ8 = 0.802 ± 0.037, and Ωm = 0.265 ± 0.022 (68% CL). Our limit on w is consistent with and is as tight as that from the distance-alone constraint from the CMB and H0. Finally, by combining the tSZ power spectrum and the CMB data we find, in the Λ Cold Dark Matter (CDM) model, the mass bias of B = 1.71 ± 0.17, i.e., 1 - b = 0.58 ± 0.06 (68% CL).

  11. Spectrum

    DEFF Research Database (Denmark)

    Høgfeldt Hansen, Leif

    2016-01-01

    The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....

  12. Energy spectrum structure and ''trap'' effects in a three-particle system

    International Nuclear Information System (INIS)

    Simenog, I.V.; Sitnichenko, A.I.

    1982-01-01

    Investigation is made of the threshold energy spectrum structure in a system of three spinless particles depending on the form of two-particle interaction. The correlation dependence of the spectrum and low-energy scattering parameters are shown. A new phenomenon of ''traps'' for the spectrum in a three-particle system with interaction involving components of considerably different ranges is established

  13. Composition and energy spectrum variations of auroral ions

    International Nuclear Information System (INIS)

    Lynch, J.; Leach, R.; Pulliam, D.; Scherb, F.

    1977-01-01

    We have detected H + ,O + , and He ++ ions with E/q up to 20 keV/charge in a hydrogen aurora over Churchill, Manitoba, during the flight of a Javelin sounding rocket on February 11, 1975, We observed several examples of different types of ion events. One type consisted of bursts of H + and O + ions which arrived simultaneously at all energies within the range of the E/q analyzer. These events were apparently of local origin (distance + ions (O + /H + approximately-greater-than30%). A second type of event consisted of bursts of enhanced H + counting rates but no O + ions. The dispersion in time of the energy spectrum was consistent with an injection and acceleration site located at about 20 R/sub E/ from the earth. An enhancement of the He ++ counting rates was associated with these events, but the He ++ data are of limited statistical significance. A third type of event, consisting of short bursts of H + ions with wide energy spreads, was observed in association with an event in which the energy of the H + ions showed time dispersion. We interpret these short H + bursts as due to ions trapped in traveling waves generated by an explosive injection of plasma in the earth's magnetotail

  14. Full Spectrum Diffused and Beamed Solar Energy Application Using Optical Fibre

    OpenAIRE

    Majumdar, M. R. Dutta; Das, Debasish

    2007-01-01

    Existing solar energy application systems use small fraction of full spectrum of solar energy. So attempts are made to show how full spectrum solar energy can be used for diffused and beamed form of incident solar energy. Luminescent Solar Concentrator (LSC) principle with optical fibre in diffused sun light and dielectric mirror separation technique with optical fibre in beamed form are discussed. Comparison of both the cases are done. Keywords: full spectrum, solar photonics, diffused solar...

  15. Neutron energy spectrum in graphite blankets of fusion reactors

    International Nuclear Information System (INIS)

    Tsechanski, A.

    1981-09-01

    Neutron flux measurements were performed in a graphite stack and compared with calculations made with a two dimensional transport computer code. In the present work it is observed that the calculated spectrum in the elastic and inelastic scattering ranges (the first collision range in both cases), is sensitive to details of the angular distribution of these neutrons. Regarding the discrepancies in the elastic scattering range it is concluded that the microscopic cross section library ENDF/B-IV overestimates the large angle scattering (back scattering) as can be seen from comparison of measured and calculated spectra. The two most important conclusions of the present work are: 1. Inelastic scattering interaction of D-T neutrons in graphite cannot be calculated without a proper account of energy-angle correlation. 2. An experimental setup supplying monoenergetic collimated D-T neutrons constitutes a sensitive although indirect means for measuring angular distributions in inelastic and elastic scattering

  16. Turbulent kinetic energy spectrum in very anisothermal flows

    International Nuclear Information System (INIS)

    Serra, Sylvain; Toutant, Adrien; Bataille, Françoise; Zhou, Ye

    2012-01-01

    In this Letter, we find that the Kolmogorov scaling law is no longer valid when the flow is submitted to strong dilatational effects caused by high temperature gradients. As a result, in addition to the nonlinear time scale, there is a much shorter “temperature gradients” time scale. We propose a model that estimates the time scale of the triple decorrelation incorporating the influences of the temperature gradient. The model agrees with the results from the thermal large-eddy simulations of different Reynolds numbers and temperature gradients. This Letter provides a better understanding of the very anisothermal turbulent flow. -- Highlights: ► Turbulent flows subject to high temperature gradients are considered. ► The new “temperature gradients” time scale is determined. ► A generalized energy spectrum is developed to incorporate the effects of temperature gradient.

  17. Possible dark energy imprints in the gravitational wave spectrum of mixed neutron-dark-energy stars

    Energy Technology Data Exchange (ETDEWEB)

    Yazadjiev, Stoytcho S. [Department of Theoretical Physics, Faculty of Physics, St. Kliment Ohridski University of Sofia, James Bourchier Blvd. 5, 1164 Sofia (Bulgaria); Doneva, Daniela D., E-mail: yazad@phys.uni-sofia.bg, E-mail: daniela.doneva@uni-tuebingen.de [Theoretical Astrophysics, IAAT, Eberhard-Karls University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

    2012-03-01

    In the present paper we study the oscillation spectrum of neutron stars containing both ordinary matter and dark energy in different proportions. Within the model we consider, the equilibrium configurations are numerically constructed and the results show that the properties of the mixed neuron-dark-energy star can differ significantly when the amount of dark energy in the stars is varied. The oscillations of the mixed neuron-dark-energy stars are studied in the Cowling approximation. As a result we find that the frequencies of the fundamental mode and the higher overtones are strongly affected by the dark energy content. This can be used in the future to detect the presence of dark energy in the neutron stars and to constrain the dark-energy models.

  18. Comparative study on γ energy spectrum denoise by fourier and wavelet transforms

    International Nuclear Information System (INIS)

    Shi Dongsheng; Di Yuming; Zhou Chunlin

    2007-01-01

    This paper introduces the basic principle of wavelet and Fourier transforms, applies wavelet transform method to denoise γ energy spectrum of 60 Co and compares it with Fourier transform method. The result of simulation with MATLAB software tool showed that as compared with traditional Fourier transform, wavelet transform has comparatively higher accuracy for γ energy spectrum denoising and is more feasible to γ energy spectrum denoising. (authors)

  19. CHANDRA HIGH-ENERGY TRANSMISSION GRATING SPECTRUM OF AE AQUARII

    International Nuclear Information System (INIS)

    Mauche, Christopher W.

    2009-01-01

    The nova-like cataclysmic binary AE Aqr, which is currently understood to be a former supersoft X-ray binary and current magnetic propeller, was observed for over two binary orbits (78 ks) in 2005 August with the High-Energy Transmission Grating (HETG) on board the Chandra X-ray Observatory. The long, uninterrupted Chandra observation provides a wealth of details concerning the X-ray emission of AE Aqr, many of which are new and unique to the HETG. First, the X-ray spectrum is that of an optically thin multi-temperature thermal plasma; the X-ray emission lines are broad, with widths that increase with the line energy from σ ∼ 1 eV (510 km s -1 ) for O VIII to σ ∼ 5.5 eV (820 km s -1 ) for Si XIV; the X-ray spectrum is reasonably well fit by a plasma model with a Gaussian emission measure distribution that peaks at log T(K) = 7.16, has a width σ = 0.48, an Fe abundance equal to 0.44 times solar, and other metal (primarily Ne, Mg, and Si) abundances equal to 0.76 times solar; and for a distance d = 100 pc, the total emission measure EM = 8.0 x 10 53 cm -3 and the 0.5-10 keV luminosity L X = 1.1 x 10 31 erg s -1 . Second, based on the f/(i + r) flux ratios of the forbidden (f), intercombination (i), and recombination (r) lines of the Heα triplets of N VI, O VII, and Ne IX measured by Itoh et al. in the XMM-Newton Reflection Grating Spectrometer spectrum and those of O VII, Ne IX, Mg XI, and Si XIII in the Chandra HETG spectrum, either the electron density of the plasma increases with temperature by over three orders of magnitude, from n e ∼ 6 x 10 10 cm -3 for N VI [log T(K) ∼ 6] to n e ∼ 1 x 10 14 cm -3 for Si XIII [log T(K) ∼ 7], and/or the plasma is significantly affected by photoexcitation. Third, the radial velocity of the X-ray emission lines varies on the white dwarf spin phase, with two oscillations per spin cycle and an amplitude K ∼ 160 km s -1 . These results appear to be inconsistent with the recent models of Itoh et al., Ikhsanov, and

  20. Environment-adjusted total-factor energy efficiency of Taiwan's service sectors

    International Nuclear Information System (INIS)

    Fang, Chin-Yi; Hu, Jin-Li; Lou, Tze-Kai

    2013-01-01

    This study computes the pure technical efficiency (PTE) and energy-saving target of Taiwan's service sectors during 2001–2008 by using the input-oriented data envelopment analysis (DEA) approach with the assumption of a variable returns-to-scale (VRS) situation. This paper further investigates the effects of industry characteristics on the energy-saving target by applying the four-stage DEA proposed by Fried et al. (1999). We also calculate the pre-adjusted and environment-adjusted total-factor energy efficiency (TFEE) scores in these service sectors. There are three inputs (labor, capital stock, and energy consumption) and a single output (real GDP) in the DEA model. The most energy efficient service sector is finance, insurance and real estate, which has an average TFEE of 0.994 and an environment-adjusted TFEE (EATFEE) of 0.807. The study utilizes the panel-data, random-effects Tobit regression model with the energy-saving target (EST) as the dependent variable. Those service industries with a larger GDP output have greater excess use of energy. The capital–labor ratio has a significantly positive effect while the time trend variable has a significantly negative impact on the EST, suggesting that future new capital investment should also be accompanied with energy-saving technology in the service sectors. - Highlights: • The technical efficiency and energy-saving target of service sectors are assessed. • The pre-adjusted and environment-adjusted total-factor energy efficiency scores in services are assessed. • The industrial characteristic differences are examined by the panel-data, random-effects Tobit regression model. • Labor, capital, and energy and an output (GDP) are included in the DEA model. • Future new capital investment should also be accompanied with energy-saving technology in the service sectors

  1. Energy spectrum of 208Pb(n,x) reactions

    Science.gov (United States)

    Tel, E.; Kavun, Y.; Özdoǧan, H.; Kaplan, A.

    2018-02-01

    Fission and fusion reactor technologies have been investigated since 1950's on the world. For reactor technology, fission and fusion reaction investigations are play important role for improve new generation technologies. Especially, neutron reaction studies have an important place in the development of nuclear materials. So neutron effects on materials should study as theoretically and experimentally for improve reactor design. For this reason, Nuclear reaction codes are very useful tools when experimental data are unavailable. For such circumstances scientists created many nuclear reaction codes such as ALICE/ASH, CEM95, PCROSS, TALYS, GEANT, FLUKA. In this study we used ALICE/ASH, PCROSS and CEM95 codes for energy spectrum calculation of outgoing particles from Pb bombardment by neutron. While Weisskopf-Ewing model has been used for the equilibrium process in the calculations, full exciton, hybrid and geometry dependent hybrid nuclear reaction models have been used for the pre-equilibrium process. The calculated results have been discussed and compared with the experimental data taken from EXFOR.

  2. Hofstadter's butterfly energy spectrum of ultracold fermions on the two-dimensional triangular optical lattice

    International Nuclear Information System (INIS)

    Hou Jingmin; Lu Qingqing

    2009-01-01

    We study the energy spectrum of ultracold fermionic atoms on the two-dimensional triangular optical lattice subjected to a perpendicular effective magnetic field, which can be realized with laser beams. We derive the generalized Harper's equations and numerically solve them, then we obtain the Hofstadter's butterfly-like energy spectrum, which has a novel fractal structure. The observability of the Hofstadter's butterfly spectrum is also discussed

  3. Adjustment of equations to predict the metabolizable energy of corn for meat type quails

    Directory of Open Access Journals (Sweden)

    Tiago Junior Pasquetti

    2015-08-01

    Full Text Available The metabolizable energy (ME determination for foods used in quail diets, through metabolism assays, takes time, infrastructure and financial resources, which makes the development of prediction equations based on proximal composition of foods to estimate the ME values of particular interest. The objective of this study was to adjust the prediction equations of metabolizable energy (ME of corn for quail. The chemical compositions of 12 maize varieties were determined and a metabolism assay was carried out in order to determine the apparent metabolizable energy (AME and nitrogen-corrected apparent metabolizable energy (AMEn of these corn varieties. The values of chemical composition, AME and AMEn, converted to dry matter, were used to adjust the prediction equations. The initial adjustment of simple and multiple linear regression of the AME and AMEn was performed using the values of crude protein (CP, ether extract (EE, neutral (NDF and acid (ADF detergent fiber, mineral matter (MM, calcium (Ca and phosphorus (P as regressors (full model. To adjust the prediction equations the statistical procedure of simple and multiple linear regression was used, with the technique of indirect elimination (Backward. There was adjustment of 10 prediction equations, in which five were for AME and another five for AMEn, the R² values of which ranged from 0.20 to 0.75 and from 0.21 to 0.78, respectively. For all adjusted equations, negative correlations for MM were observed, which may be related to its dilutive effect of the gross energy contained in corn. In conclusion, the equations that showed better adjustment were AME= 5605.46 - 385.074CP + 111.648EE + 48.1133NDF + 303.924ADF - 929.931MM (R²= 0.75 and AMEn= 5878.16 - 403.937CP + 81.9618EE + 41.8954NDF + 303.506FDA - 901.621MM (R²= 0.78.

  4. Energy and spectrum efficiency in rural areas based on cognitive radio technology

    CSIR Research Space (South Africa)

    Masonta, MT

    2009-09-01

    Full Text Available spectrum scarcity in the most energy efficient manner. In this paper, researchers present the proposed work to be carried out as part of a doctoral thesis to address the spectrum scarcity and transmission power in energy constrained rural areas....

  5. Relaxation of ion energy spectrum just after turbulent heating pulse in TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1982-07-01

    The temporal evolution and spatial profile of the ion energy spectrum just after the application of a toroidal current pulse for turbulent heating are investigated experimentally in the TRIAM-1 tokamak and also numerically using the Fokker-Planck equation. The two-component ion energy spectrum formed by turbulent heating relaxes to a single one within tausub(i) (the ion collision time).

  6. Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Yokoya, Kaoru; Chen, Pisin

    1989-03-01

    The final electron energy spectrum under multi-photon beamstrahlung process is derived analytically in the classical and the intermediate regimes. The maximum disruption angle from the low energy tail of the spectrum is also estimated. The results are then applied to the TLC and the CLIC parameters. 6 refs., 1 fig., 1 tab.

  7. Source Energy Spectrum of the 17 May 2012 GLE

    Science.gov (United States)

    Pérez-Peraza, Jorge; Márquez-Adame, Juan C.; Miroshnichenko, Leonty; Velasco-Herrera, Victor

    2018-05-01

    Among the several GLEs (ground level enhancements) that have presumptuously occurred in the period 2012-2015, the 17 May 2012 is that which is more widely accepted to be a GLE, in view of the high number of high-latitude neutron monitor stations that have registered it. In spite of the small amplitude, it was more prominent of the predicted GLE's of the present decade (Pérez-Peraza & Juárez-Zuñiga, 2015, https://doi.org/10.1088/0004-637X/803/1/27). However, the lack of latitude effect makes it difficult to study the characteristics of this event in the high-energy extreme of the spectrum. Nevertheless, several outstanding works have been able to derive observational spectra at the top of the Earth atmosphere for this peculiar GLE. Some of these works find that the flow of protons is characterized by two components. Quite a great number of works have been published in relation with observational features obtained with different instrumentation, but the source phenomena, regarding the generation processes and source physical parameters, have not been scrutinized. The main goal of this work is to look at such aspects by means of the confrontation of the different approaches of the observational spectra with our analytical theoretical spectra based on stochastic acceleration and electric field acceleration from reconnection processes. In this way, we derive a set of parameters which characterize the sources of these two GLE components, leading us to propose possible scenarios for the generation of particles in this particular GLE event.

  8. Burning minor actinides in a HTR energy spectrum

    International Nuclear Information System (INIS)

    Pohl, Christoph; Rütten, H. Jochem

    2012-01-01

    Highlights: ► Burn-up analysis for varying plutonium/minor actinide fuel compositions. ► The influence of varying heavy metal fuel element loads is investigated. ► Significant burn-up via radiative capture and subsequently fission is observed. ► Difference observed between fuel element burn-up and total actinide burning rate. - Abstract: The generation of nuclear energy by means of the existing nuclear reactor systems is based mainly on the fission of U-235. But this comes along with the capture of neutrons by the U-238 faction and results in a build-up of plutonium isotopes and minor actinides as neptunium, americium and curium. These actinides are dominant for the long time assessment of the radiological risk of a final disposal therefore a minimization of the long living isotopes is aspired. Burning the actinides in a high temperature helium cooled graphite moderated reactor (HTR) is one of these options. The use of plutonium isotopes to sustain the criticality of the system is intended to avoid on the one hand highly enriched uranium because of international regulations and on the other hand low enriched uranium because of the build up of new actinides from neutron capture in the U-238 fraction. Because initial minor actinide isotopes are typically not fissionable by thermal neutrons the idea is to fission instead the intermediate isotopes generated by the first neutron capture. This paper comprises calculations for plutonium/minor actinides/thorium fuel compositions and their correlated final burn-up for a generic pebble bed HTR based on the reference design of the 400 MW PBMR. In particular the cross sections and the neutron balance of the different minor actinide isotopes in the higher thermal energy spectrum of a HTR will be discussed. For a fuel mixture of plutonium and minor actinides a significant burn-up of these actinides up to 20% can be achieved but at the expense of a higher residual fraction of plutonium in the burned fuel. Combining

  9. Energy-Saving Performance of Flap-Adjustment-Based Centrifugal Fan

    Directory of Open Access Journals (Sweden)

    Genglin Chen

    2018-01-01

    Full Text Available The current paper mainly focuses on finding a more appropriate way to enhance the fan performance at off-design conditions. The centrifugal fan (CF based on flap-adjustment (FA has been investigated through theoretical, experimental, and finite element methods. To obtain a more predominant performance of CF from the different adjustments, we carried out a comparative analysis on FA and leading-adjustment (LA in aerodynamic performances, which included the adjusted angle of blades, total pressure, efficiency, system-efficiency, adjustment-efficiency, and energy-saving rate. The contribution of this paper is the integrated performance curve of the CF. Finally, the results showed that the effects of FA and LA on economic performance and energy savings of the fan varied with the blade angles. Furthermore, FA was feasible, which is more sensitive than LA. Moreover, the CF with FA offered a more extended flow-range of high economic characteristic in comparison with LA. Finally, when the operation flow-range extends, energy-saving rate of the fan with FA would have improvement.

  10. A method for measuring the energy spectrum of coincidence events in positron emission tomography.

    Science.gov (United States)

    Goertzen, Andrew L; Stout, David B; Thompson, Christopher J

    2010-01-21

    Positron emission tomography (PET) system energy response is typically characterized in singles detection mode, yet there are situations in which the energy spectrum of coincidence events might be different than the spectrum measured in singles mode. Examples include imaging with isotopes that emit a prompt gamma in coincidence with a positron emission, imaging with low activity in a LSO/LYSO-based cameras, in which the intrinsic activity is significant, and in high scatter situations where the two 511 keV photons have different scattering probabilities (i.e. off-center line source). The ability to accurately measure the energy spectrum of coincidence events could be used for validating simulation models, optimizing energy discriminator levels and examining scatter models and corrections. For many PET systems operating in coincidence mode, the only method available for estimating the energy spectrum is to step the lower and upper level discriminators (LLD and ULD). Simple measurement techniques such as using a narrow sliding energy window or stepping only the LLD will not yield a spectrum of coincidence events that is accurate for cases where there are different energy components contributing to the spectrum. In this work we propose a new method of measuring the energy spectrum of coincidence events in PET based on a linear combination of two sets of coincident count measurements: one made by stepping the LLD and one made by stepping the ULD. The method was tested using both Monte Carlo simulations of a Siemens microPET R4 camera and measured data acquired on a Siemens Inveon PET camera. The results show that our energy spectrum calculation method accurately measures the coincident energy spectra for cases including the beta/gamma spectrum of the (176)Lu intrinsic activity present in the LSO scintillator crystals, a (68)Ge source and an (124)I source (in which there are prompt gamma-rays emitted together with the positron).

  11. Fat or lean: adjustment of endogenous energy stores to predictable and unpredictable changes in allostatic load

    Science.gov (United States)

    Schultner, Jannik; Kitaysky, Alexander S.; Welcker, Jorg; Hatch, Scott

    2013-01-01

    1. The ability to store energy endogenously is an important ecological mechanism that allows animals to buffer predictable and unpredictable variation in allostatic load. The secretion of glucocorticoids, which reflects changes in allostatic load, is suggested to play a major role in the adjustment of endogenous stores to these varying conditions.

  12. Direct measurement of the partial decay energy of 7Be inner bremstrahlung spectrum

    International Nuclear Information System (INIS)

    Sanjeeviah, H.; Sanjeeviah, B.

    1978-01-01

    The inner bremsstrahlung spectrum accompanying orbital electron capture decay of 7 Be to the first excited state of 7 Li was measured in coincidence with 477 keV gamma rays. From the Jauch plot of the spectrum the partial decay energy was found to be 394 +- 16 keV. The shape factor of the inner bremsstrahlung spectrum close to the end point was accurately determined. It was found to be a constant X(1.001 +- 0.002) (author)

  13. Algorithm for removing the noise from γ energy spectrum by analyzing the evolution of the wavelet transform maxima across scales

    International Nuclear Information System (INIS)

    Li Tianduo; Xiao Gang; Di Yuming; Han Feng; Qiu Xiaoling

    1999-01-01

    The γ energy spectrum is expanded in allied energy-frequency space. By the different characterization of the evolution of wavelet transform modulus maxima across scales between energy spectrum and noise, the algorithm for removing the noise from γ energy spectrum by analyzing the evolution of the wavelet transform maxima across scales is presented. The results show, in contrast to the methods in energy space or in frequency space, the method has the advantages that the peak of energy spectrum can be indicated accurately and the energy spectrum can be reconstructed with a good approximation

  14. Characterization of the Photon Energy Spectrum of a 6 MV Linac

    International Nuclear Information System (INIS)

    Hernandez Bojorquez, M.; Larraga, J. M.; Garcia, A.; Celis, M. A.; Martinez-Davalos, A.; Rodriguez-Villafuerte, M.

    2006-01-01

    In this work we study the influence of the purity of the materials used in experimental transmission measurements to obtain data to reconstruct the photon energy spectrum of a 6 MV Linac. We also evaluate the contribution to PDDs due to electron contamination in the reconstructed spectrum

  15. The high energy x-ray spectrum of the Crab Nebula observed from OSO 8

    International Nuclear Information System (INIS)

    Dolan, J.F.; Crannell, L.J.; Dennis, B.R.; Orwig, L.E.; Maurer, G.S.

    1977-01-01

    The X-ray spectrum of the Crab Nebula was measured with the scintillation spectrometer on board the OSO-8 satellite. The total emission of the X-ray source shows no long term variability. The spectrum itself can be described by a single power law out to energies of at least 500 keV

  16. Magnetic field effects on the quantum wire energy spectrum and Green's function

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J.

    2010-01-01

    We analyze the energy spectrum and propagation of electrons in a quantum wire on a 2D host medium in a normal magnetic field, representing the wire by a 1D Dirac delta function potential which would support just a single subband state in the absence of the magnetic field. The associated Schroedinger Green's function for the quantum wire is derived in closed form in terms of known functions and the Landau quantized subband energy spectrum is examined.

  17. New layout of time resolved beam energy spectrum measurement for dragon-I

    International Nuclear Information System (INIS)

    Liao Shuqing; Zhang Kaizhi; Shi Jinshui

    2010-01-01

    A new layout of time resolved beam energy spectrum measurement is proposed for Dragon-I by a new method named RBS (rotating beams in solenoids). The basic theory of RBS and the new layout are presented and the measuring error is also discussed. The derived time resolved beam energy spectrum is discrete and is determined by measuring the beam's rotating angle and expanding width through a group of solenoids at the export of Dragon-I. (authors)

  18. Relaxation of ion energy spectrum just after turbulent heating pulse in TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi

    1982-01-01

    The temporal evolution and spatial profile of the ion energy spectrum just after the application of a toroidal current pulse for turbulent heating are investigated experimentally in the TRIAM-1 tokamak and also numerically using the Fokker-Planck equation. The two-component ion energy spectrum formed by turbulent heating relaxes to a single one within tausub(i) (the ion collision time). (author)

  19. Fuzzy droop control loops adjustment for stored energy balance in distributed energy storage system

    DEFF Research Database (Denmark)

    Aldana, Nelson Leonardo Diaz; Wu, Dan; Dragicevic, Tomislav

    2015-01-01

    system, in order to smooth the variations at the prime energy generator. In this paper, a decentralized strategy based on fuzzy logic is proposed in order to balance the state of charge of distributed energy storage systems in lowvoltage three phase AC microgrid. The proposed method weights the action...

  20. Research on influence of energy spectrum response of ICT detector arrays

    International Nuclear Information System (INIS)

    Zhou Rifeng; Gao Fuqiang; Zhang Ping

    2008-01-01

    The energy spectrum response is important characteristic for X-ray ICT detector. But there exist many difficulties to measure these parameters by experiments. The energy spectrum response of CdWO 4 detector was simulated by using the EGSnrc code. Meanwhile the effect of detection efficiency was analyzed by the distribution of accelerator bremsstrahlung spectra and the X-ray spectrum hardening, and some theoretic parameters were offered for the consistent and no-linearity correction of detector arrays. It was applied to ICT image correction, and a satisfying result was obtained. (authors)

  1. Energy spectrum of Compton scattering of laser photons on relativistic electrons

    International Nuclear Information System (INIS)

    Ando, Hiroaki; Yoneda, Yasuharu

    1976-01-01

    The high energy photons in gamma-ray region are obtainable by the Compton scattering of laser photons on relativistic electrons. But the motion of the electrons in the storage ring is not necessarily uniform. In the study of the uneven effect, the energy distribution of scattered photons is derived from the assumed momentum distribution of incident electrons. It is generally impossible to derive the momentum distribution of incident electrons from the energy spectrum of scattered photons. The additional conditions which make this possible in a special case are considered. A calculational method is examined for deriving the energy spectrum of scattered photons from the assumed momentum distribution of incident electrons. (Mori, K.)

  2. Reflection of the energy structure of a tungsten monocrystal nearsurface area in the secondary electron spectrum

    International Nuclear Information System (INIS)

    Artamonov, O.M.; Smirnov, O.M.; Terekhov, A.N.

    1982-01-01

    Formation of secondary electron energy spectrum during emission from the crystal layer near the surface has been considered, at that layer energy structure can be different from volumetric energy structure. Its thickness depends on the predominant mechanism of electron scattering and is determined by corresponding phenomenological parameters. It is shown that the structure in the secondary electron spectrum appears in the case when energy structure of emitting monocrystal layer can not be described in the approximation of almost free electron gas and, as experimental investigations show, approaches energy zone structure of its volume. It is also show that in the case when the energy structure of the emitting layer is satisfactorily described with the model of almost free electron gas, the SE spectrum is characterized with traditional cascade minimum. Experimental investigation of SE energy distribution was carried out for the W monocrystalline face (110). It was established that distinct structure in the SE spectrum appears only after electrochemical polishing of the specimen surface. It is related to the appearance of ''far'' order in the monocrystal emission layer on initially disturbed tungsten surface during such treatment. Disturbance of tungsten monocrystal surface structure on its oxidation in O 2 atmosphere results in the appearance of the cascade maximum and disappearance of distinct peculiarities in the SE spectrum

  3. Sewerage force adjustment technology for energy conservation in vacuum sanitation systems

    Science.gov (United States)

    Guo, Zhonghua; Li, Xiaoning; Kagawa, Toshiharu

    2013-03-01

    The vacuum sanitation is the safe and sound disposal approach of human excreta under the specific environments like flights, high speed trains and submarines. However, the propulsive force of current systems is not adjustable and the energy consumption does not adapt to the real time sewerage requirement. Therefore, it is important to study the sewerage force adjustment to improve the energy efficiency. This paper proposes an energy conservation design in vacuum sanitation systems with pneumatic ejector circuits. The sewerage force is controlled by changing the systematic vacuum degree according to the amount of the excreta. In particular, the amount of the excreta is tested by liquid level sensor and mass sensor. According to the amount of the excreta, the relationship between the excreta amount and the sewerage force is studied to provide proper propulsive force. In the other aspect, to provide variable vacuum degrees for different sanitation requirements, the suction and discharge system is designed with pneumatic vacuum ejector. On the basis of the static flow-rate characteristics and the vacuum generation model, the pressure response in the ejector circuit is studied by using the static flow rate characteristics of the ejector and air status equation. The relationship is obtained between supplied compressed air and systematic vacuum degree. When the compressed air is supplied to the ejector continuously, the systematic vacuum degree increases until the vacuum degree reaches the extreme value. Therefore, the variable systematic vacuum degree is obtained by controlling the compressed air supply of the ejector. To verify the effect of energy conservation, experiments are carried out in the artificial excreta collection, and the variable vacuum-degree design saves more than 30% of the energy supply. The energy conservation is realized effectively in the new vacuum sanitation systems with good application prospect. The proposed technology provides technological

  4. Energy spectrums of bilayer triangular phosphorene quantum dots and antidots

    Directory of Open Access Journals (Sweden)

    Z. T. Jiang

    2017-04-01

    Full Text Available We theoretically investigate the confined states of the bilayer triangular phosphorene dots and antidots by means of the tight-binding approach. The dependence of the energy levels on the size, the type of the boundary edges, and the orientation of the dots and antidots, and the influences of the electric and magnetic fields on the energy levels, are all completely analyzed. It is found that the energy level numbers of the bilayer dots and antidots are determined by the energy levels in two layers. The external electric field can effectively tune the energy levels of the edge states in both layers to move in opposite directions. With the increase of the magnetic field, the magnetic energy levels can approach the Landau levels of the phosphorene monolayer, the phosphorene bilayer, or both, depending on the specific geometry of the monolayer-bilayer hybrid phosphorene quantum dots. This research should be helpful for the overall understanding of the electronic properties of the multilayer hybrid phosphorene nanostructures and designing the corresponding phosphorene devices.

  5. Psychological Adjustment and Sibling Relationships in Siblings of Children with Autism Spectrum Disorders: Environmental Stressors and the Broad Autism Phenotype

    Science.gov (United States)

    Petalas, Michael A.; Hastings, Richard P.; Nash, Susie; Hall, Louise M.; Joannidi, Helen; Dowey, Alan

    2012-01-01

    Research with siblings of children with Autism Spectrum Disorders (ASD) suggests that they may be at increased risk for behavioural and emotional problems and relatively poor sibling relationships. This study investigated a diathesis-stress model, whereby the presence of Broad Autism Phenotype features in the typically developing siblings might…

  6. Example for electrical energy savings with the pump adjustable electric drive

    International Nuclear Information System (INIS)

    Mirchevski, Slobodan; Andonov, Zdravko; Saracevic, Fahrudin; Micevski, Darko; Buchkoski, Aleksandar

    2004-01-01

    Most used method of flow regulation is by throttling the pipeline. Development of power electronic gives opportunity for induction motor pump drives speed control. The common ways of pump flow control are throttling, reducing the working circle, usage of fore circle shovels rotating, by pass and pump speed control Only pump speed control is the most suitable for the energy possibilities. Intensive development of power electronic gives. opportunity to create devices - power converters, which can change the speed of induction motor. For that improvement the energy savings the measurements of power consumption with throttling and speed control have been made. Also, the MATLAB-SIMULINK model of the measured system has been made. The economic effects of saving energy using adjustable speed drives are analyzed for the measured values. The analysis shows that the money payback period of speed controller investment is short compared with the drive lifetime (20 years). (Author)

  7. Energy spectrum inverse problem of q -deformed harmonic oscillator and WBK approximation

    International Nuclear Information System (INIS)

    Sang, Nguyen Anh; Thuy, Do Thi Thu; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai

    2016-01-01

    Using the connection between q-deformed harmonic oscillator and Morse-like anharmonic potential we investigate the energy spectrum inverse problem. Consider some energy levels of energy spectrum of q -deformed harmonic oscillator are known, we construct the corresponding Morse-like potential then find out the deform parameter q . The application possibility of using the WKB approximation in the energy spectrum inverse problem was discussed for the cases of parabolic potential (harmonic oscillator), Morse-like potential ( q -deformed harmonic oscillator). so we consider our deformed-three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. For practical problems, we propose the deformed- three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. (paper)

  8. Application of thermoluminescence dosimeter on the measurement of hard X-ray pulse energy spectrum

    International Nuclear Information System (INIS)

    Song Zhaohui; Wang Baohui; Wang Kuilu; Hei Dongwei; Sun Fengrong; Li Gang

    2003-01-01

    This paper introduces the application of thermoluminescence dosimeter (TLD) which composed by TLD-3500 reader and GR-100 M chips on the measurement of hard X-ray pulse energy spectrum. The idea using Filter Fluorescence Method (FFM) and TLD to measure hard X-ray pulse energy spectrum (from 10 keV to 100 keV) is discussed in details. Considering all the factors of the measuring surrounding, the measurement system of hard X-ray pulse has been devised. The calibration technique of absolute energy response of TLD is established. This method has been applied successfully on the radiation parameters measurement of the huge pulse radiation device-high-power pulser I. Hard X-ray pulse energy spectrum data of the pulser are acquired

  9. The application of thermoluminescence dosimeter on the measurement of hard X-ray pulse energy spectrum

    International Nuclear Information System (INIS)

    Song Zhaohui; Wang Baohui; Wang Kuilu; Hei Dongwei; Sun Fengrong; Li Gang

    2001-01-01

    This paper introduce the application of thermoluminescence dosimeter (TLD) which composed by TLD-3500 Reader and TLD-100M chips on the measurement of hard X-ray pulse energy spectrum. The idea, using Filter Fluorescence Method (FFM) and TLD to measure hard X-ray pulse energy spectrum (from 10 keV to 100 keV), is discussed in details. Considering all the factors of the measuring surroundings, the measurement system of hard X-ray pulse has been devised. The calibration technique of absolute energy response of TLD is established. This method has been applied successfully on the radiation parameters measurement of the huge pulse radiation device -high-power pulser I. Hard X-ray pulse energy spectrum data of the pulser are acquired

  10. Energy and spectrum of BeO molecule under the electric field from different directions

    NARCIS (Netherlands)

    Jiang, M.; Guo, F. J.; Yan, A. Y.; Zhang, C. W.; Miao, F.

    2010-01-01

    Based on the density functional theory DFT/ B3LYP at 6-311g level, the ground states of BeO molecule are optimized. The effects of electric field on the bond length, the system energy, the charge distribution, the energy levels, the HOMO-LUMO gaps and the infrared spectrum of BeO molecule are

  11. The energy-momentum spectrum in local field theories with broken Lorentz-symmetry

    International Nuclear Information System (INIS)

    Borchers, H.J.; Buchholz, D.

    1984-05-01

    Assuming locality of the observables and positivity of the energy it is shown that the joint spectrum of the energy-momentum operators has a Lorentz-invariant lower boundary in all superselection sectors. This result is of interest if the Lorentz-symmetry is (spontaneously) broken, such as in the charged sectors of quantum electrodynamics. (orig.)

  12. Energy efficiency of China's industry sector: An adjusted network DEA (data envelopment analysis)-based decomposition analysis

    International Nuclear Information System (INIS)

    Liu, Yingnan; Wang, Ke

    2015-01-01

    The process of energy conservation and emission reduction in China requires the specific and accurate evaluation of the energy efficiency of the industry sector because this sector accounts for 70 percent of China's total energy consumption. Previous studies have used a “black box” DEA (data envelopment analysis) model to obtain the energy efficiency without considering the inner structure of the industry sector. However, differences in the properties of energy utilization (final consumption or intermediate conversion) in different industry departments may lead to bias in energy efficiency measures under such “black box” evaluation structures. Using the network DEA model and efficiency decomposition technique, this study proposes an adjusted energy efficiency evaluation model that can characterize the inner structure and associated energy utilization properties of the industry sector so as to avoid evaluation bias. By separating the energy-producing department and energy-consuming department, this adjusted evaluation model was then applied to evaluate the energy efficiency of China's provincial industry sector. - Highlights: • An adjusted network DEA (data envelopment analysis) model for energy efficiency evaluation is proposed. • The inner structure of industry sector is taken into account for energy efficiency evaluation. • Energy final consumption and energy intermediate conversion processes are separately modeled. • China's provincial industry energy efficiency is measured through the adjusted model.

  13. PROBING THE INFLATON: SMALL-SCALE POWER SPECTRUM CONSTRAINTS FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND ENERGY SPECTRUM

    International Nuclear Information System (INIS)

    Chluba, Jens; Erickcek, Adrienne L.; Ben-Dayan, Ido

    2012-01-01

    In the early universe, energy stored in small-scale density perturbations is quickly dissipated by Silk damping, a process that inevitably generates μ- and y-type spectral distortions of the cosmic microwave background (CMB). These spectral distortions depend on the shape and amplitude of the primordial power spectrum at wavenumbers k ∼ 4 Mpc –1 . Here, we study constraints on the primordial power spectrum derived from COBE/FIRAS and forecasted for PIXIE. We show that measurements of μ and y impose strong bounds on the integrated small-scale power, and we demonstrate how to compute these constraints using k-space window functions that account for the effects of thermalization and dissipation physics. We show that COBE/FIRAS places a robust upper limit on the amplitude of the small-scale power spectrum. This limit is about three orders of magnitude stronger than the one derived from primordial black holes in the same scale range. Furthermore, this limit could be improved by another three orders of magnitude with PIXIE, potentially opening up a new window to early universe physics. To illustrate the power of these constraints, we consider several generic models for the small-scale power spectrum predicted by different inflation scenarios, including running-mass inflation models and inflation scenarios with episodes of particle production. PIXIE could place very tight constraints on these scenarios, potentially even ruling out running-mass inflation models if no distortion is detected. We also show that inflation models with sub-Planckian field excursion that generate detectable tensor perturbations should simultaneously produce a large CMB spectral distortion, a link that could potentially be established with PIXIE.

  14. Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L. N.; Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Gomez, D. O. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, CONICET, Buenos Aires (Argentina)

    2012-05-15

    We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.

  15. Molecular design of new P3HT derivatives: Adjusting electronic energy levels for blends with PCBM

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eliezer Fernando [UNESP – Univ Estadual Paulista, POSMAT – Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Bauru, SP (Brazil); Lavarda, Francisco Carlos, E-mail: lavarda@fc.unesp.br [UNESP – Univ Estadual Paulista, POSMAT – Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Bauru, SP (Brazil); Faculdade de Ciências, UNESP – Univ Estadual Paulista, Departamento de Física, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, 17033-360 Bauru, SP (Brazil)

    2014-12-15

    An intensive search is underway for new materials to make more efficient organic solar cells through improvements in thin film morphology, transport properties, and adjustments to the energy of frontier electronic levels. The use of chemical modifications capable of modifying the electronic properties of materials already known is an interesting approach, as it can, in principle, provide a more adequate adjustment of the frontier electronic levels while preserving properties such as solubility. Based on this idea, we performed a theoretical study of poly(3-hexylthiophene) (P3HT) and 13 new derivatives obtained by substitution with electron acceptor and donor groups, in order to understand how the energy levels of the frontier orbitals are modified. The results show that it is possible to deduce the modification of the electronic levels in accordance with the substituent's acceptor/donor character. We also evaluated how the substituents influence the open circuit voltage and the exciton binding energy. - Highlights: • Prediction of P3HT derivatives properties for bulk-heterojunction solar cells. • Correlating substituent properties with electronic levels of P3HT derivatives. • Fluorinated P3HT improves open circuit voltage and stability.

  16. Design and kinetic analysis of piezoelectric energy harvesters with self-adjusting resonant frequency

    Science.gov (United States)

    Yu-Jen, Wang; Tsung-Yi, Chuang; Jui-Hsin, Yu

    2017-09-01

    Vibration-based energy harvesters have been developed as power sources for wireless sensor networks. Because the vibration frequency of the environment is varied with surrounding conditions, how to design an adaptive energy harvester is a practical topic. This paper proposes a design for a piezoelectric energy harvester possessing the ability to self-adjust its resonant frequency in rotational environments. The effective length of a trapezoidal cantilever is extended by centrifugal force from a rotating wheel to vary its area moment of inertia. The analytical solution for the natural frequency of the piezoelectric energy harvester was derived from the parameter design process, which could specify a structure approaching resonance at any wheel rotating frequency. The kinetic equation and electrical damping induced by power generation were derived from a Lagrange method and a mechanical-electrical coupling model, respectively. An energy harvester with adequate parameters can generate power at a wide range of car speeds. The output power of an experimental prototype composed of piezoelectric thin films and connected to a 3.3 MΩ external resistor was approximately 70-140 μW at wheel speeds ranging from 200 to 700 RPM. These results demonstrate that the proposed piezoelectric energy harvester can be applied as a power source for the wireless tire pressure monitoring sensor.

  17. Energy spectrum of neutrals formed in an ion accelerator

    International Nuclear Information System (INIS)

    Fink, J.H.

    1982-01-01

    This work presents an estimate of the energy distribution of the neutrals formed in the ion beam accelerator. However it does not determine the fraction of those neutrals which leave the neutral beam injector and go on into the reactor. To do that, more details of the beam line performance are needed

  18. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    International Nuclear Information System (INIS)

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.

    2013-01-01

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy

  19. Measurement of the energy spectrum of cosmic rays from the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Roth, M.

    2009-01-01

    The large sample of data collected by the Pierre Auger Observatory has led to a significant improvement over previous measurements on the energy spectrum of cosmic rays. We observe a suppression of the flux at the highest energy with a significance of more than 6 standard deviations. The spectral index γ of the flux, J∝E -γ , at energies between 4x10 18 eV and 4x10 19 eV is 2.69±0.02 (stat) ±0.06 (syst), steepening to 4.2±0.4 (stat) ±0.06 (syst) at higher energies, consistent with the prediction by Greisen and by Zatsepin and Kuz'min. Observations of cosmic rays by the fluorescence detector allowed the extension of the energy spectrum to lower energies, where the efficiency of the surface detector is less then 100% and a change in the spectral index is expected.

  20. On the groundstate energy spectrum of magnetic knots and links

    International Nuclear Information System (INIS)

    Ricca, Renzo L; Maggioni, Francesca

    2014-01-01

    By using analytical results for the constrained minimum energy of magnetic knots we determine the influence of internal twist on the minimum magnetic energy levels of knots and links, and by using ropelength data from the RIDGERUNNER tightening algorithm (Ashton et al 2011 Exp. Math. 20 57–90) we obtain the groundstate energy spectra of the first 250 prime knots and 130 prime links. The two spectra are found to follow an almost identical logarithmic law. By assuming that the number of knot types grows exponentially with the topological crossing number, we show that this generic behavior can be justified by a general relationship between ropelength and crossing number, which is in good agreement with former analytical estimates (Buck and Simon 1999 Topol. Appl. 91 245–57, Diao 2003 J. Knot Theory Ramifications 12 1–16). Moreover, by considering the ropelength averaged over a given knot family, we establish a new connection between the averaged ropelength and the topological crossing number of magnetic knots. (paper)

  1. Spectrum-energy Correlations in GRBs: Update, Reliability, and the Long/Short Dichotomy

    Science.gov (United States)

    Zhang, Z. B.; Zhang, C. T.; Zhao, Y. X.; Luo, J. J.; Jiang, L. Y.; Wang, X. L.; Han, X. L.; Terheide, R. K.

    2018-05-01

    Spectrum-energy correlations of peak energy with total prompt γ-ray emission energies, namely {E}p,i-{E}{iso}, {E}p,i-{E}γ , and {E}p,i-{L}p, had been studied for long gamma-ray bursts (GRBs) previously by many authors. These energy correlations were proposed to measure the universe and classify GRBs as useful probes. However, most of these relations were built by non-Swift bursts. The spectrum-energy correlations of short bursts have not been systematically established yet; in particular, how the newly found GRB170817A matches these energy relations is unknown to date. We will first refresh the three spectrum-energy relations of Swift/BAT and Fermi/GBM long bursts and build the corresponding relations of short bursts. Then, we confirm whether they are commonly available as a discriminator of short and long GRBs. Some potential violators to these relations will be investigated. Combining with the plane of peak energy versus fluence, we select 31 short and 252 long GRBs with well-measured peak energy and redshift to study the issue of GRB classifications connected with the above energy relations statistically. We find that the three energy relations do exist in our new GRB samples and they are marginally consistent with some previous results. We report for the first time that short GRBs hold the three corresponding energy relations having the consistent power-law indices with long GRBs. It is found that these energy relations can be adopted to discriminate GRBs successfully if they are put in the peak energy versus fluence plane. Excitingly, we point out that GRB090510 matches the energy relations of {E}p,i-{E}{iso} and {E}p,i-{L}p, but violates the {E}p,i-{E}γ relation. More excitingly, we find that GRB170817A is an outlier to all the three energy correlations.

  2. An elliptically-polarizing undulator with phase adjustable energy and polarization

    International Nuclear Information System (INIS)

    Lidia, S.

    1993-08-01

    The authors present a planar helical undulator designed to produce elliptically polarized light. Helical magnetic fields may be produced by a variety of undulators with four parallel cassettes of magnets. In their design, all cassettes are mounted in two planes on slides so that they may be moved parallel to the electron beam. This allows the undulator to produce x-rays of left- or right-handed elliptical or circular polarization as well as horizontal or vertical linear polarization. In model calculations, they have found that by sliding the top pair of rows with respect to the bottom pair, or the left pair with respect to the right pair, they retain the polarization setting but change the magnetic field strength, and hence the x-ray energy. This allows them to select both energy and polarization by independent phase adjustments alone, without changing the gap between the rows. Such a design may be simpler to construct than an adjustable gap machine. The authors present calculations that model its operation and its effects on an electron beam

  3. Thermostatistic properties of a q-deformed ideal Fermi gas with a general energy spectrum

    International Nuclear Information System (INIS)

    Cai, Shukuan; Su, Guozhen; Chen, Jincan

    2007-01-01

    The thermostatistic problems of a q-deformed ideal Fermi gas in any dimensional space and with a general energy spectrum are studied, based on the q-deformed Fermi-Dirac distribution. The effects of the deformation parameter q on the properties of the system are revealed. It is shown that q-deformation results in some novel characteristics different from those of an ordinary system. Besides, it is found that the effects of the q-deformation on the properties of the Fermi systems are very different for different dimensional spaces and different energy spectrums

  4. Evaluation of the Neutron Detector Response for Cosmic Ray Energy Spectrum by Monte Carlo Transport Simulation

    International Nuclear Information System (INIS)

    Pazianotto, Mauricio T.; Carlson, Brett V.; Federico, Claudio A.; Gonzalez, Odair L.

    2011-01-01

    Neutrons generated by the interaction of cosmic rays with the atmosphere make an important contribution to the dose accumulated in electronic circuits and aircraft crew members at flight altitude. High-energy neutrons are produced in spallation reactions and intranuclear cascade processes by primary cosmic-ray particle interactions with atoms in the atmosphere. These neutrons can produce secondary neutrons and also undergo a moderation process due to atmosphere interactions, resulting in a wider energy spectrum, ranging from thermal energies (0.025 eV) to energies of several hundreds of MeV. The Long-Counter (LC) detector is a widely used neutron detector designed to measure the directional flux of neutrons with about constant response over a wide energy range (thermal to 20 MeV). ). Its calibration process and the determination of its energy response for the wide-energy of cosmic ray induced neutron spectrum is a very difficult process due to the lack of installations with these capabilities. The goal of this study is to assess the behavior of the response of a Long Counter using the Monte Carlo (MC) computational code MCNPX (Monte Carlo N-Particle eXtended). The dependence of the Long Counter response on the angle of incidence, as well as on the neutron energy, will be carefully investigated, compared with the experimental data previously obtained with 241 Am-Be and 252 Cf neutron sources and extended to the neutron spectrum produced by cosmic rays. (Author)

  5. Measurement of Neutron Energy Spectrum Emitted by Cf-252 Source Using Time-of-Flight Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Kim, Tae Hoon; Lee, Sangmin; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    The techniques proposed to detect the neutrons usually require the detection of a secondary recoiling nucleus in a scintillator (or other type of detector) to indicate the rare collision of a neutron with a nucleus. This is the same basic technique, in this case detection of a recoil proton that was used by Chadwick in the 1930 s to discover and identify the neutron and determine its mass. It is primary technique still used today for detection of fast neutron, which typically involves the use of a hydrogen based organic plastic or liquid scintillator coupled to a photo-multiplier tube. The light output from such scintillators is a function of the cross section and nuclear kinematics of the n + nucleus collision. With the exception of deuterated scintillators, the scintillator signal does not necessarily produce a distinct peak in the scintillator spectrum directly related to the incident neutron energy. Instead neutron time-of-flight (TOF) often must be utilized to determine the neutron energy, which requires generation of a prompt start signal from the nuclear source emitting the neutrons. This method takes advantage of the high number of prompt gamma rays. The Time-of-Flight method was used to measure neutron energy spectrum emitted by the Cf-252 neutron source. Plastic scintillator that has a superior discrimination ability of neutron and gamma-ray was used as a stop signal detector and liquid scintillator was used as a stat signal detector. In experiment, neutron and gamma-ray spectrum was firstly measured and discriminated using the TOF method. Secondly, neutron energy spectrum was obtained through spectrum analysis. Equation of neutron energy spectrum that was emitted by Cf-252 source using the Gaussian fitting was obtained.

  6. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Makoto, E-mail: makoto.fukuda@qse.tohoku.ac.jp [Tohoku University, Sendai, 980-8579 (Japan); Kiran Kumar, N.A.P.; Koyanagi, Takaaki; Garrison, Lauren M. [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Snead, Lance L. [Massachusetts Institute of Technology, Cambridge, MA, 02139 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Hasegawa, Akira [Tohoku University, Sendai, 980-8579 (Japan)

    2016-10-15

    Neutron irradiation to single crystal pure tungsten was performed in the mixed spectrum High Flux Isotope Reactor (HFIR). To investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ∼90–∼800 °C and fast neutron fluences were 0.02–9.00 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. The hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten. - Highlights: • The microstructure and irradiation hardening of single crystal pure W irradiated in HFIR was investigated. • The neutron energy spectrum influence was evaluated by comparing the HFIR results with previous work in Joyo and JMTR. • In the dose range up to ∼1 dpa, the neutron energy spectrum influence of irradiation hardening was not clear. • In the dose range above 1 dpa, the neutron energy influence on irradiation hardening and microstructural development was clearly observed. • The irradiation induced precipitates caused significant irradiation hardening of pure W irradiated in HFIR.

  7. Energy spectrum and angular distribution of prompt cosmic-ray muons

    Energy Technology Data Exchange (ETDEWEB)

    Castagnoli, C; Picchi, P [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale); Castellina, A; D' Ettorre Piazzoli, B; Mannocchi, G; Vernetto, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1984-07-01

    The energy spectrum and angular distribution of atmospheric prompt muons are calculated by using an integral solution for production of charmed particles, their decay and muon transport in the atmosphere. Current experimental information from accelerator and theoretical ideas about charm cross-section and semi-leptonic decay are used to give a reference prompt muon spectrum to compare with that from conventional sources (..pi.. and K decay). The obtained differential spectrum has an energy dependence which approaches that of the primary cosmic rays. The integral intensity of prompt muons is equal to the conventional one at about 250 TeV. The angular distribution is found to be practically flat in the range (0/80)/sup 0/ irrespective of the muon energy. On the basis of this analysis we estimate that accurate measurements of muon energy spectrum and angular distribution at energies greater than 10 TeV should allow one to obtain useful information regarding charm hadroproduction cross-section in the 100 TeV region.

  8. Scaling-law for the energy dependence of anatomic power spectrum in dedicated breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Shi, Linxi; Glick, Stephen J.; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-01-15

    Purpose: To determine the x-ray photon energy dependence of the anatomic power spectrum of the breast when imaged with dedicated breast computed tomography (CT). Methods: A theoretical framework for scaling the empirically determined anatomic power spectrum at one x-ray photon energy to that at any given x-ray photon energy when imaged with dedicated breast CT was developed. Theory predicted that when the anatomic power spectrum is fitted with a power curve of the form k f{sup -{beta}}, where k and {beta} are fit coefficients and f is spatial frequency, the exponent {beta} would be independent of x-ray photon energy (E), and the amplitude k scales with the square of the difference in energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues. Twenty mastectomy specimens based numerical phantoms that were previously imaged with a benchtop flat-panel cone-beam CT system were converted to 3D distribution of glandular weight fraction (f{sub g}) and were used to verify the theoretical findings. The 3D power spectrum was computed in terms of f{sub g} and after converting to linear attenuation coefficients at monoenergetic x-ray photon energies of 20-80 keV in 5 keV intervals. The 1D power spectra along the axes were extracted and fitted with a power curve of the form k f{sup -{beta}}. The energy dependence of k and {beta} were analyzed. Results: For the 20 mastectomy specimen based numerical phantoms used in the study, the exponent {beta} was found to be in the range of 2.34-2.42, depending on the axis of measurement. Numerical simulations agreed with the theoretical predictions that for a power-law anatomic spectrum of the form k f{sup -{beta}}, {beta} was independent of E and k(E) =k{sub 1}[{mu}{sub g}(E) -{mu}{sub a}(E)]{sup 2}, where k{sub 1} is a constant, and {mu}{sub g}(E) and {mu}{sub a}(E) represent the energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues, respectively. Conclusions: Numerical

  9. The evolution of environmental concerns in economywide policies and adjustment lending: Experience from the energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Stein

    1993-07-01

    In this report, following a brief overview of some generic issues and empirical evidence relating to the linkages between economic growth, energy use and environmental impacts, a review of energy sector adjustment lending activities in developing and Eastern European countries is carried out. Following that a more specific discussion of the direct and indirect environmental impacts of these policies is presented, both in general terms, but also illustrated by means of how specific energy project packages are being designed in response to the said policy changes. Perhaps the most significant role of such policy reforms is that it impacts economywide on all economic activities; both the decisions regarding input substitution and output focus of existing plants and services, as well as the decisions regarding choice of technology, design and location of new investments in all sectors of the economy. It can be concluded from the reviewed studies that getting the prices right helps the environment, but it is not enough. It undoubtedly helps the environment to correct for market failures and have prices reflect the full resource costs, because it lessens the incentive to exploit resources wastefully. This is comforting because it suggests that what has been advocated for a long time on pure efficiency grounds irrespective to environmental management reasons. What has been missing, however, is a full acknowledgement of the crucial role of supportive institutional reforms and administrative strengthening required to actually succeed with the economic reforms. Examples will be presented on how such reforms can contribute to facilitate the adjustment process by simultaneously improving allocative efficiency and generating desperately needed public revenue.

  10. The evolution of environmental concerns in economywide policies and adjustment lending: Experience from the energy sector

    International Nuclear Information System (INIS)

    Hansen, Stein

    1993-01-01

    In this report, following a brief overview of some generic issues and empirical evidence relating to the linkages between economic growth, energy use and environmental impacts, a review of energy sector adjustment lending activities in developing and Eastern European countries is carried out. Following that a more specific discussion of the direct and indirect environmental impacts of these policies is presented, both in general terms, but also illustrated by means of how specific energy project packages are being designed in response to the said policy changes. Perhaps the most significant role of such policy reforms is that it impacts economywide on all economic activities; both the decisions regarding input substitution and output focus of existing plants and services, as well as the decisions regarding choice of technology, design and location of new investments in all sectors of the economy. It can be concluded from the reviewed studies that getting the prices right helps the environment, but it is not enough. It undoubtedly helps the environment to correct for market failures and have prices reflect the full resource costs, because it lessens the incentive to exploit resources wastefully. This is comforting because it suggests that what has been advocated for a long time on pure efficiency grounds irrespective to environmental management reasons. What has been missing, however, is a full acknowledgement of the crucial role of supportive institutional reforms and administrative strengthening required to actually succeed with the economic reforms. Examples will be presented on how such reforms can contribute to facilitate the adjustment process by simultaneously improving allocative efficiency and generating desperately needed public revenue

  11. Energy spectrum of extragalactic gamma-ray sources

    Science.gov (United States)

    Protheroe, R. J.

    1985-01-01

    The result of Monte Carlo electron photon cascade calculations for propagation of gamma rays through regions of extragalactic space containing no magnetic field are given. These calculations then provide upper limits to the expected flux from extragalactic sources. Since gamma rays in the 10 to the 14th power eV to 10 to the 17th power eV energy range are of interest, interactions of electrons and photons with the 3 K microwave background radiation are considered. To obtain an upper limit to the expected gamma ray flux from sources, the intergalactic field is assumed to be so low that it can be ignored. Interactions with photons of the near-infrared background radiation are not considered here although these will have important implications for gamma rays below 10 to the 14th power eV if the near infrared background radiation is universal. Interaction lengths of electrons and photons in the microwave background radiation at a temperature of 2.96 K were calculated and are given.

  12. An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Salim, Shelly; Moh, Sangman

    2016-06-30

    A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.

  13. An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shelly Salim

    2016-06-01

    Full Text Available A cognitive radio sensor network (CRSN is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.

  14. Spectrum sensing algorithm based on autocorrelation energy in cognitive radio networks

    Science.gov (United States)

    Ren, Shengwei; Zhang, Li; Zhang, Shibing

    2016-10-01

    Cognitive radio networks have wide applications in the smart home, personal communications and other wireless communication. Spectrum sensing is the main challenge in cognitive radios. This paper proposes a new spectrum sensing algorithm which is based on the autocorrelation energy of signal received. By taking the autocorrelation energy of the received signal as the statistics of spectrum sensing, the effect of the channel noise on the detection performance is reduced. Simulation results show that the algorithm is effective and performs well in low signal-to-noise ratio. Compared with the maximum generalized eigenvalue detection (MGED) algorithm, function of covariance matrix based detection (FMD) algorithm and autocorrelation-based detection (AD) algorithm, the proposed algorithm has 2 11 dB advantage.

  15. Energy-efficient routing, modulation and spectrum allocation in elastic optical networks

    Science.gov (United States)

    Tan, Yanxia; Gu, Rentao; Ji, Yuefeng

    2017-07-01

    With tremendous growth in bandwidth demand, energy consumption problem in elastic optical networks (EONs) becomes a hot topic with wide concern. The sliceable bandwidth-variable transponder in EON, which can transmit/receive multiple optical flows, was recently proposed to improve a transponder's flexibility and save energy. In this paper, energy-efficient routing, modulation and spectrum allocation (EE-RMSA) in EONs with sliceable bandwidth-variable transponder is studied. To decrease the energy consumption, we develop a Mixed Integer Linear Programming (MILP) model with corresponding EE-RMSA algorithm for EONs. The MILP model jointly considers the modulation format and optical grooming in the process of routing and spectrum allocation with the objective of minimizing the energy consumption. With the help of genetic operators, the EE-RMSA algorithm iteratively optimizes the feasible routing path, modulation format and spectrum resources solutions by explore the whole search space. In order to save energy, the optical-layer grooming strategy is designed to transmit the lightpath requests. Finally, simulation results verify that the proposed scheme is able to reduce the energy consumption of the network while maintaining the blocking probability (BP) performance compare with the existing First-Fit-KSP algorithm, Iterative Flipping algorithm and EAMGSP algorithm especially in large network topology. Our results also demonstrate that the proposed EE-RMSA algorithm achieves almost the same performance as MILP on an 8-node network.

  16. Hard x-ray to low energy gamma ray spectrum of the Crab Nebula

    International Nuclear Information System (INIS)

    Jung, G.V.

    1986-01-01

    The spectrum of the Crab Nebula has been determined in the energy range 10 keV to 5 MeV from the data of the UCSD/MIT Hard-X-ray and Low Energy Gamma Ray Experiment on the first High Energy Astronomy Observatory, HEAO-1. The x-ray to γ-ray portion of the continuous emission from the Crab is indicative of the electron spectrum, its transport through the nebula, and the physical conditions near the shocked interface between the nebular region and the wind which is the physical link between the nebula and the pulsar, NP0532. The power-law dependence of the spectrum found in the lower-energy decade of this observation (10 to 100 keV) is not continued without modification to higher energies. Evidence for this has been accumulating from previous observations in the γ-ray ranges of 1-10 MeV and above 35 MeV. The observations on which this dissertation is based further characterize the spectral change in the 100 keV to 1 MeV region. These observations provide a crucial connection between the x-ray and γ-ray spectrum of the non-pulsed emission of the Crab Nebula. The continuity of this spectrum suggests that the emission mechanism responsible for the non-pulsed γ-rays observed above 35 MeV is of the same origin as the emission at lower energies, i.e. that of synchrotron radiation in the magnetic field of the nebula

  17. Extended defect related energy loss in CVD diamond revealed by spectrum imaging in a dedicated STEM

    International Nuclear Information System (INIS)

    Bangert, U.; Harvey, A.J.; Schreck, M.; Hoermann, F.

    2005-01-01

    This article aims at investigations of the low EEL region in the wide band gap system diamond. The advent of the UHV Enfina electron energy loss spectrometer combined with Digital Micrograph acquisition and processing software has made reliable detection of absorption losses below 10 eV possible. Incorporated into a dedicated STEM this instrumentation allows the acquisition of spectral information via spectrum maps (spectrum imaging) of sample areas hundreds of nanometers across, with nanometers pixel sizes, adequate spectrum statistics and 0.3 eV energy resolution, in direct correlation with microstructural features in the mapping area. We aim at discerning defect related losses at band gap energies, and discuss different routes to simultaneously process and analyse the spectra in a map. This involves extracting the zero loss peak from each spectrum and constructing ratio maps from the intensities in two energy windows, one defect related and one at a higher, crystal bandstructure dominated energy. This was applied to the residual spectrum maps and their first derivatives. Secondly, guided by theoretical EEL spectra calculations, the low loss spectra were fitted by a series of gaussian distributions. Pixel maps were constructed from amplitude ratios of gaussians, situated in the defect and the unaffected energy regime. The results demonstrate the existence of sp 2 -bonded carbon in the vicinity of stacking faults and partial dislocations in CVD diamond as well as additional states below conduction band, tailing deep into the band gap, at a node in a perfect dislocation. Calculated EEL spectra of shuffle dislocations give similar absorption features at 5-8 eV, and it is thought that this common feature is due to sp 2 -type bonding

  18. Determination of the energy spectrum of the neutrons in the central thimble of the reactor core TRIGA Mark III

    International Nuclear Information System (INIS)

    Parra M, M. A.

    2014-01-01

    This thesis presents the neutron spectrum measurements inside the core of the TRIGA Mark III reactor at 1 MW power in steady-state, with the bridge placed in the center of the swimming pool, using several metallic threshold foils. The activation detectors are inserted in the Central Thimble of the reactor core, all the foils are irradiated in the same position and irradiation conditions (one by one). The threshold detectors are made of different materials such as: Au 197 , Ni 58 , In 115 , Mg 24 , Al 27 , Fe 58 , Co 59 and Cu 63 , they were selected to cover the full range the energies (10 -10 to 20 MeV) of the neutron spectrum in the reactor core. After the irradiation, the activation detectors were measured by means of spectrometry gamma, using a high resolution counting system with a hyper pure Germanium crystal, in order to obtain the saturation activity per target nuclide. The saturation activity is one of the main input data together with the initial spectrum, for the computational code SANDBP (hungarian version of the code SAND-II), which through an iterative adjustment, gives the calculated spectrum. The different saturation activities are necessary for the unfolding method, used by the computational code SANDBP. This research work is very important, since the knowledge of the energetic and spatial distribution of the neutron flux in the irradiation facilities, allows to characterize properly the irradiation facilities, just like, to estimate with a good precision various physics parameters of the reactor such as: neutron fluxes (thermal, intermediate and fast), neutronic dose, neutron activation analysis (NAA), spectral indices (cadmium ratio), buckling, fuel burnup, safety parameters (reactivity, temperature distribution, peak factors). In addition, the knowledge of the already mentioned parameters can give a best use of reactor, optimizing the irradiations requested by the users for their production process or research projects. (Author)

  19. Use of orthonormal polynomials to fit energy spectrum data for water transported through membrane

    International Nuclear Information System (INIS)

    Bogdanova, N.; Todorova, L.

    2001-01-01

    A new application of our approach with orthonormal polynomials to curve fitting is given when both variables have errors. We approximate and describe data of a new effect due to change of water energy spectrum as a result of water transport in a porous membrane

  20. On the infimum of the energy-momentum spectrum of a homogeneous Bose gas

    DEFF Research Database (Denmark)

    Cornean, Horia; Derezinski, J.; Zin, P.

    2009-01-01

    We consider second-quantized homogeneous Bose gas in a large cubic box with periodic boundary conditions at zero temperature. We discuss the energy-momentum spectrum of the Bose gas and its physical significance. We review various rigorous and heuristic results as well as open conjectures about its...

  1. Explanation of the Knee-like Feature in the DAMPE Cosmic {e}^{-}+{e}^{+} Energy Spectrum

    Science.gov (United States)

    Fang, Kun; Bi, Xiao-Jun; Yin, Peng-Fei

    2018-02-01

    The DArk Matter Particle Explorer, a space-based high precision cosmic-ray detector, has just reported the new measurement of the total electron plus positron energy spectrum up to 4.6 TeV. A notable feature in the spectrum is the spectral break at ∼0.9 TeV, with the spectral index softening from ‑3.1 to ‑3.9. Such a feature is very similar to the knee at the cosmic nuclei energy spectrum. In this work, we propose that the knee-like feature can be explained naturally by assuming that the electrons are accelerated at the supernova remnants (SNRs) and released when the SNRs die out with lifetimes around 105 years. The cut-off energy of those electrons have already decreased to several TeV due to radiative cooling, which may induce the observed TeV spectral break. Another possibility is that the break is induced by a single nearby old SNR. Such a scenario may bring a large electron flux anisotropy that may be observable by the future detectors. We also show that a minor part of electrons escaping during the acceleration in young and nearby SNRs is able to contribute to a several TeV or higher energy region of the spectrum.

  2. Free Energy Adjusted Peak Signal to Noise Ratio (FEA-PSNR) for Image Quality Assessment

    Science.gov (United States)

    Liu, Ning; Zhai, Guangtao

    2017-12-01

    Peak signal to noise ratio (PSNR), the de facto universal image quality metric has been widely criticized as having poor correlation with human subjective quality ratings. In this paper, it will be illustrated that the low performance of PSNR as an image quality metric is partially due to its inability of differentiating image contents. And it is revealed that the deviation between subjective score and PSNR for each type of distortions can be systematically captured by perceptual complexity of the target image. The free energy modelling technique is then introduced to simulate the human cognitive process and measure perceptual complexity of an image. Then it is shown that performance of PSNR can be effectively improved using a linear score mapping process considering image free energy and distortion type. The proposed free energy adjusted peak signal to noise ratio (FEA-PSNR) does not change computational steps the of ordinary PSNR and therefore it inherits the merits of being simple, derivable and physically meaningful. So FEA-PSNR can be easily integrated into existing PSNR based image processing systems to achieve more visually plausible results. And the proposed analysis approach can be extended to other types of image quality metrics for enhanced performance.

  3. Prompt neutron fission spectrum mean energies for the fissile nuclides and 252Cf

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    The international standard for a neutron spectrum is that produced from the spontaneous fission of 252 Cf, while the thermal neutron induced fission neutron spectra for the four fissile nuclides, 233 U, 235 U, 239 Pu, and 241 Pu are of interest from the standpoint of nuclear reactors. The average neutron energies of these spectra are tabulated. The individual measurements are recorded with the neutron energy range measured, the method of detection as well as the average neutron energy for each author. Also tabulated are the measurements of the ratio of mean energies for pairs of fission neutron spectra. 75 refs., 9 tabs

  4. Primary CR energy spectrum and mass composition by the data of Tunka-133 array

    Directory of Open Access Journals (Sweden)

    Prosin V.V.

    2015-01-01

    Full Text Available The Cherenkov light array for the registration of extensive air showers (EAS Tunka-133 collected data during 5 winter seasons from 2009 to 2014. The differential energy spectrum of all particles and the dependence of the average maximum depth on the energy in the range of 6 ⋅ 1015–1018 eV measured for 1540 hours of observation are presented.

  5. Determination of the Spectral Index in the Fission Spectrum Energy Regime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Amy Sarah [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-16

    Neutron reaction cross sections play a vital role in tracking the production and destruction of isotopes exposed to neutron fluence. They are central to the process of reconciling the initial and final atom inventories. Measurements of irradiated samples by radiochemical methods in tangent with an algorithm are used to evaluate the fluence a sample is exposed to over the course of the irradiation. This algorithm is the Isotope Production Code (IPC) created and used by the radiochemistry data assessment team at Los Alamos National Laboratory (LANL). An integral result is calculated by varying the total neutron fluence seen by a sample. A sample, irradiated in a critical assembly, will be exposed to a unique neutron flux defined by the neutron source and distance of the sample from the source. Neutron cross sections utilized are a function of the hardness of the neutron spectrum at the location of irradiation. A spectral index is used an indicator of the hardness of the neutron spectrum. Cross sections fit forms applied in IPC are collapsed from a LANL 30-group energy structure. Several decades of research and development have been performed to formalize the current IPC cross section library. Basis of the current fission spectrum neutron reaction cross section library is rooted in critical assembly experiments performed from the 1950’s through the early 1970’s at LANL. The focus of this report is development of the spectral index used an indicator of the hardness of the neutron spectrum in the fission spectrum energy regime.

  6. Statistical Delay QoS Provisioning for Energy-Efficient Spectrum-Sharing Based Wireless Ad Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yichen Wang

    2016-01-01

    Full Text Available In this paper, we develop the statistical delay quality-of-service (QoS provisioning framework for the energy-efficient spectrum-sharing based wireless ad hoc sensor network (WAHSN, which is characterized by the delay-bound violation probability. Based on the established delay QoS provisioning framework, we formulate the nonconvex optimization problem which aims at maximizing the average energy efficiency of the sensor node in the WAHSN while meeting PU’s statistical delay QoS requirement as well as satisfying sensor node’s average transmission rate, average transmitting power, and peak transmitting power constraints. By employing the theories of fractional programming, convex hull, and probabilistic transmission, we convert the original fractional-structured nonconvex problem to the additively structured parametric convex problem and obtain the optimal power allocation strategy under the given parameter via Lagrangian method. Finally, we derive the optimal average energy efficiency and corresponding optimal power allocation scheme by employing the Dinkelbach method. Simulation results show that our derived optimal power allocation strategy can be dynamically adjusted based on PU’s delay QoS requirement as well as the channel conditions. The impact of PU’s delay QoS requirement on sensor node’s energy efficiency is also illustrated.

  7. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    Science.gov (United States)

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Spectrum and energy levels of five-times ionized zirconium (Zr VI)

    Science.gov (United States)

    Reader, Joseph; Lindsay, Mark D.

    2016-02-01

    We carried out a new analysis of the spectrum of five-times-ionized zirconium Zr VI. For this we used sliding-spark discharges together with normal- and grazing-incidence spectrographs to observe the spectrum from 160 to 2000 Å. These observations showed that the analysis of this spectrum by Khan et al (1985 Phys. Scr. 31 837) contained a significant number of incorrect energy levels. We have now classified ˜420 lines as transitions between 23 even-parity levels 73 odd-parity levels. The 4s24p5, 4s4p6, 4s24p44d, 5s, 5d, 6s configurations are now complete, although a few levels of 4s24p45d are tentative. We determined Ritz-type wavelengths for ˜135 lines from the optimized energy levels. The uncertainties range from 0.0003 to 0.0020 Å. Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels were used to interpret the observed configurations. Oscillator strengths for all classified lines were calculated with the fitted parameters. The results are compared with values for the level energies, percentage compositions, and transition probabilities from recent ab initio theoretical calculations. The ionization energy was revised to 777 380 ± 300 cm-1 (96.38 ± 0.04 eV).

  9. Spectrum and energy levels of five-times ionized zirconium (Zr VI)

    International Nuclear Information System (INIS)

    Reader, Joseph; Lindsay, Mark D

    2016-01-01

    We carried out a new analysis of the spectrum of five-times-ionized zirconium Zr VI. For this we used sliding-spark discharges together with normal- and grazing-incidence spectrographs to observe the spectrum from 160 to 2000 Å. These observations showed that the analysis of this spectrum by Khan et al (1985 Phys. Scr. 31 837) contained a significant number of incorrect energy levels. We have now classified ∼420 lines as transitions between 23 even-parity levels 73 odd-parity levels. The 4s 2 4p 5 , 4s4p 6 , 4s 2 4p 4 4d, 5s, 5d, 6s configurations are now complete, although a few levels of 4s 2 4p 4 5d are tentative. We determined Ritz-type wavelengths for ∼135 lines from the optimized energy levels. The uncertainties range from 0.0003 to 0.0020 Å. Hartree–Fock calculations and least-squares fits of the energy parameters to the observed levels were used to interpret the observed configurations. Oscillator strengths for all classified lines were calculated with the fitted parameters. The results are compared with values for the level energies, percentage compositions, and transition probabilities from recent ab initio theoretical calculations. The ionization energy was revised to 777 380 ± 300 cm −1 (96.38 ± 0.04 eV). (paper)

  10. The puzzle of the ankle in the Ultrahigh Energy Cosmic Ray Spectrum, and composition indicators

    Science.gov (United States)

    Farrar, Glennys

    2015-08-01

    The sharp change in slope of the ultra-high energy cosmic ray spectrum around 10^18.6 eV (the ankle), combined with evidence of a light but extragalactic component near and below the ankle and intermediate composition above, has proved exceedingly challenging to understand theoretically. In this talk I discuss two possible solutions to the puzzle and how they can be (in)validated.First, I present a new mechanism whereby photo-disintegration of ultra-high energy nuclei in the region surrounding a UHECR accelerator naturally accounts for the observed spectrum and inferred composition (using LHC-tuned models extrapolated to UHE) at Earth. We discuss the conditions required to reproduce the spectrum above 10^17.5 eV and the composition, which -- in our model -- consists below the ankle of extragalactic protons and the high energy tail of Galactic Cosmic Rays, and above the ankle of surviving nuclei from the extended source. Predictions for the spectrum and flavors of neutrinos resulting from this process will be presented, and also implications for candidate sources.The other possible explanation is that in actuality UHECRs are entirely or almost entirely protons, and the cross-section for p-Air scattering increases more rapidly above center-of-mass energy of 70 TeV (10 times the current LHC cm energy) than predicted in conventional models. This gives an equally good fit to the depth-of-shower maximum behavior obverved by Auger, while being an intriguing sign of new state in QCD at extremely high energy density.

  11. Continuous energy Neutron Transport Monte Carlo Simulator Project: Decomposition of the neutron energy spectrum by target nuclei tagging

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos, Luiz Felipe F.C.; Bodmann, Bardo E.J.; Vilhena, Marco T.M.B., E-mail: luizfelipe.fcb@gmail.com, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Nucleares; Leite, Sergio Q. Bogado, E-mail: sbogado@ibest.com.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this work a Monte Carlo simulator with continuous energy is used. This simulator distinguishes itself by using the sum of three probability distributions to represent the neutron spectrum. Two distributions have known shape, but have varying population of neutrons in time, and these are the fission neutron spectrum (for high energy neutrons) and the Maxwell-Boltzmann distribution (for thermal neutrons). The third distribution has an a priori unknown and possibly variable shape with time and is determined from parametrizations of Monte Carlo simulation. It is common practice in neutron transport calculations, e.g. multi-group transport, to consider that the neutrons only lose energy with each scattering reaction and then to use a thermal group with a Maxwellian distribution. Such an approximation is valid due to the fact that for fast neutrons up-scattering occurrence is irrelevant, being only appreciable at low energies, i.e. in the thermal energy region, in which it can be regarded as a Maxwell-Boltzmann distribution for thermal equilibrium. In this work the possible neutron-matter interactions are simulated with exception of the up-scattering of neutrons. In order to preserve the thermal spectrum, neutrons are selected stochastically as being part of the thermal population and have an energy attributed to them taken from a Maxwellian distribution. It is then shown how this procedure can emulate the up-scattering effect by the increase in the neutron population kinetic energy. Since the simulator uses tags to identify the reactions it is possible not only to plot the distributions by neutron energy, but also by the type of interaction with matter and with the identification of the target nuclei involved in the process. This work contains some preliminary results obtained from a Monte Carlo simulator for neutron transport that is being developed at Federal University of Rio Grande do Sul. (author)

  12. Ion energy spectrum just after the application of current pulse for turbulent heating in the TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Nakamura, Yukio; Hiraki, Naoji; Itoh, Satoshi

    1981-01-01

    Temporal evolution and spatial profile of ion energy spectrum just after the application of current pulse for turbulent heating are investigated experimentally in TRIAM-1 and numerically with a Fokker-Planck equation. Two-component ion energy spectrum formed by turbulent heating relaxes to single one within tau sub(i) (ion collision time). (author)

  13. Ion energy spectrum just after the application of current pulse for turbulent heating in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K; Nakamura, Y; Hiraki, N; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-07-01

    Temporal evolution and spatial profile of ion energy spectrum just after the application of current pulse for turbulent heating are investigated experimentally in TRIAM-1 and numerically with a Fokker-Planck equation. Two-component ion energy spectrum formed by turbulent heating relaxes to single one within tau sub(i) (ion collision time).

  14. Buying less and wasting less food. Changes in household food energy purchases, energy intakes and energy density between 2007 and 2012 with and without adjustment for food waste.

    Science.gov (United States)

    Whybrow, Stephen; Horgan, Graham W; Macdiarmid, Jennie I

    2017-05-01

    Consumers in the UK responded to the rapid increases in food prices between 2007 and 2009 partly by reducing the amount of food energy bought. Household food and drink waste has also decreased since 2007. The present study explored the combined effects of reductions in food purchases and waste on estimated food energy intakes and dietary energy density. The amount of food energy purchased per adult equivalent was calculated from Kantar Worldpanel household food and drink purchase data for 2007 and 2012. Food energy intakes were estimated by adjusting purchase data for food and drink waste, using waste factors specific to the two years and scaled for household size. Scotland. Households in Scotland (n 2657 in 2007; n 2841 in 2012). The amount of food energy purchased decreased between 2007 and 2012, from 8·6 to 8·2 MJ/adult equivalent per d (Pfood waste, estimated food energy intake was not significantly different (7·3 and 7·2 MJ/adult equivalent per d for 2007 and 2012, respectively; P=0·186). Energy density of foods purchased increased slightly from 700 to 706 kJ/100 g (P=0·010). While consumers in Scotland reduced the amount of food energy that they purchased between 2007 and 2012, this was balanced by reductions in household food and drink waste over the same time, resulting in no significant change in net estimated energy intake of foods brought into the home.

  15. Corrections on energy spectrum and scattering for fast neutron radiography at NECTAR facility

    International Nuclear Information System (INIS)

    Liu Shuquan; Thomas, Boucherl; Li Hang; Zou Yubin; Lu Yuanrong; Guo Zhiyu

    2013-01-01

    Distortions caused by the neutron spectrum and scattered neutrons are major problems in fast neutron radiography and should be considered for improving the image quality. This paper puts emphasis on the removal of these image distortions and deviations for fast neutron radiography performed at the NECTAR facility of the research reactor FRM-Ⅱ in Technische Universitaet Mounchen (TUM), Germany. The NECTAR energy spectrum is analyzed and established to modify the influence caused by the neutron spectrum, and the Point Scattered Function (PScF) simulated by the Monte-Carlo program MCNPX is used to evaluate scattering effects from the object and improve image quality. Good analysis results prove the sound effects of the above two corrections. (authors)

  16. Corrections on energy spectrum and scatterings for fast neutron radiography at NECTAR facility

    Science.gov (United States)

    Liu, Shu-Quan; Bücherl, Thomas; Li, Hang; Zou, Yu-Bin; Lu, Yuan-Rong; Guo, Zhi-Yu

    2013-11-01

    Distortions caused by the neutron spectrum and scattered neutrons are major problems in fast neutron radiography and should be considered for improving the image quality. This paper puts emphasis on the removal of these image distortions and deviations for fast neutron radiography performed at the NECTAR facility of the research reactor FRM- II in Technische Universität München (TUM), Germany. The NECTAR energy spectrum is analyzed and established to modify the influence caused by the neutron spectrum, and the Point Scattered Function (PScF) simulated by the Monte-Carlo program MCNPX is used to evaluate scattering effects from the object and improve image quality. Good analysis results prove the sound effects of the above two corrections.

  17. The Cosmic Ray Energy Spectrum and Related Measurements with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the cosmic ray energy spectrum above 10{sup 18} eV with the Pierre Auger Observatory; (2) The cosmic ray flux observed at zenith angles larger than 60 degrees with the Pierre Auger Observatory; (3) Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory; (4) Exposure of the Hybrid Detector of The Pierre Auger Observatory; and (5) Energy scale derived from Fluorescence Telescopes using Cherenkov Light and Shower Universality.

  18. Contribution from individual nearby sources to the spectrum of high-energy cosmic-ray electrons

    International Nuclear Information System (INIS)

    Sedrati, R.; Attallah, R.

    2014-01-01

    In the last few years, very important data on high-energy cosmic-ray electrons and positrons from high-precision space-born and ground-based experiments have attracted a great deal of interest. These particles represent a unique probe for studying local comic-ray accelerators because they lose energy very rapidly. These energy losses reduce the lifetime so drastically that high-energy cosmic-ray electrons can attain the Earth only from rather local astrophysical sources. This work aims at calculating, by means of Monte Carlo simulation, the contribution from some known nearby astrophysical sources to the cosmic-ray electron/positron spectra at high energy (≥10GeV). The background to the electron energy spectrum from distant sources is determined with the help of the GALPROP code. The obtained numerical results are compared with a set of experimental data

  19. Contribution from individual nearby sources to the spectrum of high-energy cosmic-ray electrons

    Energy Technology Data Exchange (ETDEWEB)

    Sedrati, R., E-mail: rafik.sedrati@univ-annaba.org; Attallah, R.

    2014-04-01

    In the last few years, very important data on high-energy cosmic-ray electrons and positrons from high-precision space-born and ground-based experiments have attracted a great deal of interest. These particles represent a unique probe for studying local comic-ray accelerators because they lose energy very rapidly. These energy losses reduce the lifetime so drastically that high-energy cosmic-ray electrons can attain the Earth only from rather local astrophysical sources. This work aims at calculating, by means of Monte Carlo simulation, the contribution from some known nearby astrophysical sources to the cosmic-ray electron/positron spectra at high energy (≥10GeV). The background to the electron energy spectrum from distant sources is determined with the help of the GALPROP code. The obtained numerical results are compared with a set of experimental data.

  20. Measurement of the ν _{μ } energy spectrum with IceCube-79

    Science.gov (United States)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bradascio, F.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Waza, A.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2017-10-01

    IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The ν _μ energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of a multivariate classification process based on machine learning. The subsequent unfolding was performed using the software Truee. The resulting spectrum covers an E_ν -range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows an excess of more than 1.9 σ in four adjacent bins for neutrino energies E_ν ≥ 177.8 {TeV}. The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos.

  1. Measurement of the ν{sub μ} energy spectrum with IceCube-79

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Kyriacou, A.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Ackermann, M.; Bernardini, E.; Blot, S.; Bradascio, F.; Bretz, H.P.; Franckowiak, A.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Nahnhauer, R.; Satalecka, K.; Spiering, C.; Stachurska, J.; Stasik, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van [DESY, Zeuthen (Germany); Adams, J.; Bagherpour, H. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Science Faculty CP230, Brussels (Belgium); Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Rossem, M.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Al Samarai, I.; Bron, S.; Carver, T.; Christov, A.; Montaruli, T. [Universite de Geneve, Departement de physique nucleaire et corpusculaire, Geneva (Switzerland); Altmann, D.; Anton, G.; Gluesenkamp, T.; Katz, U.; Kittler, T.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Andeen, K. [Marquette University, Department of Physics, Milwaukee, WI (United States); Anderson, T.; Dunkman, M.; Eller, P.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G.; Weiss, M.J. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Krueckl, G.; Momente, G.; Peiffer, P.; Sandroos, J.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Argueelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Jones, B.J.P.; Moulai, M. [Massachusetts Institute of Technology, Department of Physics, Cambridge, MA (United States); Auffenberg, J.; Glauch, T.; Haack, C.; Hansmann, T.; Konietz, R.; Leuermann, M.; Penek, Oe.; Raedel, L.; Reimann, R.; Rongen, M.; Schoenen, S.; Schumacher, L.; Stettner, J.; Vehring, M.; Vogel, E.; Wallraff, M.; Waza, A.; Wickmann, S.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Kroll, M.; Schoeneberg, S.; Tenholt, F. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Lauber, F.; Naumann, U.; Obertacke Pollmann, A.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); BenZvi, S.; Cross, R. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Friedman, E.; Hellauer, R.; Hoffman, K.D.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Klein, S.R.; Miarecki, S.; Palczewski, T.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boerner, M.; Fuchs, T.; Meier, M.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Schlunder, P. [TU Dortmund University, Department of Physics, Dortmund (Germany); Collaboration: IceCube Collaboration; and others

    2017-10-15

    IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The ν{sub μ} energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of a multivariate classification process based on machine learning. The subsequent unfolding was performed using the software Truee. The resulting spectrum covers an E{sub ν}-range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows an excess of more than 1.9σ in four adjacent bins for neutrino energies E{sub ν} ≥ 177.8 TeV. The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos. (orig.)

  2. An absolute measurement of 252Cf prompt fission neutron spectrum at low energy range

    International Nuclear Information System (INIS)

    Lajtai, A.; Dyachenko, P.P.; Kutzaeva, L.S.; Kononov, V.N.; Androsenko, P.A.; Androsenko, A.A.

    1983-01-01

    Prompt neutron energy spectrum at low energies (25 keV 252 Cf spontaneous fission has been measured with a time-of-flight technique on a 30 cm flight-path. Ionization chamber and lithium-glass were used as fission fragment and neutron detectors, respectively. Lithium glasses of NE-912 (containing 6 Li) and of NE-913 (containing 7 Li) 45 mm in diameter and 9.5 mm in thickness have been employed alternatively, for the registration of fission neutrons and gammas. For the correct determination of the multiscattering effects - the main difficulty of the low energy neutron spectrum measurements - a special geometry for the neutron detector was used. Special attention was paid also to the determination of the absolute efficiency of the neutron detector. The real response function of the spectrometer was determined by a Monte-Carlo calculation. The scattering material content of the ionization chamber containing a 252 Cf source was minimized. As a result of this measurement a prompt fission neutron spectrum of Maxwell type with a T=1.42 MeV parameter was obtained at this low energy range. We did not find any neutron excess or irregularities over the Maxwellian. (author)

  3. Measurement of the νμ energy spectrum with IceCube-79

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Hill, G.C.; Kyriacou, A.; Robertson, S.; Wallace, A.; Whelan, B.J.; Ackermann, M.; Bernardini, E.; Blot, S.; Bradascio, F.; Bretz, H.P.; Franckowiak, A.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Nahnhauer, R.; Satalecka, K.; Spiering, C.; Stachurska, J.; Stasik, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Adams, J.; Bagherpour, H.; Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.; Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Rossem, M.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L.; Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.; Al Samarai, I.; Bron, S.; Carver, T.; Christov, A.; Montaruli, T.; Altmann, D.; Anton, G.; Gluesenkamp, T.; Katz, U.; Kittler, T.; Tselengidou, M.; Andeen, K.; Anderson, T.; Dunkman, M.; Eller, P.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G.; Weiss, M.J.; Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Krueckl, G.; Momente, G.; Peiffer, P.; Sandroos, J.; Steuer, A.; Wiebe, K.; Argueelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Jones, B.J.P.; Moulai, M.; Auffenberg, J.; Glauch, T.; Haack, C.; Hansmann, T.; Konietz, R.; Leuermann, M.; Penek, Oe.; Raedel, L.; Reimann, R.; Rongen, M.; Schoenen, S.; Schumacher, L.; Stettner, J.; Vehring, M.; Vogel, E.; Wallraff, M.; Waza, A.; Wickmann, S.; Wiebusch, C.H.; Bai, X.; Barwick, S.W.; Yodh, G.; Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K.; Beatty, J.J.; Becker Tjus, J.; Bos, F.; Eichmann, B.; Kroll, M.; Schoeneberg, S.; Tenholt, F.; Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Lauber, F.; Naumann, U.; Obertacke Pollmann, A.; Soldin, D.; BenZvi, S.; Cross, R.; Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Friedman, E.; Hellauer, R.; Hoffman, K.D.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Besson, D.Z.; Binder, G.; Gerhardt, L.; Klein, S.R.; Miarecki, S.; Palczewski, T.; Tatar, J.; Boerner, M.; Fuchs, T.; Meier, M.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Schlunder, P.

    2017-01-01

    IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The ν μ energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of a multivariate classification process based on machine learning. The subsequent unfolding was performed using the software Truee. The resulting spectrum covers an E ν -range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows an excess of more than 1.9σ in four adjacent bins for neutrino energies E ν ≥ 177.8 TeV. The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos. (orig.)

  4. Research on multi-spectrum detector in high-energy dual-energy X-ray imaging system

    International Nuclear Information System (INIS)

    Li Qinghua; Wang Xuewu; Li Jianmin; Kang Kejun; Li Yuanjing; Zhong Huaqiang

    2008-01-01

    The high-energy dual-energy X-ray imaging system can discriminate the material of the objects inspected, but when the objects are too thin, the discrimination becomes very difficult. This paper proposes the use of multi-spectrum detector to improve the ability to discriminate thin material, and a series of simulation were done with the Monte Carlo method. Firstly the X-ray depositions in the detectors with different thickness were calculated, and then the discrimination effects with different detector structure and parameters were calculated. The simulation results validated that using appropriate multi-spectrum detector can improve the discrimination accuracy of thin material, particularly thin high-Z material. (authors)

  5. Family function, Parenting Style and Broader Autism Phenotype as Predicting Factors of Psychological Adjustment in Typically Developing Siblings of Children with Autism Spectrum Disorders.

    Directory of Open Access Journals (Sweden)

    Mohammadreza Mohammadi

    2014-06-01

    Full Text Available Siblings of children with autism are at a greater risk of experiencing behavioral and social problems. Previous researches had focused on environmental variables such as family history of autism spectrum disorders (ASDs, behavior problems in the child with an ASD, parental mental health problems, stressful life events and "broader autism phenotype" (BAP, while variables like parenting style and family function that are shown to influence children's behavioral and psychosocial adjustment are overlooked. The aim of the present study was to reveal how parenting style and family function as well as BAP effect psychological adjustment of siblings of children with autism.The Participants included 65 parents who had one child with an Autism Spectrum Disorder and one typically developing child. Of the children with ASDs, 40 were boys and 25 were girls; and they were diagnosed with ASDs by a psychiatrist based on DSM-IV-TR criteria and Autism Diagnostic Interview-Revised (ADI-R. The Persian versions of the six scales were used to collect data from the families. Pearson's correlation test and regression analysis were used to determine which variables were related to the psychological adjustment of sibling of children with ASDs and which variables predicted it better.Significant relationships were found between Strengths and Difficulties Questionnaire (SDQ total difficulties, prosocial behaviors and ASDs symptoms severity, parenting styles and some aspects of family function. In addition, siblings who had more BAP characteristics had more behavior problems and less prosocial behavior. Behavioral problems increased and prosocial behavior decreased with permissive parenting style. Besides, both of authoritarian and authoritative parenting styles led to a decrease in behavioral problems and an increase in prosocial behaviors. Our findings revealed that some aspects of family function (affective responsiveness, roles, problem solving and behavior control were

  6. Family function, Parenting Style and Broader Autism Phenotype as Predicting Factors of Psychological Adjustment in Typically Developing Siblings of Children with Autism Spectrum Disorders.

    Science.gov (United States)

    Mohammadi, Mohammadreza; Zarafshan, Hadi

    2014-04-01

    Siblings of children with autism are at a greater risk of experiencing behavioral and social problems. Previous researches had focused on environmental variables such as family history of autism spectrum disorders (ASDs), behavior problems in the child with an ASD, parental mental health problems, stressful life events and "broader autism phenotype" (BAP), while variables like parenting style and family function that are shown to influence children's behavioral and psychosocial adjustment are overlooked. The aim of the present study was to reveal how parenting style and family function as well as BAP effect psychological adjustment of siblings of children with autism. The Participants included 65 parents who had one child with an Autism Spectrum Disorder and one typically developing child. Of the children with ASDs, 40 were boys and 25 were girls; and they were diagnosed with ASDs by a psychiatrist based on DSM-IV-TR criteria and Autism Diagnostic Interview-Revised (ADI-R). The Persian versions of the six scales were used to collect data from the families. Pearson's correlation test and regression analysis were used to determine which variables were related to the psychological adjustment of sibling of children with ASDs and which variables predicted it better. Significant relationships were found between Strengths and Difficulties Questionnaire (SDQ) total difficulties, prosocial behaviors and ASDs symptoms severity, parenting styles and some aspects of family function. In addition, siblings who had more BAP characteristics had more behavior problems and less prosocial behavior. Behavioral problems increased and prosocial behavior decreased with permissive parenting style. Besides, both of authoritarian and authoritative parenting styles led to a decrease in behavioral problems and an increase in prosocial behaviors. Our findings revealed that some aspects of family function (affective responsiveness, roles, problem solving and behavior control) were significantly

  7. Energy spectrum of two-dimensional tight-binding electrons in a spatially varying magnetic field

    International Nuclear Information System (INIS)

    Oh, G.Y.; Lee, M.H.

    1996-01-01

    The electronic energy spectrum of a two-dimensional lattice in a spatially varying magnetic field is studied within the framework of the tight-binding model by using the scheme of the transfer matrix. It is found that, in comparison with the case of a uniform magnetic field, the energy spectrum exhibits more complicated behavior; band broadening (or gap closing) and band splitting (or gap opening) occur depending on characteristic parameters of the lattice. The origin of these phenomena lies in the existence of direct touching and indirect overlapping between neighboring subbands. Dependence of direct touching and indirect overlapping, and thus the electronic band structure together with the density of states, on characteristic parameters of the lattice is elucidated in detail. copyright 1996 The American Physical Society

  8. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki, E-mail: koyanagit@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kumar, N.A.P. Kiran [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hwang, Taehyun [Tohoku University, Sendai, 980-8579 (Japan); Garrison, Lauren M.; Hu, Xunxiang [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, Lance L. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-07-15

    Microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ∼90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ∼90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ∼1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- and Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.

  9. The energy spectrum of electromagnetic normal modes in dissipative media: modes between two metal half spaces

    International Nuclear Information System (INIS)

    Sernelius, Bo E

    2008-01-01

    The energy spectrum of electromagnetic normal modes plays a central role in the theory of the van der Waals and Casimir interaction. Here we study the modes in connection with the van der Waals interaction between two metal half spaces. Neglecting dissipation leads to distinct normal modes with real-valued frequencies. Including dissipation seems to have the effect that these distinct modes move away from the real axis into the complex frequency plane. The summation of the zero-point energies of these modes render a complex-valued result. Using the contour integration, resulting from the use of the generalized argument principle, gives a real-valued and different result. We resolve this contradiction and show that the spectrum of true normal modes forms a continuum with real frequencies

  10. Direct measurement of the energy spectrum of an intense proton beam

    International Nuclear Information System (INIS)

    Leeper, R.J.; Lee, J.R.; Kissel, L.; Johnson, D.J.; Stygar, W.A.; Hebron, D.E.; Roose, L.D.

    1983-01-01

    A time-resolved magnetic spectrometer has been used to measure the energy spectrum of an intense (0.5 TW/cm 2 ) proton beam. A thin (2400 A) gold foil placed at the focus of an ion diode Rutherford scattered protons by 90 0 into the spectrometer, reducing the beam intensity to a level suitable for magnetic analysis. The scattered beam was collimated by two 1 mm diameter apertures separated by 12.3 cm. The collimated protons were deflected in a 12.7 cm diameter, 6.65 Kg samarium-cobalt permanent magnet. The deflected protons were recorded simultaneously on CR-39 and eight 1 mm 2 by 35 μm thick PIN diodes. A Monte Carlo computer code was used to calculate the sensitivity and resolution of the spectrometer. Data taken on Proto-I show a 150 keV to 250 keV wide proton energy spectrum at each instant in time

  11. Neutron fluence rate and energy spectrum in SPRR-300 reactor thermal column

    International Nuclear Information System (INIS)

    Dou Haifeng; Dai Junlong

    2006-01-01

    In order to modify the simple one-dimension model, the neutron fluence rate distribution calculated with ANISN code ws checked with that calculated with MCNP code. To modify the error caused by ignoring the neutron landscape orientation leaking, the reflector that can't be modeled in a simple one-dimension model was dealt by extending landscape orientation scale. On this condition the neutron fluence rate distribution and the energy spectrum in the thermal column of SPRR-300 reactor were calculated with one-dimensional code ANISN, and the results of Cd ratio are well accorded with the experimental results. The deviation between them is less than 5% and it isn't above 10% in one or two special positions. It indicates that neutron fluence rate distribution and energy spectrum in the thermal column can be well calculated with one-dimensional code ANISN. (authors)

  12. More Wind Power Integration with Adjusted Energy Carriers for Space Heating in Northern China

    Directory of Open Access Journals (Sweden)

    Jianjun He

    2012-08-01

    Full Text Available In Northern China, due to the high penetration of coal-fired cogeneration facilities, which are generally equipped with extraction-condensing steam turbines, lots of wind power resources may be wasted during the heating season. In contrast, considerable coal is consumed in the power generation sector. In this article, firstly it is revealed that there exists a serious divergence in the ratio of electrical to thermal energy between end users’ demand and the cogenerations’ production during off-peak load at night, which may negate active power-balancing of the electric power grid. Secondly, with respect to this divergence only occurring during off-peak load at night, a temporary proposal is given so as to enable the integration of more wind power. The authors suggest that if the energy carrier for part of the end users’ space heating is switched from heating water to electricity (e.g., electric heat pumps (EHPs can provide space heating in the domestic sector, the ratio of electricity to heating water load should be adjusted to optimize the power dispatch between cogeneration units and wind turbines, resulting in fuel conservation. With this proposal, existing infrastructures are made full use of, and no additional ones are required. Finally a numerical simulation is performed in order to illustrate both the technical and economic feasibility of the aforementioned proposal, under ongoing infrastructures as well as electricity and space heating tariff conditions without changing participants’ benefits. The authors aim to persuade Chinese policy makers to enable EHPs to provide space heating to enable the integration of more wind power.

  13. Understanding the spectrum of domestic energy consumption: Empirical evidence from France

    International Nuclear Information System (INIS)

    Belaïd, Fateh

    2016-01-01

    This article focuses on residential energy consumption in France. Using a bottom-up statistical approach, this analysis explores determinants of household energy consumption using data from the most recent National Housing Survey. The primary objective is to tease out the impacts of various factors on the domestic energy consumption spectrum across different population groups. The aim of this approach is to neutralize conventional factors affecting energy consumption (age of house, total area, etc.) to finely analyze the impact of other determinants including those relating to household characteristics and other control variables. First, we define homogeneous consumption groups of households by using multivariate statistical techniques, namely the Multiple Correspondence Analysis and Ascending Hierarchical Classification. Second, we use standard OLS regression to explore the effects of various factors on domestic energy consumption among homogeneous groups of households. This multivariate analysis exercise has led us to identify four main consumption typologies. Results revealed that energy prices were the most important factors determining domestic energy consumption. In addition, this study showed that occupant characteristics significantly affect domestic energy use. Results of this research call for combine all efforts, multiple strategies and smart policies, to incorporate household and consumption behaviors in managing domestic energy consumption. - Highlights: •Survey data of 36,000 occupiers from France is analyzed. •Bottom-up statistical approach is used to analyze domestic energy consumption. •Occupant characteristics significantly affect domestic energy use. •The impact of households attributes varies markedly across consumption groups.

  14. Method to deduce the energy spectrum by the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Maris, I.; Roth, M.; Schmidt, T.; Schuessler, F.; Unger, M. [Univ. Karlsruhe (Germany); Bluemer, J. [Univ. Karlsruhe (Germany); Forschungszentrum Karlsruhe (Germany)

    2007-07-01

    Taken into account the great advantage of having a hybrid detector it has been developed a method, simulation independent, to determine the energy of the comic rays recorded by the surface detector of the Pierre Auger Observatory. The method assumes that the cosmic ray flux has the same distribution in zenith angle for all energy ranges. Therefore one can relate the calorimetric measurement of the fluorescence detector of the CR energy with a SD quantity, e.g. shower size at 1000m distance from the core, corrected for the different attenuations in the atmosphere. The method of measuring and calibrating the primary energy and the influence of reconstruction uncertainties on the energy spectrum are presented. (orig.)

  15. Magnetic diffusion effects on the ultra-high energy cosmic ray spectrum and composition

    Energy Technology Data Exchange (ETDEWEB)

    Mollerach, Silvia; Roulet, Esteban, E-mail: mollerach@cab.cnea.gov.ar, E-mail: roulet@cab.cnea.gov.ar [CONICET, Centro Atómico Bariloche, Av. Bustillo 9500 (8400) (Argentina)

    2013-10-01

    We discuss the effects of diffusion of high energy cosmic rays in turbulent extra-galactic magnetic fields. We find an approximate expression for the low energy suppression of the spectrum of the different mass components (with charge Z) in the case in which this suppression happens at energies below ∼ Z EeV, so that energy losses are dominated by the adiabatic ones. The low energy suppression appears when cosmic rays from the closest sources take a time comparable to the age of the Universe to reach the Earth. This occurs for energies E < Z EeV (B/nG)√(l{sub c}/Mpc)(d{sub s}/70Mpc) in terms of the magnetic field RMS strength B, its coherence length l{sub c} and the typical separation between sources d{sub s}. We apply this to scenarios in which the sources produce a mixed composition and have a relatively low maximum rigidity (E{sub max} ∼ (2–10)Z EeV), finding that diffusion has a significant effect on the resulting spectrum, the average mass and on its spread, in particular reducing this last one. For reasonable values of B and l{sub c} these effects can help to reproduce the composition trends observed by the Auger Collaboration for source spectra compatible with Fermi acceleration.

  16. Energy Efficient Cooperative Spectrum Sensing in Cognitive Radio Networks Using Distributed Dynamic Load Balanced Clustering Scheme

    Directory of Open Access Journals (Sweden)

    Muthukkumar R.

    2017-04-01

    Full Text Available Cognitive Radio (CR is a promising and potential technique to enable secondary users (SUs or unlicenced users to exploit the unused spectrum resources effectively possessed by primary users (PUs or licenced users. The proven clustering approach is used to organize nodes in the network into the logical groups to attain energy efficiency, network scalability, and stability for improving the sensing accuracy in CR through cooperative spectrum sensing (CSS. In this paper, a distributed dynamic load balanced clustering (DDLBC algorithm is proposed. In this algorithm, each member in the cluster is to calculate the cooperative gain, residual energy, distance, and sensing cost from the neighboring clusters to perform the optimal decision. Each member in a cluster participates in selecting a cluster head (CH through cooperative gain, and residual energy that minimises network energy consumption and enhances the channel sensing. First, we form the number of clusters using the Markov decision process (MDP model to reduce the energy consumption in a network. In this algorithm, CR users effectively utilize the PUs reporting time slots of unavailability. The simulation results reveal that the clusters convergence, energy efficiency, and accuracy of channel sensing increased considerably by using the proposed algorithm.

  17. Energy Efficient Cooperative Spectrum Sensing in Cognitive Radio Networks Using Distributed Dynamic Load Balanced Clustering Scheme

    Directory of Open Access Journals (Sweden)

    Muthukkumar R.

    2016-07-01

    Full Text Available Cognitive Radio (CR is a promising and potential technique to enable secondary users (SUs or unlicenced users to exploit the unused spectrum resources effectively possessed by primary users (PUs or licenced users. The proven clustering approach is used to organize nodes in the network into the logical groups to attain energy efficiency, network scalability, and stability for improving the sensing accuracy in CR through cooperative spectrum sensing (CSS. In this paper, a distributed dynamic load balanced clustering (DDLBC algorithm is proposed. In this algorithm, each member in the cluster is to calculate the cooperative gain, residual energy, distance, and sensing cost from the neighboring clusters to perform the optimal decision. Each member in a cluster participates in selecting a cluster head (CH through cooperative gain, and residual energy that minimises network energy consumption and enhances the channel sensing. First, we form the number of clusters using the Markov decision process (MDP model to reduce the energy consumption in a network. In this algorithm, CR users effectively utilize the PUs reporting time slots of unavailability. The simulation results reveal that the clusters convergence, energy efficiency, and accuracy of channel sensing increased considerably by using the proposed algorithm.

  18. Polarimetry of coherent bremsstrahlung by analysis of the photon energy spectrum

    International Nuclear Information System (INIS)

    Darbinyan, S.; Hakobyan, H.; Jones, R.; Sirunyan, A.; Vartapetian, H.

    2005-01-01

    A method of coherent bremsstrahlung (CB) polarimetry based on the analysis of the shape of the photon energy spectrum is presented. The influence of a number of uncertainty sources, including the choice of atomic form-factors, has been analyzed. For a CB source consisting of a diamond radiator and multi-GeV electrons, an absolute accuracy of polarimetry at the level of 0.01-0.02 is attainable

  19. The energy spectrum of the 'runaway' electrons from a high voltage pulsed discharge

    International Nuclear Information System (INIS)

    Ruset, C.

    1985-01-01

    Some experimental results are presented on the influence of the pressure upon the energy spectrum of the runaway electrons generated into a pulsed high voltage argon discharge. These electrons enter a state of continuous acceleration between two collisions with rapidly increasing free path. The applied discharge current varies from 10 to 300 A, the pulse time is about 800 ns. Relativistic effects are taken into consideration. Theoretical explanation is based on the pnenomenon of electron spreading on plasma oscillations. (D.Gy.)

  20. Calculating the energy spectrum of neutrons from tritium target of the NG-150 type generator

    International Nuclear Information System (INIS)

    Bortash, A.I.; Kuznetsov, V.S.

    1987-01-01

    Calculation procedure of neutron spectra yielding from the NG-150 generator target chamber with regard to deutron moderation is suggested. Using the suggested procedure, neutron spectra for different escape angles formed in the tritium target are calculated. The spectrum of neutrons scattered in cooling water is calculated. The mean energy of neutrons escaping at the angle of 0 deg equalling 14.5 MeV is obtained

  1. Energy-density spectrum of the vacuum around a cosmic string

    International Nuclear Information System (INIS)

    Sarmiento, A.; Hacyan, S.

    1988-01-01

    The explicit form of the spectrum of the energy density of the vacuum surrounding a cosmic string as would be seen by an observer at rest is calculated. Spin-0, -half, or -1 massless fields are considered and it is found that the result is independent of the spin value. An interpretation which differs from the one usually found in the literature is also given

  2. Is the primary energy spectrum around the knee a statistical game?

    International Nuclear Information System (INIS)

    Kempa, J.

    2001-01-01

    The present state of research of the shape of the energy spectrum of primary cosmic ray nuclei and the chemical composition in the region of the so-called, knee, and beyond is highly unsatisfactory. It was not very successful when using extensive air showers. In the present paper an attempt is made to explain what is the cause of such a situation. The experimental results as to which there is no doubt that they were wrongly interpreted, will be indicated

  3. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves

    Science.gov (United States)

    Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas

    2018-04-01

    We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

  4. Photon energy spectrum in B →Xs + γ and comparison with data

    International Nuclear Information System (INIS)

    Ali, A.; Greub, C.

    1995-06-01

    A comparison of the inclusive photon energy spectrum in the radiative decay B→X s +γ; measured recently by the CLEO collaboration, with the standard model is presented, using a B-meson wave function model and improving earlier perturbative QCD-based computations of the same. The dependence of the photon energy spectrum on the non-perturbative model parameters, p F , the b-quark Fermi momentum in the B hadron, and m q , the spectator quark mass, is explicitly shown, allowing a comparison of these parameters with the ones obtained from the analysis of the lepton energy spectrum in semileptonic B decays. Taking into account present uncertainties, we estimate BR(B→X s +γ)=(2.55±1.28)x10 -4 in the standard model, assuming vertical stroke V ts vertical stroke /vertical stroke V cb vertical stroke =1.0. Comparing this with CLEO measurement BR(B→X s +γ)=(2.32±0.67)x10 -4 implies vertical stroke V ts vertical stroke /vertical stroke V cb vertical stroke =1.1±0.43, in agreement with the CKM unitarity. (orig.)

  5. Spectrum and energy levels of the sodiumlike ion Sr/sup 27+/

    International Nuclear Information System (INIS)

    Reader, J.

    1986-01-01

    The spectrum of Sr/sup 27+/ was observed with a laser-produced plasma and a 2.2-m grazing-incidence spectrograph in the region 12--160 A-circle. From the identification of 37 lines, a system of 27 energy levels of the type 2p 6 nl was determined. The level system includes the configurations ns(n = 3-5), np(n = 3-6), nd(n = 3-7), nf(n = 4-6), and 5g. The ionization energy is determined as 11 188200 +- 1000 cm/sup -1/ (1387.16 +- 0.12 eV)

  6. The persistent current and energy spectrum on a driven mesoscopic LC-circuit with Josephson junction

    Science.gov (United States)

    Pahlavanias, Hassan

    2018-03-01

    The quantum theory for a mesoscopic electric circuit including a Josephson junction with charge discreteness is studied. By considering coupling energy of the mesoscopic capacitor in Josephson junction device, a Hamiltonian describing the dynamics of a quantum mesoscopic electric LC-circuit with charge discreteness is introduced. We first calculate the persistent current on a quantum driven ring including Josephson junction. Then we obtain the persistent current and energy spectrum of a quantum mesoscopic electrical circuit which includes capacitor, inductor, time-dependent external source and Josephson junction.

  7. Peak creation in the energy spectrum of laser-produced protons by phase rotation

    International Nuclear Information System (INIS)

    Noda, Akira; Nakamura, Shu; Iwashita, Yoshihisa; Shirai, Toshiyuki; Tongu, Hiromu; Ito, Hiroyuki; Souda, Hikaru; Yamazaki, Atsushi; Tanabe, Mikio; Daido, Hiroyuki; Mori, Michiaki; Kado, Masataka; Sagisaka, Akito; Ogura, Koichi; Nishiuchi, Mamiko; Orimo, Satoshi; Hayashi, Yukio; Yogo, Akifumi; Bulanov, Sergei; Esirkepov, Timur; Nagashima, Akira; Kimura, Toyoaki; Tajima, Toshiki; Fukumi, Atsushi; Li, Zhong

    2007-01-01

    In collaboration between JAEA, Kansai Photon Science Institute and Institute for Chemical Research, Kyoto University, proton generation from a thin foil target (Ti 3 or 5 μm in thickness) with use of 10 TW laser (JLITEX) has been performed. Proton production is optimized by real time proton energy measurement with use of TOF method. Phase rotation with use of an RF electric field phase-synchronized to the pulse laser enabled the creation of peaks with the spread of ∼7% in the energy spectrum of the produced protons, which resulted in the increase of the intensity ∼4 times at peak position. (author)

  8. Thermodynamic properties of a solid exhibiting the energy spectrum given by the logistic map

    International Nuclear Information System (INIS)

    Curado, E.M.F.

    2000-05-01

    We show that the infinite-dimensional representation of the recently introduced Logistic algebra can be interpreted as a non-trivial generalization of the Heisenberg or oscillator algebra. This allows to construct a quantum Hamiltonian having the energy energy spectrum given by the logistic map. We analyze the Hamiltonian of a solid whose collective modes of vibrations are described by this generalized oscillator and compute the thermodynamic properties of the model in the two-cycle and γ3.6785 chaotic region of the logistic map. (author)

  9. THE COSMIC-RAY ENERGY SPECTRUM OBSERVED WITH THE SURFACE DETECTOR OF THE TELESCOPE ARRAY EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zayyad, T.; Allen, M.; Anderson, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Hanlon, W. [High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah (United States); Aida, R. [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Azuma, R.; Fukuda, T. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Cheon, B. G.; Cho, E. J. [Department of Physics and Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J. [Department of Physics, Tokyo University of Science, Noda, Chiba (Japan); Chikawa, M. [Department of Physics, Kinki University, Higashi Osaka, Osaka (Japan); Cho, W. R. [Department of Physics, Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki (Japan); Fujii, T. [Graduate School of Science, Osaka City University, Osaka, Osaka (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); and others

    2013-05-01

    The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays (UHECRs) with primary energies above 1.6 Multiplication-Sign 10{sup 18} eV. This measurement is based upon four years of observation by the surface detector component of TA. The spectrum shows a dip at an energy of 4.6 Multiplication-Sign 10{sup 18} eV and a steepening at 5.4 Multiplication-Sign 10{sup 19} eV which is consistent with the expectation from the GZK cutoff. We present the results of a technique, new to the analysis of UHECR surface detector data, that involves generating a complete simulation of UHECRs striking the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the ''thinning'' approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.

  10. Design and Analysis of Hybrid Solar Lighting and Full-Spectrum Solar Energy Systems

    International Nuclear Information System (INIS)

    Muhs, J.D.

    2001-01-01

    This paper describes a systems-level design and analysis of a new approach for improving the energy efficiency and affordability of solar energy in buildings, namely, hybrid solar lighting and full-spectrum solar energy systems. By using different portions of the solar spectrum simultaneously for multiple end-use applications in buildings, the proposed system offers unique advantages over other alternatives for using sunlight to displace electricity (conventional topside daylighting and solar technologies). Our preliminary work indicates that hybrid solar lighting, a method of collecting and distributing direct sunlight for lighting purposes, will alleviate many of the problems with passive daylighting systems of today, such as spatial and temporal variability, glare, excess illumination, cost, and energy efficiency. Similarly, our work suggests that the most appropriate use of the visible portion of direct, nondiffuse sunlight from an energy-savings perspective is to displace electric light rather than generate electricity. Early estimates detailed in this paper suggest an anticipated system cost of well under$2.0/Wp and 5-11(cents)/kWh for displaced and generated electricity in single-story commercial building applications. Based on a number of factors discussed in the paper, including sunlight availability, building use scenarios, time-of-day electric utility rates, cost, and efficacy of the displaced electric lights, the simple payback of this approach in many applications could eventually be well under 5 years

  11. The energy spectrum of 662 keV photons in a water equivalent phantom

    International Nuclear Information System (INIS)

    Akar Tarim, U.; Gurler, O.; Ozmutlu, E.N.; Yalcin, S.; Gundogdu, O.; Sharaf, J.M.; Bradley, D.A.

    2012-01-01

    Investigation is made on the energy spectrum of photons originating from interactions of 662 keV primary gamma-ray photons emitted by a point source positioned at the centre of a water equivalent solid phantom of dimensions 19 cm×19 cm×24 cm. Peaks resulting from total energy loss (photopeak) and multiple and back scattering have been observed using a 51 mm×51 mm NaI(Tl) detector; good agreement being found between the measured and simulated response functions. The energy spectrum of the gamma photons obtained through the Monte Carlo simulation reveals local maxima at about 100 keV and 210 keV, being also observed in the experimental response function. Such spectra can be used as a method of testing the water equivalence of solid phantom media before their use for dosimetry measurements. - Highlights: ► Peaks resulting from total energy loss (photopeak) and multiple and back scattering were observed. ► Energy distribution of γ-ray photons from a point source at the centre of a water equivalent solid phantom. ► The method can be applied to various detector geometries.

  12. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    DEFF Research Database (Denmark)

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian

    2012-01-01

    to the axis perpendicular to the phenylacetylene plane and containing the center of mass. The calculated interaction energy is -418.9 cm(-1). To check further the potential, we obtain the rovibrational spectrum of the complex and the results are compared to the available experimental data. (C) 2012 American......We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set...... extended with a series of 3s3p2d1flg midbond functions. The potential is characterized by two equivalent global minima where the Ar atom is located above and below the phenylacetylene plane at a distance of 3.5781 angstrom from the molecular center of mass and at an angle of 9.08 degrees with respect...

  13. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    International Nuclear Information System (INIS)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong

    2015-01-01

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency

  14. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency.

  15. On the high energy gamma ray spectrum and the particle production model

    International Nuclear Information System (INIS)

    Ohta, Itaru; Tezuka, Ikuo.

    1979-01-01

    A small emulsion chamber, 25 cm x 20 cm in area and 12 radiation lengths in thick, was exposed with JAL jet-cargo at an atmospheric depth of 260 g/cm 2 during 150 hrs. The gamma ray spectrum derived by combining data from X-ray films and nuclear emulsions is well represented by I sub(r) (>=Er) = (3.65 +- 0.30) x 10 -8 [E sub(r)/TeV]sup(-1.89+0.06-0.09)/cm 2 sr sec in the energy range 200 - 3,000 GeV. This result is in good agreement with those of several other groups. We discuss our data in terms of Feynman's and Koba-Nielsen-Olesen's scaling law of high energy particle production model. Interpreted in terms of an assumption of mild violation of the scaling law as x.d delta-s / delta-s indx = AE sup(2a)exp (-BE sup(a)x), our gamma ray spectrum results suggest an existence of a violation parameter of a = 0.18, which is consistent with results from gamma ray spectrum observations at great depth such as the mountain elevations. (author)

  16. Advantages of Real-Time Spectrum Analyzers in High-Energy Physics Applications

    International Nuclear Information System (INIS)

    Parker, Louis

    2004-01-01

    Typically, particles are injected into the ring at low energy levels and then 'ramped up' to higher levels. During ramping, it is important that the horizontal and vertical tune frequencies do not shift, lest they hit upon a resonant combination that causes beam instability or sudden total loss of ring beam current (beam blow up). Beam instabilities can be caused by a number of factors. Non-linearities and/or different response times of independent controls such as beam position monitor (BPM) cables and circuits, magnets for guidance and focusing of the beam, Klystrons or Tetrodes (which provide power to RF cavities that transmit energy to the beam), and vacuum pumps and monitors can all cause beam instabilities. Vibrations and lack of proper shielding are other factors. The challenge for operators and researchers is to correctly identify the factors causing beam instabilities and blow up so that costly accelerator time is not interrupted and experimental results are not compromised. The instrument often used to identify problems in particle accelerator applications is the spectrum analyzer. This paper will discuss the advantages of real time spectrum analyzers (RSA) versus swept frequency spectrum analyzers in HEP applications. The main focus will be on monitoring beam position and stability, especially during ramp-up. Also covered will be use of RSA for chromaticity measurements, Phase Locked Loop (PLL) diagnostics, and vibration analysis

  17. Effects of synchrotron radiation spectrum energy on polymethyl methacrylate photosensitivity to deep x-ray lithography

    International Nuclear Information System (INIS)

    Mekaru, Harutaka; Utsumi, Yuichi; Hattori, Tadashi

    2003-01-01

    Since X-ray lithography requires a high photon flux to achieve deep resist exposure, a synchrotron radiation beam, which is not monochromatized, is generally used as a light source. If the synchrotron radiation beam is monochromatized, photon flux will decrease rapidly. Because of this reason, the wavelength dependence of the resist sensitivity has not been investigated for deep X-ray lithography. Measuring the spectrum of a white beam with a Si solid-state detector (SSD) is difficult because a white beam has a high intensity and an SSD has a high sensitivity. We were able to measure the spectrum and the photocurrent of a white beam from a beam line used for deep X-ray lithography by keeping the ring current below 0.05 mA. We evaluated the characteristics of the output beam based on the measured spectrum and photocurrent, and used them to investigate the relationship between the total exposure energy and the dose-processing depth with polymethyl methacrylate (PMMA). We found that it is possible to guess the processing depth of PMMA from the total exposure energy in deep X-ray lithography. (author)

  18. Time-resolved energy spectrum of a pseudospark-produced high-brightness electron beam

    International Nuclear Information System (INIS)

    Myers, T.J.; Ding, B.N.; Rhee, M.J.

    1992-01-01

    The pseudospark, a fast low-pressure gas discharge between a hollow cathode and a planar anode, is found to be an interesting high-brightness electron beam source. Typically, all electron beam produced in the pseudospark has the peak current of ∼1 kA, pulse duration of ∼50 ns, and effective emittance of ∼100 mm-mrad. The energy information of this electron beam, however, is least understood due to the difficulty of measuring a high-current-density beam that is partially space-charge neutralized by the background ions produced in the gas. In this paper, an experimental study of the time-resolved energy spectrum is presented. The pseudospark produced electron beam is injected into a vacuum through a small pinhole so that the electrons without background ions follow single particle motion; the beam is sent through a negative biased electrode and the only portion of beam whose energy is greater than the bias voltage can pass through the electrode and the current is measured by a Faraday cup. The Faraday cup signals with various bias voltage are recorded in a digital oscilloscope. The recorded waveforms are then numerically analyzed to construct a time-resolved energy spectrum. Preliminary results are presented

  19. The energy spectrum of cosmic-ray electrons measured with H.E.S.S

    International Nuclear Information System (INIS)

    Egberts, Kathrin

    2009-01-01

    The spectrum of cosmic-ray electrons has so far been measured using balloon and satellite-based instruments. At TeV energies, however, the sensitivity of such instruments is very limited due to the low flux of electrons at very high energies and small detection areas of balloon/satellite based experiments. The very large collection area of ground-based imaging atmospheric Cherenkov telescopes gives them a substantial advantage over balloon/ satellite based instruments when detecting very-high-energy electrons (> 300 GeV). By analysing data taken by the High Energy Stereoscopic System (H.E.S.S.), this work extends the known electron spectrum up to 4 TeV - a range that is not accessible to direct measurements. However, in contrast to direct measurements, imaging atmospheric Cherenkov telescopes such as H.E.S.S. detect air showers that cosmic-ray electrons initiate in the atmosphere rather than the primary particle. Thus, the main challenge is to differentiate between air showers initiated by electrons and those initiated by the hadronic background. A new analysis technique was developed that determines the background with the support of the machine-learning algorithm Random Forest. It is shown that this analysis technique can also be applied in other areas such as the analysis of diffuse γ rays from the Galactic plane. (orig.)

  20. The energy spectrum of cosmic-ray electrons measured with H.E.S.S.

    Energy Technology Data Exchange (ETDEWEB)

    Egberts, Kathrin

    2009-03-30

    The spectrum of cosmic-ray electrons has so far been measured using balloon and satellite-based instruments. At TeV energies, however, the sensitivity of such instruments is very limited due to the low flux of electrons at very high energies and small detection areas of balloon/satellite based experiments. The very large collection area of ground-based imaging atmospheric Cherenkov telescopes gives them a substantial advantage over balloon/ satellite based instruments when detecting very-high-energy electrons (> 300 GeV). By analysing data taken by the High Energy Stereoscopic System (H.E.S.S.), this work extends the known electron spectrum up to 4 TeV - a range that is not accessible to direct measurements. However, in contrast to direct measurements, imaging atmospheric Cherenkov telescopes such as H.E.S.S. detect air showers that cosmic-ray electrons initiate in the atmosphere rather than the primary particle. Thus, the main challenge is to differentiate between air showers initiated by electrons and those initiated by the hadronic background. A new analysis technique was developed that determines the background with the support of the machine-learning algorithm Random Forest. It is shown that this analysis technique can also be applied in other areas such as the analysis of diffuse {gamma} rays from the Galactic plane. (orig.)

  1. Effects of virtual isobar admixtures on the low-energy spectrum of a complex nucleus - model calculations for 12C

    International Nuclear Information System (INIS)

    Grecksch, E.

    1978-01-01

    On the basis of a detailed analysis of the excitation spectrum of a complex nucleus in the framework of the conventional shell model theory, the paper extends this concept by adding nucleonic degrees of freedom (isobars) and by model investigations and a realistic assessment of their effects on the excited states of the low-energy spectrum. (AH) [de

  2. BONDI-97 A novel neutron energy spectrum unfolding tool using a genetic algorithm

    CERN Document Server

    Mukherjee, B

    1999-01-01

    The neutron spectrum unfolding procedure using the count rate data obtained from a set of Bonner sphere neutron detectors requires the solution of the Fredholm integral equation of the first kind by using complex mathematical methods. This paper reports a new approach for the unfolding of neutron spectra using the Genetic Algorithm tool BONDI-97 (BOnner sphere Neutron DIfferentiation). The BONDI-97 was used as the input for Genetic Algorithm engine EVOLVER to search for a globally optimised solution vector from a population of randomly generated solutions. This solution vector corresponds to the unfolded neutron energy spectrum. The Genetic Algorithm engine emulates the Darwinian 'Survival of the Fittest' strategy, the key ingredient of the 'Theory of Evolution'. The spectra of sup 2 sup 4 sup 1 Am/Be (alpha,n) and sup 2 sup 3 sup 9 Pu/Be (alpha,n) neutron sources were unfolded using the BONDI-97 tool. (author)

  3. Time resolved energy spectrum of the axial ion beam generated in plasma focus discharges

    International Nuclear Information System (INIS)

    Bostick, W.H.; Kilic, H.; Nardi, V.; Powell, C.W.

    1993-01-01

    The energy spectrum of the deuteron beam along the electrode axis (0 (degree) ) in a plasma focus discharge has been determined with a time of flight (TOF) method and with a differential filter method in the ion energy interval E = 0.3-9 MeV. The ion TOF method is applied to single-ion pulse events with an ion emission time t(E) that is only weakly dependent on the ion energy E for E > 0.3 MeV. The correlation of the ion beam intensity with the filling pressure, the neutron yield and the hard X-ray intensity is also reported. (author). 11 refs, 10 figs

  4. Energy spectrum of iron nuclei measured inside the MIR space craft using CR-39 track detectors

    International Nuclear Information System (INIS)

    Guenther, W.; Leugner, D.; Becker, E.; Flesch, F.; Heinrich, W.; Huentrup, G.; Reitz, G.; Roecher, H.; Streibel, T.

    1999-01-01

    We have exposed stacks of CR-39 plastic nuclear track detectors inside the MIR space craft during the EUROMIR95 space mission for almost 6 months. Over this long period a large number of tracks of high LET events was accumulated in the detector foils. The etching and measuring conditions for this experiment were optimized to detect tracks of stopping iron nuclei. We found 185 stopping iron nuclei inside the stack and identified their trajectories through the material of the experiment. Based on the energy-range relation the energy at the surface of the stack was determined. These particles allow the determination of the low energy part of the spectrum of iron nuclei behind shielding material inside the MIR station

  5. Silicon surface barrier detector and study of energy spectrum of alpha particles from radioactive source

    International Nuclear Information System (INIS)

    Verma, S.D.; Sinha, Vijaya

    1986-01-01

    The principles of working of three commonly used radiation detectors, namely ionization chambers, scintillation counters with photomultiplier tube (PMT) systems and semiconductor detectors are briefly discussed. Out of the semiconductor detectors, the silicon surface barrier (SSB) detector has distinct advantages for detection of radiations, alpha particles in particular. The experimental setup to obtain the energy spectrum of alpha particles from 241 Am source using SSB fabricated in the Physics Department of Gujarat University, Ahmedabad is described. Its performance is compared with scintillation counter using PMT. SSB detector shows a sharp peak of #approx # 3 per cent energy resolution. The factors affecting the peak, namely, electronic noise, source dependent factors and detector-dependent factors are discussed. A method of calibrating SSB detectors based on energy loss mechanism of alpha particles in thin absorbers is described. Applications of such detectors are indicated. (M.G.B.)

  6. A multigroup analysis from a continuos energy spectrum approach by a MC method

    International Nuclear Information System (INIS)

    Camargo, Dayana Q. de; Bodmann, Bardo E.J.; Vilhena, Marco T. de

    2009-01-01

    In this work, the Monte Carlo method is applied to the energy dependent three- dimensional neutron transport equation, in order to analyze the change in the spectrum energy depending on the Monte Carlo step. The present work is a first step into a new direction where spectral influence on criticality may be analyzed. The method is based on the monitoring of a large number of individual realizations of neutron histories (i.e. microscopic interaction sequence) where the average behavior of neutrons yields an approximate solution for the neutron transport equation. The Monte Carlo is implemented using continuous functions, with respect to energy, for the cross sections of materials, functions which are obtained by parametrizations of the cross sections. The type of interaction that the neutron will suffer and the characteristics of their displacement in the element are estimated randomly following the relevant probability distributions. (author)

  7. Learning Frameworks for Cooperative Spectrum Sensing and Energy-Efficient Data Protection in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Vinh Quang Do

    2018-05-01

    Full Text Available This paper studies learning frameworks for energy-efficient data communications in an energy-harvesting cognitive radio network in which secondary users (SUs harvest energy from solar power while opportunistically accessing a licensed channel for data transmission. The SUs perform spectrum sensing individually, and send local decisions about the presence of the primary user (PU on the channel to a fusion center (FC. We first design a new cooperative spectrum-sensing technique based on a convolutional neural network in which the FC uses historical sensing data to train the network for classification problem. The system is assumed to operate in a time-slotted manner. At the beginning of each time slot, the FC uses the current local decisions as input for the trained network to decide whether the PU is active or not in that time slot. In addition, legitimate transmissions can be vulnerable to a hidden eavesdropper, which always passively listens to the communication. Therefore, we further propose a transfer learning actor–critic algorithm for an SU to decide its operation mode to increase the security level under the constraint of limited energy. In this approach, the SU directly interacts with the environment to learn its dynamics (i.e., an arrival of harvested energy; then, the SU can either stay idle to save energy or transmit to the FC secured data that are encrypted using a suitable private-key encryption method to maximize the long-term effective security level of the network. We finally present numerical simulation results under various configurations to evaluate our proposed schemes.

  8. Indoor measurement of photovoltaic device characteristics at varying irradiance, temperature and spectrum for energy rating

    International Nuclear Information System (INIS)

    Bliss, M; Betts, T R; Gottschalg, R

    2010-01-01

    The first three-dimensional performance matrix for use in photovoltaic (PV) energy rating is reported utilizing a novel energy rating solar simulator based on LEDs. Device characteristics are measured indoors at varying irradiance (G), temperature (T) and spectrum (E). This opens the possibility for a more accurate measurement system for energy yield prediction of PV devices, especially for devices with high spectral dependence such as wide bandgap solar cells as they take into account spectral changes in the light. The main aspects of the LED-based solar simulator used are briefly described. A measurement method is developed and detailed in the paper, which takes into account the current imperfections in the achievable spectrum. Measurement results for a crystalline silicon solar cell are used to demonstrate the measurement approach. An uncertainty analysis of the measurement system is given, resulting in an overall absolute uncertainty of 4.3% (coverage factor k = 2) in maximum power measurements at 765 W m −2 irradiance with scope for further improvements

  9. Measurement of the transverse energy spectrum in proton-nucleon collisions

    International Nuclear Information System (INIS)

    Bettoni, D.

    1988-01-01

    The author describes a measurement of the transverse energy spectrum in proton-nucleon interactions carried out at the CERN SPS using the HELIOS spectrometer. The measurement is of particular interest in that it is performed in a rapidity region away from central rapidity, where experimental data is scarce. In this rapidity region very interesting physics is anticipated and the measurement of the proton-nucleon collisions is essential as a basis to understand the more complicated proton-nucleus and nucleus-nucleus interactions. Both these topics are part of the experimental program of HELIOS. The measurement was done using a deuterium target enclosed in an iron tube. The contribution to the transverse energy spectrum from the p-Fe events is discriminated against by reconstructing the primary interaction vertex using drift chamber information. The measured spectrum is corrected via Monte Carlo to deconvolute the effect of reinteractions. High spatial resolution and multi-track resolving power are achieved with the use of a cool gas, such that the electron characteristic energy is close to the thermal limit: this implies a small diffusion coefficient and a consequently good positional accuracy. Of vital importance are the low value of the drift velocity, the fast, differentiating electronics and a careful shaping of the electric field configuration to improve the isochrony of the drift collection. The author reports on the design and tests of drift chamber prototypes built along the above lines, with which a spatial accuracy of 0.06 mm and a double track resolution of 0.6 mm were measured. He also describes the final drift chamber system and its operation in HELIOS

  10. Quantum control of isomerization by robust navigation in the energy spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Murgida, G. E., E-mail: murgida@tandar.cnea.gov.ar [Centro Atómico Constituyentes, GIyA, CNEA, San Martín, and Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Buenos Aires (Argentina); Arranz, F. J., E-mail: fj.arranz@upm.es [Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Borondo, F., E-mail: f.borondo@uam.es [Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Instituto de Ciencias Matemáticas (ICMAT), Cantoblanco, 28049 Madrid (Spain)

    2015-12-07

    In this paper, we present a detailed study on the application of the quantum control technique of navigation in the energy spectrum to chemical isomerization processes, namely, CN–Li⇆ Li–CN. This technique is based on the controlled time variation of a Hamiltonian parameter, an external uniform electric field in our case. The main result of our work establishes that the navigation involved in the method is robust, in the sense that quite sizable deviations from a pre-established control parameter time profile can be introduced and still get good final results. This is specially relevant thinking of a experimental implementation of the method.

  11. Energy demand evolution in Romania between 1995 - 2020 in accordance with the socio-economic adjustment

    International Nuclear Information System (INIS)

    Popescu, A.; Popovici, D.; Popescu, M.; Valcereanu, Gh.; Oprea, G.; Velcescu, O.

    1996-01-01

    Economic and social development of Romania can not be achieved without an increasing energy consumption (in fuels, electricity and thermal energy). The energy supply assessment requires the knowledge of economic, technological, demographic and social development forecasting in accordance with the political transformations in Romania. This paper presents energy demand forecast in accordance with different scenarios of the country's macro-economical development. The future evolution of energy demand is emphasized considering the energy efficiency improvement and the energy conservation policies.(author). 6 figs., 2 tabs., 4 refs

  12. Energy spectrum of tau leptons induced by the high energy Earth-skimming neutrinos

    International Nuclear Information System (INIS)

    Tseng, J.-J.; Yeh, T.-W.; Lee, F.-F.; Lin, G.-L.; Athar, H.; Huang, M.A.

    2003-01-01

    We present a semianalytic calculation of the tau-lepton flux emerging from the Earth induced by incident high energy neutrinos interacting inside the Earth for 10 5 ≤E ν /GeV≤10 10 . We obtain results for the energy dependence of the tau-lepton flux coming from the Earth-skimming neutrinos, because of the neutrino-nucleon charged-current scattering as well as the resonant ν(bar sign) e e - scattering. We illustrate our results for several anticipated high energy astrophysical neutrino sources such as the active galactic nuclei, the gamma-ray bursts, and the Greisen-Zatsepin-Kuzmin neutrino fluxes. The tau-lepton fluxes resulting from rock-skimming and ocean-skimming neutrinos are compared. Such comparisons can render useful information about the spectral indices of incident neutrino fluxes

  13. Alternative Explanations for Extreme Supersolar Iron Abundances Inferred from the Energy Spectrum of Cygnus X-1

    Science.gov (United States)

    Tomsick, John A.; Parker, Michael L.; García, Javier A.; Yamaoka, Kazutaka; Barret, Didier; Chiu, Jeng-Lun; Clavel, Maïca; Fabian, Andrew; Fürst, Felix; Gandhi, Poshak; Grinberg, Victoria; Miller, Jon M.; Pottschmidt, Katja; Walton, Dominic J.

    2018-03-01

    Here we study a 1–200 keV energy spectrum of the black hole binary Cygnus X-1 taken with NuSTAR and Suzaku. This is the first report of a NuSTAR observation of Cyg X-1 in the intermediate state, and the observation was taken during the part of the binary orbit where absorption due to the companion’s stellar wind is minimal. The spectrum includes a multi-temperature thermal disk component, a cutoff power-law component, and relativistic and nonrelativistic reflection components. Our initial fits with publicly available constant density reflection models (relxill and reflionx) lead to extremely high iron abundances (>9.96 and {10.6}-0.9+1.6 times solar, respectively). Although supersolar iron abundances have been reported previously for Cyg X-1, our measurements are much higher and such variability is almost certainly unphysical. Using a new version of reflionx that we modified to make the electron density a free parameter, we obtain better fits to the spectrum even with solar iron abundances. We report on how the higher density ({n}e=({3.98}-0.25+0.12)× {10}20 cm‑3) impacts other parameters such as the inner radius and inclination of the disk.

  14. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources.

    Science.gov (United States)

    Ghorbani, Mahdi; Mehrpouyan, Mohammad; Davenport, David; Ahmadi Moghaddas, Toktam

    2016-06-01

    The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems.

  15. Neutron energy spectrum flux profile of Ghana's miniature neutron source reactor core

    International Nuclear Information System (INIS)

    Sogbadji, R.B.M.; Abrefah, R.G.; Ampomah-Amoako, E.; Agbemava, S.E.; Nyarko, B.J.B.

    2011-01-01

    Highlights: → The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was studied. → Using 20,484 energy grids, the thermal, slowing down and fast neutron energy regions were studied. - Abstract: The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was understudied using the Monte Carlo method. To create small energy groups, 20,484 energy grids were used for the three neutron energy regions: thermal, slowing down and fast. The moderator, the inner irradiation channels, the annulus beryllium reflector and the outer irradiation channels were the region monitored. The thermal neutrons recorded their highest flux in the inner irradiation channel with a peak flux of (1.2068 ± 0.0008) x 10 12 n/cm 2 s, followed by the outer irradiation channel with a peak flux of (7.9166 ± 0.0055) x 10 11 n/cm 2 s. The beryllium reflector recorded the lowest flux in the thermal region with a peak flux of (2.3288 ± 0.0004) x 10 11 n/cm 2 s. The peak values of the thermal energy range occurred in the energy range (1.8939-3.7880) x 10 -08 MeV. The inner channel again recorded the highest flux of (1.8745 ± 0.0306) x 10 09 n/cm 2 s at the lower energy end of the slowing down region between 8.2491 x 10 -01 MeV and 8.2680 x 10 -01 MeV, but was over taken by the moderator as the neutron energies increased to 2.0465 MeV. The outer irradiation channel recorded the lowest flux in this region. In the fast region, the core, where the moderator is found, the highest flux was recorded as expected, at a peak flux of (2.9110 ± 0.0198) x 10 08 n/cm 2 s at 6.961 MeV. The inner channel recorded the second highest while the outer channel and annulus beryllium recorded very low flux in this region. The flux values in this region reduce asymptotically to 20 MeV.

  16. Energy Calibration of a Silicon-Strip Detector for Photon-Counting Spectral CT by Direct Usage of the X-ray Tube Spectrum

    Science.gov (United States)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-02-01

    The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.

  17. Origin of the ankle in the ultrahigh energy cosmic ray spectrum, and of the extragalactic protons below it

    Science.gov (United States)

    Unger, Michael; Farrar, Glennys R.; Anchordoqui, Luis A.

    2015-12-01

    The sharp change in slope of the ultrahigh energy cosmic ray (UHECR) spectrum around 1 018.6 eV (the ankle), combined with evidence of a light but extragalactic component near and below the ankle and intermediate composition above, has proved exceedingly challenging to understand theoretically, without fine-tuning. We propose a mechanism whereby photo-disintegration of ultrahigh energy nuclei in the region surrounding a UHECR accelerator accounts for the observed spectrum and inferred composition at Earth. For suitable source conditions, the model reproduces the spectrum and the composition over the entire extragalactic cosmic ray energy range, i.e. above 1 017.5 eV . Predictions for the spectrum and flavors of neutrinos resulting from this process are also presented.

  18. Effects of live weight adjusted feeding strategy on plasma indicators of energy balance in Holstein cows managed for extended lactation

    DEFF Research Database (Denmark)

    Gaillard, Charlotte; Vestergaard, Mogens; Weisbjerg, Martin Riis

    2016-01-01

    In early lactation, most of the dairy cows are in negative energy balance; the extent and duration depend in part on the feeding strategy. Previous studies showed an increased lactation milk yield by use of a live weight (LW) adjusted feeding strategy with a high energy diet before and a reduced......, the HD-LD cows had higher glucose and lower beta-hydroxybutyrate and non-esterified fatty acids (NEFA) concentrations than the LD-LD cows. After the shift until 36 weeks after calving, plasma NEFA was higher in HD-LD than LD-LD cows. Insulin and insulin-like growth factor-1 were not affected...... of the negative energy balance, and that the reduction in diet energy concentration from LW nadir will extend the negative energy balance period further. Sixty-two Holstein cows (30% first parity) were managed for 16 months extended lactation and randomly allocated to one of two feeding strategies at calving. Two...

  19. Energy Saving in Three-Phase Diode Rectifiers Using EI Technique with Adjustable Switching Frequency Scheme

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Yang, Yongheng

    2016-01-01

    A front-end rectifier can significantly impact a power electronics system performance and efficiency for applications such as motor drive where the system commonly operates under partial loading conditions. This paper proposes an adjustable switching frequency scheme using an electronic inductor...

  20. Disaggregated seismic hazard and the elastic input energy spectrum: An approach to design earthquake selection

    Science.gov (United States)

    Chapman, Martin Colby

    1998-12-01

    The design earthquake selection problem is fundamentally probabilistic. Disaggregation of a probabilistic model of the seismic hazard offers a rational and objective approach that can identify the most likely earthquake scenario(s) contributing to hazard. An ensemble of time series can be selected on the basis of the modal earthquakes derived from the disaggregation. This gives a useful time-domain realization of the seismic hazard, to the extent that a single motion parameter captures the important time-domain characteristics. A possible limitation to this approach arises because most currently available motion prediction models for peak ground motion or oscillator response are essentially independent of duration, and modal events derived using the peak motions for the analysis may not represent the optimal characterization of the hazard. The elastic input energy spectrum is an alternative to the elastic response spectrum for these types of analyses. The input energy combines the elements of amplitude and duration into a single parameter description of the ground motion that can be readily incorporated into standard probabilistic seismic hazard analysis methodology. This use of the elastic input energy spectrum is examined. Regression analysis is performed using strong motion data from Western North America and consistent data processing procedures for both the absolute input energy equivalent velocity, (Vsbea), and the elastic pseudo-relative velocity response (PSV) in the frequency range 0.5 to 10 Hz. The results show that the two parameters can be successfully fit with identical functional forms. The dependence of Vsbea and PSV upon (NEHRP) site classification is virtually identical. The variance of Vsbea is uniformly less than that of PSV, indicating that Vsbea can be predicted with slightly less uncertainty as a function of magnitude, distance and site classification. The effects of site class are important at frequencies less than a few Hertz. The regression

  1. Dependence of effective spectrum width of synchrotron radiation on particle energy

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Institute of High Current Electronics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); P.N. Lebedev Physical Institute, Moscow (Russian Federation); Levin, A.D. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Loginov, A.S.; Saprykin, A.D. [Tomsk State University, Department of Physics, Tomsk (Russian Federation)

    2017-05-15

    In the classical theory of synchrotron radiation, for the exact quantitative characterization of spectral properties, the concept of effective spectral width is introduced. In the first part of our work, published in EJPC 75 (2015), the effective spectral width as a function of the energy E of the radiating particle was obtained only in the ultra-relativistic approximation. In this article, which can be considered as a natural continuation of this work, a complete investigation is presented of the dependence of the effective width of the synchrotron radiation spectrum on energy for any values of E and for all the polarization components of the radiation. Numerical calculations were carried out for an effective width not exceeding 100 harmonics. (orig.)

  2. Spectrum and energy levels of six-times ionized yttrium (Y VII)

    Science.gov (United States)

    Reader, Joseph

    2018-03-01

    The spectrum of six-times ionized yttrium, Y VII, was photographed with a sliding-spark discharge on 10.7 m normal- and grazing-incidence spectrographs. The region of observation was 157-824 Å. The observations extend the known configurations 4s24p3, 4s4p4, 4p5, 4s24p25s, 4s24p26s to the nearly complete 4s24p24d configuration. Our results for 4s24p24d significantly revise results of Rahimullah et al (1978 Phys. Scr. 18 96); Ateqad et al (1984 J. Phys. B: At. Mol. Phys. 17 4617). A total of 168 lines and 56 energy levels are now known for this ion. The observed configurations were interpreted with Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels. Transition probabilities for all classified lines were calculated with the fitted parameters.

  3. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum

    Directory of Open Access Journals (Sweden)

    Pan Liu

    2017-05-01

    Full Text Available This paper presents a wavelet-based Gaussian method (WGM for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF. The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  4. Measuring the low-energy cosmic ray spectrum with the AFIS detector

    Energy Technology Data Exchange (ETDEWEB)

    Losekamm, Martin [Physics Department E18, Technische Universitaet Muenchen (Germany); Institute of Astronautics, Technische Universitaet Muenchen (Germany); Gaisbauer, Dominic; Greenwald, Daniel; Hahn, Alexander; Hauptmann, Philipp; Konorov, Igor; Meng, Lingxin; Paul, Stephan; Poeschl, Thomas [Physics Department E18, Technische Universitaet Muenchen (Germany); Renker, Dieter [Physics Department E17, Technische Universitaet Muenchen (Germany)

    2014-07-01

    High-energy cosmic rays interact with Earth's upper atmosphere and produce antiprotons, which can be trapped in Earth's magnetic field. The Antiproton Flux in Space (AFIS) Mission will measure the flux of trapped antiprotons with energies less than 100 MeV aboard the nanosatellite MOVE 2. An active-target tracking detector comprised of scintillating plastic fibers and silicon photomultipliers is already under construction at the Technische Universitaet Muenchen. As a precursor to the space-bound mission, a prototype version of the detector will be launched aboard a balloon from Kiruna, Sweden as part of the REXUS/BEXUS student program by the German Aerospace Center (DLR). Named AFIS-P, it will be used to measure the low-energy part of the cosmic-ray spectrum for energies less than 100 MeV-per-nucleon. Spectrometers in previous balloon missions were not sensitive in this low-energy region. Thus AFIS-P will deliver unprecedented data, while simultaneously allowing us to field-test the AFIS detector.

  5. Prediction of background in low-energy spectrum of phoswich detector

    International Nuclear Information System (INIS)

    Arun, B.; Manohari, M.; Mathiyarasu, R.; Rajagopal, V.; Jose, M.T.

    2014-01-01

    In vivo monitoring of actinides in occupational workers is done using Phoswich detector by measuring the low-energy X ray and gamma rays. Quantification of actinides like plutonium and americium in the lungs is extremely difficult due to higher background in the low-energy regions, which is from ambient background as well as from the subject. In the latter case, it is mainly due to the Compton scattering of body potassium, which varies person-to-person. Hence, an accurate prediction of subject-specific background counts in the lower-energy regions is an essential element in the in vivo measurement of plutonium and americium. Empirical equations are established for the prediction of background count rate in 239 Pu and 241 Am lower-energy regions, called 'target regions', as a function of count rate in the monitoring region (97-130 keV)/ 40 K region in the high-energy spectrum, weight-to-height ratio of the subject (scattering parameter) and the gender. (authors)

  6. Neutron energy spectrum from 120 GeV protons on a thick copper target

    Energy Technology Data Exchange (ETDEWEB)

    Shigyo, Nobuhiro; /Kyushu U.; Sanami, Toshiya; /KEK, Tsukuba; Kajimoto, Tsuyoshi; /Kyushu U.; Iwamoto, Yosuke; /JAEA, Ibaraki; Hagiwara, Masayuki; Saito, Kiwamu; /KEK, Tsukuba; Ishibashi, Kenji; /Kyushu U.; Nakashima, Hiroshi; Sakamoto, Yukio; /JAEA, Ibaraki; Lee, Hee-Seock; /Pohang Accelerator Lab.; Ramberg, Erik; /Fermilab

    2010-08-01

    Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretical simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, protoninduced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30{sup o} and 5 m 90{sup o} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multiparticle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.

  7. Wind cannot be Directed but Sails can be Adjusted for Malaysian Renewable Energy Progress

    Science.gov (United States)

    Palanichamy, C.; Nasir, Meseret; Veeramani, S.

    2015-04-01

    Wind energy has been the promising energy technology since 1980s in terms of percentage of yearly growth of installed capacity. However the progress of wind energy has not been evenly distributed around the world. Particularly, in South East Asian countries like Malaysia and Singapore, though the Governments are keen on promoting wind energy technology, it is not well practiced due to the low wind speeds. Owing to the recent advancements in wind turbine designs, even Malaysia is well suited for wind energy by proper choice of wind turbines. As evidence, this paper presents successful wind turbines with simulated study outcomes to encourage wind power developments in Malaysia.

  8. Wind cannot be Directed but Sails can be Adjusted for Malaysian Renewable Energy Progress

    International Nuclear Information System (INIS)

    Palanichamy, C; Veeramani, S; Nasir, Meseret

    2015-01-01

    Wind energy has been the promising energy technology since 1980s in terms of percentage of yearly growth of installed capacity. However the progress of wind energy has not been evenly distributed around the world. Particularly, in South East Asian countries like Malaysia and Singapore, though the Governments are keen on promoting wind energy technology, it is not well practiced due to the low wind speeds. Owing to the recent advancements in wind turbine designs, even Malaysia is well suited for wind energy by proper choice of wind turbines. As evidence, this paper presents successful wind turbines with simulated study outcomes to encourage wind power developments in Malaysia. (paper)

  9. Analysis of reference X radiations energies adjusted for the same half-value layer

    International Nuclear Information System (INIS)

    Figueiredo, Marcus Tadeu Tanuri de; Baptista Neto, Annibal Theotonio; Silva, Teogenes Augusto da; Oliveira, Paulo Marcio Campos de

    2011-01-01

    The International Standardization Organization (ISO) defined the reference radiation for calibration and testing in x and gamma fields. The ISO 4037-1 establishes that if the first and the second half value - layers (HVL) agree within 5%, for two x- ray beams, then these two beams shall be considered the same. In this study, reference radiations with the same HVLs that were obtained trough the total filtration or the tube voltage adjustments were compared in terms of spectra and beam parameters. (author)

  10. Novel characteristics of energy spectrum for 3D Dirac oscillator analyzed via Lorentz covariant deformed algebra.

    Science.gov (United States)

    Betrouche, Malika; Maamache, Mustapha; Choi, Jeong Ryeol

    2013-11-14

    We investigate the Lorentz-covariant deformed algebra for Dirac oscillator problem, which is a generalization of Kempf deformed algebra in 3 + 1 dimension of space-time, where Lorentz symmetry are preserved. The energy spectrum of the system is analyzed by taking advantage of the corresponding wave functions with explicit spin state. We obtained entirely new results from our development based on Kempf algebra in comparison to the studies carried out with the non-Lorentz-covariant deformed one. A novel result of this research is that the quantized relativistic energy of the system in the presence of minimal length cannot grow indefinitely as quantum number n increases, but converges to a finite value, where c is the speed of light and β is a parameter that determines the scale of noncommutativity in space. If we consider the fact that the energy levels of ordinary oscillator is equally spaced, which leads to monotonic growth of quantized energy with the increment of n, this result is very interesting. The physical meaning of this consequence is discussed in detail.

  11. Spectrum and energy levels of six-times-ionized molybdenum (Mo VII)

    International Nuclear Information System (INIS)

    Reader, J.

    1990-01-01

    The spectrum of the kryptonlike ion Mo VII was observed from 140 to 2274 A with sliding-spark discharges on 10.7-m normal- and grazing-incidence spectrographs. Experimental energies were determined for all levels of the 4s 2 4p 6 , 4s 2 4p 5 4d, 4f, 5s, 5p, 5d, 5f, 5g, and 4s4p 6 4d configurations. A few levels of the 4s 2 4p 4 4d 2 configuration were also found. A total of 399 lines were classified as transitions between 86 observed levels. The observed configurations were theoretically interpreted. The energy parameters determined by least-squares fits to the observed levels are compared with Hartree--Fock calculations. A revised value of the ionization energy was obtained by using the energy of the 4p 5 5g configuration together with an isoelectronically extrapolated value of the effective quantum number n(5g). The adopted limit is 1 013 340±200 cm -1 (125.64±0.02 eV)

  12. The measurement of tripartition alpha particle low energy spectrum in 235U fission induced by thermal neutrons

    International Nuclear Information System (INIS)

    El Hage Sleiman, F.

    1980-01-01

    The energy spectrum of the α particles emitted in the thermal neutron induced fission of 235 U was measured from 11.5 MeV down to 2 MeV using the parabola mass spectrometer Lohengrin at the ILL high flux reactor. A Monte Carlo program, that simulates the α particle motion to the spectrometer, has been developed. Numerical results of Monte Carlo calculations for differents values of parameter are reported. The overall energy spectrum is slightly asymmetric at low energy. The possible reasons for the existence of this asymmetry are discussed [fr

  13. Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe

    OpenAIRE

    Takahashi, Ryuichi

    2008-01-01

    We investigate the third-order density perturbation and the one-loop correction to the linear power spectrum in the dark-energy cosmological model. Our main interest is to understand the dark-energy effect on baryon acoustic oscillations in a quasi-nonlinear regime ($k \\approx 0.1h$/Mpc). Analytical solutions and simple fitting formulae are presented for the dark-energy model with the general time-varying equation of state $w(a)$. It turns out that the power spectrum coincides with the approx...

  14. Landau Quasi-energy Spectrum Destruction for an Electron in Both a Static Magnetic Field and a Resonant Electromagnetic Wave

    International Nuclear Information System (INIS)

    Skoblin, A.A.

    1994-01-01

    Free nonrelativistic electrons in both a static magnetic field and an electromagnetic wave are considered. A plane-polarized wave propagates along a magnetic field, its frequency is close to the electron rotation frequency in a magnetic field. Electron spin is taken into account. An electron quasi energy spectrum and steady states (quasi energy states) are constructed. 6 refs

  15. Production of photons with a narrow energy spectrum, starting from high energy electrons; Production de photons de spectre etroit a partir d'electrons de grande energie

    Energy Technology Data Exchange (ETDEWEB)

    Tzara, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    A method for the production of photons with a narrow spectrum and of variable energy, based on the properties of the annihilation in flight of positrons, is examined in detail. The spectra of the photons produced and the yield of the process are given for various conditions. (author) [French] Une methode de production de photons de spectre etroit et d'energie variable, basee sur les proprietes de l'annihilation en vol des positons, est examinee en detail. Le spectre des photons produits, le rendement du processus sont donnes pour diverses conditions. (auteur)

  16. Numerical Analysis of a Large Floating Wave Energy Converter with Adjustable Structural Geometry

    DEFF Research Database (Denmark)

    Ferri, Francesco; Pecher, Arthur Francois Serge; Kofoed, Jens Peter

    2015-01-01

    by the structural loads in extreme conditions. TheWeptos is a large floating WEC, with multiple absorbers, which has proven to be a serious candidate for the renewable energy market, due to both relevant power performance and reduced cost if compared with other WECs. The scope of this article is to compare two......The current cost of energy (CoE) from wave energy converters (WECs) is still significantly higher than other renewable energy resources, thus the sector has not yet reached a competitive level. WECs have a relative small turnover compared to the high capital cost, which to a large extent is driven...... different configurations of the Weptos machine, using the cost of energy (CoE) as a base of comparison. The numerical results are obtained via a multi-body analysis carried out in frequency domain....

  17. Conservation voltage regulation (CVR) applied to energy savings by voltage-adjusting equipment through AMI

    Science.gov (United States)

    Lan, B.-R.; Chang, C.-A.; Huang, P.-Y.; Kuo, C.-H.; Ye, Z.-J.; Shen, B.-C.; Chen, B.-K.

    2017-11-01

    Conservation voltage reduction (CVR) includes peak demand reduction, energy conservation, carbon emission reduction, and electricity bill reduction. This paper analyzes the energy-reduction of Siwei Feeders with applying CVR, which are situated in Penghu region and equipped with smart meters. Furthermore, the applicable voltage reduction range for the feeders will be explored. This study will also investigate how the CVR effect and energy conservation are improved with the voltage control devices integrated. The results of this study can serve as a reference for the Taiwan Power Company to promote and implement voltage reduction and energy conservation techniques. This study is expected to enhance the energy-reduction performance of the Penghu Low Carbon Island Project.

  18. Hydromorphological adjustments and re-adjustments of low energy rivers in a sub-urban catchment following historical engineering and recent urbanization

    Science.gov (United States)

    Jugie, Marion; Gob, Frédéric; Slawson, Deborah; Le-Coeur, Charles

    2014-05-01

    The EU Water Framework Directive (WFD, October 2000) mandated that the Member States of the European Union achieve the general objective of protection of aquatic ecology by 2015. European rivers and streams have to attain "good ecological status" through the preservation and restoration of aquatic environments. Member will have to ensure environmental continuity through "the adequate distribution of fish species and transport of sediments". In France, more than 61,000 transverse structures - mill dams, weirs, diversion gates - have been identified on rivers as being obstacles to ecological and sedimentary continuity. Because of their historical occupation by societies, rivers flowing in the Paris area have long been anthropized and artificialized. River courses, channel shape, sediment transport and hydrological regime modifications have tremendously transformed the hydrosystems surrounding the city of Paris. The Merantaise's catchment is one of this low energy river watershed, near Paris, that have been modified by historical engineering, especially during medieval-modern times and by the building of the Versailles Castle (XVIIth century). The hydraulic infrastructures are still there and impact the hydromorphogical conditions of the river (incision, lateral erosion, …). In addition to these ancient pressures a rapid and massive urbanization of the suburban areas has applied a new type of constraint to the hydrosystems in recent decades. This undermines the balance that was established following ancient engineering and disturbs the current functioning of the valley. These new types of land occupation have significantly altered the ecological circumstances and transformed the hydrological responses of rivers. In this study, we therefore seek to understand these processes of successive adjustments (ancient and recent) of a small river from the urban margins of the Orge watershed (to the south of Paris). We use a multi-scalar spatial and temporal approach to

  19. The long-term relationships among China's energy consumption sources and adjustments to its renewable energy policy

    International Nuclear Information System (INIS)

    Zou Gaolu

    2012-01-01

    To reduce its consumption of coal and oil in its primary energy consumption, China promotes the development of renewable energy resources. I have analysed the long-term relationship among China's primary energy consumption sources. Changes in coal consumption lead those in the consumption of other energy sources in the long term. Coal and oil fuels substitute for each other equally. The long-term elasticities of China's coal consumption relative to its hydroelectricity consumption were greater than one and nearly equal during the two sample periods. Therefore, increased hydroelectricity consumption did not imply a reduction in coal consumption. China holds abundant hydroelectricity, wind and, solar energy potential. China must prevent an excessive escalation of its economy and resultant energy demand to realise a meaningful substitution of coal with hydroelectricity. Moreover, China must develop and use wind and solar energy sources. Natural gas can be a good substitute for coal, given its moderate price growth and affordable price levels. - Highlights: ► Coal consumption changes lead those of other energy sources in the long term. ► Coal and oil fuels substitute for each other equally. ► Increased hydroelectricity consumption has not meant lower coal consumption. ► Wind, solar and natural gas are China's promising energy sources.

  20. Collective behaviour of linear perturbation waves observed through the energy density spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Scarsoglio, S [Department of Water Engineering, Politecnico di Torino (Italy); De Santi, F; Tordella, D, E-mail: stefania.scarsoglio@polito.it [Department of Aeronautics and Space Engineering, Politecnico di Torino (Italy)

    2011-12-22

    We consider the collective behaviour of small three-dimensional transient perturbations in sheared flows. In particular, we observe their varied life history through the temporal evolution of the amplification factor. The spectrum of wave vectors considered fills the range from the size of the external flow scale to the size of the very short dissipative waves. We observe that the amplification factor distribution is scale-invariant. In the condition we analyze, the system is subject to all the physical processes included in the linearized Navier-Stokes equations. With the exception of the nonlinear interaction, these features are the same as those characterizing the turbulent state. The linearized perturbative system offers a great variety of different transient behaviours associated to the parameter combination present in the initial conditions. For the energy spectrum computed by freezing each wave at the instant where its asymptotic condition is met, we ask whether this system is able to show a power-law scaling analogous to the Kolmogorov argument. At the moment, for at least two typical shear flows, the bluff-body wake and the plane Poiseuille flow, the answer is yes.

  1. THE γ-RAY SPECTRUM OF GEMINGA AND THE INVERSE COMPTON MODEL OF PULSAR HIGH-ENERGY EMISSION

    International Nuclear Information System (INIS)

    Lyutikov, Maxim

    2012-01-01

    We reanalyze the Fermi spectra of the Geminga and Vela pulsars. We find that the spectrum of Geminga above the break is well approximated by a simple power law without the exponential cutoff, making Geminga's spectrum similar to that of Crab. Vela's broadband γ-ray spectrum is equally well fit with both the exponential cutoff and the double power-law shapes. In the broadband double power-law fits, for a typical Fermi spectrum of a bright γ-ray pulsar, most of the errors accumulate due to the arbitrary parameterization of the spectral roll-off. In addition, a power law with an exponential cutoff gives an acceptable fit for the underlying double power-law spectrum for a very broad range of parameters, making such fitting procedures insensitive to the underlying Fermi photon spectrum. Our results have important implications for the mechanism of pulsar high-energy emission. A number of observed properties of γ-ray pulsars—i.e., the broken power-law spectra without exponential cutoffs and stretching in the case of Crab beyond the maximal curvature limit, spectral breaks close to or exceeding the maximal breaks due to curvature emission, patterns of the relative intensities of the leading and trailing pulses in the Crab repeated in the X-ray and γ-ray regions, presence of profile peaks at lower energies aligned with γ-ray peaks—all point to the inverse Compton origin of the high-energy emission from majority of pulsars.

  2. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    DEFF Research Database (Denmark)

    Buchhave, Preben; Velte, Clara Marika

    2017-01-01

    distortions caused by Taylor’s hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed......We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra...... and spatial structure functions in a way that completely bypasses the need for Taylor’s hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method...

  3. Well logging method and apparatus using a continuous energy spectrum photon source

    International Nuclear Information System (INIS)

    Turcotte, R.E.

    1976-01-01

    In accordance with an illustrative embodiment of the present invention, a method and apparatus for logging an earth formation of interest is disclosed in which repetitive bursts of a continuous energy spectrum of photons are emitted that penetrate the media surrounding a borehole traversing the earth formation. Thereafter, indications of photons resulting from the interaction of the emitted photons and the surrounding media are obtained, each indication being obtained at a different separation from the source along the axis of the borehole. Finally, the indications are compared to determine representations of a characteristic of the media surrounding the borehole. According to one aspect of the present invention, at least one of the indications is the result of annihilation photons produced by the interaction of the emitted photons and the surrounding media

  4. Interaction of a single mode field cavity with the 1D XY model: Energy spectrum

    International Nuclear Information System (INIS)

    Tonchev, H; Donkov, A A; Chamati, H

    2016-01-01

    In this work we use the fundamental in quantum optics Jaynes-Cummings model to study the response of spin 1/2chain to a single mode of a laser light falling on one of the spins, a focused interaction model between the light and the spin chain. For the spin-spin interaction along the chain we use the XY model. We report here the exact analytical results, obtained with the help of a computer algebra system, for the energy spectrum in this model for chains of up to 4 spins with nearest neighbors interactions, either for open or cyclic chain configurations. Varying the sign and magnitude of the spin exchange coupling relative to the light-spin interaction we have investigated both cases of ferromagnetic or antiferromagnetic spin chains. (paper)

  5. Optimization of the wavelength shifter ratio in a polystyrene based plastic scintillator through energy spectrum analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ye Won; Kim, Myung Soo; Yoo, Hyun Jun; Lee, Dae Hee; Cho, Gyu Seong [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Moon, Myung Kook [Neutron Instrumentation Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    The scintillation efficiency of the polystyrene based plastic scintillator depends on the ratio of the wavelength shifters, organic fluors (PPO and POPOP). Thus, 24 samples of the plastic scintillator were fabricated in order to find out the optimum ratio of the wavelength shifters in the plastic scintillator. The fabricated plastic scintillators were trimmed through a cutting and polishing process. They were used in gamma energy spectrum measurement with the {sup 137}Cs emitting monoenergy photon with 662 keV for the comparison of the scintillation efficiency. As a result, it was found out that the scintillator sample with 1.00 g of PPO (2,5-Diphenyloxazole) and 0.50 g of POPOP (1,4-Bis(5-phnyl-2oxidazolyl)benzene) dissolved in 100 g of styrene solution has the optimum ratio in terms of the light yield of the polystyrene based plastic scintillator.

  6. Effects of primary recoil (PKA) energy spectrum on radiation damage in fcc metals

    International Nuclear Information System (INIS)

    Iwata, Tadao; Iwase, Akihiro

    1997-10-01

    Irradiation effects by different energetic particles such as electrons, various ions and neutrons are compared in fcc metals, particularly in Cu and Ni. It is discussed on the statistical consideration that the logarithm of the so-called PKA median energy, log T 1/2 , is a good representative to characterize the primary recoil (i.e. PKA) energy spectrum with the resultant defect production. For the irradiations of electrons, various ions and neutrons to Cu and Ni, fundamental physical quantities such as the fraction of stage I recovery, the defect production cross sections and the radiation annealing cross sections can be well scaled as a function of log T 1/2 , if the effects of the electron excitation caused by irradiating ions are excluded. Namely, all data of the respective physical quantity lie on a single continuous curve as a function of log T 1/2 . This characteristic curve is utilized to predict the damage accumulation (i.e. defect concentration) as a function of dpa in Cu and Ni with the PKA median energy as a parameter. (author)

  7. Spectrum and energy levels of nine-times ionized strontium [Sr X

    International Nuclear Information System (INIS)

    Acquista, N.; Reader, J.

    1981-01-01

    The spectrum of the copperlike ion Sr X was observed with a low-inductance spark in the region 70--630 A on the 10.7--m grazing-incidence spectrograph at the National Bureau of Standards. From the identification of 30 lines, a system of 23 energy levels of the type 3d 10 nl was determined. The level system includes the configurations ns (n = 4--7), np (n = 4--6), nd (n = 4--6), nf (n = 4--6), and ng (n = 5). The 4f 2 F term is inverted. Also identified were 12 transitions of the type 3d 10 4s--3d 9 4s4p and 3d 10 4p--3d 9 4p 2 , permitting the determination of several 3d 9 4s4p and 3d 9 4p 2 levels. The observed 3d 10 nl energy levels and parameters are compared with Hartree--Fock calculations. The ionization energy is determined from the 3d 10 ns and nf series to be 1 430 000 +- 500 cm -1 (177.30 +- 0.06 eV). Data for 3d--4p transitions in Sr IX and Sr XI and 3p--3d transitions in Sr XII are also presented

  8. Spectrum and energy levels of five-times-ionized niobium (Nb VI)

    International Nuclear Information System (INIS)

    Ekberg, J.O.; Reader, J.

    1994-01-01

    The spectrum of the kryptonlike ion Nb VI was observed from 325 to 2700 with sliding-spark discharges on 10.7-m normal-incidence and grazing-incidence spectrographs. Experimental energies were determined for all levels of the 4s 2 4p 6 , 4s 2 4p 5 4d, 4f, 5s, 5p, 5d, 5g, 6s, and 4s4p 6 4d configurations as well as for some levels of the 4s 2 4p 5 6g and 6h configurations. A total of 303 lines are now classified as transitions between 99 observed levels. Large hyperfine splittings were found for several levels of the 4p 5 5s and 5p configurations. The observed configurations were theoretically interpreted by means of Hartree--Fock calculations and least-squares fits of the energy parameters to the observed levels. An improved value of the ionization energy was determined from the 4p 5 5g, 6g, and 6h configurations. The adopted value of the limit is 823 240 ± 50 cm - 1 (102.069 ± 0.006 eV)

  9. Energy Harvesting-based Spectrum Access with Incremental Cooperation, Relay Selection and Hardware Noises

    Directory of Open Access Journals (Sweden)

    T. N. Nguyen

    2017-04-01

    Full Text Available In this paper, we propose an energy harvesting (EH-based spectrum access model in cognitive radio (CR network. In the proposed scheme, one of available secondary transmitters (STs helps a primary transmitter (PT forward primary signals to a primary receiver (PR. Via the cooperation, the selected ST finds opportunities to access licensed bands to transmit secondary signals to its intended secondary receiver (SR. Secondary users are assumed to be mobile, hence, optimization of energy consumption for these users is interested. The EH STs have to harvest energy from the PT's radio-frequency (RF signals to serve the PT-PR communication as well as to transmit their signals. The proposed scheme employs incremental relaying technique in which the PR only requires the assistance from the STs when the transmission between PT and PR is not successful. Moreover, we also investigate impact of hardware impairments on performance of the primary and secondary networks. For performance evaluation, we derive exact and lower-bound expressions of outage probability (OP over Rayleigh fading channel. Monte-Carlo simulations are performed to verify the theoretical results. The results present that the outage performance of both networks can be enhanced by increasing the number of the ST-SR pairs. In addition, it is also shown that fraction of time used for EH, positions of the secondary users and the hardware-impairment level significantly impact on the system performance.

  10. Effects of primary recoil (PKA) energy spectrum on radiation damage in fcc metals

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Tadao; Iwase, Akihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-10-01

    Irradiation effects by different energetic particles such as electrons, various ions and neutrons are compared in fcc metals, particularly in Cu and Ni. It is discussed on the statistical consideration that the logarithm of the so-called PKA median energy, log T{sub 1/2}, is a good representative to characterize the primary recoil (i.e. PKA) energy spectrum with the resultant defect production. For the irradiations of electrons, various ions and neutrons to Cu and Ni, fundamental physical quantities such as the fraction of stage I recovery, the defect production cross sections and the radiation annealing cross sections can be well scaled as a function of log T{sub 1/2}, if the effects of the electron excitation caused by irradiating ions are excluded. Namely, all data of the respective physical quantity lie on a single continuous curve as a function of log T{sub 1/2}. This characteristic curve is utilized to predict the damage accumulation (i.e. defect concentration) as a function of dpa in Cu and Ni with the PKA median energy as a parameter. (author)

  11. Spread Spectrum Based Energy Efficient Collaborative Communication in Wireless Sensor Networks.

    Science.gov (United States)

    Ghani, Anwar; Naqvi, Husnain; Sher, Muhammad; Khan, Muazzam Ali; Khan, Imran; Irshad, Azeem

    2016-01-01

    Wireless sensor networks consist of resource limited devices. Most crucial of these resources is battery life, as in most applications like battle field or volcanic area monitoring, it is often impossible to replace or recharge the power source. This article presents an energy efficient collaborative communication system based on spread spectrum to achieve energy efficiency as well as immunity against jamming, natural interference, noise suppression and universal frequency reuse. Performance of the proposed system is evaluated using the received signal power, bit error rate (BER) and energy consumption. The results show a direct proportionality between the power gain and the number of collaborative nodes as well as BER and signal-to-noise ratio (Eb/N0). The analytical and simulation results of the proposed system are compared with SISO system. The comparison reveals that SISO perform better than collaborative communication in case of small distances whereas collaborative communication performs better than SISO in case of long distances. On the basis of these results it is safe to conclude that collaborative communication in wireless sensor networks using wideband systems improves the life time of nodes in the networks thereby prolonging the network's life time.

  12. The energy spectrum of cosmic rays measured with the HEAT extension at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Scharf, Nils Sven Sebastian

    2013-01-01

    This thesis describes the calculation of the energy spectrum of cosmic rays, that is the absolute flux of cosmic rays as a function of energy, from data of air showers observed with the HEAT (High Elevation Auger Telescopes) extension and the fluorescence detector of the Pierre Auger Observatory. The Pierre Auger Observatory is the largest observatory for the study of cosmic rays. The Pierre Auger Observatory observes air showers, that are cascades of particles that were instigated by cosmic rays hitting the Earth's atmosphere, with two different detection concepts. The surface detector samples the secondary particles of air showers that hit the ground with an array of surface detector stations, whereas the fluorescence detector measures the energy loss profile of air showers by detecting fluorescence light, produced by the air showers when they travel through the atmosphere, with optical telescopes. The properties of the cosmic rays are not directly measurable but have to be reconstructed from the observed air shower parameters. Properties of particular interest are the type of the primary cosmic ray particle, its energy and its arrival direction. HEAT is an extension to the fluorescence detector of the Pierre Auger Observatory. It is designed to lower the energy threshold by one order of magnitude down to 10 17 eV or lower. HEAT is taking data since 2010. The calculation of the absolute flux of cosmic rays needs two ingredients: the number of detected air showers as a function of shower energy and the exposure of the detector as a function of energy. The studied air shower class are hybrid events, which are events that have been detected by a fluorescence detector and at least one surface detector station. The used air showers were observed in a time period of fifteen month starting from June 2010. A first step of the analysis is the reconstruction of air showers and cosmic ray parameters from raw data. To calculate the exposure, the uptime, that is the integral

  13. Energy spectrum measurement of high power and high energy(6 and 9 MeV) pulsed x-ray source for industrial use

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Hiroyuki [Hitachi, Ltd. Power Systems Company, Ibaraki (Japan); Murata, Isao [Graduate School of Engineering, Osaka University, Osaka (Japan)

    2016-06-15

    Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

  14. The energy spectrum of delayed neutrons from thermal neutron induced fission of 235U and its analytical approximation

    International Nuclear Information System (INIS)

    Doroshenko, A.Yu.; Tarasko, M.Z.; Piksaikin, V.M.

    2002-01-01

    The energy spectrum of the delayed neutrons is the poorest known of all input data required in the calculation of the effective delayed neutron fractions. In addition to delayed neutron spectra based on the aggregate spectrum measurements there are two different approaches for deriving the delayed neutron energy spectra. Both of them are based on the data related to the delayed neutron spectra from individual precursors of delayed neutrons. In present work these two different data sets were compared with the help of an approximation by gamma-function. The choice of this approximation function instead of the Maxwellian or evaporation type of distribution is substantiated. (author)

  15. Neutron energy spectrum determination near the surface on the JET vacuum vessel using the multifoil activation technique

    Energy Technology Data Exchange (ETDEWEB)

    Pillon, M.; Jarvis, O.N.; Conroy, S. (Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy) JET Joint Undertaking, Abingdonm Oxon (U.K.) Imperial College of Science, Technology and Medicine, London (U.K.))

    1990-03-01

    The activation of foils of zinc, indium, aluminium, copper and magnesium has been used as a means of examining the energy spectrum of neutrons produced by discharges in the Joint European Torus (JET). Several threshold reactions have been used together with a least-squares unfolding code to determine the 2.5 and 14 MeV neutron yields produced by the JET plasma. The analysis shows that the energy spectrum produced by downscattered neutrons is satisfactorily calculated with the MCNP neutron transport code.

  16. Calculation of the energy spectrum of atmospheric gamma-rays between 1 and 1000 MeV

    International Nuclear Information System (INIS)

    Martin, I.M.; Dutra, S.L.G.; Palmeira, R.A.R.

    The energy spectrum of atmospheric gamma-rays at 4 g/cm 2 has been calculated for cut-off rigidities of 4.5, 10 and 16 GV. The considered processes for the production of these gamma-rays were the π 0 decay plus the bremsstrahlung from primary, secondary like splash and re-entrant albedo electrons. The calculations indicated that the spectrum could be fitted to a power law in energy, with the exponential index varying from 1.1 in the energy range 1 - 10 MeV, to 1.4 in the energy range 10 - 200 MeV and 1.8 in the energy range 200 - 1000 MeV. These results are discussed [pt

  17. All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

    Science.gov (United States)

    Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Barber, A. S.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dichiara, S.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Enriquez-Rivera, O.; Fiorino, D. W.; Fleischhack, H.; Fraija, N.; García-González, J. A.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez-Almada, A.; Hinton, J.; Hueyotl-Zahuantitla, F.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Lara, A.; Lauer, R. J.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Luis Raya, G.; Luna-García, R.; López-Cámara, D.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Zepeda, A.; Zhou, H.; HAWC Collaboration

    2017-12-01

    We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground-based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken over 234 days between June 2016 and February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of -2.49 ±0.01 prior to a break at (45.7 ±0.1 ) TeV , followed by an index of -2.71 ±0.01 . The spectrum also represents a single measurement that spans the energy range between direct detection and ground-based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.

  18. Measurement of the energy spectrum of the neutrons inside the neutron flux trap assembled in the center of the reactor core IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Santos, Diogo Feliciano dos; Jerez, Rogerio; Mura, Luis Felipe Liamos, E-mail: ubitelli@ipen.br, E-mail: credidiomura@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    This paper presents the neutron energy spectrum in the central position of a neutron flux trap assembled in the core center of the research nuclear reactor IPEN/MB-01 obtained by an unfolding method. To this end, have been used several different types of activation foils (Au, Sc, Ti, Ni, and plates) which have been irradiated in the central position of the reactor core (setting number 203) at a reactor power level of 64.57 ±2.91 watts . The activation foils were counted by solid-state detector HPGe (gamma spectrometry). The experimental data of nuclear reaction rates (saturated activity per target nucleus) and a neutron spectrum estimated by a reactor physics computer code are the main input data to get the most suitable neutron spectrum in the irradiation position obtained through SANDBP code: a neutron spectra unfolding code that use an iterative adjustment method. The adjustment resulted in 3.85 ± 0.14 10{sup 9} n cm{sup -2} s{sup -1} for the integral neutron flux, 2.41 ± 0.01 10{sup 9} n cm{sup -2} s{sup -1} for the thermal neutron flux, 1.09 ± 0.02 10{sup 9} n cm{sup -2} s{sup -1} for intermediate neutron flux and 3.41± 0.02 10{sup 8} n cm{sup -2} s{sup -1} for the fast neutrons flux. These results can be used to verify and validate the nuclear reactor codes and its associated nuclear data libraries, besides show how much is effective the use of a neutron flux trap in the nuclear reactor core to increase the thermal neutron flux without increase the operation reactor power level. The thermal neutral flux increased 4.04 ± 0.21 times compared with the standard configuration of the reactor core. (author)

  19. Evaluation of a new neutron energy spectrum unfolding code based on an Adaptive Neuro-Fuzzy Inference System (ANFIS).

    Science.gov (United States)

    Hosseini, Seyed Abolfazl; Esmaili Paeen Afrakoti, Iman

    2018-01-17

    The purpose of the present study was to reconstruct the energy spectrum of a poly-energetic neutron source using an algorithm developed based on an Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS is a kind of artificial neural network based on the Takagi-Sugeno fuzzy inference system. The ANFIS algorithm uses the advantages of both fuzzy inference systems and artificial neural networks to improve the effectiveness of algorithms in various applications such as modeling, control and classification. The neutron pulse height distributions used as input data in the training procedure for the ANFIS algorithm were obtained from the simulations performed by MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). Taking into account the normalization condition of each energy spectrum, 4300 neutron energy spectra were generated randomly. (The value in each bin was generated randomly, and finally a normalization of each generated energy spectrum was performed). The randomly generated neutron energy spectra were considered as output data of the developed ANFIS computational code in the training step. To calculate the neutron energy spectrum using conventional methods, an inverse problem with an approximately singular response matrix (with the determinant of the matrix close to zero) should be solved. The solution of the inverse problem using the conventional methods unfold neutron energy spectrum with low accuracy. Application of the iterative algorithms in the solution of such a problem, or utilizing the intelligent algorithms (in which there is no need to solve the problem), is usually preferred for unfolding of the energy spectrum. Therefore, the main reason for development of intelligent algorithms like ANFIS for unfolding of neutron energy spectra is to avoid solving the inverse problem. In the present study, the unfolded neutron energy spectra of 252Cf and 241Am-9Be neutron sources using the developed computational code were

  20. Energy spectrum scaling in an agent-based model for bacterial turbulence

    Science.gov (United States)

    Mikel-Stites, Maxwell; Staples, Anne

    2017-11-01

    Numerous models have been developed to examine the behavior of dense bacterial swarms and to explore the visually striking phenomena of bacterial turbulence. Most models directly impose fluid dynamics physics, either by modeling the active matter as a fluid or by including interactions between the bacteria and a fluid. In this work, however, the `turbulence' is solely an emergent property of the collective behavior of the bacterial population, rather than a consequence of imposed fluid dynamics physical modeling. The system is simulated using a two dimensional Vicsek-style model, with the addition of individual repulsion to simulate bacterial collisions and physical interactions, and without the common flocking or sensing behaviors. Initial results indicate the presence of k-1 scaling in a portion of the kinetic energy spectrum that can be considered analogous to the inertial subrange in turbulent energy spectra. This result suggests that the interaction of large numbers of individual active bacteria may also be a contributing factor in the emergence of fluid dynamics phenomena, in addition to the physical interactions between bacteria and their fluid environment.

  1. Energy/bandwidth-Saving Cooperative Spectrum Sensing for Two-hopWRAN

    Directory of Open Access Journals (Sweden)

    Ming-Tuo Zhou

    2014-07-01

    Full Text Available A two-hop wireless regional area network (WRAN providing monitoring services operating in Television White Space (TVWS, i.e., IEEE P802.22b, may employ a great number of subscriber customer-premises equipments (S-CPEs possibly without mains power supply, leading to requirement of cost-effective and power-saving design. This paper proposes a framework of cooperative spectrum sensing (CSS and an energy/bandwidth saving CSS scheme to P802.22b. In each round of sensing, S-CPEs with SNRs lower than a predefined threshold are excluded from reporting sensing results. Numerical results show that the fused missed-detection probability and false alarmprobability could remainmeeting sensing requirements, and the overall fused error probability changes very little. With 10 S-CPEs, it is possible to save more than 40% of the energy/bandwidth on a Rayleigh channel. The principle proposed can apply to other advanced sensing technologies capable of detecting primary signals with low average SNR.

  2. An Evaluation of Neutron Energy Spectrum Effects in Iron Based on Molecular Dynamics Displacement Cascade Simulations

    International Nuclear Information System (INIS)

    Greenwood, L.R.; Stoller, R.E.

    1998-01-01

    The results of molecular dynamics (MD) displacement cascade simulations in bcc iron have been used to obtain effective cross sections for two measures of primary damage production: (1) the number of surviving point defects expressed as a fraction of the displacements calculated using the standard secondary displacement model of Norgett, Robinson, and Torrens (NRT), and (2) the fraction of the surviving interstitials contained in clusters that formed during the cascade event. Primary knockon atom spectra for iron obtained from the SPECTER code have been used to weight these MD-based damage production cross sections in order to obtain spectrally-averaged values for several locations in commercial fission reactors and materials test reactors. An evaluation of these results indicates that neutron energy spectrum differences between the various enviromnents do not lead to significant differences between the average primary damage formation parameters. In particular, the defect production cross sections obtained for PWR and BWR neutron spectra were not significantly different. The variation of the defect production cross sections as a function of depth into the reactor pressure vessel wall is used as a sample application of the cross sections. A slight difference between the attenuation behavior of the PWR and BWR was noted; this difference could be explained by a subtle difference in the energy dependence of the neutron spectra. Overall, the simulations support the continued use of dpa as a damage correlation parameter

  3. Increase of energy efficiency in proportional adjusting of flow rate in the boiler circuit

    OpenAIRE

    Artamonov Pavel A.; Kurilenko Nikolai I.; Mamontov Gennady Ya.

    2017-01-01

    The article presents the results of theoretical studies in the field of the boiler circuit operating modes for the boiler rooms operating by the independent heat supply scheme. The 3D model of a boiler circuit for a boiler room with 3 MW rated output was developed, based on which there was made an estimation of the boiler pump performance indicators. There is proposed a method for reducing energy costs for the operation of the pumping equipment of the boiler circuit.

  4. The Role of the Broader Autism Phenotype and Environmental Stressors in the Adjustment of Siblings of Children with Autism Spectrum Disorders in Taiwan and the United Kingdom

    Science.gov (United States)

    Tsai, Hsiao-Wei Joy; Cebula, Katie; Fletcher-Watson, Sue

    2017-01-01

    The influence of the broader autism phenotype (BAP) on the adjustment of siblings of children with autism has previously been researched mainly in Western cultures. The present research evaluated a diathesis-stress model of sibling adjustment using a questionnaire study including 80 and 75 mother-typically developing sibling dyads in Taiwan and…

  5. Energy-Climate Scenarios: An Adjustment after the Economic Crisis, Fukushima, Durban and... Shale Gases

    International Nuclear Information System (INIS)

    Criqui, Patrick; Mima, Silvana; Peytral, Pierre-Olivier; Simon, Jean-Christophe

    2012-01-01

    In an article published in these pages in 2011 (no. 373), Patrick Criqui presented a series of scenarios on possible energy and climate trends, taking note of the agreement on climate change signed in late 2009 at the Copenhagen Conference. He pointed out that a paradigm shift was on the cards, which would mean less use of the top-down approach - with national objectives set as a function of international objectives formulated at major conferences - and greater implementation of a bottom-up logic based on national policies put in place in the energy field and as part of the battle against global warming. On the basis of this latter logic, the authors were able to elaborate scenarios at a world level. A few days before the publication of that article, the Fukushima accident occurred in japan, lending fresh impetus to the energy debate in most of the countries using nuclear power. Does that event, combined with the persistence of the debt crisis, the increased extraction of unconventional hydrocarbons (shale oil and gas ) and the fact that international negotiations on climate change (Durban) have merely marked time, modify the projected scenarios -and, if so, to what extent ? Patrick Criqui, Silvana Mima, Pierre-Olivier Peytral and jean-Christophe Simon consider this question in detail here. They begin by examining the impact of these recent events and developments on the current energy and climate situation. Then, after reminding us of the four world energy scenarios (to a time-horizon of 2030-2050) that were developed in 2009 (together with two 'discontinuity scenarios'), they propose an updating that takes account of the perceived consequences of the change of context, stressing two crucial scenarios in particular: the probable (leading to warming in the order of 4 deg. C) and the desirable (limiting warming to 2 deg. C). Lastly, they propose various levers aimed at 'making the desirable trajectory possible' (technological agreements, economic instruments

  6. Light spectrum modifies the utilization pattern of energy sources in Pseudomonas sp. DR 5-09.

    Science.gov (United States)

    Gharaie, Samareh; Vaas, Lea A I; Rosberg, Anna Karin; Windstam, Sofia T; Karlsson, Maria E; Bergstrand, Karl-Johan; Khalil, Sammar; Wohanka, Walter; Alsanius, Beatrix W

    2017-01-01

    Despite the overruling impact of light in the phyllosphere, little is known regarding the influence of light spectra on non-phototrophic bacteria colonizing the leaf surface. We developed an in vitro method to study phenotypic profile responses of bacterial pure cultures to different bands of the visible light spectrum using monochromatic (blue: 460 nm; red: 660 nm) and polychromatic (white: 350-990 nm) LEDs, by modification and optimization of a protocol for the Phenotype MicroArray™ technique (Biolog Inc., CA, USA). The new protocol revealed high reproducibility of substrate utilization under all conditions tested. Challenging the non-phototrophic bacterium Pseudomonas sp. DR 5-09 with white, blue, and red light demonstrated that all light treatments affected the respiratory profile differently, with blue LED having the most decisive impact on substrate utilization by impairing respiration of 140 substrates. The respiratory activity was decreased on 23 and 42 substrates under red and white LEDs, respectively, while utilization of one, 16, and 20 substrates increased in the presence of red, blue, and white LEDs, respectively. Interestingly, on four substrates contrasting utilization patterns were found when the bacterium was exposed to different light spectra. Although non-phototrophic bacteria do not rely directly on light as an energy source, Pseudomonas sp. DR 5-09 changed its respiratory activity on various substrates differently when exposed to different lights. Thus, ability to sense and distinguish between different wavelengths even within the visible light spectrum must exist, and leads to differential regulation of substrate usage. With these results, we hypothesize that different light spectra might be a hitherto neglected key stimulus for changes in microbial lifestyle and habits of substrate usage by non-phototrophic phyllospheric microbiota, and thus might essentially stratify leaf microbiota composition and diversity.

  7. Light spectrum modifies the utilization pattern of energy sources in Pseudomonas sp. DR 5-09.

    Directory of Open Access Journals (Sweden)

    Samareh Gharaie

    Full Text Available Despite the overruling impact of light in the phyllosphere, little is known regarding the influence of light spectra on non-phototrophic bacteria colonizing the leaf surface. We developed an in vitro method to study phenotypic profile responses of bacterial pure cultures to different bands of the visible light spectrum using monochromatic (blue: 460 nm; red: 660 nm and polychromatic (white: 350-990 nm LEDs, by modification and optimization of a protocol for the Phenotype MicroArray™ technique (Biolog Inc., CA, USA. The new protocol revealed high reproducibility of substrate utilization under all conditions tested. Challenging the non-phototrophic bacterium Pseudomonas sp. DR 5-09 with white, blue, and red light demonstrated that all light treatments affected the respiratory profile differently, with blue LED having the most decisive impact on substrate utilization by impairing respiration of 140 substrates. The respiratory activity was decreased on 23 and 42 substrates under red and white LEDs, respectively, while utilization of one, 16, and 20 substrates increased in the presence of red, blue, and white LEDs, respectively. Interestingly, on four substrates contrasting utilization patterns were found when the bacterium was exposed to different light spectra. Although non-phototrophic bacteria do not rely directly on light as an energy source, Pseudomonas sp. DR 5-09 changed its respiratory activity on various substrates differently when exposed to different lights. Thus, ability to sense and distinguish between different wavelengths even within the visible light spectrum must exist, and leads to differential regulation of substrate usage. With these results, we hypothesize that different light spectra might be a hitherto neglected key stimulus for changes in microbial lifestyle and habits of substrate usage by non-phototrophic phyllospheric microbiota, and thus might essentially stratify leaf microbiota composition and diversity.

  8. Influence of coated particle structure in thermal neutron spectrum energy range

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U; Teuchert, E

    1971-02-15

    The heterogenity due to lumping the fuel in coated particles affects the thermal neutron spectrum. A calculation model is discussed which, apart from some simplifying assumptions about the statistical distribution, allows a rigorous computation of effective cross sections for all nuclides of the heterogeneous medium. It is based on an exact computation of the neutron penetration probability through coating and kernel. The model is incorporated in a THERMOS-code providing a double heterogeneous cell calculation, which can be repeated automatically at different time steps in the depletion code system MAFIA-V.S.O.P.. A discussion of the effects of the coated particle structure is given by a comparison of calculations for heterogeneous and homogeneous fuel zones in pebble bed reactor elements. This is performed for enriched UO{sub 2} fuel and for a ThO{sub 2}-PuO{sub 2} mixture in the grains. Depending on the energy dependent total sigmas in the kernels the changes of the cross sections are ranging from 0.1% up to 45%. The influence on the spectrum averaged sigmas of the nuclides in the fresh UO{sub 2} fuel is lower than 1%. For the emerging {sup 240}Pu it increases up to 3.3% during irradiation. For the ThO{sub 2}-PuO{sub 2} fuel the averaged sigmas of the isotopes vary from 0.5% to 5.7% depending on the state of irradiation. Correspondingly there is an influence on the plutonium isotopic composition, on breeding ratios, and on the tilt of k{sub eff} during burnup which will be discussed in detail.

  9. Development of analytical software for semi-quantitative analysis of x-ray spectrum acquired from energy-dispersive spectrometer

    International Nuclear Information System (INIS)

    Karim, A.; Rana, M.A.; Qamar, R.; Latif, A; Ahmad, M.; Farooq, M.A.; Ahmad, Z.

    2003-12-01

    Software package for elemental analysis for X-ray spectrum obtained from Energy Dispersive Spectrometer (EDS) attached with Scanning Electron Microscope (SEM) has been developed: A Personal Computer Analyzer card PCA-800 is used to acquire data from the EDS. This spectrum is obtained in binary format, which is transformed into ASCII format using PCAII card software. The program is modular in construction and coded using Microsoft's QUICKBASIC compiler linker. Energy line library containing all lines of elements is created for analysis of acquired characteristic X-ray spectrum. Two techniques of peak identification are provided. Statistical tools are employed for smoothing of a curve and for computing area under the curve. Elemental concentration is calculated in weight % and in atomic. (author)

  10. Adjustment of the Brazilian radioprotection standards to the safety principles of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Pereira, Wagner de S.; Py Junior, Delcy de A.

    2013-01-01

    The International Atomic Energy Agency (IAEA) has a recommendation with 10 basic safety principles (Fundamental Safety Principles Safety Fundamentals series, number SF-1), which are: 1) Responsibility for safety; 2) Role for government; 3) Leadership and management for safety; 4) Justification of facilities and activities; 5) Optimization of protection; 6) Limitation of risk to individuals; 7) Protection of present and futures generations; 8) Prevention of accidents; 9) Emergency preparedness and response and 10) Protection actions to reduce existing or unregulated radiations risk. The aim of this study is to verify that the Brazilian standards of radiation protection meet the principles described above and how well suited to them. The analysis of the national radiation protection regulatory system, developed and deployed by the National Nuclear Energy Commission (CNEN), showed that out of the ten items, two are covered partially, the number 2 and 10. The others are fully met. The item 2 the fact that the regulatory body (CNEN) be stock controller of a large company in the sector put in check its independence as a regulatory body. In item 10 the Brazilian standard of radiation protection does not provide explicit resolution of environmental liabilities

  11. Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: the energy spectrum of cosmic rays

    International Nuclear Information System (INIS)

    Ivanov, A A; Knurenko, S P; Sleptsov, I Ye

    2009-01-01

    The energy spectrum of cosmic rays in the range E∼10 15 eV to 6x10 19 eV is studied in this paper using air Cherenkov light detectors of the Yakutsk array. The total flux of photons produced by the relativistic electrons (including positrons as well, hereafter) of extensive air showers in the atmosphere is used as an energy estimator of the primary particle initiating a shower. The resultant differential flux of cosmic rays exhibits, in agreement with previous measurements, a knee and ankle feature at energies of 3x10 15 and ∼10 19 eV, respectively. A comparison of observational data with simulations is made in the knee and ankle regions in order to choose the models of galactic and extragalactic components of cosmic rays that describe well the energy spectrum measured.

  12. Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: the energy spectrum of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A A; Knurenko, S P; Sleptsov, I Ye [Shafer Institute for Cosmophysical Research and Aeronomy, Yakutsk 677980 (Russian Federation)], E-mail: ivanov@ikfia.ysn.ru

    2009-06-15

    The energy spectrum of cosmic rays in the range E{approx}10{sup 15} eV to 6x10{sup 19} eV is studied in this paper using air Cherenkov light detectors of the Yakutsk array. The total flux of photons produced by the relativistic electrons (including positrons as well, hereafter) of extensive air showers in the atmosphere is used as an energy estimator of the primary particle initiating a shower. The resultant differential flux of cosmic rays exhibits, in agreement with previous measurements, a knee and ankle feature at energies of 3x10{sup 15} and {approx}10{sup 19} eV, respectively. A comparison of observational data with simulations is made in the knee and ankle regions in order to choose the models of galactic and extragalactic components of cosmic rays that describe well the energy spectrum measured.

  13. Fine structure and energy spectrum of exciton in direct band gap cubic semiconductors with degenerate valence bands

    International Nuclear Information System (INIS)

    Nguyen Toan Thang; Nguyen Ai Viet; Nguyen Que Huong

    1987-06-01

    The influence of the cubic structure on the energy spectrum of direct exciton is investigated, using the new method suggested by Nguyen Van Hieu and co-workers. Explicit expressions of the exciton energy levels 1S, 2S and 2P are derived. A comparison with the experiments and the other theory is done for ZnSe. (author). 10 refs, 1 fig., 2 tabs

  14. Portfolio and diversity analysis of energy technologies using full-spectrum risk measures

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, J.C.; Beurskens, L.W.M. [ECN Policy Studies, Petten (Netherlands); Awerbuch, S.; Stirling, A.C. [Science and Technology Policy Research SPRU, University of Sussex, Brighton, East Sussex (United Kingdom)

    2005-01-01

    Energy diversity and security have been evaluated using the multi-criteria diversity analysis (MDA) of A. C. Stirling as well as more classical Markowitz mean-variance portfolio (MVP) theory. Each of these approaches is capable of producing an efficient frontier that shows optimal generating portfolio mixes, those that maximize performance (i.e. minimize cost) while minimizing risk or uncertainty (i.e. maximizing diversity). MDA covers the full-spectrum of uncertainty, reaching into areas where little is known about the range of possible outcomes, let alone their probabilities. However, MDA does not exploit statistical information that is available in certain parts of the risk-spectrum where historic means, variances and co-variances of outcomes are known and can be used to make inferences about the future. MVP operates precisely in this space. However, like other capital market models, its prescriptive value rests on the idea that the past is the best guide to the future. As such MVP can be blind to unforeseen events that create future structural change. Used in isolation, therefore, neither model offers a fully satisfying result. An MVP analysis of energy technologies tells us how to create generating portfolios with minimum cost and risk (cost-variance), assuming historic ranges predict the future well enough. If policy makers are confident that past expected values, ranges and variances will continue, then the solutions are fine. But what about so-called unknown risks? Possible future events that may produce outcomes with unknown consequences? This is where MDA becomes a potentially powerful tool. This project seeks to merge the two approaches and to map the space between optimal MVP and MDA solutions using a combined MVP+MDA optimization and weighting scheme. Placing 100% of the emphasis on MVP, for example, produces results based purely on historical trends. These may serve for short planning horizons. On the other hand, giving MDA a 100% weighting produces

  15. Coupled superconducting qudit-resonator system: Energy spectrum, state population, and state transition under microwave drive

    Science.gov (United States)

    Liu, W. Y.; Xu, H. K.; Su, F. F.; Li, Z. Y.; Tian, Ye; Han, Siyuan; Zhao, S. P.

    2018-03-01

    Superconducting quantum multilevel systems coupled to resonators have recently been considered in some applications such as microwave lasing and high-fidelity quantum logical gates. In this work, using an rf-SQUID type phase qudit coupled to a microwave coplanar waveguide resonator, we study both theoretically and experimentally the energy spectrum of the system when the qudit level spacings are varied around the resonator frequency by changing the magnetic flux applied to the qudit loop. We show that the experimental result can be well described by a theoretical model that extends from the usual two-level Jaynes-Cummings system to the present four-level system. It is also shown that due to the small anharmonicity of the phase device a simplified model capturing the leading state interactions fits the experimental spectra very well. Furthermore we use the Lindblad master equation containing various relaxation and dephasing processes to calculate the level populations in the simpler qutrit-resonator system, which allows a clear understanding of the dynamics of the system under the microwave drive. Our results help to better understand and perform the experiments of coupled multilevel and resonator systems and can be applied in the case of transmon or Xmon qudits having similar anharmonicity to the present phase device.

  16. Combined diversity and improved energy detection in cooperative spectrum sensing with faded reporting channels

    Directory of Open Access Journals (Sweden)

    Srinivas Nallagonda

    2016-04-01

    Full Text Available In this paper we evaluate the performance of cooperative spectrum sensing (CSS where each cognitive radio (CR employs an improved energy detector (IED with multiple antennas and uses selection combining (SC for detecting the primary user (PU in noisy and faded sensing (S channels. We derive an expression for the probability of false alarm and expressions for probability of missed detection in non-faded (AWGN and Rayleigh faded sensing environments in terms of cumulative distribution function (CDF. Each CR transmits its decision about PU via noisy and faded reporting (R channel to fusion center (FC. In this paper we assume that S-channels are noisy and Rayleigh faded while several cases of fading are considered for R-channels such as: (i Hoyt (or Nakagami-q, (ii Rayleigh, (iii Rician (or Nakagami-n, and (iv Weibull. A Binary Symmetric channel (BSC with a fixed error probability (r in the R-channel is also considered. The impact of fading in R-channel, S-channel and several network parameters such as IED parameter, normalized detection threshold, number of CRs, and number of antennas on missed detection and total error probability is assessed. The effects of Hoyt, Rician, and Weibull fading parameters on overall performance of IED-CSS are also highlighted.

  17. Energy spectrum and density of states for a graphene quantum dot in a magnetic field

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J; Liu, S Y

    2010-01-01

    In this paper, we determine the spectrum and density of states of a graphene quantum dot in a normal quantizing magnetic field. To accomplish this, we employ the retarded Green function for a magnetized, infinite-sheet graphene layer to describe the dynamics of a tightly confined graphene quantum dot subject to Landau quantization. Considering a δ (2) (r) potential well that supports just one subband state in the well in the absence of a magnetic field, the effect of Landau quantization is to 'splinter' this single energy level into a proliferation of many Landau-quantized states within the well. Treating the graphene sheet and dot as a closed system subject to a fully Hermitian Hamiltonian (including boundary conditions), there is no indication of decay of the Landau-quantized graphene dot states into the quantized states of the host graphene sheet for 'tight' confinement by the δ (2) (r) potential well, notwithstanding extension of the dot Green function (and eigenfunctions) outside the δ (2) (r) potential well.

  18. The low-energy spectrum of (2, 0) theory on T5 x R

    International Nuclear Information System (INIS)

    Henningson, Maans

    2008-01-01

    We consider the ADE-series of (2, 0) supersymmetric quantum theories on T 5 x R, where the first factor is a flat spatial five-torus, and the second factor denotes time. The quantum states of such a theory Φ are characterized by a discrete quantum number f element of H 3 (T 5 , C), where the finite abelian group C is the center subgroup of the corresponding simply connected simply laced Lie group G. At energies that are low compared to the inverse size of the T 5 , the spectrum consists of a set of continua of states, each of which is characterized by the value of f and some number 5r of additional continuous parameters. By exploiting the interpretation of this theory as the ultraviolet completion of maximally supersymmetric Yang-Mills theory on T 4 x S 1 x R with gauge group G adj = G/C and coupling constant g given by the square root of the radius of the S 1 factor, one may compute the number N f r (Φ) of such continua. We perform these calculations in detail for the A- and D-series. While the Yang-Mills theory formalism is manifestly invariant under the SL 4 (Z) mapping class group of T 4 , the results are actually found to be invariant under the SL 5 (Z) mapping class group of T 5 , which provides a strong consistency check.

  19. Scenario analysis of carbon emissions' anti-driving effect on Qingdao's energy structure adjustment with an optimization model, Part II: Energy system planning and management.

    Science.gov (United States)

    Wu, C B; Huang, G H; Liu, Z P; Zhen, J L; Yin, J G

    2017-03-01

    In this study, an inexact multistage stochastic mixed-integer programming (IMSMP) method was developed for supporting regional-scale energy system planning (EPS) associated with multiple uncertainties presented as discrete intervals, probability distributions and their combinations. An IMSMP-based energy system planning (IMSMP-ESP) model was formulated for Qingdao to demonstrate its applicability. Solutions which can provide optimal patterns of energy resources generation, conversion, transmission, allocation and facility capacity expansion schemes have been obtained. The results can help local decision makers generate cost-effective energy system management schemes and gain a comprehensive tradeoff between economic objectives and environmental requirements. Moreover, taking the CO 2 emissions scenarios mentioned in Part I into consideration, the anti-driving effect of carbon emissions on energy structure adjustment was studied based on the developed model and scenario analysis. Several suggestions can be concluded from the results: (a) to ensure the smooth realization of low-carbon and sustainable development, appropriate price control and fiscal subsidy on high-cost energy resources should be considered by the decision-makers; (b) compared with coal, natural gas utilization should be strongly encouraged in order to insure that Qingdao could reach the carbon discharges peak value in 2020; (c) to guarantee Qingdao's power supply security in the future, the construction of new power plants should be emphasised instead of enhancing the transmission capacity of grid infrastructure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. An extended formula for the energy spectrum of sputtered atoms from a material irradiated by light ions

    International Nuclear Information System (INIS)

    Ono, T.; Aoki, Y.; Yamamura, Y.; Kawamura, T.; Kenmotsu, T.

    2004-10-01

    We extend a formula proposed by Kenmotsu et al. (hereafter Paper I), which fits with the energy spectrum of atoms sputtered from a heavy material hit by low-energy light ions (H + , D + , T + , He + ) by taking into account an inelastic energy loss neglected in Paper I. We assume that primary knock-on atoms produced by ions backscattered at large angles do not lose energy while penetrating the material up to the surface, instead of the energy-loss model used in Paper I. The extended formula is expressed in terms of a normalized energy-distribution function and is compared with the data calculated with the ACAT code for 50 eV, 100 eV and 1 keV D + ions impinging on a Fe target. Our formula fits well with the data in a wide range of incident energy. (author)

  1. On the energy spectrum of the Bethe-Salpeter equation; Ob ehnergeticheskom spektre uravneniya Bete-Solpitera

    Energy Technology Data Exchange (ETDEWEB)

    Dorkin, S M [Dal` nevostochnyj Gosudarstvennyj Univ., Vladivostok (Russian Federation); Kaptar` , L P; Semikh, S S [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Lab. of Theoretical Physics

    1997-12-31

    The problem of calculating the energy spectrum of a two-fermion bound state within the Bethe-Salpeter formalism is discussed. An expansion of the kernel of the spinor-spinor Bethe-Salpeter equation in the ladder approximation is found in terms of a bi-orthogonal basis of the generalized Gilbert-Schmidt series for symmetric equations of the Fredholm type. According to this expansion, a new method of solving the Bethe-Salpeter equation and finding the mass spectrum is proposed. Methodological result of numerical solutions of equations with scalar interaction is presented. (author). 20 refs., 3 figs.

  2. Determination of the neutrons energy spectrum in the central thimble of the reactor core TRIGA Mark III

    International Nuclear Information System (INIS)

    Parra M, M. A.; Luis L, M. A.; Raya A, R.; Cruz G, H. S.

    2013-10-01

    This work presents the measurement of the neutrons spectrum in energies in the central thimble of the reactor TRIGA Mark III to a power of 1 MW in stationary state, with the core in the center of the pool. To achieve this objective, several thin sheets were irradiated (one at the time) in the same position of the core. The activation probes were selected in such a way that covered the energy range (1 x 10 -10 to 20 MeV) of the neutrons spectrum in the reactor core, for this purpose thin sheets were used of 197 Au, 58 Ni, 115 In, 24 Mg, 27 Al, 58 Fe, 59 Co and 63 Cu. After the irradiation, the high energy gamma emissions of the activated thin sheets were measured by means of gamma spectrometry, in a counting system of high resolution, with a Hyper pure Germanium detector, obtaining this way the activity induced in the thin sheets whose magnitude is proportional to the intensity of the neutrons flow, this activity together to a theoretical initial spectrum are the main entrance data of the computational code SANDBP (Hungarian version of the code Sand-II) that uses the unfolding method for the calculation of the spectrum. (Author)

  3. Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts

    Science.gov (United States)

    Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.

    2016-05-01

    Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,I of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,I-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,I-α anti-correlation can hardly be reconciled with the predicted Ep,I ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,I are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,I. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  4. Prompt neutron energy spectrum for the spontaneous fission of Cf-252

    International Nuclear Information System (INIS)

    Blinov, M.V.; Boykov, G.S.; Vitenko, V.A.

    1985-06-01

    The prompt neutron spectrum for the spontaneous fission of Cf-252 has been measured in 0.01-10 MeV region by the time-of-flight technique using a fast ionization chamber with U-235 layers as the neutron detector. Numerical data for the spectrum are presented, with an error file. (author)

  5. THE DETECTABILITY OF DARK MATTER ANNIHILATION WITH FERMI USING THE ANISOTROPY ENERGY SPECTRUM OF THE GAMMA-RAY BACKGROUND

    International Nuclear Information System (INIS)

    Hensley, Brandon S.; Pavlidou, Vasiliki; Siegal-Gaskins, Jennifer M.

    2010-01-01

    The energy dependence of the anisotropy (the anisotropy energy spectrum) of the large-scale diffuse gamma-ray background can reveal the presence of multiple source populations. Annihilating dark matter in the substructure of the Milky Way halo could give rise to a modulation in the anisotropy energy spectrum of the diffuse gamma-ray emission measured by Fermi, enabling the detection of a dark matter signal. We determine the detectability of a dark-matter-induced modulation for scenarios in which unresolved blazars are the primary contributor to the measured emission above ∼1 GeV and find that in some scenarios pair-annihilation cross sections on the order of the value expected for thermal relic dark matter can produce a detectable feature. We anticipate that the sensitivity of this technique to specific dark matter models could be improved by tailored likelihood analysis methods.

  6. A preliminary layout and PIC simulations of the time resolved beam energy spectrum measurement for DRAGON-I

    International Nuclear Information System (INIS)

    Liao Shuqing; Zhang Kaizhi; Shi Jingshui

    2010-01-01

    The time resolved beam energy spectrum for DRAGON-I can be measured with a new method which is named RBS (Rotating Beam in Solenoid). The beam energy spectrum is determined by measuring the beam rotation angle and its expansion width at the exit of DRAGON-I. The rotation beam is shaped by a slit at the exit of DRAGON-I, then rotated in the magnetic field of the solenoids and the resulted beamlet is measured by the Cherenkov screen. The beam motion in the solenoids is simulated by PARMELA and the relationships between the beam rotation angle's expansion width and the beam energy spread, emittance are discussed. The measurement error is also discussed in this paper. (authors)

  7. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Borovskiy, A. V. [Department of Computer Science and Cybernetics, Baikal State University of Economics and Law, 11 Lenin Street, Irkutsk 664003 (Russian Federation); Galkin, A. L. [Coherent and Nonlinear Optics Department, A.M. Prokhorov General Physics Institute of the RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997 (Russian Federation); Kalashnikov, M. P., E-mail: galkin@kapella.gpi.ru [Max-Born-Institute for Nonlinear Optics and Short-Time Spectroscopy, 2a Max-Born-Strasse, Berlin 12489 (Germany)

    2015-04-15

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  8. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    Science.gov (United States)

    Buchhave, Preben; Velte, Clara M.

    2017-08-01

    We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra and spatial structure functions in a way that completely bypasses the need for Taylor's hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method are access to the instantaneous velocity magnitude, in addition to the desired flow quantity, and a high temporal resolution in comparison to the relevant time scales of the flow. We map, without distortion and bias, notoriously difficult developing turbulent high intensity flows using three main aspects that distinguish these measurements from previous work in the field: (1) The measurements are conducted using laser Doppler anemometry and are therefore not contaminated by directional ambiguity (in contrast to, e.g., frequently employed hot-wire anemometers); (2) the measurement data are extracted using a correctly and transparently functioning processor and are analysed using methods derived from first principles to provide unbiased estimates of the velocity statistics; (3) the exact mapping proposed herein has been applied to the high turbulence intensity flows investigated to avoid the significant distortions caused by Taylor's hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed jet. The proposed mapping is successfully validated using corresponding directly measured spatial statistics in the fully developed jet, even in the difficult outer regions of

  9. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal

    2015-08-13

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.

  10. Investigation on the energy spectrums of electrons in atmospheric pressure argon plasma jets and their dependences on the applied voltage

    Science.gov (United States)

    Chen, Xinxian; Tan, Zhenyu; Liu, Yadi; Li, Xiaotong; Pan, Jie; Wang, Xiaolong

    2017-08-01

    This work presents a systematical investigation on the spatiotemporal evolution of the energy spectrum of electrons in atmospheric pressure argon plasma jets and its dependence on the applied voltage. The investigations are carried out by means of the numerical simulation based on a particle-in-cell Monte-Carlo collision model. The characteristics of the spatiotemporal evolution of the energy spectrum of electrons (ESE) in the discharge space have been presented, and especially the mechanisms of inducing these characteristics have also been revealed. The present work shows the following conclusions. In the evolution of ESE, there is a characteristic time under each applied voltage. Before the characteristic time, the peak value of ESE decreases, the peak position shifts toward high energy, and the distribution of ESE becomes wider and wider, but the reverse is true after the characteristic time. The formation of these characteristics can be mainly attributed to the transport of electrons toward a low electric field as well as a balance between the energy gained from the electric field including the effect of space charges and the energy loss due to inelastic collisions in the process of electron transport. The characteristic time decreases with the applied voltage. In addition, the average energy of electrons at the characteristic time can be increased by enhancing the applied voltage. The results presented in this work are of importance for regulating and controlling the energy of electrons in the plasma jets applied to plasma medicine.

  11. Development of prototype micro wind energy system with adjustable blade pitch for experimentation purposes at laboratory level

    International Nuclear Information System (INIS)

    Ashraf, M.M.; Iqbal, M.

    2014-01-01

    In this paper, the design of an efficient, operational and productive model of micro wind energy system has been proposed for experimentation purposes at laboratory level. The proposed model constitutes a proficient Horizontal Axis Wind Turbine (HAWT) model with multi-stage pulley system as a gear box and adjustable blade pitch. The wind turbine is coupled to Axial Flux Permanent Magnet Generator (AFPMG). The power density parameter of fabricated AFPMG has been improved to 35.7%. A wind tunnel is placed in front of wind turbine which behaves as the operational source of wind for proposed model. Multiple case studies: demonstration of different components of wind energy system, effect of variable wind speed, effect of variable blade pitch, effect of variable electrical loading, effect of variable pulley ratio, voltage regulation of AFPMG, runaway speed test of HAWT and peripheral speed test of AFPMG are successfully performed on this model. The results obtained from experiments show that proposed model is well suited for experimentation purposes at laboratory level. (author)

  12. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Energy Technology Data Exchange (ETDEWEB)

    Teng, J.; Gu, Y.Q., E-mail: tengjian@mail.ustc.edu.cn; Zhu, B.; Hong, W.; Zhao, Z.Q.; Zhou, W.M.; Cao, L.F.

    2013-11-21

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  13. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Science.gov (United States)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  14. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    International Nuclear Information System (INIS)

    Teng, J.; Gu, Y.Q.; Zhu, B.; Hong, W.; Zhao, Z.Q.; Zhou, W.M.; Cao, L.F.

    2013-01-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator

  15. Analysis of alpha spectrum instrumental errors accounting for the low energy part of semiconductor detector response function

    International Nuclear Information System (INIS)

    Gurbich, A.F.

    1981-01-01

    A technique for processing of instrumental spectrum of charged particles permitting to take account of a low-energy part of spectrometer line shape, to improve accuracy and to estimate detection efficiency is stated on the example of 226 Ra alpha spectrum. The results obtained show that relative intensities of alpha lines within the limits of statistical errors coincide with the known values, line ''tails'' constituting to 3% of total area of the line. Taking account of ''the line tail'' results in shift of centers of peak gravity by 10-20 keV. So low-energy part of the alpha spectrometer line, which is usually not taken account during spectra processing, markedly affect the results [ru

  16. To the measurement of 3γ/2γ ratio for positron annihilation in matter using annihilation energy spectrum

    International Nuclear Information System (INIS)

    Andrukhovich, S.K.; Berestov, A.V.; Antovich, N.M.; Metelitsa, O.N.

    2001-01-01

    Processes of the summation of cascade γ-quanta usually neglected, when registering the annihilation energy spectrum for the determination of the three-photon annihilation probability P 3γ of positronium in samples, are studied. The deviations of the actual P 3γ value from that determined without allowance made for the summation processes are 56% and 25% for Na(Tl) and Ge detectors placed at the distance of 3 cm from a positron source respectively. (author)

  17. A statistical adjustment approach for climate projections of snow conditions in mountain regions using energy balance land surface models

    Science.gov (United States)

    Verfaillie, Deborah; Déqué, Michel; Morin, Samuel; Lafaysse, Matthieu

    2017-04-01

    Projections of future climate change have been increasingly called for lately, as the reality of climate change has been gradually accepted and societies and governments have started to plan upcoming mitigation and adaptation policies. In mountain regions such as the Alps or the Pyrenees, where winter tourism and hydropower production are large contributors to the regional revenue, particular attention is brought to current and future snow availability. The question of the vulnerability of mountain ecosystems as well as the occurrence of climate-related hazards such as avalanches and debris-flows is also under consideration. In order to generate projections of snow conditions, however, downscaling global climate models (GCMs) by using regional climate models (RCMs) is not sufficient to capture the fine-scale processes and thresholds at play. In particular, the altitudinal resolution matters, since the phase of precipitation is mainly controlled by the temperature which is altitude-dependent. Simulations from GCMs and RCMs moreover suffer from biases compared to local observations, due to their rather coarse spatial and altitudinal resolution, and often provide outputs at too coarse time resolution to drive impact models. RCM simulations must therefore be adjusted using empirical-statistical downscaling and error correction methods, before they can be used to drive specific models such as energy balance land surface models. In this study, time series of hourly temperature, precipitation, wind speed, humidity, and short- and longwave radiation were generated over the Pyrenees and the French Alps for the period 1950-2100, by using a new approach (named ADAMONT for ADjustment of RCM outputs to MOuNTain regions) based on quantile mapping applied to daily data, followed by time disaggregation accounting for weather patterns selection. We first introduce a thorough evaluation of the method using using model runs from the ALADIN RCM driven by a global reanalysis over the

  18. Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    CERN Document Server

    Kim, Do Yoon; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-01-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGA...

  19. The high-energy pulsed X-ray spectrum of Hercules X-1 as observed with OSO 8

    Science.gov (United States)

    Maurer, G. S.; Dennis, B. R.; Coe, M. J.; Crannell, C. J.; Dolan, J. F.; Frost, K. J.; Orwig, L. E.; Cutler, E. P.

    1979-01-01

    Hercules X-1 was observed from August 30 to September 10, 1977, by using the high-energy X-ray scintillation spectrometer on board the OSO 8 satellite. The observation, during which the source was monitored continually for nearly an entire ON-state, covered the energy range from 16 to 280 keV. Pulsed-flux measurements as a function of binary orbit and binary phase are presented for energies between 16 and 98 keV. The pulsed flux between 16 and 33 keV exhibited a sharp decrease following the fourth binary orbit and was consistent with zero pulsed flux thereafter. Only weak evidence was found for temporal variation in the pulsed flux between 33 and 98 keV. The pulsed spectrum has been fitted with a power law, a thermal spectrum without features, and a thermal spectrum with a superposed Gaussian centered at 55 keV. The latter fit has the smallest value of chi-square per degree of freedom, and the resulting integrated line intensity is approximately 0.0015 photon/sec per sq cm for a width of 3.1 (+9.1, -2.6) keV. This result, while of low statistical significance, agrees with the value observed by Truemper (1978) during the same ON-state.

  20. Using soft-X-ray energy spectrum to measure electronic temperature Te and primary research with computer data processing

    International Nuclear Information System (INIS)

    Wang Jingyao; Zhang Guangyang

    1993-01-01

    The authors reported the application of SCORPIO--2000 Computer detecting system on a nuclear fusion equipment, to measure the energy spectrum of soft X-ray from which the plasma electronic temperature was calculated. The authors processed systematically the data of the energy area of 1-4 Kev soft X-ray. The program edited was mostly made in FORTRAN, but only one SUBSB was made in assembly language. The program worked normally with convincing operation and easy correction of the data. The result obtained from calculation is the same as what was expected and the diagram obtained is the same as the expected one

  1. Prominent soft x-ray lines of Sr-like Au41+ in low-energy EBIT spectrum

    International Nuclear Information System (INIS)

    Vilkas, Marius Jonas; Ishikawa, Yasuyuki; Traebert, Elmar

    2007-01-01

    Relativistic multireference Moeller-Plesset perturbation theory has been employed to calculate with high accuracy the energy levels and transition probabilities of Cu- to Sr-like gold ions. The many-body calculations were carried out to identify the unassigned blended lines in the 35-40 A region of the low-energy EBIT spectrum of the gold ions [Traebert et al 2001 Can. J. Phys.79153]. Most of the prominent lines in the 35-40 A region were identified as the emission lines in Sr-like gold

  2. Influence of hadronic interaction models and the cosmic ray spectrum on the high energy atmospheric muon and neutrino flux

    OpenAIRE

    Fedynitch, Anatoli; Tjus, Julia Becker; Desiati, Paolo

    2012-01-01

    The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to...

  3. Measurement of the very-forward energy spectrum in pp collisions at √(s) = 13 TeV with CMS

    Energy Technology Data Exchange (ETDEWEB)

    Baur, Sebastian; Akbiyik, Melike; Baus, Colin; Katkov, Igor; Ulrich, Ralf; Woehrmann, Hauke [Karlsruher Institut fuer Technologie (Germany)

    2016-07-01

    The energy spectrum dN/dE in pp collisions at a centre-of-mass energy of √(s)=13 TeV is measured with the CASTOR calorimeter of CMS at pseudorapidities -5.2>η>-6.6. The spectrum of the total energy, as well as the hadronic and electromagnetic energy, is presented and compared to models used to describe high-energy hadronic interactions. The performance also of model used to describe ultra-high energy cosmic ray air showers is tested, and the possible impact of the measurement on the air shower development is illustrated.

  4. Energy spectrum of reactor antineutrinos and searches for new physics (Resent developments)

    International Nuclear Information System (INIS)

    Kopejkin, V.I.; Sinev, V.V.

    2001-01-01

    The study of the electron neutrino properties - its mass, mixing, magnetic moment - is the main goal of the present reactor antineutrino experiments. We consider the time evolution of the reactor ν bar e spectrum during reactor ON and reactor OFF periods. An important role of the time variations of the reactor ν bar e spectrum in searches for neutrino magnetic moment is discussed. Corrections to the predicted earlier theoretical and precise measured inverse beta-decay cross sections are calculated. We found that the residual ν bar e emission during the reactor OFF period can play a non-negligible role in oscillation experiments

  5. Variability in fluence and spectrum of high-energy photon bursts produced by lightning leaders

    OpenAIRE

    Celestin , Sebastien; Xu , Wei; Pasko , Victor P.

    2015-01-01

    International audience; In this paper, we model the production and acceleration of thermal runaway electrons during negative corona flash stages of stepping lightning leaders and the corresponding terrestrial gamma ray flashes (TGFs) or negative cloud-to-ground (−CG) lightning-produced X-ray bursts in a unified fashion. We show how the source photon spectrum and fluence depend on the potential drop formed in the lightning leader tip region during corona flash and how the X-ray burst spectrum ...

  6. Study of the secondary electron energy spectrum of clean aluminium modification during oxygen adsorption, hydrogen adsorption or carbon segregation

    International Nuclear Information System (INIS)

    Pellerin, Francois

    1981-01-01

    The first part of this work is a review of both theoretical and experimental aspects of the fine structure appearing in the Secondary Electron Spectrum (SES) and in the electron energy loss spectrum. In the second part, we report the results of a study of the SES and ELS spectra of clean and gas covered aluminium. The use of very low primary electron energies (E p ≤ 30 eV) enables the detection of previously unobserved peaks in the ELS spectra of clean and oxygen covered aluminium. They are attributed to single electron excitations. Furthermore, a very large peak appears in the SES spectrum during oxygen or carbon adsorption on aluminium. It is interpreted in terms of interaction of the background electrons with the valence electrons of the surface. Molecular hydrogen adsorption is observed on Ta, Pt, Al 2 O 3 , Si. It is responsible for an ELS peak located 13 eV below the elastic peak. Furthermore, on silicon, the chemisorbed hydrogen form can be distinguished from the molecular form with the help of ELS. Finally, some examples are given of the application of these results to surface imaging. (author) [fr

  7. Effect of new cross-section evaluations on criticality and neutron energy spectrum of a typical material test research reactor

    International Nuclear Information System (INIS)

    Ahmad, Siraj-ul-Islam; Ahmad, Nasir; Aslam

    2004-01-01

    Several new WIMSD libraries based on recent cross-section evaluations such as IAEA, ENDFB-VI, JENDL, and JEF have been made available by IAEA. These libraries were used for the computation of multiplication factor and energy spectrum for Pakistan Research Reactor-1 (PARR-1). Methodology was validated for benchmark problems made available by IAEA and comparison with reference results. The value of effective multiplication factors for all newly released libraries are 1.8-3.2% less than that of 1981 WIMSD library. The effect of various cross-section libraries on neutron energy spectrum was also studied. Differences of about -10% to 12.5% were found in thermal flux using the newly released libraries as compared with that obtained using 1981 WIMSD library. From the analysis, it was found that the main source of the difference is the cross-sections of hydrogen bound in water. When these cross-sections of hydrogen (bound in water) from new libraries were used along with all other data in 1981 WIMSD library, the k eff obtained in this way has a difference of only 0.02-0.8% with that obtained from new libraries, while the flux spectrum agreed within 1% below 1 MeV with new libraries

  8. Anelastic deformation processes in metallic glasses and activation energy spectrum model

    NARCIS (Netherlands)

    Ocelik, [No Value; Csach, K; Kasardova, A; Bengus, VZ; Ocelik, Vaclav

    1997-01-01

    The isothermal kinetics of anelastic deformation below the glass transition temperature (so-called 'stress induced ordering' or 'creep recovery' deformation) was investigated in Ni-Si-B metallic glass. The relaxation time spectrum model and two recently developed methods for its calculation from the

  9. A novel neutron energy spectrum unfolding code using particle swarm optimization

    International Nuclear Information System (INIS)

    Shahabinejad, H.; Sohrabpour, M.

    2017-01-01

    A novel neutron Spectrum Deconvolution using Particle Swarm Optimization (SDPSO) code has been developed to unfold the neutron spectrum from a pulse height distribution and a response matrix. The Particle Swarm Optimization (PSO) imitates the bird flocks social behavior to solve complex optimization problems. The results of the SDPSO code have been compared with those of the standard spectra and recently published Two-steps Genetic Algorithm Spectrum Unfolding (TGASU) code. The TGASU code have been previously compared with the other codes such as MAXED, GRAVEL, FERDOR and GAMCD and shown to be more accurate than the previous codes. The results of the SDPSO code have been demonstrated to match well with those of the TGASU code for both under determined and over-determined problems. In addition the SDPSO has been shown to be nearly two times faster than the TGASU code. - Highlights: • Introducing a novel method for neutron spectrum unfolding. • Implementation of a particle swarm optimization code for neutron unfolding. • Comparing results of the PSO code with those of recently published TGASU code. • Match results of the PSO code with those of TGASU code. • Greater convergence rate of implemented PSO code than TGASU code.

  10. The determination of neutron energy spectrum in reactor core C1 of reactor VR-1 Sparrow

    Energy Technology Data Exchange (ETDEWEB)

    Vins, M. [Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic)], E-mail: vinsmiro@seznam.cz

    2008-07-15

    This contribution overviews neutron spectrum measurement, which was done on training reactor VR-1 Sparrow with a new nuclear fuel. Former nuclear fuel IRT-3M was changed for current nuclear fuel IRT-4M with lower enrichment of 235U (enrichment was reduced from former 36% to 20%) in terms of Reduced Enrichment for Research and Test Reactors (RERTR) Program. Neutron spectrum measurement was obtained by irradiation of activation foils at the end of pipe of rabit system and consecutive deconvolution of obtained saturated activities. Deconvolution was performed by computer iterative code SAND-II with 620 groups' structure. All gamma measurements were performed on Canberra HPGe. Activation foils were chosen according physical and nuclear parameters from the set of certificated foils. The Resulting differential flux at the end of pipe of rabit system agreed well with typical spectrum of light water reactor. Measurement of neutron spectrum has brought better knowledge about new reactor core C1 and improved methodology of activation measurement. (author)

  11. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Byard D. Wood; Jeff D. Muhs

    2004-08-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of small core or a large core polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the second generation (alpha) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of small-core fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the following investigations of various aspects of the system. Taken as a whole, they confirm significant progress towards the technical feasibility and commercial viability of this technology. (1) TRNSYS Modeling of a Hybrid Lighting System: Building Energy Loads and Chromaticity Analysis; (2) High Lumens Screening Test Setup for Optical Fibers; (3) Photo-Induced Heating in Plastic Optical Fiber Bundles; (4) Low-Cost Primary Mirror Development; (5) Potential Applications for Hybrid Solar Lighting; (6) Photobioreactor Population Experiments and Productivity Measurements; and (7) Development of a Microalgal CO2-Biofixation Photobioreactor.

  12. Systematic Studies of Cosmic-Ray Anisotropy and Energy Spectrum with IceCube and IceTop

    Science.gov (United States)

    McNally, Frank

    Anisotropy in the cosmic-ray arrival direction distribution has been well documented over a large energy range, but its origin remains largely a mystery. In the TeV to PeV energy range, the galactic magnetic field thoroughly scatters cosmic rays, but anisotropy at the part-per-mille level and smaller persists, potentially carrying information about nearby cosmic-ray accelerators and the galactic magnetic field. The IceCube Neutrino Observatory was the first detector to observe anisotropy at these energies in the Southern sky. This work uses 318 billion cosmic-ray induced muon events, collected between May 2009 and May 2015 from both the in-ice component of IceCube as well as the surface component, IceTop. The observed global anisotropy features large regions of relative excess and deficit, with amplitudes on the order of 10-3. While a decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments, higher-multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100TeV, a change in the topology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5PeV, the highest energies currently accessible to IceCube with sufficient event statistics. No time dependence of the large- and small-scale structures is observed in the six-year period covered by this analysis within statistical and systematic uncertainties. Analysis of the energy spectrum and composition in the PeV energy range as a function of sky position is performed with IceTop data over a five-year period using a likelihood-based reconstruction. Both the energy spectrum and the composition distribution are found to be consistent with a single source population over declination bands. This work

  13. Analysis of the 3C 445 soft X-ray spectrum as observed by Chandra high-energy gratings

    Science.gov (United States)

    Dong, Fu-Tong; Shao, Shu-Hua; Cheng, Yan; Zeng, Jiao-Long

    2018-05-01

    We present a detailed analysis of the soft X-ray emission of 3C 445 using an archival Chandra High Energy Transmission Grating (HETG) spectrum. Highly-ionized H- and He-like Mg, Si and S lines, as well as a resolved low-ionized Si Kα line, are detected in the high resolution spectrum. The He-like triplets of Mg and Si are resolved into individual lines, and the calculated R ratios indicate a high density for the emitter. The low values of G ratios indicate the lines originate from collisionally ionized plasmas. However, the detection of a resolved narrow Ne X radiative recombination continua (RRC) feature in the spectrum seems to prefer a photoionized environment. The spectrum is subsequently modeled with a photoionization model, and the results are compared with those of a collisional model. Through a detailed analysis of the spectrum, we exclude a collisional origin for these emission lines. A one-component photoionization model provides a great fit to the emission features. The best-fit parameters are {log} ξ ={3.3}-0.3+0.4 erg cm s‑1, {n}{{H}}={5}-4.5+15× {10}10 cm‑3 and {N}{{H}}={2.5}-1.7+3.8× {10}20 cm‑2. According to the calculated high density for the emitter, the measured velocity widths of the emission lines and the inferred radial distance (6 × 1014 – 8 × 1015 cm), we suggest the emission lines originating from matter are located in the broad line region (BLR).

  14. Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl-von Kármán equation: energy decomposition analysis and energy budget.

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2014-12-01

    A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

  15. The Cosmic Ray spectrum in the energy region between 1012 and 1016 eV measured by ARGO–YBJ

    Directory of Open Access Journals (Sweden)

    Montini Paolo

    2017-01-01

    Full Text Available The ARGO-YBJ experiment has been in full and stable data taking at the Yangbajing cosmic ray observatory (Tibet, P.R. China, 4300 m a.s.l. for more than five years. The detector has been designed in order to explore the Cosmic Ray (CR spectrum in an energy range from few TeV up to several PeV. The high segmentation of the detector allows a detailed measurement of the lateral particle distribution which can be exploited on order to identify showers produced by primaries of different mass. The results of the measurement of the all-particle and proton plus helium energy spectra in the energy region between 1012 and 1016 eV are discussed.

  16. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane

    CERN Document Server

    Goldhagen, P E; Kniss, T; Reginatto, M; Singleterry, R C; Van Steveninck, W; Wilson, J W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (t...

  17. Understanding the spectrum of residential energy-saving behaviours: French evidence using disaggregated data

    International Nuclear Information System (INIS)

    Belaïd, Fateh; Garcia, Thomas

    2016-01-01

    Analysing household energy-saving behaviours is crucial to improve energy consumption predictions and energy policy making. How should we quantitatively measure them? What are their determinants? This study explores the main factors influencing residential energy-saving behaviours based on a bottom-up multivariate statistical approach using data from the recent French PHEBUS survey. Firstly, we assess energy-saving behaviours on a one-dimension scale using IRT. Secondly, we use linear regression with an innovative variable selection method via adaptive lasso to tease out the effects of both macro and micro factors on the behavioural score. The results highlight the impact of five main attributes incentivizing energy-saving behaviours based on cross-variable analyses: energy price, household income, education level, age of head of household and dwelling energy performance. In addition, our results suggest that the analysis of the inverted U-shape impact of age enables the expansion of the energy consumption life cycle theory to energy-saving behaviours. - Highlights: • We examine the main factors influencing residential energy-saving behaviours. • We use data from the recent French PHEBUS survey. • We use IRT to assess energy-saving behaviours on a one-dimension scale. • We use linear regression with an innovative variable selection method via adaptive lasso. • We highlight the impact of five main attributes incentivizing energy-saving behaviours.

  18. First measurement of the VESUVIO neutron spectrum in the 30–80 MeV energy range using a Proton Recoil Telescope technique

    International Nuclear Information System (INIS)

    Cazzaniga, C; Tardocchi, M; Croci, G; Grosso, G; Rebai, M; Gorini, G; Frost, C; Rhodes, N J; Schooneveld, E M; Giacomelli, L; Hjalmarsson, A

    2013-01-01

    Measurements of the fast neutron energy spectrum at the ISIS spallation source are reported. The measurements were performed with a Proton Recoil Telescope consisting of a thin plastic foil placed in the neutron beam and two scintillator detectors. Results in the neutron energy range 30 MeV n < 80 MeV are in good agreement with Monte Carlo simulations of the neutron spectrum

  19. First measurement of the VESUVIO neutron spectrum in the 30-80 MeV energy range using a Proton Recoil Telescope technique

    Science.gov (United States)

    Cazzaniga, C.; Tardocchi, M.; Croci, G.; Frost, C.; Giacomelli, L.; Grosso, G.; Hjalmarsson, A.; Rebai, M.; Rhodes, N. J.; Schooneveld, E. M.; Gorini, G.

    2013-11-01

    Measurements of the fast neutron energy spectrum at the ISIS spallation source are reported. The measurements were performed with a Proton Recoil Telescope consisting of a thin plastic foil placed in the neutron beam and two scintillator detectors. Results in the neutron energy range 30 MeV < En < 80 MeV are in good agreement with Monte Carlo simulations of the neutron spectrum.

  20. Measurement of the energy spectrum of cosmic rays with the 26 station configuration of the IceTop detector

    International Nuclear Information System (INIS)

    Kislat, Fabian

    2011-01-01

    IceTop is an instrument at the geographic South Pole designed to detect cosmic ray air showers, particle cascades in the atmosphere initiated by high-energy cosmic rays. It is the surface component of the IceCube neutrino telescope. Since its completion in December 2010, IceTop consists of 81 detector stations covering an area of one square kilometer on the ice surface above IceCube. Each IceTop station consists of two ice-filled tanks in which the Cherenkov light emitted by charged air shower particles is measured. In this dissertation, an analysis of data taken in 2007 with 26 IceTop stations operational at that time is presented. First, properties of air showers like core position, direction and shower size were reconstructed from the measured signals. The core position can be determined to an accuracy of up to 6m and a direction resolution of up to 0.3 is achieved. The shower size is a measure of the energy of the primary particle and a resolution of up to 10% is achieved at high energies. In the next step the relation between primary energy and shower size, as well as resolution and efficiency are determined from Monte Carlo simulations of air showers and the IceTop detector. Here, an assumption was made about the chemical composition of cosmic rays. The informations obtained in these simulations are then used to unfold the spectrum of measured shower sizes in order to obtain the all-particle cosmic ray energy spectrum. This is done independently for particles from three different zenith angle intervals. The result of the unfolding depends on the assumed primary composition. Due to the isotropy of cosmic rays, results obtained in different zenith angle intervals must agree. While with the chosen analysis technique a simultaneous determination of primary particle mass and energy is limited due to systematic uncertainties, it has already been shown that the requirement of isotropy can be used to constrain the range of possible assumptions on the chemical

  1. Measurement of the energy spectrum of cosmic rays with the 26 station configuration of the IceTop detector

    Energy Technology Data Exchange (ETDEWEB)

    Kislat, Fabian

    2011-09-27

    IceTop is an instrument at the geographic South Pole designed to detect cosmic ray air showers, particle cascades in the atmosphere initiated by high-energy cosmic rays. It is the surface component of the IceCube neutrino telescope. Since its completion in December 2010, IceTop consists of 81 detector stations covering an area of one square kilometer on the ice surface above IceCube. Each IceTop station consists of two ice-filled tanks in which the Cherenkov light emitted by charged air shower particles is measured. In this dissertation, an analysis of data taken in 2007 with 26 IceTop stations operational at that time is presented. First, properties of air showers like core position, direction and shower size were reconstructed from the measured signals. The core position can be determined to an accuracy of up to 6m and a direction resolution of up to 0.3 is achieved. The shower size is a measure of the energy of the primary particle and a resolution of up to 10% is achieved at high energies. In the next step the relation between primary energy and shower size, as well as resolution and efficiency are determined from Monte Carlo simulations of air showers and the IceTop detector. Here, an assumption was made about the chemical composition of cosmic rays. The informations obtained in these simulations are then used to unfold the spectrum of measured shower sizes in order to obtain the all-particle cosmic ray energy spectrum. This is done independently for particles from three different zenith angle intervals. The result of the unfolding depends on the assumed primary composition. Due to the isotropy of cosmic rays, results obtained in different zenith angle intervals must agree. While with the chosen analysis technique a simultaneous determination of primary particle mass and energy is limited due to systematic uncertainties, it has already been shown that the requirement of isotropy can be used to constrain the range of possible assumptions on the chemical

  2. Automatic segmentation of low-visibility moving objects through energy analyis of the local 3D spectrum

    Science.gov (United States)

    Nestares, Oscar; Miravet, Carlos; Santamaria, Javier; Fonolla Navarro, Rafael

    1999-05-01

    Automatic object segmentation in highly noisy image sequences, composed by a translating object over a background having a different motion, is achieved through joint motion-texture analysis. Local motion and/or texture is characterized by the energy of the local spatio-temporal spectrum, as different textures undergoing different translational motions display distinctive features in their 3D (x,y,t) spectra. Measurements of local spectrum energy are obtained using a bank of directional 3rd order Gaussian derivative filters in a multiresolution pyramid in space- time (10 directions, 3 resolution levels). These 30 energy measurements form a feature vector describing texture-motion for every pixel in the sequence. To improve discrimination capability and reduce computational cost, we automatically select those 4 features (channels) that best discriminate object from background, under the assumptions that the object is smaller than the background and has a different velocity or texture. In this way we reject features irrelevant or dominated by noise, that could yield wrong segmentation results. This method has been successfully applied to sequences with extremely low visibility and for objects that are even invisible for the eye in absence of motion.

  3. Upgrades of DARWIN, a dose and spectrum monitoring system applicable to various types of radiation over wide energy ranges

    Science.gov (United States)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Shigyo, Nobuhiro; Watanabe, Fusao; Sakurai, Hiroki; Arai, Yoichi

    2011-05-01

    A dose and spectrum monitoring system applicable to neutrons, photons and muons over wide ranges of energy, designated as DARWIN, has been developed for radiological protection in high-energy accelerator facilities. DARWIN consists of a phoswitch-type scintillation detector, a data-acquisition (DAQ) module for digital waveform analysis, and a personal computer equipped with a graphical-user-interface (GUI) program for controlling the system. The system was recently upgraded by introducing an original DAQ module based on a field programmable gate array, FPGA, and also by adding a function for estimating neutron and photon spectra based on an unfolding technique without requiring any specific scientific background of the user. The performance of the upgraded DARWIN was examined in various radiation fields, including an operational field in J-PARC. The experiments revealed that the dose rates and spectra measured by the upgraded DARWIN are quite reasonable, even in radiation fields with peak structures in terms of both spectrum and time variation. These results clearly demonstrate the usefulness of DARWIN for improving radiation safety in high-energy accelerator facilities.

  4. Upgrades of DARWIN, a dose and spectrum monitoring system applicable to various types of radiation over wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Shigyo, Nobuhiro; Watanabe, Fusao; Sakurai, Hiroki; Arai, Yoichi

    2011-01-01

    A dose and spectrum monitoring system applicable to neutrons, photons and muons over wide ranges of energy, designated as DARWIN, has been developed for radiological protection in high-energy accelerator facilities. DARWIN consists of a phoswitch-type scintillation detector, a data-acquisition (DAQ) module for digital waveform analysis, and a personal computer equipped with a graphical-user-interface (GUI) program for controlling the system. The system was recently upgraded by introducing an original DAQ module based on a field programmable gate array, FPGA, and also by adding a function for estimating neutron and photon spectra based on an unfolding technique without requiring any specific scientific background of the user. The performance of the upgraded DARWIN was examined in various radiation fields, including an operational field in J-PARC. The experiments revealed that the dose rates and spectra measured by the upgraded DARWIN are quite reasonable, even in radiation fields with peak structures in terms of both spectrum and time variation. These results clearly demonstrate the usefulness of DARWIN for improving radiation safety in high-energy accelerator facilities.

  5. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO⁺(H₂O) cluster using accurate potential energy and dipole moment surfaces.

    Science.gov (United States)

    Homayoon, Zahra

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO(+)(H2O) cluster is reported. The PES is based on fitting of roughly 32,000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO(+)(H2O) and NO(+)(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO(+)(H2O) and NO(+)(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO(+)(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  6. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO+(H2O) cluster using accurate potential energy and dipole moment surfaces

    Science.gov (United States)

    Homayoon, Zahra

    2014-09-01

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO+(H2O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO+(H2O) and NO+(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO+(H2O) and NO+(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO+(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  7. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO{sup +}(H{sub 2}O) cluster using accurate potential energy and dipole moment surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Homayoon, Zahra, E-mail: zhomayo@emory.edu [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO{sup +}(H{sub 2}O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO{sup +}(H{sub 2}O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  8. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO+(H2O) cluster using accurate potential energy and dipole moment surfaces

    International Nuclear Information System (INIS)

    Homayoon, Zahra

    2014-01-01

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO + (H 2 O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO + (H 2 O) and NO + (D 2 O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO + (H 2 O) and NO + (D 2 O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO + (H 2 O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing

  9. Measurement of the time dependent neutron energy spectrum in the 'DENA' plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahzadeh, M [Department of Physics, Imam Husein University, PO Box 16575-347, Tehran (Iran, Islamic Republic of); Sadat kiai, S M [Nuclear Science and Technology Research Institute (NSTRI), Nuclear Science Research School, A.E.O.I., PO Box 14155-1339, Tehran (Iran, Islamic Republic of); Babazadeh, A R [Physics Department, Qom University, PO Box 37165, Qom (Iran, Islamic Republic of)

    2008-10-15

    An extended time of flight method is used to determine the time dependent neutron energy spectrum in the Filippove type 'Dena' plasma focus (90 kJ, 25 kV, 288 {mu}F), filled with deuterium gas. An array of 5 detectors containing NE-102 plastic scintillators+photomultipliers is used. The number and position of the detectors are determined by a Monte Carlo program and the MCNP code. This paper briefly describes the simulation method and presents the experimental measurements and their results. The mechanisms of neutron production (thermonuclear and non-thermonuclear) and their time variations are discussed.

  10. Convexity Adjustments

    DEFF Research Database (Denmark)

    M. Gaspar, Raquel; Murgoci, Agatha

    2010-01-01

    A convexity adjustment (or convexity correction) in fixed income markets arises when one uses prices of standard (plain vanilla) products plus an adjustment to price nonstandard products. We explain the basic and appealing idea behind the use of convexity adjustments and focus on the situations...

  11. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device.

    Science.gov (United States)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n) 3 He and D(d,n) 3 He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9 Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  12. Monte-Carlo study on primary knock-on atom energy spectrum produced by neutron radiation

    International Nuclear Information System (INIS)

    Zhou Wei; Liu Yongkang; Deng Yongjun; Ma Jimin

    2012-01-01

    Computational method on energy distribution of primary knock-on atom (PKA) produced by neutron radiation was built in the paper. Based on the DBCN card in MCNP, reaction position, reaction type and energy transfer between neutrons and atoms were recorded. According to statistic of these data, energy and space distributions of PKAs were obtained. The method resolves preferably randomicity of random number and efficiency of random sampling computation. The results show small statistical fluctuation and well statistical. Three-dimensional figure of energy and space distribution of PKAs were obtained, which would be important to evaluate radiation capability of materials and study radiation damage by neutrons. (authors)

  13. Influence of hadronic interaction models and the cosmic ray spectrum on the high-energy atmospheric muon and neutrino flux

    Directory of Open Access Journals (Sweden)

    Desiati Paolo

    2013-06-01

    Full Text Available The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to derive the inclusive differential spectra (yields of muons, muon neutrinos and electron neutrinos at the surface for energies between 80 GeV and hundreds of PeV. Using these results the differential flux and the flavor ratios of leptons were calculated. The air shower simulator CORSIKA 6.990 was used for showering and propagation of the secondary particles through the atmosphere, employing the established high energy hadronic interaction models SIBYLL 2.1, QGSJet-01 and QGSJet-II-03. We show that the performance of the interaction models allows makes it possible to predict the spectra within experimental uncertainties, while SIBYLL generally yields a higher flux at the surface than the QGSJet models. The calculation of the flavor and charge ratios has lead to inconsistent results, mainly influenced by the different representations of the K/π ratio within the models. The influence of the knee of cosmic rays is reflected in the secondary spectra at energies between 100 and 200 TeV. Furthermore, we could quantify systematic uncertainties of atmospheric muon- and neutrino fluxes, associated to the models of the primary cosmic ray spectrum and the interaction models. For most recent parametrizations of the cosmic ray primary spectrum, atmospheric muons can be determined with an uncertainty smaller than +15/-13% of the average flux. Uncertainties of the muon and electron neutrino fluxes can be calculated within an average error of +32/-22% and +25

  14. Measurement of the atmospheric muon neutrino energy spectrum with IceCube in the 79- and 86-String configuration

    Directory of Open Access Journals (Sweden)

    Ruhe T.

    2016-01-01

    Full Text Available IceCube is a neutrino telescope with an instrumented volume of one cubic kilometer. A total of 5160 Digital Optical Modules (DOMs is deployed on 86 strings forming a three dimensional detector array. Although primarily designed for the detection of neutrinos from astrophysical sources, the detector can be used for spectral measurements of atmospheric neutrinos. These spectral measurements are hindered by a dominant background of atmospheric muons. State-of-the-art techniques from Machine Learning and Data Mining are required to select a high-purity sample of atmospheric neutrino candidates. The energy spectrum of muon neutrinos is obtained from energy-dependent input variables by utilizing regularized unfolding. The results obtained using IceCube in the 79- and 86-string configuration are presented in this paper.

  15. The determination of the space distribution, energy spectrum and dose parameters of thermal column beam resulting from swimming pool reactor

    International Nuclear Information System (INIS)

    Chen Changmao; Xie Jianlun; Leng Ruiping; Song Shushou; Su Jingling

    1991-01-01

    The axial and radial distribution, epithermal energy spectrum and dose equivalent rate of thermal column beam resulting from SPR have been determined in the Institute of Atomic Energy. The results show that the neutron fluence rate along the axial direction decreases as the distance increases outside the thermal column channel, and the trend of fluence rate attenuation follows approximately the inverse square law of a point source. When the reactor thermal power rate is 3 MW, at a distance of 50 cm to the channel, the thermal and epithermal neutron fluence rate are about 1.61 x 10 7 and 6.1 x 10 4 n/cm 2 · s respectively; dose equivalent rates are some 62 and 2.9 cSv/h respectively. At the end of the chennal, γ dose equivalent rate is 60 cSv/h or so

  16. Soft mode and energy gap in spin wave spectrum for a second order orientation phase transition. AFMR in YFe3

    International Nuclear Information System (INIS)

    Balbashov, A.M.; Berezin, A.G.; Gufan, Yu.M.; Kolyadko, G.S.; Marchukov, P.Yu.; Rudashevskij, E.G.

    1987-01-01

    A pronounced energy gap of a nonmagnetoelastic origin is observed experimentally in the spectrum of the low-frequency (quasiferromagnetic) antiferromagnetic resonance branch during a second order spin-flip phase transition in an external magnetic field directed along the a axis of the rhombic weak ferromagnetic YFeO 3 . From the theory developed which takes into account the susceptibility along the antiferromagnetism axis and dissipation processes, it follows that beside the usual AFMR oscillatory branches there should also be a relaxation mode which is ''soft'' fo the given transition. The magnitude of the energy gaps, the values of the kinetic coefficients, Dzyaloshinsky field strengths and ratio of the longitudinal susceptibility to the transverse susceptibility are determined by analyzing the experimental data obtained in fields up to 130 kOe in the frequency range from 60 to 400 GHz at room temperature

  17. The importance of the PKA-energy spectrum for radiation damage simulation

    International Nuclear Information System (INIS)

    Dierckx, R.

    1987-01-01

    Primary damage phenomena as a function of the PKA-energy are simulated with the MARLOWE code. The PKA's studied have energies up to 2 MeV. The displacement cascades are divided into subcascades, the characteristics of which are determined. (orig.)

  18. Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum

    Science.gov (United States)

    Kong, Yun; Wang, Tianyang; Li, Zheng; Chu, Fulei

    2017-09-01

    Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.

  19. The high energy X-ray spectrum of 4U 1700-37 observed from OSO 8

    Science.gov (United States)

    Dolan, J. F.; Coe, M. J.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Maurer, G. S.

    1980-01-01

    The most intense hard X-ray source in the confused region in Scorpius has been identified as 4U 1700-37 (=HD 153919). Observations extending over three binary periods in 1978 September were carried out with the high-energy X-ray spectrometer on OSO 8. The 3.4 day modulation is seen above 20 keV with the intensity during eclipse being consistent with zero flux. The photonumber spectrum from 20 to 150 keV is well represented by a single power law with a photonumber spectral index of -2.77 + or - 0.35 or by a thermal bremsstrahlung spectrum with kT = 27 (+15, -7)keV. The counting rate above 20 keV outside of eclipse shows no evidence for the 96.8 minute X-ray modulation previously reported at lower energies. Despite the difficulties that exist in reconciling both the lack of periodic modulation in the emitted X-radiation and the orbital dynamics of the system with our currently accepted theories of the evolution and physical properties of neutron stars, the observed properties of 4U 1700-37 are all consistent with the source being a spherically accreting neutron star rather than a black hole.

  20. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    International Nuclear Information System (INIS)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-01-01

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  1. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion.

    Science.gov (United States)

    Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond

    2016-09-20

    This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.

  2. Evolution of the Deep-space Galactic Cosmic Ray Lineal Energy Transfer Spectrum through Tissue Equivalent Plastic

    Science.gov (United States)

    Case, A. W.; Kasper, J. C.; Spence, H. E.; Golightly, M. J.; Schwadron, N. A.; Mazur, J. E.; Blake, J. B.; Looper, M. D.; Townsend, L.; Zeitlin, C. J.

    2011-12-01

    The Cosmic Ray Telescope for the Effects of Radiation is an energetic particle telescope that resides on the Lunar Reconnaissance Orbiter spacecraft, currently in a 50 km circular lunar polar orbit. The telescope consists of 6 silicon semi-conductor detectors placed in pairs that surround two pieces of Tissue Equivalent Plastic (TEP), which serve to absorb energy from particles as they transit through the instrument. Particles with energies greater than 12 MeV/nucleon can penetrate the outermost shield and be measured by the instrument. The primary measurement made by the instrument is of the Linear Energy Transfer (LET) of energetic particles as they transit through the telescope. CRaTER measures the LET spectrum with unprecedented energy resolution and has done so during a period of historically low solar activity that led to record high intensities of Galactic Cosmic Rays (GCR). These LET spectra are used to study changes in the properties of the incoming particles, and to make detailed measurements of the radiation doses human explorers will experience in deep space on missions to the moon, to asteroids, or to Mars. We present LET spectra accumulated during 2009 and 2010. We show how the LET spectrum evolves through the instrument as the GCR interact with the TEP. Due to the importance of these measurements for human effects, our extensive absolute calibration procedures are presented. Of particular note is a significant reduction in the flux of particles with LET greater than 10 keV/um for detectors that lie deeper within the telescope stack, due to the attenuation of high LET particles within the TEP. By measuring this attenuation we can estimate the depth in human tissue where the highest LET particles that are most likely to cause genetic damage pose the greatest threat to humans in space.

  3. HESS J1427−608: AN UNUSUAL HARD, UNBROKEN γ -RAY SPECTRUM IN A VERY WIDE ENERGY RANGE

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiao-Lei; Gao, Wei-Hong [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210046 (China); Xin, Yu-Liang; Liao, Neng-Hui; Yuan, Qiang; He, Hao-Ning; Fan, Yi-Zhong; Liu, Si-Ming, E-mail: yuanq@pmo.ac.cn, E-mail: gaoweihong@njnu.edu.cn, E-mail: liusm@pmo.ac.cn [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-01-20

    We report the detection of a GeV γ -ray source that spatially overlaps and is thus very likely associated with the unidentified very high energy (VHE) γ -ray source HESS J1427−608 with the Pass 8 data recorded by the Fermi Large Area Telescope . The photon spectrum of this source is best described by a power law with an index of 1.85 ± 0.17 in the energy range of 3–500 GeV, and the measured flux connects smoothly with that of HESS J1427−608 at a few hundred gigaelectronvolts. This source shows no significant extension and time variation. The broadband GeV to TeV emission over four decades of energies can be well fitted by a single power-law function with an index of 2.0, without obvious indication of spectral cutoff toward high energies. Such a result implies that HESS J1427−608 may be a PeV particle accelerator. We discuss the possible nature of HESS J1427−608 according to the multiwavelength spectral fittings. Given the relatively large errors, either a leptonic or a hadronic model can explain the multiwavelength data from radio to VHE γ -rays. The inferred magnetic field strength is a few micro-Gauss, which is smaller than the typical values of supernova remnants (SNRs) and is consistent with some pulsar wind nebulae (PWNe). On the other hand, the flat γ -ray spectrum is slightly different from typical PWNe but is similar to that of some known SNRs.

  4. Laser diagnostics of the energy spectrum of Rydberg states of the lithium-7 atom

    Energy Technology Data Exchange (ETDEWEB)

    Zelener, B. B., E-mail: bobozel@mail.ru; Saakyan, S. A.; Sautenkov, V. A.; Manykin, E. A.; Zelener, B. V.; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-12-15

    The spectra of excited lithium-7 atoms prepared in a magneto-optical trap are studied using a UV laser. The laser diagnostics of the energy of Rydberg atoms is developed based on measurements of the change in resonance fluorescence intensity of ultracold atoms as the exciting UV radiation frequency passes through the Rydberg transition frequency. The energies of various nS configurations are obtained in a broad range of the principal quantum number n from 38 to 165. The values of the quantum defect and ionization energy obtained in experiments and predicted theoretically are discussed.

  5. Ion acceleration with a narrow energy spectrum by nanosecond laser-irradiation of solid target

    Energy Technology Data Exchange (ETDEWEB)

    Altana, C., E-mail: altana@lns.infn.it [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Lanzalone, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore,” Via delle Olimpiadi, 94100 Enna (Italy); Mascali, D.; Cirrone, G. A. P.; Schillaci, F.; Tudisco, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Muoio, A. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F. D’Alcontres 31, 98166 Messina (Italy)

    2016-02-15

    In laser-driven plasma, ion acceleration of aluminum with the production of a quasi-monoenergetic beam has occurred. A useful device to analyze the ions is the Thomson parabolas spectrometer, a well-known diagnostic that is able to obtain information on charge-to-mass ratio and energy distribution of the charged particles. At the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS in Catania, experimental measures were carried out; the features of LENS are: Q-switched Nd:YAG laser with 2 J laser energy, 1064 nm fundamental wavelengths, and 6 ns pulse duration.

  6. Electron energy spectrum produced in radio sources by turbulent, resonant acceleration

    International Nuclear Information System (INIS)

    Eilek, J.A.; Henriksen, R.N.

    1984-01-01

    We consider relativistic particle acceleration by resonant Alfven waves which are driven internally in a radio source from fully developed fluid turbulence. We find that self-similar behavior as described by Lacombe, f(p)proportionalp - /sup s/ but with sroughly-equal4.5, arises self-consistently when this turbulent wave driving coexists with synchrotron losses. The coupling of the wave and particle distributions provides feedback which drives an arbitrary initial distribution to the form-stable, self-similar form. The model predicts that turbulent plasma in a radio source should evolve toward a synchrotron spectral index, 0.5< or approx. =α< or approx. =1.0 in one particle lifetime, and that the average spectrum of most sources should also be in this range. The theory may also be applicable to other turbulent sites, such as cosmic-ray reaccelertion in the interstellar medium

  7. Energy Efficiency and SINR Maximization Beamformers for Spectrum Sharing With Sensing Information

    KAUST Repository

    Alabbasi, AbdulRahman; Rezki, Zouheir; Shihada, Basem

    2014-01-01

    an underlaying communication using adaptive beamforming schemes combined with sensing information to achieve optimal energy-efficient systems. The proposed schemes maximize EE and SINR metrics subject to cognitive radio and quality-of-service constraints

  8. Ethanol yield and energy potential of stems from a spectrum of sorghum biomass types

    Energy Technology Data Exchange (ETDEWEB)

    McBee, G.G.; Creelman, R.A.; Miller, F.R.

    1988-01-01

    Sorghum biomass is a renewable resource that offers significant potential for energy utilization. Six sorghum cultivars, representing an array of stem types, were evaluated for ethanol yield. Ethanol production was individually obtained for both the total stem and the pith of each type by anaerobic yeast fermentation. Value of the energy contained in the rind was determined by calorimetry. The highest yield of ethanol from total stem fermentation was 3418.3 liters ha/sup -1/ produced from Rio. Fermentation of Rio pith to ethanol and combustion of the rind resulted in the highest total energy value of the cultivars. The least and greatest energy values were 6.3 and 44.3 x 10/sup 6/ kcal ha/sup -1/ for SC0056-14 and Rio, respectively. Conversion ratios of potentially fermentable carbohydrates (within the vegetative biomass) to ethanol produced, averaged 0.438 for the pith and 0.406 for total stems.

  9. Quantum Geometry: Relativistic energy approach to cooperative electron-nucleary-transition spectrum

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Хецелиус

    2014-11-01

    Full Text Available An advanced relativistic energy approach is presented and applied to calculating parameters of electron-nuclear 7-transition spectra of nucleus in the atom. The intensities of the spectral satellites are defined in the relativistic version of the energy approach (S-matrix formalism, and gauge-invariant quantum-electrodynamical perturbation theory with the Dirac-Kohn-Sham density-functional zeroth approximation.

  10. High-energy-ion depletion in the charge exchange spectrum of Alcator C

    International Nuclear Information System (INIS)

    Schissel, D.P.

    1982-01-01

    A three-dimensional, guiding center, Monte Carlo code is developed to study ion orbits in Alcator C. The highly peaked ripple of the magnetic field of Alcator is represented by an analytical expression for the vector potential. The analytical ripple field is compared to the resulting magnetic field generated by a current model of the toroidal plates; agreement is excellent. Ion-Ion scattering is simulated by a pitch angle and an energy scattering operator. The equations of motion are integrated with a variable time step, extrapolating integrator. The code produces collisionless banana and ripple trapped loss cones which agree well with present theory. Global energy distributions have been calculated and show a slight depletion above 8.5 keV. Particles which are ripple trapped and lost are at energies below where depletion is observed. It is found that ions pitch angle scatter less as energy is increased. The result is that, when viewed in velocity space, ions form probability lobes the shape of mouse ears which are fat near the thermal energy. Therefore, particles enter the loss cone at low energies near the bottom of the core. Recommendations for future work include improving the analytic model of the ripple field, testing the effect of del . B not equal to 0 on ion orbits, and improving the efficiency of the code by either using a spline fit for the magnetic fields or by creating a vectorized Monte Carlo code

  11. Composition of cosmic rays in the knee region of the primary energy spectrum

    International Nuclear Information System (INIS)

    Das Gupta, U.

    1989-01-01

    The Soudan Surface-Underground Cosmic Ray Telescope is located at the Soudan iron mine in northern Minnesota. It consists of a coincidence arrangement of two detectors-one installed at the surface of the mine and the other located underground, at a vertical depth of 600 meters. Using such an arrangement, the energy and composition of a primary cosmic ray particle can be determined independently of one another. When a high energy cosmic ray enters the Earth's atmosphere, secondary particles are produced in successive interactions, creating an extensive air shower. Using the surface detector, the number of particles in the shower at the surface of the Earth can be counted and the energy of the primary particle estimated. Of all the particles that are created in a cosmic ray air shower, only the energetic muons are able to penetrate underground. The separations of the muons below ground are measured by the Soudan 1 detector and this serves as an indicator of the type of nucleus that initiated the shower. The Soudan surface-underground detector is sensitive to primary cosmic rays of energies between 10 14 and 10 18 eV. The data from the experiment were compared to the predictions of various cosmic ray composition models, within this energy range. The data supported a composition model that was proton dominated up to the highest energies measured. There was no indication of a shift in the composition towards heavier primaries as would be expected on the basis of some models

  12. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 13. Integration of Renewable Energy Technologies in the national curriculum SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Kamphuis, E. [ETC Nederland, Leusden (Netherlands); Permana, I. [Technical Education Development Centre TEDC, Bandung (Indonesia)

    2011-11-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report focuses on the achievements for settling a national curriculum for Renewable Energy Technologies (RET) within the framework of national programme SPECTRUM, which includes all curricula of the medium technical schools in Indonesia.

  13. Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna.

    Science.gov (United States)

    Zhao, Huaqiao; Gao, Huotao; Cao, Ting; Li, Boya

    2018-01-22

    In this work, the collection of solar energy by a broad-band nanospiral antenna is investigated in order to solve the low efficiency of the solar rectenna based on conventional nanoantennas. The antenna impedance, radiation, polarization and effective area are all considered in the efficiency calculation using the finite integral technique. The wavelength range investigated is 300-3000 nm, which corresponds to more than 98% of the solar radiation energy. It's found that the nanospiral has stronger field enhancement in the gap than a nanodipole counterpart. And a maximum harvesting efficiency about 80% is possible in principle for the nanospiral coupled to a rectifier resistance of 200 Ω, while about 10% for the nanodipole under the same conditions. Moreover, the nanospiral could be coupled to a rectifier diode of high resistance more easily than the nanodipole. These results indicate that the efficient full-spectrum utilization, reception and conversion of solar energy can be achieved by the nanospiral antenna, which is expected to promote the solar rectenna to be a promising technology in the clean, renewable energy application.

  14. Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe(Astrophysics and Cosmology)

    OpenAIRE

    Ryuichi, TAKAHASHI; Department of Physics and Astrophysics, Nagoya University

    2008-01-01

    We investigate the third-order density perturbation and the one-loop correction to the linear power spectrum in the dark-energy cosmological model. Our main interest is to understand the dark-energy effect on baryon acoustic oscillations in a quasi-nonlinear regime (k≈0.1h/Mpc). Analytical solutions and simple fitting formulae are presented for the dark-energy model with the general time-varying equation of state w(a). It turns out that the power spectrum coincides with the approximate res...

  15. Kinetic energy spectrum and polarization of neutrons from the reaction 12C(p,n)X at 590 MeV

    International Nuclear Information System (INIS)

    Arnold, J.

    1998-01-01

    The kinetic energy spectrum and the polarization of the PSI neutron beam produced in the reaction 12 C(p,n)X at 0 with 590 MeV polarized protons were investigated. A strong energy dependence of the neutron beam polarization is observed which was not expected at the time the neutron beam was built. (orig.)

  16. Simulation Analysis of China’s Energy and Industrial Structure Adjustment Potential to Achieve a Low-carbon Economy by 2020

    Directory of Open Access Journals (Sweden)

    Nan Xiang

    2013-11-01

    Full Text Available To achieve a low-carbon economy, China has committed to reducing its carbon dioxide (CO2 emissions per unit of gross domestic product (GDP by 40%–45% by 2020 from 2005 levels and increasing the share of non-fossil fuels in primary energy consumption to approximately 15%. It is necessary to investigate whether this plan is suitable and how this target may be reached. This paper verifies the feasibility of achieving the CO2 emission targets by energy and industrial structure adjustments, and proposes applicable measures for further sustainable development by 2020 through comprehensive simulation. The simulation model comprises three sub-models: an energy flow balance model, a CO2 emission model, and a socio-economic model. The model is constructed based on input-output table and three balances (material, value, and energy flow balance, and it is written in LINGO, a linear dynamic programming language. The simulation results suggest that China’s carbon intensity reduction promise can be realized and even surpassed to 50% and that economic development (annual 10% GDP growth rate can be achieved if energy and industrial structure are adjusted properly by 2020. However, the total amount of CO2 emission will reach a relatively high level—13.68 billion tons—which calls for further sound approaches to realize a low carbon economy, such as energy utilization efficiency improvement, technology innovation, and non-fossil energy’s utilization.

  17. Factors that influence consumers' acceptance of future energy systems : the effects of adjustment type, production level, and price

    NARCIS (Netherlands)

    Leijten, Fenna R. M.; Bolderdijk, Jan Willem; Keizer, Kees; Gorsira, Madelijne; van der Werff, Ellen; Steg, Linda

    2014-01-01

    To promote the successful introduction of sustainable energy systems, more insight is needed into factors influencing consumer's acceptance of future energy systems. A questionnaire study among 139 Dutch citizens (aged 18-85) was conducted. Participants rated the acceptability of energy systems made

  18. Energy spectrum inverse problem of q-deformed harmonic oscillator and entanglement of composite bosons

    Science.gov (United States)

    Sang, Nguyen Anh; Thu Thuy, Do Thi; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai

    2017-06-01

    Using the simple deformed three-level model (D3L model) proposed in our early work, we study the entanglement problem of composite bosons. Consider three first energy levels are known, we can get two energy separations, and can define the level deformation parameter δ. Using connection between q-deformed harmonic oscillator and Morse-like anharmonic potential, the deform parameter q also can be derived explicitly. Like the Einstein’s theory of special relativity, we introduce the observer e˙ects: out side observer (looking from outside the studying system) and inside observer (looking inside the studying system). Corresponding to those observers, the outside entanglement entropy and inside entanglement entropy will be defined.. Like the case of Foucault pendulum in the problem of Earth rotation, our deformation energy level investigation might be useful in prediction the environment e˙ect outside a confined box.

  19. Energy spectrum of the nucleus 73Ta181 by a canonical transformation

    International Nuclear Information System (INIS)

    Demirhan, D.; Bueyuekkilic, F.

    1990-01-01

    The quasi-particle creation and annihilation operators introduced in the BCS formalism for the sake of convenience in the calculations, are taken as a function of a parameter (σ). This parameter is also a function of an arbitrary parameter in terms of the probability of the states being occupied or unoccupied. The canonical transformation of the general Hamiltonian of the nucleus has been performed in terms of this new parameter. Using the Hamiltonian obtained, the matrix elements of the odd-mass nucleus are calculated and the energy spectra are determined. The single-particle energies are calculated by diagonalization of the Lamm Hamiltonian with the asymptotic base wave function. It is observed that the energy values can be found in a rational manner by a suitable choice of all the parameters. (author) 10 refs.; 4 tabs

  20. High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum

    Science.gov (United States)

    Alexander, David; Dunphy, Philip P.; Mackinnon, Alexander L.

    1994-01-01

    Using a multi-component model to describe the gamma-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of pi(sup 0) emission alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened pi(sup 0) decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this gamma-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the pi(sup 0) decay emission, demonstrating effectively the diagnostic capabilities of the pi(sup 0) decay gamma-rays. The spectral index derived from the gamma-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5-0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.

  1. Analytical investigation of energy spectrums of beta rays emitted from 90Sr and 204Tl radioisotopes

    International Nuclear Information System (INIS)

    Yalcin, S.

    2011-01-01

    The energy spectra of beta rays emitted from 90 Sr and 204 Tl radioisotopes were obtained by using a silicon surface barrier detector with a 1000 μm depleted layer and 50 mm 2 effective area. The detector response function is interpreted by making use of range distributions of mono-energetic electrons in matter and by assuming a linear energy loss along the range in the depleted layer of the detector. An analytical expression is given for pulse height distribution obtained in the surface barrier detector. A good agreement is observed between the experimental results and theoretical interpretation. (author)

  2. Real-time adaptive spectrum sensing for cyclostationary and energy detectors

    DEFF Research Database (Denmark)

    Ivanov, Antoni; Mihovska, Albena; Tonchev, Krasimir

    2018-01-01

    In this article, we explore the details of some practical implementations of energy and cyclostationary detectors, which take into account the specific radio channel impairments (like noise uncertainty and fading), using the Universal Radio Serial Peripheral (USRP) hardware platform and the GNU...... Radio software. Both of these methods have straightforward analytical definitions and do not differ much in terms of implementational complexity. The energy detection method is known to be computationally light but lacking efficiency in very low SNRs. The cyclostationary detector has, in general...

  3. Impact of physical properties at very high energy scales on the superparticle mass spectrum

    International Nuclear Information System (INIS)

    Baer, H.; Diaz, M.; Quintana, P.; Tata, X.

    2000-01-01

    We survey a variety of proposals for new physics at high scales that serve to relate the multitude of soft supersymmetry breaking parameters of the MSSM. We focus on models where the new physics results in non-universal soft parameters, in sharp contrast with the usually assumed mSUGRA framework. These include (i) SU(5) and SO(10) grand unified (GUT) models, (ii) the MSSM plus a right-handed neutrino, (iii) models with effective supersymmetry, (iv) models with anomaly-mediated SUSY breaking and gaugino mediated SUSY breaking, (v) models with non-universal soft terms due to string dynamics, and (vi) models based on M-theory. We outline the physics behind these models, point out some distinctive features of the weak scale sparticle spectrum, and allude to implications for collider experiments. To facilitate future studies, for each of these scenarios, we describe how collider events can be generated using the program ISAJET. Our hope is that detailed studies of a variety of alternatives will help point to the physics underlying SUSY breaking and how this is mediated to the observable sector, once sparticles are discovered and their properties measured. (author)

  4. Photodynamic effect of hematoporphyrin derivative as a function of optical spectrum and incident energy density

    International Nuclear Information System (INIS)

    Kinsey, J.H.; Cortese, D.A.; Moses, H.L.; Ryan, R.J.; Branum, E.L.

    1981-01-01

    Tumor cell killing effect of hematoporphyrin derivative (HPD) and light was studied in culture to determine the dependence of this effect on treatment variables. Particular attention has been given to the spectral characteristics of the light and the absorption properties of hematoporphyrin. A human tumor cell line was treated using HPD and three broad bands of light ranging from the short- to the long-wavelength end of the visible spectrum. Cell killing was assessed by trypan blue exclusion. A transformed mouse embryo cell line was treated in a similar manner, and its reproductive efficiency was determined following treatment. Results of both studies are consistent with the hypothesis that the photocytotoxic action of HPD plus light is directly proportional to the number of light quanta absorbed by the HPD in each cell. For thin layers of cells, such as in situ carcinoma, it appears that short-wavelength radiation falling in the porphyrin Soret band around 400 nm may have from 12 to 30 times the killing power as does red light

  5. Weak interaction contribution to the energy spectrum of two-lepton system

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1995-01-01

    The contribution of neutral currents to the weak interaction quasi-potential of two leptons is investigated. The exact expression for the weak interaction operator of the system for arbitrary biding energies in one-boson approximation is obtained. The weak interaction contribution to the S-levels displacement of hydrogen-like atom. 14 refs

  6. Earth power spectrum and its potential as a usable energy source

    International Nuclear Information System (INIS)

    Richards, E.E.

    1984-01-01

    The aurora is a natural, visible manifestation of a large electrical-current system that is continually pumping millions of megawatts of electromagnetic power into the upper polar atmospheres, exceeding the total electrical generating capacity of the United States. Auroras begin on the sun, where the energy spirals away into interplanetary space at hundreds of miles per second; four days after it leaves the sun, this high speed stream of solar wind reaches the vicinity of the earth where the plasma collides with and moves around the planet's magnetic field. The high-speed solar wind reshapes the field into a comet-shaped cavity called the magnetosphere. The sunward shock front extends some 10-15 earth radii into space, while the night-side magnetotail stretches out beyond 60 earth radii (Re), reaching beyond the Moon's orbit. As the solar wind blows downstream along the edges of this magnetic cavity, the energies leak in and become part of an immense reservoir called the plasmasheet, which runs down the length of the magnetotail. The plasma that leaks in is carried back toward the Earth by the flow of the plasmasheet and down the funnels over the two polar regions, causing a constant ring-shaped glow. The path of the auroral energy streaming in along the Earth's magnetic field lines appears as a thin, glowing curtain hanging from 60 to hundreds of miles above the Earth. The magnetosphere is a big container of energy storage

  7. Evidence for cluster shape effects on the kinetic energy spectrum in thermionic emission.

    Science.gov (United States)

    Calvo, F; Lépine, F; Baguenard, B; Pagliarulo, F; Concina, B; Bordas, C; Parneix, P

    2007-11-28

    Experimental kinetic energy release distributions obtained for the thermionic emission from C(n) (-) clusters, 10theory, these different features are analyzed and interpreted as the consequence of contrasting shapes in the daughter clusters; linear and nonlinear isomers have clearly distinct signatures. These results provide a novel indirect structural probe for atomic clusters associated with their thermionic emission spectra.

  8. On the infimum of the energy-momentum spectrum of a homogeneous Bose gas

    DEFF Research Database (Denmark)

    Cornean, Horia; Derezinski, J.; Zin, P.

    We consider second quantized homogeneous Bose gas in a large cubic box with periodic boundary conditions, at zero temperature, and in the grand canonical setting (the chemical potential μ is fixed, the number of particles can vary). We investigate upper bounds on the infimum of the energy...

  9. Obscured flat spectrum radio active galactic nuclei as sources of high-energy neutrinos

    NARCIS (Netherlands)

    Maggi, G.; Buitink, S.; Correa, P.; de Vries, K. D.; Gentile, G.; Tavares, J. León; Scholten, O.; van Eijndhoven, N.; Vereecken, M.; Winchen, T.

    2016-01-01

    Active galactic nuclei (AGN) are believed to be one of the main source candidates for the high-energy (TeV-PeV) cosmic neutrino flux recently discovered by the IceCube neutrino observatory. Nevertheless, several correlation studies between AGN and the cosmic neutrinos detected by IceCube show no

  10. The High Energy X-ray Spectrum of 4U1700-37 Observed from OSO-8

    Science.gov (United States)

    Dolan, J. F.; Coe, M. J.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Maurer, G. S.; Orwig, L. E.

    1979-01-01

    The most intense hard X-ray source in the confused region in Scorpius is identified as 4U1700-37. The 3.4-day modulation is seen above 20 keV with the intensity during eclipse being consistent with zero flux. The photon-number spectrum from 20 to 150 keV is well represented by a single power law with a photo-number spectral index of -2.77 + or - 0.35 or by a thermal bremsstrahlung spectrum with kT = 27 96.8-min X-ray modulation previously reported at lower energies. Despite the difficulties in reconciling both the lack of periodic modulation in the emitted X-radiation and the orbital dynamics of the system with theories of the evolution and physical properties of neutron stars, the observed properties of 4U1700-37 are all consistent with the source being a spherically accreting neutron star rather than a black hole.

  11. [Energy dispersive spectrum analysis of surface compositions of selective laser melting cobalt-chromium alloy fabricated by different processing parameters].

    Science.gov (United States)

    Qian, Liang; Zeng, Li; Wei, Bin; Gong, Yao

    2015-06-01

    To fabricate selective laser melting cobalt-chromium alloy samples by different processing parameters, and to analyze the changes of energy dispersive spectrum(EDS) on their surface. Nine groups were set up by orthogonal experimental design according to different laser powers,scanning speeds and powder feeding rates(laser power:2500-3000 W, scanning speed: 5-15 mm/s, powder feeding rate: 3-6 r/min). Three cylinder specimens(10 mm in diameter and 3 mm in thickness) were fabricated in each group through Rofin DL 035Q laser cladding system using cobalt-chromium alloy powders which were developed independently by our group.Their surface compositions were then measured by EDS analysis. Results of EDS analysis of the 9 groups fabricated by different processing parameters(Co:62.98%-67.13%,Cr:25.56%-28.50%,Si:0.49%-1.23%) were obtained. They were similar to the compositions of cobalt-chromium alloy used in dental practice. According to EDS results, the surface compositions of the selective laser melting cobalt-chromium alloy samples are stable and controllable, which help us gain a preliminary sight into the range of SLM processing parameters. Supported by "973" Program (2012CB910401) and Research Fund of Science and Technology Committee of Shanghai Municipality (12441903001 and 13140902701).

  12. Research on neutron energy spectrum of the beryllium, iron and polyethylene shells assemblies injected by D-T neutron

    International Nuclear Information System (INIS)

    An, Li; Guo, Haiping; Wang, Xinhua

    2009-04-01

    To test a simulation code, the multi-shell assemblies were established, which were made of beryllium stainless steel and polyethylene from the interior to the outer. The symmetry axes are all in the line of the D + beam. The neutron energy spectra above 1 MeV were obtained in medium by the detector of stilbene crystal of φ18 min x 20 mm. The distance between source and the spherical surface was 30 cm and 50 cm. The measurement channels are in the angle 0 degree and 120 degree relative to D + beam direction. The measurement positions are 0 cm, 9.7 cm, 12.8 cm and 17.3 cm away from the center of the assembly in both directions. The spectrum in different positions of the multi-shell assemblies in medium were compared and analyzed. (authors)

  13. Modeling of the Signal Formation in SiC Sensors for Measurements of the Radiation Spectrum in Nuclear Energy

    International Nuclear Information System (INIS)

    Krolikowski, Igor P.

    2013-06-01

    The modeling methodology of the signal formation in SiC sensors is presented. The modeling uses two approaches: the first one is the integrated approach whereas the second is the analytical approach. The sensor response is obtained from both approaches: this is the usual solution of the forward problem. Moreover, the response function of the sensor is evaluated by means of the analytical approach and it can be used to solve the inverse problem: recovering the primary radiation spectrum using the response of the sensor. Additionally, the response function returns information about the signal formation in the sensor such as the shape of the response formed by particles with a specific energy. Results obtained by simulations are then compared with experimental data. (authors)

  14. Effects of Cu stress on maize seedlings using X-ray energy spectrum and FTIR spectra methods

    International Nuclear Information System (INIS)

    Qiao Lin; Fu Zhaolin; Qiao Chuanying

    2011-01-01

    The effects of Cu 2+ stress on maize seedlings by using scanning electron microscope, X-ray energy spectrum and Fourier transform infrared attenuated total reflection (FTIR-ATR) spectrometry were investigated, and antioxidative enzymes activities such as SOD, CAT, POD, APX were measured. Results showed that, with the increasing of Cu concentration, the content of chlorophyll decreased, and antioxidative enzyme activities increased at first and then decreased at higher concentration stress. High concentration Cu 2+ treatment twisted the cells' shape and increased copper content on leaf surface, and absorption of other nutrients were also affected. The result of FTIR-ATR analysis showed that the organic content of leaf were changed by Cu 2+ stress. (authors)

  15. Measurement of the top-quark mass from the b jet energy spectrum

    CERN Document Server

    CMS Collaboration

    2015-01-01

    The top-quark mass is measured using the peak position of the energy distribution of b jets produced from top-quark decays. The analysis is based on a recent theoretical proposal. The measurement is carried out selecting $\\mathrm{t\\overline{t}}$ events with one electron and one muon in the final state in proton-proton collision data at $\\sqrt{s}=8~\\mathrm{TeV}$, corresponding to an integrated luminosity of 19.7$~\\mathrm{fb}^{-1}$. The fitted peak position of the observed energy distribution is calibrated using simulated events and translated to a top-quark mass measurement using relativistic kinematics, with the result $m_{\\mathrm{t}}=172.29\\pm1.17\\,(\\mathrm{stat.})\\pm2.66\\,(\\mathrm{syst.})~\\mathrm{GeV}$.

  16. The high-energy X-ray spectrum of Centaurus XR-3 observed from OSO 8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1984-01-01

    Observations of the X-ray binary Cen XR-3 in the 20-120 keV energy range by means of OSO 8's high energy X-ray spectrometer, during July 16-19, 1975, and July 5-14 and 28-29, 1978, indicate that the source was in a high luminosity state during 1975 and a low luminosity one in 1978. While mean orbital light curves appear similar in shape in both years, orbit-to-orbit intensity variations are noted. Spectral, luminosity, and the 4.84 sec modulation are characterized. Cen XR-3 may be a system in which mass transfer by Roche lobe overflow, and by accretion from a stellar wind, are both effective in the production of observable X-ray radiation.

  17. Hadron energy spectrum in polarized top-quark decays considering the effects of hadron and bottom quark masses

    Energy Technology Data Exchange (ETDEWEB)

    Nejad, S.M.M. [Yazd University, Faculty of Physics, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O.Box 19395-5531, Tehran (Iran, Islamic Republic of); Balali, Mahboobe [Yazd University, Faculty of Physics, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2016-03-15

    We present the analytical expressions for the next-to-leading order corrections to the partial decay width t(↑) → bW{sup +}, followed by b @→ H{sub b}X, for nonzero b-quark mass (m{sub b} ≠ 0) in the fixed-flavor-number scheme (FFNs). To make the predictions for the energy distribution of outgoing hadrons H{sub b}, as a function of the normalized H{sub b}-energy fraction x{sub H}, we apply the general-mass variable-flavor-number scheme (GM-VFNs) in a specific helicity coordinate system where the polarization of top quark is evaluated relative to the b-quark momentum. We also study the effects of gluon fragmentation and finite hadron mass on the hadron energy spectrum so that hadron masses are responsible for the low x{sub H} threshold. In order to describe both the b-quark and the gluon hadronizations in top decays we apply realistic and nonperturbative fragmentation functions extracted through a global fit to the e{sup +}e{sup -} annihilation data from CERN LEP1 and SLAC SLC by relying on their universality and scaling violations. (orig.)

  18. Improved spatial resolution and lower-dose pediatric CT imaging: a feasibility study to evaluate narrowing the X-ray photon energy spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Benz, Mark G. [Safer Pediatric Imaging and Engineering Horizons International, Lincoln, VT (United States); Benz, Matthew W. [Southboro Medical Group, Southboro, MA (United States); Birnbaum, Steven B. [Dartmouth Hitchcock Clinic Manchester, Department of Radiology, Manchester, NH (United States); Chason, Eric; Sheldon, Brian W. [Brown University, Division of Engineering, Materials Science and Engineering Program, Providence, RI (United States); McGuire, Dale [R and D Manager, C and G Technologies Inc., Jeffersonville, IN (United States)

    2014-08-15

    This feasibility study has shown that improved spatial resolution and reduced radiation dose can be achieved in pediatric CT by narrowing the X-ray photon energy spectrum. This is done by placing a hafnium filter between the X-ray generator and a pediatric abdominal phantom. A CT system manufactured in 1999 that was in the process of being remanufactured was used as the platform for this study. This system had the advantage of easy access to the X-ray generator for modifications to change the X-ray photon energy spectrum; it also had the disadvantage of not employing the latest post-imaging noise reduction iterative reconstruction technology. Because we observed improvements after changing the X-ray photon energy spectrum, we recommend a future study combining this change with an optimized iterative reconstruction noise reduction technique. (orig.)

  19. Spectrum sensitivity, energy yield, and revenue prediction of PV and CPV modules

    Energy Technology Data Exchange (ETDEWEB)

    Kinsey, Geoffrey S., E-mail: Geoffrey.kinsey@ee.doe.gov [U.S. Department of Energy, 950 L’Enfant Plaza, Washington, DC 20024 (United States)

    2015-09-28

    Impact on module performance of spectral irradiance variation has been determined for III-V multijunctions compared against the four most common flat-plate module types (cadmium telluride, multicrystalline silicon, copper indium gallium selenide, and monocrystalline silicon. Hour-by-hour representative spectra were generated using atmospheric variables for Albuquerque, New Mexico, USA. Convolution with published values for external quantum efficiency gave the predicted current output. When combined with specifications of commercial PV modules, energy yield and revenue were predicted. This approach provides a means for optimizing PV module design based on various site-specific temporal variables.

  20. A Very High Energy Gamma-Ray Spectrum of 1ES 2344+514

    OpenAIRE

    Schroedter, M.; Badran, H. M.; Buckley, J. H.; Gordo, J. Bussons; Carter-Lewis, D. A.; Duke, C.; Fegan, D. J.; Fegan, S. F.; Finley, J. P.; Gillanders, G. H.; Grube, J.; Horan, D.; Kenny, G. E.; Kertzman, M.; Kosack, K.

    2005-01-01

    The BL Lacertae (BL Lac) object 1ES 2344+514 (1ES 2344), at a redshift of 0.044, was discovered as a source of very high energy (VHE) gamma rays by the Whipple Collaboration in 1995 \\citep{2344Catanese98}. This detection was recently confirmed by the HEGRA Collaboration \\citep{2344Hegra03}. As is typical for high-frequency peaked blazars, the VHE gamma-ray emission is highly variable. On the night of 20 December, 1995, a gamma-ray flare of 5.3-sigma significance was detected, the brightest ou...

  1. Study of the low energy spectrum of titanium by using QMC methods

    Science.gov (United States)

    Buendía, E.; Caballero, M. A.; Gálvez, F. J.

    2018-02-01

    We study the ground state and the low energy excited states of Ti. Each variational wave function is a product of a Jastrow correlation factor by a model function obtained within the parameterized optimized effective potential (POEP) framework by using a configuration mixing. Near degeneracy effects between the orbitals 4s and 4p, as well as excitations to the 3d orbital due to the strong competition between 4s and 3d orbitals in transition metal atoms are taken into account. All electron calculations have been carried out by using quantum Monte Carlo techniques, variational and diffusion.

  2. The spectrum of protons produced in pp collisions at 31 GeV total energy

    CERN Document Server

    Albrow, M G; Barber, D P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C; Van der Veen, F

    1973-01-01

    Data are reported on the distributions in longitudinal and transverse momentum of protons produced in the range 0.5energy at the CERN ISR. The invariant inelastic cross section shows a peak at high longitudinal momenta. The shape of this peak suggests substantial production of states with masses up to at least 7 GeV. (4 refs).

  3. Energy Efficiency and SINR Maximization Beamformers for Spectrum Sharing With Sensing Information

    KAUST Repository

    Alabbasi, Abdulrahman

    2014-09-01

    In this paper, we consider a cognitive radio multi-input-multi-output environment, in which we adapt our beamformer to maximize both energy efficiency (EE) and signal-to-interference-plus-noise ratio (SINR) metrics. Our design considers an underlaying communication using adaptive beamforming schemes combined with sensing information to achieve optimal energy-efficient systems. The proposed schemes maximize EE and SINR metrics subject to cognitive radio and quality-of-service constraints. The analysis of the proposed schemes is classified into two categories based on knowledge of the secondary-transmitter-to-primary-receiver channel. Since the optimizations of EE and SINR problems are not convex problems, we transform them into a standard semidefinite programming (SDP) form to guarantee that the optimal solutions are global. An analytical solution is provided for one scheme, while the second scheme is left in a standard SDP form. Selected numerical results are used to quantify the impact of the sensing information on the proposed schemes compared to the benchmark ones.

  4. Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum

    Science.gov (United States)

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-01-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349

  5. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    Science.gov (United States)

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-02

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.

  6. Detecting Energy Spectrum Of The Products Of Reaction 6Li(n,alpha)3H By The Home-Made Gaseous Detectors In Vietnam

    International Nuclear Information System (INIS)

    Luong Huu Phuoc; Phung Van Duan; Le Van Mien; Nguyen Tat Thang; Tran Hoai Nam

    2008-01-01

    There are shown some of results of study in designing and making first gaseous detectors of big sizes in Vietnam. The detectors were used for test measurement of detecting energy spectrum of the products of reaction 6 Li(n,alpha) 3 H caused by thermal neutrons. On the spectrum there were observed two energy peaks of tritons and alpha particles separately. In the test measurement there were used two neutron isotopic sources with total output 2x1.1x10 7 n/s. The study was implemented at Hanoi University of Technology. (author)

  7. Possible connection between the location of the cutoff in the cosmic microwave background spectrum and the equation of state of dark energy.

    Science.gov (United States)

    Enqvist, Kari; Sloth, Martin S

    2004-11-26

    We investigate a possible connection between the suppression of the power at low multipoles in the cosmic microwave background (CMB) spectrum and the late time acceleration. We show that, assuming a cosmic IR/UV duality between the UV cutoff and a global infrared cutoff given by the size of the future event horizon, the equation of state of the dark energy can be related to the apparent cutoff in the CMB spectrum. The present limits on the equation of state of dark energy are shown to imply an IR cutoff in the CMB multipole interval of 9>l>8.5.

  8. HIGH-RESOLUTION ROTATIONAL SPECTRUM, DUNHAM COEFFICIENTS, AND POTENTIAL ENERGY FUNCTION OF NaCl

    International Nuclear Information System (INIS)

    Cabezas, C.; Peña, I.; Alonso, J. L.; Cernicharo, J.; Quintana-Lacaci, G.; Agundez, M.; Prieto, L. Velilla; Castro-Carrizo, A.; Zuñiga, J.; Bastida, A.; Requena, A.

    2016-01-01

    We report laboratory spectroscopy for the first time of the J = 1–0 and J = 2–1 lines of Na 35 Cl and Na 37 Cl in several vibrational states. The hyperfine structure has been resolved in both transitions for all vibrational levels, which permit us to predict with high accuracy the hyperfine splitting of the rotational transitions of the two isotopologues at higher frequencies. The new data have been merged with all previous works at microwave, millimeter, and infrared wavelengths and fitted to a series of mass-independent Dunham parameters and to a potential energy function. The obtained parameters have been used to compute a new dipole moment function, from which the dipole moment for infrared transitions up to Δ v = 8 has been derived. Frequency and intensity predictions are provided for all rovibrational transitions up to J = 150 and v = 8, from which the ALMA data of evolved stars can be modeled and interpreted.

  9. HIGH-RESOLUTION ROTATIONAL SPECTRUM, DUNHAM COEFFICIENTS, AND POTENTIAL ENERGY FUNCTION OF NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas, C.; Peña, I.; Alonso, J. L. [Grupo de Espectroscopía Molecular, Edificio Quifima, Laboratorios de Espectroscopía y Bioespectroscopía, Unidad asociada CSIC, Parque científico Uva, Universidad de Valladolid, Paseo de Belén 5, E-47011, Valladolid (Spain); Cernicharo, J.; Quintana-Lacaci, G.; Agundez, M.; Prieto, L. Velilla [Group of Molecular Astrophysics, ICMM, CSIC. C/Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco, Madrid (Spain); Castro-Carrizo, A. [Institut de Radioastronomie Millimétrique, 300 rue de la la Piscine, F-38406, Saint Martin d’Hères (France); Zuñiga, J.; Bastida, A.; Requena, A. [Universidad de Murcia. Faculdad de Química, Dpto. de Química-Física, Campus Espinardo E-30100, Murcia (Spain)

    2016-07-10

    We report laboratory spectroscopy for the first time of the J = 1–0 and J = 2–1 lines of Na{sup 35}Cl and Na{sup 37}Cl in several vibrational states. The hyperfine structure has been resolved in both transitions for all vibrational levels, which permit us to predict with high accuracy the hyperfine splitting of the rotational transitions of the two isotopologues at higher frequencies. The new data have been merged with all previous works at microwave, millimeter, and infrared wavelengths and fitted to a series of mass-independent Dunham parameters and to a potential energy function. The obtained parameters have been used to compute a new dipole moment function, from which the dipole moment for infrared transitions up to Δ v = 8 has been derived. Frequency and intensity predictions are provided for all rovibrational transitions up to J = 150 and v = 8, from which the ALMA data of evolved stars can be modeled and interpreted.

  10. Ground level cosmic ray pulse height spectrum of a 7. 5 cm diameter spherical NaI(Tl) scintillation detector for energy region below 5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Toshi; Saito, Kimiaki; Moriuchi, Shigeru

    1988-09-01

    Ground level cosmic ray pulse height spectrum of a 7.5 cm diameter spherical NaI(Tl) scintillation detector was evaluated through stripping operation based on a pulse height spectrum measured on the sea and high precision response functions of the detector for U-series, Th-series and /sup 40/K. The exposure rate calculated from the determined cosmic ray pulse height spectrum was 0.21 R/h eq., which agreed well with that obtained from another method. The shape of the pulse height spectrum showed similarity to that measured at the altitude of 16,000 ft, especially in the energy region of 0 to 3 MeV. The principle of the adopted method is rather plain, however, the reliability of the spectrum is satisfactory. As the pulse height spectrum is a common information to any analytical method for environmental gamma ray using NaI(Tl) scintillation detector, it is expected to be used for simple and precise separation of cosmic ray component involved in the enviromental pulse height spectrum.

  11. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  12. Low Energy Spectrum of Proximate Kitaev Spin Liquid α -RuCl3 by Terahertz Spectroscopy

    Science.gov (United States)

    Little, Arielle; Wu, Liang; Kelley, Paige; Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Orenstein, Joseph

    A Quantum Spin Liquid (QSL) is an ultra-quantum state of matter with no ordered ground state. Recently, a route to a QSL identified by Kitaev has received a great deal of attention. The compound α -RuCl3, in which Ru atoms form a honeycomb lattice, has been shown to possess Kitaev exchange interactions, although a smaller Heisenberg interaction exists and leads to a zig-zag antiferromagnetic state below 7 K. Because of proximity to the exactly-solvable Kitaev spin-liquid model, this material is considered a potential host for Majorana-like modes. In this work, we use time-domain terahertz (THz) Spectroscopy to probe the low-energy excitations of α -RuCl3. We observe the emergence of a sharp magnetic spin-wave absorption peak below the AFM ordering temperature at 7 K on top of a broad continuum that persists up to room temperature. Additionally we report the polarization dependence of the THz absorption, which reveals optical birefringence, indicating the presence of large monoclinic domains.

  13. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Byard D. Wood; Jeff D. Muhs

    2002-09-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports day light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of day lighting and fluorescent lighting for office lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. The secondary mirror consists of eight planar-segmented mirrors that direct the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic array to produce electricity. This report describes eleven investigations on various aspects of the system. Taken as a whole, they confirm the technical feasibility of this technology.

  14. Performance analysis of fusion nuclear-data benchmark experiments for light to heavy materials in MeV energy region with a neutron spectrum shifter

    International Nuclear Information System (INIS)

    Murata, Isao; Ohta, Masayuki; Miyamaru, Hiroyuki; Kondo, Keitaro; Yoshida, Shigeo; Iida, Toshiyuki; Ochiai, Kentaro; Konno, Chikara

    2011-01-01

    Nuclear data are indispensable for development of fusion reactor candidate materials. However, benchmarking of the nuclear data in MeV energy region is not yet adequate. In the present study, benchmark performance in the MeV energy region was investigated theoretically for experiments by using a 14 MeV neutron source. We carried out a systematical analysis for light to heavy materials. As a result, the benchmark performance for the neutron spectrum was confirmed to be acceptable, while for gamma-rays it was not sufficiently accurate. Consequently, a spectrum shifter has to be applied. Beryllium had the best performance as a shifter. Moreover, a preliminary examination of whether it is really acceptable that only the spectrum before the last collision is considered in the benchmark performance analysis. It was pointed out that not only the last collision but also earlier collisions should be considered equally in the benchmark performance analysis.

  15. Measurement of the internal bremsstrahlung spectrum of a 89Sr beta emitter in the 1–100 keV photon energy regime

    International Nuclear Information System (INIS)

    Singh, Amrit; Dhaliwal, A.S.

    2015-01-01

    The internal bremsstrahlung (IB) spectrum of 89 Sr, which is a unique first forbidden beta emitter, is studied in the 1–100 keV photon energy regime. The IB spectrum is experimentally measured using a Si(Li) detector, which is efficient in this photon energy regime, and is compared with the IB distributions that are predicted by the Knipp, Uhlenbeck and Bloch (KUB), Nilsson, and Lewis and Ford theories. In the soft energy regime up to 15 keV, the measured results are in agreement with all the aforementioned theories. However, from 16–30 keV, the experimental results are in agreement with the Lewis and Ford theory, which applies to forbidden transitions, and at higher photon energies, the Nilsson theory best describes the measured results. The differences among the different theories also increase with the photon energy. The effect of the electrostatic Coulomb field on the IB process for beta emitters with different end-point energies is investigated by comparing the ratio of the IB probabilities predicted using the KUB and Nilsson theories for 35 S and 89 Sr, i.e., soft and hard beta emitters, respectively. The Coulomb effect is shown to be significant in the high photon energy regime and for beta emitters with low end-point energies. - Highlights: • Internal bremsstrahlung spectrum of 89 Sr, a unique first forbidden beta emitter, is studied. • The measurements are taken in the photon energy regions of 1–100 keV with Si(Li) detector. • The measured results are deviating from Lewis and Ford theory and are close to the Nilsson theory. • The effect of Coulomb field on the IB process for different end point energy sources is investigated. • Effect of Coulomb field is more for low energy beta emitter towards the high energy end

  16. Determination of the energy spectrum of the neutrons in the central thimble of the reactor core TRIGA Mark III; Determinacion del espectro de energia de los neutrones en el dedal central del nucleo del reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Parra M, M. A.

    2014-07-01

    This thesis presents the neutron spectrum measurements inside the core of the TRIGA Mark III reactor at 1 MW power in steady-state, with the bridge placed in the center of the swimming pool, using several metallic threshold foils. The activation detectors are inserted in the Central Thimble of the reactor core, all the foils are irradiated in the same position and irradiation conditions (one by one). The threshold detectors are made of different materials such as: Au{sup 197}, Ni{sup 58}, In{sup 115}, Mg{sup 24}, Al{sup 27}, Fe{sup 58}, Co{sup 59} and Cu{sup 63}, they were selected to cover the full range the energies (10{sup -10} to 20 MeV) of the neutron spectrum in the reactor core. After the irradiation, the activation detectors were measured by means of spectrometry gamma, using a high resolution counting system with a hyper pure Germanium crystal, in order to obtain the saturation activity per target nuclide. The saturation activity is one of the main input data together with the initial spectrum, for the computational code SANDBP (hungarian version of the code SAND-II), which through an iterative adjustment, gives the calculated spectrum. The different saturation activities are necessary for the unfolding method, used by the computational code SANDBP. This research work is very important, since the knowledge of the energetic and spatial distribution of the neutron flux in the irradiation facilities, allows to characterize properly the irradiation facilities, just like, to estimate with a good precision various physics parameters of the reactor such as: neutron fluxes (thermal, intermediate and fast), neutronic dose, neutron activation analysis (NAA), spectral indices (cadmium ratio), buckling, fuel burnup, safety parameters (reactivity, temperature distribution, peak factors). In addition, the knowledge of the already mentioned parameters can give a best use of reactor, optimizing the irradiations requested by the users for their production process or

  17. Ab initio calculation of a global potential, vibrational energies, and wave functions for HCN/HNC, and a simulation of the (A-tilde)-(X-tilde) emission spectrum

    Science.gov (United States)

    Bowman, Joel M.; Gazdy, Bela; Bentley, Joseph A.; Lee, Timothy J.; Dateo, Christopher E.

    1993-01-01

    A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.

  18. Asymmetric adjustment

    NARCIS (Netherlands)

    2010-01-01

    A method of adjusting a signal processing parameter for a first hearing aid and a second hearing aid forming parts of a binaural hearing aid system to be worn by a user is provided. The binaural hearing aid system comprises a user specific model representing a desired asymmetry between a first ear

  19. Theory of electron energy spectrum and Aharonov-Bohm effect in self-assembled Inx Ga1-x As quantum rings in GaAs

    NARCIS (Netherlands)

    Fomin, V.M.; Gladilin, V.N.; Klimin, S.N.; Devreese, J.T.; Kleemans, N.A.J.M.; Koenraad, P.M.

    2007-01-01

    We analyze theoretically the electron energy spectrum and the magnetization of an electron in a strained Inx Ga1-x As GaAs self-assembled quantum ring (SAQR) with realistic parameters, determined from the cross-sectional scanning-tunneling microscopy characterization of that nanostructure. The SAQRs

  20. EAS spectrum in the primary energy region above 10 to the 15th power eV by the Akeno and Yakutsk array data

    Science.gov (United States)

    Krasilnikov, D. D.; Knurenko, S. P.; Krasilnikov, A. D.; Pavlov, V. N.; Sleptsov, I. Y.; Yegorova, V. P.

    1985-01-01

    The extensive air showers spectrum on scintillation desity Rko in primary energy region E sub approx. 10 to the 15th power - 10 to the 20th power eV on the Yakutsk array data and recent results of the Akeno is given.

  1. Adaptive Full-Spectrum Solar Energy Systems Cross-Cutting R&D on adaptive full-spectrum solar energy systems for more efficient and affordable use of solar energy in buildings and hybrid photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Byard; Kim, Kwang

    2006-03-30

    This RD&D project is a multi-institutional effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae for CO{sub 2} sequestration or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the third generation (beta) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of 3 mm diameter fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the major achievements from this research that began in August 2001.

  2. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS Cross-Cutting R & D on adaptive full-spectrum solar energy systems for more efficient and affordable use of solar energy in buildings and hybrid photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Byard D. Wood; David L. Beshears

    2006-02-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the third generation (beta) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of 3 mm diameter fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the following investigations: Niche applications for HSL technology, Luminaire design characteristics for linear and point lighting fixtures, and Daylight affects on productivity.

  3. A 16.3 pJ/pulse low-complexity and energy-efficient transmitter with adjustable pulse parameters

    International Nuclear Information System (INIS)

    Jiang Jun; Zhao Yi; Shao Ke; Chen Hu; Xia Lingli; Hong Zhiliang

    2011-01-01

    This paper presents a novel, fully integrated transmitter for 3-5 GHz pulsed UWB. The BPSK modulation transmitter has been implemented in SMIC CMOS 0.13 μm technology with a 1.2-V supply voltage and a die size of 0.8 x 0.95 mm 2 . This transmitter is based on the impulse response filter method, which uses a tunable R paralleled with a LC frequency selection network to realize continuously adjustable pulse parameters, including bandwidth, width and amplitude. Due to the extremely low duty of the pulsed UWB, a proposed output buffer is employed to save power consumption significantly. Finally, measurement results show that the transmitter consumes only 16.3 pJ/pulse to achieve a pulse repetition rate of 100 Mb/s. Generated pulses strictly comply with the FCC spectral mask. The continuously variable pulse width is from 900 to 1.5 ns and the amplitude with the minimum 178 mVpp and the maximum 432 mVpp can be achieved. (semiconductor integrated circuits)

  4. Measurement of the energy spectrum of {sup 252}Cf fission fragments using nuclear track detectors and digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G.; Golzarri, J. I. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Castano, V. M. [UNAM, Centro de Fisica Aplicada y Tecnologia Avanzada, Boulevard Juriquilla 3001, Santiago de Queretaro, 76230 Queretaro (Mexico); Gaso, I. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Mena, M.; Segovia, N. [UNAM, Instituto de Geofisica, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2010-02-15

    The energy spectrum of {sup 252}Cf fission fragments was measured using nuclear track detectors and digital image analysis system. The detection material was fused silica glass. The detectors were chemically etched in an 8% HF solution. After experimenting with various etching time, it was found that the best resolution of the track diameter distribution was obtained after 30 minutes of etching. Both Gaussian and Lorentzian curves were fit to the track diameter distribution histograms and used to determine the basic parameters of the distribution of the light (N{sub L}) and heavy (N{sub H}) formed peaks and the minimum of the central valley (N{sub V}). Advantages of the method presented here include the fully-automated analysis process, the low cost of the nuclear track detectors and the simplicity of the nuclear track method. The distribution resolution obtained by this method is comparable with the resolution obtained by electronic analysis devices. The descriptive variables calculated were very close to those obtained by other methods based on the use of semiconductor detectors. (Author)

  5. Energy spectrum of flares of the UV Cet stars and physical measunings of several statistical characteristics of these stars

    International Nuclear Information System (INIS)

    Gershberg, R.E.

    1985-01-01

    Accounting the observed power character of the energy spectrum of flares of the UV Cet-type stars, several statistical characterisitics of there stars are considered. It is shown that a mean amplitude of flares is mainly determined with an amplitude of the faintest flare that can be registered at the star under consideration and therefore - contrary to tradition - the mean flare amplitude cannot be used as a measure of a flare activity of the star. Mean frequencuy of flares registered at a flare star dependes statisticaally certainly ona an absolute magneitude of the star - contary to wide spread belief, true mean frequencies are higher at brighter stars. On the basis of the Cataloque of flare stars in Pleiades by Haro, Chavira and Gonzalez a luminosity function of therese stars is constructed. Using this function and the revealed dependence of flare mean frequencies on stellar absolute magnitudes, a distribution of flare stars in Pleiades along flare mean frequencies is constructed. This shows that the cluster contains flare stars with mean frequencies of photographically registered flares from 10 -4 to 10 -2 hour -1 or within even narrower interval of frequencies and the total number of such stars in the cluster exceeds 1100

  6. Adjustment of Energy requirements in TEK; TEK= Technical Regulations under the Norwegian Planning and Building Act; Justering av energikrav i TEK

    Energy Technology Data Exchange (ETDEWEB)

    Thyholt, Marit; Dokka, Tor Helge; Schild, Peter; Grini, Catherine; Mysen, Mads; Sartori, Igor

    2008-07-01

    The National Office of Building Technology and Administration (BE) desired to review the consequences of different levels of ambition for requirements for heat gaining from vent air, as well as a possible requirement for energy efficient design of building fronts. In addition the energy scope in the regulation (TEK2007) should be adjusted according to the final establishment of a new calculation standard (Norwegian Standard - NS 3031:2007). A statement on these subjects has been carried out at SINTEF Byggforsk, and is described in this report. Adjustments of framework regulations.There are only minor differences between adjusted calculations according to NS 3031 and the original energy framework calculations, i.e. the difference for net energy need amounts to the size of 0 to 6 percent. Heat gain.The report shows that it is possible - both from techical and financial considerations - to increase the requirement level for heat gain from vent air for most categories of buildings. This implies a sharpening of the annual median temperature efficiency from 70 % to 80 %, for all building categories, except from hospitals, institutions and light industry/workshops. A possible sharpening of regulations for heat gain in houses has not been evaluated. Depending on building category a sharpening of regulations for heat gain from vent air will imply that net energy need will be reduced on a scale of 20 to 30 kWh/m2 per annum. The report demonstrates that despite a possible sharpening of the requirements on energy efficiency for heat recovery devices does not prevent the use of large areas of windows and window panes. Vulnerability analyses show that deviations from the prerequisites in the basis for the energy framework concerning air quantities and air temperatures give the possibility of weakening the building's heating characteristics. Building fronts. Different methods for added requirements for building fronts have been examined. The aim has been to find methods and

  7. Counting systems in wavelength and energy dispersive spectrometry: the principle and how to check and to adjust

    International Nuclear Information System (INIS)

    Maurice, Francoise

    1978-03-01

    The purpose of this report is to define the optimum operating conditions of the whole counting systems in wavelength dispersive spectrometry (mostly used in conjunction with electron microprobes) and in energy dispersive spectrometry (more often connected to scanning electron microscopes). For both these techniques, the principle of the detector and its attached counting electronics is recalled; a check list is then given for verifying the qualities of the apparatus and detecting the defects; finally the best operating conditions are defined as essential in an analytical instrument whose reliability has to be perfect [fr

  8. Salary adjustments

    CERN Multimedia

    HR Department

    2008-01-01

    In accordance with decisions taken by the Finance Committee and Council in December 2007, salaries are adjusted with effect from 1 January 2008. Scale of basic salaries and scale of stipends paid to fellows (Annex R A 5 and R A 6 respectively): increased by 0.71% with effect from 1 January 2008. As a result of the stability of the Geneva consumer price index, following elements do not increase: a) Family Allowance, Child Allowance and Infant Allowance (Annex R A 3). b) Reimbursement of education fees: maximum amounts of reimbursement (Annex R A 4.01) for the academic year 2007/2008. Related adjustments will be implemented, wherever applicable, to Paid Associates and Students. As in the past, the actual percentage increase of each salary position may vary, due to the application of a constant step value and the rounding effects. Human Resources Department Tel. 73566

  9. Salary adjustments

    CERN Multimedia

    HR Department

    2008-01-01

    In accordance with decisions taken by the Finance Committee and Council in December 2007, salaries are adjusted with effect from 1 January 2008. Scale of basic salaries and scale of stipends paid to fellows (Annex R A 5 and R A 6 respectively): increased by 0.71% with effect from 1 January 2008. As a result of the stability of the Geneva consumer price index, the following elements do not increase: a)\tFamily Allowance, Child Allowance and Infant Allowance (Annex R A 3); b)\tReimbursement of education fees: maximum amounts of reimbursement (Annex R A 4.01) for the academic year 2007/2008. Related adjustments will be applied, wherever applicable, to Paid Associates and Students. As in the past, the actual percentage increase of each salary position may vary, due to the application of a constant step value and rounding effects. Human Resources Department Tel. 73566

  10. Shaft adjuster

    Science.gov (United States)

    Harry, Herbert H.

    1989-01-01

    Apparatus and method for the adjustment and alignment of shafts in high power devices. A plurality of adjacent rotatable angled cylinders are positioned between a base and the shaft to be aligned which when rotated introduce an axial offset. The apparatus is electrically conductive and constructed of a structurally rigid material. The angled cylinders allow the shaft such as the center conductor in a pulse line machine to be offset in any desired alignment position within the range of the apparatus.

  11. Adjustable collimator

    International Nuclear Information System (INIS)

    Carlson, R.W.; Covic, J.; Leininger, G.

    1981-01-01

    In a rotating fan beam tomographic scanner there is included an adjustable collimator and shutter assembly. The assembly includes a fan angle collimation cylinder having a plurality of different length slots through which the beam may pass for adjusting the fan angle of the beam. It also includes a beam thickness cylinder having a plurality of slots of different widths for adjusting the thickness of the beam. Further, some of the slots have filter materials mounted therein so that the operator may select from a plurality of filters. Also disclosed is a servo motor system which allows the operator to select the desired fan angle, beam thickness and filter from a remote location. An additional feature is a failsafe shutter assembly which includes a spring biased shutter cylinder mounted in the collimation cylinders. The servo motor control circuit checks several system conditions before the shutter is rendered openable. Further, the circuit cuts off the radiation if the shutter fails to open or close properly. A still further feature is a reference radiation intensity monitor which includes a tuning-fork shaped light conducting element having a scintillation crystal mounted on each tine. The monitor is placed adjacent the collimator between it and the source with the pair of crystals to either side of the fan beam

  12. Experimental determination of spectral ratios and of neutrons energy spectrum in the fuel of the IPEN/MB-01 nuclear reactor

    International Nuclear Information System (INIS)

    Nunes, Beatriz Guimaraes

    2012-01-01

    This study aims to determine the spectral ratios and the neutron energy spectrum inside the fuel of IPEN/MB-01 Nuclear Reactor. These parameters are of great importance to accurately determine spectral physical parameters of nuclear reactors like reaction rates, fuel lifetime and also security parameters such as reactivity. For the experiment, activation detectors in the form of thin metal foils were introduced in a collapsible fuel rod. Then the rod was placed in the central position of the core which has a standard rectangular configuration of 26 x 28 fuel rods. There were used activation detectors from different elements such Au-197, U-238, Sc-45, Ni-58, Mg-24, Ti-47 and In-115 to cover a large range of the neutron energy spectrum. After the irradiation, the activation detectors were submitted to gamma spectrometry using a counting system with high purity Germanium, to obtain the reaction rates (saturation activity) per target nucleus. The spectral ratios were compared with calculated values obtained by the Monte Carlo method using the MCNP-4C code. The neutron energy spectrum was obtained inside the fuel rod using the SANDBP code with an input spectrum obtained by the MCNP-4C code, based on the saturation activity per target nucleus values of the activation detectors irradiated. (author)

  13. Monte Carlo simulation of fission yields, kinetic energy, fission neutron spectrum and decay γ-ray spectrum for 232Th(n,f) reaction induced by 3H(d,n) 4He neutron source

    International Nuclear Information System (INIS)

    Zheng Wei; Zeen Yao; Changlin Lan; Yan Yan; Yunjian Shi; Siqi Yan; Jie Wang; Junrun Wang; Jingen Chen; Chinese Academy of Sciences, Shanghai

    2015-01-01

    Monte Carlo transport code Geant4 has been successfully utilised to study of neutron-induced fission reaction for 232 Th in the transport neutrons generated from 3 H(d,n) 4 He neutron source. The purpose of this work is to examine the applicability of Monte Carlo simulations for the computation of fission reaction process. For this, Monte Carlo simulates and calculates the characteristics of fission reaction process of 232 Th(n,f), such as the fission yields distribution, kinetic energy distribution, fission neutron spectrum and decay γ-ray spectrum. This is the first time to simulate the process of neutron-induced fission reaction using Geant4 code. Typical computational results of neutron-induced fission reaction of 232 Th(n,f) reaction are presented. The computational results are compared with the previous experimental data and evaluated nuclear data to confirm the certain physical process model in Geant4 of scientific rationality. (author)

  14. ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Byard D. Wood; Jeff D. Muhs

    2005-02-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of small core or a large core polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the second generation (alpha) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of small-core fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the following investigations of various aspects of the system: (1) Performance specifications were developed for the tracking subsystem and collector optics, (2) Thermal management experiments for the fiber optic bundle entrance region, and (3) Bioreactor testing, cost-modeling, and redesign. Much of the planned work has been slowed due to significant procurement delays of the primary mirror. However, taken as a whole, they do confirm progress towards the technical feasibility and commercial viability of this technology. Due to this procurement delay, a no-cost extension of the project completion date has been requested and approved.

  15. Measurement and interpretation of moments of the combined hadronic mass and energy spectrum in inclusive semileptonic B-meson decays

    Energy Technology Data Exchange (ETDEWEB)

    Klose, V.

    2007-11-29

    This thesis presents first measurements of moments of the hadronic n{sub X}{sup 2} distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B{yields}X{sub c}l{sub {nu}}. The variable n{sub X}{sup 2} is a combination of the invariant mass of the charmed meson m{sub X}, its energy in the B-meson rest-frame E{sub X,BRF}, and a constant {lambda}=0.65 GeV, n{sub X}{sup 2}=m{sub X}{sup 2}c{sup 4}-2{lambda}E{sub X,BRF}+{lambda}{sup 2}. The moments left angle n{sub X}{sup k} right angle with k=2,4,6 are measured as proposed by theory to constrain assumptions made in the theoretical description of inclusive observables in semileptonic B-meson decays. This description uses Heavy Quark Expansion (HQE), an effective QCD combined with an Operator Product Expansion. The measurement is based on a sample of 231.6 million e{sup +}e{sup -} {yields} {upsilon}(4S) {yields} B anti B events recorded with the BABAR experiment at the PEP-II e{sup +}e{sup -}-storage rings at SLAC. We reconstruct the semileptonic decay by identifying a charged lepton in events tagged by a fully reconstructed hadronic decay of the second B meson. Correction procedures are derived from Monte Carlo simulations to ensure an unbiased measurement of the moments of the n{sub X}{sup 2} distribution. All moments are measured requiring minimum lepton momenta between 0.8 GeV/c and 1.9 GeV/c in the rest frame of the B meson. Performing a simultaneous fit to the measured moments left angle n{sub X}{sup k} right angle up to order k = 6 combined with other measurements of moments of the lepton-energy spectrum in decays B{yields}X{sub c}l{sub {nu}} and moments of the photon-energy spectrum in decays B{yields} X{sub s}{gamma}, we determine the quark-mixing parameter vertical stroke V{sub cb} vertical stroke, the bottom and charm quark masses, the semileptonic branching fraction B(B{yields}X{sub c}l{sub {nu}}), and four non-perturbative heavy quark parameters. Using HQE

  16. Measurement and Interpretation of Moments of the Combined Hadronic Mass and Energy Spectrum in Inclusive Semileptonic B-Meson Decays

    Energy Technology Data Exchange (ETDEWEB)

    Klose, Verena [Dresden Univ. of Technology (Germany)

    2011-08-12

    This thesis presents first measurements of moments of the hadronic nX2 distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B → Xcℓν. The variable nX2 is a combination of the invariant mass of the charmed meson mX, its energy in the B-meson rest-frame EX;BRF, and a constant ~Λ = 0.65 GeV, nX2 = mX2c4-2~ΛEX,BRF + ~Λ2. The moments Xk> with k = 2,4,6 are measured as proposed by theory to constrain assumptions made in the theoretical description of inclusive observables in semileptonic B-meson decays. This description uses Heavy Quark Expansion (HQE), an effective QCD combined with an Operator Product Expansion. The measurement is based on a sample of 231.6 million e+e- → Υ(4S) {yields} B$\\bar{B}$ events recorded with the BABAR experiment at the PEP-II e+e--storage rings at SLAC. We reconstruct the semileptonic decay by identifying a charged lepton in events tagged by a fully reconstructed hadronic decay of the second B meson. Correction procedures are derived from Monte Carlo simulations to ensure an unbiased measurement of the moments of the nX2 distribution. All moments are measured requiring minimum lepton momenta between 0.8 GeV/c and 1.9 GeV/c in the rest frame of the B meson. Performing a simultaneous fit to the measured moments Xk> up to order k = 6 combined with other measurements of moments of the lepton-energy spectrum in decays B → Xcℓν and moments of the photon-energy spectrum in decays B → Xsγ, we determine the quark-mixing parameter |Vcb|, the bottom and charm quark masses, the semileptonic branching fraction β(B → Xcℓν), and four non-perturbative heavy quark

  17. A Dynamic Consensus Algorithm to Adjust Virtual Impedance Loops for Discharge Rate Balancing of AC Microgrid Energy Storage Units

    DEFF Research Database (Denmark)

    Guan, Yajuan; Meng, Lexuan; Li, Chendan

    2018-01-01

    A dynamic consensus algorithm (DCA)-based coordinated secondary control with an autonomous current-sharing control strategy is proposed in this paper for balancing the discharge rate of energy storage systems (ESSs) in an islanded AC microgrid. The DCA is applied for information sharing between......, the proposed approach can provide higher system reliability, expandability, and flexibility due to its distributed control architecture. The proposed controller can effectively prevent operation failure caused by over-current and unintentional outage of DGs by means of balanced discharge rate control. It can...... also provide fast response and accurate current sharing performance. A generalizable linearized state-space model for n-DG network in the z-domain is also derived and proposed in this paper; the model includes electrical, controller, and communication parts. The system stability and parameter...

  18. Estimation of sea level muon energy spectrum at high latitude from the latest primary nucleon spectra near the top of the atmosphere

    CERN Document Server

    Haldar, T K; Bhattacharya, D P; 10.1023/A:1024822518795

    2003-01-01

    Vertical muon energy spectra at sea level have been estimated from a directly measured primary cosmic-ray nucleon spectrum. The hadronic energy moments have been calculated from the CERN LEBC EHS data on the Lorentz invariant cross-section results on pp to pi /sup +or-/X and pp to K/sup +or-/X inclusive reactions and are duly corrected for A-A collisions. Finally, the sea level muon energy spectra have been calculated from the decay of conventional mesons, using standard formulation. The estimated muon spectra are found to be in good agreement with the directly measured muon spectra obtained from different experiments. (32 refs).

  19. Effect of updated WIMSD libraries on neutron energy spectrum at irradiation site of Pakistan Research Reactor-1 using 3D modeling

    International Nuclear Information System (INIS)

    Ahmad, Siraj-ul-Islam; Ahmad, Nasir

    2005-01-01

    International Atomic Energy Agency (IAEA) has recently released new WIMSD libraries based on current cross-section evaluations. Using these libraries the effect of different evaluated data sets on effective multiplication factor and neutron energy spectrum was studied with the help of 3D reactor simulation code CITATION. Simulation methodology adopted in this work was validated by analyzing IAEA 10 MW benchmark reactor. The k eff values obtained using all newly released libraries are within 0.45% to the experimental value, while the old library released in 1981 resulted in calculated value 1.05% larger than experimental. The flux spectrum obtained for standard fuel element using 3D modeling is smaller in fast energy range and higher in thermal energy range than is calculated using the 1D model for the standard cell. In the flux trap, differences of about -4% to 13% were found in thermal flux using the newly released libraries as compared to that obtained using 1981 WIMSD library. The major differences in the flux spectra between newly available libraries and the 1981 WIMSD library in thermal energy range are due to the differences in cross-sections of hydrogen bound-in-water. The use of only newly available cross-sections of hydrogen bound-in-water with 1981 WIMSD library resulted in significant improvement in value of k eff as well as in the flux spectrum. Moreover the differences among new libraries in the thermal energy range are also due to these cross-sections. Difference in fission spectra from different libraries is responsible for differences of flux spectra in the fast energy range. These differences in flux are reduced significantly in the fast energy range by only replacement of fission spectra

  20. A novel method of spectrum stabilization

    International Nuclear Information System (INIS)

    Sidhu, N.P.S.

    1978-01-01

    A new type of spectrum stabilizer for a scintillation spectrometer is described. A pulse light source DM 160 is used to introduce an artificial peak in the spectrum at a convenient energy. The centroid of pulse spectrum corresponding to artificial peak is compared with that of suitable reference pulses obtained from the DM 160 driver circuit. Any drift in artificial peak produces a d.c. voltage at the output of centroid comparator and this voltage is used to control the gain of variable gain amplifier to counter the drift. With suitable adjustment the effect of any variation in pulse height of DM 160 driving pulse can be compensated so that the spectrometer gain is independent of any variation, drift etc. in the height of pulse driving DM 160 tube. This circuit is simple and gives improved performance compared to 2 channel method of obtaining the control voltage for variable gain amplifier. (author)

  1. Photoelectron spectrum of valence anions of uracil and first-principles calculations of excess electron binding energies.

    Science.gov (United States)

    Bachorz, Rafał A; Klopper, Wim; Gutowski, Maciej; Li, Xiang; Bowen, Kit H

    2008-08-07

    The photoelectron spectrum (PES) of the uracil anion is reported and discussed from the perspective of quantum chemical calculations of the vertical detachment energies (VDEs) of the anions of various tautomers of uracil. The PES peak maximum is found at an electron binding energy of 2.4 eV, and the width of the main feature suggests that the parent anions are in a valence rather than a dipole-bound state. The canonical tautomer as well as four tautomers that result from proton transfer from an NH group to a C atom were investigated computationally. At the Hartree-Fock and second-order Moller-Plesset perturbation theory levels, the adiabatic electron affinity (AEA) and the VDE have been converged to the limit of a complete basis set to within +/-1 meV. Post-MP2 electron-correlation effects have been determined at the coupled-cluster level of theory including single, double, and noniterative triple excitations. The quantum chemical calculations suggest that the most stable valence anion of uracil is the anion of a tautomer that results from a proton transfer from N1H to C5. It is characterized by an AEA of 135 meV and a VDE of 1.38 eV. The peak maximum is as much as 1 eV larger, however, and the photoelectron intensity is only very weak at 1.38 eV. The PES does not lend support either to the valence anion of the canonical tautomer, which is the second most stable anion, and whose VDE is computed at about 0.60 eV. Agreement between the peak maximum and the computed VDE is only found for the third most stable tautomer, which shows an AEA of approximately -0.1 eV and a VDE of 2.58 eV. This tautomer results from a proton transfer from N3H to C5. The results illustrate that the characteristics of biomolecular anions are highly dependent on their tautomeric form. If indeed the third most stable anion is observed in the experiment, then it remains an open question why and how this species is formed under the given conditions.

  2. Adjustable Model of Renewable Energy Projects for Sustainable Development: A Case Study of the Nišava District in Serbia

    Directory of Open Access Journals (Sweden)

    Violeta Dimić

    2018-03-01

    Full Text Available This paper explores and ranks the key performance indicators of multi-criteria decision-making in the process of selecting renewable energy sources (RES. Different categories of factors (e.g., political, legal, technological, economic and financial, sociocultural, and physical are crucial for the analysis of such projects. In this paper, we apply the fuzzy analytic hierarchy process (fuzzy AHP method—a mathematical method—in order to analyze the main criteria for such projects, which include the environment, the organizational management structure, project participants, and participants’ relationship with the performance indicators. In order of ranking, the indicators are the following: time, costs, quality, monitoring the project’s sustainability, user feedback, and users’ health and safety. The aim of this paper is to point out the necessity of creating an adjustable model for renewable energy projects in order to proceed with the sustainable development of the southeast part of Serbia. This model should lead the creation process for such a project, with the aim of increasing its energy efficiency.

  3. Adjusting energy expenditures to energy supply: food availability regulates torpor use and organ size in the Chilean mouse-opossum Thylamys elegans.

    Science.gov (United States)

    Bozinovic, Francisco; Muñoz, José L P; Naya, Daniel E; Cruz-Neto, Ariovaldo P

    2007-05-01

    We studied how food abundance and consumption regulates torpor use and internal organ size in the Chilean mouse-opossum Thylamys elegans (Dielphidae), a small nocturnal marsupial, endemic in southern South America. We predicted that exposure to food rations at or above the minimum energy levels necessary for maintenance would not lead to any signs of torpor, while reducing food supply to energy levels below maintenance would lead to marked increases in frequency, duration and depth of torpor bouts. We also analyzed the relationship between food availability and internal organ mass. We predicted a positive relationship between food availability and internal organ size once the effect of body size is removed. Animals were randomly assigned to one of two groups and fed either 70, 100 or 130% of their daily energy requirement (DER). We found a positive and significant correlation between %DER and body temperature, and also between %DER and minimum body temperature. In contrast, for torpor frequency, duration and depth, we found a significant negative correlation with %DER. Finally, we found a significant positive correlation between the %DER and small intestine and ceacum dry mass. We demonstrate that when food availability is limited, T. elegans has the capacity to reduce their maintenance cost by two different mechanisms, that is, increasing the use of torpor and reducing organ mass.

  4. Design of a nondestructive two-in-one instrument for measuring the polarization and energy spectrum at an X-ray FEL facility

    Science.gov (United States)

    Zhang, Qingmin; Deng, Bangjie; Chen, Yuanmiaoliang; Liu, Bochao; Chen, Shaofei; Fan, Jinquan; Feng, Lie; Deng, Haixiao; Liu, Bo; Wang, Dong

    2017-10-01

    The free electron laser (FEL), as a next-generation light source, is an attractive tool in scientific frontier research because of its advantages of full coherence, ultra-short pulse duration, and controllable polarization. Owing to the demand of real-time bunch diagnosis during FEL experiments, precise nondestructive measurements of the polarization and X-ray energy spectrum using one instrument are preferred. In this paper, such an instrument based on the electron time-of-flight technique is proposed. By considering the complexity and nonlinearity, a numerical model in the framework of Geant4 has been developed for optimization. Taking the Shanghai Soft X-ray FEL user facility as an example, its measurement performances' dependence on the critical parameters was studied systematically, and, finally, an optimal design was obtained, achieving resolutions of 0.5% for the polarization degree and 0.3 eV for the X-ray energy spectrum.

  5. The high-energy pulsed X-ray spectrum of HER X-1 as observed with OSO-8. Ph.D. Thesis - Catholic Univ. of America

    Science.gov (United States)

    Maurer, G. S.; Dennis, B. R.; Coe, M. J.; Crannell, C. J.; Cutler, E. P.; Dolan, J. F.; Frost, K. J.; Orwig, L. E.

    1978-01-01

    Her X-1 was observed from 1977 August 30 to September 10 using the High-Energy X-Ray Scintillation Spectrometer on board the OSO-8 satellite. The observation, during which the source was monitored continually for nearly an entire ON-state, covered the energy range from 16 to 280 keV. Pulsed flux measurements as a function of binary orbit and binary phase are presented for energies between 16 and 98 keV. The pulsed flux between 16 and 33 keV exhibited a sharp decrease following the fourth binary orbit and was consistent with zero pulsed flux thereafter. The pulsed spectrum was fitted with a power law, a thermal spectrum without features, and a thermal spectrum with a superposed gaussian centered at 55 keV. The latter fit has the smallest value of chi - squared per degree of freedom, and the resulting integrated line intensity is 1.5 superscript + 4.1 subscript - 1.4 x .001 photons s superscript-1 cm superscript-2 for a width of 3.1 superscript + 9.1 subscript -2.6 keV. This result, while of low statistical significance, agrees with the value observed by Trumper (1978) during the same On-state.

  6. Determination of intensity and energy spectrum of neutrons by bombardment of thallium-203 thick target and its copper substrate with 28.5 MeV protons

    International Nuclear Information System (INIS)

    Hajiloo, N.; Raisali, Gh.; Hamidi, S.; Aslani, Gh.

    2007-01-01

    In this research we have determined neutrons spectrum and the intensity that produced from thallium target bombardment. We have applied SRIM and ALICE computer codes to thallium target and its copper substrate for 145 μA of 28.5 MeV incident proton beam from cyclotron Cyclone30. Because of the energy degradation of protons while passing through the thallium target and its copper substrate, the average energy of protons in different depths has been calculated by using SRIM computer code. Then, by applying ALICE computer code for each sub-layer, the neutron production cross sections and their energy spectrum have been calculated to determine the total neutron intensity and spectrum. Using the calculated neutron intensity of 1.22x10 13 n/s as the source, the equivalent dose rate at the distance 6 meters from the target has been calculated by MCNP computer code and the result has been compared with the measured value. The Pb 201 activity has also been calculated as 13.5 Curies. The measured Pb 201 activity by Curie meter CAPINTEC CRC-712 is 13.1 Ci which is in reasonable agreement with the calculated value, bearing in mind the uncertainties in the proposed models and the measurements

  7. The energy spectrum of neutrons from 7Li(d,n)8Be reaction at deuteron energy 2.9 MeV

    Science.gov (United States)

    Mitrofanov, Konstantin V.; Piksaikin, Vladimir M.; Zolotarev, Konstantin I.; Egorov, Andrey S.; Gremyachkin, Dmitrii E.

    2017-09-01

    The neutron beams generated at the electrostatic accelerators using nuclear reactions T(p,n)3He, D(d,n)3He, 7Li(p,n)7Be, T(d,n)4He, 7Li(d,n)8Be, 9Be(d,n)10B are widely used in neutron physics and in many practical applications. Among these reactions the least studied reactions are 7Li(d,n)8Be and 9Be(d,n)10B. The present work is devoted to the measurement of the neutron spectrum from 7Li(d,n)8Be reaction at 0∘ angle to the deuteron beam axis on the electrostatic accelerator Tandetron (JSC "SSC RF - IPPE") using activation method and a stilbene crystal scintillation detector. The first time ever 7Li(d,n)8Be reaction was measured by activation method. The target was a thick lithium layer on metallic backing. The energy of the incident deuteron was 2.9 MeV. As activation detectors a wide range of nuclear reactions were used: 27Al(n,p)27Mg, 27Al(n,α)24Na, 113In(n,n')113mIn, 115In(n,n')115mIn, 115In(n,γ)116mIn, 58Ni(n,p)58mCo, 58Ni(n,2n)57Ni, 197Au(n,γ)198Au, 197Au(n,2n)196Au, 59Co(n,p)59Fe, 59Co(n,2n)58m+gCo, 59Co (n,g)60Co. Measurement of the induced gamma-activity was carried out using HPGe detector Canberra GX5019 [1]. The up-to-date evaluations of the cross sections for these reactions were used in processing of the data. The program STAYSL was used to unfold the energy spectra. The neutron spectra obtained by activation detectors is consistent with the corresponding data measured by a stilbene crystal scintillation detector within their uncertainties.

  8. The energy spectrum of neutrons from 7Li(d,n8Be reaction at deuteron energy 2.9 MeV

    Directory of Open Access Journals (Sweden)

    Mitrofanov Konstantin V.

    2017-01-01

    Full Text Available The neutron beams generated at the electrostatic accelerators using nuclear reactions T(p,n3He, D(d,n3He, 7Li(p,n7Be, T(d,n4He, 7Li(d,n8Be, 9Be(d,n10B are widely used in neutron physics and in many practical applications. Among these reactions the least studied reactions are 7Li(d,n8Be and 9Be(d,n10B. The present work is devoted to the measurement of the neutron spectrum from 7Li(d,n8Be reaction at 0∘ angle to the deuteron beam axis on the electrostatic accelerator Tandetron (JSC “SSC RF – IPPE” using activation method and a stilbene crystal scintillation detector. The first time ever 7Li(d,n8Be reaction was measured by activation method. The target was a thick lithium layer on metallic backing. The energy of the incident deuteron was 2.9 MeV. As activation detectors a wide range of nuclear reactions were used: 27Al(n,p27Mg, 27Al(n,α24Na, 113In(n,n'113mIn, 115In(n,n'115mIn, 115In(n,γ116mIn, 58Ni(n,p58mCo, 58Ni(n,2n57Ni, 197Au(n,γ198Au, 197Au(n,2n196Au, 59Co(n,p59Fe, 59Co(n,2n58m+gCo, 59Co (n,g60Co. Measurement of the induced gamma-activity was carried out using HPGe detector Canberra GX5019 [1]. The up-to-date evaluations of the cross sections for these reactions were used in processing of the data. The program STAYSL was used to unfold the energy spectra. The neutron spectra obtained by activation detectors is consistent with the corresponding data measured by a stilbene crystal scintillation detector within their uncertainties.

  9. Evolution of the low-energy excitation spectrum from the pure Hubbard ladder to the SO(5) ladder: A numerical study

    International Nuclear Information System (INIS)

    Duffy, D.; Haas, S.; Kim, E.

    1998-01-01

    The Hubbard Hamiltonian on a two-leg ladder is studied numerically using quantum Monte Carlo and exact diagonalization techniques. A rung interaction, V, is turned on such that the resulting model has an exact SO(5) symmetry when V=-U. The evolution of the low-energy excitation spectrum is presented from the pure Hubbard ladder to the SO(5) ladder. It is shown that the low-energy excitations in the pure Hubbard ladder have an approximate SO(5) symmetry. copyright 1998 The American Physical Society

  10. Energy spectrum of primary cosmic rays from 1016eV to 1019eV determined from air showers observed at 5200 m a.s.l

    International Nuclear Information System (INIS)

    Aguirre, C.; Mejia, G.R.; Yoshii, H.; Toyoda, Y.

    1977-01-01

    Energy spectra of primary cosmic rays from 10 16 eV to 10 19 eV have been determined from electron-sizes as well as from muon-sizes of the same air showers observed at Mt. Chacaltaya. The spectrum from electron-sizes is significantly higher than that from muon-sizes. The discrepancy is discussed and an explanation is given under the assumption of possible existence of copious direct production of photons besides the production of charged and neutral pions at these high energies. The spectra are also compared with those by other groups and the discrepancies are discussed. (author)

  11. Measurement of the energy spectrum of cosmic rays above 10.sup.18./sup. eV using the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Abraham, J.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Kárová, Tatiana; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Nyklíček, Michal; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr

    2010-01-01

    Roč. 685, 4-5 (2010), s. 239-246 ISSN 0370-2693 R&D Projects: GA MŠk LC527; GA MŠk(CZ) 1M06002; GA AV ČR KJB100100904; GA AV ČR KJB300100801; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : cosmic rays * energy spectrum * Pierre Auger Observatory Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.255, year: 2010

  12. Neural networks vs Gaussian process regression for representing potential energy surfaces: A comparative study of fit quality and vibrational spectrum accuracy

    Science.gov (United States)

    Kamath, Aditya; Vargas-Hernández, Rodrigo A.; Krems, Roman V.; Carrington, Tucker; Manzhos, Sergei

    2018-06-01

    For molecules with more than three atoms, it is difficult to fit or interpolate a potential energy surface (PES) from a small number of (usually ab initio) energies at points. Many methods have been proposed in recent decades, each claiming a set of advantages. Unfortunately, there are few comparative studies. In this paper, we compare neural networks (NNs) with Gaussian process (GP) regression. We re-fit an accurate PES of formaldehyde and compare PES errors on the entire point set used to solve the vibrational Schrödinger equation, i.e., the only error that matters in quantum dynamics calculations. We also compare the vibrational spectra computed on the underlying reference PES and the NN and GP potential surfaces. The NN and GP surfaces are constructed with exactly the same points, and the corresponding spectra are computed with the same points and the same basis. The GP fitting error is lower, and the GP spectrum is more accurate. The best NN fits to 625/1250/2500 symmetry unique potential energy points have global PES root mean square errors (RMSEs) of 6.53/2.54/0.86 cm-1, whereas the best GP surfaces have RMSE values of 3.87/1.13/0.62 cm-1, respectively. When fitting 625 symmetry unique points, the error in the first 100 vibrational levels is only 0.06 cm-1 with the best GP fit, whereas the spectrum on the best NN PES has an error of 0.22 cm-1, with respect to the spectrum computed on the reference PES. This error is reduced to about 0.01 cm-1 when fitting 2500 points with either the NN or GP. We also find that the GP surface produces a relatively accurate spectrum when obtained based on as few as 313 points.

  13. Gluonium spectrum in QCD

    International Nuclear Information System (INIS)

    Dominguez, C.A.

    1987-02-01

    The scalar (0 ++ ) and the tensor (2 ++ ) gluonium spectrum is analyzed in the framework of QCD sum rules. Stable eigenvalue solutions, consistent with duality and low energy theorems, are obtained for the mass and width of these glueballs. (orig.)

  14. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    International Nuclear Information System (INIS)

    Merritt, E. C.; Doss, F. W.; Loomis, E. N.; Flippo, K. A.; Kline, J. L.

    2015-01-01

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varying two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. We also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths

  15. Effect of Rashba and Dresselhaus interactions on the energy spectrum, chemical potential, addition energy and spin-splitting in a many-electron parabolic GaAs quantum dot in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D. Sanjeev [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Mukhopadhyay, Soma [H & S Department of Physics, CMR College of Engineering and Technology, Kandlakoya, Medchal Road, Hyderabad 501 401 (India); Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2016-11-15

    The effect of electron–electron interaction and the Rashba and Dresselhaus spin–orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron–electron interaction term, the problem is solved exactly to second-order in the spin–orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.

  16. Effect of Rashba and Dresselhaus interactions on the energy spectrum, chemical potential, addition energy and spin-splitting in a many-electron parabolic GaAs quantum dot in a magnetic field

    International Nuclear Information System (INIS)

    Kumar, D. Sanjeev; Mukhopadhyay, Soma; Chatterjee, Ashok

    2016-01-01

    The effect of electron–electron interaction and the Rashba and Dresselhaus spin–orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron–electron interaction term, the problem is solved exactly to second-order in the spin–orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.

  17. Transformation of a wave energy spectrum from encounter to absolute domain when observing from an advancing ship

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2017-01-01

    directly in the encounter domain. The encounter domain is that observed from a ship when it advances in a seaway, whereas the absolute domain is that corresponding to making observations from a fixed point in the inertial frame. Spectrum transformation can be uniquely carried out if the ship sails ”against...

  18. An Electromagnetic Spectrum for Millennial Students: Teaching Light, Color, Energy, and Frequency Using the Electronic Devices of Our Time

    Science.gov (United States)

    Murphy, Maureen Kendrick

    2010-01-01

    In this article, a comparison of student learning outcomes is made in sophomore-level physical science classes using a "traditional" pedagogical approach versus a "modern" approach. Specifically, when students were taught the electromagnetic spectrum using diagrams and examples that incorporate technological advances and electronic devices of our…

  19. Neutron spectrum perturbations due to scattering materials and their effect on the average neutron energy, the spectral index, and the hardness parameter

    International Nuclear Information System (INIS)

    Wright, H.L.; Meason, J.L.; Wolf, M.; Harvey, J.T.

    1976-01-01

    Measurements have been performed on the perturbing effect of a number of scattering materials by the 'free-field' neutron leakage spectrum from a Godiva Type Critical Assembly (White Sands Missile Range Fast Burst Reactor). The results of these measurements are interpreted in relation to some of the general parameters characterizing a neutron environment, namely, the average neutron energy >10 KeV, the spectral index and the hardness parameter. Three neutron spectrum measurements have been performed, each under different experimental configurations of scattering materials. Results from these measurements show the following with relation to the spectral index: (1) The neutron environment on the core surface and at 12-inches from the core surface (free-field) yield a spectral index of 6.8, (2) The neutron environment behind a 4.75-inch Plexiglas plate yield 4.6 for the spectral index and (3) The neutron environment behind a 2-inch aluminum plate yield 6.7 for the spectral index. It is concluded that the core surface and the 12-inch from core surface neutron environment are identical with the 'free-field' neutron environment at 20-inches when considering only those neutrons with energy >10 KeV. On the other hand, it appears that the 4.75 inches of Plexiglas severely perturbs the 'free-field' neutron environment, i.e., a much harder neutron spectrum >10 KeV. In the situation where 2-inches of aluminum is used as the perturbing medium, essentially no change in the neutron spectrum >10 KeV is noted

  20. BASACF, Integral Neutron Spectra Adjustment and Dosimetry

    International Nuclear Information System (INIS)

    Tichy, Milos

    1996-01-01

    1 - Description of program or function: Adjustment of a neutron spectrum based on integral detector measurements and calculation of an integral dosimetric quantity (integral flux, d.p.a., dose equivalent) and its variance. The program requires measured data (activities and their covariance matrix) and a priori information (spectrum, dosimetry cross sections, integral quantity conversion factor and their covariance matrices). All a priori covariance matrices can be read in from a file prepared by some other code or can be generated by means of three different methods (by subroutines included in the program). A subroutine which can normalize the a priori flux to measured data is also included. The program provides also adjusted dosimetry cross sections (with covariance matrix) so that it can be used for an adjustment of cross sections (or response functions of e.g. Bonner balls) by measurements in well-known neutron spectra. 2 - Method of solution: Bayesian theorem on conditional probability applied to linearized relation between activities, dosimetry cross sections and flux. All probability distributions are supposed to be normal and this supposition leads to minimizing of the same functional as least squares method (STAY'SL). This task is solved by a covariance filter method which avoids any matrix inversion and is numerically robust and stable. 3 - Restrictions on the complexity of the problem: This version can use 45 energy groups and 5 detectors and occupies 310 kB of main memory. This restriction can be modified according to available memory. The covariance matrix of activities is supposed diagonal. A solution is produced for any set of input data but in the case of non-consistent data, when measured activities do not match the a priori flux, the solution is not very meaningful

  1. Characteristics of ion spectrum in a low energy nitrogen operated plasma focus: application to the metallic substrates thermal treatment

    International Nuclear Information System (INIS)

    Kelly, H.; Lepone, A.; Marquez, A.

    1998-01-01

    Full text: This work presents the nitrogen ion spectrum characteristics in a Plasma Focus device, determined using a Thomson spectrometer and a Faraday cup, operated in the secondary electron collective mode. It is also discussed the thermal treatment and the re coating induce by ions incident on a metallic surface (AISI 304 steel) placed in front of the coaxial gun, when the device is operated with a Ti implant at the end of the central electrode

  2. 10 CFR 905.34 - Adjustment provisions.

    Science.gov (United States)

    2010-01-01

    ... continue to take place based on existing contract/marketing criteria principles. ... 10 Energy 4 2010-01-01 2010-01-01 false Adjustment provisions. 905.34 Section 905.34 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Power Marketing Initiative § 905.34 Adjustment...

  3. Studies of internal bremsstrahlung spectrum of 35S beta emitter in the photon energy region of 1–100 keV

    International Nuclear Information System (INIS)

    Singh, Amrit; Dhaliwal, A.S.

    2014-01-01

    The internal bremsstrahlung (IB) spectral photon distribution, produced by soft beta particles of 35 S (W max =164 keV), in the photon energy region of 1–100 keV, is measured by using a Si(Li) detector, having high energy resolution and efficiency at low energy region. The measured spectral IB photon distribution is compared with KUB theory and Coulomb corrected IB theories given by Nilsson, and Lewis and Ford. After applying the necessary corrections, the experimental and theoretical IB spectral photon distributions are compared in terms of the number of IB photon of energy k per m o c 2 per unit photon yield. In the low energy region (below 10 keV), the experimental results are in agreement with all the theories. However, in photon energy region of 10–50 keV, experimental results are in agreement with Coulomb corrected Nilsson theory only, within the experimental errors. Further, beyond 50 keV, the Nilsson theory is more close to the experimental results than the KUB, and the Lewis and Ford theories. Hence, the Nilsson theory is more accurate than the other theories given by KUB and Lewis and Ford, particularly at a high energy end. The experimental results reported here with Si(Li) detector are free from number of ambiguities in earlier measurements reported with NaI(Tl) and HPGe detectors. The present results are indicating a relook into the theoretical considerations, given by different theories, while taking into account the Coulomb corrections for predicting the IB spectrum, particularly at high photon energy region. - Highlights: • The internal bremsstrahlung spectrum of 35 S beta emitter, in the photon energy region of 1–100 keV. • These measurement are taken by using a Si(Li) detector. • Theoretical and experimental results are reported in terms of number of photons of energy k per m 0 c 2 per unit photon yield. • The Nilsson theory for IB is more accurate than KUB and Lewis and Ford, particularly at high photon energy region

  4. Reconstruction of extensive air showers and measurement of the cosmic ray energy spectrum in the range of 1 - 80 PeV at the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Klepser, Stefan

    2008-06-24

    IceTop is a km{sup 2} scale detector array for highly energetic cosmic radiation. It is a part of the IceCube Observatory that is presently being built at the geographic South Pole. It aims for the detection of huge particle cascades induced by PeV cosmic rays in the atmosphere. These extensive air showers are detected by cylindrical ice tanks that collect the Cherenkov light produced by penetrating particles. The main goal of IceTop is the investigation of the energy distribution and chemical composition of PeV to EeV cosmic rays. This thesis presents the first analysis of highly energetic cosmic ray data taken with IceTop. First, the light response of the IceTop tanks is parametrised as a function of energy and particle type. An expectation function for the distribution of shower signals in the detector plane is developed. The likelihood fit based on that can reconstruct the recorded shower events with resolutions of 1.5 in direction, 9m in location of the shower center, and 12% in energy. This is well competitive with other experiments. The resulting energy response of the array is studied to set up response matrices for different primary nuclei and inclinations. These allow for a deconvolution of the distribution of reconstructed energies to derive the real energy spectrum. Two unfolding algorithms are implemented and studied, and response matrices are modeled for four different composition assumptions. With each assumption, energy spectra are unfolded for three different bins in inclination, using a data sample with an exposure of 3.86.10{sup 11} m{sup 2} s sr, taken in August 2007. The range of the spectrum is 1-80 PeV. Finally, a new analysis method is developed that uses the fact that cosmic rays in the PeV range are expected to be isotropic. It is shown that this requirement can be used for a likelihood estimation that is sensitive to composition without using additional information from other detector components. The analysis shows a clear preference of

  5. Reconstruction of extensive air showers and measurement of the cosmic ray energy spectrum in the range of 1 - 80 PeV at the South Pole

    International Nuclear Information System (INIS)

    Klepser, Stefan

    2008-01-01

    IceTop is a km 2 scale detector array for highly energetic cosmic radiation. It is a part of the IceCube Observatory that is presently being built at the geographic South Pole. It aims for the detection of huge particle cascades induced by PeV cosmic rays in the atmosphere. These extensive air showers are detected by cylindrical ice tanks that collect the Cherenkov light produced by penetrating particles. The main goal of IceTop is the investigation of the energy distribution and chemical composition of PeV to EeV cosmic rays. This thesis presents the first analysis of highly energetic cosmic ray data taken with IceTop. First, the light response of the IceTop tanks is parametrised as a function of energy and particle type. An expectation function for the distribution of shower signals in the detector plane is developed. The likelihood fit based on that can reconstruct the recorded shower events with resolutions of 1.5 in direction, 9m in location of the shower center, and 12% in energy. This is well competitive with other experiments. The resulting energy response of the array is studied to set up response matrices for different primary nuclei and inclinations. These allow for a deconvolution of the distribution of reconstructed energies to derive the real energy spectrum. Two unfolding algorithms are implemented and studied, and response matrices are modeled for four different composition assumptions. With each assumption, energy spectra are unfolded for three different bins in inclination, using a data sample with an exposure of 3.86.10 11 m 2 s sr, taken in August 2007. The range of the spectrum is 1-80 PeV. Finally, a new analysis method is developed that uses the fact that cosmic rays in the PeV range are expected to be isotropic. It is shown that this requirement can be used for a likelihood estimation that is sensitive to composition without using additional information from other detector components. The analysis shows a clear preference of the mixed

  6. Variations of the TeV energy spectrum at different flux levels of Mkn 421 observed with the HEGRA system of Cherenkov telescopes

    Science.gov (United States)

    Aharonian, F.; Akhperjanian, A.; Beilicke, M.; Bernlöhr, K.; Börst, H.; Bojahr, H.; Bolz, O.; Coarasa, T.; Contreras, J.; Cortina, J.; Costamante, L.; Denninghoff, S.; Fonseca, V.; Girma, M.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Mang, O.; Meyer, H.; Mirzoyan, R.; Milite, M.; Moralejo, A.; Ona, E.; Panter, M.; Plyasheshnikov, A.; Pühlhofer, G.; Rauterberg, G.; Reyes, R.; Rhode, W.; Ripken, J.; Rowell, G.; Sahakian, V.; Samorski, M.; Schilling, M.; Siems, M.; Sobzynska, D.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C. A.; Wittek, W.; Remillard, R. A.

    2002-10-01

    The nearby BL Lacertae (BL Lac) object Markarian 421 (Mkn 421) at a red shift z=0.031 was observed to undergo strong TeV gamma -ray outbursts in the observational periods from December 1999 until May 2001. The time averaged flux level F(E>1 TeV) in the 1999/2000 season was (1.43+/-0.04) x 10-11 ph cm-2 s-1, whereas in the 2000/2001 season the average integral flux increased to (4.19+/-0.04) x 10-11 ph cm-2 s-1. Both energy spectra are curved and well fit by a power law with an exponential cut-off energy at 3.6(+0.4-0.3)_stat(+0.9-0.8)_sys TeV. The respective energy spectra averaged over each of the two time periods indicate a spectral hardening for the 2000/2001 spectrum. The photon index changes from 2.39+/-0.09_stat for 1999/2000 to 2.19+/-0.02_stat in 2000/2001. The energy spectra derived for different average flux levels ranging from 0.5 to 10 x 10-11 ph cm-2 s-1 follow a clear correlation of photon index and flux level. Generally, the energy spectra are harder for high flux levels. From January to April 2001 Mkn 421 showed rapid variability (doubling time as short as 20 min), accompanied with a spectral hardening with increasing flux level within individual nights. For two successive nights (MJD 51989-51991, March 21-23, 2001), this correlation of spectral hardness and change in flux has been observed within a few hours. The cut-off energy for the Mkn 421 TeV spectrum remains within the errors constant for the different flux levels and differs by Delta E=2.6+/-0.6_stat+/-0.6_sys TeV from the value determined for Mkn 501. This indicates that the observed exponential cut-off in the energy spectrum of Mkn 421 is not solely caused by absorption of multi-TeV photons by pair-production processes with photons of the extragalactic near/mid infrared background radiation.

  7. Modeling the Multiband Afterglows of GRB 060614 and GRB 060908: Further Evidence for a Double Power-law Hard Electron Energy Spectrum

    Science.gov (United States)

    Zhang, Q.; Xiong, S. L.; Song, L. M.

    2018-04-01

    Electrons accelerated in relativistic collisionless shocks are usually assumed to follow a power-law energy distribution with an index of p. Observationally, although most gamma-ray bursts (GRBs) have afterglows that are consistent with p > 2, there are still a few GRBs suggestive of a hard (p law hard electron energy (DPLH) spectrum with 1 2 and an “injection break” assumed as γ b ∝ γ q in the highly relativistic regime, where γ is the bulk Lorentz factor of the jet. In this paper, we show that GRB 060614 and GRB 060908 provide further evidence for such a DPLH spectrum. We interpret the multiband afterglow of GRB 060614 with the DPLH model in a homogeneous interstellar medium by taking into account a continuous energy injection process, while, for GRB 060908, a wind-like circumburst density profile is used. The two bursts, along with GRB 091127, suggest a similar behavior in the evolution of the injection break, with q ∼ 0.5. Whether this represents a universal law of the injection break remains uncertain and more afterglow observations such as these are needed to test this conjecture.

  8. New bases for the evaluation of interaction energies: An ab initio study of the CO-Ne van der Waals complex intermolecular potential and ro-vibrational spectrum

    International Nuclear Information System (INIS)

    Bouzon Capelo, Silvia; Baranowska-Laczkowska, Angelika; Fernandez, Berta

    2011-01-01

    Graphical abstract: CO-Ne IPES. Highlights: → From the LPol, MLPol, and aug-pc-2 bases we obtained new bases for the evaluation of CO-Ne interaction energies. → We checked the bases on the evaluation of the rovibrational spectrum. → The results were satisfactory, being the new bases more efficient than those previously available. - Abstract: Recently we have derived new efficient basis sets for the evaluation of interaction energies in the X-Y (X, Y = He, Ne, Ar) van der Waals complexes. Here we extend the study to the CO-Ne complex. For this, we start with a systematic basis set study, where the LPol, MLPol and Jensen's aug-pc-2 basis sets are considered as starting point (for the Ne atom LPol bases are developed). As reference we take interaction energy results obtained with Dunning's augmented correlation consistent polarized valence basis sets. In all cases we test extensions with different sets of midbond functions. With the selected bases we evaluate CCSD(T) interaction potentials, and to check the potentials further, we obtain the ro-vibrational spectrum of the complex. The results are compared to the available experimental data.

  9. Monte Carlo simulation of the interaction of X-ray spectrum with human tissue, in the energies range of diagnostic radiology

    International Nuclear Information System (INIS)

    Cayllahua Q, L. F.; Apaza V, G.; Vega R, J. L.

    2015-10-01

    Full text: This paper is an approach to an increasingly complete knowledge about the nature of the processes that occur during a simple examination of radiological diagnosis; know as X-rays are produced and how they will put their energy into the tissue of patients when they are subjected to an examination of radiological diagnosis. First, using the MCNP code an X-rays tube was simulated, where electrons are emitted from a filament (cathode) which travel a certain distance with a certain kinetic energy and then be stopped suddenly in the tungsten target. The X-rays emitted as a result of this interaction, are previously filtered through the inherent filter of Pyrex glass and then by a thin aluminum foil before quantification as an X-rays spectrum. 6 spectra (for 60, 80, 100, 120 and 140 KeV) were obtained. Second, using the Penelope code was simulated the interaction of the X-rays spectrum, obtained in the first part with human tissue, putting as simile of human tissue water phantoms of different thicknesses. As final result: dose of energy deposited (in 2 and 3-dimensional) and reflected, absorbed and transmitted photons spectra. (Author)

  10. Effect of magnetic field on energy spectrum and localization of electron in CdS/HgS/CdS/HgS/CdS multilayered spherical nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Holovatsky, V.A., E-mail: ktf@chnu.edu.ua; Bernik, I.B.; Yakhnevych, M. Ya.

    2017-03-01

    The theoretical investigation of magnetic field effect on energy spectrum and localization of the electron and oscillator strengths of intraband quantum transitions in the nanostructure CdS/HgS/CdS/HgS/CdS is performed. The calculations are made in the framework of effective mass approximation and rectangular potential barriers model using the method of the expansion of quasi-particle wave functions over the complete basis of functions obtained as the exact solutions of the Schrodinger equation for the electron in the nanostructure without the magnetic field. It is shown that the magnetic field violates the spherical symmetry of the system and takes off the degeneration of energy spectrum with respect to the magnetic quantum number. The energy of the electron in the states with m≥0 increases when magnetic field enhances; for the states with m<0 these dependences are non-monotonous (decreasing at first and then increasing). Moreover, the ground state of electron is formed alternately by the states with m=0, −1, −2, …. Magnetic field influences on the distribution of quasi-particle density. It is shown that the electron significantly changes its localization in the nanostructure with two potential wells tunneling through the potential barrier under the effect of magnetic field, changing the oscillator strengths of intraband quantum transitions.

  11. The VAK of vacuum fluctuation, Spontaneous self-organization and complexity theory interpretation of high energy particle physics and the mass spectrum

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2003-01-01

    The paper is a rather informal introduction to the concepts and results of the E-infinity Cantorian theory of quantum physics. The fundamental tools of complexity theory and non-linear dynamics (Hausdorff dimensions, fat fractals, etc.) are used to give what we think to be a new interpretation of high energy physics and to determine the corresponding mass-spectrum. Particular attention is paid to the role played by the VAK, KAM theorem, Arnold diffusion, Newhaus sinks and knot theory in determining the stability of an elementary 'particle-wave' which emerges in self-organizatory manner out of sizzling vacuum fluctuation

  12. Charmed muons in ice. Measurement of the high-energetic atmospheric energy spectrum with IceCube in the detector configuration IC86-1

    International Nuclear Information System (INIS)

    Fuchs, Tomasz

    2016-01-01

    In this thesis the flux of high-energy muons in the energy regime from 10 TeV to 1 PeV is reconstructed and analyzed using data collected with the IceCube detector in the time span 13.05.2011 to 15.05.2012. From a data set containing muon bundles only those events are selected which contain a muon that is energetically dominating the others in the bundle. For the separation a Random Forest model is applied, resulting in a data set of high-energy muons with an efficiency of (40.8±0.6) % and a purity of (93.1±0.4) %. Attributes considered in the separation are selected by the mRMR algorithm. The energy spectrum of muons is reconstructed with a regularized unfolding using the software TRUEE. The hypothesis of a prompt and a conventional component of atmospheric muons results in flux normalizations of N conv. =1.03±0.06 and N prompt =1.59±1.57. Due to the large uncertainty of the prompt component, the hypothesis of a pure conventional flux cannot be excluded. Using these normalizations, it is possible to determine if the measured high-energy neutrino flux above 60 TeV is of atmospheric origin. The p-value for this hypothesis is found to be 0.045, which indicates the need of an astrophysical component to explain the excess at high energies.

  13. Scientific Instrument for a Controlled Choice of Optimal Photon Energy Spectrum: A Comparison Between Calculational Methods and Laboratory Irradiations of Comparable Hard Tissue Phantoms

    International Nuclear Information System (INIS)

    Helmrot, E.; Sandborg, M.; Eckerdal, O.; Alm Carlsson, G.

    1998-01-01

    Basic performance parameters are defined and analysed in order to optimise physical image quality in relation to the energy imparted to the patient in dental radiology. Air cavities were embedded in well-defined multi material, hard tissue phantoms to represent various objects in dento-maxillo-facial examinations. Basic performance parameters were: object contrast (C), energy imparted (ε) to the patient, signal-to-noise ration (SNR), C 2 /ε (film) and (SNR) / ε (digital imaging system) as functions of HVL (half-value layer), used to describe the photon energy spectrum. For the film receptor, the performance index C 2 /ε is maximum (optimal) at HVL values of 1.5-1.7 mm Al in the simulated Incisive, Premolar and Molar examinations. Other imaging tasks (examinations), not simulated here, may require other optimal HVL. For the digital imaging system (Digora) the performance index (SNR) 2 /ε, theoretically calculated, indicates that a lower value of HVL is optimal than with film as receptor. However, due to the limited number of bits (8 bits) in the analogue to digital converter (ADC) contrast resolution is degraded and calls for use of higher photon energies (HVL). Customised optimisations with proper concern for patient category, type of examination, diagnostic task is the ultimate goal of this work. The conclusions stated above give some general advice on the appropriate choice of photon energy spectrum (HVL). In particular situations, it may be necessary to use more dose demanding kV settings (lower HVL) in order to get sufficient image quality for the diagnostic task. (author)

  14. An experiment to measure the energy spectrum of cosmic ray antiprotons from 100 to 1000 MeV

    Science.gov (United States)

    Salamon, M. H.; Price, P. B.; Barwick, S. W.; Lowder, D. M.; Ahlen, S. P.

    1985-01-01

    Production models were developed and the confirmation of each one had significant astrophysical impact. These include radical modifications of propagation models, cosmic ray antiprotons injection from neighboring domains of antimatter, p production by evaporating primordial black holes, and cosmic ray p's as annihilation products of supersymmetry particles that might make up the dark dynamical mass of the Galaxy. It is that p's originating from supersymmetric parents might have distinct spectral features that would survive solar modulation; in one model, higgsino annihilation proceeds through the bb quark-antiquark channel, producing a spectral bump at approx. 0.3 GeV in the p spectrum.

  15. An Application of the Direct Coulomb Electron Pair Production Process to the Energy Measurement of the "VH-Group" in the "Knee" Region of the "All-Particle" Energy Spectrum

    Science.gov (United States)

    Derrickson, J. H.; Wu, J.; Christl, M. J.; Fountain, W. F.; Parnell, T. A.

    1999-01-01

    The "all-particle" cosmic ray energy spectrum appears to be exhibiting a significant change in the spectral index just above approximately 3000 TeV. This could indicate (1) a change in the propagation of the cosmic rays in the galactic medium, and/or (2) the upper limit of the supernova shock wave acceleration mechanism, and/or (3) a new source of high-energy cosmic rays. Air shower and JACEE data indicate the spectral change is associated with a composition change to a heavier element mixture whereas DICE does not indicate this. A detector concept will be presented that utilizes the energy dependence of the production of direct Coulomb electron-positron pairs by energetic heavy ions. Monte Carlo simulations of a direct electron pair detector consisting of Pb target foils interleaved with planes of 1-mm square scintillating optical fibers will be discussed. The goal is to design a large area, non-saturating instrument to measure the energy spectrum of the individual cosmic ray elements in the "VH-group" for energies greater than 10 TeV/nucleon.

  16. Measurement of the atmospheric νμ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope

    International Nuclear Information System (INIS)

    Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J.A.; Albert, A.; Drouhin, D.; Racca, C.; Al Samarai, I.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J.P.; Escoffier, S.; Lambard, E.; Riviere, C.; Vallee, C.; Yatkin, K.; Andre, M.; Anghinolfi, M.; Sanguineti, M.; Anton, G.; Classen, F.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Fritsch, U.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Herold, B.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Motz, H.; Neff, M.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Shanidze, R.; Sieger, C.; Spies, A.; Wagner, S.; Anvar, S.; Louis, F.; Astraatmadja, T.; Bogazzi, C.; Bouwhuis, M.C.; Heijboer, A.J.; Jong, M. de; Michael, T.; Palioselitis, D.; Schulte, S.; Steijger, J.J.M.; Visser, E.; Baret, B.; Bouhou, B.; Creusot, A.; Galata, S.; Kouchner, A.; Elewyck, V. van; Barrios-Marti, J.; Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuniga, J.; Basa, S.; Marcelin, M.; Nezri, E.; Biagi, S.; Fusco, L.A.; Giacomelli, G.; Margiotta, A.; Spurio, M.; Bruijn, R.; Decowski, M.P.; Wolf, E. de; Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Simeone, F.; Caramete, L.; Pavalas, G.E.; Popa, V.; Carloganu, C.; Dumas, A.; Gay, P.; Guillard, G.; Cecchini, S.; Chiarusi, T.; Charvis, P.; Deschamps, A.; Hello, Y.; Circella, M.; Dekeyser, I.; Lefevre, D.; Martini, S.; Robert, A.; Tamburini, C.; Distefano, C.; Lattuada, D.; Piattelli, P.; Sapienza, P.; Trovato, A.; Donzaud, C.; Dorosti, Q.; Loehner, H.; Flaminio, V.; Giordano, V.; Haren, H. van; Kadler, M.; Kooijman, P.; Kreykenbohm, I.; Mueller, C.; Wilms, J.; Kulikovskiy, V.; Leonora, E.; Lo Presti, D.; Loucatos, S.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vernin, P.; Montaruli, T.; Morganti, M.; Pradier, T.; Rostovtsev, A.; Samtleben, D.F.E.; Taiuti, M.; Tayalati, Y.

    2013-01-01

    Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric ν μ + anti ν μ energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is ∝25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index γ meas =3.58±0.12. With the present statistics the contribution of prompt neutrinos cannot be established. (orig.)

  17. Numerical simulation on the energy spectrum of the electron beam generated by low-impedance diode and the influence of external magnetic field on diode impedance

    International Nuclear Information System (INIS)

    Liu Guozhi

    2003-01-01

    The energy spectrum of the electron beam generated by low-impedance diode and the influence of external magnetic field on the impedance of diode are studied numerically in this paper. The results show that the beam generated by the diode has an energy spread, even with constant applied voltage. Additionally, external magnetic field has great but reverse influence on the impedance of low-impedance diode, which is, according to the author's analysis, the result of the change of the electron's track due to external magnetic field. If the beam current is less than the critical one for self-pinch, the impedance will be constant with the variation of external magnetic field

  18. Measurement of the atmospheric {nu}{sub {mu}} energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J.A. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Albert, A.; Drouhin, D.; Racca, C. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Al Samarai, I.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J.P.; Escoffier, S.; Lambard, E.; Riviere, C.; Vallee, C.; Yatkin, K. [Aix-Marseille Universite, CPPM, CNRS/IN2P3, Marseille (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M.; Sanguineti, M. [INFN - Sezione di Genova, Genova (Italy); Anton, G.; Classen, F.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Fritsch, U.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Herold, B.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Motz, H.; Neff, M.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Shanidze, R.; Sieger, C.; Spies, A.; Wagner, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anvar, S.; Louis, F. [CEA Saclay, Direction des Sciences de la Matiere - Institut de recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, Gif-sur-Yvette Cedex (France); Astraatmadja, T.; Bogazzi, C.; Bouwhuis, M.C.; Heijboer, A.J.; Jong, M. de; Michael, T.; Palioselitis, D.; Schulte, S.; Steijger, J.J.M.; Visser, E. [Nikhef, Amsterdam (Netherlands); Baret, B.; Bouhou, B.; Creusot, A.; Galata, S.; Kouchner, A.; Elewyck, V. van [Universite Paris Diderot, APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Paris (France); Barrios-Marti, J.; Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuniga, J. [CSIC - Universitat de Valencia, IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [Pole de l' Etoile Site de Chateau-Gombert, LAM - Laboratoire d' Astrophysique de Marseille, Marseille Cedex 13 (France); Biagi, S.; Fusco, L.A.; Giacomelli, G.; Margiotta, A.; Spurio, M. [INFN - Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica dell' Universita, Bologna (Italy); Bruijn, R.; Decowski, M.P.; Wolf, E. de [Nikhef, Amsterdam (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, XG Amsterdam (Netherlands); Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Simeone, F. [INFN - Sezione di Roma, Roma (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Roma (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Sciences, Bucharest (Romania); Carloganu, C.; Dumas, A.; Gay, P.; Guillard, G. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand (France); Cecchini, S.; Chiarusi, T. [INFN - Sezione di Bologna, Bologna (Italy); Charvis, P.; Deschamps, A.; Hello, Y. [Universite Nice Sophia-Antipolis, Geoazur, CNRS/INSU, IRD, Observatoire de la Cote d' Azur, Sophia Antipolis (France); Circella, M. [INFN - Sezione di Bari, Bari (Italy); Dekeyser, I.; Lefevre, D.; Martini, S.; Robert, A.; Tamburini, C. [Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), Marseille Cedex 9 (France); Universite du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (France); Distefano, C.; Lattuada, D.; Piattelli, P.; Sapienza, P.; Trovato, A. [INFN - Laboratori Nazionali del Sud (LNS), Catania (Italy); Donzaud, C. [Universite Paris Diderot, APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Paris (France); Univ Paris-Sud, Orsay Cedex (France); Dorosti, Q.; Loehner, H. [University of Groningen, Kernfysisch Versneller Instituut (KVI), Groningen (Netherlands); Flaminio, V. [INFN - Sezione di Pisa, Pisa (Italy); Dipartimento di Fisica dell' Universita, Pisa (Italy); Giordano, V. [INFN - Sezione di Catania, Catania (Italy); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje (Texel) (Netherlands); Kadler, M. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Kooijman, P. [Nikhef, Amsterdam (Netherlands); Universiteit Utrecht, Faculteit Betawetenschappen, Utrecht (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, XG Amsterdam (Netherlands); Kreykenbohm, I.; Mueller, C.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [INFN - Sezione di Genova, Genova (Italy); Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Leonora, E.; Lo Presti, D. [INFN - Sezione di Catania, Catania (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (IT); Loucatos, S.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vernin, P. [CEA Saclay, Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, Gif-sur-Yvette Cedex (FR); Montaruli, T. [INFN - Sezione di Bari, Bari (IT); Universite de Geneve, Departement de Physique Nucleaire et Corpusculaire, Geneva (CH); Morganti, M. [INFN - Sezione di Pisa, Pisa (IT); Pradier, T. [Universite de Strasbourg et CNRS/IN2P3, IPHC-Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, BP 28, Strasbourg Cedex 2 (FR); Rostovtsev, A. [ITEP - Institute for Theoretical and Experimental Physics, Moscow (RU); Samtleben, D.F.E. [Nikhef, Amsterdam (NL); Universiteit Leiden, Leids Instituut voor Onderzoek in Natuurkunde, Leiden (NL); Taiuti, M. [INFN - Sezione di Genova, Genova (IT); Dipartimento di Fisica dell' Universita, Genova (IT); Tayalati, Y. [University Mohammed I, Laboratory of Physics of Matter and Radiations, B.P. 717, Oujda (MA)

    2013-10-15

    Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric {nu}{sub {mu}} + anti {nu}{sub {mu}} energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is {proportional_to}25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index {gamma}{sub meas}=3.58{+-}0.12. With the present statistics the contribution of prompt neutrinos cannot be established. (orig.)

  19. Monte Carlo computation of Bremsstrahlung intensity and energy spectrum from a 15 MV linear electron accelerator tungsten target to optimise LINAC head shielding

    International Nuclear Information System (INIS)

    Biju, K.; Sharma, Amiya; Yadav, R.K.; Kannan, R.; Bhatt, B.C.

    2003-01-01

    The knowledge of exact photon intensity and energy distributions from the target of an electron target is necessary while designing the shielding for the accelerator head from radiation safety point of view. The computations were carried out for the intensity and energy distribution of photon spectrum from a 0.4 cm thick tungsten target in different angular directions for 15 MeV electrons using a validated Monte Carlo code MCNP4A. Similar results were computed for 30 MeV electrons and found agreeing with the data available in literature. These graphs and the TVT values in lead help to suggest an optimum shielding thickness for 15 MV Linac head. (author)

  20. Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles: Key Evidence from the Action Spectrum of the Reaction.

    Science.gov (United States)

    Sarina, Sarina; Jaatinen, Esa; Xiao, Qi; Huang, Yi Ming; Christopher, Philip; Zhao, Jin Cai; Zhu, Huai Yong

    2017-06-01

    By investigating the action spectra (the relationship between the irradiation wavelength and apparent quantum efficiency of reactions under constant irradiance) of a number of reactions catalyzed by nanoparticles including plasmonic metals, nonplasmonic metals, and their alloys at near-ambient temperatures, we found that a photon energy threshold exists in each photocatalytic reaction; only photons with sufficient energy (e.g., higher than the energy level of the lowest unoccupied molecular orbitals) can initiate the reactions. This energy alignment (and the photon energy threshold) is determined by various factors, including the wavelength and intensity of irradiation, molecule structure, reaction temperature, and so forth. Hence, distinct action spectra were observed in the same type of reaction catalyzed by the same catalyst due to a different substituent group, a slightly changed reaction temperature. These results indicate that photon-electron excitations, instead of the photothermal effect, play a dominant role in direct photocatalysis of metal nanoparticles for many reactions.

  1. 3D spectrum imaging of multi-wall carbon nanotube coupled π-surface modes utilising electron energy-loss spectra acquired using a STEM/Enfina system

    International Nuclear Information System (INIS)

    Seepujak, A.; Bangert, U.; Gutierrez-Sosa, A.; Harvey, A.J.; Blank, V.D.; Kulnitskiy, B.A.; Batov, D.V.

    2005-01-01

    Numerous studies have utilised electron energy-loss (EEL) spectra acquired in the plasmon (2-10 eV) regime in order to probe delocalised π-electronic states of multi-wall carbon nanotubes (MWCNTs). Interpretation of electron energy loss (EEL) spectra of MWCNTs in the 2-10 eV regime. Carbon (accepted for publication); Blank et al. J. Appl. Phys. 91 (2002) 1657). In the present contribution, EEL spectra were acquired from a 2D raster defined on a bottle-shaped MWCNT, using a Gatan UHV Enfina system attached to a dedicated scanning transmission electron microscope (STEM). The technique utilised to isolate and sequentially filter each of the volume and surface resonances is described in detail. Utilising a scale for the intensity of a filtered mode enables one to 'see' the distribution of each resonance in the raster. This enables striking 3D resonance-filtered spectrum images (SIs) of π-collective modes to be observed. Red-shift of the lower energy split π-surface resonance provides explicit evidence of π-surface mode coupling predicted for thin graphitic films (Lucas et al. Phys. Rev. B 49 (1994) 2888). Resonance-filtered SIs are also compared to non-filtered SIs with suppressed surface contributions, acquired utilising a displaced collector aperture. The present filtering technique is seen to isolate surface contributions more effectively, and without the significant loss of statistics, associated with the displaced collector aperture mode. Isolation of collective modes utilising 3D resonance-filtered spectrum imaging, demonstrates a valuable method for 'pinpointing' the location of discrete modes in irregularly shaped nanostructures

  2. TH-CD-201-02: A Monte Carlo Investigation of a Novel Detector Arrangement for the Energy Spectrum Measurement of a 6MV Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Taneja, S; Bartol, L; Culberson, W; DeWerd, L [School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI (United States)

    2016-06-15

    Purpose: Direct measurement of the energy spectrum of a 6MV linear accelerator has not been successful due to the high fluence rate, high energy nature of these photon beams. Previous work used a Compton Scattering (CS) spectrometry setup with a shielded spectrometer for spectrum measurements. Despite substantial lead shielding, excessive pulse pile-up was seen. MCNP6 transport code was used to investigate the feasibility and effectiveness of performing measurements using a novel detector setup. Methods: Simulations were performed with a shielded high-purity germanium (HPGe) semiconductor detector placed in the accelerator vault’s maze, with a 2 cm diameter collimator through a 92 cm thick concrete wall. The detector was positioned 660 cm from a scattering rod (placed at isocenter) at an angle of 45° relative to the central axis. This setup was compared with the shielded detector positioned in the room, 200 cm from the scattering rod at the same CS angle. Simulations were used to determine fluence contributions from three sources: (1) CS photons traveling through the collimator aperture, the intended signal, (2) CS scatter photons penetrating the detector shield, and (3) room-scattered photons penetrating the detector shield. Variance reduction techniques including weight windows, DXTRAN spheres, forced collisions, and energy cutoffs were used. Results: Simulations showed that the number of pulses per starting particle from an F8 detector tally for the intended signal decreased by a factor of 10{sup 2} when moving the detector out of the vault. This reduction in signal was amplified for the unwanted scatter signal which decreased by up to a factor of 10{sup 9}. Conclusion: This work used MCNP6 to show that using a vault wall to shield unwanted scatter and increasing isocenter-to-detector distance reduces unwanted fluence to the detector. This study aimed to provide motivation for future experimental work using the proposed setup.

  3. The effect of energy spectrum change on DNA damage in and out of field in 10-MV clinical photon beams.

    Science.gov (United States)

    Ezzati, A O; Xiao, Y; Sohrabpour, M; Studenski, M T

    2015-01-01

    The aim of this study was to quantify the DNA damage induced in a clinical megavoltage photon beam at various depths in and out of the field. MCNPX was used to simulate 10 × 10 and 20 × 20 cm(2) 10-MV photon beams from a clinical linear accelerator. Photon and electron spectra were collected in a water phantom at depths of 2.5, 12.5 and 22.5 cm on the central axis and at off-axis points out to 10 cm. These spectra were used as an input to a validated microdosimetric Monte Carlo code, MCDS, to calculate the RBE of induced DSB in DNA at points in and out of the primary radiation field at three depths. There was an observable difference in the energy spectra for photons and electrons for points in the primary radiation field and those points out of field. In the out-of-field region, the mean energy for the photon and electron spectra decreased by a factor of about six and three from the in-field mean energy, respectively. Despite the differences in spectra and mean energy, the change in RBE was photon and electron spectra, these changes do not correlate with a change in RBE in a clinical MV photon beam as the electron spectra are dominated by electrons with energies >20 keV.

  4. A stochastic model for neutron simulation considering the spectrum and nuclear properties with continuous dependence of energy

    International Nuclear Information System (INIS)

    Camargo, Dayana Queiroz de

    2011-01-01

    This thesis has developed a stochastic model to simulate the neutrons transport in a heterogeneous environment, considering continuous neutron spectra and the nuclear properties with its continuous dependence on energy. This model was implemented using Monte Carlo method for the propagation of neutrons in different environment. Due to restrictions with respect to the number of neutrons that can be simulated in reasonable computational processing time introduced the variable control volume along the (pseudo-) periodic boundary conditions in order to overcome this problem. The choice of class physical Monte Carlo is due to the fact that it can decompose into simpler constituents the problem of solve a transport equation. The components may be treated separately, these are the propagation and interaction while respecting the laws of energy conservation and momentum, and the relationships that determine the probability of their interaction. We are aware of the fact that the problem approached in this thesis is far from being comparable to building a nuclear reactor, but this discussion the main target was to develop the Monte Carlo model, implement the code in a computer language that allows extensions of modular way. This study allowed a detailed analysis of the influence of energy on the neutron population and its impact on the life cycle of neutrons. From the results, even for a simple geometrical arrangement, we can conclude the need to consider the energy dependence, i.e. an spectral effective multiplication factor should be introduced each energy group separately. (author)

  5. Intermediate neutron spectrum problems and the intermediate neutron spectrum experiment

    International Nuclear Information System (INIS)

    Jaegers, P.J.; Sanchez, R.G.

    1996-01-01

    Criticality benchmark data for intermediate energy spectrum systems does not exist. These systems are dominated by scattering and fission events induced by neutrons with energies between 1 eV and 1 MeV. Nuclear data uncertainties have been reported for such systems which can not be resolved without benchmark critical experiments. Intermediate energy spectrum systems have been proposed for the geological disposition of surplus fissile materials. Without the proper benchmarking of the nuclear data in the intermediate energy spectrum, adequate criticality safety margins can not be guaranteed. The Zeus critical experiment now under construction will provide this necessary benchmark data

  6. Spectrum Recombination.

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  7. Investigation of energy spectrum and nuclear interactions of primary cosmic radiation; Badanie widma energetycznego i oddzialywan jadrowych pierwotnego promieniowania kosmicznego

    Energy Technology Data Exchange (ETDEWEB)

    Wilczynski, H. [Dept. of High Energy Physics, The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)

    1996-12-31

    In the paper the JACEE experiment data analysis: energy spectra in the energy range 10{sup 12} - 10{sup 15} eV of different nuclides in cosmic radiation and some aspects of nuclear interactions at energy above 10{sup 12} eV/nucleon is presented. The data were compared with results of theory of cosmic radiation acceleration by striking waves arises from supernova stars explosions. In the interactions of cosmic radiation nuclei the short-lived particles production has been observed what agrees with long-distance component of cascades initiated by cosmic radiation interactions. In one case an interaction with asymmetric photons emission were observed 72 refs, 33 figs, 4 tabs

  8. A stochastic model for neutron simulation considering the spectrum and nuclear properties with continuous dependence of energy

    International Nuclear Information System (INIS)

    Camargo, Dayana Q. de; Bodmann, Bardo E.J.; Vilhena, Marco T. de; Froehlich, Herberth B.

    2011-01-01

    In this work we developed a stochastic model to simulate neutron transport in a heterogeneous environment, considering continuous neutron spectra and the nuclear properties with its continuous dependence on energy. This model was implemented using the Monte Carlo method for the propagation of neutrons in different environments. Due to restrictions with respect to the number of neutrons that can be simulated in reasonable computational time we introduced a variable control volume together with (pseudo-) periodic boundary conditions in order to overcome this problem. This study allowed a detailed analysis of the influence of energy on the neutron population and its impact on the life cycle of neutrons. From the results, even for a simple geometrical arrangement, we can conclude that there is need to consider the energy dependence and hence defined a spectral effective multiplication factor per Monte Carlo step. (author)

  9. Adjustable chain trees for proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Fonseca, Rasmus

    2012-01-01

    A chain tree is a data structure for changing protein conformations. It enables very fast detection of clashes and free energy potential calculations. A modified version of chain trees that adjust themselves to the changing conformations of folding proteins is introduced. This results in much...... tighter bounding volume hierarchies and therefore fewer intersection checks. Computational results indicate that the efficiency of the adjustable chain trees is significantly improved compared to the traditional chain trees....

  10. Measurement of continuum spectrum from {sup 12}C(p,p`x) at energy of 392 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Hiroki; Konishi, Daisuke; Uozumi, Yusuke; Wakabayashi, Genichiro; Sakae, Takeji; Matoba, Masaru [Kyushu Univ., Fukuoka (Japan); Nohtomi, Akihiro; Maki, Takashi; Koori, Norihiko

    1998-03-01

    Continuum spectra from {sup 12}C(p,p`x) reaction at 392 MeV were measured by using plastic and GSO(Ce) scintillators. The spectra of energy-angle double differential cross sections are compared with that of Quantum Molecular Dynamics (QMD) simulation. Significant differences were found in the results at the forward angles. (author)

  11. PsbS-specific zeaxanthin-independent changes in fluorescence emission spectrum as a signature of energy-dependent non-photochemical quenching in higher plants.

    Science.gov (United States)

    Zulfugarov, Ismayil S; Tovuu, Altanzaya; Dogsom, Bolormaa; Lee, Chung Yeol; Lee, Choon-Hwan

    2010-05-01

    The PsbS protein of photosystem II is necessary for the development of energy-dependent quenching of chlorophyll (Chl) fluorescence (qE), and PsbS-deficient Arabidopsis plant leaves failed to show qE-specific changes in the steady-state 77 K fluorescence emission spectra observed in wild-type leaves. The difference spectrum between the quenched and un-quenched states showed a negative peak at 682 nm. Although the level of qE development in the zeaxanthin-less npq1-2 mutant plants, which lacked violaxanthin de-epoxidase enzyme, was only half that of wild type, there were no noticeable changes in this qE-dependent difference spectrum. This zeaxanthin-independent DeltaF682 signal was not dependent on state transition, and the signal was not due to photobleaching of pigments either. These results suggest that DeltaF682 signal is formed due to PsbS-specific conformational changes in the quenching site of qE and is a new signature of qE generation in higher plants.

  12. Low dose out-of-field radiotherapy, part 2: Calculating the mean photon energy values for the out-of-field photon energy spectrum from scattered radiation using Monte Carlo methods.

    Science.gov (United States)

    Skrobala, A; Adamczyk, S; Kruszyna-Mochalska, M; Skórska, M; Konefał, A; Suchorska, W; Zaleska, K; Kowalik, A; Jackowiak, W; Malicki, J

    2017-08-01

    During radiotherapy, leakage from the machine head and collimator expose patients to out-of-field irradiation doses, which may cause secondary cancers. To quantify the risks of secondary cancers due to out-of-field doses, it is first necessary to measure these doses. Since most dosimeters are energy-dependent, it is essential to first determine the type of photon energy spectrum in the out-of-field area. The aim of this study was to determine the mean photon energy values for the out-of-field photon energy spectrum for a 6 MV photon beam using the GEANT 4-Monte Carlo method. A specially-designed large water phantom was simulated with a static field at gantry 0°. The source-to-surface distance was 92cm for an open field size of 10×10cm2. The photon energy spectra were calculated at five unique positions (at depths of 0.5, 1.6, 4, 6, 8, and 10cm) along the central beam axis and at six different off-axis distances. Monte Carlo simulations showed that mean radiation energy levels drop rapidly beyond the edge of the 6 MV photon beam field: at a distance of 10cm, the mean energy level is close to 0.3MeV versus 1.5MeV at the central beam axis. In some cases, the energy level actually increased even as the distance from the field edge increased: at a depth of 1.6cm and 15cm off-axis, the mean energy level was 0.205MeV versus 0.252MeV at 20cm off-axis. The out-of-field energy spectra and dose distribution data obtained in this study with Monte Carlo methods can be used to calibrate dosimeters to measure out-of-field radiation from 6MV photons. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  13. Influence of the dispersive and dissipative scales alpha and beta on the energy spectrum of the Navier-Stokes alphabeta equations.

    Science.gov (United States)

    Chen, Xuemei; Fried, Eliot

    2008-10-01

    Lundgren's vortex model for the intermittent fine structure of high-Reynolds-number turbulence is applied to the Navier-Stokes alphabeta equations and specialized to the Navier-Stokes alpha equations. The Navier-Stokes alphabeta equations involve dispersive and dissipative length scales alpha and beta, respectively. Setting beta equal to alpha reduces the Navier-Stokes alphabeta equations to the Navier-Stokes alpha equations. For the Navier-Stokes alpha equations, the energy spectrum is found to obey Kolmogorov's -5/3 law in a range of wave numbers identical to that determined by Lundgren for the Navier-Stokes equations. For the Navier-Stokes alphabeta equations, Kolmogorov's -5/3 law is also recovered. However, granted that beta Navier-Stokes alphabeta equations may have the potential to resolve features smaller than those obtainable using the Navier-Stokes alpha equations.

  14. Spectrum of Singly Charged Uranium (U II : Theoretical Interpretation of Energy Levels, Partition Function and Classified Ultraviolet Lines

    Directory of Open Access Journals (Sweden)

    Ali Meftah

    2017-06-01

    Full Text Available In an attempt to improve U II analysis, the lowest configurations of both parities have been interpreted by means of the Racah-Slater parametric method, using Cowan codes. In the odd parity, including the ground state, 253 levels of the interacting configurations 5 f 3 7 s 2 + 5 f 3 6 d 7 s + 5 f 3 6 d 2 + 5 f 4 7 p + 5 f 5 are interpreted by 24 free parameters and 64 constrained ones, with a root mean square (rms deviation of 60 cm − 1 . In the even parity, the four known configurations 5 f 4 7 s , 5 f 4 6 d , 5 f 2 6 d 2 7 s , 5 f 2 6 d 7 s 2 and the unknown 5 f 2 6 d 3 form a basis for interpreting 125 levels with a rms deviation of 84 cm − 1 . Due to perturbations, the theoretical description of the higher configurations 5 f 3 7 s 7 p + 5 f 3 6 d 7 p remains unsatisfactory. The known and predicted levels of U II are used for a determination of the partition function. The parametric study led us to a re-investigation of high resolution ultraviolet spectrum of uranium recorded at the Meudon Observatory in the late eighties, of which the analysis was unachieved. In the course of the present study, a number of 451 lines of U II has been classified in the region 2344 –2955 Å. One new level has been established as 5 f 3 6 d 7 p ( 4 I 6 K ( J = 5.5 at 39113.98 ± 0.1 cm − 1 .

  15. Natural background gamma-ray spectrum. List of gamma-rays ordered in energy from natural radionuclides

    International Nuclear Information System (INIS)

    Ichimiya, Tsutomu; Narita, Tsutomu; Kitao, Kensuke.

    1998-03-01

    A quick index to γ-rays and X-rays from natural radionuclides is presented. In the list, γ-rays are arranged in order of increasing energy. The list also contains γ-rays from radioactive nuclides produced in a germanium detector and its surrounding materials by interaction with cosmic neutrons, as well as direct γ-rays from interaction with the neutrons. Artificial radioactive nuclides emitting γ-rays with same or near energy value as that of the natural γ-rays and X-rays are also listed. In appendix, γ-ray spectra from a rock, uranium ore, thorium, monazite and uraninite and also background spectra obtained with germanium detectors placed in iron or lead shield have been given. The list is designed for use in γ-ray spectroscopy under the conditions of highly natural background, such as in-situ environmental radiation monitoring or low-level activity measurements, with a germanium detector. (author)

  16. First β-ν correlation measurement from the recoil-energy spectrum of Penning trapped Ar35 ions

    Science.gov (United States)

    Van Gorp, S.; Breitenfeldt, M.; Tandecki, M.; Beck, M.; Finlay, P.; Friedag, P.; Glück, F.; Herlert, A.; Kozlov, V.; Porobic, T.; Soti, G.; Traykov, E.; Wauters, F.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2014-08-01

    We demonstrate a novel method to search for physics beyond the standard model by determining the β-ν angular correlation from the recoil-ion energy distribution after β decay of ions stored in a Penning trap. This recoil-ion energy distribution is measured with a retardation spectrometer. The unique combination of the spectrometer with a Penning trap provides a number of advantages, e.g., a high recoil-ion count rate and low sensitivity to the initial position and velocity distribution of the ions and completely different sources of systematic errors compared to other state-of-the-art experiments. Results of a first measurement with the isotope Ar35 are presented. Although currently at limited precision, we show that a statistical precision of about 0.5% is achievable with this unique method, thereby opening up the possibility of contributing to state-of-the-art searches for exotic currents in weak interactions.

  17. Natural background gamma-ray spectrum. List of gamma-rays ordered in energy from natural radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Ichimiya, Tsutomu [Japan Radioisotope Association, Tokyo (Japan); Narita, Tsutomu; Kitao, Kensuke

    1998-03-01

    A quick index to {gamma}-rays and X-rays from natural radionuclides is presented. In the list, {gamma}-rays are arranged in order of increasing energy. The list also contains {gamma}-rays from radioactive nuclides produced in a germanium detector and its surrounding materials by interaction with cosmic neutrons, as well as direct {gamma}-rays from interaction with the neutrons. Artificial radioactive nuclides emitting {gamma}-rays with same or near energy value as that of the natural {gamma}-rays and X-rays are also listed. In appendix, {gamma}-ray spectra from a rock, uranium ore, thorium, monazite and uraninite and also background spectra obtained with germanium detectors placed in iron or lead shield have been given. The list is designed for use in {gamma}-ray spectroscopy under the conditions of highly natural background, such as in-situ environmental radiation monitoring or low-level activity measurements, with a germanium detector. (author)

  18. A contribution for the problematic of measurements of fast-neutron-energy spectrum in thermal reactor-systems

    International Nuclear Information System (INIS)

    Dederichs, H.

    1978-06-01

    The aims of this work are to check the experimental conditions for using of a 6 Li-semiconductor-spectrometer at thermal reactor-systems and to measure the neutron-energy-spectra at the critical experiment KAHTER comparing with the theory. Using the spectrometer at thermal-neutraon-experiments questions will be attended as resolution, statistic and selection of usable nuclear data. The nuclear data will be gauged by qualified measurements, the statistic will be estimated by simulated calculations and the resolution will be improved by using the Fredholm-equation in the calculations. The calculated spectra show a good agreement with the measured spectra. Only in the energy region of maximum distribution of fission-neutrons there are little difference. The measurements show the using of the spectrometer is recommended at systems with preponderant thermal neutron-spectra, although the resolution and statistic are optimized for the spectrometer by measurements at experiments with fast neutron-spectra. (orig.) 891 RW [de

  19. Application of evaporation model to the calculation of energy spectrum and angular distribution of recoil nuclei from neutron induced reaction

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Y; Sugimoto, M; Sugiyama, K [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1978-12-01

    Calculated angular distributions and energy spectra from 14.8 MeV neutron induced (n,2n) reactions based on a simple evaporation model were obtained by means of the Monte Carlo method. It was ascertained that the effects on the spectra of the method of determining the nuclear temperature and the value of the level density parameter are much smaller than those of the reaction Q-value and the nuclear mass. As a check on the calculational procedure, results of similar calculations were compared with the experimental recoil escape efficiency for /sup 27/Al(n,..cap alpha..)/sup 24/Na reaction. Distortions of the energy spectra in thick target materials were also obtained. These results suggest that this model is fully applicable to the calculation of primary knock-on atoms distributions from various nuclear reactions.

  20. Phonon spectrum of single-crystalline FeSe probed by high-resolution electron energy-loss spectroscopy

    Science.gov (United States)

    Zakeri, Khalil; Engelhardt, Tobias; Le Tacon, Matthieu; Wolf, Thomas

    2018-06-01

    Utilizing high-resolution electron energy-loss spectroscopy (HREELS) we measure the phonon frequencies of β-FeSe(001), cleaved under ultra-high vacuum conditions. At the zone center (Γ bar-point) three prominent loss features are observed at loss energies of about ≃ 20.5 and 25.6 and 40 meV. Based on the scattering selection rules we assign the observed loss features to the A1g, B1g, and A2u phonon modes of β-FeSe(001). The experimentally measured phonon frequencies do not agree with the results of density functional based calculations in which a nonmagnetic, a checkerboard or a strip antiferromagnetic order is assumed for β-FeSe(001). Our measurements suggest that, similar to the other Fe-based materials, magnetism has a profound impact on the lattice dynamics of β-FeSe(001).

  1. Monte Carlo study of MOSFET dosimeter dose correction factors considering energy spectrum of radiation field in a steam generator channel head

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Koo; Choi, Sang Hyoun; Kim, Chan Hyeong [Hanyang Univ., Seoul (Korea, Republic of)

    2006-12-15

    In Korea, a real-time effective dose measurement system is in development. The system uses 32 high-sensitivity MOSFET dosimeters to measure radiation doses at various organ locations in an anthropomorphic physical phantom. The MOSFET dosimeters are, however, mainly made of silicon and shows some degree of energy and angular dependence especially for low energy photons. This study determines the correction factors to correct for these dependences of the MOSFET dosimeters for accurate measurement of radiation doses at organ locations in the phantom. For this, first, the dose correction factors of MOSFET dosimeters were determined for the energy spectrum in the steam generator channel of the Kori Nuclear Power Plant Unit no.1 by Monte Carlo simulations. Then, the results were compared with the dose correction factors from 0.662 MeV and 1.25 MeV mono-energetic photons. The difference of the dose correction factors were found very negligible ({<=}1.5%), which in general shows that the dose corrections factors determined from 0.662 MeV and 1.25 MeV can be in a steam general channel head of a nuclear power plant. The measured effective dose was generally found to decrease by {approx}7% when we apply the dose correction factors.

  2. Red shift in the spectrum of a chlorophyll species is essential for the drought-induced dissipation of excess light energy in a poikilohydric moss, Bryum argenteum.

    Science.gov (United States)

    Shibata, Yutaka; Mohamed, Ahmed; Taniyama, Koichiro; Kanatani, Kentaro; Kosugi, Makiko; Fukumura, Hiroshi

    2018-05-01

    Some mosses are extremely tolerant of drought stress. Their high drought tolerance relies on their ability to effectively dissipate absorbed light energy to heat under dry conditions. The energy dissipation mechanism in a drought-tolerant moss, Bryum argenteum, has been investigated using low-temperature picosecond time-resolved fluorescence spectroscopy. The results are compared between moss thalli samples harvested in Antarctica and in Japan. Both samples show almost the same quenching properties, suggesting an identical drought tolerance mechanism for the same species with two completely different habitats. A global target analysis was applied to a large set of data on the fluorescence-quenching dynamics for the 430-nm (chlorophyll-a selective) and 460-nm (chlorophyll-b and carotenoid selective) excitations in the temperature region from 5 to 77 K. This analysis strongly suggested that the quencher is formed in the major peripheral antenna of photosystem II, whose emission spectrum is significantly broadened and red-shifted in its quenched form. Two emission components at around 717 and 725 nm were assigned to photosystem I (PS I). The former component at around 717 nm is mildly quenched and probably bound to the PS I core complex, while the latter at around 725 nm is probably bound to the light-harvesting complex. The dehydration treatment caused a blue shift of the PS I emission peak via reduction of the exciton energy flow to the pigment responsible for the 725 nm band.

  3. Structures in the primary spectrum

    International Nuclear Information System (INIS)

    Kempa, J.; Knurenko, S.P.; Malecki, R.

    2009-01-01

    Structures in the energy spectrum of primary cosmic rays at the 'knee' region and for energies higher than 1 EeV are obtained through studying extensive air showers (EAS). The main problem of the research is the fact that we work in the ranges of highly fluctuating parameters used to obtain the primary energy spectrum. In this paper the log-normal distribution for the error function has been used in convolution with the power spectrum to explain the Yakutsk experimental data. Similar results have been obtained for the gamma distribution as the error function. Using the power law primary spectrum in the energy region around 10 19 eV we will argue that the primary Yakutsk spectrum is overestimated. In the best case this overestimation is not less than 42%.

  4. First beta-nu correlation measurement from the recoil-energy spectrum of Penning trapped Ar-35 ions

    Czech Academy of Sciences Publication Activity Database

    Van Gorp, S.; Breitenfeldt, M.; Tandecki, M.; Beck, M.; Finlay, P.; Friedag, P.; Gluck, F.; Herlert, A.; Kozlov, V.; Porobic, T.; Soti, G.; Traykov, E.; Wauters, F.; Weinheimer, Ch.; Zákoucký, Dalibor; Severijns, N.

    2014-01-01

    Roč. 90, č. 2 (2014), č. článku 025502. ISSN 2469-9985 R&D Projects: GA MŠk LA08015; GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : correlation measurements * spectrometers * ISOLDE Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 3.733, year: 2014

  5. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  6. [Mutation in the beta3-adrenergic receptor gene (Trp64Arg) does not influence insulin resistence, energy metabolism, fat distribution and lipid spectrum in young people. Pilot study].

    Science.gov (United States)

    Bendlová, B; Mazura, I; Vcelák, J; Pelikánová, T; Kunesová, M; Hainer, V; Obenberger, J; Palyzová, D

    1999-05-01

    A missence mutation Trp64Arg in the beta3-adrenergic receptor gene is associated with obesity, insulin resistance, a lower metabolic rate and the earlier onset of NIDDM but the published results are controversial. We investigated the effect of this mutation on insulin resistance (euglycemic hyperinsulinemic clamp), on fat mass and fat distribution (anthropometry, bioimpedance, CT) and resting metabolic rate (indirect calorimetry), lipid spectrum and other metabolic disturbances in Czech juveniles recruited from juvenile hypertensives (H, n = 68) and controls (C, n = 81). The frequency of this mutation (determined by digestion of 210 bp PCR product with MvaI) was double in H than in C (14.7%, vs. 7.4%) and the carriers of Arg64 allele had sig. higher fasting glucose (H: p = 0.002. C: p = 0.025). Four Trp64/Arg64 and six Trp64/Trp64 men (age 23 +/- 4.2, vs. 22.5 +/- 1.9 y, BMI 26 +/- 5.5, vs. 22.9 +/- 5.1 kg/m2) took part in a detailed pilot study. But no signif. differences (Horn's method) in fasting glucose (4.6 +/- 0.6, vs. 4.9 +/- 0.4 mmol/l), in parameters of insulin resistance (M-value150-180 min. 9.1 +/- 1.1, vs. 8.9 +/- 1.5 mg glucose/kg.min(-1)), resting metabolic rate/lean body mass (RMR/kg LBM: 78.6 +/- 4.6, vs. 85.6 +/- 23.2 kJ/kg), lipid spectrum and other screened parameters were found. The lowest resting metabolic rate (RMR/kg LBM 55.4; 62.6 kJ/kg) was found in brothers (both C, Trp64/Trp64) who highly differ in body constitution (BMI 19.0 resp. 32.4 kg/m2). We suppose that in this case the energy metabolism is probably determined by other genetic loci and does not correlate with body fat mass. Our pilot study does not confirm the influence of Trp64Arg mutation in heterozygous carriers on insulin resistance, energy metabolism and lipid spectrum.

  7. Energy reallocation during and after periods of nutritional stress in Steller sea lions: low-quality diet reduces capacity for physiological adjustments.

    Science.gov (United States)

    Jeanniard du Dot, Tiphaine; Rosen, David A S; Trites, Andrew W

    2009-01-01

    Two groups of female Steller sea lions (groups H and P) were subjected to periods of energy restriction and subsequent refeeding during winter and summer to determine changes in energy partitioning among principal physiological functions and the potential consequences to their fitness. Both sea lion groups consumed high-quality fish (herring) before and after the energy restrictions. During restrictions, group H was fed a lower quantity of herring and group P a caloric equivalent of low-quality fish (pollock). Quantitative estimates of maintenance and production energies and qualitative estimates of thermoregulation, activity, and basal metabolic rate were measured. During summer, all animals compensated for the imposed energy deficit by releasing stored energy (production energy). Group H also optimized the energy allocation to seasonal conditions by increasing activity during summer, when fish are naturally abundant (foraging effort), and by decreasing thermoregulation capacity when waters are warmer. During winter, both groups decreased the energy allocated to overall maintenance functions (basal metabolic rate, thermoregulation, and activity together) in addition to releasing stored energy, but they preserved thermoregulatory capacity. Group H also decreased activity levels in winter, when foraging in the wild is less efficient, unlike group P. Overall, sea lions fed pollock did not change energy allocation to suit environmental conditions as readily as those fed herring. This implies that a low energy-density diet may further reduce fitness of animals in the wild during periods of nutritional stress.

  8. Quality of life: a key variable to consider in the evaluation of adjustment in parents of children with autism spectrum disorders and in the development of relevant support and assistance programmes.

    Science.gov (United States)

    Cappe, Emilie; Wolff, Marion; Bobet, René; Adrien, Jean-Louis

    2011-10-01

    Our primary objective was to identify cognitive and behavioural profiles that affect adjustment, in order to make relevant recommendations about support and assistance for parents of autistic children. One hundred and sixty French parents completed a battery of questionnaires and self-report measures developed or adapted to assess (1) the child and family situations; (2) perceived stress; (3) perceived social support; (4) perceived control; (5) coping strategies; and (6) quality of life. The psychometric properties of the instruments we used proved to be adequate. Our results support the pre-existing data and our findings may prove to be of interest to clinicians. Our primary finding was that emotion-focused coping strategies seem to be less effective. Parents who employed emotion-focused strategies were more stressed and more disturbed in most parts of their life. They also experienced more guilt and reported more false beliefs about PDD. Our data underscore the need for psychoeducation programmes for parents, focused on handling stress and emotions, modifying false beliefs and solving the daily problems that arise from PDD. We propose a 5-axis intervention model for parents of children with PDD, based on cognitive-behavioural therapies and on a stress management programme.

  9. TAILORING X-RAY BEAM ENERGY SPECTRUM TO ENHANCE IMAGE QUALITY OF NEW RADIOGRAPHY CONTRAST AGENTS BASED ON GD OR OTHER LANTHANIDES.

    Energy Technology Data Exchange (ETDEWEB)

    DILMANIAN,F.A.; WEINMANN,H.J.; ZHONG,Z.; BACARIAN,T.; RIGON,L.; BUTTON,T.M.; REN,B.; WU,X.Y.; ZHONG,N.; ATKINS,H.L.

    2001-02-17

    Gadovist, a 1.0-molar Gd contrast agent from Schering AG, Berlin Germany, in use in clinical MPI in Europe, was evaluated as a radiography contrast agent. In a collaboration with Brookhaven National Laboratory (BNL), Schering AG is developing several such lanthanide-based contrast agents, while BNL evaluates them using different x-my beam energy spectra. These energy spectra include a ''truly'' monochromatic beam (0.2 keV energy bandwidth) from the National Synchrotron Light Source (NSLS), BNL, tuned above the Gd K-edge, and x-ray-tube beams from different kVp settings and beam filtrations. Radiographs of rabbits' kidneys were obtained with Gadovist at the NSLS. Furthermore, a clinical radiography system was used for imaging rabbits' kidneys comparing Gadovist and Conray, an iodinated contrast agent. The study, using 74 kVp and standard Al beam filter for Conray and 66 kVp and an additional 1.5 mm Cu beam filter for Gadovist, produced comparable images for Gadovist and Conray; the injection volumes were the same, while the radiation absorbed dose for Gadovist was slightly smaller. A bent-crystal silicon monochromator operating in the Laue diffraction mode was developed and tested with a conventional x-ray tube beam; it narrows the energy spectrum to about 4 keV around the anode tungsten's Ku line. Preliminary beam-flux results indicate that the method could be implemented in clinical CT if x-ray tubes with {approximately} twice higher output become available.

  10. The high energy X-ray spectrum of 4U 0900-40 observed from OSO 8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Ellison, D. C.

    1981-01-01

    The X-ray source 4U 0900-40 (= Vela XR-1) was observed with the high-energy X-ray spectrometer on OSO 8 for one week in 1976 and three weeks in 1978. Spectra of the source are presented above 16 keV. No systematic difference exists between the X-ray eclipse centers and the eclipse centers predicted from optical ephermerides. Short period intrinsic variability in the system's X-ray intensity may be related to changes in the Compton scattering optical depth in the system and does not require sporadic mass transfer via Roche lobe overflow. The 282 s modulation in the source's X-ray flux above 21 keV consists of two essentially similar pulses per period, most easily interpreted as arising from the two different magnetic poles of a rotating neutron star. The secondary appears to be a spherically accreting, magnetic neutron star.

  11. Ground level cosmic ray pulse height spectrum of a 7.5 cm diameter spherical NaI(Tl) scintillation detector for energy region below 5 MeV

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Saito, Kimiaki; Moriuchi, Shigeru

    1988-01-01

    Ground level cosmic ray pulse height spectrum of a 7.5 cm diameter spherical NaI(Tl) scintillation detector was evaluated through stripping operation based on a pulse height spectrum measured on the sea and high precision response functions of the detector for U-series, Th-series and 40 K. The exposure rate calculated from the determined cosmic ray pulse height spectrum was 0.21 μR/h eq., which agreed well with that obtained from another method. The shape of the pulse height spectrum showed similarity to that measured at the altitude of 16,000 ft, especially in the energy region of 0 to 3 MeV. The principle of the adopted method is rather plain, however, the reliability of the spectrum is satisfactory. As the pulse height spectrum is a common information to any analytical method for environmental gamma ray using NaI(Tl) scintillation detector, it is expected to be used for simple and precise separation of cosmic ray component involved in the enviromental pulse height spectrum. (author)

  12. HPGe detector shielding adjustment

    International Nuclear Information System (INIS)

    Trnkova, L.; Rulik, P.

    2008-01-01

    Low-level background shielding of HPGe detectors is used mainly for environmental samples with very low content of radionuclides. National Radiation Protection Institute (SURO) in Prague is equipped with 14 HPGe detectors with relative efficiency up to 150%. The detectors are placed in a room built from materials with low content of natural radionuclides and equipped with a double isolation of the floor against radon. Detectors themselves are placed in lead or steel shielding. Steel shielding with one of these detectors with relative efficiency of 100% was chosen to be rebuilt to achieve lower minimum detectable activity (MDA). Additional lead and copper shielding was built up inside the original steel shielding to reduce the volume of the inner space and filled with nitrogen by means of evaporating liquid nitrogen. The additional lead and copper shielding, consequent reduction of the inner volume and supply of evaporated nitrogen, caused a decrease of the background count and accordingly MDA values as well. The effect of nitrogen evaporation on the net areas of peaks belonging to radon daughters is significant. The enhanced shielding adjustment has the biggest influence in low energy range, what can be seen in collected data. MDA values in energy range from 30 keV to 400 keV decreased to 0.65-0.85 of original value, in energy range from 400 keV to 2 MeV they fell to 0.70-0.97 of original value. (authors)

  13. Some considerations of the energy spectrum of odd-odd deformed nuclei; Quelqes considerations sur le spectre d'energie des noyaux impair-impair deformes

    Energy Technology Data Exchange (ETDEWEB)

    Alceanu-G, Pinho de; Picard, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The odd-odd deformed nuclei are described as a rotator plus two odd nucleons moving in orbitals {omega}{sub p} and {omega}{sub n} of the deformed potential. We investigate the energies and wave functions of the various states of the ({omega}{sub p}, {omega}{sub n}) configurations by calculating and numerically diagonalizing the Hamiltonian matrix (with R.P.C. and residual interactions). The Gallagher-Mosskowski coupling rules ana the abnormal K equals 0 rotational bands are discussed. (authors) [French] Les noyaux impair-impairs deformes sont decrits comme un rotateur plus deux nucleons non apparies dans les orbites {omega}{sub p} et {omega}{sub n} du potentiel deforme. Nous etudions le spectre d'energie et les fonctions d'onde des configurations ({omega}{sub p}, {omega}{sub n}) en tenant compte de l'interaction particule-rotation et de la force residuelle entre les deux nucleons celibataires.

  14. Leverage of Behavioural Patterns of Window Opening and Heating Set Point Adjustments on Energy Consumption and Thermal Comfort in Residential Buildings

    DEFF Research Database (Denmark)

    Corgnati, Stefano Paolo; D'Oca, Simona; Fabi, Valentina

    2014-01-01

    The current trend in reduction in energy use in buildings is oriented towards sustainable measures and techniques aimed to energy need restraint. Even so, studies have underlined large differences in energy consumption in similar buildings, suggesting strong influence of occupant behaviour...... through a better and more accurate prediction of energy use; however, they are still unable to replicate the actual dynamics that govern energy uses within buildings. Furthermore, occupant behaviour is currently described by static profiles, based on assumptions and average values of typical behaviour......, considering different behavioural patterns and preferences among indoor environmental quality, is arising. Final goal of this research is to simulate, in a more accurate way, the variation in actual energy consumption due to human interaction within buildings. In this effort, the study has highlighted which...

  15. The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude

    International Nuclear Information System (INIS)

    Goldhagen, P.; Clem, J. M.; Wilson, J. W.

    2004-01-01

    Crews of high-altitude aircraft are exposed to radiation from galactic cosmic rays (GCRs). To help determine such exposures, the Atmospheric Ionizing Radiation Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on a NASA ER-2 high-altitude airplane. The primary instrument was a sensitive extended-energy multisphere neutron spectrometer. Its detector responses were calculated for energies up to 100 GeV using the radiation transport code MCNPX 2.5.d with improved nuclear models and including the effects of the airplane structure. New calculations of GCR-induced particle spectra in the atmosphere were used to correct for spectrometer counts produced by protons, pions and light nuclear ions. Neutron spectra were unfolded from the corrected measured count rates using the deconvolution code MAXED 3.1. The results for the measured cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron dose equivalent and effective dose rates, and their dependence on altitude and geomagnetic cut-off agree well with results from recent calculations of GCR-induced neutron spectra. (authors)

  16. Energy spectrum of CsDy(MoO/sub 4/)/sub 2/ in the vicinity of the structural phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Khats' ko, E N; Chernyj, A S [AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur

    1981-08-01

    The magnetic susceptibilities of CsDy(MoO/sub 4/)/sub 2/ and CsDy(MoO/sub 4/)/sub 2/+10%Eu/sup 3 +/ were measured in the temperature range 4 to 70 K and the frequency range 200 Hz to 20 MHz. The observed spin-lattice relaxation of the Dy/sup 3 +/ ion is found to be exponential with the relaxation time as a function of temperature tau/sup -1/=A exp (-..delta../kT) with ..delta..=105+-20 and 250+-40 cm/sup -1/ for CsDy(MoO/sub 4/)/sub 2/ in ranges 10-20 K and 20-38 K, respectively, and ..delta..=22.4+-5 cm for C=sDy(MoO/sub 4/)/sub 2/+10%Eu/sup 3 +/. The energies ..delta..105+-20 and 250 -40cm/sup -1/ are suggested to correspond to the first and second excited levels of Dy/sup 3 +/ in the low temperature phase of CsDy(MoO/sub 4/)/sub 2/, and ..delta..=22.4+-5 cm/sup -1/ to the first excited level of Dy/sup 3 +/ in the high temperature phase of the compound.

  17. Applications of sensitivity function to dosimetric data adjustments

    International Nuclear Information System (INIS)

    Nakazawa, Masaharu

    1984-01-01

    Sensitivity functions are applied to the dosimetric field in the spectrum unfolding technique, also called as the data adjustment technique which are statistical estimation procedures of the neutron spectrum or relating dosimetric quantities basing on the reaction-rate data measurements. Using the practical formulae and numerical examples of the sensitivity functions in the dosimetric data adjustments, two comments are made that (1) present sensitivity values are highly depending on the initial spectrum inputs and (2) more attention should be paid to the dependency of the sensitivity on the very uncertain covariance data inputs of the initial neutron spectrum. (author)

  18. Calculation on spectrum of direct DNA damage induced by low-energy electrons including dissociative electron attachment.

    Science.gov (United States)

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2017-03-01

    In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.

  19. Some considerations of the energy spectrum of odd-odd deformed nuclei; Quelqes considerations sur le spectre d'energie des noyaux impair-impair deformes

    Energy Technology Data Exchange (ETDEWEB)

    Alceanu-G, Pinho de; Picard, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The odd-odd deformed nuclei are described as a rotator plus two odd nucleons moving in orbitals {omega}{sub p} and {omega}{sub n} of the deformed potential. We investigate the energies and wave functions of the various states of the ({omega}{sub p}, {omega}{sub n}) configurations by calculating and numerically diagonalizing the Hamiltonian matrix (with R.P.C. and residual interactions). The Gallagher-Mosskowski coupling rules ana the abnormal K equals 0 rotational bands are discussed. (authors) [French] Les noyaux impair-impairs deformes sont decrits comme un rotateur plus deux nucleons non apparies dans les orbites {omega}{sub p} et {omega}{sub n} du potentiel deforme. Nous etudions le spectre d'energie et les fonctions d'onde des configurations ({omega}{sub p}, {omega}{sub n}) en tenant compte de l'interaction particule-rotation et de la force residuelle entre les deux nucleons celibataires.

  20. Zellweger Spectrum

    Science.gov (United States)

    ... severe defect, resulting in essentially nonfunctional peroxisomes. This phenomenon produces the range of severity of the disorders. How is the Zellweger Spectrum Diagnosed? The distinctive shape of the head and face of a child born with one of the diseases of the ...