WorldWideScience

Sample records for energy sciences ultrafast

  1. Ultrafast Science Opportunities with Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    DURR, HERMANN; Wang, X.J., ed.

    2016-04-28

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes the Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.

  2. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    International Nuclear Information System (INIS)

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-01-01

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron

  3. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-12-12

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  4. Proposal to DOE Basic Energy Sciences Ultrafast X-ray science facility at the Advanced Light Source

    CERN Document Server

    Schönlein, R W; Alivisatos, A P; Belkacem, A; Berrah, N; Bozek, J; Bressler, C; Cavalleri, A; Chang, Z; Chergui, M; Falcone, R W; Glover, T E; Heimann, P A; Hepburn, J; Larsson, J; Lee, R W; McCusker, J; Padmore, H A; Pattison, P; Pratt, S T; Robin, D W; Schlüter, Ross D; Shank, C V; Wark, J; Zholents, A A; Zolotorev, M S

    2001-01-01

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  5. Progress in Ultrafast Intense Laser Science II

    CERN Document Server

    Yamanouchi, Kaoru; Agostini, Pierre; Ferrante, Gaetano

    2007-01-01

    This book series addresses a newly emerging interdisciplinary research field, Ultrafast Intense Laser Science, spanning atomic and molecular physics, molecular science, and optical science. Its progress is being stimulated by the recent development of ultrafast laser technologies. Highlights of this second volume include Coulomb explosion and fragmentation of molecules, control of chemical dynamics, high-order harmonic generation, propagation and filamentation, and laser-plasma interaction. All chapters are authored by foremost experts in their fields and the texts are written at a level accessible to newcomers and graduate students, each chapter beginning with an introductory overview.

  6. Progress in ultrafast intense laser science XI

    CERN Document Server

    Yamanouchi, Kaoru; Martin, Philippe

    2014-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance

  7. Progress in ultrafast intense laser science

    CERN Document Server

    Yamanouchi, Kaoru; Mathur, Deepak

    2014-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance

  8. Progress in ultrafast intense laser science XIII

    CERN Document Server

    III, Wendell; Paulus, Gerhard

    2017-01-01

    This thirteenth volume covers a broad range of topics from this interdisciplinary research field, focusing on atoms, molecules, and clusters interacting in intense laser field and high-order harmonics generation and their applications. The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, the interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.   .

  9. Progress in Ultrafast Intense Laser Science

    CERN Document Server

    Yamanouchi, Kaoru; Li, Ruxin; Chin, See Leang

    2009-01-01

    The PUILS series presents Progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science. PUILS has been stimulated by the recent development of ultrafast laser technologies. Each volume contains approximately 15 chapters, authored by researchers at the forefront. Each chapter opens with an overview of the topics to be discussed, so that researchers, who are not experts in the specific topics, as well as graduate students can grasp the importance and attractions of this sub-field of research, and these are followed by reports of cutting-edge discoveries. This fourth volume covers a broad range of topics from this interdisciplinary research field, focusing on strong field ionization of atoms; excitation, ionization and fragmentation of molecules; nonlinear intense optical phenomena and attosecond pulses; and laser - solid interactions and photoemission.

  10. Progress in Ultrafast Intense Laser Science III

    CERN Document Server

    Yamanouchi, Kaoru; Agostini, Pierre; Ferrante, Gaetano

    2008-01-01

    The PUILS series presents Progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science. PUILS has been stimulated by the recent development of ultrafast laser technologies. Each volume contains approximately 15 chapters, authored by researchers at the forefront. Each chapter opens with an overview of the topics to be discussed, so that researchers, who are not experts in the specific topics, as well as graduate students can grasp the importance and attractions of this sub-field of research, and these are followed by reports of cutting-edge discoveries. This third volume covers a diverse range of disciplines, focusing on such topics as strong field ionization of atoms, ionization and fragmentation of molecules and clusters, generation of high-order harmonics and attosecond pulses, filamentation and laser plasma interaction, and the development of ultrashort and ultrahigh-intensity light sources.

  11. Progress in Ultrafast Intense Laser Science VIII

    CERN Document Server

    Nisoli, Mauro; Hill, Wendell; III, III

    2012-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield as well as graduate students can grasp the importance and attractions of the research topic at hand. These are followed by reports of cutting-edge discoveries. This eighth volume covers a broad range of topics from this interdisciplinary research field, focusing on molecules interacting with ultrashort and intense laser fields, advanced technologies for the characterization of ultrashort laser pulses and their applications, laser plasma formation and laser acceleration.

  12. Progress in Ultrafast Intense Laser Science VI

    CERN Document Server

    Yamanouchi, Kaoru; Bandrauk, André D

    2010-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This sixth volume covers a broad range of topics from this interdisciplinary research field, focusing on responses of molecules to ultrashort intense laser pulses, generation and characterization of attosecond pulses and high-order harmonics, and filamentation and laser-plasma interaction.

  13. Progress in ultrafast intense laser science XII

    CERN Document Server

    Roso, Luis; Li, Ruxin; Mathur, Deepak; Normand, Didier

    2015-01-01

    This  volume covers a broad range of topics focusing on atoms, molecules, and clusters interacting in intense laser field, laser induced filamentation, and laser plasma interaction and application. The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. .

  14. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-01-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  15. Ultrafast Microscopy of Energy and Charge Transport

    Science.gov (United States)

    Huang, Libai

    The frontier in solar energy research now lies in learning how to integrate functional entities across multiple length scales to create optimal devices. Advancing the field requires transformative experimental tools that probe energy transfer processes from the nano to the meso lengthscales. To address this challenge, we aim to understand multi-scale energy transport across both multiple length and time scales, coupling simultaneous high spatial, structural, and temporal resolution. In my talk, I will focus on our recent progress on visualization of exciton and charge transport in solar energy harvesting materials from the nano to mesoscale employing ultrafast optical nanoscopy. With approaches that combine spatial and temporal resolutions, we have recently revealed a new singlet-mediated triplet transport mechanism in certain singlet fission materials. This work demonstrates a new triplet exciton transport mechanism leading to favorable long-range triplet exciton diffusion on the picosecond and nanosecond timescales for solar cell applications. We have also performed a direct measurement of carrier transport in space and in time by mapping carrier density with simultaneous ultrafast time resolution and 50 nm spatial precision in perovskite thin films using transient absorption microscopy. These results directly visualize long-range carrier transport of 220nm in 2 ns for solution-processed polycrystalline CH3NH3PbI3 thin films. The spatially and temporally resolved measurements reported here underscore the importance of the local morphology and establish an important first step towards discerning the underlying transport properties of perovskite materials.

  16. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  17. Femtochemistry and femtobiology ultrafast dynamics in molecular science

    CERN Document Server

    Douhal, Abderrazzak

    2002-01-01

    This book contains important contributions from top international scientists on the-state-of-the-art of femtochemistry and femtobiology at the beginning of the new millennium. It consists of reviews and papers on ultrafast dynamics in molecular science.The coverage of topics highlights several important features of molecular science from the viewpoint of structure (space domain) and dynamics (time domain). First of all, the book presents the latest developments, such as experimental techniques for understanding ultrafast processes in gas, condensed and complex systems, including biological mol

  18. Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs.

    Science.gov (United States)

    MacLean, Jean-Philippe W; Donohue, John M; Resch, Kevin J

    2018-02-02

    Energy-time entangled photons are critical in many quantum optical phenomena and have emerged as important elements in quantum information protocols. Entanglement in this degree of freedom often manifests itself on ultrafast time scales, making it very difficult to detect, whether one employs direct or interferometric techniques, as photon-counting detectors have insufficient time resolution. Here, we implement ultrafast photon counters based on nonlinear interactions and strong femtosecond laser pulses to probe energy-time entanglement in this important regime. Using this technique and single-photon spectrometers, we characterize all the spectral and temporal correlations of two entangled photons with femtosecond resolution. This enables the witnessing of energy-time entanglement using uncertainty relations and the direct observation of nonlocal dispersion cancellation on ultrafast time scales. These techniques are essential to understand and control the energy-time degree of freedom of light for ultrafast quantum optics.

  19. Optical Detection in Ultrafast Short Wavelength Science

    International Nuclear Information System (INIS)

    Fullagar, Wilfred K.; Hall, Chris J.

    2010-01-01

    A new approach to coherent detection of ionising radiation is briefly motivated and recounted. The approach involves optical scattering of coherent light fields by colour centres in transparent solids. It has significant potential for diffractive imaging applications that require high detection dynamic range from pulsed high brilliance short wavelength sources. It also motivates new incarnations of Bragg's X-ray microscope for pump-probe studies of ultrafast molecular structure-dynamics.

  20. Progress in Ultrafast Intense Laser Science Volume V

    CERN Document Server

    Yamanouchi, Kaoru; Ledingham, Kenneth

    2010-01-01

    The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This fifth volume covers a broad range of topics from this interdisciplinary research field, focusing on coherent responses of gaseous and condensed matter to ultrashort intense laser pulses, propagation of intense laser pulses, and laser-plasma interaction and its applications.

  1. Advanced Instrumentation for Ultrafast Science at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, Nora [Univ. of Connecticut, Storrs, CT (United States)

    2015-10-13

    This grant supported a Single Investigator and Small Group Research (SISGR) application to enable multi-user research in Ultrafast Science using the Linac Coherent Light Source (LCLS), the world’s first hard x-ray free electron laser (FEL) which lased for the first time at 1.5 Å on April 20, 2009. The goal of our proposal was to enable a New Era of Science by requesting funds to purchase and build Advanced Instrumentation for Ultrafast Science (AIUS), to utilize the intense, short x-ray pulses produced by the LCLS. The proposed instrumentation will allow peer review selected users to probe the ultrasmall and capture the ultrafast. These tools will expand on the investment already made in the construction of the light source and its instrumentation in both the LCLS and LUSI projects. The AIUS will provide researchers in the AMO, Chemical, Biological and Condensed Matter communities with greater flexibility in defining their scientific agenda at the LCLS. The proposed instrumentation will complement and significantly augment the present AMO instrument (funded through the LCLS project) through detectors and capabilities not included in the initial suite of instrumentation at the facility. We have built all of the instrumentations and they have been utilized by scientists. Please see report attached.

  2. Vibrational energy on surfaces: Ultrafast flash-thermal conductance of molecular monolayers

    Science.gov (United States)

    Dlott, Dana

    2008-03-01

    Vibrational energy flow through molecules remains a perennial problem in chemical physics. Usually vibrational energy dynamics are viewed through the lens of time-dependent level populations. This is natural because lasers naturally pump and probe vibrational transitions, but it is also useful to think of vibrational energy as being conducted from one location in a molecule to another. We have developed a new technique where energy is driven into a specific part of molecules adsorbed on a metal surface, and ultrafast nonlinear coherent vibrational spectroscopy is used to watch the energy arrive at another part. This technique is the analog of a flash thermal conductance apparatus, except it probes energy flow with angstrom spatial and femtosecond temporal resolution. Specific examples to be presented include energy flow along alkane chains, and energy flow into substituted benzenes. Ref: Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast flash thermal conductance of molecular chains, Science 317, 787-790 (2007). This material is based upon work supported by the National Science Foundation under award DMR 0504038 and the Air Force Office of Scientific Research under award FA9550-06-1-0235.

  3. Ultra-Fast Low Energy Switching Using an InP Photonic Crystal H0 Nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel

    2013-01-01

    Pump-probe measurements on InP photonic crystal H0 nanocavities show large-contrast ultrafast switching at low pulse energy. For large pulse energies, high-frequency carrier density oscillations are induced, leading to pulsesplitting.......Pump-probe measurements on InP photonic crystal H0 nanocavities show large-contrast ultrafast switching at low pulse energy. For large pulse energies, high-frequency carrier density oscillations are induced, leading to pulsesplitting....

  4. Ultrafast phenomena in molecular sciences femtosecond physics and chemistry

    CERN Document Server

    Bañares, Luis

    2014-01-01

    This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the ...

  5. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research

  6. Cascaded nonlinearities for ultrafast nonlinear optical science and applications

    DEFF Research Database (Denmark)

    Bache, Morten

    the cascading nonlinearity is investigated in detail, especially with focus on femtosecond energetic laser pulses being subjected to this nonlinear response. Analytical, numerical and experimental results are used to understand the cascading interaction and applications are demonstrated. The defocusing soliton...... observations with analogies in fiber optics are observed numerically and experimentally, including soliton self-compression, soliton-induced resonant radiation, supercontinuum generation, optical wavebreaking and shock-front formation. All this happens despite no waveguide being present, thanks...... is of particular interest here, since it is quite unique and provides the solution to a number of standing challenges in the ultrafast nonlinear optics community. It solves the problem of catastrophic focusing and formation of a filaments in bulk glasses, which even under controlled circumstances is limited...

  7. Basic Energy Sciences Program Update

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, and operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.

  8. Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements.

    Science.gov (United States)

    Heilpern, Tal; Manjare, Manoj; Govorov, Alexander O; Wiederrecht, Gary P; Gray, Stephen K; Harutyunyan, Hayk

    2018-05-10

    Developing a fundamental understanding of ultrafast non-thermal processes in metallic nanosystems will lead to applications in photodetection, photochemistry and photonic circuitry. Typically, non-thermal and thermal carrier populations in plasmonic systems are inferred either by making assumptions about the functional form of the initial energy distribution or using indirect sensors like localized plasmon frequency shifts. Here we directly determine non-thermal and thermal distributions and dynamics in thin films by applying a double inversion procedure to optical pump-probe data that relates the reflectivity changes around Fermi energy to the changes in the dielectric function and in the single-electron energy band occupancies. When applied to normal incidence measurements our method uncovers the ultrafast excitation of a non-Fermi-Dirac distribution and its subsequent thermalization dynamics. Furthermore, when applied to the Kretschmann configuration, we show that the excitation of propagating plasmons leads to a broader energy distribution of electrons due to the enhanced Landau damping.

  9. Ultrafast THz saturable absorption in doped semiconductors at room temperature

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, M. V.

    2011-01-01

    Ultrafast Phenomena XVII presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultraf...

  10. Ultrafast Single and Multiexciton Energy Transfer in Semiconductor Nanoplatelets

    Science.gov (United States)

    Schaller, Richard

    Photophysical processes such as fluorescence resonance energy transfer (FRET) enable optical antennas, wavelength down-conversion in light-emitting diodes (LEDs), and optical bio-sensing schemes. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells and reduced gain thresholds. However, the fastest reported FRET time constants involving spherical quantum dots (QDs) (0.12-1 ns), do not outpace biexciton Auger recombination (0.01-0.1 ns), which impedes multiexciton-driven applications including electrically-pumped lasers and carrier-multiplication-enhanced photovoltaics. Precisely controlled, few-monolayer thick semiconductor nano-platelets with tens-of-nanometer diameters exhibit intense optical transitions and hundreds-of-picosecond Auger recombination, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that inter-plate FRET (~6-23 ps, presumably for co-facial arrangements) can occur 15-50 times faster than Auger recombination and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies. This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility under Contract No. DE-AC02-06CH11357.

  11. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles

    DEFF Research Database (Denmark)

    Gilbert, Benjamin; Katz, Jordan E.; Huse, Nils

    2013-01-01

    photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(iii) oxide nanoparticles has not been reported....... We addressed this topic by performing femtosecond transient absorption (TA) measurements of aqueous suspensions of uncoated and DCF-sensitized iron oxide and oxyhydroxide nanoparticles, and an aqueous iron(iii)–dye complex. Following light absorption, excited state relaxation times of the dye of 115...... a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye–oxide energy transfer...

  12. Ultrafast Energy Transfer in an Artificial Photosynthetic Antenna

    Directory of Open Access Journals (Sweden)

    van Grondelle R.

    2013-03-01

    Full Text Available We temporally resolved energy transfer kinetics in an artificial light-harvesting dyad composed of a phthalocyanine covalently linked to a carotenoid. Upon carotenoid photo-excitation, energy transfers within ≈100fs (≈52% efficiency to the phthalocyanine.

  13. Energy Sciences Network (ESnet)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Sciences Network is the Department of Energy’s high-speed network that provides the high-bandwidth, reliable connections that link scientists at national...

  14. On the ultrafast kinetics of the energy and electron transfer reactions in photosystem I

    Energy Technology Data Exchange (ETDEWEB)

    Slavov, Chavdar Lyubomirov

    2009-07-09

    The subject of the current work is one of the main participants in the light-dependent phase of oxygenic photosynthesis, Photosystem I (PS I). This complex carries an immense number of cofactors: chlorophylls (Chl), carotenoids, quinones, etc, which together with the protein entity exhibit several exceptional properties. First, PS I has an ultrafast light energy trapping kinetics with a nearly 100% quantum efficiency. Secondly, both of the electron transfer branches in the reaction center are suggested to be active. Thirdly, there are some so called 'red' Chls in the antenna system of PS I, absorbing light with longer wavelengths than the reaction center. These 'red' Chls significantly modify the trapping kinetics of PS I. The purpose of this thesis is to obtain better understanding of the above-mentioned, specific features of PS I. This will not merely cast more light on the mechanisms of energy and electron transfer in the complex, but also will contribute to the future developments of optimized artificial light-harvesting systems. In the current work, a number of PS I complexes isolated from different organisms (Thermosynechococcus elongatus, Chlamydomonas reinhardtii, Arabidopsis thaliana) and possessing distinctive features (different macroorganisation, monomers, trimers, monomers with a semibelt of peripheral antenna attached; presence of 'red' Chls) is investigated. The studies are primarily focused on the electron transfer kinetics in each of the cofactor branches in the PS I reaction center, as well as on the effect of the antenna size and the presence of 'red' Chls on the trapping kinetics of PS I. These aspects are explored with the help of several ultrafast optical spectroscopy methods: (i) time-resolved fluorescence ? single photon counting and synchroscan streak camera; and (ii) ultrafast transient absorption. Physically meaningful information about the molecular mechanisms of the energy trapping in PS I is

  15. The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Mao, Ho-kwang

    2011-01-01

    'The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales ' was submitted by the Center for Energy Frontier Research in Extreme Environments (EFree) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFree is directed by Ho-kwang Mao at the Carnegie Institute of Washington and is a partnership of scientists from thirteen institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Energy Frontier Research in Extreme Environments is 'to accelerate the discovery and creation of energy-relevant materials using extreme pressures and temperatures.' Research topics are: catalysis (CO 2 , water), photocatalysis, solid state lighting, optics, thermelectric, phonons, thermal conductivity, solar electrodes, fuel cells, superconductivity, extreme environment, radiation effects, defects, spin dynamics, CO 2 (capture, convert, store), greenhouse gas, hydrogen (fuel, storage), ultrafast physics, novel materials synthesis, and defect tolerant materials.

  16. Ultra-fast evaluation of protein energies directly from sequence.

    Directory of Open Access Journals (Sweden)

    Gevorg Grigoryan

    2006-06-01

    Full Text Available The structure, function, stability, and many other properties of a protein in a fixed environment are fully specified by its sequence, but in a manner that is difficult to discern. We present a general approach for rapidly mapping sequences directly to their energies on a pre-specified rigid backbone, an important sub-problem in computational protein design and in some methods for protein structure prediction. The cluster expansion (CE method that we employ can, in principle, be extended to model any computable or measurable protein property directly as a function of sequence. Here we show how CE can be applied to the problem of computational protein design, and use it to derive excellent approximations of physical potentials. The approach provides several attractive advantages. First, following a one-time derivation of a CE expansion, the amount of time necessary to evaluate the energy of a sequence adopting a specified backbone conformation is reduced by a factor of 10(7 compared to standard full-atom methods for the same task. Second, the agreement between two full-atom methods that we tested and their CE sequence-based expressions is very high (root mean square deviation 1.1-4.7 kcal/mol, R2 = 0.7-1.0. Third, the functional form of the CE energy expression is such that individual terms of the expansion have clear physical interpretations. We derived expressions for the energies of three classic protein design targets-a coiled coil, a zinc finger, and a WW domain-as functions of sequence, and examined the most significant terms. Single-residue and residue-pair interactions are sufficient to accurately capture the energetics of the dimeric coiled coil, whereas higher-order contributions are important for the two more globular folds. For the task of designing novel zinc-finger sequences, a CE-derived energy function provides significantly better solutions than a standard design protocol, in comparable computation time. Given these advantages

  17. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach.

    Science.gov (United States)

    Liu, Wei; Li, Chen; Zhang, Zhigang; Kärtner, Franz X; Chang, Guoqing

    2016-07-11

    We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.

  18. Earle K. Plyler Prize Lecture: The Three Pillars of Ultrafast Molecular Science - Time, Phase, Intensity

    Science.gov (United States)

    Stolow, Albert

    We discuss the probing and control of molecular wavepacket dynamics in the context of three main `pillars' of light-matter interaction: time, phase, intensity. Time: Using short, coherent laser pulses and perturbative matter-field interactions, we study molecular wavepackets with a focus on the ultrafast non-Born-Oppenheimer dynamics, that is, the coupling of electronic and nuclear motions. Time-Resolved Photoelectron Spectroscopy (TRPES) is a powerful ultrafast probe of these processes in polyatomic molecules because it is sensitive both electronic and vibrational dynamics. Ideally, one would like to observe these ultrafast processes from the molecule's point of view - the Molecular Frame - thereby avoiding loss of information due to orientational averaging. This can be achieved by Time-Resolved Coincidence Imaging Spectroscopy (TRCIS) which images 3D recoil vectors of both photofragments and photoelectrons, in coincidence and as a function of time, permitting direct Molecular Frame imaging of valence electronic dynamics during a molecular dynamics. Phase: Using intermediate strength non-perturbative interactions, we apply the second order (polarizability) Non-Resonant Dynamic Stark Effect (NRDSE) to control molecular dynamics without any net absorption of light. NRDSE is also the interaction underlying molecular alignment and applies to field-free 1D of linear molecules and field-free 3D alignment of general (asymmetric) molecules. Using laser alignment, we can transiently fix a molecule in space, yielding a more general approach to direct Molecular Frame imaging of valence electronic dynamics during a chemical reaction. Intensity: In strong (ionizing) laser fields, a new laser-matter physics emerges for polyatomic systems wherein both the single active electron picture and the adiabatic electron response, both implicit in the standard 3-step models, can fail dramatically. This has important consequences for all attosecond strong field spectroscopies of

  19. Ultrafast energy transfer in dansylated POPAM--eosin complexes

    Science.gov (United States)

    Aumanen, Jukka; Lehtovuori, Viivi; Werner, Nicole; Richardt, Gabriele; van Heyst, Jeroen; Vögtle, Fritz; Korppi-Tommola, Jouko

    2006-12-01

    Excitation energy transfer (EET) in dendritic host-guest complexes has been studied. Three generations G2, G3 and G4 of dansyl substituted poly(propyleneamine) dendrimers (POPAM) were complexed with a fluorescent dye eosin in chloroform solution. Arrival of excitation from dansyls to eosin was monitored by femtosecond transient absorption spectroscopy. EET rates from the dansyls to eosin(s) are characterised by two time constants 1 ps and 6 ps independent of dendrimer generation. Relaxation processes in eosin were clearly faster when complexed with dendrimer than in solution. As several eosins are bound to G3 and G4 dendrimers, besides host-guest interaction, also eosin-eosin interactions may contribute to the faster relaxation observed in these complexes.

  20. Study of primary energy transfer process in ultrafast plastic scintillators

    International Nuclear Information System (INIS)

    Bengtson, B.; Moszynski, M.

    1978-01-01

    The study of the light-pulse shape, the initial delay of light pulses and the light yield of plastics prepared by a modification of the NE111 scintillator were performed. The NE111 scintillator doped with several quench agents, the plastics prepared as a solution of butyl PBD in PVT of different concentration and PVT alone were studied. The study confirmed that the light pulse shape from fast binary plastics is well described analytically by the convolution of the clipped Gaussian and exponential functions. The investigation of the PVT-butyl PBD plastics shows that even more than three times larger concentration of butyl PBD compared to that of PBD in the NE111 solution does not improve the rise of the light pulse. Thus the rise time seems to be not controlled by the intermolecular energy transfer process. Finally, the observed rise time of the light pulse from the PVT sample was also approximated well by the Gaussian function. Altogether it brought a strong support for the earlier hypothesis that the initial slow rise of light pulses from plastic scintillators may come from the deexcitation of several higher levels of the solvent molecules excited by nuclear particles. (Auth.)

  1. Electrochemistry and energy science

    International Nuclear Information System (INIS)

    Vijh, A.K.

    1980-01-01

    The purpose of the paper is to delineate the structure of moder electrochemistry and to elucidate the manner in which electrochemical ideas and techniques contribute to the development of power sources and the the advancement of energy science. One example of such an application is the prevention of corrosion in the coolant circuit of a nuclear power station, or its decontamination; another is the use of electrolysis for final upgrading of heavy water. (N.D.H.)

  2. Basic Energy Sciences at NREL

    International Nuclear Information System (INIS)

    Moon, S.

    2000-01-01

    NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies

  3. Ultrafast biophotonics

    CERN Document Server

    Vasa, P

    2016-01-01

    This book presents emerging contemporary optical techniques of ultrafast science which have opened entirely new vistas for probing biological entities and processes. The spectrum reaches from time-resolved imaging and multiphoton microscopy to cancer therapy and studies of DNA damage. The book displays interdisciplinary research at the interface of physics and biology. Emerging topics on the horizon are also discussed, like the use of squeezed light, frequency combs and terahertz imaging as the possibility of mimicking biological systems. The book is written in a manner to make it readily accessible to researchers, postgraduate biologists, chemists, engineers, and physicists and students of optics, biomedical optics, photonics and biotechnology.

  4. Ultrafast Thermal Transport at Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, David [Univ. of Illinois, Champaign, IL (United States); Murphy, Catherine [Univ. of Illinois, Champaign, IL (United States); Martin, Lane [Univ. of Illinois, Champaign, IL (United States)

    2014-10-21

    Our research program on Ultrafast Thermal Transport at Interfaces advanced understanding of the mesoscale science of heat conduction. At the length and time scales of atoms and atomic motions, energy is transported by interactions between single-particle and collective excitations. At macroscopic scales, entropy, temperature, and heat are the governing concepts. Key gaps in fundamental knowledge appear at the transitions between these two regimes. The transport of thermal energy at interfaces plays a pivotal role in these scientific issues. Measurements of heat transport with ultrafast time resolution are needed because picoseconds are the fundamental scales where the lack of equilibrium between various thermal excitations becomes a important factor in the transport physics. A critical aspect of our work has been the development of experimental methods and model systems that enabled more precise and sensitive investigations of nanoscale thermal transport.

  5. Energy, information science, and systems science

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry C [Los Alamos National Laboratory; Mercer - Smith, Janet A [Los Alamos National Laboratory

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  6. The effect of solvent relaxation time constants on free energy gap law for ultrafast charge recombination following photoinduced charge separation.

    Science.gov (United States)

    Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I

    2018-05-16

    To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.

  7. Ultrafast, laser-based, x-ray science: the dawn of atomic-scale cinematography

    International Nuclear Information System (INIS)

    Barty, C.P.J.

    2000-01-01

    The characteristics of ultrafast chirped pulse amplification systems are reviewed. Application of ultrafast chirped pulse amplification to the generation of femtosecond, incoherent, 8-keV line radiation is outlined and the use of femtosecond laser-based, x-rays for novel time-resolved diffraction studies of crystalline dynamics with sub-picosecond temporal resolution and sub-picometer spatial resolution is reviewed in detail. Possible extensions of laser-based, x-ray technology and evaluation of alternative x-ray approaches for time-resolved studies of the atomic scale dynamics are given. (author)

  8. Ultrafast, laser-based, x-ray science: the dawn of atomic-scale cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C.P.J. [University of California, Department of Applied Mechanics and Engineering Science, Urey Hall, Mali Code 0339, San Diego, La Jolla, CA (United States)

    2000-03-01

    The characteristics of ultrafast chirped pulse amplification systems are reviewed. Application of ultrafast chirped pulse amplification to the generation of femtosecond, incoherent, 8-keV line radiation is outlined and the use of femtosecond laser-based, x-rays for novel time-resolved diffraction studies of crystalline dynamics with sub-picosecond temporal resolution and sub-picometer spatial resolution is reviewed in detail. Possible extensions of laser-based, x-ray technology and evaluation of alternative x-ray approaches for time-resolved studies of the atomic scale dynamics are given. (author)

  9. PREFACE: Ultrafast biophotonics Ultrafast biophotonics

    Science.gov (United States)

    Gu, Min; Reid, Derryck; Ben-Yakar, Adela

    2010-08-01

    The use of light to explore biology can be traced to the first observations of tissue made with early microscopes in the mid-seventeenth century, and has today evolved into the discipline which we now know as biophotonics. This field encompasses a diverse range of activities, each of which shares the common theme of exploiting the interaction of light with biological material. With the rapid advancement of ultrafast optical technologies over the last few decades, ultrafast lasers have increasingly found applications in biophotonics, to the extent that the distinctive new field of ultrafast biophotonics has now emerged, where robust turnkey ultrafast laser systems are facilitating cutting-edge studies in the life sciences to take place in everyday laboratories. The broad spectral bandwidths, precision timing resolution, low coherence and high peak powers of ultrafast optical pulses provide unique opportunities for imaging and manipulating biological systems. Time-resolved studies of bio-molecular dynamics exploit the short pulse durations from such lasers, while other applications such as optical coherence tomography benefit from the broad optical bandwidths possible by using super-continuum generation and additionally allowing for high speed imaging with speeds as high as 47 000 scans per second. Continuing progress in laser-system technology is accelerating the adoption of ultrafast techniques across the life sciences, both in research laboratories and in clinical applications, such as laser-assisted in situ keratomileusis (LASIK) eye surgery. Revolutionizing the field of optical microscopy, two-photon excitation fluorescence (TPEF) microscopy has enabled higher spatial resolution with improved depth penetration into biological specimens. Advantages of this nonlinear optical process include: reduced photo-interactions, allowing for extensive imaging time periods; simultaneously exciting multiple fluorescent molecules with only one excitation wavelength; and

  10. Fourteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A; Silvestri, Sandro; Ultrafast Phenomena XIV

    2005-01-01

    Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics. This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.

  11. Sixteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Corkum, Paul; Nelson, Keith A; Riedle, Eberhard; Schoenlein, Robert W; Ultrafast Phenomena XVI

    2009-01-01

    Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

  12. Science Activities in Energy: Electrical Energy.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 16 activities relating to electrical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined in a single card which is introduced by a question. A teacher's…

  13. The Science and Applications of Ultrafast, Ultraintense Lasers: Opportunities in science and technology using the brightest light known to man. A report on the SAUUL workshop held June 17-19, 2002

    International Nuclear Information System (INIS)

    Todd Ditmire; Louis DiMauro

    2002-01-01

    This report is the result of a workshop held during June 17-19, 2002 in Washington, DC where many of the leaders in the field met to assess the scientific opportunities presented by research with ultrafast pulse, ultrahigh intensity lasers. This workshop and report were supported by the Department of Energy Office of Basic Energy Science (BES), the Office of Fusion Energy Science (OFES), the National Nuclear Security Agency Office of Defense Programs (NNSA DP) and the National Science Foundation Division of Physics (NSF). The workshop highlighted many exciting research areas using ultrahigh intensity lasers, ranging from plasma physics and fusion energy to astrophysics to ultrafast chemistry to structural biology. Recent progress in high intensity laser technology has made possible applications with light pulses unthinkable only ten years ago. Spectacular advances are now possible with the newest generation of petawatt lasers (lasers with peak power of one quadrillion watts) and unprecedented temporal structure. The central finding of the workshop and this report is that ultra-high intensity laser research offers a wide range of exciting opportunities, and that the continued growth and current leadership of the USA in this field should be aggressively maintained. This report isolates five areas where opportunities for major breakthroughs exist with ultrafast, ultraintense lasers (UUL): Fusion energy using UULs to ignite an inertial fusion capsule; Compact, high gradient particle accelerators; Ultrafast x-ray generation and time resolved structural studies of solids and molecules; The creation of extreme states of matter and their application to puzzles in astrophysics; and The generation of attosecond bursts of radiation and the study of electron dynamics. After assessing the state of these areas, this report has come to four central conclusions: (1) Science studied with UULs is presently one of the fastest growing subfields of basic and applied research in the

  14. Basic Energy Sciences at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.

    2000-12-04

    NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies.

  15. Fusion Energy Sciences Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [ESNet, Berkeley, CA (United States); Tierney, Brian [ESNet, Berkeley, CA (United States)

    2012-09-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Office of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  16. A Recirculating Linac-Based Facility for Ultrafast X-Ray Science

    International Nuclear Information System (INIS)

    Corlett, J. N.; Barletta, W. A.; DeSantis, S.; Doolittle, L.; Fawley, W. M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Parmigiani, F.; Placidi, M.; Pirkl, W.; Rimmer, R. A.; Wang, S.

    2003-01-01

    We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac [1,2], in particular the incorporation of EUV and soft x-ray production. The project has been named LUX--Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10's fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short pulse photon production in the 1-10 keV range. High brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by f our passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility

  17. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Perlík, Václav; Seibt, Joachim; Šanda, František; Mančal, Tomáš [Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16 (Czech Republic); Cranston, Laura J.; Cogdell, Richard J. [Institute of Molecular Cell and System Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland (United Kingdom); Lincoln, Craig N.; Hauer, Jürgen, E-mail: juergen.hauer@tuwien.ac.at [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, 1040 Vienna (Austria); Savolainen, Janne [Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum (Germany)

    2015-06-07

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.

  18. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    International Nuclear Information System (INIS)

    Perlík, Václav; Seibt, Joachim; Šanda, František; Mančal, Tomáš; Cranston, Laura J.; Cogdell, Richard J.; Lincoln, Craig N.; Hauer, Jürgen; Savolainen, Janne

    2015-01-01

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems

  19. Ultrafast Nonradiative Decay and Excitation Energy Transfer by Carotenoids in Photosynthetic Light-Harvesting Proteins

    Science.gov (United States)

    Ghosh, Soumen

    This dissertation investigates the photophysical and structural dynamics that allow carotenoids to serve as efficient excitation energy transfer donor to chlorophyll acceptors in photosynthetic light harvesting proteins. Femtosecond transient grating spectroscopy with optical heterodyne detection has been employed to follow the nonradiative decay pathways of carotenoids and excitation energy transfer to chlorophylls. It was found that the optically prepared S2 (11Bu+) state of beta-carotene decays in 12 fs fs to populate an intermediate electronic state, Sx, which then decays nonradiatively to the S 1 state. The ultrafast rise of the dispersion component of the heterodyne transient grating signal reports the formation of Sx intermediate since the rise of the dispersion signal is controlled by the loss of stimulated emission from the S2 state. These findings were extended to studies of peridinin, a carbonyl substituted carotenoid that serves as a photosynthetic light-harvesting chromophore in dinoflagellates. Numerical simulations using nonlinear response formalism and the multimode Brownian oscillator model assigned the Sx intermediate to a torsionally distorted structure evolving on the S2 potential surface. The decay of the Sx state is promoted by large amplitude out-of-plane torsional motions and is significantly retarded by solvent friction owing to the development of an intramolecular charge transfer character in peridinin. The slowing of the nonradiative decay allows the Sx state to transfer significant portion of the excitation energy to chlorophyll a acceptors in the peridinin-chlorophyll a protein. The results of heterodyne transient grating study on peridinin-chlorophyll a protein suggests two distinct energy transfer channels from peridinin to chlorophyll a: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process involving the distorted S2 state of peridinin. The torsional evolution on the S2

  20. Science Activities in Energy: Wind Energy.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 12 activities related to wind energy for elementary students. Each activity is outlined on a single card and is introduced by a question. Topics include: (1) At what time of day is there enough wind to make electricity where you live?; (2) Where is the windiest spot on your schoolground?; and…

  1. The science of energy

    CERN Document Server

    Newton, Roger G

    2012-01-01

    This book aims to describe the scientific concepts of energy. Accessible to readers with no scientific education beyond high-school chemistry, it starts with the basic notion of energy and the fundamental laws that govern it, such as conservation, and explains the various forms of energy, such as electrical, chemical, and nuclear. It then proceeds to describe ways in which energy is stored for very long times in the various fossil fuels (petroleum, gas, coal) as well as for short times (flywheels, pumped storage, batteries, fuel cells, liquid hydrogen). The book also discusses the modes of transport of energy, especially those of electrical energy via lasers and transmission lines, as well as why the latter uses alternating current at high voltages. The altered view of energy introduced by quantum mechanics is also discussed, as well as how almost all the Earth's energy originates from the Sun. Finally, the history of the forms of energy in the course of development of the universe is described, and how this ...

  2. Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria.

    Science.gov (United States)

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; LaFountain, Amy M; Kelsh, Rhiannon M; Gardiner, Alastair T; Cogdell, Richard J; Frank, Harry A

    2008-08-28

    Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the

  3. Design and commissioning of an aberration-corrected ultrafast spin-polarized low energy electron microscope with multiple electron sources.

    Science.gov (United States)

    Wan, Weishi; Yu, Lei; Zhu, Lin; Yang, Xiaodong; Wei, Zheng; Liu, Jefferson Zhe; Feng, Jun; Kunze, Kai; Schaff, Oliver; Tromp, Ruud; Tang, Wen-Xin

    2017-03-01

    We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Superradiant terahertz sources and their applications in accelerator diagnostics and ultra-fast science

    Energy Technology Data Exchange (ETDEWEB)

    Green, Bertram

    2017-04-28

    The terahertz (THz) frequency range lies between the frequency range of radio and infrared. The exact limits are not well defined and depend on the scientific community. The most recent ''2017 Terahertz Science and Technology Roadmap'' sets the THz frequency range to between 0.1 and 30 THz. The development of suitable detectors, detection techniques, and sources for this frequency range has seen tremendous progress over the past decade. The arrival of commercial femtosecond (fs) laser systems has enabled new, background-free THz time domain spectroscopy, and both laser-driven and accelerator-driven THz sources are currently producing pulse energies in the μJ, and even mJ, range. This thesis describes the characterization of a new class of accelerator-based light sources, which open up opportunities to provide a unique combination of high pulse energies and high repetition rates. The foreseen applications of these types of sources, coined ''superradiant THz sources'', lie in the area of time-resolved (nonlinear) spectroscopy. One of the first results of this thesis is the observation that the THz pulses from the prototype facility TELBE exhibit large pulse-to-pulse fluctuations in arrivaltime and intensity. These types of instabilities render the intended applications of TELBE for real-world nonlinear THz spectroscopy experiments impossible. As part of this thesis a pulse resolved data acquisition and analysis scheme has therefore been devised which enables the correction of these instabilities and now allows performance of time-resolved THz spectroscopy measurements with sub-30 femtosecond (fs) (FHWM) time resolution with excellent dynamic range up to 106. The thesis is organized as follows: the first chapter introduces the fundamental principles and techniques utilized in this work. The second chapter presents the results, starting with the diagnostic developments, followed by a thorough characterization of the THz source

  5. Photon Science for Renewable Energy

    International Nuclear Information System (INIS)

    Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob; Bailey, Sue

    2010-01-01

    Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.

  6. Photoinduced Ultrafast Intramolecular Excited-State Energy Transfer in the Silylene-Bridged Biphenyl and Stilbene (SBS) System: A Nonadiabatic Dynamics Point of View.

    Science.gov (United States)

    Wang, Jun; Huang, Jing; Du, Likai; Lan, Zhenggang

    2015-07-09

    The photoinduced intramolecular excited-state energy-transfer (EET) process in conjugated polymers has received a great deal of research interest because of its important role in the light harvesting and energy transport of organic photovoltaic materials in photoelectric devices. In this work, the silylene-bridged biphenyl and stilbene (SBS) system was chosen as a simplified model system to obtain physical insight into the photoinduced intramolecular energy transfer between the different building units of the SBS copolymer. In the SBS system, the vinylbiphenyl and vinylstilbene moieties serve as the donor (D) unit and the acceptor (A) unit, respectively. The ultrafast excited-state dynamics of the SBS system was investigated from the point of view of nonadiabatic dynamics with the surface-hopping method at the TDDFT level. The first two excited states (S1 and S2) are characterized by local excitations at the acceptor (vinylstilbene) and donor (vinylbiphenyl) units, respectively. Ultrafast S2-S1 decay is responsible for the intramolecular D-A excitonic energy transfer. The geometric distortion of the D moiety play an essential role in this EET process, whereas the A moiety remains unchanged during the nonadiabatic dynamics simulation. The present work provides a direct dynamical approach to understand the ultrafast intramolecular energy-transfer dynamics in SBS copolymers and other similar organic photovoltaic copolymers.

  7. Energy Decision Science and Informatics | Integrated Energy Solutions |

    Science.gov (United States)

    NREL Decision Science and Informatics Energy Decision Science and Informatics NREL utilizes and advances state-of-the-art decision science and informatics to help partners make well-informed energy decisions backed by credible, objective data analysis and insights to maximize the impact of energy

  8. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  9. Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure.

    Science.gov (United States)

    Li, Han; Zheng, Xin; Liu, Yu; Zhang, Zhepeng; Jiang, Tian

    2018-01-25

    The idea of fabricating artificial solids with band structures tailored to particular applications has long fascinated condensed matter physicists. Heterostructure (HS) construction is viewed as an effective and appealing approach to engineer novel electronic properties in two dimensional (2D) materials. Different from common 2D/2D heterojunctions where energy transfer is rarely observed, CsPbBr 3 quantum dots (0D-QDs) interfaced with 2D materials have become attractive HSs for exploring the physics of charge transfer and energy transfer, due to their superior optical properties. In this paper, a new 0D/2D HS is proposed and experimentally studied, making it possible to investigate both light utilization and energy transfer. Specifically, this HS is constructed between monolayer WS 2 and CsPbBr 3 QDs, and exhibits a hybrid band alignment. The dynamics of energy transfer within the investigated 0D/2D HS is characterized by femtosecond transient absorption spectrum (TAS) measurements. The TAS results reveal that ultrafast energy transfer caused by optical excitation is observed from CsPbBr 3 QDs to the WS 2 layer, which can increase the exciton fluence within the WS 2 layer up to 69% when compared with pristine ML WS 2 under the same excitation fluence. Moreover, the formation and dynamics of interlayer excitons have also been investigated and confirmed in the HS, with a calculated recombination time of 36.6 ps. Finally, the overall phenomenological dynamical scenario for the 0D/2D HS is established within the 100 ps time region after excitation. The techniques introduced in this work can also be applied to versatile optoelectronic devices based on low dimensional materials.

  10. Ultrafast phenomena at the nanoscale: science opportunities at the SwissFEL X-ray laser

    International Nuclear Information System (INIS)

    Abela, R.; Braun, H.; Ming, P.; Pedrozzi, M.; Quitmann, Ch.; Reiche, S.; Daalen, M. van; Veen, J.F. van der; Mesot, J.; Mesot, J.; Shiroka, T.; Veen, J.F. van der; Mesot, J.

    2009-09-01

    In today's fast-moving society, standing still is effectively synonymous with being left behind. If it is to maintain, beyond the coming 10-15 years, its high international standing as a complex of large research infrastructures, the Paul Scherrer Institute (PSI) must now lay the foundation for a competitive future. Experts worldwide foresee a strongly growing demand within science and technology for photon sources delivering ultra-short, coherent X-ray pulses. Such a source, called a free electron laser (FEL), is nothing less than a gigantic flash camera, allowing us to take a deeper look into matter than with any other machine before. By literally seeing molecules in action, scientists will be able not only to capture chemical and biological processes of direct relevance and benefit to society but also to improve them. It is a dream coming true. For the first time, it will not only be possible to take pictures of molecular structures, we will be able to make movies of their motion. The new X-ray laser project at PSI, known as SwissFEL, will be an important addition to the existing complex of PSI facilities that serve interdisciplinary and international research teams from academia and industry. The SwissFEL is an essential element of Switzerland's strategic focus and will prolong our nation's leading position in scientific research for years to come. It will attract top scientists from Switzerland and abroad, and will strengthen the position of PSI as a world-class research institute. This new high-tech facility will also provide an important incentive for Swiss industry, through which existing highly-qualified jobs will be maintained and new ones created. In this report we present a wide range of important, open questions within science and engineering disciplines that SwissFEL will contribute towards solving. These questions, which form the 'scientific case' for SwissFEL, have been identified through a range of workshops organized over the past few years and by

  11. Ultrafast phenomena at the nanoscale: science opportunities at the SwissFEL X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Abela, R.; Braun, H.; Ming, P.; Pedrozzi, M.; Quitmann, Ch.; Reiche, S.; Daalen, M. van; Veen, J.F. van der; Mesot, J. [Paul Scherrer Intitute (PSI), Villigen (Switzerland); Mesot, J.; Shiroka, T.; Veen, J.F. van der [Swiss Federal Institute of Technology (ETHZ), Zuerich (Switzerland); Mesot, J. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland)

    2009-09-15

    In today's fast-moving society, standing still is effectively synonymous with being left behind. If it is to maintain, beyond the coming 10-15 years, its high international standing as a complex of large research infrastructures, the Paul Scherrer Institute (PSI) must now lay the foundation for a competitive future. Experts worldwide foresee a strongly growing demand within science and technology for photon sources delivering ultra-short, coherent X-ray pulses. Such a source, called a free electron laser (FEL), is nothing less than a gigantic flash camera, allowing us to take a deeper look into matter than with any other machine before. By literally seeing molecules in action, scientists will be able not only to capture chemical and biological processes of direct relevance and benefit to society but also to improve them. It is a dream coming true. For the first time, it will not only be possible to take pictures of molecular structures, we will be able to make movies of their motion. The new X-ray laser project at PSI, known as SwissFEL, will be an important addition to the existing complex of PSI facilities that serve interdisciplinary and international research teams from academia and industry. The SwissFEL is an essential element of Switzerland's strategic focus and will prolong our nation's leading position in scientific research for years to come. It will attract top scientists from Switzerland and abroad, and will strengthen the position of PSI as a world-class research institute. This new high-tech facility will also provide an important incentive for Swiss industry, through which existing highly-qualified jobs will be maintained and new ones created. In this report we present a wide range of important, open questions within science and engineering disciplines that SwissFEL will contribute towards solving. These questions, which form the 'scientific case' for SwissFEL, have been identified through a range of workshops organized over

  12. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  13. The Effect of Varying Ultrafast Pulse Laser Energies on the Electrical Properties of Reduced Graphene Oxide Sheets in Solution

    Science.gov (United States)

    Ibrahim, Khaled H.; Irannejad, Mehrdad; Wales, Benjamin; Sanderson, Joseph; Musselman, Kevin P.; Yavuz, Mustafa

    2018-02-01

    Laser treatment of graphene oxide solution among other techniques is a well-established technique for producing reduced graphene sheets. However, production of high-quality ultra-low sheet resistance reduced graphene oxide (rGO) sheets in solution has been a challenge due to their high degree of randomness, defect-rich medium, and lack of controlability. Recent studies lack an in-depth analytic comparison of laser treatment parameters that yield the highest quality rGO sheets with a low defect ratio. Hence, in this study, we implement a comprehensive comparison of laser treatment parameters and their effect on the yielded rGO sheets from an electronic and physical standpoint. Ultra-low sheet resistance graphene oxide sheets were fabricated using ultrafast laser irradiation with different laser pulse energies in the range of 0.25-2 mJ. Laser treatment for 10 min using a pulse energy of 1 mJ resulted in an increase in the defect spacing, accompanied by a large red shift in the optical absorption of the C=C bond, indicating significant restoration of the s p 2 carbon bonds. These enhancements resulted in a significant reduction in the electrical resistance of the rGO flakes (up to 2 orders of magnitude), raising the electron mobility of the films produced using the irradiated graphene oxide a step closer to that of pristine graphene films. From this study, we can also deduce which exposure regimes result in the fabrication of quantum dots and continuous defect-free films.

  14. A US Based Ultrafast Interdisciplinary Research Facility

    Science.gov (United States)

    Gueye, Paul; Hill, Wendell; Johnson, Anthony

    2006-10-01

    The US scientific competitiveness on the world arena has substantially decreased due to the lack of funding and training of qualified personnel. Most of the potential workforce found in higher education is composed of foreign students and post-docs. In the specific field of low- and high-field science, the European and Asian communities are rapidly catching-up with the US, even leading in some areas. To remain the leader in ultrafast science and technology, new visions and commitment must be embraced. For that reason, an international effort of more than 70 countries for a US-based interdisciplinary research facility using ultrafast laser technology is under development. It will provide research and educational training, as well as new venues for a strong collaboration between the fields of astrophysics, nuclear/high energy physics, plasma physics, optical sciences, biological and medical physics. This facility will consist of a uniquely designed high contrast multi-lines concept housing twenty experimental rooms shared between four beams:[0.1 TW, 1 kHz], [10 TW, 9 kHz], [100-200 TW, 10 Hz] and [500 TW, 10 Hz]. The detail schematic of this multi-laser system, foreseen research and educational programs, and organizational structure of this facility will be presented.

  15. Ultrafast energy transport in a first-generation coumarin-tetraphenylporphyrin dendrimer

    NARCIS (Netherlands)

    Hania, Pieter; Heijs, D.J.; Bowden, T.; Pugzlys, A; van Esch, J; Knoester, J; Duppen, K

    2004-01-01

    Energy transfer in a newly synthesized coumarin-tetraphenylporphyrin donor-acceptor system was studied by time- and frequency-resolved fluorescence spectroscopy. The energy transfer kinetics was shown to be fast (transfer time ca. 500 fs) and efficient (quantum yield ca. 97%). The influence of

  16. Basic Energy Sciences FY 2012 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  17. Basic Energy Sciences FY 2014 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  18. Basic Energy Sciences FY 2011 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  19. Ultrafast Dynamics of Dansylated POPAM Dendrimers and Energy Transfer in their Dye Complexes

    Science.gov (United States)

    Aumanen, J.; Kesti, T.; Sundström, V.; Vögtle, F.; Korppi-Tommola, J.

    We have studied internal dynamics of dansylated poly(propyleneamine) dendrimers of different generations in solution and excitation energy transfer from dansyl chromophores to xanthene dyes that form van der Waals complexes with the dendrimers

  20. Ultrafast excitation energy transfer from encapsulated quaterrylene to single-walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Takeshi, E-mail: koyama@nuap.nagoya-u.ac.jp [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Tsunekawa, Takuya [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Saito, Takeshi [Research Center for Advanced Carbon Materials, AIST, Tsukuba, Ibaraki 305-8565 (Japan); Asaka, Koji; Saito, Yahachi [Department of Quantum Engineering, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Kishida, Hideo [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Nakamura, Arao [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192 (Japan)

    2016-01-15

    We investigate excitation energy transfer from an encapsulated quaterrylene molecule to a single-walled carbon nanotube by means of femtosecond pump-probe spectroscopy. The time constant of energy transfer becomes shorter with increasing average diameter of nanotube: 1.4±0.2 ps for 1.0 nm, 1.1±0.2 ps for 1.4 nm, and 0.4±0.1 ps for 1.8 nm. The observed behavior is discussed considering the distance of less than 1 nm between the molecule and the nanotube wall. - Highlights: • Dynamical properties of excited states in quaterrylene/SWNT composites were studied. • Excitation energy transfer occurs in the time range of 0.4-1.4 ps. • The transfer rate depends on the nanotube diameter, i.e. molecule-nanotube wall distance. • This dependence indicates the feature of excitation energy transfer on the nanoscale.

  1. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    Directory of Open Access Journals (Sweden)

    Yulu Huang

    2016-08-01

    Full Text Available An ultrafast kicker system is being developed for the energy recovery linac (ERL based electron circulator cooler ring (CCR in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC. In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10−1/30 (150  mA-50  mA of the cooling beam current (up to 1.5 A. Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetition rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. Off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.

  2. LCLS: Ultrafast Science

    International Nuclear Information System (INIS)

    Bucksbaum, Philip

    2005-01-01

    Everyone knows that lasers can be bright. From Goldfinger to Star Wars, intense lasers carry a 'death ray' reputation in popular culture. But what is intense light, anyway? How can you even make or direct something that will blast to smithereens any material that it encounters? And how can something as ephemeral as a ray of light turn into an irresistible force? Is there an ultimate intensity, a brightest light? We'll answer these questions, and more.

  3. 76 FR 49757 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Services Administration, notice is hereby given that the Fusion Energy Sciences Advisory Committee will be... science, fusion science, and fusion technology related to the Fusion Energy Sciences program. Additionally...

  4. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy.

    Science.gov (United States)

    Wang, Huanlei; Xu, Zhanwei; Kohandehghan, Alireza; Li, Zhi; Cui, Kai; Tan, Xuehai; Stephenson, Tyler James; King'ondu, Cecil K; Holt, Chris M B; Olsen, Brian C; Tak, Jin Kwon; Harfield, Don; Anyia, Anthony O; Mitlin, David

    2013-06-25

    We created unique interconnected partially graphitic carbon nanosheets (10-30 nm in thickness) with high specific surface area (up to 2287 m(2) g(-1)), significant volume fraction of mesoporosity (up to 58%), and good electrical conductivity (211-226 S m(-1)) from hemp bast fiber. The nanosheets are ideally suited for low (down to 0 °C) through high (100 °C) temperature ionic-liquid-based supercapacitor applications: At 0 °C and a current density of 10 A g(-1), the electrode maintains a remarkable capacitance of 106 F g(-1). At 20, 60, and 100 °C and an extreme current density of 100 A g(-1), there is excellent capacitance retention (72-92%) with the specific capacitances being 113, 144, and 142 F g(-1), respectively. These characteristics favorably place the materials on a Ragone chart providing among the best power-energy characteristics (on an active mass normalized basis) ever reported for an electrochemical capacitor: At a very high power density of 20 kW kg(-1) and 20, 60, and 100 °C, the energy densities are 19, 34, and 40 Wh kg(-1), respectively. Moreover the assembled supercapacitor device yields a maximum energy density of 12 Wh kg(-1), which is higher than that of commercially available supercapacitors. By taking advantage of the complex multilayered structure of a hemp bast fiber precursor, such exquisite carbons were able to be achieved by simple hydrothermal carbonization combined with activation. This novel precursor-synthesis route presents a great potential for facile large-scale production of high-performance carbons for a variety of diverse applications including energy storage.

  5. Solar energy sciences and engineering applications

    CERN Document Server

    Enteria, Napoleon

    2013-01-01

    Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is due to the various barriers to overcome and to deal with the economics of practical utilization of solar energy.This book will introduce the rapid development and progress in the field of solar energy applications for science and technology: the advanc

  6. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics

    Science.gov (United States)

    Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.

    2016-03-01

    Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on

  7. Basic Energy Sciences: Summary of Accomplishments

    Science.gov (United States)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  8. Basic Science for a Secure Energy Future

    Science.gov (United States)

    Horton, Linda

    2010-03-01

    Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.

  9. Program summaries for 1979: energy sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report describes the objectives of the various research programs being conducted by the Chemical Sciences, Metallurgy and Materials Science, and Process Science divisions of the BNL Dept. of Energy and Environment. Some of the more significant accomplishments during 1979 are also reported along with plans for 1980. Some of the topics under study include porphyrins, combustion, coal utilization, superconductors, semiconductors, coal, conversion, fluidized-bed combustion, polymers, etc. (DLC)

  10. Fusion Energy Sciences Program at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Ramon J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-15

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  11. Ultrafast laser driven micro-lens to focus and energy select MeV protons

    International Nuclear Information System (INIS)

    Toncian, Toma

    2008-05-01

    A technique for simultaneous focusing and energy selection of high-current, MeV proton beams using radial, transient electric fields (10 7 -10 10 V/m) triggered on the inner wall of a hollow micro-cylinder by an intense, sub-picosecond laser-pulse is presented. Due to the transient nature of the radial focusing field, the proposed method allows selection of a desired range out of the spectrum of the poly-energetic proton beam. This technique addresses current drawbacks of laser-accelerated proton beams, i.e. their broad spectrum and divergence at the source. This thesis presents both experimental and computational studies that led to the understanding of the physical processes driving the micro-lens. After an one side irradiation of a hollow metallic cylinder a radial electric field develops inside the cylinder. Hot electrons generated by the interaction between laser pulse and cylinder wall spread inside the cylinder generating a plasma at the wall. This plasma expands into vacuum and sustains an electric field that acts as a collecting lens on a proton beam propagating axially through the cylinder. Both focusing and the reduction of the intrinsic beam divergence from 20 deg to.3 deg for a narrow spectral range was demonstrated. By sub-aperturing the beam a narrow spectral range (δε/ε < 3%) was selected from the poly-energetic beam. The micro-lens properties are tunable allowing for optimization towards applications. Optical probing techniques and proton imaging were employed to study the spacial and temporal evolution of the field and revealed a complex physical scenario of the rise and decay of the radial electric field. Each aspect studied experimentally is interpreted using 2D PIC and ray tracing simulations. A very good agreement between the experimental and computational data is found. The PIC simulations are used to upscale the demonstrated micro-lens capabilities to the focusing of a 270 MeV proton beam, an energy relevant for medical applications such

  12. Ultrafast laser driven micro-lens to focus and energy select MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Toncian, Toma

    2008-05-15

    A technique for simultaneous focusing and energy selection of high-current, MeV proton beams using radial, transient electric fields (10{sup 7}-10{sup 10} V/m) triggered on the inner wall of a hollow micro-cylinder by an intense, sub-picosecond laser-pulse is presented. Due to the transient nature of the radial focusing field, the proposed method allows selection of a desired range out of the spectrum of the poly-energetic proton beam. This technique addresses current drawbacks of laser-accelerated proton beams, i.e. their broad spectrum and divergence at the source. This thesis presents both experimental and computational studies that led to the understanding of the physical processes driving the micro-lens. After an one side irradiation of a hollow metallic cylinder a radial electric field develops inside the cylinder. Hot electrons generated by the interaction between laser pulse and cylinder wall spread inside the cylinder generating a plasma at the wall. This plasma expands into vacuum and sustains an electric field that acts as a collecting lens on a proton beam propagating axially through the cylinder. Both focusing and the reduction of the intrinsic beam divergence from 20 deg to.3 deg for a narrow spectral range was demonstrated. By sub-aperturing the beam a narrow spectral range ({delta}{epsilon}/{epsilon} < 3%) was selected from the poly-energetic beam. The micro-lens properties are tunable allowing for optimization towards applications. Optical probing techniques and proton imaging were employed to study the spacial and temporal evolution of the field and revealed a complex physical scenario of the rise and decay of the radial electric field. Each aspect studied experimentally is interpreted using 2D PIC and ray tracing simulations. A very good agreement between the experimental and computational data is found. The PIC simulations are used to upscale the demonstrated micro-lens capabilities to the focusing of a 270 MeV proton beam, an energy relevant

  13. GPUmotif: an ultra-fast and energy-efficient motif analysis program using graphics processing units.

    Science.gov (United States)

    Zandevakili, Pooya; Hu, Ming; Qin, Zhaohui

    2012-01-01

    Computational detection of TF binding patterns has become an indispensable tool in functional genomics research. With the rapid advance of new sequencing technologies, large amounts of protein-DNA interaction data have been produced. Analyzing this data can provide substantial insight into the mechanisms of transcriptional regulation. However, the massive amount of sequence data presents daunting challenges. In our previous work, we have developed a novel algorithm called Hybrid Motif Sampler (HMS) that enables more scalable and accurate motif analysis. Despite much improvement, HMS is still time-consuming due to the requirement to calculate matching probabilities position-by-position. Using the NVIDIA CUDA toolkit, we developed a graphics processing unit (GPU)-accelerated motif analysis program named GPUmotif. We proposed a "fragmentation" technique to hide data transfer time between memories. Performance comparison studies showed that commonly-used model-based motif scan and de novo motif finding procedures such as HMS can be dramatically accelerated when running GPUmotif on NVIDIA graphics cards. As a result, energy consumption can also be greatly reduced when running motif analysis using GPUmotif. The GPUmotif program is freely available at http://sourceforge.net/projects/gpumotif/

  14. GPUmotif: an ultra-fast and energy-efficient motif analysis program using graphics processing units.

    Directory of Open Access Journals (Sweden)

    Pooya Zandevakili

    Full Text Available Computational detection of TF binding patterns has become an indispensable tool in functional genomics research. With the rapid advance of new sequencing technologies, large amounts of protein-DNA interaction data have been produced. Analyzing this data can provide substantial insight into the mechanisms of transcriptional regulation. However, the massive amount of sequence data presents daunting challenges. In our previous work, we have developed a novel algorithm called Hybrid Motif Sampler (HMS that enables more scalable and accurate motif analysis. Despite much improvement, HMS is still time-consuming due to the requirement to calculate matching probabilities position-by-position. Using the NVIDIA CUDA toolkit, we developed a graphics processing unit (GPU-accelerated motif analysis program named GPUmotif. We proposed a "fragmentation" technique to hide data transfer time between memories. Performance comparison studies showed that commonly-used model-based motif scan and de novo motif finding procedures such as HMS can be dramatically accelerated when running GPUmotif on NVIDIA graphics cards. As a result, energy consumption can also be greatly reduced when running motif analysis using GPUmotif. The GPUmotif program is freely available at http://sourceforge.net/projects/gpumotif/

  15. Cutting-Edge High-Power Ultrafast Thin Disk Oscillators

    Directory of Open Access Journals (Sweden)

    Thomas Südmeyer

    2013-04-01

    Full Text Available A growing number of applications in science and industry are currently pushing the development of ultrafast laser technologies that enable high average powers. SESAM modelocked thin disk lasers (TDLs currently achieve higher pulse energies and average powers than any other ultrafast oscillator technology, making them excellent candidates in this goal. Recently, 275 W of average power with a pulse duration of 583 fs were demonstrated, which represents the highest average power so far demonstrated from an ultrafast oscillator. In terms of pulse energy, TDLs reach more than 40 μJ pulses directly from the oscillator. In addition, another major milestone was recently achieved, with the demonstration of a TDL with nearly bandwidth-limited 96-fs long pulses. The progress achieved in terms of pulse duration of such sources enabled the first measurement of the carrier-envelope offset frequency of a modelocked TDL, which is the first key step towards full stabilization of such a source. We will present the key elements that enabled these latest results, as well as an outlook towards the next scaling steps in average power, pulse energy and pulse duration of such sources. These cutting-edge sources will enable exciting new applications, and open the door to further extending the current performance milestones.

  16. Laser fusion and high energy density science

    International Nuclear Information System (INIS)

    Kodama, Ryosuke

    2005-01-01

    High-power laser technology is now opening a variety of new fields of science and technology using laser-produced plasmas. The laser plasma is now recognized as one of the important tools for the investigation and application of matter under extreme conditions, which is called high energy density science. This chapter shows a variety of applications of laser-produced plasmas as high energy density science. One of the more attractive industrial and science applications is the generation of intense pulse-radiation sources, such as the generation of electro-magnetic waves in the ranges of EUV (Extreme Ultra Violet) to gamma rays and laser acceleration of charged particles. The laser plasma is used as an energy converter in this regime. The fundamental science applications of high energy density physics are shown by introducing laboratory astrophysics, the equation of state of high pressure matter, including warm dense matter and nuclear science. Other applications are also presented, such as femto-second laser propulsion and light guiding. Finally, a new systematization is proposed to explore the possibility of the high energy density plasma application, which is called high energy plasma photonics''. This is also exploration of the boundary regions between laser technology and beam optics based on plasma physics. (author)

  17. Wind energy: Science or fiction?

    International Nuclear Information System (INIS)

    Sisouw de Zilwa, L.G.

    1993-01-01

    The energy policy of the Dutch government is aimed at the use of different energy sources (diversification). Therefore the Dutch government supports the implementation of wind turbines and stimulates product improvement and research by means of the TWIN-program (a program to support the application of wind energy in the Netherlands). The purpose of the program is to commercialize efficient wind turbines. Without subsidies it is not yet possible to exploit wind turbines in an efficient way. Around the year 2000 a capacity of 1000 MW must be realized. 1 fig., 1 ill., 5 tabs., 1 ref

  18. Automatic energy expenditure measurement for health science

    NARCIS (Netherlands)

    Catal, Cagatay; Akbulut, Akhan

    2018-01-01

    Background and objective: It is crucial to predict the human energy expenditure in any sports activity and health science application accurately to investigate the impact of the activity. However, measurement of the real energy expenditure is not a trivial task and involves complex steps. The

  19. 76 FR 48147 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-08-08

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY... that the Basic Energy Sciences Advisory Committee will be renewed for a two-year period beginning July...

  20. 77 FR 5246 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2012-02-02

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy...

  1. 78 FR 6088 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-01-29

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine, Office of Basic Energy Sciences, U.S. Department of Energy; SC-22...

  2. 78 FR 2259 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-01-10

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770... Energy Sciences; U.S. Department of Energy; 1000 Independence Avenue SW.; Washington, DC 20585-1290...

  3. Energy Storage. Teachers Guide. Science Activities in Energy.

    Science.gov (United States)

    Jacobs, Mary Lynn, Ed.

    Included in this science activities energy package for students in grades 4-10 are 12 activities related to energy storage. Each activity is outlined on the front and back of a single sheet and is introduced by a key question. Most of the activities can be completed in the classroom with materials readily available in any community. Among the…

  4. Cosmic Visions Dark Energy. Science

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Heitmann, Katrin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hirata, Chris [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Roodman, Aaron [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seljak, Uroš [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Slosar, Anže [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Trodden, Mark [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-04-26

    Cosmic surveys provide crucial information about high energy physics including strong evidence for dark energy, dark matter, and inflation. Ongoing and upcoming surveys will start to identify the underlying physics of these new phenomena, including tight constraints on the equation of state of dark energy, the viability of modified gravity, the existence of extra light species, the masses of the neutrinos, and the potential of the field that drove inflation. Even after the Stage IV experiments, DESI and LSST, complete their surveys, there will still be much information left in the sky. This additional information will enable us to understand the physics underlying the dark universe at an even deeper level and, in case Stage IV surveys find hints for physics beyond the current Standard Model of Cosmology, to revolutionize our current view of the universe. There are many ideas for how best to supplement and aid DESI and LSST in order to access some of this remaining information and how surveys beyond Stage IV can fully exploit this regime. These ideas flow to potential projects that could start construction in the 2020's.

  5. Cosmic Visions Dark Energy: Science

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Slosar, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Heitmann, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hirata, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Honscheid, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roodman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seljak, U. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trodden, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-26

    Cosmic surveys provide crucial information about high energy physics including strong evidence for dark energy, dark matter, and inflation. Ongoing and upcoming surveys will start to identify the underlying physics of these new phenomena, including tight constraints on the equation of state of dark energy, the viability of modified gravity, the existence of extra light species, the masses of the neutrinos, and the potential of the field that drove inflation. Even after the Stage IV experiments, DESI and LSST, complete their surveys, there will still be much information left in the sky. This additional information will enable us to understand the physics underlying the dark universe at an even deeper level and, in case Stage IV surveys find hints for physics beyond the current Standard Model of Cosmology, to revolutionize our current view of the universe. There are many ideas for how best to supplement and aid DESI and LSST in order to access some of this remaining information and how surveys beyond Stage IV can fully exploit this regime. These ideas flow to potential projects that could start construction in the 2020's.

  6. Energy challenge and nano-sciences

    International Nuclear Information System (INIS)

    Romulus, Anne-Marie; Chamelot, Pierre; Chaudret, Bruno; Comtat, Maurice; Fajerwerg, Katia; Philippot, Karine; Geoffron, Patrice; Lacroix, Jean-Christophe; Abanades, Stephane; Flamant, Gilles; HUERTA-ORTEGA, Benjamin; Cezac, Pierre; Lincot, Daniel; Roncali, Jean; Artero, Vincent; GuiLLET, Nicolas; Fauvarque, Jean-Francois; Simon, Patrice; Taberna, Pierre-Louis

    2013-01-01

    This book first describes the role of energy in the development of nano-sciences, discusses energy needs, the perception of nano-sciences by societies as far as the energy challenge is concerned, describes the contribution of nano-catalyzers to energy and how these catalyzers are prepared. A second part addresses the new perspectives regarding carbon: production of biofuels from biomass, process involved in CO 2 geological storage, improvement of solar fuel production with the use of nano-powders. The third part describes the new orientations of solar energy: contribution of the thin-layer inorganic sector to photovoltaic conversion, perspectives for organic photovoltaic cells, operation of new dye-sensitized nanocrystalline solar cells. The fourth part addresses the hydrogen sector: credibility, contribution of biomass in hydrogen production, production of hydrogen by electrochemistry, new catalyzers for electrolyzers and fuel cells. The last part address improved electrochemical reactors

  7. 75 FR 41838 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2010-07-19

    ... Basic Energy Sciences Computational Materials Science and Chemistry for Innovation Workshop Final Report... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic...

  8. Fusion energy science: Clean, safe, and abundant energy through innovative science and technology

    International Nuclear Information System (INIS)

    2001-01-01

    Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source

  9. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  10. Graphene and carbon nanotubes ultrafast relaxation dynamics and optics

    CERN Document Server

    Malic, Ermin

    2013-01-01

    The book introduces the reader into the ultrafast nanoworld of graphene and carbon nanotubes, including their microscopic tracks and unique optical finger prints. The author reviews the recent progress in this field by combining theoretical and experimental achievements. He offers a clear theoretical foundation by presenting transparently derived equations. Recent experimental breakthroughs are reviewed. By combining both theory and experiment as well as main results and detailed theoretical derivations, the book turns into an inevitable source for a wider audience from graduate students to researchers in physics, materials science, and electrical engineering who work on optoelectronic devices, renewable energies, or in the semiconductor industry.

  11. Ultrafast molecular dynamics illuminated with synchrotron radiation

    International Nuclear Information System (INIS)

    Bozek, John D.; Miron, Catalin

    2015-01-01

    Highlights: • Ultrafast molecular dynamics probed with synchrotron radiation. • Core-excitation as probe of ultrafast dynamics through core-hole lifetime. • Review of experimental and theoretical methods in ultrafast dynamics using core-level excitation. - Abstract: Synchrotron radiation is a powerful tool for studying molecular dynamics in small molecules in spite of the absence of natural matching between the X-ray pulse duration and the time scale of nuclear motion. Promoting core level electrons to unoccupied molecular orbitals simultaneously initiates two ultrafast processes, nuclear dynamics on the potential energy surfaces of the highly excited neutral intermediate state of the molecule on the one hand and an ultrafast electronic decay of the intermediate excited state to a cationic final state, characterized by a core hole lifetime. The similar time scales of these processes enable core excited pump-probe-type experiments to be performed with long duration X-ray pulses from a synchrotron source. Recent results obtained at the PLIEADES beamline concerning ultrafast dissociation of core excited states and molecular potential energy curve mapping facilitated by changes in the geometry of the short-lived intermediate core excited state are reviewed. High brightness X-ray beams combined with state-of-the art electron and ion-electron coincidence spectrometers and highly sophisticated theoretical methods are required to conduct these experiments and to achieve a full understanding of the experimental results.

  12. 78 FR 47677 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-08-06

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... hereby given that the Basic Energy Sciences Advisory Committee's (BESAC) charter will be renewed for a two-year period. The Committee will provide advice and recommendations to the Office of Science on the...

  13. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  14. 75 FR 6369 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2010-02-09

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  15. 78 FR 15937 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-03-13

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The Federal Advisory Committee Act requires that public notice of...

  16. 75 FR 8685 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2010-02-25

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...

  17. 76 FR 41234 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  18. 78 FR 38696 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-06-27

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat...

  19. 77 FR 41395 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2012-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  20. 76 FR 8358 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-02-14

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  1. 76 FR 40714 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-07-11

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...

  2. Energy Science and Technology Software Center

    Energy Technology Data Exchange (ETDEWEB)

    Kidd, E.M.

    1995-03-01

    The Energy Science and Technology Software Center (ESTSC), is the U.S. Department of Energy`s (DOE) centralized software management facility. It is operated under contract for the DOE Office of Scientific and Technical Information (OSTI) and is located in Oak Ridge, Tennessee. The ESTSC is authorized by DOE and the U.S. Nuclear Regulatory Commission (NRC) to license and distribute DOE-and NRC-sponsored software developed by national laboratories and other facilities and by contractors of DOE and NRC. ESTSC also has selected software from the Nuclear Energy Agency (NEA) of the Organisation for Economic Cooperation and Development (OECD) through a software exchange agreement that DOE has with the agency.

  3. Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy.

    Science.gov (United States)

    Hayes, Dugan; Kohler, Lars; Hadt, Ryan G; Zhang, Xiaoyi; Liu, Cunming; Mulfort, Karen L; Chen, Lin X

    2018-01-28

    The kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(i) bis(phenanthroline)/ruthenium(ii) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(i)-Ru(ii) analogs of the homodinuclear Cu(i)-Cu(i) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These results suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations.

  4. Atomic energy and science disclosure in Cordoba

    International Nuclear Information System (INIS)

    Martin, Hugo R.

    2011-01-01

    In September 2009, considering the existing interest in public communication of scientific activities that are developed locally, a group of researchers and communicators from Córdoba, decided to form the Network of Outreach of Córdoba. Its stated objectives of the Constitutive Act are presented in this paper along with the main activities undertaken to date and plans for the future. Since that time, the Management of Institutional Relations of the CNEA in Córdoba became involved in public circulation of scientific knowledge, in what has proven to be a framework that ensures an adequate level of debate to present nuclear national activities. This will involve collaborative efforts with professional institutions involved in research, teaching and communicating science. The main objective was to encourage the transfer of knowledge to optimize available resources, improving the methodological approaches and generating creative products tailored to regional needs, in order to promote the democratization of science and nuclear technology. This paper consists of two parts. On the one hand describes the activities of the Network during the year 2011 shows results with particular emphasis on topics related to atomic energy, and secondly, shows the desirability of promoting such activities in the CNEA. Among the main actions considered, highlighting the institutional participation in the official Ministry of Science and Technology Fair participation in Science and Technology Provincial Cordoba 2011, issue of the radio program 'Green Light: Science and technology everyday life' by National Technological University Radio and a network of forty provincial stations, and active participation in the Course of Specialization in Public Communication of Science and Scientific Journalism, organized by the School of Information Sciences and the Faculty of Mathematics, Physics and Astronomy, National University of Cordoba, among others. (author) [es

  5. Quantum Computation with Ultrafast Laser Pulse Shaping

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Quantum Computation with Ultrafast Laser Pulse Shaping. Debabrata Goswami. General Article Volume 10 Issue 6 June 2005 pp 8-14. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Assessment of the Fusion Energy Sciences Program. Final Report

    International Nuclear Information System (INIS)

    2001-01-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study

  7. Science in the service of energy

    CERN Multimedia

    2013-01-01

    Meetings on the subject of energy have marked the past two weeks at CERN. The first was on how we use energy, the second on how we might generate it in the future. Both are important, not just for CERN, but for society as a whole.   Let’s take a look at the first of those gatherings. It was the second in a series of workshops on energy for sustainable science, organised by CERN in collaboration with the European Spallation Source (ESS), which hosted the first, and ERF, the European association of national research facilities. The way we use energy is increasingly important, and constitutes a substantial fraction of CERN's operating budget. We consume 1.2 TeraWatt-hours (TWh) of energy per year. To put that in to context, the canton of Geneva consumes 3TWh per year. It is therefore incumbent on a laboratory like CERN to ensure that we use energy in the most efficient, responsible and sustainable way possible. Since the first workshop in 2011, much progress has been made in te...

  8. Eleventh symposium on energy engineering sciences: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The Eleventh Symposium on Energy Engineering Sciences was held on May 3--5, 1993, at the Argonne National Laboratory, Argonne, Illinois. These proceedings include the program, list of participants, and the papers that were presented during the eight technical sessions held at this meeting. This symposium was organized into eight technical sessions: Surfaces and interfaces; thermophysical properties and processes; inelastic behavior; nondestructive characterization; multiphase flow and thermal processes; optical and other measurement systems; stochastic processes; and large systems and control. Individual projects were processed separately for the databases

  9. Decay time shortening of fluorescence from donor-acceptor pair proteins using ultrafast time-resolved fluorescence resonance energy transfer spectroscopy

    International Nuclear Information System (INIS)

    Baba, Motoyoshi; Suzuki, Masayuki; Ganeev, Rashid A.; Kuroda, Hiroto; Ozaki, Tsuneyuki; Hamakubo, Takao; Masuda, Kazuyuki; Hayashi, Masahiro; Sakihama, Toshiko; Kodama, Tatsuhiko; Kozasa, Tohru

    2007-01-01

    We improved an ultrafast time-resolved fluorescence resonance energy transfer (FRET) spectroscopy system and measured directly the decrease in the fluorescence decay time of the FRET signal, without any entanglement of components in the picosecond time scale from the donor-acceptor protein pairs (such as cameleon protein for calcium ion indicator, and ligand-activated GRIN-Go proteins pair). The drastic decrease in lifetime of the donor protein fluorescence under the FRET condition (e.g. a 47.8% decrease for a GRIN-Go protein pair) proves the deformation dynamics between donor and acceptor fluorescent proteins in an activated state of a mixed donor-acceptor protein pair. This study is the first clear evidence of physical contact of the GRIN-Go proteins pair using time-resolved FRET system. G protein-coupled receptors (GPCRs) are the most important protein family for the recognition of many chemical substances at the cell surface. They are the targets of many drugs. Simultaneously, we were able to observe the time-resolved spectra of luminous proteins at the initial stage under the FRET condition, within 10 ns from excitation. This new FRET system allows us to trace the dynamics of the interaction between proteins at the ligand-induced activated state, molecular structure change and combination or dissociation. It will be a key technology for the development of protein chip technology

  10. Automatic energy expenditure measurement for health science.

    Science.gov (United States)

    Catal, Cagatay; Akbulut, Akhan

    2018-04-01

    It is crucial to predict the human energy expenditure in any sports activity and health science application accurately to investigate the impact of the activity. However, measurement of the real energy expenditure is not a trivial task and involves complex steps. The objective of this work is to improve the performance of existing estimation models of energy expenditure by using machine learning algorithms and several data from different sensors and provide this estimation service in a cloud-based platform. In this study, we used input data such as breathe rate, and hearth rate from three sensors. Inputs are received from a web form and sent to the web service which applies a regression model on Azure cloud platform. During the experiments, we assessed several machine learning models based on regression methods. Our experimental results showed that our novel model which applies Boosted Decision Tree Regression in conjunction with the median aggregation technique provides the best result among other five regression algorithms. This cloud-based energy expenditure system which uses a web service showed that cloud computing technology is a great opportunity to develop estimation systems and the new model which applies Boosted Decision Tree Regression with the median aggregation provides remarkable results. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Office of Basic Energy Sciences: 1984 summary report

    International Nuclear Information System (INIS)

    1984-11-01

    Subprograms of the OBES discussed in this document include: materials sciences, chemical sciences, nuclear sciences, engineering and geosciences, advanced energy projects, biological energy research, carbon dioxide research, HFBR, HFIR, NSLS, SSRL, IPNS, Combustion Research Facility, high-voltage and atomic resolution electron microscopic facilities, Oak Ridge Electron Linear Accelerator, Dynamitron Accelerator, calutrons, and Transuranium Processing Plant. Nickel aluminide and glassy metals are discussed

  12. Argonne Chemical Sciences & Engineering - Center for Electrical Energy

    Science.gov (United States)

    Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Research Facilities People Publications Awards News & Highlights Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Conversion Electrochemical

  13. High peak power THz source for ultrafast electron diffraction

    Directory of Open Access Journals (Sweden)

    Shengguang Liu

    2018-01-01

    Full Text Available Terahertz (THz science and technology have already become the research highlight at present. In this paper, we put forward a device setup to carry out ultrafast fundamental research. A photocathode RF gun generates electron bunches with ∼MeV energy, ∼ps bunch width and about 25pC charge. The electron bunches inject the designed wiggler, the coherent radiation at THz spectrum emits from these bunches and increases rapidly until the saturation at ∼MW within a short wiggler. THz pulses can be used as pump to stimulate an ultra-short excitation in some kind of sample. Those electron bunches out of wiggler can be handled into bunches with ∼1pC change, small beam spot and energy spread to be probe. Because the pump and probe comes from the same electron source, synchronization between pump and probe is inherent. The whole facility can be compacted on a tabletop.

  14. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  15. Energy conservation attitudes, knowledge, and behaviors in science laboratories

    International Nuclear Information System (INIS)

    Kaplowitz, Michael D.; Thorp, Laurie; Coleman, Kayla; Kwame Yeboah, Felix

    2012-01-01

    Energy use per square foot from science research labs is disproportionately higher than that of other rooms in buildings on campuses across the nation. This is partly due to labs’ use of energy intensive equipment. However, laboratory management and personnel behavior may be significant contributing factors to energy consumption. Despite an apparent increasing need for energy conservation in science labs, a systematic investigation of avenues promoting energy conservation behavior in such labs appears absent in scholarly literature. This paper reports the findings of a recent study into the energy conservation knowledge, attitude and behavior of principle investigators, laboratory managers, and student lab workers at a tier 1 research university. The study investigates potential barriers as well as promising avenues to reducing energy consumption in science laboratories. The findings revealed: (1) an apparent lack of information about options for energy conservation in science labs, (2) existing operational barriers, (3) economic issues as barriers/motivators of energy conservation and (4) a widespread notion that cutting edge science may be compromised by energy conservation initiatives. - Highlights: ► Effective energy conservation and efficiency depend on social systems and human behaviors. ► Science laboratories use more energy per square foot than any other academic and research spaces. ► Time, money, quality control, and convenience overshadow personnel’s desire to save energy. ► Ignorance of conservation practices is a barrier to energy conservation in labs.

  16. Ultrafast nonlinear optics

    CERN Document Server

    Leburn, Christopher; Reid, Derryck

    2013-01-01

    The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...

  17. Emission-energy dependence of ultrafast P-emission decay in ZnO from bulk to nanofilm

    International Nuclear Information System (INIS)

    Wakaiki, Shuji; Ichida, Hideki; Bamba, Motoaki; Kawase, Toshiki; Kawakami, Masaki; Mizoguchi, Kohji; Kim, DaeGwi; Nakayama, Masaaki; Kanematsu, Yasuo

    2014-01-01

    We have performed time-resolved photoluminescence (PL) spectroscopy for ZnO thin films with thicknesses of 90, 460, and 2800 nm under intense excitation condition. We clearly observed the P emission due to inelastic exciton–exciton scattering. It was found that, in the 460- and 2800-nm thick samples, the decay time of the P emission considerably depends on the detection energy inversely proportional to the group velocity of the polariton in a bulk crystal with each factor of proportionality. In contrast, the energy dependence is less remarkable in the 90-nm thick sample. The decay times are basically shortened with a decrease in the film thickness. The thickness dependence of the P-emission-decay profiles is explained by considering the crossover from the polariton modes in the 2800-nm thick sample (bulk-like film) to the exciton-/photon-like modes in the 90-nm thick sample (nanofilm). - Highlights: • We clearly observed the P-PL dynamics due to inelastic exciton–exciton scattering. • The P-PL decay times are basically shortened with a decrease in the film thickness. • The P-PL decay time depends on the detection energy in the bulk-like sample. • The energy dependence of the P-PL decay time almost disappears in the 90-nm sample. • The thickness dependence is explained by the crossover between exciton and photon

  18. Emission-energy dependence of ultrafast P-emission decay in ZnO from bulk to nanofilm

    Energy Technology Data Exchange (ETDEWEB)

    Wakaiki, Shuji, E-mail: s.wakaiki@mls.eng.osaka-u.ac.jp [Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ichida, Hideki [Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Science and Technology Entrepreneurship Laboratory, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Bamba, Motoaki [Department of Physics, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Kawase, Toshiki; Kawakami, Masaki [Department of Applied Physics, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Mizoguchi, Kohji [Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen, Naka-ku, Sakai, Osaka 599-8531 (Japan); Kim, DaeGwi; Nakayama, Masaaki [Department of Applied Physics, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kanematsu, Yasuo [Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Science and Technology Entrepreneurship Laboratory, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2014-08-01

    We have performed time-resolved photoluminescence (PL) spectroscopy for ZnO thin films with thicknesses of 90, 460, and 2800 nm under intense excitation condition. We clearly observed the P emission due to inelastic exciton–exciton scattering. It was found that, in the 460- and 2800-nm thick samples, the decay time of the P emission considerably depends on the detection energy inversely proportional to the group velocity of the polariton in a bulk crystal with each factor of proportionality. In contrast, the energy dependence is less remarkable in the 90-nm thick sample. The decay times are basically shortened with a decrease in the film thickness. The thickness dependence of the P-emission-decay profiles is explained by considering the crossover from the polariton modes in the 2800-nm thick sample (bulk-like film) to the exciton-/photon-like modes in the 90-nm thick sample (nanofilm). - Highlights: • We clearly observed the P-PL dynamics due to inelastic exciton–exciton scattering. • The P-PL decay times are basically shortened with a decrease in the film thickness. • The P-PL decay time depends on the detection energy in the bulk-like sample. • The energy dependence of the P-PL decay time almost disappears in the 90-nm sample. • The thickness dependence is explained by the crossover between exciton and photon.

  19. Evaluation of Students' Energy Conception in Environmental Science

    Science.gov (United States)

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  20. Basic Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences, November 3-5, 2015, Rockville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Windus, Theresa [Ames Lab., Ames, IA (United States); Banda, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Devereaux, Thomas [SLAC National Accelerator Lab., Menlo Park, CA (United States); White, Julia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Energy Sciences Network (ESNet), Berkeley, CA (United States); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Energy Sciences Network (ESNet), Berkeley, CA (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Energy Sciences Network (ESNet), Berkeley, CA (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baruah, Tunna [Univ. of Texas, El Paso, TX (United States); Benali, Anouar [Argonne National Lab. (ANL), Argonne, IL (United States); Borland, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Brabec, Jiri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Carter, Emily [Princeton Univ., NJ (United States); Ceperley, David [Univ. of Illinois, Urbana-Champaign, IL (United States); Chan, Maria [Argonne National Lab. (ANL), Argonne, IL (United States); Chelikowsky, James [Univ. of Texas, Austin, TX (United States); Chen, Jackie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cheng, Hai-Ping [Univ. of Florida, Gainesville, FL (United States); Clark, Aurora [Washington State Univ., Pullman, WA (United States); Darancet, Pierre [Argonne National Lab. (ANL), Argonne, IL (United States); DeJong, Wibe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dixon, David [Univ. of Alabama, Tuscaloosa, AL (United States); Donatelli, Jeffrey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunning, Thomas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fernandez-Serra, Marivi [Stony Brook Univ., NY (United States); Freericks, James [Georgetown Univ., Washington, DC (United States); Gagliardi, Laura [Univ. of Minnesota, Minneapolis, MN (United States); Galli, Giulia [Univ. of Chicago, IL (United States); Garrett, Bruce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glezakou, Vassiliki-Alexandra [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gordon, Mark [Iowa State Univ., Ames, IA (United States); Govind, Niri [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gray, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Gull, Emanuel [Univ. of Michigan, Ann Arbor, MI (United States); Gygi, Francois [Univ. of California, Davis, CA (United States); Hexemer, Alexander [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Isborn, Christine [Univ. of California, Merced, CA (United States); Jarrell, Mark [Louisiana State Univ., Baton Rouge, LA (United States); Kalia, Rajiv K. [Univ. of Southern California, Los Angeles, CA (United States); Kent, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klippenstein, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Kowalski, Karol [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krishnamurthy, Hulikal [Indian Inst. of Science, Bangalore (India); Kumar, Dinesh [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lena, Charles [Univ. of Texas, Austin, TX (United States); Li, Xiaosong [Univ. of Washington, Seattle, WA (United States); Maier, Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Markland, Thomas [Stanford Univ., CA (United States); McNulty, Ian [Argonne National Lab. (ANL), Argonne, IL (United States); Millis, Andrew [Columbia Univ., New York, NY (United States); Mundy, Chris [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nakano, Aiichiro [Univ. of Southern California, Los Angeles, CA (United States); Niklasson, A.M.N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Panagiotopoulos, Thanos [Princeton Univ., NJ (United States); Pandolfi, Ron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parkinson, Dula [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pask, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Perazzo, Amedeo [SLAC National Accelerator Lab., Menlo Park, CA (United States); Rehr, John [Univ. of Washington, Seattle, WA (United States); Rousseau, Roger [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sankaranarayanan, Subramanian [Argonne National Lab. (ANL), Argonne, IL (United States); Schenter, Greg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Selloni, Annabella [Princeton Univ., NJ (United States); Sethian, Jamie [Univ. of California, Berkeley, CA (United States); Siepmann, Ilja [Univ. of Minnesota, Minneapolis, MN (United States); Slipchenko, Lyudmila [Purdue Univ., West Lafayette, IN (United States); Sternberg, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Stevens, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Summers, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sumpter, Bobby [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sushko, Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thayer, Jana [SLAC National Accelerator Lab., Menlo Park, CA (United States); Toby, Brian [Argonne National Lab. (ANL), Argonne, IL (United States); Tull, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Valeev, Edward [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Vashishta, Priya [Univ. of Southern California, Los Angeles, CA (United States); Venkatakrishnan, V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zwart, Peter H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-02-03

    Computers have revolutionized every aspect of our lives. Yet in science, the most tantalizing applications of computing lie just beyond our reach. The current quest to build an exascale computer with one thousand times the capability of today’s fastest machines (and more than a million times that of a laptop) will take researchers over the next horizon. The field of materials, chemical reactions, and compounds is inherently complex. Imagine millions of new materials with new functionalities waiting to be discovered — while researchers also seek to extend those materials that are known to a dizzying number of new forms. We could translate massive amounts of data from high precision experiments into new understanding through data mining and analysis. We could have at our disposal the ability to predict the properties of these materials, to follow their transformations during reactions on an atom-by-atom basis, and to discover completely new chemical pathways or physical states of matter. Extending these predictions from the nanoscale to the mesoscale, from the ultrafast world of reactions to long-time simulations to predict the lifetime performance of materials, and to the discovery of new materials and processes will have a profound impact on energy technology. In addition, discovery of new materials is vital to move computing beyond Moore’s law. To realize this vision, more than hardware is needed. New algorithms to take advantage of the increase in computing power, new programming paradigms, and new ways of mining massive data sets are needed as well. This report summarizes the opportunities and the requisite computing ecosystem needed to realize the potential before us. In addition to pursuing new and more complete physical models and theoretical frameworks, this review found that the following broadly grouped areas relevant to the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) would directly affect the Basic Energy

  1. Energy secretary Spencer Abraham announces department of energy 20-year science facility plan

    CERN Multimedia

    2003-01-01

    "In a speech at the National Press Club today, U.S. Energy Secretary Spencer Abraham outlined the Department of Energy's Office of Science 20-year science facility plan, a roadmap for future scientific facilities to support the department's basic science and research missions. The plan prioritizes new, major scientific facilities and upgrades to current facilities" (1 page).

  2. Ultrafast gas switching experiments

    International Nuclear Information System (INIS)

    Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

    1993-01-01

    We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes Khz at > 100 kV/m E field

  3. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Ikezoe, Hiroshi; Yoshida, Tadashi; Takeuchi, Suehiro

    2003-10-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to advancing heavy ion science researches in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking advantage of its prominent performances in providing various heavy ions. This meeting, as well as the previous ones held twice, offered scientists from the fields of heavy ion science, including nuclear physics, solid-state physics and cross-field physics, an opportunity to have active discussions among them, as well as to review their research accomplishments in the last two years. Oral presentations were selected from a wider scope of prospective fields, expecting a new step of advancing in heavy ion science. Main topics of the meeting were the status of the JAERI-KEK joint project of developing a radioactive nuclear beam (RNB) facility and research programs related to the RNB. This meeting was held at Advanced Science Research Center in JAERI-Tokai on January 8th and 9th in 2003, and successfully carried out with as many as 190 participants and a lot of sincere discussions. The proceedings are presented in this report. The 51 of the presented papers are indexed individually. (J.P.N.)

  4. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  5. Understanding Engagement: Science Demonstrations and Emotional Energy

    Science.gov (United States)

    Milne, Catherine; Otieno, Tracey

    2007-01-01

    Although beloved of some chemists and physicists, science demonstrations have been criticized for stifling inquiry and assisting teachers to maintain a power differential between themselves and students in the classroom. This interpretive study reports the unexpected positive learning outcomes for urban science students in two chemistry classes…

  6. PREFACE: Ultrafast and nonlinear optics in carbon nanomaterials

    Science.gov (United States)

    Kono, Junichiro

    2013-02-01

    Journal of Physics: Condensed Matter staff for their help, patience and professionalism. Since this is a fast-moving field, there is absolutely no way of presenting definitive answers to all open questions, but we hope that this special section will provide an overview of the current state of knowledge regarding this topic. Furthermore, we hope that the exciting science and technology described in this section will attract and inspire other researchers and students working in related fields to enter into the study of ultrafast and nonlinear optical phenomena in carbon-based nanostructures. Ultrafast and nonlinear optics in carbon nanomaterials contents Ultrafast and nonlinear optics in carbon nanomaterialsJunichiro Kono The impact of pump fluence on carrier relaxation dynamics in optically excited grapheneT Winzer and E Malic Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behaviorS Winnerl, F Göttfert, M Mittendorff, H Schneider, M Helm, T Winzer, E Malic, A Knorr, M Orlita, M Potemski, M Sprinkle, C Berger and W A de Heer Nonlinear optics of graphene in a strong magnetic fieldXianghan Yao and Alexey Belyanin Theory of coherent phonons in carbon nanotubes and graphene nanoribbonsG D Sanders, A R T Nugraha, K Sato, J-H Kim3, J Kono3, R Saito and C J Stanton Non-perturbative effects of laser illumination on the electrical properties of graphene nanoribbons Hernán L Calvo, Pablo M Perez-Piskunow, Horacio M Pastawski, Stephan Roche and Luis E F Foa Torres Transient absorption microscopy studies of energy relaxation in graphene oxide thin film Sean Murphy and Libai Huang Femtosecond dynamics of exciton localization: self-trapping from the small to the large polaron limit F X Morrissey, J G Mance, A D Van Pelt and S L Dexheimer

  7. Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique

    KAUST Repository

    Adhikari, Aniruddha

    2016-12-15

    Four-dimensional ultrafast electron microscopy (4D-UEM) is a novel analytical technique that aims to fulfill the long-held dream of researchers to investigate materials at extremely short spatial and temporal resolutions by integrating the excellent spatial resolution of electron microscopes with the temporal resolution of ultrafast femtosecond laser-based spectroscopy. The ingenious use of pulsed photoelectrons to probe surfaces and volumes of materials enables time-resolved snapshots of the dynamics to be captured in a way hitherto impossible by other conventional techniques. The flexibility of 4D-UEM lies in the fact that it can be used in both the scanning (S-UEM) and transmission (UEM) modes depending upon the type of electron microscope involved. While UEM can be employed to monitor elementary structural changes and phase transitions in samples using real-space mapping, diffraction, electron energy-loss spectroscopy, and tomography, S-UEM is well suited to map ultrafast dynamical events on materials surfaces in space and time. This review provides an overview of the unique features that distinguish these techniques and also illustrates the applications of both S-UEM and UEM to a multitude of problems relevant to materials science and chemistry.

  8. CSIR ScienceScope: An Energy-secure South Africa

    CSIR Research Space (South Africa)

    CSIR

    2009-06-01

    Full Text Available issues, especially as buildings use more than 25% of national energy consumption. "An Energy-secure South Africa" the theme of this ScienceScope, features a multidisciplinary projects of the R&D work done on alternative energy solutions, clean and cleaner...

  9. Next-Generation Photon Sources for Grand Challenges in Science and Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    The next generation of sustainable energy technologies will revolve around transformational new materials and chemical processes that convert energy efficiently among photons, electrons, and chemical bonds. New materials that tap sunlight, store electricity, or make fuel from splitting water or recycling carbon dioxide will need to be much smarter and more functional than today's commodity-based energy materials. To control and catalyze chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials and interfaces with designed nanoscale structures. Such advanced materials are not found in nature the way we find fossil fuels; they must be designed and fabricated to exacting standards, using principles revealed by basic science. Success in this endeavor requires probing, and ultimately controlling, the interactions among photons, electrons, and chemical bonds on their natural length and time scales. Control science - the application of knowledge at the frontier of science to control phenomena and create new functionality - realized through the next generation of ultraviolet and X-ray photon sources, has the potential to be transformational for the life sciences and information technology, as well as for sustainable energy. Current synchrotron-based light sources have revolutionized macromolecular crystallography. The insights thus obtained are largely in the domain of static structure. The opportunity is for next generation light sources to extend these insights to the control of dynamic phenomena through ultrafast pump-probe experiments, time-resolved coherent imaging, and high-resolution spectroscopic imaging. Similarly, control of spin and charge degrees of freedom in complex functional materials has the potential not only to reveal the fundamental mechanisms of high-temperature superconductivity, but also to lay the foundation for future generations of information science. This

  10. Energy: can science change the deal?

    International Nuclear Information System (INIS)

    Papon, Pierre

    2012-01-01

    This document briefly presents a book in which the author tries to identify which will be the technological breakthroughs for the emergence of new energy productions or new modes of energy consumption. He notably addresses the issue of future engines and of new fuels, nuclear energy, the photovoltaic sector, electricity storage and electricity distribution by means of adapted grids; and the relationship between tomorrow's energy and tomorrow's society

  11. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers

    Science.gov (United States)

    2016-04-19

    the free energy of the system [3,4,8]. Intensive research has been aimed at bypassing the intrinsic size limits imposed by the depolarization field...Page 1 of 21   Ultrafast photovoltaic response in ferroelectric nanolayers Dan Daranciang1,2, Matthew J. Highland3, Haidan Wen4, Steve M. Young5...ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on

  12. Quantum modeling of ultrafast photoinduced charge separation

    Science.gov (United States)

    Rozzi, Carlo Andrea; Troiani, Filippo; Tavernelli, Ivano

    2018-01-01

    Phenomena involving electron transfer are ubiquitous in nature, photosynthesis and enzymes or protein activity being prominent examples. Their deep understanding thus represents a mandatory scientific goal. Moreover, controlling the separation of photogenerated charges is a crucial prerequisite in many applicative contexts, including quantum electronics, photo-electrochemical water splitting, photocatalytic dye degradation, and energy conversion. In particular, photoinduced charge separation is the pivotal step driving the storage of sun light into electrical or chemical energy. If properly mastered, these processes may also allow us to achieve a better command of information storage at the nanoscale, as required for the development of molecular electronics, optical switching, or quantum technologies, amongst others. In this Topical Review we survey recent progress in the understanding of ultrafast charge separation from photoexcited states. We report the state-of-the-art of the observation and theoretical description of charge separation phenomena in the ultrafast regime mainly focusing on molecular- and nano-sized solar energy conversion systems. In particular, we examine different proposed mechanisms driving ultrafast charge dynamics, with particular regard to the role of quantum coherence and electron-nuclear coupling, and link experimental observations to theoretical approaches based either on model Hamiltonians or on first principles simulations.

  13. Strategic plan for the restructured US fusion energy sciences program

    International Nuclear Information System (INIS)

    1996-08-01

    This plan reflects a transition to a restructured fusion program, with a change in focus from an energy technology development program to a fusion energy sciences program. Since the energy crisis of the early 1970's, the U.S. fusion program has presented itself as a goal- oriented fusion energy development program, with milestones that required rapidly increasing budgets. The Energy Policy Act of 1992 also called for a goal-oriented development program consistent with the Department's planning. Actual funding levels, however, have forced a premature narrowing of the program to the tokamak approach. By 1995, with no clear, immediate need driving the schedule for developing fusion energy and with enormous pressure to reduce discretionary spending, Congress cut fusion program funding for FY 1996 by one-third and called for a major restructuring of the program. Based on the recommendations of the Fusion Energy Advisory Committee (FEAC), the Department has decided to pursue a program that concentrates on world-class plasma, science, and on maintaining an involvement in fusion energy science through international collaboration. At the same time, the Japanese and Europeans, with energy situations different from ours, are continuing with their goal- oriented fusion programs. Collaboration with them provides a highly leveraged means of continued involvement in fusion energy science and technology, especially through participation in the engineering and design activities of the International Thermonuclear Experimental Reactor program, ITER. This restructured fusion energy sciences program, with its focus on fundamental fusion science and technology, may well provide insights that lead to more attractive fusion power plants, and will make use of the scientific infrastructure that will allow the United States to launch a fusion energy development program at some future date

  14. Ultrafast magnetization dynamics

    OpenAIRE

    Woodford, Simon

    2008-01-01

    This thesis addresses ultrafast magnetization dynamics from a theoretical perspective. The manipulation of magnetization using the inverse Faraday effect has been studied, as well as magnetic relaxation processes in quantum dots. The inverse Faraday effect – the generation of a magnetic field by nonresonant, circularly polarized light – offers the possibility to control and reverse magnetization on a timescale of a few hundred femtoseconds. This is important both for the technological advant...

  15. White House science council ponders measures to improve energy funding

    CERN Multimedia

    Jones, D

    2003-01-01

    "The business strategy of the Energy Department's Office of Science is largely based on its 20-year plan for constructing or upgrading 28 facilities, most of them at department laboratories, DOE science chief Raymond Orbach told members of a White House advisory panel last week" (1 page).

  16. JPRS Report, Science & Technology, China: Energy.

    Science.gov (United States)

    1988-02-10

    bedrock growth anticlines, buried hill fault blocks, rolling anticlines, compression anticlines, draped anticlines, volcanic diapers and others. The...development and utilization of solar , wind, geothermal and other energy resources, the energy conservation capacity and newly-added energy resources were...equivalent to 20 million tons of standard coal. The firewood-saving capacity in wood and coal-saving stoves, biogas pits and solar cookers alone was

  17. Materials science for solar energy conversion systems

    CERN Document Server

    Granqvist, CG

    1991-01-01

    Rapid advances in materials technology are creating many novel forms of coatings for energy efficient applications in solar energy. Insulating heat mirrors, selective absorbers, transparent insulation and fluorescent concentrators are already available commercially. Radiative cooling, electrochromic windows and polymeric light pipes hold promise for future development, while chemical and photochemical processes are being considered for energy storage. This book investigates new material advances as well as applications, costs, reliability and industrial production of existing materials. Each c

  18. Department of Energy - Office of Science Early Career Research Program

    Science.gov (United States)

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  19. New Science for a Secure and Sustainable Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  20. Ultrafast palladium diffusion in germanium

    KAUST Repository

    Tahini, Hassan Ali

    2015-01-01

    The slow transport of dopants through crystal lattices has hindered the development of novel devices. Typically atoms are contained within deep potential energy wells which necessitates multiple attempts to hop between minimum energy positions. This is because the bonds that constrain atoms are strongest at the minimum positions. As they hop between sites the bonds must be broken, only to re-form as the atoms slide into adjacent minima. Here we demonstrate that the Pd atoms introduced into the Ge lattice behave differently. They retain bonds as the atoms shift across so that at the energy maximum between sites Pd still exhibits strong bonding characteristics. This reduces the energy maximum to almost nothing (a migration energy of only 0.03 eV) and means that the transport of Pd through the Ge lattice is ultrafast. We scrutinize the bonding characteristics at the atomic level using quantum mechanical simulation tools and demonstrate why Pd behaves so differently to other metals we investigated (i.e. Li, Cu, Ag, Pt and Au). Consequently, this fundamental understanding can be extended to systems where extremely rapid diffusion is desired, such as radiation sensors, batteries and solid oxide fuel cells.

  1. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L. W.; Lin, L.; Huang, S. L.; Quan, S. W.; Hao, J. K.; Zhu, F.; Wang, F.; Liu, K. X., E-mail: kxliu@pku.edu.cn [Institute of Heavy Ion Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Jiang, T.; Zhu, P. F.; Fu, F.; Wang, R.; Zhao, L.; Xiang, D., E-mail: dxiang@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-30

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  2. Science projects in renewable energy and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    First, the book is written for teachers and other adults who educate children in grades K-12. This allows us to include projects with a variety of levels of difficulty, leaving it to the teacher to adapt them to the appropriate skill level. Second, the book generally focuses on experimental projects that demonstrate the scientific method. We believe that learning the experimental process is most beneficial for students and prepares them for further endeavors in science and for life itself by developing skills in making decisions and solving problems. Although this may appear to limit the book's application to more advanced students and more experienced science teachers, we hope that some of the ideas can be applied to beginning science classes. In addition, we recognize that there are numerous sources of nonexperimental science activities in the field and we hope this book will fill a gap in the available material. Third, we've tried to address the difficulties many teachers face in helping their students get started on science projects. By explaining the process and including extensive suggestions of resources -- both nationally and locally -- we hope to make the science projects more approachable and enjoyable. We hope the book will provide direction for teachers who are new to experimental projects. And finally, in each section of ideas, we've tried to include a broad sampling of projects that cover most of the important concepts related to each technology. Additional topics are listed as one-liners'' following each group of projects.

  3. Science and society test VI: Energy economics

    Science.gov (United States)

    Hafemeister, David W.

    1982-01-01

    Simple numerical estimates are developed in order to quantify a variety of energy economics issues. The Verhulst equation, which considers the effect of finite resources on petroleum production, is modified to take into account supply and demand economics. Numerical and analytical solutions to these differential equations are presented in terms of supply and demand elasticity functions, various finite resources, and the rate of increase in fuel costs. The indirect cost per barrel of imported oil from OPEC is shown to be about the same as the direct cost. These effects, as well as those of discounted benefits and deregulation, are used in a calculation of payback periods for various energy conserving devices. A phenomenological model for market penetration is developed along with the factors for future energy growth rates. A brief analysis of the economic returns of the ''house doctor'' program to reprofit houses for energy conservation is presented.

  4. Activation of ion implanted Si for backside processing by Ultra-fast Laser Thermal Annealing: Energy homogeneity and micro-scale sheet resistance

    DEFF Research Database (Denmark)

    Huet, K.; Lin, Rong; Boniface, C

    2009-01-01

    In this paper ion activation of implanted silicon using ultra-fast laser thermal annealing (LTA) process was discussed. The results stated that there was high dopant activation using LTA process for over 70%, excellent within shot activation uniformity, and there was a possibility for overlap...... parameter optimization. It was observed that, for activation LTA process, shallow box-shaped profiles- high diffusivity of B in liquids and high-temperatures was observed only near the surface in a submicrosecond timescale. Possible solutions were suggested as to low-cost and high-end for overlap...

  5. Biomass I. Science Activities in Energy [and] Teacher's Guide.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Designed for science students in fourth, fifth, and sixth grades, the activities in this unit illustrate principles and problems related to biomass as a form of energy. (The word biomass is used to describe all solid material of animal or vegetable origin from which energy may be extracted.) Twelve student activities using art, economics,…

  6. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  7. Nuclear energy between science and public

    International Nuclear Information System (INIS)

    Bobnar, B.

    1992-01-01

    The objective of the presented research was to establish the presence and the structure of nuclear energy as a theme in Slovenian mass media and at the same time to answer the question what chances an active Slovenian reader had in the year 1991 to either strengthen or change his opinion on nuclear power. Measurement and analysis of chosen relevant variables in 252 contributions in six Slovenian mass media publications in the year 1991 showed that the most frequent nuclear theme was decommissioning and closing down of a nuclear power plant. Other themes followed in the order of the frequency of appearance: nuclear energy as an economic issue, waste disposal, NPP Krsko operation, influence on health, information about events, seismic questions. The scientific theme - nuclear energy, was intensely represented in chosen Slovenian mass media publications in 1991. Common to all nuclear themes is that they were being presented from the political point of view. (author) [sl

  8. Studies in Low-Energy Nuclear Science

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  9. Science of mineral deposits and economics of energy

    International Nuclear Information System (INIS)

    Mackowsky, M.T.

    1978-01-01

    The availability of fossile energy carriers is investigated with regard to raw material reserves and their know deposits, by means of output and consumption. According to the author's opinion its discussion should have a priority over all discussions concerning energy crisis, energy supply and environmental protection. The author also touches the high measure of political problems beside the geoscientifical and technological problems of raw material supply. He briefly points to the general situation on the energy market with the help of data on stocks and consumption as given by the 10th International Energy Conference 1977 at Istambul and eventually deals with topics on mineral deposits science and uranium production. (HK) [de

  10. The water-energy nexus: an earth science perspective

    Science.gov (United States)

    Healy, Richard W.; Alley, William M.; Engle, Mark A.; McMahon, Peter B.; Bales, Jerad D.

    2015-01-01

    Water availability and use are closely connected with energy development and use. Water cannot be delivered to homes, businesses, and industries without energy, and most forms of energy development require large amounts of water. The United States faces two significant and sometimes competing challenges: to provide sustainable supplies of freshwater for humans and ecosystems and to ensure adequate sources of energy for future generations. This report reviews the complex ways in which water and energy are interconnected and describes the earth science data collection and research that can help the Nation address these important challenges.

  11. JPRS Report, Science & Technology. China: Energy

    Science.gov (United States)

    1992-01-28

    Rural Power Industry Has Record Year [CHINA DAILY (National), 8 Jan 92] 4 Achievements in Energy Conservation and Future Tasks [ Zhu ...Development Targets Detailed [Yuan Changlong; GUIZHOU RIBAO, 23 Sep 91] 21 Another Power Crunch in Zhejiang Province [Xie Ranhao; JINGJI RIBAO, 7 Dec 91...OVERSEAS EDITION, 20 Dec 91] 25 THERMAL POWER Shenhai Plant Completed, Generating Power [ JINGJI RIBAO, 27 Dec 92] 26 Jiangyou Power Plant

  12. 9th International Symposium on Ultrafast Processes in Spectroscopy

    CERN Document Server

    Silvestri, S; Denardo, G

    1996-01-01

    This volume is a collection of papers presented at the Ninth International Symposium on "Ultrafast Processes in Spectroscopy" (UPS '95) held at the International Centre for Theo­ retical Physics (ICTP), Trieste (Italy), October 30 -November 3, 1995. These meetings have become recognized as the major forum in Europe for discussion of new work in this rapidly moving field. The UPS'95 Conference in Trieste brought together a multidisciplinary group of researchers sharing common interests in the generation of ultrashort optical pulses and their application to studies of ultrafast phenomena in physics, chemistry, material science, electronics, and biology. It was attended by approximately 250 participants from 20 countries and the five-day program comprises more than 200 papers. The progress of both technology and applications in the field of ultrafast processes during these last years is truly remarkable. The advent of all solid state femtosecond lasers and the extension of laser wavelengths by frequency convers...

  13. Nuclear energy between science and public

    Energy Technology Data Exchange (ETDEWEB)

    Bobnar, B [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    The objective of the presented research was to establish the presence and the structure of nuclear energy as a theme in Slovenian mass media and at the same time to answer the question what chances an active Slovenian reader had in the year 1991 to either strengthen or change his opinion on nuclear power. Measurement and analysis of chosen relevant variables in 252 contributions in six Slovenian mass media publications in the year 1991 showed that the most frequent nuclear theme was decommissioning and closing down of a nuclear power plant. Other themes followed in the order of the frequency of appearance: nuclear energy as an economic issue, waste disposal, NPP Krsko operation, influence on health, information about events, seismic questions. The scientific theme - nuclear energy, was intensely represented in chosen Slovenian mass media publications in 1991. Common to all nuclear themes is that they were being presented from the political point of view. (author) [Slovenian] Prispevek s strani komunikoloskih raziskav osvetljuje nekatere dileme ob vstopanju stroke v svet mnozicnih medijev. Cilj raziskave je bil: ugotoviti prisotnost in strukturo jedrske energije kot teme v javnih pisnih medijih v letu 1991 ter oceniti, ali je imel povprecni bralec vsaj enega dnevnega casopisa moznost, da okrepi ali spremeni svoje mnenje o jedrski energiji. Merjenje in analiza relevantnih izbranih spremenljivk v 252 prispevkih v sestih slovenskih pisnih medijih sta pokazala, da je bila najpogostejsa jedrska tema zapiranje in razgradnja jedrskih elektrarn, sledili so ekonomski vidiki jedrske energije, vprasanja, povezana s skladiscenjem in odlagaliscem radioaktivnih odpadkov, delovanje NE Krsko, vpliv jedrske energije na zdravje, informacije o nezgodah, seizmoloska vprasanja. Strokovna tema - jedrska energija, je bila intenzivno predstavljena v slovenskih pisnih medijih v letu 1991, vendar prevladujoce s politicnega zornega kota. (author)

  14. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  15. Studies in Low-Energy Nuclear Science

    International Nuclear Information System (INIS)

    Brune, Carl R.; Grimes, Steven M.

    2010-01-01

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187. We describe here research into low-energy nuclear reactions and structure. The statistical properties of nuclei have been studied by measuring level densities and also calculating them theoretically. Our approach of measuring level densities via evaporation spectra is able to reach a very wide range of nuclei by using heavy ion beams (we expect to develop experiments using radioactive beams in the near future). Another focus of the program has been on γ-ray strength functions. These clearly impact nuclear reactions, but they are much less understood than corresponding transmission coefficients for nucleons. We have begun investigations of a new approach, using γ-γ coincidences following radiative capture. Finally, we have undertaken several measurements of cross sections involving light nuclei which are important in various applications. The 9 Be(α,n) and B(d,n) reactions have been measured at Ohio University, while neutron-induced reactions have been measured at Los Alamos (LANSCE).

  16. Ultrafast Graphene Photonics and Optoelectronics

    Science.gov (United States)

    2017-04-14

    AFRL-AFOSR-JP-TR-2017-0032 Ultrafast Graphene Photonics and Optoelectronics Kuang-Hsiung Wu National Chiao Tung University Final Report 04/14/2017...DATES COVERED (From - To) 18 Apr 2013 to 17 Apr 2016 4. TITLE AND SUBTITLE Ultrafast Graphene Photonics and Optoelectronics 5a.  CONTRACT NUMBER 5b...Prescribed by ANSI Std. Z39.18 Final Report for AOARD Grant FA2386-13-1-4022 “Ultrafast Graphene Photonics and Optoelectronics” Date May 23th, 2016

  17. Roadmap of ultrafast x-ray atomic and molecular physics

    Science.gov (United States)

    Young, Linda; Ueda, Kiyoshi; Gühr, Markus; Bucksbaum, Philip H.; Simon, Marc; Mukamel, Shaul; Rohringer, Nina; Prince, Kevin C.; Masciovecchio, Claudio; Meyer, Michael; Rudenko, Artem; Rolles, Daniel; Bostedt, Christoph; Fuchs, Matthias; Reis, David A.; Santra, Robin; Kapteyn, Henry; Murnane, Margaret; Ibrahim, Heide; Légaré, François; Vrakking, Marc; Isinger, Marcus; Kroon, David; Gisselbrecht, Mathieu; L'Huillier, Anne; Wörner, Hans Jakob; Leone, Stephen R.

    2018-02-01

    X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm-2) of x-rays at wavelengths down to ˜1 Ångstrom, and HHG provides unprecedented time resolution (˜50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ˜280 eV (44 Ångstroms) and the bond length in methane of ˜1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since

  18. Snowmass 2002: The Fusion Energy Sciences Summer Study

    International Nuclear Information System (INIS)

    Sauthoff, N.; Navratil, G.; Bangerter, R.

    2002-01-01

    The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE [Department of Energy] and the FESAC [Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report

  19. Snowmass 2002: The Fusion Energy Sciences Summer Study; TOPICAL

    International Nuclear Information System (INIS)

    N. Sauthoff; G. Navratil; R. Bangerter

    2002-01-01

    The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE[Department of Energy] and the FESAC[Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report will

  20. AMODS and High Energy Density Sciences

    International Nuclear Information System (INIS)

    Rhee, Y.-J.

    2011-01-01

    Following a brief introduction to the Lab for Quantum Optics (LFQO) in KAERI, which has been devoted to the research on atomic spectroscopy for more than 20 years with precision measurement of atomic parameters such as isotope shift, hyperfine structures, autoionization levels and so on as well as with theoretical analysis of atomic systems by developing relativistic calculation methodologies for laser propagation and population dynamics, electron impact ionization, radiative transitions of high Z materials, etc for the application to isotope separation, the AMODS (Atomic Molecular and Optical Database Systems) which was established in 1997 and has been a member of International Data Center Network of IAEA since then is explained by giving an information on the data sources and internal structure of the compilation of AMODS. Since AMODS was explained in detail during last DCN meeting, just a brief introduction is given this time. Then more specific research themes carried out in LFQO in conjunction with A+M data are discussed, including (1) electron impact ionization processes of W, Mo, Be, C, etc, (2) spectra of highly charged ions of W, Xe, and Si, (3) dielectronic recombination process of Fe ion. Also given are the talk about research activities about the simulations of high energy density experiments such as those performed at (1) GEKKO laser facility (Japan) for X-ray photoionization of low temperature Si plasma, which can explain the unsolved arguments on the X-ray spectra of black holes and/or neutron stars, (2) VULCAN laser facility (UK) for two dimensional compression of cylindrical target and investigation of hot electron transport in the compressed target plasma to understand the fast ignition process of laser fusion, (3) LULI laser facility (France) and TITAN laser facility (USA) for one dimensional compression of aluminum targets with different laser energies, and (4) PALS facility (Czech Republic) for 'Laser Induced Cavity Pressure Acceleration' to

  1. 2016 TSRC Summer School on Fundamental Science for Alternative Energy

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Victor S. [Yale Univ., New Haven, CT (United States)

    2017-08-25

    The 2016 TSRC Summer School on Fundamental Science for Alternative Energy introduced principles, methods, and approaches relevant to the design of molecular transformations, energy transduction, and current applications for alternative energy. Energy and environment are likely to be key themes that will dominate the way science and engineering develop over the next few decades. Only an interdisciplinary approach with a team-taught structure as presented at the 2016 TSRC Summer School can be expected to succeed in the face of problems of such difficulty. The course inspired a new generation of 24 graduate students and 2 post-docs to continue work in the field, or at least to have something of an insider's point of view as the field develops in the next few decades.

  2. Putting science into practice: saving energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Shove, E.

    1994-12-31

    A research project is described which has investigated the relationship between science-based knowledge of energy efficient building and practical energy saving action. A comparison of government funded research and development programmes has shown how knowledge of energy efficient building technology has been developed and applied. Beliefs about the nature of social change which underly these technical programmes have been revealed by an analysis of the theory and practice of technology transfer. An examination of three specific energy saving action contexts illustrates the tensions between standardised scientific knowledge and the diverse social and organisational situations in which technical expertise is applied. The report raises questions about the interaction of natural and social science and environmental policy. (UK)

  3. Energy and nuclear sciences international who's who. 4. ed.

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    For this fourth edition the directory has been reformatted to A4 size to allow for the restructuring of both the biological data and the cover. The fourth edition contains details of over 3,500 including 400 for the first time, scientists and engineers concerned with new and improved methods of generating electricity. A wide range of people used the information provided in the last edition, among them information scientists, administrators, conference organizers, market researchers, financiers seeking technical advice, embassy staff, consultants, biochemists and engineers. Biographical enquiry forms were sent to officers in scientific societies in each nation, to directors and section leaders in industrial and official institutions where significant numbers of scientists relating to power and energy research are employed to heads of relevant academic departments, and to editorial board members of relevant journals. Part one lists biographical profiles of scientists in alphabetical order of surname. The subject index by country in Part two centres around nuclear and energy sciences divided into the following areas; electrical power engineering, energy conservation, energy planning, energy storage, fuel production, fusion technology, geothermal energy, nuclear sciences, high energy physics, low energy physics, wind and/or ocean energy. This allows the reader to locate experts in each of the above topic areas in around 90 countries. (Author)

  4. Studies in Low-Energy Nuclear Science

    International Nuclear Information System (INIS)

    Brune, Carl R.; Grimes, Steven M.

    2006-01-01

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between 1 January 2003 and 31 December 2005 and supported by U.S. DOE grant number DE-FG03-03NA00074. Cross sections measured with high resolution have been subjected to an Ericson theory analysis to infer information about the nuclear level density. Other measurements were made of the spectral shape of particles produced in evaporation processes; these also yield level density information. A major project was the development of a new Hauser-Feshbach code for analyzing such spectra. Other measurements produced information on the spectra of gamma rays emitted in reactions on heavy nuclei and gave a means of refining our understanding of gamma-ray strength functions. Finally,reactions on light nuclei were studied and subjected to an R-matrix analysis. Cross sections fora network of nuclear reactions proceedingthrough a given compound nucleus shouldgreatly constrain the family of allowed parameters. Modifications to the formalism andcomputer code are also discussed.

  5. Center for Renewable Energy Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Billo, Richard; Rajeshwar, Krishnan

    2013-01-15

    The CREST research team conducted research that optimized catalysts used for the conversion of southwestern lignite into synthetic crude oil that can be shipped to nearby Texas refineries and power plants for development of transportation fuels and power generation. Research was also undertaken to convert any potential by-products of this process such as CO2 to useful chemicals and gases which could be recycled and used as feedstock to the synthetic fuel process. These CO2 conversion processes used light energy to drive the endogonic reduction reactions involved. The project was divided into two tasks: A CO2 Conversion Task, and a Catalyst Optimization Task. The CO2 Conversion task was aimed at developing molecular and solid state catalysts for the thermal, electro- and photocatalytic reduction of CO2 to reduced products such as simple feedstock compounds (e.g. CO, H2, CHOOH, CH2O, CH3OH and CH4). For example, the research team recycled CO that was developed from this Task and used it as a feedstock for the production of synthetic crude in the Catalyst Optimization Task. In the Catalyst Optimization Task, the research team conducted bench-scale experiments with the goal of reducing overall catalyst cost in support of several synthetic crude processes that had earlier been developed. This was accomplished by increasing the catalyst reactivity thus reducing required concentrations or by using less expensive metals. In this task the team performed parametric experiments in small scale batch reactors in an effort to improve catalyst reactivity and to lower cost. They also investigated catalyst robustness by testing lignite feedstocks that vary in moisture, h, and volatile content.

  6. Energy and the social sciences. A preliminary literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Sommers, P.

    1975-01-01

    The social science literature pertaining to energy problems is reviewed, and preliminary suggestions for research projects and research strategy are presented. Much of the social science literature on energy is in the field of economics, where such themes as econometric models, pricing policy, taxation, and government-industry interactions are discussed. Among the suggested research efforts is a study of proper economic criteria for determining rates of development of alternative sources of energy. The political science literature on energy is not well developed, but a review of it indicates interesting possibilities for research. The kinds of social and political institutions that would be most effective in an energy-constrained economy should be studied, and a comparative study of institutions now in existence in the United States and other countries is suggested. The social effects of centralized, comprehensive decision-making, which might be necessary in the event of significant shortages of energy, should be studied. The roles of community groups, interest groups, the media, government, etc., in decision-making should receive continuing attention. In the fields of sociology and psychology there is a need for more understanding of the attitudes, beliefs, and behavior of individuals about energy matters. The ways in which people adapt to energy shortages and changes in energy prices should be a subject for continuing studies. It is suggested that plans be made for surveys of coping strategies under emergency conditions as well as under conditions of gradual change. A possible long-range reaction to energy shortages and high prices might be a decrease in living-space available to individuals and families, and the work of psychologists in this area should be analyzed. 41 references.

  7. Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves.

    Science.gov (United States)

    Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning

    2018-04-01

    Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.

  8. Basic energy sciences at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Postma, H.

    1985-01-01

    The testimony expresses concerns about two areas of the FY-86 budget and goes on to discuss basic energy science programs at ORNL, scientific results, support of technologies, user facilities, recent significant discoveries, support of major facilities and ORNL trends in basic research

  9. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Weathersby, S. P.; Brown, G.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K., E-mail: lrk@slac.stanford.edu; Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); and others

    2015-07-15

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  10. Ultrafast dynamics of correlated electrons

    International Nuclear Information System (INIS)

    Rettig, Laurenz

    2012-01-01

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T c 4 superconductor Bi 2 Sr 2 CaCu 2 O 8+δ reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the suppression of momentum

  11. Ultrafast dynamics of correlated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, Laurenz

    2012-07-09

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T{sub c}4 superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the

  12. High Energy Density Sciences with High Power Lasers at SACLA

    Science.gov (United States)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  13. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  14. Ultrafast disk lasers and amplifiers

    Science.gov (United States)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  15. Ultra-Fast Hadronic Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermilab; Lukić, Strahinja [VINCA Inst. Nucl. Sci., Belgrade; Mokhov, Nikolai [Fermilab; Striganov, Sergei [Fermilab; Ujić, Predrag [VINCA Inst. Nucl. Sci., Belgrade

    2017-12-18

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.

  16. Energy Transformation: Teaching Youth about Energy Efficiency while Meeting Science Essential Standards

    Science.gov (United States)

    Kirby, Sarah D.; Chilcote, Amy G.

    2014-01-01

    This article describes the Energy Transformation 4-H school enrichment curriculum. The curriculum addresses energy efficiency and conservation while meeting sixth-grade science essential standards requirements. Through experiential learning, including building and testing a model home, youth learn the relationship between various technologies and…

  17. Solar Energy Education. Renewable energy activities for junior high/middle school science

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

  18. Energy balance at a crossroads: translating the science into action.

    Science.gov (United States)

    Manore, Melinda M; Brown, Katie; Houtkooper, Linda; Jakicic, John; Peters, John C; Smith Edge, Marianne; Steiber, Alison; Going, Scott; Gable, Lisa Guillermin; Krautheim, Ann Marie

    2014-07-01

    One of the major challenges facing the United States is the high number of overweight and obese adults and the growing number of overweight and unfit children and youth. To improve the nation's health, young people must move into adulthood without the burden of obesity and its associated chronic diseases. To address these issues, the American College of Sports Medicine, the Academy of Nutrition and Dietetics, and the US Department of Agriculture/Agriculture Research Service convened an expert panel meeting in October 2012 titled "Energy Balance at a Crossroads: Translating the Science into Action." Experts in the fields of nutrition and exercise science came together to identify the biological, lifestyle, and environmental changes that will most successfully help children and families attain and manage energy balance and tip the scale toward healthier weights. Two goals were addressed: 1) professional training and 2) consumer/community education. The training goal focused on developing a comprehensive strategy to facilitate the integration of nutrition and physical activity (PA) using a dynamic energy balance approach for regulating weight into the training of undergraduate and graduate students in dietetics/nutrition science, exercise science/PA, and pre-K-12 teacher preparation programs and in training existing cooperative extension faculty. The education goal focused on developing strategies for integrating dynamic energy balance into nutrition and PA educational programs for the public, especially programs funded by federal/state agencies. The meeting expert presenters and participants addressed three key areas: 1) biological and lifestyle factors that affect energy balance, 2) undergraduate/graduate educational and training issues, and 3) best practices associated with educating the public about dynamic energy balance. Specific consensus recommendations were developed for each goal.

  19. Science and defense 2003: the future on-board energies; Science et defense 2003: les futures energies embarquees

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Since 1983, the DGA (delegation of armament) organizes the colloquium ''Science and defense'' in the domains of the scientific research and the defense. The 2003 colloquium took place in Paris on December 2 and 3 and concerns the future portable energies. This paper is a summary presentation of the presented topics: the needs and the developments for the portable energies, the state of the art of the mini and micro energy sources and their limitations, the energy materials which strongly provide energy by chemical transformation, the new energy sources of medium power, the environmental impacts. The budget devoted to these researches in 2002 by the DGA, are also presented. (A.L.B.)

  20. Current fundamental science challenges in low temperature plasma science that impact energy security and international competitiveness

    Science.gov (United States)

    Hebner, Greg

    2010-11-01

    Products and consumer goods that utilize low temperature plasmas at some point in their creation touch and enrich our lives on almost a continuous basis. Examples are many but include the tremendous advances in microelectronics and the pervasive nature of the internet, advanced material coatings that increase the strength and reliability of products from turbine engines to potato chip bags, and the recent national emphasis on energy efficient lighting and compact fluorescent bulbs. Each of these products owes their contributions to energy security and international competiveness to fundamental research investments. However, it would be a mistake to believe that the great commercial success of these products implies a robust understanding of the complicated interactions inherent in plasma systems. Rather, current development of the next generation of low temperature plasma enabled products and processes is clearly exposing a new set of exciting scientific challenges that require leaps in fundamental understanding and interdisciplinary research teams. Emerging applications such as liquid-plasma systems to improve water quality and remediate hazardous chemicals, plasma-assisted combustion to increase energy efficiency and reduce emissions, and medical applications promise to improve our lives and the environment only if difficult science questions are solved. This talk will take a brief look back at the role of low temperature plasma science in enabling entirely new markets and then survey the next generation of emerging plasma applications. The emphasis will be on describing the key science questions and the opportunities for scientific cross cutting collaborations that underscore the need for increased outreach on the part of the plasma science community to improve visibility at the federal program level. This work is supported by the DOE, Office of Science for Fusion Energy Sciences, and Sandia National Laboratories, a multi-program laboratory managed and operated

  1. The food-energy-water nexus: Transforming science for society

    Science.gov (United States)

    Scanlon, Bridget R.; Ruddell, Ben L.; Reed, Patrick M.; Hook, Ruth I.; Zheng, Chunmiao; Tidwell, Vince C.; Siebert, Stefan

    2017-05-01

    Emerging interdisciplinary science efforts are providing new understanding of the interdependence of food, energy, and water (FEW) systems. These science advances, in turn, provide critical information for coordinated management to improve the affordability, reliability, and environmental sustainability of FEW systems. Here we describe the current state of the FEW nexus and approaches to managing resource conflicts through reducing demand and increasing supplies, storage, and transport. Despite significant advances within the past decade, there are still many challenges for the scientific community. Key challenges are the need for interdisciplinary science related to the FEW nexus; ground-based monitoring and modeling at local-to-regional scales; incorporating human and institutional behavior in models; partnerships among universities, industry, and government to develop policy relevant data; and systems modeling to evaluate trade-offs associated with FEW decisions.

  2. Measurements of Ultra-Fast single photon counting chip with energy window and 75 μm pixel pitch with Si and CdTe detectors

    International Nuclear Information System (INIS)

    Maj, P.; Grybos, P.; Kasinski, K.; Koziol, A.; Krzyzanowska, A.; Kmon, P.; Szczygiel, R.; Zoladz, M.

    2017-01-01

    Single photon counting pixel detectors become increasingly popular in various 2-D X-ray imaging techniques and scientific experiments mainly in solid state physics, material science and medicine. This paper presents architecture and measurement results of the UFXC32k chip designed in a CMOS 130 nm process. The chip consists of about 50 million transistors and has an area of 9.64 mm × 20.15 mm. The core of the IC is a matrix of 128 × 256 pixels of 75 μm pitch. Each pixel contains a CSA, a shaper with tunable gain, two discriminators with correction circuits and two 14-bit ripple counters operating in a normal mode (with energy window), a long counter mode (one 28-bit counter) and a zero-dead time mode. Gain and noise performance were verified with X-ray radiation and with the chip connected to Si (320 μm thick) and CdTe (750 μ m thick) sensors.

  3. Catalytic Science and Technology in Sustainable Energy II

    DEFF Research Database (Denmark)

    Wang, Yuxin; Xiao, Feng-Shou; Seshan, Kulathu K.

    2017-01-01

    This special issue of Catalysis Today results from four sessions, under the collective theme "Catalysis in Sustainable Energy", of the 2ndInternational Symposium on Catalytic Science and Technology in Sustainable Energy and Environment, held in Tianjin, China during October 12-14, 2016. This bien...... whom the special issue would not have been possible. As the organizer of the EECAT 2016, Y Li expresses his special gratitude to the sponsors, especially Haldor Topsoe and Synfuels China, the participants and the co-organizers for their great contribution to the success of EECAT 2016....

  4. Proceedings of the fifteenth symposium on energy engineering sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This Proceedings Volume includes the technical papers that were presented during the Fifteenth Symposium on Energy Engineering Sciences on May 14-15, 1997, at Argonne National Laboratory, Argonne, Illinois. The Symposium was organized into eight technical sessions, which included 32 individual presentations followed by discussion and interaction with the audience. The topics of the eight sessions are: multiphase flows 1; multiphase flows 2; mostly optics; fluid mechanics; nonlinear fields; welding and cracks; materials; and controls. The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. It has the prime responsibility for establishing the basic scientific foundation upon which the Nation`s future energy options will have to be identified, developed, and built. It is committed to the generation of new knowledge necessary for the solution of present and future problems of energy exploration, production, conversion, and utilization, consistent with respect for the environment. Separate abstracts have been indexed into the energy database for contributions to this Symposium.

  5. Earth sciences. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2001-05-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Earth Sciences and issued during the period 1 January 1990 - 31 May 2001. Most publications are issued in English, though some are also available in other languages. This is noted as A for Arabic, C for Chinese, E for English, F for French, R for Russian and S for Spanish before the relevant ISBN number

  6. Extreme Events and Energy Providers: Science and Innovation

    Science.gov (United States)

    Yiou, P.; Vautard, R.

    2012-04-01

    Most socio-economic regulations related to the resilience to climate extremes, from infrastructure or network design to insurance premiums, are based on a present-day climate with an assumption of stationarity. Climate extremes (heat waves, cold spells, droughts, storms and wind stilling) affect in particular energy production, supply, demand and security in several ways. While national, European or international projects have generated vast amounts of climate projections for the 21st century, their practical use in long-term planning remains limited. Estimating probabilistic diagnostics of energy user relevant variables from those multi-model projections will help the energy sector to elaborate medium to long-term plans, and will allow the assessment of climate risks associated to those plans. The project "Extreme Events for Energy Providers" (E3P) aims at filling a gap between climate science and its practical use in the energy sector and creating in turn favourable conditions for new business opportunities. The value chain ranges from addressing research questions directly related to energy-significant climate extremes to providing innovative tools of information and decision making (including methodologies, best practices and software) and climate science training for the energy sector, with a focus on extreme events. Those tools will integrate the scientific knowledge that is developed by scientific communities, and translate it into a usable probabilistic framework. The project will deliver projection tools assessing the probabilities of future energy-relevant climate extremes at a range of spatial scales varying from pan-European to local scales. The E3P project is funded by the Knowledge and Innovation Community (KIC Climate). We will present the mechanisms of interactions between academic partners, SMEs and industrial partners for this project. Those mechanisms are elementary bricks of a climate service.

  7. Halide Perovskites: New Science or ``only'' future Energy Converters?

    Science.gov (United States)

    Cahen, David

    Over the years many new ideas and systems for photovoltaic, PV, solar to electrical energy conversion have been explored, but only a few have really impacted PV's role as a more sustainable, environmentally less problematic and safer source of electrical power than fossil or nuclear fuel-based generation. Will Halide Perovskites, HaPs, be able to join the very select group of commercial PV options? To try to address this question, we put Halide Perovskite(HaP) cells in perspective with respect to other PV cells. Doing so also allows to identify fundamental scientific issues that can be important for PV and beyond. What remains to be seen is if those issues lead to new science or scientific insights or additional use of existing models. Being more specific is problematic, given the fact that this will be 4 months after writing this abstract. Israel National Nano-initiative, Weizmann Institute of Science's Alternative sustainable Energy Research Initiative; Israel Ministries of -Science and of -Infrastructure, Energy & Water.

  8. A thirty year look at the nuclear science programs at the American Museum of Science and Energy

    International Nuclear Information System (INIS)

    Marsee, M.D.; Williams, A.J.

    1993-01-01

    The American Museum of Science and Energy has been involved in nuclear science education since it opened in 1949. For a period between the mid-1950's and the early 1980's, a series of travelling exhibits and demonstrations provided the nation with programs about basic nuclear science and peaceful applications of atomic energy. The Museum itself continues educating its visitors about nuclear science via audio-visuals, interactive exhibitry and live demonstrations and classes. (author) 1 fig

  9. Basic science and energy research sector profile: Background for the National Energy Strategy

    Energy Technology Data Exchange (ETDEWEB)

    March, F.; Ashton, W.B.; Kinzey, B.R.; McDonald, S.C.; Lee, V.E.

    1990-11-01

    This Profile report provides a general perspective on the role of basic science in the spectrum of research and development in the United States, and basic research's contributions to the goals of the National Energy Strategy (NES). It includes selected facts, figures, and analysis of strategic issues affecting the future of science in the United States. It is provided as background for people from government, the private sector, academia, and the public, who will be reviewing the NES in the coming months; and it is intended to serve as the basis for discussion of basic science issues within the context of the developing NES.

  10. PNNL Highlights for the Office of Basic Energy Sciences (July 2013-July 2014)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Benjamin; Warren, Pamela M.; Manke, Kristin L.

    2014-08-13

    This report includes research highlights of work funded in part or whole by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences as well as selected leadership accomplishments.

  11. A decision science approach for integrating social science in climate and energy solutions

    Science.gov (United States)

    Wong-Parodi, Gabrielle; Krishnamurti, Tamar; Davis, Alex; Schwartz, Daniel; Fischhoff, Baruch

    2016-06-01

    The social and behavioural sciences are critical for informing climate- and energy-related policies. We describe a decision science approach to applying those sciences. It has three stages: formal analysis of decisions, characterizing how well-informed actors should view them; descriptive research, examining how people actually behave in such circumstances; and interventions, informed by formal analysis and descriptive research, designed to create attractive options and help decision-makers choose among them. Each stage requires collaboration with technical experts (for example, climate scientists, geologists, power systems engineers and regulatory analysts), as well as continuing engagement with decision-makers. We illustrate the approach with examples from our own research in three domains related to mitigating climate change or adapting to its effects: preparing for sea-level rise, adopting smart grid technologies in homes, and investing in energy efficiency for office buildings. The decision science approach can facilitate creating climate- and energy-related policies that are behaviourally informed, realistic and respectful of the people whom they seek to aid.

  12. 75 FR 33613 - Notice of the Carbon Sequestration-Geothermal Energy-Science Joint Workshop

    Science.gov (United States)

    2010-06-14

    ... Energy, DOE. ACTION: Notice of the Carbon Sequestration--Geothermal Energy--Science Joint Workshop... Fossil Energy-Carbon Sequestration Program will be holding a joint workshop on Common Research Themes for...-- http://www.geothermal.energy.gov . DATES: The Carbon Sequestration--Geothermal Energy--Science Joint...

  13. Proceedings of the Indian Analytical Science Congress: analytical science for innovations in green energy, technology and industry - souvenir

    International Nuclear Information System (INIS)

    2013-01-01

    The theme of IASC - 2013 is 'Analytical Science for innovations in Green Energy, Technology and Industry'. This theme was chosen to emphasize the unprecedented opportunities for analytical science and technology in the field of green energy, technology and industry, while at the same time recognizing the special challenges faced by analytical science in this field. The objective of the conference is to advance research, development and innovation in analytical sciences for the benefit of its application in the areas of green science and technology. The growing role of analytical science in green energy, technology and industry are significant. The next few years will witness more momentous achievements of analytical science as well as its application in green energy, technology and industry contributing towards the benefit of mankind in terms of healthy, productive, long and comfortable life. Papers relevant to INIS are indexed separately

  14. Ultrafast transient-absorption of the solvated electron in water

    International Nuclear Information System (INIS)

    Kimura, Y.; Alfano, J.C.; Walhout, P.K.; Barbara, P.F.

    1994-01-01

    Ultrafast near infrared (NIR)-pump/variable wavelength probe transient-absorption spectroscopy has been performed on the aqueous solvated electron. The photodynamics of the solvated electron excited to its p-state are qualitatively similar to previous measurements of the dynamics of photoinjected electrons at high energy. This result confirms the previous interpretation of photoinjected electron dynamics as having a rate-limiting bottleneck at low energies presumably involving the p-state

  15. Ultrafast Structural Dynamics in InSb Probed by Time-Resolved X-Ray Diffraction

    International Nuclear Information System (INIS)

    Chin, A.H.; Shank, C.V.; Chin, A.H.; Schoenlein, R.W.; Shank, C.V.; Glover, T.E.; Leemans, W.P.; Balling, P.

    1999-01-01

    Ultrafast structural dynamics in laser-perturbed InSb are studied using time-resolved x-ray diffraction with a novel femtosecond x-ray source. We report the first observation of a delay in the onset of lattice expansion, which we attribute to energy relaxation processes and lattice strain propagation. In addition, we observe direct indications of ultrafast disordering on a subpicosecond time scale. copyright 1999 The American Physical Society

  16. Energy Frontier Research Centers: Science for Our Nation's Energy Future, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-09-01

    As world demand for energy rapidly expands, transforming the way energy is collected, stored, and used has become a defining challenge of the 21st century. At its heart, this challenge is a scientific one, inspiring the U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) to establish the Energy Frontier Research Center (EFRC) program in 2009. The EFRCs represent a unique approach, bringing together creative, multidisciplinary scientific teams to perform energy-relevant basic research with a complexity beyond the scope of single-investigator projects. These centers take full advantage of powerful new tools for characterizing, understanding, modeling, and manipulating matter from atomic to macroscopic length scales. They also train the next-generation scientific workforce by attracting talented students and postdoctoral researchers interested in energy science. The EFRCs have collectively demonstrated the potential to substantially advance the scientific understanding underpinning transformational energy technologies. Both a BES Committee of Visitors and a Secretary of Energy Advisory Board Task Force have found the EFRC program to be highly successful in meeting its goals. The scientific output from the EFRCs is impressive, and many centers have reported that their results are already impacting both technology research and industry. This report on the EFRC program includes selected highlights from the initial 46 EFRCs and the current 36 EFRCs.

  17. Supporting Scientific Research with the Energy Sciences Network

    CERN Multimedia

    CERN. Geneva; Monga, Inder

    2016-01-01

    The Energy Sciences Network (ESnet) is a high-performance, unclassified national network built to support scientific research. Funded by the U.S. Department of Energy’s Office of Science (SC) and managed by Lawrence Berkeley National Laboratory, ESnet provides services to more than 40 DOE research sites, including the entire National Laboratory system, its supercomputing facilities, and its major scientific instruments. ESnet also connects to 140 research and commercial networks, permitting DOE-funded scientists to productively collaborate with partners around the world. ESnet Division Director (Interim) Inder Monga and ESnet Networking Engineer David Mitchell will present current ESnet projects and research activities which help support the HEP community. ESnet  helps support the CERN community by providing 100Gbps trans-Atlantic network transport for the LHCONE and LHCOPN services. ESnet is also actively engaged in researching connectivity to cloud computing resources for HEP workflows a...

  18. Dark Energy, Dark Matter and Science with Constellation-X

    Science.gov (United States)

    Cardiff, Ann Hornschemeier

    2005-01-01

    Constellation-X, with more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass, will enable highthroughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This talk will review the updated Constellation-X science case, released in booklet form during summer 2005. The science areas where Constellation-X will have major impact include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants. This talk will touch upon all these areas, with particular emphasis on Constellation-X's role in the study of Dark Energy.

  19. Ultrafast control and monitoring of material properties using terahertz pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bowlan, Pamela Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Lab. for Ultrafast Materials Optical Science (LUMOS)

    2016-05-02

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying this to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi2Se3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.

  20. Laser-driven ultrafast antiproton beam

    Science.gov (United States)

    Li, Shun; Pei, Zhikun; Shen, Baifei; Xu, Jiancai; Zhang, Lingang; Zhang, Xiaomei; Xu, Tongjun; Yu, Yong; Bu, Zhigang

    2018-02-01

    Antiproton beam generation is investigated based on the ultra-intense femtosecond laser pulse by using two-dimensional particle-in-cell and Geant4 simulations. A high-flux proton beam with an energy of tens of GeV is generated in sequential radiation pressure and bubble regime and then shoots into a high-Z target for producing antiprotons. Both yield and energy of the antiproton beam increase almost linearly with the laser intensity. The generated antiproton beam has a short pulse duration of about 5 ps and its flux reaches 2 × 10 20 s - 1 at the laser intensity of 2.14 × 10 23 W / cm 2 . Compared to conventional methods, this new method based on the ultra-intense laser pulse is able to provide a compact, tunable, and ultrafast antiproton source, which is potentially useful for quark-gluon plasma study, all-optical antihydrogen generation, and so on.

  1. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  2. Ultrafast spectroscopy of biological photoreceptors

    NARCIS (Netherlands)

    Kennis, J.T.M.; Groot, M.L.

    2007-01-01

    We review recent new insights on reaction dynamics of photoreceptors proteins gained from ultrafast spectroscopy. In Blue Light sensing Using FAD (BLUF) domains, a hydrogen-bond rearrangement around the flavin chromophore proceeds through a radical-pair mechanism, by which light-induced electron and

  3. Ultrafast Spectroscopy of Semiconductor Devices

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Marcher

    1999-01-01

    In this work we present an experimental technique for investigating ultrafast carrier dynamics in semiconductor optical amplifiers at room temperature. These dynamics, influenced by carrier heating, spectral hole-burning and two-photon absorption, are very important for device applications in inf...

  4. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We elucid...

  5. AGU, Science and Engagement with the Energy Industry

    Science.gov (United States)

    Leinen, M.; Davidson, E. A.

    2016-12-01

    The relationship between science and society evolves over time and the social, political, and economic factors shaping this relationship are complex. When problems facing society become more challenging, the public, NGOs, and policy makers call for science to more directly inform solutions, to assure accountability for the use of funds and to address conflicts of interest. But when policy solutions for such challenges require significant economic and societal tradeoffs, discussion of the science can become polarized and politicized. When this occurs, AGU's policies that uphold the highest standards of scientific integrity, address conflicts of interests and promote independence for members are even more important. These policies are implemented through processes for: a) control of science presented at meeting and in publications; b) requirements for data cited in publications to be publicly accessible, and c) an organizational support policy that prohibits sponsors from influencing science presented in AGU programs. The private sector wields vast influence on human behavior and governmental policy through commerce and lobbying. These actions can be controversial when the profit motive appears incongruent with other societal opinions of what is in the public interest. Climate change is an example of this tension, where the economic exploitation of fossil fuels has complex effects on food and energy security as well as on the environment. Nonetheless, the AGU Board unanimously agreed that given our mission to advance science to create a more sustainable earth, engagement of the private sector rather than disengagement is the best way to influence decision makers on all sides because we believe that the private sector needs to be part of any solutions. We plan to use our convening power and scientific authority to bring together diverse views on climate change solutions from the private, NGO, policy, decision-maker and scientific sectors to begin a substantial

  6. HEASARC - The High Energy Astrophysics Science Archive Research Center

    Science.gov (United States)

    Smale, Alan P.

    2011-01-01

    The High Energy Astrophysics Science Archive Research Center (HEASARC) is NASA's archive for high-energy astrophysics and cosmic microwave background (CMB) data, supporting the broad science goals of NASA's Physics of the Cosmos theme. It provides vital scientific infrastructure to the community by standardizing science data formats and analysis programs, providing open access to NASA resources, and implementing powerful archive interfaces. Over the next five years the HEASARC will ingest observations from up to 12 operating missions, while serving data from these and over 30 archival missions to the community. The HEASARC archive presently contains over 37 TB of data, and will contain over 60 TB by the end of 2014. The HEASARC continues to secure major cost savings for NASA missions, providing a reusable mission-independent framework for reducing, analyzing, and archiving data. This approach was recognized in the NRC Portals to the Universe report (2007) as one of the HEASARC's great strengths. This poster describes the past and current activities of the HEASARC and our anticipated developments in coming years. These include preparations to support upcoming high energy missions (NuSTAR, Astro-H, GEMS) and ground-based and sub-orbital CMB experiments, as well as continued support of missions currently operating (Chandra, Fermi, RXTE, Suzaku, Swift, XMM-Newton and INTEGRAL). In 2012 the HEASARC (which now includes LAMBDA) will support the final nine-year WMAP data release. The HEASARC is also upgrading its archive querying and retrieval software with the new Xamin system in early release - and building on opportunities afforded by the growth of the Virtual Observatory and recent developments in virtual environments and cloud computing.

  7. Enabling science and technology for marine renewable energy

    International Nuclear Information System (INIS)

    Mueller, Markus; Wallace, Robin

    2008-01-01

    This paper describes some of the key challenges to be met in the development of marine renewable energy technology, from its present prototype form to being a widely deployed contributor to future energy supply. Since 2000, a number of large-scale wave and tidal current prototypes have been demonstrated around the world, but marine renewable energy technology is still 10-15 years behind that of wind energy. UK-based developers are leading the way, with Pelamis from Pelamis Wave Power demonstrated in the open sea, generating electricity into the UK network and securing orders from Portugal. However, having started later, the developing technology can make use of more advanced science and engineering, and it is therefore reasonable to expect rapid progress. Although progress is underway through deployment and testing, there are still key scientific challenges to be addressed in areas including resource assessment and predictability, engineering design and manufacturability, installation, operation and maintenance, survivability, reliability and cost reduction. The research priorities required to meet these challenges are suggested in this paper and have been drawn from current roadmaps and vision documents, including more recent consultations within the community by the UK Energy Research Centre Marine Research Network. Many scientific advances are required to meet these challenges, and their likelihood is explored based on current and future capabilities

  8. Earth sciences 1980-1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    1995-04-01

    This catalogue lists sales publications of the International Atomic Energy Agency dealing with Earth Sciences issued during the period 1969-1994. Most publications are published in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all these papers have abstracts in English. It should be noted that prices of books are quoted in Austrian Schillings. The prices do not include local taxes and are subject to change without notice. All books in this catalogue are 16 x 24 cm, paper-bound, unless otherwise stated

  9. Energy and Resource Recovery from Sludge. State of Science Report

    Energy Technology Data Exchange (ETDEWEB)

    Kalogo, Y; Monteith, H [Hydromantis Inc., Hamilton, ON (Canada)

    2008-07-01

    There is general consensus among sanitary engineering professionals that municipal wastewater and wastewater sludge is not a 'waste', but a potential source of valuable resources. The subject is a major interest to the members of the Global Water Research Coalition (GWRC). The GWRC is therefore preparing a strategic research plan related to energy and resource recovery from wastewater sludge. The initial focus of the strategy will be on sewage sludge as water reuse aspects have been part of earlier studies. The plan will define new research orientations for deeper investigation. The current state of science (SoS) Report was prepared as the preliminary phase of GWRC's future strategic research plan on energy and resource recovery from sludge.

  10. Energy and Resource Recovery from Sludge. State of Science Report

    Energy Technology Data Exchange (ETDEWEB)

    Kalogo, Y.; Monteith, H. [Hydromantis Inc., Hamilton, ON (Canada)

    2008-07-01

    There is general consensus among sanitary engineering professionals that municipal wastewater and wastewater sludge is not a 'waste', but a potential source of valuable resources. The subject is a major interest to the members of the Global Water Research Coalition (GWRC). The GWRC is therefore preparing a strategic research plan related to energy and resource recovery from wastewater sludge. The initial focus of the strategy will be on sewage sludge as water reuse aspects have been part of earlier studies. The plan will define new research orientations for deeper investigation. The current state of science (SoS) Report was prepared as the preliminary phase of GWRC's future strategic research plan on energy and resource recovery from sludge.

  11. Plasma Photonic Devices for High Energy Density Science

    International Nuclear Information System (INIS)

    Kodama, R.

    2005-01-01

    High power laser technologies are opening a variety of attractive fields of science and technology using high energy density plasmas such as plasma physics, laboratory astrophysics, material science, nuclear science including medical applications and laser fusion. The critical issues in the applications are attributed to the control of intense light and enormous density of charged particles including efficient generation of the particles such as MeV electrons and protons with a current density of TA/cm2. Now these application possibilities are limited only by the laser technology. These applications have been limited in the control of the high power laser technologies and their optics. However, if we have another device consisted of the 4th material, i.e. plasma, we will obtain a higher energy density condition and explore the application possibilities, which could be called high energy plasma device. One of the most attractive devices has been demonstrated in the fast ignition scheme of the laser fusion, which is cone-guiding of ultra-intense laser light in to high density regions1. This is one of the applications of the plasma device to control the ultra-intense laser light. The other role of the devices consisted of transient plasmas is control of enormous energy-density particles in a fashion analogous to light control with a conventional optical device. A plasma fibre (5?m/1mm), as one example of the devices, has guided and deflected the high-density MeV electrons generated by ultra-intense laser light 2. The electrons have been well collimated with either a lens-like plasma device or a fibre-like plasma, resulting in isochoric heating and creation of ultra-high pressures such as Giga bar with an order of 100J. Plasmas would be uniquely a device to easily control the higher energy density particles like a conventional optical device as well as the ultra-intense laser light, which could be called plasma photonic device. (Author)

  12. Opportunities for discovery: Theory and computation in Basic Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Bruce; Kirby, Kate; McCurdy, C. William

    2005-01-11

    New scientific frontiers, recent advances in theory, and rapid increases in computational capabilities have created compelling opportunities for theory and computation to advance the scientific mission of the Office of Basic Energy Sciences (BES). The prospects for success in the experimental programs of BES will be enhanced by pursuing these opportunities. This report makes the case for an expanded research program in theory and computation in BES. The Subcommittee on Theory and Computation of the Basic Energy Sciences Advisory Committee was charged with identifying current and emerging challenges and opportunities for theoretical research within the scientific mission of BES, paying particular attention to how computing will be employed to enable that research. A primary purpose of the Subcommittee was to identify those investments that are necessary to ensure that theoretical research will have maximum impact in the areas of importance to BES, and to assure that BES researchers will be able to exploit the entire spectrum of computational tools, including leadership class computing facilities. The Subcommittee s Findings and Recommendations are presented in Section VII of this report.

  13. Laboratory for Nuclear Science. High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  14. Ultrafast photocurrents in monolayer MoS2

    Science.gov (United States)

    Parzinger, Eric; Wurstbauer, Ursula; Holleitner, Alexander W.

    Two-dimensional transition metal dichalcogenides such as MoS2 have emerged as interesting materials for optoelectronic devices. In particular, the ultrafast dynamics and lifetimes of photoexcited charge carriers have attracted great interest during the last years. We investigate the photocurrent response of monolayer MoS2 on a picosecond time scale utilizing a recently developed pump-probe spectroscopy technique based on coplanar striplines. We discuss the ultrafast dynamics within MoS2 including photo-thermoelectric currents and the impact of built-in fields due to Schottky barriers as well as the Fermi level pinning at the contact region. We acknowledge support by the ERC via Project 'NanoREAL', the DFG via excellence cluster 'Nanosystems Initiative Munich' (NIM), and through the TUM International Graduate School of Science and Engineering (IGSSE) and BaCaTeC.

  15. Ultrafast optical ranging using microresonator soliton frequency combs

    Science.gov (United States)

    Trocha, P.; Karpov, M.; Ganin, D.; Pfeiffer, M. H. P.; Kordts, A.; Wolf, S.; Krockenberger, J.; Marin-Palomo, P.; Weimann, C.; Randel, S.; Freude, W.; Kippenberg, T. J.; Koos, C.

    2018-02-01

    Light detection and ranging is widely used in science and industry. Over the past decade, optical frequency combs were shown to offer advantages in optical ranging, enabling fast distance acquisition with high accuracy. Driven by emerging high-volume applications such as industrial sensing, drone navigation, or autonomous driving, there is now a growing demand for compact ranging systems. Here, we show that soliton Kerr comb generation in integrated silicon nitride microresonators provides a route to high-performance chip-scale ranging systems. We demonstrate dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for in-flight sampling of gun projectiles moving at 150 meters per second. Combining integrated soliton-comb ranging systems with chip-scale nanophotonic phased arrays could enable compact ultrafast ranging systems for emerging mass applications.

  16. The High Energy Transient Explorer (HETE): Mission and science overview

    International Nuclear Information System (INIS)

    Ricker, G.R.; Crew, G.B.; Doty, J.P.; Vanderspek, R.; Villasenor, J.; Atteia, J.-L.; Fenimore, E.E.; Galassi, M.; Graziani, C.; Lamb, D.Q.; Hurley, K.; Jernigan, J.G.; Kawai, N.; Matsuoka, M.; Pizzichini, G.; Shirasaki, Y.; Tamagawa, T.; Vedrenne, G.; Woosley, S.E.; Yoshida, A.

    2003-01-01

    The High Energy Transient Explorer (HETE ) mission is devoted to the study of gamma-ray bursts (GRBs) using soft X-ray, medium X-ray, and gamma-ray instruments mounted on a compact spacecraft. The HETE satellite was launched into equatorial orbit on 9 October 2000. A science team from France, Japan, Brazil, India, Italy, and the US is responsible for the HETE mission, which was completed for ∼ 1/3 the cost of a NASA Small Explorer (SMEX). The HETE mission is unique in that it is entirely 'self-contained', insofar as it relies upon dedicated tracking, data acquisition, mission operations, and data analysis facilities run by members of its international Science Team. A powerful feature of HETE is its potential for localizing GRBs within seconds of the trigger with good precision (∼ 10') using medium energy X-rays and, for a subset of bright GRBs, improving the localization to ∼ 30''accuracy using low energy X-rays. Real-time GRB localizations are transmitted to ground observers within seconds via a dedicated network of 14 automated 'Burst Alert Stations', thereby allowing prompt optical, IR, and radio follow-up, leading to the identification of counterparts for a large fraction of HETE -localized GRBs. HETE is the only satellite that can provide near-real time localizations of GRBs, and that can localize GRBs that do not have X-ray, optical, and radio afterglows, during the next two years. These capabilities are the key to allowing HETE to probe further the unique physics that produces the brightest known photon sources in the universe. To date (December 2002), HETE has produced 31 GRB localizations. Localization accuracies are routinely in the 4'- 20' range; for the five GRBs with SXC localization, accuracies are ∼1-2'. In addition, HETE has detected ∼ 25 bursts from soft gamma repeaters (SGRs), and >600 X-ray bursts (XRBs)

  17. Science for Today's Energy Challenges: Accelerating Progress for a Sustainable Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    With a growing population and energy demand in the world, there is a pressing need for research to create secure and accessible energy options with greatly reduced emissions of greenhouse gases. While we work to deploy the clean and efficient technologies that we already have--which will be urgent for the coming decades--we must also work to develop the science for the technologies of the future. This brochure gives examples of some of the most promising developments, and it provides 'snapshots' of cutting edge work of scientists in the field. The areas of greatest promise include biochemistry, nanotechnology, supraconductivity, electrophysics and computing. There are many others.

  18. Materials science symposium 'heavy ion science in tandem energy region'

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro [eds.

    2000-01-01

    The tandem accelerator established at Japan Atomic Energy Research Institute (JAERI) in 1982 has been one of the most prominent electrostatic accelerators in the world. The accelerator has been serving for many researches planned by not only JAERI staff but also researchers of universities and national institutes. After the completion of the tandem booster in 1993, four times higher beam energy became available. These two facilities, the tandem accelerator and the booster, made great strides in heavy ion physics and a lot of achievements have been accumulated until now. The research departments of JAERI were reformed in 1998, and the accelerators section came under the Department of Materials Science. On this reform of the research system, the symposium 'Heavy Ion Science in Tandem Energy Region' was held in cooperation with nuclear and solid state physicists although there has been no such symposium for many years. The symposium was expected to stimulate novel development in both nuclear and solid state physics, and also interdisciplinary physics between nuclear and solid state physics. The 68 papers are indexed individually. (J.P.N.)

  19. Ultrafast MR Imaging in Pediatric Neuroradiology

    International Nuclear Information System (INIS)

    Singh, R.K.; Smith, J.T.; Wilkinson, I.D.; Griffiths, P.D.

    2003-01-01

    Purpose: To compare the diagnostic information obtained from ultrafast MR imaging with standard MR imaging techniques in pediatric neuroradiology. The goal was to judge whether ultrafast methods can be used to replace standard methods and reduce the need for sedation or general anesthesia as a result of the considerably shorter scan times. Material and Methods: Our prospective study involved 125 patients. Routine clinical imaging was performed along with two ultrafast methods. Single shot fast spin echo (SSFSE) was used to give T2-weighted images and an echo planar imaging (EPI) sequence to provide a T1-weighted images. The ultrafast images were presented to an experienced neuro radiologist who was also given the information present on the initial referral card. These reports based on the ultrafast images were then compared with the formal radiologic report made solely on the basis of the standard imaging. Results: The overall sensitivity and specificity for ultrafast imaging when compared to the reference standard were 78% and 98% with positive and negative predictive values of 98% and 76%. Pathologies characterized by small areas of subtle T2 prolongation were difficult or impossible to see on the ultrafast images but otherwise they provided reliable information. Conclusions: This paper demonstrates that ultrafast MR imaging can diagnose many pediatric intracranial abnormalities as well as standard methods. Anatomic resolution limits its capacity to define subtle developmental anomalies and contrast resolution limitations of the ultrafast methods reduce the detection of pathology characterized by subtle T2 prolongation

  20. Ultrafast comparison of personal genomes

    OpenAIRE

    Mauldin, Denise; Hood, Leroy; Robinson, Max; Glusman, Gustavo

    2017-01-01

    We present an ultra-fast method for comparing personal genomes. We transform the standard genome representation (lists of variants relative to a reference) into 'genome fingerprints' that can be readily compared across sequencing technologies and reference versions. Because of their reduced size, computation on the genome fingerprints is fast and requires little memory. This enables scaling up a variety of important genome analyses, including quantifying relatedness, recognizing duplicative s...

  1. The Stewardship Science Academic Alliance: A Model of Education for Fundamental and Applied Low-energy Nuclear Science

    Energy Technology Data Exchange (ETDEWEB)

    Cizewski, J.A., E-mail: cizewski@rutgers.edu

    2014-06-15

    The Stewardship Science Academic Alliances (SSAA) were inaugurated in 2002 by the National Nuclear Security Administration of the U. S. Department of Energy. The purpose is to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper highlights some of the ways that the SSAA fosters education and training of graduate students and postdoctoral scholars in low-energy nuclear science, preparing them for careers in fundamental and applied research and development.

  2. Extension of Light-Harvesting Ability of Photosynthetic Light-Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores.

    Science.gov (United States)

    Yoneda, Yusuke; Noji, Tomoyasu; Katayama, Tetsuro; Mizutani, Naoto; Komori, Daisuke; Nango, Mamoru; Miyasaka, Hiroshi; Itoh, Shigeru; Nagasawa, Yutaka; Dewa, Takehisa

    2015-10-14

    Introducing appropriate artificial components into natural biological systems could enrich the original functionality. To expand the available wavelength range of photosynthetic bacterial light-harvesting complex 2 (LH2 from Rhodopseudomonas acidophila 10050), artificial fluorescent dye (Alexa Fluor 647: A647) was covalently attached to N- and C-terminal Lys residues in LH2 α-polypeptides with a molar ratio of A647/LH2 ≃ 9/1. Fluorescence and transient absorption spectroscopies revealed that intracomplex energy transfer from A647 to intrinsic chromophores of LH2 (B850) occurs in a multiexponential manner, with time constants varying from 440 fs to 23 ps through direct and B800-mediated indirect pathways. Kinetic analyses suggested that B800 chromophores mediate faster energy transfer, and the mechanism was interpretable in terms of Förster theory. This study demonstrates that a simple attachment of external chromophores with a flexible linkage can enhance the light harvesting activity of LH2 without affecting inherent functions of energy transfer, and can achieve energy transfer in the subpicosecond range. Addition of external chromophores, thus, represents a useful methodology for construction of advanced hybrid light-harvesting systems that afford solar energy in the broad spectrum.

  3. Unveiling the excited state energy transfer pathways in peridinin-chlorophyll a-protein by ultrafast multi-pulse transient absorption spectroscopy.

    Science.gov (United States)

    Redeckas, Kipras; Voiciuk, Vladislava; Zigmantas, Donatas; Hiller, Roger G; Vengris, Mikas

    2017-04-01

    Time-resolved multi-pulse methods were applied to investigate the excited state dynamics, the interstate couplings, and the excited state energy transfer pathways between the light-harvesting pigments in peridinin-chlorophyll a-protein (PCP). The utilized pump-dump-probe techniques are based on perturbation of the regular PCP energy transfer pathway. The PCP complexes were initially excited with an ultrashort pulse, resonant to the S 0 →S 2 transition of the carotenoid peridinin. A portion of the peridinin-based emissive intramolecular charge transfer (ICT) state was then depopulated by applying an ultrashort NIR pulse that perturbed the interaction between S 1 and ICT states and the energy flow from the carotenoids to the chlorophylls. The presented data indicate that the peridinin S 1 and ICT states are spectrally distinct and coexist in an excited state equilibrium in the PCP complex. Moreover, numeric analysis of the experimental data asserts ICT→Chl-a as the main energy transfer pathway in the photoexcited PCP systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ultrafast infrared vibrational spectroscopy

    CERN Document Server

    Fayer, Michael D

    2013-01-01

    The past ten years or so have seen the introduction of multidimensional methods into infrared and optical spectroscopy. The technology of multidimensional spectroscopy is developing rapidly and its applications are spreading to biology and materials science. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results and will serve as an excellent resource for other researchers.

  5. Social Science Energy Review: a quarterly publication. Vol. 1, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Gould, L C [ed.

    1978-01-01

    The Yale University Institution for Social and Policy Studies Mapping Project on Energy and the Social Sciences brings together an interdisciplinary group of Yale and visiting faculty, ISPS staff, and Yale graduate students meeting weekly to discuss topics in energy and the social sciences and to study and evaluate the importance for social policy of existing and potential social science energy research projects. The primary purposes of the project are: (1) to encourage timely social science investigations into important energy-related social issues, (2) to explore the present and potential roles for academic social science research in energy decision-making, and (3) to advise DOE and other government personnel in the planning of social science energy research. In addition to an overview of the Mapping Project, this report contains the following: (1) Social Science Research on ''The Energy Boomtown,'' by Leroy C. Gould--contains literature survey (66 references) and conveys Mapping Project's suggestions as to priorities on future social science research on ''energy boomtowns.'' (2) Men and Coal in Appalachia: a Survey of the Academic Literature, by Peter B. Allison (bibliography cites 7 journals, 3 government documents, and 70 books and articles). (3) Energy Research in Psychology, by John Sweeney (reprint of review of current status of energy research in psychology that appeared in December, 1977 issue of APA Monitor under the title, ''Boosting Energy Research'').

  6. Ultrafast photo-induced hidden phases in strained manganite thin films

    Science.gov (United States)

    Zhang, Jingdi; McLeod, A. S.; Zhang, Gu-Feng; Stoica, Vladimir; Jin, Feng; Gu, Mingqiang; Gopalan, Venkatraman; Freeland, John W.; Wu, Wenbin; Rondinelli, James; Wen, Haidan; Basov, D. N.; Averitt, R. D.

    Correlated transition metal oxides (TMOs) are particularly sensitive to external control because of energy degeneracy in a complex energy landscape that promote a plethora of metastable states. However, it remains a grand challenge to actively control and fully explore the rich landscape of TMOs. Dynamic control with pulsed photons can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. In the past, we have demonstrated that mode-selective single-laser-pulse excitation of a strained manganite thin film La2/3Ca1/3MnO3 initiates a persistent phase transition from an emergent antiferromagnetic insulating ground state to a ferromagnetic metallic metastable state. Beyond the photo-induced insulator to metal transition, we recently discovered a new peculiar photo-induced hidden phase, identified by an experimental approach that combines ultrafast pump-probe spectroscopy, THz spectroscopy, X-ray diffraction, cryogenic near-field spectroscopy and SHG probe. This work is funded by the DOE, Office of Science, Office of Basic Energy Science under Award Numbers DE-SC0012375 and DE-SC0012592.

  7. Precision machining of pig intestine using ultrafast laser pulses

    Science.gov (United States)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  8. rf streak camera based ultrafast relativistic electron diffraction.

    Science.gov (United States)

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Tran, T

    2009-01-01

    We theoretically and experimentally investigate the possibility of using a rf streak camera to time resolve in a single shot structural changes at the sub-100 fs time scale via relativistic electron diffraction. We experimentally tested this novel concept at the UCLA Pegasus rf photoinjector. Time-resolved diffraction patterns from thin Al foil are recorded. Averaging over 50 shots is required in order to get statistics sufficient to uncover a variation in time of the diffraction patterns. In the absence of an external pump laser, this is explained as due to the energy chirp on the beam out of the electron gun. With further improvements to the electron source, rf streak camera based ultrafast electron diffraction has the potential to yield truly single shot measurements of ultrafast processes.

  9. Ultrafast Librational Relaxation of H2O in Liquid Water

    DEFF Research Database (Denmark)

    Petersen, Jakob; Møller, Klaus Braagaard; Rey, Rossend

    2013-01-01

    The ultrafast librational (hindered rotational) relaxation of a rotationally excited H2O molecule in pure liquid water is investigated by means of classical nonequilibrium molecular dynamics simulations and a power and work analysis. This analysis allows the mechanism of the energy transfer from...... the excited H2O to its water neighbors, which occurs on a sub-100 fs time scale, to be followed in molecular detail, i.e., to determine which water molecules receive the energy and in which degrees of freedom. It is found that the dominant energy flow is to the four hydrogen-bonded water partners in the first...

  10. Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction.

    Science.gov (United States)

    Sokolowski-Tinten, K; Shen, X; Zheng, Q; Chase, T; Coffee, R; Jerman, M; Li, R K; Ligges, M; Makasyuk, I; Mo, M; Reid, A H; Rethfeld, B; Vecchione, T; Weathersby, S P; Dürr, H A; Wang, X J

    2017-09-01

    We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.

  11. Ultrafast Hierarchical OTDM/WDM Network

    Directory of Open Access Journals (Sweden)

    Hideyuki Sotobayashi

    2003-12-01

    Full Text Available Ultrafast hierarchical OTDM/WDM network is proposed for the future core-network. We review its enabling technologies: C- and L-wavelength-band generation, OTDM-WDM mutual multiplexing format conversions, and ultrafast OTDM wavelengthband conversions.

  12. Avant-Garde Ultrafast Laser Writing

    Directory of Open Access Journals (Sweden)

    Kazansky P. G.

    2013-11-01

    Full Text Available Ultrafast laser processing of transparent materials reveals new phenomena. Reviewed, are recent demonstrations of 5D optical memory, vortex polarization and Airy beam converters employing self-assembled nanostructuring, ultrafast laser calligraphy and polarization writing control using pulses with tilted front.

  13. Ultrafast pulse lasers jump to macro applications

    Science.gov (United States)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  14. Mesopore- and Macropore-Dominant Nitrogen-Doped Hierarchically Porous Carbons for High-Energy and Ultrafast Supercapacitors in Non-Aqueous Electrolytes.

    Science.gov (United States)

    Shao, Rong; Niu, Jin; Liang, Jingjing; Liu, Mengyue; Zhang, Zhengping; Dou, Meiling; Huang, Yaqin; Wang, Feng

    2017-12-13

    Non-aqueous electrolytes (e.g., organic and ionic liquid electrolytes) can undergo high working voltage to improve the energy densities of supercapacitors. However, the large ion sizes, high viscosities, and low ionic conductivities of organic and ionic liquid electrolytes tend to cause the low specific capacitances, poor rate, and cycling performance of supercapacitors based on conventional micropore-dominant activated carbon electrodes, limiting their practical applications. Herein, we propose an effective strategy to simultaneously obtain high power and energy densities in non-aqueous electrolytes via using a cattle bone-derived porous carbon as an electrode material. Because of the unique co-activation of KOH and hydroxyapatite (HA) within the cattle bone, nitrogen-doped hierarchically porous carbon (referred to as NHPC-HA/KOH) is obtained and possesses a mesopore- and macropore-dominant porosity with an ultrahigh specific surface area (2203 m 2 g -1 ) of meso- and macropores. The NHPC-HA/KOH electrodes exhibit superior performance with specific capacitances of 224 and 240 F g -1 at 5 A g -1 in 1.0 M TEABF 4 /AN and neat EMIMBF 4 electrolyte, respectively. The symmetric supercapacitor using NHPC-HA/KOH electrodes can deliver integrated high energy and power properties (48.6 W h kg -1 at 3.13 kW kg -1 in 1.0 M TEABF 4 /AN and 75 W h kg -1 at 3.75 kW kg -1 in neat EMIMBF 4 ), as well as superior cycling performance (over 89% of the initial capacitance after 10 000 cycles at 10 A g -1 ).

  15. The High Energy Materials Science Beamline (HEMS) at PETRA III

    International Nuclear Information System (INIS)

    Schell, Norbert; King, Andrew; Beckmann, Felix; Ruhnau, Hans-Ulrich; Kirchhof, Rene; Kiehn, Ruediger; Mueller, Martin; Schreyer, Andreas

    2010-01-01

    The HEMS Beamline at the German high-brilliance synchrotron radiation storage ring PETRA III is fully tunable between 30 and 250 keV and optimized for sub-micrometer focusing. Approximately 70 % of the beamtime will be dedicated to Materials Research. Fundamental research will encompass metallurgy, physics and chemistry with first experiments planned for the investigation of the relationship between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, and the development of smart materials or processes. For this purpose a 3D-microsctructure-mapper has been designed. Applied research for manufacturing process optimization will benefit from high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of micro-structural transformations, e.g. during welding processes. The beamline infrastructure allows accommodation of large and heavy user provided equipment. Experiments targeting the industrial user community will be based on well established techniques with standardized evaluation, allowing full service measurements, e.g. for tomography and texture determination. The beamline consists of a five meter in-vacuum undulator, a general optics hutch, an in-house test facility and three independent experimental hutches working alternately, plus additional set-up and storage space for long-term experiments. HEMS is under commissioning as one of the first beamlines running at PETRA III.

  16. Cosmic shear measurements with Dark Energy Survey Science Verification data

    International Nuclear Information System (INIS)

    Becker, M. R.

    2016-01-01

    Here, we present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either ngmix or im3shape, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We use a large suite of simulations to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We also compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7σ. Cosmological constraints from the measurements in this work are presented in a companion paper

  17. Intensified CCD for ultrafast diagnostics

    International Nuclear Information System (INIS)

    Cheng, J.; Tripp, G.; Coleman, L.

    1978-01-01

    Many of the present laser fusion diagnostics are recorded on either ultrafast streak cameras or on oscilloscopes. For those experiments in which a large volume of data is accumulated, direct computer processing of the information becomes important. We describe an approach which uses a RCA 52501 back-thinned CCD sensor to obtain direct electron readouts for both the streak camera and the CRT. Performance of the 100 GHz streak camera and the 4 GHz CRT are presented. Design parameters and computer interfacing for both systems are described in detail

  18. Compression of Ultrafast Laser Beams

    Science.gov (United States)

    2016-03-01

    Copyright 2003, AIP Publishing LLC. DOI: http://dx.doi.org/10.1063/1.1611998.) When designing the pulse shaper, the laser beam must completely fill the...for the design of future versions of this device. The easiest way to align the pulse shaper is to use the laser beam that will be shaped, without...Afterward, an ultrafast thin beam splitter is placed into the system after the diameter of the laser beam is reduced; this is done to monitor the beam

  19. Collaborative technologies for distributed science: fusion energy and high-energy physics

    International Nuclear Information System (INIS)

    Schissel, D P; Gottschalk, E E; Greenwald, M J; McCune, D

    2006-01-01

    This paper outlines a strategy to significantly enhance scientific collaborations in both Fusion Energy Sciences and in High-Energy Physics through the development and deployment of new tools and technologies into working environments. This strategy is divided into two main elements, collaborative workspaces and secure computational services. Experimental and theory/computational programs will greatly benefit through the provision of a flexible, standards-based collaboration space, which includes advanced tools for ad hoc and structured communications, shared applications and displays, enhanced interactivity for remote data access applications, high performance computational services and an improved security environment. The technologies developed should be prototyped and tested on the current generation of experiments and numerical simulation projects. At the same time, such work should maintain a strong focus on the needs of the next generation of mega-projects, ITER and the ILC. Such an effort needs to leverage existing computer science technology and take full advantage of commercial software wherever possible. This paper compares the requirements of FES and HEP, discuss today's solutions, examine areas where more functionality is required, and discuss those areas with sufficient overlap in requirements that joint research into collaborative technologies will increase the benefit to both

  20. Science education programs and plans of the U.S. Department of Energy

    International Nuclear Information System (INIS)

    Stephens, R.E.

    1990-01-01

    The Department of Energy has historically sponsored a range of university-level science education activities including summer and semester-length research appointments at DOE National Laboratories for university faculty, undergraduate and graduate students. The Department's involvement in precollege science education has significantly expanded over the past year. This talk will summarize the status of the Department's plans for university and precollege science education initiatives developed at the Berkeley Math/Science Education Action Conference held last October at the Lawrence Hall of Science and co-chaired by Dr. Glenn Seaborg and the Secretary of Energy, Admiral James Watkins

  1. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    International Nuclear Information System (INIS)

    Liu, Wei

    2017-05-01

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration 130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation to broaden a narrowband spectrum followed by bandpass filters to select the rightmost/leftmost spectral lobes. Widely tunable in 820-1225 nm, the resulting sources generated nearly transform-limited, ∝100 fs pulses. Using short fibers with large

  2. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei

    2017-05-15

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration <60 fs are highly desired. We proposed and demonstrated a novel amplification technique, named as pre-chirp managed amplification (PCMA). We successfully constructed an Yb-fiber based PCMA system that outputs 75-MHz spectrally broadened pulses with >130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation

  3. Conserving Our Energy. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 11.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P9 SIS unit deals with: (1) the importance of energy in students' everyday lives; (2) energy forms and…

  4. 75 FR 34515 - American Energy Services, Inc., Dynacore Patent Litigation Trust, Earth Sciences, Inc., Empiric...

    Science.gov (United States)

    2010-06-17

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] American Energy Services, Inc., Dynacore Patent Litigation Trust, Earth Sciences, Inc., Empiric Energy, Inc., Future Carz, Inc., NBI, Inc., Noble... concerning the securities of Earth Sciences, Inc. because it has not filed any periodic reports since the...

  5. 75 FR 6651 - Office of Science; High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-02-10

    ... DEPARTMENT OF ENERGY Office of Science; High Energy Physics Advisory Panel AGENCY: Department of... Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Public Law 92- 463, 86 Stat. 770) requires...; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  6. Ultrafast switching of the magnetic ground state in d1 titanates though nonlinear phononic coupling

    Science.gov (United States)

    Gu, Mingqiang; Rondinelli, James M.

    LaTiO3 and YTiO3 are isostructure d1 titanates, which exhibit distinct magnetic and orbital properties: The former is a G-type antiferromagnet with a 150 K Neel temperature whereas the latter is a rare ferromagnetic (FM) insulator with a 30 K Curie temperature. With first-principles density functional theory calculations, we identify the local structural origin of the magnetic order difference in these orthorhombic perovskites. By increasing the tilt and rotation angles in LaTiO3, respectively, LaTiO3 is predicted to undergo a magnetic phase transition to an FM state. Similarly, decreasing the tilt and rotation angles in YTiO3 leads to a FM-to-AFM phase transition. The underlying physics is attributed to the change in the superexchange coupling between Ti-sites. Last, we propose a route to switch the magnetism in the titanates by controlling the octahedral distortions through dynamical nonlinear phononic coupling. The proposed experiment requires the use of static strain to position the crystal structure in proximity to the structural transition combined with readily achievable fluencies in an ultrafast optical pump-probe geometry The theory work is supported by the U.S Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012375.

  7. The National Ignition Facility (NIF) and High Energy Density Science Research at LLNL (Briefing Charts)

    Science.gov (United States)

    2013-06-21

    The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL Presentation to: IEEE Pulsed Power and Plasma Science...Conference C. J. Keane Director, NIF User Office June 21, 2013 1491978-1-4673-5168-3/13/$31.00 ©2013 IEEE Report Documentation Page Form ApprovedOMB No...4. TITLE AND SUBTITLE The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL 5a. CONTRACT NUMBER 5b. GRANT

  8. Guidelines for DOE Long Term Civilian Research and Development. Volume III. Basic Energy Sciences, High Energy and Nuclear Physics

    International Nuclear Information System (INIS)

    1985-12-01

    The Research Panel prepared two reports. This report reviews the Department of Energy's Basic Energy Sciences, High Energy Physics, and Nuclear Physics programs. The second report examines the Environment, Health and Safety programs in the Department. This summary addresses the general value and priority of basic research programs for the Department of Energy and the nation. In addition, it describes the key strategic issues and major recommendations for each program area

  9. Chapter IV: ultrafast biochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chergui, M. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Kjelstrup, S. [Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Meuwly, M. [Universitaet Basel, Basel (Switzerland); Schuler, B. [University of Zuerich (ETH), Zurich (Switzerland); Thor, J. van [Imperial College London (IC), London (United Kingdom)

    2009-09-15

    The whole report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the scientific opportunities offered by the institute's SwissFEL X-ray Laser facility. In this sixth part, initial events and fluctuations in biochemical processes at the atomic scale are discussed. Sub-nanosecond processes are fundamental to biochemistry and will be accessible to the ultra-short pulses of the SwissFEL. Time and length scales of biochemical reactions are discussed, as is the photo-initiation of biochemical processes. Time-resolved measurement techniques are looked at. Fluorescence resonant energy transfer is discussed. As an example, the photo cycle of bacteriorhodopsin is examined. The dynamics of protein folding and catalytic action are also looked at. Mesoscopic non-equilibrium thermodynamics is discussed

  10. Solar Energy Educational Material, Activities and Science Projects

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Solar Energy Educational Materials Solar with glasses " ;The sun has produced energy for billions of years. Solar energy is the solar radiation that reaches the earth. Solar energy can be converted directly or indirectly into other forms of energy, such as

  11. Technology for Peace - Science for Mankind. Water and Energy

    International Nuclear Information System (INIS)

    Gutmann, H.

    1994-01-01

    This symposium volume contents articles with the following topics regarding water and energy: water management, energy, water and energy systems and waste water treatment. Environmental aspects are considered and technical solutions are presented. (Suda)

  12. Technology for Peace - Science for Mankind. Water and Energy

    Energy Technology Data Exchange (ETDEWEB)

    Gutmann, H [ed.

    1994-12-31

    This symposium volume contents articles with the following topics regarding water and energy: water management, energy, water and energy systems and waste water treatment. Environmental aspects are considered and technical solutions are presented. (Suda).

  13. Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Feist, Armin; Bach, Nora; Rubiano da Silva, Nara; Danz, Thomas; Möller, Marcel; Priebe, Katharina E.; Domröse, Till; Gatzmann, J. Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha, E-mail: sascha.schaefer@phys.uni-goettingen.de; Ropers, Claus, E-mail: claus.ropers@uni-goettingen.de

    2017-05-15

    We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 Å focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams. - Highlights: • First implementation of an ultrafast TEM employing a nanoscale photocathode. • Localized single photon-photoemission from nanoscopic field emitter yields low emittance ultrashort electron pulses. • Electron pulses focused down to ~9 Å, with a duration of 200 fs and an energy width of 0.6 eV are demonstrated. • Quantitative characterization of ultrafast electron gun emittance and brightness. • A range of applications of high coherence ultrashort electron pulses is shown.

  14. Ultrafast THz Saturable Absorption in Doped Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....

  15. Mapping Project on Energy and the Social Sciences. Progress report, October 1, 1978-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Walker, C.A.; Doob, L.W.; Gould, L.C.

    1979-01-01

    This is a progress report of activities in the fourth year of the Yale Institution for Social and Policy Studies Mapping Project on Energy and the Social Sciences. The Mapping Project evaluates past and present social and behavioral science energy studies, assesses the potential for social and behavioral science contributions to a resolution of the energy problems in the future, and diffuses social and behavioral science information and perspectives to policymakers and others concerned with US or world energy developments. Activities in FY 1979 included meetings, workshops, collecting bibliographic material, publications, evaluating DOE programs in buildings and transportation, performing a special study of potential social impacts of 4 coal technologies, and developing plans for 10 specific research studies on energy.

  16. The performance of photons rainbow-colored energy experimental lecture schools in the kids' science museum of photons

    International Nuclear Information System (INIS)

    Hoshiya, Taiji; Sasaki, Kazuya; Nishikawa, Masahiro

    2008-01-01

    The Kansai Photon Science Institute (KPSI) of Japan Atomic Energy Agency (JAEA) has been promoting various activities of public understanding of science and technology, to be focused on the photon science, which is characterized by activities on science lectures and science events based on science and experiment classrooms, by utilizing the science museum of the JAEA (The Kids' Science Museum of Photons). In this phase, the KPSI extends systematically trial activities of the science museum to be as an experimental apparatus for studying on science and technology, including the program for promoting activities on public understanding of science and technology at the region. (author)

  17. Ultrafast photoelectron spectroscopy of small molecule organic films

    Science.gov (United States)

    Read, Kendall Laine

    As research in the field of ultrafast optics has produced shorter and shorter pulses, at an ever-widening range of frequencies, ultrafast spectroscopy has grown correspondingly. In particular, ultrafast photoelectron spectroscopy allows direct observation of electrons in transient or excited states, regardless of the eventual relaxation mechanisms. High-harmonic conversion of 800nm, femtosecond, Ti:sapphire laser pulses allows excite/probe spectroscopy down into atomic core level states. To this end, an ultrafast, X-UV photoelectron spectroscopic system is described, including design considerations for the high-harmonic generation line, the time of flight detector, and the subsequent data collection electronics. Using a similar experimental setup, I have performed several ultrafast, photoelectron excited state decay studies at the IBM, T. J. Watson Research Center. All of the observed materials were electroluminescent thin film organics, which have applications as the emitter layer in organic light emitting devices. The specific materials discussed are: Alq, BAlq, DPVBi, and Alq doped with DCM or DMQA. Alq:DCM is also known to lase at low photoexcitation thresholds. A detailed understanding of the involved relaxation mechanisms is beneficial to both applications. Using 3.14 eV excite, and 26.7 eV probe, 90 fs laser pulses, we have observed the lowest unoccupied molecular orbital (LUMO) decay rate over the first 200 picoseconds. During this time, diffusion is insignificant, and all dynamics occur in the absence of electron transport. With excitation intensities in the range of 100μJ/cm2, we have modeled the Alq, BAlq, and DPVBi decays via bimolecular singlet-singlet annihilation. At similar excitations, we have modeled the Alq:DCM decay via Förster transfer, stimulated emission, and excimeric formation. Furthermore, the Alq:DCM occupied to unoccupied molecular orbital energy gap was seen to shrink as a function of excite-to-probe delay, in accordance with the

  18. Wind, Water, Fire, and Earth. Energy Lessons for the Physical Sciences.

    Science.gov (United States)

    Watt, Shirley L., Ed.; And Others

    The current energy situation in the United States is a web of complicated and related elements. This document attempts to address some of these variables in presenting interdisciplinary energy lessons taken from instructional packets previously developed by the Project for an Energy-Enriched Curriculum (PEEC). The 19 physical science lessons…

  19. Misconceptions and Biases in German Students' Perception of Multiple Energy Sources: Implications for Science Education

    Science.gov (United States)

    Lee, Roh Pin

    2016-01-01

    Misconceptions and biases in energy perception could influence people's support for developments integral to the success of restructuring a nation's energy system. Science education, in equipping young adults with the cognitive skills and knowledge necessary to navigate in the confusing energy environment, could play a key role in paving the way…

  20. Review of the Fusion Theory and Computing Program. Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    Antonsen, Thomas M.; Berry, Lee A.; Brown, Michael R.; Dahlburg, Jill P.; Davidson, Ronald C.; Greenwald, Martin; Hegna, Chris C.; McCurdy, William; Newman, David E.; Pellegrini, Claudio; Phillips, Cynthia K.; Post, Douglass E.; Rosenbluth, Marshall N.; Sheffield, John; Simonen, Thomas C.; Van Dam, James

    2001-01-01

    At the November 14-15, 2000, meeting of the Fusion Energy Sciences Advisory Committee, a Panel was set up to address questions about the Theory and Computing program, posed in a charge from the Office of Fusion Energy Sciences (see Appendix A). This area was of theory and computing/simulations had been considered in the FESAC Knoxville meeting of 1999 and in the deliberations of the Integrated Program Planning Activity (IPPA) in 2000. A National Research Council committee provided a detailed review of the scientific quality of the fusion energy sciences program, including theory and computing, in 2000.

  1. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Science.gov (United States)

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  2. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Megan R. Leahy-Hoppa

    2010-04-01

    Full Text Available Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS, coherent Raman spectroscopy, and terahertz (THz spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications.

  3. Complete elimination of nonlinear light-matter interactions with broadband ultrafast laser pulses

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Dong, Daoyi; Petersen, Ian R.

    2017-01-01

    optical effects, however, the probability of pure single-photon absorption is usually very low, which is particularly pertinent in the case of strong ultrafast laser pulses with broad bandwidth. Here we demonstrate theoretically a counterintuitive coherent single-photon absorption scheme by eliminating...... nonlinear interactions of ultrafast laser pulses with quantum systems. That is, a completely linear response of the system with respect to the spectral energy density of the incident light at the transition frequency can be obtained for all transition probabilities between 0 and 100% in multilevel quantum...... systems. To that end, a multiobjective optimization algorithm is developed to find an optimal spectral phase of an ultrafast laser pulse, which is capable of eliminating all possible nonlinear optical responses while maximizing the probability of single-photon absorption between quantum states. This work...

  4. Life sciences. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2001-09-01

    This catalogue lists all sales publications of the IAEA dealing with life sciences: nuclear medicine, medical physics and radiation biology and issued during the period 1 January 1990 - 30 September 2001

  5. A Sustainable Energy Laboratory Course for Non-Science Majors

    Science.gov (United States)

    Nathan, Stephen A.; Loxsom, Fred

    2016-01-01

    Sustainable energy is growing in importance as the public becomes more aware of climate change and the need to satisfy our society's energy demands while minimizing environmental impacts. To further this awareness and to better prepare a workforce for "green careers," we developed a sustainable energy laboratory course that is suitable…

  6. Ultrafast excited state processes in Roseobacter denitrificans antennae: comparison of isolated complexes and native membranes

    NARCIS (Netherlands)

    Ferretti, M.; Duquesne, K.; Sturgis, J.N.; van Grondelle, R.

    2014-01-01

    Roseobacter (Rsb.) denitrificans is a marine aerobic anoxygenic photosynthetic purple bacterium with an unusually high-800 nm absorption band. Ultrafast excited state processes have been intensively studied in the past in order to understand why the energy transfer efficiency between photosynthetic

  7. Ultrafast electric phase control of a single exciton qubit

    Science.gov (United States)

    Widhalm, Alex; Mukherjee, Amlan; Krehs, Sebastian; Sharma, Nandlal; Kölling, Peter; Thiede, Andreas; Reuter, Dirk; Förstner, Jens; Zrenner, Artur

    2018-03-01

    We report on the coherent phase manipulation of quantum dot excitons by electric means. For our experiments, we use a low capacitance single quantum dot photodiode which is electrically controlled by a custom designed SiGe:C BiCMOS chip. The phase manipulation is performed and quantified in a Ramsey experiment, where ultrafast transient detuning of the exciton energy is performed synchronous to double pulse π/2 ps laser excitation. We are able to demonstrate electrically controlled phase manipulations with magnitudes up to 3π within 100 ps which is below the dephasing time of the quantum dot exciton.

  8. Reversible ultrafast melting in bulk CdSe

    International Nuclear Information System (INIS)

    Wu, Wenzhi; He, Feng; Wang, Yaguo

    2016-01-01

    In this work, transient reflectivity changes in bulk CdSe have been measured with two-color femtosecond pump-probe spectroscopy under a wide range of pump fluences. Three regions of reflectivity change with pump fluences have been consistently revealed for excited carrier density, coherent phonon amplitude, and lattice temperature. For laser fluences from 13 to 19.3 mJ/cm 2 , ultrafast melting happens in first several picoseconds. This melting process is purely thermal and reversible. A complete phase transformation in bulk CdSe may be reached when the absorbed laser energy is localized long enough, as observed in nanocrystalline CdSe

  9. Ultrafast coherence transfer in DNA-templated silver nanoclusters

    DEFF Research Database (Denmark)

    Thyrhaug, Erling; Bogh, Sidsel Ammitzbøll; Carro, Miguel

    2017-01-01

    DNA-templated silver nanoclusters of a few tens of atoms or less have come into prominence over the last several years due to very strong absorption and efficient emission. Applications in microscopy and sensing have already been realized, however little is known about the excited-state structure...... and dynamics in these clusters. Here we report on a multidimensional spectroscopy investigation of the energy-level structure and the early-time relaxation cascade, which eventually results in the population of an emitting state. We find that the ultrafast intramolecular relaxation is strongly coupled...

  10. Innovation in Photovoltaic Science, Engineering, and Policy: A Potential Trillion-Dollar Global Industry for Sustainable Energy

    Science.gov (United States)

    Zheng, Cheng

    The solar photovoltaic (PV) technology was an expensive niche energy source only for satellite applications, hallmarked by the Bell Lab's launch of the Telstar satellite with PV cells in 1962. Over the past decades, the accumulation of vast amount of effort across various disciplines in science, engineering, and policy has enabled the phenomenal growth of the solar PV industry into a global enterprise with about 140 gigawatt (GW) of cumulative installations by the end of 2013. Further cost reduction through innovation holds the promise in deploying terawatt (TW)-scale solar PV systems globally in both developed and developing countries, meeting growing energy demand and mitigating climate change. Chapter 1 presents a big picture view of the unsustainable path, heavily relying on fossil fuels, in the current global energy landscape. The main body of the dissertation examines the solar PV technology from a holistic and interdisciplinary perspective: from the basic research, to innovations in manufacturing and installing PV modules, to the driving energy policies. Chapter 2 offers a fundamental understanding of the PV technology and a review on recent scientific advances in improving PV efficiency (W/m 2). Chapter 3 reviews the state-of-the-art process flow in manufacturing commercial PV modules. In the context of pursuing further reduction in manufacturing cost (/m2), the thin Si film concept and its recent research effort are reviewed. Aiming to explore novel ways to produce high-quality seed crystals for thin Si film deposition, the key findings of the laser crystallization experiment is presented in Chapter 4. The fundamental thermophysics of nucleation and crystal growth is first reviewed, which highlights the importance of temperature evolution and heat transport in modelling the ultrafast laser crystallization process. Laser crystallization of a range of Si nanostructures are then carried out to study the nucleation and crystal growth behavior under some novel

  11. Dietary energy density: Applying behavioural science to weight management.

    Science.gov (United States)

    Rolls, B J

    2017-09-01

    Studies conducted by behavioural scientists show that energy density (kcal/g) provides effective guidance for healthy food choices to control intake and promote satiety. Energy density depends upon a number of dietary components, especially water (0 kcal/g) and fat (9 kcal/g). Increasing the proportion of water or water-rich ingredients, such as vegetables or fruit, lowers a food's energy density. A number of studies show that when the energy density of the diet is reduced, both adults and children spontaneously decrease their ad libitum energy intake. Other studies show that consuming a large volume of a low-energy-dense food such as soup, salad, or fruit as a first course preload can enhance satiety and reduce overall energy intake at a meal. Current evidence suggests that energy density influences intake through a complex interplay of cognitive, sensory, gastrointestinal, hormonal and neural influences. Other studies that focus on practical applications show how the strategic incorporation of foods lower in energy density into the diet allows people to eat satisfying portions while improving dietary patterns. This review discusses studies that have led to greater understanding of the importance of energy density for food intake regulation and weight management.

  12. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    International Nuclear Information System (INIS)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-01-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote

  13. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-07-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote

  14. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  15. Social science literature on the environment: review and prospects for energy studies. A preliminary literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Sommers, P.

    1975-01-01

    Much of the social science literature on environment is of recent origin and represents the response of the social science research community to a complex societal problem in which technology is a major factor. Energy represents another such problem to which the social science research community is now turning its attention. Because energy problems and environment problems have some similarities and because energy-conversion processes have large effects on the environment, a review of the social science literature on environment was undertaken. The purposes of this review are as follows: (1) to study the possible utility in energy research of some of the concepts developed in social science research on the environment; (2) to study the possible utility in energy research of some of the methodologies utilized in social science research on the environment; and (3) to study the extent to which the results of social science research on the environment have contributed to the development of policy. The first two items above receive major attention in this preliminary literature survey. 50 references.

  16. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  17. Misconceptions and biases in German students' perception of multiple energy sources: implications for science education

    Science.gov (United States)

    Lee, Roh Pin

    2016-04-01

    Misconceptions and biases in energy perception could influence people's support for developments integral to the success of restructuring a nation's energy system. Science education, in equipping young adults with the cognitive skills and knowledge necessary to navigate in the confusing energy environment, could play a key role in paving the way for informed decision-making. This study examined German students' knowledge of the contribution of diverse energy sources to their nation's energy mix as well as their affective energy responses so as to identify implications for science education. Specifically, the study investigated whether and to what extent students hold mistaken beliefs about the role of multiple energy sources in their nation's energy mix, and assessed how misconceptions could act as self-generated reference points to underpin support/resistance of proposed developments. An in-depth analysis of spontaneous affective associations with five key energy sources also enabled the identification of underlying concerns driving people's energy responses and facilitated an examination of how affective perception, in acting as a heuristic, could lead to biases in energy judgment and decision-making. Finally, subgroup analysis differentiated by education and gender supported insights into a 'two culture' effect on energy perception and the challenge it poses to science education.

  18. Capturing Structural Snapshots during Photochemical Reactions with Ultrafast Raman Spectroscopy: From Materials Transformation to Biosensor Responses.

    Science.gov (United States)

    Fang, Chong; Tang, Longteng; Oscar, Breland G; Chen, Cheng

    2018-06-21

    Chemistry studies the composition, structure, properties, and transformation of matter. A mechanistic understanding of the pertinent processes is required to translate fundamental knowledge into practical applications. The current development of ultrafast Raman as a powerful time-resolved vibrational technique, particularly femtosecond stimulated Raman spectroscopy (FSRS), has shed light on the structure-energy-function relationships of various photosensitive systems. This Perspective reviews recent work incorporating optical innovations, including the broad-band up-converted multicolor array (BUMA) into a tunable FSRS setup, and demonstrates its resolving power to watch metal speciation and photolysis, leading to high-quality thin films, and fluorescence modulation of chimeric protein biosensors for calcium ion imaging. We discuss advantages of performing FSRS in the mixed time-frequency domain and present strategies to delineate mechanisms by tracking low-frequency modes and systematically modifying chemical structures with specific functional groups. These unique insights at the chemical-bond level have started to enable the rational design and precise control of functional molecular machines in optical, materials, energy, and life sciences.

  19. 78 FR 48863 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-08-12

    ..., fusion science and fusion technology--the knowledge base needed for an economically and environmentally... Regulations, Section 102-3.65, and following consultation with the Committee Management Secretariat, General... that Act. FOR FURTHER INFORMATION CONTACT: Edmund J. Synakowski at (301) 903- 4941. Issued in...

  20. Science Study Aids 3: Carbohydrates - Nature's Energy Source.

    Science.gov (United States)

    McConnell, Bill

    This publication is the third of a series of seven supplementary investigative materials for use in secondary science classes providing up-to-date research-related investigations. This unit is structured for grade levels 7 through 12. It is concerned with the role of carbohydrates as important nutrients for consumers. This guide will enable…

  1. A word from Frédérick Bordry: Energy for future science

    CERN Multimedia

    2013-01-01

    With the second workshop on Energy for Sustainable Science wrapping up in the CERN Main Auditorium, Chairman Frédérick Bordry takes this opportunity to discuss how CERN is contributing to the Sustainable Science conversation.   The second workshop on energy for sustainable science ended with a clear conclusion: energy is a key parameter in future projects. When we design scientific experiments and the related infrastructures it is imperative to think ahead about how energy will be managed. At the same time, we can’t forget that our Organization, like other leading laboratories, was created when the climate was significantly different and when the concept of ‘sustainability’ hadn’t yet been coined! This means that existing facilities have to adopt an energy policy that informs new projects but can also gradually implement changes in existing operations. This is what is happening at CERN and in many other research facilities, as pre...

  2. Ultrafast laser spectroscopy in complex solid state materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  3. Collaborative Technologies for Distributed Science - Fusion Energy and High-Energy Physics

    International Nuclear Information System (INIS)

    Schissel, D.P.; Abla, G.; Burruss, J.R.; Gottschalk, E.

    2006-01-01

    The large-scale experiments, needed for fusion energy sciences (FES) and high-energy physics (HEP) research, are staffed by correspondingly large, geographically dispersed teams. At the same time, theoretical work has come to rely increasingly on complex numerical simulations developed by distributed teams of scientists and applied mathematicians and run on massively parallel computers. These trends will only accelerate. Operation of the most powerful accelerator ever built, the Large Hadron Collider at CERN, will begin next year and will dominate experimental high-energy physics. The fusion program will be increasingly oriented toward the ITER where even now, a decade before operation begins, a large portion of national programs efforts are organized around coordinated efforts to develop promising operational scenarios. While both FES and HEP have a significant track record for developing and exploiting remote collaborations, with such large investments at stake, there is a clear need to improve the integration and reach of the tools available. These challenges are being addressed by the creation and deployment of advanced collaborative software and hardware tools. Grid computing, to provide secure on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. Utilizing public-key based security that is recognized worldwide, numerous analysis and simulation codes are securely available worldwide in a service-oriented approach. Traditional audio teleconferencing is being augmented by more advanced capabilities including videoconferencing, instant messaging, presentation sharing, applications sharing, large display walls, and the virtual-presence capabilities of Access Grid and VRVS. With these advances, remote real-time experimental participation has begun as well as remote seminars, working meetings, and design review meetings. Work continues to focus on reducing the

  4. Energy Project professional development: Promoting positive attitudes about science among K-12 teachers

    Directory of Open Access Journals (Sweden)

    Amy D. Robertson

    2017-07-01

    Full Text Available Promoting positive attitudes about science among teachers has important implications for teachers’ classroom practice and for their relationship to science as a discipline. In this paper, we report positive shifts in teachers’ attitudes about science, as measured by the Colorado Learning Attitudes about Science (CLASS survey, over the course of their participation in a professional development course that emphasized the flexible use of energy representations to understand real world scenarios. Our work contributes to the larger effort to make the case that professional development matters for teacher learning and attitudes.

  5. Becoming allies: Combining social science and technological perspectives to improve energy research and policy making

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Rick; Moezzi, Mithra

    2002-07-01

    Within the energy research community, social sciences tends to be viewed fairly narrowly, often as simply a marketing tool to change the behavior of consumers and decision makers, and to ''attack market barriers''. As we see it, social sciences, which draws on sociology, psychology, political science, business administration, and other academic disciplines, is capable of far more. A social science perspective can re-align questions in ways that can lead to the development of technologies and technology policy that are much stronger and potentially more successful than they would be otherwise. In most energy policies governing commercial buildings, the prevailing R and D directives are firmly rooted in a technology framework, one that is generally more quantitative and evaluative than that fostered by the social sciences. To illustrate how social science thinking would approach the goal of achieving high energy performance in the commercial building sector, they focus on the US Department of Energy's Roadmap for commercial buildings (DOE 2000) as a starting point. By ''deconstructing'' the four strategies provided by the Roadmap, they set the stage for proposing a closer partnership between advocates of technology-based and social science-based approaches.

  6. NATO Advanced Research Institute on the Application of Systems Science to Energy Policy Planning

    CERN Document Server

    Cherniavsky, E; Laughton, M; Ruff, L

    1981-01-01

    The Advanced Research Institute (ARI) on "The Application of Systems Science to Energy Policy Planning" was held under the auspices of the NATO Special Programme Panel on Systems Science in collaboration with the National Center for Analysis of Energy Sys­ tems, Brookhaven National Laboratory, USA, as a part of the NATO Science Committee's continuous effort to promote the advancement of science through international cooperation. Advanced Research Institutes are sponsored by the NATO Science Committee for the purposes of bringing together senior scientists to seek consensus on an assessment of the present state of knowl­ edge on a specific topic and to make recommendations for future research directions. Meetings are structured to encourage inten­ sive group discussion. Invitees are carefully selected so that the group as a whole will contain the experience and expertise neces­ sary to make the conclusions valid and significant. A final report is published presenting the various viewpoints and conclusions....

  7. Experiments with trapped ions and ultrafast laser pulses

    Science.gov (United States)

    Johnson, Kale Gifford

    Since the dawn of quantum information science, laser-cooled trapped atomic ions have been one of the most compelling systems for the physical realization of a quantum computer. By applying qubit state dependent forces to the ions, their collective motional modes can be used as a bus to realize entangling quantum gates. Ultrafast state-dependent kicks [1] can provide a universal set of quantum logic operations, in conjunction with ultrafast single qubit rotations [2], which uses only ultrafast laser pulses. This may present a clearer route to scaling a trapped ion processor [3]. In addition to the role that spin-dependent kicks (SDKs) play in quantum computation, their utility in fundamental quantum mechanics research is also apparent. In this thesis, we present a set of experiments which demonstrate some of the principle properties of SDKs including ion motion independence (we demonstrate single ion thermometry from the ground state to near room temperature and the largest Schrodinger cat state ever created in an oscillator), high speed operations (compared with conventional atom-laser interactions), and multi-qubit entanglement operations with speed that is not fundamentally limited by the trap oscillation frequency. We also present a method to provide higher stability in the radial mode ion oscillation frequencies of a linear radiofrequency (rf) Paul trap-a crucial factor when performing operations on the rf-sensitive modes. Finally, we present the highest atomic position sensitivity measurement of an isolated atom to date of 0.5 nm Hz. (-1/2) with a minimum uncertaintyof 1.7 nm using a 0.6 numerical aperature (NA) lens system, along with a method to correct aberrations and a direct position measurement of ion micromotion (the inherent oscillations of an ion trapped in an oscillating rf field). This development could be used to directly image atom motion in the quantum regime, along with sensing forces at the yoctonewton [10. (-24) N)] scale forgravity sensing

  8. Solar energy market penetration models - Science or number mysticism

    Science.gov (United States)

    Warren, E. H., Jr.

    1980-01-01

    The forecast market potential of a solar technology is an important factor determining its R&D funding. Since solar energy market penetration models are the method used to forecast market potential, they have a pivotal role in a solar technology's development. This paper critiques the applicability of the most common solar energy market penetration models. It is argued that the assumptions underlying the foundations of rigorously developed models, or the absence of a reasonable foundation for the remaining models, restrict their applicability.

  9. Office of Fusion Energy Sciences. A ten-year perspective (2015-2025)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-01

    The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation in predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.

  10. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Riley, Katherine [Argonne National Lab., IL (United States). Argonne Leadership Computing Facility (ALCF); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility; Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet

    2018-01-22

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, and deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain

  11. Energy

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1996-01-01

    Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs

  12. Unlocking the Constraints of Cyanobacterial Productivity: Acclimations Enabling Ultrafast Growth

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Hans C.; McClure, Ryan S.; Hill, Eric A.; Markillie, Lye Meng; Chrisler, William B.; Romine, Margie F.; McDermott, Jason E.; Posewitz, Matthew C.; Bryant, Donald A.; Konopka, Allan E.; Fredrickson, James K.; Beliaev, Alexander S.

    2016-07-26

    ABSTRACT

    Harnessing the metabolic potential of photosynthetic microbes for next-generation biotechnology objectives requires detailed scientific understanding of the physiological constraints and regulatory controls affecting carbon partitioning between biomass, metabolite storage pools, and bioproduct synthesis. We dissected the cellular mechanisms underlying the remarkable physiological robustness of the euryhaline unicellular cyanobacteriumSynechococcussp. strain PCC 7002 (Synechococcus7002) and identify key mechanisms that allow cyanobacteria to achieve unprecedented photoautotrophic productivities (~2.5-h doubling time). Ultrafast growth ofSynechococcus7002 was supported by high rates of photosynthetic electron transfer and linked to significantly elevated transcription of precursor biosynthesis and protein translation machinery. Notably, no growth or photosynthesis inhibition signatures were observed under any of the tested experimental conditions. Finally, the ultrafast growth inSynechococcus7002 was also linked to a 300% expansion of average cell volume. We hypothesize that this cellular adaptation is required at high irradiances to support higher cell division rates and reduce deleterious effects, corresponding to high light, through increased carbon and reductant sequestration.

    IMPORTANCEEfficient coupling between photosynthesis and productivity is central to the development of biotechnology based on solar energy. Therefore, understanding the factors constraining maximum rates of carbon processing is necessary to identify regulatory mechanisms and devise strategies to overcome productivity constraints. Here, we interrogate the molecular mechanisms that operate at a systems level to allow cyanobacteria to achieve ultrafast growth. This was done by considering growth and photosynthetic kinetics with global transcription patterns. We have delineated

  13. 9th Pacific Basin Nuclear Conference. Nuclear energy, science and technology - Pacific partnership. Proceedings Volume 1

    International Nuclear Information System (INIS)

    1994-04-01

    The theme of the 9th Pacific Basin Nuclear conference held in Sydney from 1-6 May 1994, embraced the use of the atom in energy production and in science and technology. The focus was on selected topics of current and ongoing interest to countries around the Pacific Basin. The two-volume proceedings include both invited and contributed papers. They have been indexed separately. This document, Volume 1 covers the following topics: Pacific partnership; perspectives on nuclear energy, science and technology in Pacific Basin countries; nuclear energy and sustainable development; economics of the power reactors; new power reactor projects; power reactor technology; advanced reactors; radioisotope and radiation technology; biomedical applications

  14. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  15. Materials science and physics of non-conventional energy sources

    International Nuclear Information System (INIS)

    Furlan, G.; Nobili, D.; Sayigh, A.A.M.; Seraphin, B.O.

    1991-01-01

    Recently, many countries in the world have restructured their energy policy to include renewables, for example, in UK the Government expect that by the year 2010 it will be possible to meet 20% of the electricity supply by renewables. Photovoltaic is one of the easiest forms of changing sunlight into direct electricity. Research initiatives have reduced the cost of it from $1,000 per peak watt in 1960 to less than $5 per peak watt nowadays. It is anticipated that by the year 2000 this cost will be $2 per peak watt. ICTP has, since 1977, taken an active role in disseminating knowledge and promoting renewable energy through its massive programme, Physics of Renewable Energy. The aim is to help the developing countries in grasping the technology as well as the transfer of this technology through courses, seminars and workshops. These workshops are repeated every two years and the theme of them has gradually been changed to emphasize the high-powered physics associated with renewable energy and in particular material technology. The workshops are run for three weeks and include lectures, seminars, discussion, visits to industry and small task presentation. Although the Proceedings of these workshops emphasize mainly the photovoltaic conversion, technology and manufacturing facilities, a few other lectures on the state-of-the-art, development and potential of other forms of renewable energy are included. Refs, figs and tabs

  16. Materials science symposium 'heavy ion science in tandem energy region'

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  17. Will Science and Technique Head Off Energy Shortage?

    International Nuclear Information System (INIS)

    Papon, P.

    2008-01-01

    Fluctuations in the price of the standard barrel of oil have been making headlines for several years now. In remaining at a high level in 2008 (with a peak of 150 US dollars in July), it seems to have left a marked impression on consumers, sensitizing them to the ever more imminent advent of a new energy era. Unless there is something approaching a technical revolution in this field, there is a danger that the increasing scarcity of fossil resources will appreciably raise energy costs and changed consumer habits will ensue. Is the prospect of such a revolution plausible? Can there be scientific and technical breakthroughs in the coming years that produce improvements or new paths in energy production? Pierre Papon has examined this question. After briefly summing up the current energy situation (in a context, we should remember, of climate change), he offers a detailed overview of the various options for the exploration and use of fossil fuels, bio-fuels, hydrogen etc. He also demonstrates the potential and limits of renewable, together with the prospects for the nuclear industry. In all these fields there seems little hope of a revolution before 2030: adaptation to a context of growing scarcity of energy supplies remains, then, a pressing question. However, as Pierre Papon reminds us, we cannot rule out the emergence of a new paradigm in physics that could radically alter the situation (such as occurred, for example, with the theory of relativity); hence the indispensable research effort that must be put in by both scientists and founders. (author)

  18. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Fellowship; Associateship. Associate Profile. Period: 2016–2019. Bhattacharya, Dr Atanu Ph.D. (Colorado State). Date of birth: 2 March 1983. Specialization: Ultrafast Science, Surface Science, Molecular Beam Experiments Address: IPC Department, Indian Institute of Science, Bengaluru 560 012, Karnataka Contact:

  19. Ultrafast Nonlinear Signal Processing in Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen; Hu, Hao

    2012-01-01

    We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling.......We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling....

  20. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    International Nuclear Information System (INIS)

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index

  1. High energy-density science on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, E.M.; Cauble, R.; Remington, B.A.

    1997-08-01

    The National Ignition Facility, as well as its French counterpart Le Laser Megajoule, have been designed to confront one of the most difficult and compelling problem in shock physics - the creation of a hot, compassed DT plasma surrounded and confined by cold, nearly degenerate DT fuel. At the same time, these laser facilities will present the shock physics community with unique tools for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers can contribute to investigations of high energy density in the area of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  2. Energy Innovations: Science & Technology at NREL, Winter 2011 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    The Energy Innovations newsletter serves as a key outreach tool for NREL to tout the lab's accomplishments, progress, and activities to key stakeholders who can impact the lab's level of funding and potential resources. Audiences include VIP visitors to NREL, current and potential partners in our work, and key decision makers who want to know about NREL's R&D directions and the quality and significance of our results.

  3. Energy Innovations: Science & Technology at NREL, Fall 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-09-01

    The Energy Innovations newsletter serves as a key outreach tool for NREL to tout the lab's accomplishments, progress, and activities to key stakeholders who can impact the lab's level of funding and potential resources. Audiences include VIP visitors to NREL, current and potential partners in our work, and key decision makers who want to know about NREL's R&D directions and the quality and significance of our results.

  4. ENERGY AND SCIENCE: Five-Year Bibliography 1990-1994

    Science.gov (United States)

    1995-12-01

    reviews the U.S. government’s efforts to support Venezuela’s energy sector. Sector de Energia en Venezuela: La Prodnccion Petrolera y las Condiciones... renovate existing laboratories or build new ones is often minimal. Four of the eight agencies recently started up task forces to reexamine their research...laboratory repairs. Moreover, funding to renovate existing laboratories or build new ones is often minimal. Four of the eight agencies recently started up

  5. Energy Innovations: Science & Technology at NREL, Winter 2010 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2010-02-01

    The Energy Innovations newsletter serves as a key outreach tool for NREL to tout the lab's accomplishments, progress, and activities to key stakeholders who can impact the lab's level of funding and potential resources. Audiences include VIP visitors to NREL, current and potential partners in our work, and key decision makers who want to know about NREL's R&D directions and the quality and significance of our results.

  6. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    Science.gov (United States)

    Kulo, Violet; Bodzin, Alec

    2013-02-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.

  7. Ultrafast laser-semiconductor interactions

    International Nuclear Information System (INIS)

    Schile, L.A.

    1996-01-01

    Studies of the ultrafast (< 100 fs) interactions of infrared, sub-100 fs laser pulses with IR, photosensitive semiconductor materials InGaAs, InSb, and HgCdTe are reported. Both the carrier dynamics and the associated Terahertz radiation from these materials are discussed. The most recent developments of femtosecond (< 100 fs) Optical Parametric Oscillators (OPO) has extended the wavelength range from the visible to 5.2 μm. The photogenerated semiconductor free carrier dynamics are determined in the 77 to 300 degrees K temperature range using the Transmission Correlation Peak (TCP) method. The electron-phonon scattering times are typically 200 - 600 fs. Depending upon the material composition and substrate on which the IR crystalline materials are deposited, the nonlinear TCP absorption gives recombination rates as fast as 10's of picoseconds. For the HgCdTe, there exists a 400 fs electron-phonon scattering process along with a much longer 3600 fs loss process. Studies of the interactions of these ultrashort laser pulses with semiconductors produce Terahertz (Thz) radiative pulses. With undoped InSb, there is a substantial change in the spectral content of this THz radiation between 80 - 260 degrees K while the spectrum of Te-doped InSb remains nearly unchanged, an effect attributed to its mobility being dominated by impurity scattering. At 80 degrees K, the terahertz radiation from undoped InSb is dependent on wavelength, with both a higher frequency spectrum and much larger amplitudes generated at longer wavelengths. No such effect is observed at 260 degrees K. Finally, new results on the dependence of the emitted THz radiation on the InSb crystal's orientation is presented

  8. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  9. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, V.; McBranch, D.; Schwarz, C.

    1998-08-10

    Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.

  10. Development of innovative fuelling systems for fusion energy science

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.

    1996-01-01

    The development of innovative fueling systems in support of magnetic fusion energy, particularly the International Thermonuclear Experimental Reactor (ITER), is described. The ITER fuelling system will use a combination of deuterium-tritium (D-T) gas puffing and pellet injection to achieve and maintain ignited plasmas. This combination will provide a flexible fuelling source with D-T pellets penetrating beyond the separatrix to sustain the ignited fusion plasma and with deuterium-rich gas fuelling the edge region to meet divertor requirements in a process called isotopic fuelling. More advanced systems with potential for deeper penetration, such as multistage pellet guns and compact toroid injection, are also described

  11. Ultrafast Bessel beams: advanced tools for laser materials processing

    Science.gov (United States)

    Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois

    2018-05-01

    Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.

  12. Proceedings of the fourteenth symposium on energy engineering sciences: Mechanical sciences; Solids and fluids

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The 26 papers in this proceedings are arranged in the following topical sections: superconductors (4 papers); materials (7); controls (4); fluid mechanics (7); and thin films (4). Papers have been processed separately for inclusion on the data base.

  13. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-04-01

    The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid

  14. FUSION ENERGY SCIENCES WORKSHOP ON PLASMA MATERIALS INTERACTIONS: Report on Science Challenges and Research Opportunities in Plasma Materials Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, Rajesh [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Zinkle, Steven J. [University of Tennessee – Knoxville; Foster, Mark S. [U.S. Department of Energy

    2015-05-01

    The realization of controlled thermonuclear fusion as an energy source would transform society, providing a nearly limitless energy source with renewable fuel. Under the auspices of the U.S. Department of Energy, the Fusion Energy Sciences (FES) program management recently launched a series of technical workshops to “seek community engagement and input for future program planning activities” in the targeted areas of (1) Integrated Simulation for Magnetic Fusion Energy Sciences, (2) Control of Transients, (3) Plasma Science Frontiers, and (4) Plasma-Materials Interactions aka Plasma-Materials Interface (PMI). Over the past decade, a number of strategic planning activities1-6 have highlighted PMI and plasma facing components as a major knowledge gap, which should be a priority for fusion research towards ITER and future demonstration fusion energy systems. There is a strong international consensus that new PMI solutions are required in order for fusion to advance beyond ITER. The goal of the 2015 PMI community workshop was to review recent innovations and improvements in understanding the challenging PMI issues, identify high-priority scientific challenges in PMI, and to discuss potential options to address those challenges. The community response to the PMI research assessment was enthusiastic, with over 80 participants involved in the open workshop held at Princeton Plasma Physics Laboratory on May 4-7, 2015. The workshop provided a useful forum for the scientific community to review progress in scientific understanding achieved during the past decade, and to openly discuss high-priority unresolved research questions. One of the key outcomes of the workshop was a focused set of community-initiated Priority Research Directions (PRDs) for PMI. Five PRDs were identified, labeled A-E, which represent community consensus on the most urgent near-term PMI scientific issues. For each PRD, an assessment was made of the scientific challenges, as well as a set of actions

  15. Computing at the leading edge: Research in the energy sciences

    Energy Technology Data Exchange (ETDEWEB)

    Mirin, A.A.; Van Dyke, P.T. [eds.

    1994-02-01

    The purpose of this publication is to highlight selected scientific challenges that have been undertaken by the DOE Energy Research community. The high quality of the research reflected in these contributions underscores the growing importance both to the Grand Challenge scientific efforts sponsored by DOE and of the related supporting technologies that the National Energy Research Supercomputer Center (NERSC) and other facilities are able to provide. The continued improvement of the computing resources available to DOE scientists is prerequisite to ensuring their future progress in solving the Grand Challenges. Titles of articles included in this publication include: the numerical tokamak project; static and animated molecular views of a tumorigenic chemical bound to DNA; toward a high-performance climate systems model; modeling molecular processes in the environment; lattice Boltzmann models for flow in porous media; parallel algorithms for modeling superconductors; parallel computing at the Superconducting Super Collider Laboratory; the advanced combustion modeling environment; adaptive methodologies for computational fluid dynamics; lattice simulations of quantum chromodynamics; simulating high-intensity charged-particle beams for the design of high-power accelerators; electronic structure and phase stability of random alloys.

  16. Computing at the leading edge: Research in the energy sciences

    International Nuclear Information System (INIS)

    Mirin, A.A.; Van Dyke, P.T.

    1994-01-01

    The purpose of this publication is to highlight selected scientific challenges that have been undertaken by the DOE Energy Research community. The high quality of the research reflected in these contributions underscores the growing importance both to the Grand Challenge scientific efforts sponsored by DOE and of the related supporting technologies that the National Energy Research Supercomputer Center (NERSC) and other facilities are able to provide. The continued improvement of the computing resources available to DOE scientists is prerequisite to ensuring their future progress in solving the Grand Challenges. Titles of articles included in this publication include: the numerical tokamak project; static and animated molecular views of a tumorigenic chemical bound to DNA; toward a high-performance climate systems model; modeling molecular processes in the environment; lattice Boltzmann models for flow in porous media; parallel algorithms for modeling superconductors; parallel computing at the Superconducting Super Collider Laboratory; the advanced combustion modeling environment; adaptive methodologies for computational fluid dynamics; lattice simulations of quantum chromodynamics; simulating high-intensity charged-particle beams for the design of high-power accelerators; electronic structure and phase stability of random alloys

  17. A passion for precision - from the ultrafast to the ultraslow

    International Nuclear Information System (INIS)

    Haensch, T.W.

    2005-01-01

    Full text: Femtosecond laser optical frequency comb synthesizers have become the established tool for measuring the frequency of light with extreme precision. By permitting phase-coherent comparisons of optical and microwave frequencies, they can serve as the clockwork for ultraprecise optical atomic clocks. Applications to laser spectroscopy of atomic hydrogen permit stringent tests of basic laws of quantum physics. Such experiments can yield accurate values of fundamental constants, and they may reveal slow changes of fundamental constants with the evolution of the universe. Laser frequency comb techniques can also control the light phase of femtosecond laser pulses, thus advancing the frontier of ultrafast science from the femtosecond to the attosecond regime. High harmonic generation with intense femtosecond pulses may extend frequency comb techniques to the extreme ultraviolet and soft x-ray regime, conquering new territory for precision laser spectroscopy and fundamental measurements. (author)

  18. Electrically-driven GHz range ultrafast graphene light emitter (Conference Presentation)

    Science.gov (United States)

    Kim, Youngduck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Kim, Hyungsik; Nemilentsau, Andrei M.; Low, Tony; Taniguchi, Takashi; Watanabe, Kenji; Bae, Myung-Ho; Heinz, Tony F.; Englund, Dirk R.; Hone, James

    2017-02-01

    Ultrafast electrically driven light emitter is a critical component in the development of the high bandwidth free-space and on-chip optical communications. Traditional semiconductor based light sources for integration to photonic platform have therefore been heavily studied over the past decades. However, there are still challenges such as absence of monolithic on-chip light sources with high bandwidth density, large-scale integration, low-cost, small foot print, and complementary metal-oxide-semiconductor (CMOS) technology compatibility. Here, we demonstrate the first electrically driven ultrafast graphene light emitter that operate up to 10 GHz bandwidth and broadband range (400 1600 nm), which are possible due to the strong coupling of charge carriers in graphene and surface optical phonons in hBN allow the ultrafast energy and heat transfer. In addition, incorporation of atomically thin hexagonal boron nitride (hBN) encapsulation layers enable the stable and practical high performance even under the ambient condition. Therefore, electrically driven ultrafast graphene light emitters paves the way towards the realization of ultrahigh bandwidth density photonic integrated circuits and efficient optical communications networks.

  19. Fusion of Ultraviolet-Visible and Infrared Transient Absorption Spectroscopy Data to Model Ultrafast Photoisomerization.

    Science.gov (United States)

    Debus, Bruno; Orio, Maylis; Rehault, Julien; Burdzinski, Gotard; Ruckebusch, Cyril; Sliwa, Michel

    2017-08-03

    Ultrafast photoisomerization reactions generally start at a higher excited state with excess of internal vibrational energy and occur via conical intersections. This leads to ultrafast dynamics which are difficult to investigate with a single transient absorption spectroscopy technique, be it in the ultraviolet-visible (UV-vis) or infrared (IR) domain. On one hand, the information available in the UV-vis domain is limited as only slight spectral changes are observed for different isomers. On the other hand, the interpretation of vibrational spectra is strongly hindered by intramolecular relaxation and vibrational cooling. These limitations can be circumvented by fusing UV-vis and IR transient absorption spectroscopy data in a multiset multivariate curve resolution analysis. We apply this approach to describe the spectrodynamics of the ultrafast cis-trans photoisomerization around the C-N double bond observed for aromatic Schiff bases. Twisted intermediate states could be elucidated, and isomerization was shown to occur through a continuous complete rotation. More broadly, data fusion can be used to rationalize a vast range of ultrafast photoisomerization processes of interest in photochemistry.

  20. Ultrafast magnon generation in an Fe film on Cu(100).

    Science.gov (United States)

    Schmidt, A B; Pickel, M; Donath, M; Buczek, P; Ernst, A; Zhukov, V P; Echenique, P M; Sandratskii, L M; Chulkov, E V; Weinelt, M

    2010-11-05

    We report on a combined experimental and theoretical study of the spin-dependent relaxation processes in the electron system of an iron film on Cu(100). Spin-, time-, energy- and angle-resolved two-photon photoemission shows a strong characteristic dependence of the lifetime of photoexcited electrons on their spin and energy. Ab initio calculations as well as a many-body treatment corroborate that the observed properties are determined by relaxation processes involving magnon emission. Thereby we demonstrate that magnon emission by hot electrons occurs on the femtosecond time scale and thus provides a significant source of ultrafast spin-flip processes. Furthermore, engineering of the magnon spectrum paves the way for tuning the dynamic properties of magnetic materials.

  1. Ultrafast spectroscopy of model biological membranes

    NARCIS (Netherlands)

    Ghosh, Avishek

    2009-01-01

    In this PhD thesis, I have described the novel time-resolved sum-frequency generation (TR-SFG) spectroscopic technique that I developed during the course of my PhD research and used it study the ultrafast vibrational, structural and orientational dynamics of water molecules at model biological

  2. Photonic-assisted ultrafast THz wireless access

    DEFF Research Database (Denmark)

    Yu, Xianbin; Chen, Ying; Galili, Michael

    THz technology has been considered feasible for ultrafast wireless data communi- cation, to meet the increasing demand on next-generation fast wireless access, e.g., huge data file transferring and fast mobile data stream access. This talk reviews recent progress in high-speed THz wireless...

  3. Directing Matter and Energy: Five Challenges for Science and the Imagination

    Energy Technology Data Exchange (ETDEWEB)

    Hemminger, J.; Fleming, G.; Ratner, M.

    2007-12-20

    The twin aspects of energy and control (or direction) are the underlying concepts. Matter and energy are closely linked, and their understanding and control will have overwhelming importance for our civilization, our planet, our science, and our technology. This importance ranges even beyond the large portfolio of BES, both because these truly significant Grand Challenges confront many other realms of science and because even partial solutions to these challenges will enrich scientists’ collective imagination and ability to solve problems with new ideas and new methods.

  4. Earth sciences: Uranium geology, exploration and mining, hydrology, 1986-1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1997-03-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with earth sciences and issued during the period of 1986-1996. These topics are mainly in the field of uranium geology, exploration and mining, isotope applications in hydrology, IAEA Yearbook 1996 on the developments in nuclear science and technology and meetings on atomic energy. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English but all of these papers have English abstracts. The prices of books are quoted in Austrian Schillings

  5. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  6. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    Science.gov (United States)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  7. Proceeding of 29th domestic symposium on computational science and nuclear energy in the 21st century

    International Nuclear Information System (INIS)

    2001-10-01

    As the 29th domestic symposium of Atomic Energy Research Committee, the Japan Welding Engineering Society, the symposium was held titled as Computational science and nuclear energy in the 21st century'. Keynote speech was delivered titled as 'Nuclear power plants safety secured by computational science in the 21st century'. Three speakers gave lectures titled as 'Materials design and computational science', 'Development of advanced reactor in the 21st century' and 'Application of computational science to operation and maintenance management of plants'. Lectures held panel discussion titled as 'Computational science and nuclear energy in the 21st century'. (T. Tanaka)

  8. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  9. Perspective: Ultrafast magnetism and THz spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Walowski, Jakob; Münzenberg, Markus [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2016-10-14

    This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.

  10. Perspective: Ultrafast magnetism and THz spintronics

    International Nuclear Information System (INIS)

    Walowski, Jakob; Münzenberg, Markus

    2016-01-01

    This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.

  11. FY-2013 FES (Fusion Energy Sciences) Joint Research Target Report

    Energy Technology Data Exchange (ETDEWEB)

    Fenstermacher, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hubbard, A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Maingi, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Whyte, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-09-30

    The H-mode confinement regime is characterized by a region of good thermal and particle confinement at the edge of the confined plasma, and has generally been envisioned as the operating regime for ITER and other next step devices. This good confinement is often interrupted, however, by edge-localized instabilities, known as ELMs. On the one hand, these ELMs provide particle and impurity flushing from the plasma core, a beneficial effect facilitating density control and stationary operation. On the other hand, the ELMs result in a substantial fraction of the edge stored energy flowing in bursts to the divertor and first wall; this impulsive thermal loading would result in unacceptable erosion of these material surfaces if it is not arrested. Hence, developing and understanding operating regimes that have the energy confinement of standard H-mode and the stationarity that is provided by ELMs, while at the same time eliminating the impulsive thermal loading of large ELMs, is the focus of the 2013 FES Joint Research Target (JRT): Annual Target: Conduct experiments and analysis on major fusion facilities, to evaluate stationary enhanced confinement regimes without large Edge Localized Modes (ELMs), and to improve understanding of the underlying physical mechanisms that allow acceptable edge particle transport while maintaining a strong thermal transport barrier. Mechanisms to be investigated can include intrinsic continuous edge plasma modes and externally applied 3D fields. Candidate regimes and techniques have been pioneered by each of the three major US facilities (C-Mod, D3D and NSTX). Coordinated experiments, measurements, and analysis will be carried out to assess and understand the operational space for the regimes. Exploiting the complementary parameters and tools of the devices, joint teams will aim to more closely approach key dimensionless parameters of ITER, and to identify correlations between edge fluctuations and transport. The role of rotation will be

  12. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-02-01

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the

  13. Sustainability Science: Sustainable Energy for Mobility and Its Use in Policy Making

    Directory of Open Access Journals (Sweden)

    Fabio Orecchini

    2011-10-01

    Full Text Available Since the 1980s sustainability has clearly become the challenge of the 21st century. In a process toward a sustainable society it is crucial that different stakeholders start collaboration and exchange ideas with technicians and academics. To finalize the policy decisions on important issues such as energy sustainability, collaboration between policy makers, academia and the private sector is important. This work intends to give Italian policy makers concrete advice and solutions to develop energy systems for mobility. The analysis proceeds from the context of Sustainability Science, a new science, which has emerged as one of the most important disciplines of international scientific research. Using a new approach, trans-disciplinary and integrated, this research is oriented to study and understand the complexity of the interactions between economy, society and nature. This broad approach permits proposing concrete solutions to complex problems locally and globally. We propose a scheme of definition of Sustainability Energy, defining five pillars of reference, and we redefine the energy systems for mobility in the context of Sustainability Science. In this paper, we start from the idea that we are living in a crucial passage, we are moving from the era of petroleum to the era of energy vectors. Energy systems, including mobility, should be redefined within this new approach.

  14. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

  15. Ultrafast palladium diffusion in germanium

    KAUST Repository

    Tahini, Hassan Ali; Chroneos, Alexander I.; Middleburgh, Simon C.; Schwingenschlö gl, Udo; Grimes, Robin W.

    2015-01-01

    The slow transport of dopants through crystal lattices has hindered the development of novel devices. Typically atoms are contained within deep potential energy wells which necessitates multiple attempts to hop between minimum energy positions

  16. Drilling Magma for Science, Volcano Monitoring, and Energy

    Science.gov (United States)

    Eichelberger, J. C.; Lavallée, Y.; Blankenship, D.

    2017-12-01

    location and properties of magma to calibrate geophysics (Brown et al, this session) and understand signals of "unrest". How can we not make such observations when there is so much to learn, so much at stake in correctly monitoring volcanoes, and such a need for clean, renewable energy?

  17. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    International Nuclear Information System (INIS)

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-01-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  18. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Amy [Univ. of Wisconsin, Madison, WI (United States); Callis, Richard [General Atomics, San Diego, CA (United States); Efthimion, Philip [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Foster, John [Univ. of Michigan, Ann Arbor, MI (United States); Keane, Christopher [Washington State Univ., Pullman, WA (United States); Onsager, Terry [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); O' Shea, Patrick [Univ. of Maryland, College Park, MD (United States)

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  19. International symposium on clusters and nanomaterials (energy and life-sciences applications)

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Purusottam [Virginia Commonwealth Univ., Richmond, VA (United States)

    2017-02-09

    The International Symposium on Clusters and Nanomaterials was held in Richmond, Virginia during October 26-29, 2015. The symposium focused on the roles clusters and nanostructures play in solving outstanding problems in clean and sustainable energy and life sciences applications; two of the most important issues facing science and society. Many of the materials issues in renewable energies, environmental impacts of energy technologies as well as beneficial and toxicity issues of nanoparticles in health are intertwined. Realizing that both fundamental and applied materials issues require a multidisciplinary approach the symposium provided a forum by bringing researchers from physics, chemistry, materials science, and engineering fields to share their ideas and results, identify outstanding problems, and develop new collaborations. Clean and sustainable energy sessions addressed challenges in production, storage, conversion, and efficiency of renewable energies such as solar, wind, bio, thermo-electric, and hydrogen. Environmental issues dealt with air- and water-pollution and conservation, environmental remediation and hydrocarbon processing. Topics in life sciences included therapeutic and diagnostic methods as well as health hazards attributed to nanoparticles. Cross-cutting topics such as reactions, catalysis, electronic, optical, and magnetic properties were also covered. The symposium attracted 132 participants from 24 countries in the world. It featured 39 invited speakers in 14 plenary sessions, in addition to one key-note session. Eighty-five contributed papers were presented in two poster sessions and 14 papers from this list were selected to be presented orally at the end of each session to highlight hot topics. Papers presented at the symposium were reviewed and published in SPIE so that these can reach a wide audience. The symposium was highly interactive with ample time allotted for discussions and making new collaborations. The participants’ response

  20. Optoacoustic Microscopy for Investigation of Material Nanostructures-Embracing the Ultrasmall, Ultrafast, and the Invisible

    Energy Technology Data Exchange (ETDEWEB)

    Nurmikko, Arto; Humphrey, Maris

    2014-07-10

    The goal of this grant was the development of a new type of scanning acoustic microscope for nanometer resolution ultrasound imaging, based on ultrafast optoacoustics (>GHz). In the microscope, subpicosecond laser pulses was used to generate and detect very high frequency ultrasound with nanometer wavelengths. We report here on the outcome of the 3-year DOE/BES grant which involved the design, multifaceted construction, and proof-of-concept demonstration of an instrument that can be used for quantitative imaging of nanoscale material features – including features that may be buried so as to be inaccessible to conventional lightwave or electron microscopies. The research program has produced a prototype scanning optoacoustic microscope which, in combination with advanced computational modeling, is a system-level new technology (two patents issues) which offer novel means for precision metrology of material nanostructures, particularly those that are of contemporary interest to the frontline micro- and optoelectronics device industry. For accomplishing the ambitious technical goals, the research roadmap was designed and implemented in two phases. In Phase I, we constructed a “non-focusing” optoacoustic microscope instrument (“POAM”), with nanometer vertical (z-) resolution, while limited to approximately 10 micrometer scale lateral recolution. The Phase I version of the instrument which was guided by extensive acoustic and optical numerical modeling of the basic underlying acoustic and optical physics, featured nanometer scale close loop positioning between the optoacoustic transducer element and a nanostructured material sample under investigation. In phase II, we implemented and demonstrated a scanning version of the instrument (“SOAM”) where incident acoustic energy is focused, and scanned on lateral (x-y) spatial scale in the 100 nm range as per the goals of the project. In so doing we developed advanced numerical simulations to provide

  1. AREAL low energy electron beam applications in life and materials sciences

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Yerevan State University, 0025 Yerevan (Armenia); Aroutiounian, R.M. [Yerevan State University, 0025 Yerevan (Armenia); Amatuni, G.A. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Aloyan, L.R.; Aslanyan, L.G. [Yerevan State University, 0025 Yerevan (Armenia); Avagyan, V.Sh. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Babayan, N.S. [Yerevan State University, 0025 Yerevan (Armenia); Institute of Molecular Biology NAS, 0014 Yerevan (Armenia); Buniatyan, V.V. [State Engineering University of Armenia, 0009 Yerevan (Armenia); Dalyan, Y.B.; Davtyan, H.D. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Derdzyan, M.V. [Institute for Physical Research NAS, 0203 Ashtarak (Armenia); Grigoryan, B.A. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Grigoryan, N.E. [A.I. Alikhanyan National Science Laboratory (YerPhi), 0036 Yerevan (Armenia); Hakobyan, L.S. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Haroutyunian, S.G. [Yerevan State University, 0025 Yerevan (Armenia); Harutiunyan, V.V. [A.I. Alikhanyan National Science Laboratory (YerPhi), 0036 Yerevan (Armenia); Hovhannesyan, K.L. [Institute for Physical Research NAS, 0203 Ashtarak (Armenia); Khachatryan, V.G. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Martirosyan, N.W. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); State Engineering University of Armenia, 0009 Yerevan (Armenia); Melikyan, G.S. [State Engineering University of Armenia, 0009 Yerevan (Armenia); and others

    2016-09-01

    The AREAL laser-driven RF gun provides 2–5 MeV energy ultrashort electron pulses for experimental study in life and materials sciences. We report the first experimental results of the AREAL beam application in the study of molecular-genetic effects, silicon-dielectric structures, ferroelectric nanofilms, and single crystals for scintillators.

  2. A True Proteus: A history of energy conservation in German science and culture, 1847-1914

    NARCIS (Netherlands)

    Wegener, F.D.A.

    2009-01-01

    This thesis follows the career of the law of energy conservation in German science and culture between 1847 and 1914. There is an interesting contrast between the initial reception of Hermann Helmholtz’ 1847 treatise ‘Über die Erhaltung der Kraft’, which was rejected by the editor of the Annalen der

  3. Deliberate Science, Continuum Magazine: Clean Energy Innovation at NREL, Winter 2012 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on deliberate science.

  4. Incorporating Renewable Energy Science in Regional Landscape Design: Results from a Competition in The Netherlands

    Directory of Open Access Journals (Sweden)

    Renée M. de Waal

    2015-04-01

    Full Text Available Energy transition is expected to make an important contribution to sustainable development. Although it is argued that landscape design could foster energy transition, there is scant empirical research on how practitioners approach this new challenge. The research question central to this study is: To what extent and how is renewable energy science incorporated in regional landscape design? To address this knowledge gap, a case study of a regional landscape design competition in the Netherlands, held from 2010–2012, is presented. Its focus was on integral, strategic landscape transformation with energy transition as a major theme. Content analysis of the 36 competition entries was supplemented and triangulated with a survey among the entrants, observation of the process and a study of the competition documents and website. Results indicated insufficient use of key-strategies elaborated by renewable energy science. If landscape design wants to adopt a supportive role towards energy transition, a well-informed and evidence-based approach is highly recommended. Nevertheless, promising strategies for addressing the complex process of ensuring sustainable energy transition also emerged. They include the careful cultivation of public support by developing inclusive and bottom-up processes, and balancing energy-conscious interventions with other land uses and interests.

  5. APS Science 2006

    International Nuclear Information System (INIS)

    Gibson, J.M.; Fenner, R.B.; Long, G.; Borland, M.; Decker, G.

    2007-01-01

    In my five years as the Director of the Advanced Photon Source (APS), I have been fortunate to see major growth in the scientific impact from the APS. This year I am particularly enthusiastic about prospects for our longer-term future. Every scientific instrument must remain at the cutting edge to flourish. Our plans for the next generation of APS--an APS upgrade--got seriously in gear this year with strong encouragement from our users and sponsors. The most promising avenue that has emerged is the energy-recovery linac (ERL) (see article on page xx), for which we are beginning serious R and D. The ERL(at)APS would offer revolutionary performance, especially for x-ray imaging and ultrafast science, while not seriously disrupting the existing user base. I am very proud of our accelerator physics and engineering staff, who not only keep the current APS at the forefront, but were able to greatly impress our international Machine Advisory Committee with the quality of their work on the possible upgrade option (see page xx). As we prepare for long-term major upgrades, our plans to develop and optimize all the sectors at APS in the near future are advancing. Several new beamlines saw first light this year, including a dedicated powder diffraction beamline (11-BM), two instruments for inelastic x-ray scattering at sector 30, and the Center for Nanoscale Materials (CNM) Nanoprobe beamline at sector 26. Our partnership in the first x-ray free-electron laser (LCLS) to be built at Stanford contributes to revolutionary growth in ultrafast science (see page xx), and we are developing a pulse chirping scheme to get ps pulses at sector 7 of the APS within a year or so. In this report, you will find selected highlights of scientific research at the APS from calendar year 2006. The highlighted work covers diverse disciplines, from fundamental to applied science. In the article on page xx you can see the direct impact of APS research on technology. Several new products have emerged

  6. APS Science 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J. M.; Fenner, R. B.; Long, G.; Borland, M.; Decker, G.

    2007-05-24

    In my five years as the Director of the Advanced Photon Source (APS), I have been fortunate to see major growth in the scientific impact from the APS. This year I am particularly enthusiastic about prospects for our longer-term future. Every scientific instrument must remain at the cutting edge to flourish. Our plans for the next generation of APS--an APS upgrade--got seriously in gear this year with strong encouragement from our users and sponsors. The most promising avenue that has emerged is the energy-recovery linac (ERL) (see article on page xx), for which we are beginning serious R&D. The ERL{at}APS would offer revolutionary performance, especially for x-ray imaging and ultrafast science, while not seriously disrupting the existing user base. I am very proud of our accelerator physics and engineering staff, who not only keep the current APS at the forefront, but were able to greatly impress our international Machine Advisory Committee with the quality of their work on the possible upgrade option (see page xx). As we prepare for long-term major upgrades, our plans to develop and optimize all the sectors at APS in the near future are advancing. Several new beamlines saw first light this year, including a dedicated powder diffraction beamline (11-BM), two instruments for inelastic x-ray scattering at sector 30, and the Center for Nanoscale Materials (CNM) Nanoprobe beamline at sector 26. Our partnership in the first x-ray free-electron laser (LCLS) to be built at Stanford contributes to revolutionary growth in ultrafast science (see page xx), and we are developing a pulse chirping scheme to get ps pulses at sector 7 of the APS within a year or so. In this report, you will find selected highlights of scientific research at the APS from calendar year 2006. The highlighted work covers diverse disciplines, from fundamental to applied science. In the article on page xx you can see the direct impact of APS research on technology. Several new products have emerged from

  7. Teaching to the Next Generation Science Standards with Energy, Climate, and Water Focused Games

    Science.gov (United States)

    Mayhew, M. A.; Hall, M.; Civjan, N.

    2015-12-01

    We produced two fun-to-play card games with the theme, The Nexus of Energy, Water, and Climate, that directly support teaching to the NGSS. In the games, players come to understand how demand for energy, water use, and climate change are tightly intertwined. Analysis by scientists from the national laboratories ensured that the games are reflect current data and research. The games have been tested with high school and informal science educators and their students and have received a formal evaluation. The games website http://isenm.org/games-for-learning shows how the games align with the NGSS, the Common Core, and the NRC's Strands of Science Learning. It also contains an extensive collection of accessible articles on the nexus to support use of the games in instruction. Thirst for Power is a challenging resource management game. Players, acting as governors of regions, compete to be the first to meet their citizens' energy needs. A governor can choose from a variety of carbon-based or renewable energy sources, but each source uses water and has an environmental—including climate change—impact. Energy needs must be met using only the water resources allocated to the region and without exceeding the environmental impact limit. "ACTION" cards alter game play and increase competition. Challenge and Persuade is a game of scientific argumentation, using evidence on nexus-related fact cards. Players must evaluate information, develop fact-based arguments, and communicate their findings. One card deck contains a set of adjectives, a second a series of fact cards. Players use their fact cards to make the best argument that aligns with an adjective selected by the "Judge". Players take turns being the "Judge," who determines who made the best argument. The games particularly align with NGSS elements: Connections to Engineering, Technology, and Application of Science. Players come to understand the science and engineering behind many energy sources and their impacts

  8. Ultrafast carrier dynamics in band edge and broad deep defect emission ZnSe nanowires

    Science.gov (United States)

    Othonos, Andreas; Lioudakis, Emmanouil; Philipose, U.; Ruda, Harry E.

    2007-12-01

    Ultrafast carrier dynamics of ZnSe nanowires grown under different growth conditions have been studied. Transient absorption measurements reveal the dependence of the competing effects of state filling and photoinduced absorption on the probed energy states. The relaxation of the photogenerated carriers occupying defect states in the stoichiometric and Se-rich samples are single exponentials with time constants of 3-4ps. State filling is the main contribution for probe energies below 1.85eV in the Zn-rich grown sample. This ultrafast carrier dynamics study provides an important insight into the role that intrinsic point defects play in the observed photoluminescence from ZnSe nanowires.

  9. Energy, environment, and policy choices: Summer institutes for science and social studies educators

    Energy Technology Data Exchange (ETDEWEB)

    Marek, E.A.; Chiodo, J.J.; Gerber, B.L.

    1997-06-01

    The Center for Energy Education (CEE) is a partnership linking the University of Oklahoma, Close Up Foundation and Department of Energy. Based upon the theme of energy, environment and public policy, the CEE`s main purposes are to: (1) educate teachers on energy sources, environmental issues and decisionmaking choices regarding public policy; (2) develop interdisciplinary curricula that are interactive in nature (see attachments); (3) disseminate energy education curricula; (4) serve as a resource center for a wide variety of energy education materials; (5) provide a national support system for teachers in energy education; and (6) conduct research in energy education. The CEE conducted its first two-week experimentially-based program for educators during the summer of 1993. Beginning at the University of Oklahoma, 57 teachers from across the country examined concepts and issues related to energy and environment, and how the interdependence of energy and environment significantly influences daily life. During the second week of the institute, participants went to Washington, D.C. to examine the processes used by government officials to make critical decisions involving interrelationships among energy, environment and public policy. Similar institutes were conducted during the summers of 1994 and 1995 resulting in nearly 160 science and social studies educators who had participated in the CEE programs. Collectively the participants represented 36 states, the Pacific Territories, Puerto Rico, and Japan.

  10. U.S. Geological Survey Energy and Minerals science strategy: a resource lifecycle approach

    Science.gov (United States)

    Ferrero, Richard C.; Kolak, Jonathan J.; Bills, Donald J.; Bowen, Zachary H.; Cordier, Daniel J.; Gallegos, Tanya J.; Hein, James R.; Kelley, Karen D.; Nelson, Philip H.; Nuccio, Vito F.; Schmidt, Jeanine M.; Seal, Robert R.

    2013-01-01

    The economy, national security, and standard of living of the United States depend heavily on adequate and reliable supplies of energy and mineral resources. Based on population and consumption trends, the Nation’s use of energy and minerals can be expected to grow, driving the demand for ever broader scientific understanding of resource formation, location, and availability. In addition, the increasing importance of environmental stewardship, human health, and sustainable growth places further emphasis on energy and mineral resources research and understanding. Collectively, these trends in resource demand and the interconnectedness among resources will lead to new challenges and, in turn, require cutting- edge science for the next generation of societal decisions. The long and continuing history of U.S. Geological Survey contributions to energy and mineral resources science provide a solid foundation of core capabilities upon which new research directions can grow. This science strategy provides a framework for the coming decade that capitalizes on the growth of core capabilities and leverages their application toward new or emerging challenges in energy and mineral resources research, as reflected in five interrelated goals.

  11. Resolving ultrafast exciton migration in organic solids at the nanoscale

    Science.gov (United States)

    Ginsberg, Naomi

    The migration of Frenkel excitons, tightly-bound electron-hole pairs, in photosynthesis and in organic semiconducting films is critical to the efficiency of natural and artificial light harvesting. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton migration lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore. By combining the ultrafast super-resolved measurements with exciton hopping simulations we furthermore specify the nature (in addition to the extent) of exciton migration as a function of the intrinsic and ensemble chromophore energy scales that determine a spatio-energetic landscape for migration. In collaboration with: Samuel Penwell, Lucas Ginsberg, University of California, Berkeley and Rodrigo Noriega University of Utah.

  12. Locking Lasers to RF in an Ultrafast FEL

    International Nuclear Information System (INIS)

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-01

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  13. Ultrafast excited state relaxation in long-chain polyenes

    International Nuclear Information System (INIS)

    Antognazza, Maria Rosa; Lueer, Larry; Polli, Dario; Christensen, Ronald L.; Schrock, Richard R.; Lanzani, Guglielmo; Cerullo, Giulio

    2010-01-01

    Graphical abstract: Excited state dynamics of a long-chain polyene studied by femtosecond pump-probe spectroscopy. - Abstract: We present a comprehensive study, by femtosecond pump-probe spectroscopy, of excited state dynamics in a polyene that approaches the infinite chain limit. By excitation with sub-10-fs pulses resonant with the 0-0 S 0 → S 2 transition, we observe rapid loss of stimulated emission from the bright excited state S 2 , followed by population of the hot S 1 state within 150 fs. Vibrational cooling of S 1 takes place within 500 fs and is followed by decay back to S 0 with 1 ps time constant. By excitation with excess vibrational energy we also observe the ultrafast formation of a long-living absorption, that is assigned to the triplet state generated by singlet fission.

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. V V Namboodiri. Articles written in Journal of Chemical Sciences. Volume 124 Issue 1 January 2012 pp 177-186. Basic principles of ultrafast Raman loss spectroscopy · N K Rai A Y Lakshmanna V V Namboodiri S Umapathy · More Details Abstract Fulltext PDF. When a light ...

  15. Nanoscale control of energy and matter: challenges and opportunities for plasma science

    International Nuclear Information System (INIS)

    Ostrikov, Kostya

    2013-01-01

    Multidisciplinary challenges and opportunities in the ultimate ability to achieve nanoscale control of energy and matter are discussed using an example of the Plasma Nanoscience. This is an emerging multidisciplinary research field at the cutting edge of a large number of disciplines including but not limited to physics and chemistry of plasmas and gas discharges, materials science, surface science, nanoscience and nanotechnology, solid state physics, space physics and astrophysics, photonics, optics, plasmonics, spintronics, quantum information, physical chemistry, biomedical sciences and related engineering subjects. The origin, progress and future perspectives of this research field driven by the global scientific and societal challenges, is examined. The future potential of the Plasma Nanoscience to remain as a highly topical area in the global research and technological agenda in the Age of Fundamental-Level Control for a Sustainable Future is assessed using a framework of the five Grand Challenges for Basic Energy Sciences recently mapped by the US Department of Energy. It is concluded that the ongoing research is very relevant and is expected to substantially expand to competitively contribute to the solution of all of these Grand Challenges. The approach to control energy and matter at nano- and subnanoscales is based on identifying the prevailing carriers and transfer mechanisms of the energy and matter at the spatial and temporal scales that are most relevant to any particular nanofabrication process. Strong accent is made on the competitive edge of the plasma-based nanotechnology in applications related to the major socio-economic issues (energy, food, water, health and environment) that are crucial for a sustainable development of humankind. Several important emerging topics, opportunities and multidisciplinary synergies for the Plasma Nanoscience are highlighted. The main nanosafety issues are also discussed and the environment- and human health

  16. Proc. of the sixteenth symposium on energy engineering sciences, May 13-15, 1998, Argonne, IL.

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-05-13

    This Proceedings Volume includes the technical papers that were presented during the Sixteenth Symposium on Energy Engineering Sciences on May 13--15, 1998, at Argonne National Laboratory, Argonne, Illinois. The Symposium was structured into eight technical sessions, which included 30 individual presentations followed by discussion and interaction with the audience. A list of participants is appended to this volume. The DOE Office of Basic Energy Sciences (BES), of which Engineering Research is a component program, is responsible for the long-term, mission-oriented research in the Department. The Office has prime responsibility for establishing the basic scientific foundation upon which the Nation's future energy options will be identified, developed, and built. BES is committed to the generation of new knowledge necessary to solve present and future problems regarding energy exploration, production, conversion, and utilization, while maintaining respect for the environment. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, prolonging the useful life of energy-related structures and equipment, and developing advanced manufacturing technologies and materials processing. The program emphasis is on reducing costs through improved industrial production and performance and expanding the nation's store of fundamental knowledge for solving anticipated and unforeseen engineering problems in energy technologies. To achieve these goals, the Engineering Research Program supports approximately 130 research projects covering a broad spectrum of topics that cut across traditional engineering disciplines. The program

  17. NETL's Energy Data Exchange (EDX) - a coordination, collaboration, and data resource discovery platform for energy science

    Science.gov (United States)

    Rose, K.; Rowan, C.; Rager, D.; Dehlin, M.; Baker, D. V.; McIntyre, D.

    2015-12-01

    Multi-organizational research teams working jointly on projects often encounter problems with discovery, access to relevant existing resources, and data sharing due to large file sizes, inappropriate file formats, or other inefficient options that make collaboration difficult. The Energy Data eXchange (EDX) from Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is an evolving online research environment designed to overcome these challenges in support of DOE's fossil energy goals while offering improved access to data driven products of fossil energy R&D such as datasets, tools, and web applications. In 2011, development of NETL's Energy Data eXchange (EDX) was initiated and offers i) a means for better preserving of NETL's research and development products for future access and re-use, ii) efficient, discoverable access to authoritative, relevant, external resources, and iii) an improved approach and tools to support secure, private collaboration and coordination between multi-organizational teams to meet DOE mission and goals. EDX presently supports fossil energy and SubTER Crosscut research activities, with an ever-growing user base. EDX is built on a heavily customized instance of the open source platform, Comprehensive Knowledge Archive Network (CKAN). EDX connects users to externally relevant data and tools through connecting to external data repositories built on different platforms and other CKAN platforms (e.g. Data.gov). EDX does not download and repost data or tools that already have an online presence. This leads to redundancy and even error. If a relevant resource already has an online instance, is hosted by another online entity, EDX will point users to that external host either using web services, inventorying URLs and other methods. EDX offers users the ability to leverage private-secure capabilities custom built into the system. The team is presently working on version 3 of EDX which will incorporate big data analytical

  18. Energy Frontier Research Center Materials Science of Actinides (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Burns, Peter

    2011-01-01

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  19. Molecular Energy and Environmental Science: A Workshop Sponsored by The National Science Foundation and The Department of Energy May 26-27, 1999 in Rosemont, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Stair, Peter C [Northwestern Univ., Evanston, IL (United States); DeSimone, Joseph M. [University of North Carolina Chapel Hill; Frost, John W. [Michigan State Univ., East Lansing, MI (United States)

    1999-05-26

    Energy and the environment pose major scientific and technological challenges for the 21st century. New technologies for increasing the efficiency of harvesting and utilizing energy resources are essential to the nation’s economic competitiveness. At the same time, the quality of life in the United States depends inherently on the environmental impact of energy production and utilization. This interdependence makes it imperative to develop a better understanding of the environment and new strategies for minimizing the impact of energy-related activities. Recent advances in techniques for the synthesis and characterization of chemicals and materials and for the molecular control of biological organisms make it possible, for the first time, to address this imperative. Chemistry, with its focus on the molecular level, plays a central role in addressing the needs for fundamental understanding and technology development in both the energy and environmental fields. Understanding environmental processes and consequences requires studying natural systems, rather than focussing exclusively on laboratory models. Natural systems and their complexity pose an enormous, perhaps the ultimate, challenge to chemists, and will provide them with varied and exciting new problems for years to come. In addition, the complexity of the underlying systems and processes often requires multi-disciplinary programs that bridge the interfaces between chemistry and other disciplines. (See Figure 1) This has ramifications in the approach to funding research and suggests needs for broadening the educational training of future scientists and engineers in these programs. Figure 1. NSF and DOE should consider sponsoring research centers and focused research groups organized to optimize their impact on Technological Challenges of national interest. The research will have significant impact if it addresses issues of fundamental molecular science in one or more Enabling Research Areas. Approximately 7

  20. Applications of pulsed energy sources and hydrodynamic response to materials science

    International Nuclear Information System (INIS)

    Perry, F.; Nelson, W.

    1993-01-01

    The dynamic response of materials to pulsed, relativistic electron beams was studied for materials science applications over two decades ago. Presently, intense light ion beams are being explored for materials science applications. These include the Ion Beam Surface Treatment (IBEST) of materials for producing stronger and more corrosion-resistant materials and the evaporative deposition of polycrystalline thin films. Laser sources are also being extensively utilized as pulsed energy sources in medical science and in clinical applications. In particular, laser-tissue interactions are being investigated for laser angioplasty and surgery as well as cancer therapy. The understanding of the energy deposition and hydrodynamic response of a wide range of materials is essential to the success of these applications. In order to address these materials science applications, the authors are utilizing and developing high quality, energy deposition-hydrodynamic code techniques which can aid in the design and interpretation of experiments. Consequently, the authors strongly encourage the development of 3-dimensional, species-selective diagnostic techniques, e.g. Resonant Holographic Interferometry Spectroscopy (RHIS), to be used in analyzing the ablation plume in the thin film deposition experiments. In this presentation they show the results and discuss the limitations of calculations for these materials applications. They also discuss the status of the RHIS diagnostic

  1. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  2. Ultrafast magnetodynamics with free-electron lasers

    Science.gov (United States)

    Malvestuto, Marco; Ciprian, Roberta; Caretta, Antonio; Casarin, Barbara; Parmigiani, Fulvio

    2018-02-01

    The study of ultrafast magnetodynamics has entered a new era thanks to the groundbreaking technological advances in free-electron laser (FEL) light sources. The advent of these light sources has made possible unprecedented experimental schemes for time-resolved x-ray magneto-optic spectroscopies, which are now paving the road for exploring the ultimate limits of out-of-equilibrium magnetic phenomena. In particular, these studies will provide insights into elementary mechanisms governing spin and orbital dynamics, therefore contributing to the development of ultrafast devices for relevant magnetic technologies. This topical review focuses on recent advancement in the study of non-equilibrium magnetic phenomena from the perspective of time-resolved extreme ultra violet (EUV) and soft x-ray spectroscopies at FELs with highlights of some important experimental results.

  3. Ultra-fast framing camera tube

    Science.gov (United States)

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  4. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    DEFF Research Database (Denmark)

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class...... in the silicon nanocrystal films is dominated by trapping at the Si/SiO2 interface states, occurring on a 1–100 ps time scale depending on particle size and hydrogen passivation......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...

  5. Development of Scanning Ultrafast Electron Microscope Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Kimberlee Chiyoko [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Talin, Albert Alec [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michael, Joseph R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.

  6. Coherent combination of ultrafast fiber amplifiers

    International Nuclear Information System (INIS)

    Hanna, Marc; Guichard, Florent; Druon, Frédéric; Georges, Patrick; Zaouter, Yoann; Papadopoulos, Dimitris N

    2016-01-01

    We review recent progress in coherent combining of femtosecond pulses amplified in optical fibers as a way to scale the peak and average power of ultrafast sources. Different methods of achieving coherent pulse addition in space (beam combining) and time (divided pulse amplification) domains are described. These architectures can be widely classified into active methods, where the relative phases between pulses are subject to a servomechanism, and passive methods, where phase matching is inherent to the geometry. Other experiments that combine pulses with different spectral contents, pulses that have been nonlinearly broadened or successive pulses from a mode-locked laser oscillator, are then presented. All these techniques allow access to unprecedented parameter range for fiber ultrafast sources. (topical review)

  7. Silicon based ultrafast optical waveform sampling

    DEFF Research Database (Denmark)

    Ji, Hua; Galili, Michael; Pu, Minhao

    2010-01-01

    A 300 nmx450 nmx5 mm silicon nanowire is designed and fabricated for a four wave mixing based non-linear optical gate. Based on this silicon nanowire, an ultra-fast optical sampling system is successfully demonstrated using a free-running fiber laser with a carbon nanotube-based mode-locker as th......A 300 nmx450 nmx5 mm silicon nanowire is designed and fabricated for a four wave mixing based non-linear optical gate. Based on this silicon nanowire, an ultra-fast optical sampling system is successfully demonstrated using a free-running fiber laser with a carbon nanotube-based mode......-locker as the sampling source. A clear eye-diagram of a 320 Gbit/s data signal is obtained. The temporal resolution of the sampling system is estimated to 360 fs....

  8. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  9. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    International Nuclear Information System (INIS)

    Allen, Todd R.

    2011-01-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center's investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center's research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  10. Blockage of ultrafast and directional diffusion of Li atoms on phosphorene with intrinsic defects.

    Science.gov (United States)

    Zhang, Ruiqi; Wu, Xiaojun; Yang, Jinlong

    2016-02-21

    The diffusion of Li in electrode materials is a key factor for the charging/discharging rate capacity of a Li-ion battery (LIB). Recently, two-dimensional phosphorene has been proposed as a very promising electrode material due to its ultrafast and directional lithium diffusion, as well as large energy capacity. Herein, on the basis of density functional theory, we report that intrinsic point defects, including vacancy and stone-wales defects, will block the directional ultrafast diffusion of lithium in phosphorene. On the defect-free phosphorene, diffusion of Li along the zig-zag lattice direction is 1.6 billion times faster than along the armchair lattice direction, and 260 times faster than that in graphite. After introducing intrinsic vacancy and stone-wales defect, the diffusion energy barrier of Li along the zig-zag lattice direction increases sharply to the range of 0.17-0.49 eV, which blocks the ultrafast migration of lithium along the zig-zag lattice direction. Moreover, the open circuit voltage increases with the emergence of defects, which is not suitable for anode materials. In addition, the formation energies of the defects in phosphorene are considerably lower than those in graphene and silicene sheet; therefore, it is highly important to generate defect-free phosphorene for LIB applications.

  11. 9th Pacific Basin Nuclear Conference. Nuclear energy, science and technology - Pacific partnership. Proceedings Volume 2

    International Nuclear Information System (INIS)

    1994-04-01

    The theme of the 9th Pacific Basin Nuclear Conference held in Sydney from 1-6 May 1994, embraced the use of atom in energy production and in science and technology. The focus was on selected topics of current and on-going interest to countries around the Pacific Basin. The two-volume proceedings include both invited and contributed papers which have been indexed separately. This document, Volume 2 covers the following topics: education and training in Nuclear Science, public acceptance, nuclear safety and radiation protection, nuclear fuel resources and their utilisation, research reactors, cyclotrons and accelerators. refs., tabs., figs., ills

  12. Learning About Energy Resources Through Student Created Video Documentaries in the University Science Classroom

    Science.gov (United States)

    Wade, P.; Courtney, A.

    2010-12-01

    Students enrolled in an undergraduate non-science majors’ Energy Perspectives course created 10-15 minute video documentaries on topics related to Energy Resources and the Environment. Video project topics included wave, biodiesel, clean coal, hydro, solar and “off-the-grid” energy technologies. No student had any prior experience with creating video projects. Students had Liberal Arts academic backgrounds that included Anthropology, Theater Arts, International Studies, English and Early Childhood Education. Students were required to: 1) select a topic, 2) conduct research, 3) write a narrative, 4) construct a project storyboard, 5) shoot or acquire video and photos (from legal sources), 6) record the narrative, and 7) construct the video documentary. This study describes the instructional approach of using student created video documentaries as projects in an undergraduate non-science majors’ science course. Two knowledge survey instruments were used for assessment purposes. Each instrument was administered Pre-, Mid- and Post course. One survey focused on the skills necessary to research and produce video documentaries. Results showed students acquired enhanced technology skills especially with regard to research techniques, writing skills and video editing. The second survey assessed students’ content knowledge acquired from each documentary. Results indicated students’ increased their content knowledge of energy resource topics. Students reported very favorable evaluations concerning their experience with creating “Ken Burns” video project documentaries.

  13. Thirteenth symposium on energy engineering sciences: Proceedings. Fluid/thermal processes, systems analysis and control

    International Nuclear Information System (INIS)

    1995-01-01

    The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment, and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; and (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The meeting covered the following areas: (1) fluid mechanics 1--fundamental properties; (2) fluid mechanics 2--two phase flow; (3) thermal processes; (4) fluid mechanics 3; (5) process analysis and control; (6) fluid mechanics 4--turbulence; (7) fluid mechanics 5--chaos; (8) materials issues; and (9) plasma processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  14. Thirteenth symposium on energy engineering sciences: Proceedings. Fluid/thermal processes, systems analysis and control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment, and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; and (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The meeting covered the following areas: (1) fluid mechanics 1--fundamental properties; (2) fluid mechanics 2--two phase flow; (3) thermal processes; (4) fluid mechanics 3; (5) process analysis and control; (6) fluid mechanics 4--turbulence; (7) fluid mechanics 5--chaos; (8) materials issues; and (9) plasma processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  15. Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds

    International Nuclear Information System (INIS)

    Steil, Daniel; Schmitt, Oliver; Fetzer, Roman; Aeschlimann, Martin; Cinchetti, Mirko; Kubota, Takahide; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Rodan, Steven; Blum, Christian G F; Wurmehl, Sabine; Balke, Benjamin

    2015-01-01

    Nowadays, a wealth of information on ultrafast magnetization dynamics of thin ferromagnetic films exists in the literature. Information is, however, scarce on bulk single crystals, which may be especially important for the case of multi-sublattice systems. In Heusler compounds, representing prominent examples for such multi-sublattice systems, off-stoichiometry and degree of order can significantly change the magnetic properties of thin films, while bulk single crystals may be generally produced with a much more well-defined stoichiometry and a higher degree of ordering. A careful characterization of the local structure of thin films versus bulk single crystals combined with ultrafast demagnetization studies can, thus, help to understand the impact of stoichiometry and order on ultrafast spin dynamics.Here, we present a comparative study of the structural ordering and magnetization dynamics for thin films and bulk single crystals of the family of Heusler alloys with composition Co 2 Fe 1 − x Mn x Si. The local ordering is studied by 59 Co nuclear magnetic resonance (NMR) spectroscopy, while the time-resolved magneto-optical Kerr effect gives access to the ultrafast magnetization dynamics. In the NMR studies we find significant differences between bulk single crystals and thin films, both regarding local ordering and stoichiometry. The ultrafast magnetization dynamics, on the other hand, turns out to be mostly unaffected by the observed structural differences, especially on the time scale of some hundreds of femtoseconds. These results confirm hole-mediated spin-flip processes as the main mechanism for ultrafast demagnetization and the robustness of this demagnetization channel against defect states in the minority band gap as well as against the energetic position of the band gap with respect to the Fermi energy. The very small differences observed in the magnetization dynamics on the picosecond time-scale, on the other hand, can be explained by considering the

  16. Expected role of nuclear science and technology to support the sustainable supply of energy in Indonesia

    International Nuclear Information System (INIS)

    Soentono, Soedyartomo; Aziz, Ferhat

    2008-01-01

    Energy resources are available in Indonesia but small per capita. The increase of oil price and its reserve depletion rate dictates to decrease the oil consumption. Therefore, it is imperative to increase the shares of other fossils as well as the new and renewable sources of energy in various energy sectors substituting the oil. The introduction of nuclear power plant becomes more indispensable, although the share is to be small but significantly important for electric generation in Java-Madura-Bali grid. Nuclear technology can have also important role enabling the increase of the shares of renewable, e.g. geothermal, hydro and bio-fuels as well as fossil energies to meet more sustainable energy mix sufficing the energy demand to attain intended economic and population growths while maintaining the environment. The first introduced nuclear power plant is to be the proven ones, but the innovative nuclear energy systems being developed by various countries will eventually also be partially employed to further improve the sustainability. The nuclear science and technology are to be symbiotic and synergistic to other sources of energy to enhance the sustainable supply of energy. (author)

  17. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Fuciman, Marcel; Kobayashi, Masayuki; Frank, Harry A; Blankenship, Robert E

    2011-10-01

    The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N=11) and spirilloxanthin (N=13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N=13) to play the role of the direct quencher of the excited singlet state of BChl. © Springer Science+Business Media B.V. 2011

  18. Ultrafast spectroscopic investigation of a fullerene poly(3-hexylthiophene) dyad

    Science.gov (United States)

    Banerji, Natalie; Seifter, Jason; Wang, Mingfeng; Vauthey, Eric; Wudl, Fred; Heeger, Alan J.

    2011-08-01

    We present the femtosecond spectroscopic investigation of a covalently linked dyad, PCB-P3HT, formed by a segment of the conjugated polymer P3HT (regioregular poly(3-hexylthiophene)) that is end capped with the fullerene derivative PCB ([6,6]-phenyl-C61-butyric acid ester), adapted from PCBM. The fluorescence of the P3HT segment in tetrahydrofuran (THF) solution is reduced by 64% in the dyad compared to a control compound without attached fullerene (P3HT-OH). Fluorescence upconversion measurements reveal that the partial fluorescence quenching of PCB-P3HT in THF is multiphasic and occurs on an average time scale of 100 ps, in parallel to excited-state relaxation processes. Judging from ultrafast transient absorption experiments, the origin of the quenching is excitation energy transfer from the P3HT donor to the PCB acceptor. Due to the much higher solubility of P3HT compared to PCB in THF, the PCB-P3HT dyad molecules self-assemble into micelles. When pure C60 is added to the solution, it is incorporated into the fullerene-rich center of the micelles. This dramatically increases the solubility of C60 but does not lead to significant additional quenching of the P3HT fluorescence by the C60 contained in the micelles. In PCB-P3HT thin films drop-cast from THF, the micelle structure is conserved. In contrast to solution, quantitative and ultrafast (microscopy images. Ultrafast charge separation occurs also for the fibrous morphology, but the transient absorption experiments show fast loss of part of the charge carriers due to intensity-induced recombination and annihilation processes and monomolecular interfacial trap-mediated or geminate recombination. The yield of the long-lived charge carriers in the highly organized fibers is however comparable to that obtained with annealed P3HT:PCBM blends. PCB-P3HT can therefore be considered as an active material in organic photovoltaic devices.

  19. Ultrafast time-resolved spectroscopy of xanthophylls at low temperature.

    Science.gov (United States)

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; Frank, Harry A

    2008-03-20

    Many of the spectroscopic features and photophysical properties of xanthophylls and their role in energy transfer to chlorophyll can be accounted for on the basis of a three-state model. The characteristically strong visible absorption of xanthophylls is associated with a transition from the ground state S0 (1(1)Ag-) to the S2 (1(1)Bu+) excited state. The lowest lying singlet state denoted S1 (2(1)Ag-), is a state into which absorption from the ground state is symmetry forbidden. Ultrafast optical spectroscopic studies and quantum computations have suggested the presence of additional excited singlet states in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+). One of these is denoted S* and has been suggested in previous work to be associated with a twisted molecular conformation of the molecule in the S1 (2(1)Ag-) state. In this work, we present the results of a spectroscopic investigation of three major xanthophylls from higher plants: violaxanthin, lutein, and zeaxanthin. These molecules have systematically increasing extents of pi-electron conjugation from nine to eleven conjugated carbon-carbon double bonds. All-trans isomers of the molecules were purified by high-performance liquid chromatography (HPLC) and studied by steady-state and ultrafast time-resolved optical spectroscopy at 77 K. Analysis of the data using global fitting techniques has revealed the inherent spectral properties and ultrafast dynamics of the excited singlet states of each of the molecules. Five different global fitting models were tested, and it was found that the data are best explained using a kinetic model whereby photoexcitation results in the promotion of the molecule into the S2 (1(1)Bu+) state that subsequently undergoes decay to a vibrationally hot S1 (1(1)Ag-) state and with the exception of violaxanthin also to the S* state. The vibrationally hot S1 (1(1)Ag-) state then cools to a vibrationally relaxed S1 (2(1)Ag-) state in less than a picosecond. It was also found that a portion

  20. Energy payback and CO2 gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences

    International Nuclear Information System (INIS)

    Kulcinski, G.L.

    2002-01-01

    A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES)

  1. Hotspot-mediated non-dissipative and ultrafast plasmon passage

    Science.gov (United States)

    Roller, Eva-Maria; Besteiro, Lucas V.; Pupp, Claudia; Khorashad, Larousse Khosravi; Govorov, Alexander O.; Liedl, Tim

    2017-08-01

    Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices. Coherent energy oscillations between two spatially separated plasmonic entities via a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles. Here, we show the assembly and optical analysis of a triple-particle system consisting of two gold nanoparticles with an inter-spaced silver island. We observe strong plasmonic coupling between the spatially separated gold particles, mediated by the connecting silver particle, with almost no dissipation of energy. As the excitation energy of the silver island exceeds that of the gold particles, only quasi-occupation of the silver transfer channel is possible. We describe this effect both with exact classical electrodynamic modelling and qualitative quantum-mechanical calculations. We identify the formation of strong hotspots between all particles as the main mechanism for the lossless coupling and thus coherent ultrafast energy transfer between the remote partners. Our findings could prove useful for quantum gate operations, as well as for classical charge and information transfer processes.

  2. A new era in nuclear energy science. When will radiation application receive citizenship ranking along with energy utilization

    International Nuclear Information System (INIS)

    Tabata, Yoneho; Tagawa, Seiichi; Saito, Naoki; Fujii, Yasuhiko

    2005-01-01

    Japan has been obtaining definite results in these decades in both fields of nuclear power generation (energy utilization) and radiation application thus contributing to a sustainable development of the world. The present special issue of 'Atom Eye' introduces (1) Japanese achievements in cooperative relationships with developing countries in the field of radiation applications, (2) history of research and development of radiation-utilization techniques in Japan, (3) present status of quantum-beam applications in life-science, medial application, and nano-technology, etc, (4) applications of high-intensity neutron source, (5) cancer therapy using high-energy heavy-ion beams, (6) radiation sterilizations, (7) radiation mutations, (8) three interviewer's reports visiting several research institutes of radiation applications in Japan, and introduction of (9) a bencher enterprise and also (10) an accelerator business. (S. Ohno)

  3. The Project for the High Energy Materials Science Beamline at Petra III

    International Nuclear Information System (INIS)

    Martins, R. V.; Lippmann, T.; Beckmann, F.; Schreyer, A.

    2007-01-01

    The high energy materials science beamline will be among the first fourteen beamlines planned to be operational in 2009 at the new third generation synchrotron light source Petra III at DESY, Germany. The operation and funding of this beamline is assured by GKSS. 70% of the beamline will be dedicated to materials science. The remaining 30% are reserved for physics and are covered by DESY. The materials science activities will be concentrating on three intersecting topics which are industrial, applied, and fundamental research. The beamline will combine three main features: Firstly, the high flux, fast data acquisition systems, and the beamline infrastructure will allow carrying out complex and highly dynamic in-situ experiments. Secondly, a high flexibility in beam shaping will be available, fully exploiting the high brilliance of the source. Thirdly, the beamline will provide the possibility to merge in one experiment different analytical techniques such as diffraction and tomography

  4. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  5. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    International Nuclear Information System (INIS)

    Abeyratne, S.; Accardi, A.; Ahmed, S.; Barber, D.; Bisognano, J.; Bogacz, A.; Castilla, A.; Chevtsov, P.; Corneliussen, S.; Deconinck, W.; Degtiarenko, P.; Delayen, J.; Derbenev, Ya.; DeSilva, S.; Douglas, D.; Dudnikov, V.; Ent, R.; Erdelyi, B.; Evtushenko, P.; Fujii, Yu; Filatov, Yury; Gaskell, D.; Geng, R.; Guzey, V.; Horn, T.; Hutton, A.; Hyde, C.; Johnson, R.; Kim, Y.; Klein, F.; Kondratenko, A.; Kondratenko, M.; Krafft, G.; Li, R.; Lin, F.; Manikonda, S.; Marhauser, F.; McKeown, R.; Morozov, V.; Dadel-Turonski, P.; Nissen, E.; Ostroumov, P.; Pivi, M.; Pilat, F.; Poelker, M.; Prokudin, A.; Rimmer, R.; Satogata, T.; Sayed, H.; Spata, M.; Sullivan, M.; Tennant, C.; Terzic, B.; Tiefenback, M.; Wang, H.; Wang, S.; Weiss, C.; Yunn, B.; Zhang, Y.

    2012-01-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  6. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David Juarez [Univ. of Guanajuato (Mexico)

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  7. Wavelet analysis of molecular dynamics: Efficient extraction of time-frequency information in ultrafast optical processes

    International Nuclear Information System (INIS)

    Prior, Javier; Castro, Enrique; Chin, Alex W.; Almeida, Javier; Huelga, Susana F.; Plenio, Martin B.

    2013-01-01

    New experimental techniques based on nonlinear ultrafast spectroscopies have been developed over the last few years, and have been demonstrated to provide powerful probes of quantum dynamics in different types of molecular aggregates, including both natural and artificial light harvesting complexes. Fourier transform-based spectroscopies have been particularly successful, yet “complete” spectral information normally necessitates the loss of all information on the temporal sequence of events in a signal. This information though is particularly important in transient or multi-stage processes, in which the spectral decomposition of the data evolves in time. By going through several examples of ultrafast quantum dynamics, we demonstrate that the use of wavelets provide an efficient and accurate way to simultaneously acquire both temporal and frequency information about a signal, and argue that this greatly aids the elucidation and interpretation of physical process responsible for non-stationary spectroscopic features, such as those encountered in coherent excitonic energy transport

  8. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers

    KAUST Repository

    Kim, J.

    2014-12-04

    The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2. Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2 monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli-electron volts between the K and K′ valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications.

  9. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers

    KAUST Repository

    Kim, J.; Hong, X.; Jin, C.; Shi, S.-F.; Chang, C.-Y. S.; Chiu, Ming-Hui; Li, Lain-Jong; Wang, F.

    2014-01-01

    The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2. Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2 monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli-electron volts between the K and K′ valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications.

  10. Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse

    International Nuclear Information System (INIS)

    Wang Xiaofang; Saleh, Ned; Krishnan, Mohan; Wang Haiwen; Backus, Sterling; Murnane, Margaret; Kapteyn, Henry; Umstadter, Donald; Wang Quandong; Shen Baifei

    2003-01-01

    Mega-electron-volt (MeV) electron emission from the interaction of an ultrafast (τ∼29 fs), intense (>10 18 W/cm 2 ) laser pulse with underdense plasmas has been studied. A beam of MeV electrons with a divergence angle as small as 1 deg. is observed in the forward direction, which is correlated with relativistic filamentation of the laser pulse in plasmas. A novel net-energy-gain mechanism is proposed for electron acceleration resulting from the relativistic filamentation and beam breakup. These results suggest an approach for generating a beam of femtosecond, MeV electrons at a kilohertz repetition rate with a compact ultrafast intense laser system

  11. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    Science.gov (United States)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  12. The energy-climate continuum lessons from basic science and history

    CERN Document Server

    Bret, Antoine

    2014-01-01

    An entertaining, highly informative introduction to the intimate linkage between the energy and climate debates Illustrates the basic science behind energy and climate with back-of-the-envelope calculations, that even non-experts can easily follow without a calculator Thus provides an access to getting an accurate feeling for orders of magnitudes from simple estimations A conversation starter for some of the most debated topics of today Compares the actual situation with historic cases of societies at a turning point and finds warning as well as encouraging examples For everyone, who wan

  13. New Aspects of Photocurrent Generation at Graphene pn Junctions Revealed by Ultrafast Optical Measurements

    Science.gov (United States)

    Aivazian, Grant; Sun, Dong; Jones, Aaron; Ross, Jason; Yao, Wang; Cobden, David; Xu, Xiaodong

    2012-02-01

    The remarkable electrical and optical properties of graphene make it a promising material for new optoelectronic applications. However, one important, but so far unexplored, property is the role of hot carriers in charge and energy transport at graphene interfaces. Here we investigate the photocurrent (PC) dynamics at a tunable graphene pn junction using ultrafast scanning PC microscopy. Pump-probe measurements show a temperature dependent relaxation time of photogenerated carriers that increases from 1.5ps at 290K to 4ps at 20K; while the amplitude of the PC is independent of the lattice temperature. These observations imply that it is hot carriers, not phonons, which dominate ultrafast energy transport. Gate dependent measurements show many interesting features such as pump induced saturation, enhancement, and sign reversal of probe generated PC. These observations reveal that the underlying PC mechanism is a combination of the thermoelectric and built-in electric field effects. Our results enhance the understanding of non-equilibrium electron dynamics, electron-electron interactions, and electron-phonon interactions in graphene. They also determine fundamental limits on ultrafast device operation speeds (˜500 GHz) for graphene-based photodetectors.

  14. Synchronous Measurement of Ultrafast Anisotropy Decay of the B850 in Bacterial LH2 Complex

    International Nuclear Information System (INIS)

    Wang Yun-Peng; Du Lu-Chao; Zhu Gang-Bei; Wang Zhuan; Weng Yu-Xiang

    2015-01-01

    Ultrafast anisotropic decay is a prominent parameter revealing ultrafast energy and electron transfer; however, it is difficult to be determined reliably owing to the requirement of a simultaneous availability of the parallel and perpendicular polarized decay kinetics. Nowadays, any measurement of anisotropic decay is a kind of approach to the exact simultaneity. Here we report a novel method for a synchronous ultrafast anisotropy decay measurement, which can well determine the anisotropy, even at a very early time, as the rising phase of the excitation laser pulse. The anisotropic decay of the B850 in bacterial light harvesting antenna complex LH2 of Rhodobacter sphaeroides in solution at room temperature with coherent excitation is detected by this method, which shows a polarization response time of 30 fs, and the energy transfer from the initial excitation to the bacteriochlorophylls in B850 ring takes about 70 fs. The anisotropic decay that is probed at the red side of the absorption spectrum, such as 880 nm, has an initial value of 0.4, corresponding to simulated emission, while the blue side with an anisotropy of 0.1 contributes to the ground-state bleaching. Our results show that the coherent excitation covering the whole ring might not be realized owing to the symmetry breaking of LH2: from C_9 symmetry in membrane to C_2 symmetry in solution. (atomic and molecular physics)

  15. Synchronous Measurement of Ultrafast Anisotropy Decay of the B850 in Bacterial LH2 Complex

    Science.gov (United States)

    Wang, Yun-Peng; Du, Lu-Chao; Zhu, Gang-Bei; Wang, Zhuan; Weng, Yu-Xiang

    2015-02-01

    Ultrafast anisotropic decay is a prominent parameter revealing ultrafast energy and electron transfer; however, it is difficult to be determined reliably owing to the requirement of a simultaneous availability of the parallel and perpendicular polarized decay kinetics. Nowadays, any measurement of anisotropic decay is a kind of approach to the exact simultaneity. Here we report a novel method for a synchronous ultrafast anisotropy decay measurement, which can well determine the anisotropy, even at a very early time, as the rising phase of the excitation laser pulse. The anisotropic decay of the B850 in bacterial light harvesting antenna complex LH2 of Rhodobacter sphaeroides in solution at room temperature with coherent excitation is detected by this method, which shows a polarization response time of 30 fs, and the energy transfer from the initial excitation to the bacteriochlorophylls in B850 ring takes about 70 fs. The anisotropic decay that is probed at the red side of the absorption spectrum, such as 880 nm, has an initial value of 0.4, corresponding to simulated emission, while the blue side with an anisotropy of 0.1 contributes to the ground-state bleaching. Our results show that the coherent excitation covering the whole ring might not be realized owing to the symmetry breaking of LH2: from C9 symmetry in membrane to C2 symmetry in solution.

  16. Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    2014-01-01

    The Radiological and Medical Sciences Research Institute was established in 2009, as the forth research institute of the Ghana Atomic Energy Commission. This Annual Report provides an overview of the major activities of the Institutes in the year 2014. Major items covered in the report include: Strategic objectives; Collaborations; Personnel and Organisational Structure; Facilities and Technical Services; Summary of Research and Development Projects; Human Resource Development; Publications and Technical Reports.

  17. Vertically and Horizontally Mounted Wind Mills : Wind Energy Production in Tampere University of Applied Sciences

    OpenAIRE

    Evdokimova, Ekaterina

    2013-01-01

    The purpose of this thesis was to gather information about vertical and horizontal wind mills and to complete a research on wind power production by wind mills which were installed in Tampere University of Applied Sciences. The horizontally mounted wind mill Windspot 3.5 and vertically mounted wind mill Cypress were installed in summer 2011 but they started functioning and supplying energy only during 2012. In the theoretical part of this thesis wind speed and wind power production is dis...

  18. Weak lensing magnification in the Dark Energy Survey Science Verification data

    Science.gov (United States)

    Garcia-Fernandez, M.; Sanchez, E.; Sevilla-Noarbe, I.; Suchyta, E.; Huff, E. M.; Gaztanaga, E.; Aleksić, J.; Ponce, R.; Castander, F. J.; Hoyle, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T. F.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Jarvis, M.; Kirk, D.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; MacCrann, N.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Scarpine, V.; Schubnell, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Tarle, G.; Thomas, D.; Walker, A. R.; Wester, W.; DES Collaboration

    2018-05-01

    In this paper, the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using the Dark Energy Survey Science Verification data set. This analysis is carried out for galaxies that are selected only by its photometric redshift. An extensive analysis of the systematic effects, using new methods based on simulations is performed, including a Monte Carlo sampling of the selection function of the survey.

  19. DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

    2007-12-12

    This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

  20. Ultrafast photoinduced structure phase transition in antimony single crystals

    NARCIS (Netherlands)

    Fausti, Daniele; Misochko, Oleg V.; van Loosdrecht, Paul H. M.

    2009-01-01

    Picosecond Raman scattering is used to study the photoinduced ultrafast dynamics in Peierls distorted antimony. We find evidence for an ultrafast nonthermal reversible structural phase transition. Most surprisingly, we find evidence that this transition evolves toward a lower symmetry in contrast to

  1. Ultrafast electron diffraction studies of optically excited thin bismuth films

    International Nuclear Information System (INIS)

    Rajkovic, Ivan

    2008-01-01

    This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)

  2. Generation of ultrafast pulse via combined effects of stimulated

    Indian Academy of Sciences (India)

    A project of ultrafast pulse generation has been presented and demonstrated by utilizing the combined nonlinear effects of stimulated Raman scattering (SRS) and non-degenerate two-photon absorption (TPA) based on silicon nanophotonic chip, in which a continuous wave (CW) and an ultrafast dark pulse are ...

  3. Ultrafast electron diffraction studies of optically excited thin bismuth films

    Energy Technology Data Exchange (ETDEWEB)

    Rajkovic, Ivan

    2008-10-21

    This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)

  4. Review of the Strategic Plan for International Collaboration on Fusion Science and Technology Research. Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    1998-01-01

    The United States Government has employed international collaborations in magnetic fusion energy research since the program was declassified in 1958. These collaborations have been successful not only in producing high quality scientific results that have contributed to the advancement of fusion science and technology, they have also allowed us to highly leverage our funding. Thus, in the 1980s, when the funding situation made it necessary to reduce the technical breadth of the U.S. domestic program, these highly leveraged collaborations became key strategic elements of the U.S. program, allowing us to maintain some degree of technical breadth. With the recent, nearly complete declassification of inertial confinement fusion, the use of some international collaboration is expected to be introduced in the related inertial fusion energy research activities as well. The United States has been a leader in establishing and fostering collaborations that have involved scientific and technological exchanges, joint planning, and joint work at fusion facilities in the U.S. and worldwide. These collaborative efforts have proven mutually beneficial to the United States and our partners. International collaborations are a tool that allows us to meet fusion program goals in the most effective way possible. Working with highly qualified people from other countries and other cultures provides the collaborators with an opportunity to see problems from new and different perspectives, allows solutions to arise from the diversity of the participants, and promotes both collaboration and friendly competition. In short, it provides an exciting and stimulating environment resulting in a synergistic effect that is good for science and good for the people of the world.

  5. Forging the Solution to the Energy Challenge: The Role of Materials Science and Materials Scientists

    Science.gov (United States)

    Wadsworth, Jeffrey

    2010-05-01

    The energy challenge is central to the most important strategic problems facing the United States and the world. It is increasingly clear that even large-scale deployments of the best technologies available today cannot meet the rising energy demands of a growing world population. Achieving a secure and sustainable energy future will require full utilization of, and substantial improvements in, a comprehensive portfolio of energy systems and technologies. This goal is complicated by several factors. First, energy strategies are inextricably linked to national security and health issues. Second, in developing and deploying energy technologies, it is vital to consider not only environmental issues, such as global climate change, but also economic considerations, which strongly influence both public and political views on energy policy. Third, a significant and sustained effort in basic and applied research and development (R&D) will be required to deliver the innovations needed to ensure a desirable energy future. Innovations in materials science and engineering are especially needed to overcome the limits of essentially all energy technologies. A wealth of historical evidence demonstrates that such innovations are also the key to economic prosperity. From the development of the earliest cities around flint-trading centers, to the Industrial Revolution, to today’s silicon-based global economy, the advantage goes to those who lead in exploiting materials. I view our challenge by considering the rate of innovation and the transition of discovery to the marketplace as the relationship among R&D investment, a skilled and talented workforce, business innovations, and the activities of competitors. Most disturbing in analyzing this relationship is the need for trained workers in science, technology, engineering, and mathematics (STEM). To develop the STEM workforce needed for innovation, we need sustainable, positive change in STEM education at all levels from preschool

  6. Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society

    Science.gov (United States)

    Akimoto, Katsuhiro; Suzuki, Yoshikazu; Monirul Islam, Muhammad

    2015-04-01

    This volume of the Journal of Physics: Conference Series contains papers presented at the Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society (TJS 2014) held at Gammarth, Republic of Tunisia on November 28-30, 2014. The TJS 2014 is based on the network of the Tunisia-Japan Symposium on Science, Society and Technology (TJASSST) which has been regularly organized since 2000. The symposium was focused on the technological developments of energy and materials for the realization of sustainable society. To generate technological breakthrough and innovation, it seems to be effective to discuss with various fields of researchers such as solid-state physicists, chemists, surface scientists, process engineers and so on. In this symposium, there were as many as 109 attendees from a wide variety of research fields. The technical session consisted of 106 contributed presentations including 3 plenary talks and 7 key-note talks. We hope the Conference Series and publications like this volume will contribute to the progress in research and development in the field of energy and material sciences for sustainable society and in its turn contribute to the creation of cultural life and peaceful society.

  7. The NIF: An international high energy density science and inertial fusion user facility

    Directory of Open Access Journals (Sweden)

    Moses E.I.

    2013-11-01

    Full Text Available The National Ignition Facility (NIF, a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF and high-energy-density science (HEDS, is operational at Lawrence Livermore National Laboratory (LLNL. A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC, an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE. This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  8. The NIF: An international high energy density science and inertial fusion user facility

    Science.gov (United States)

    Moses, E. I.; Storm, E.

    2013-11-01

    The National Ignition Facility (NIF), a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF) and high-energy-density science (HEDS), is operational at Lawrence Livermore National Laboratory (LLNL). A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC), an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE). This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  9. Seventh Semiannual Report of the Commission to the Congress: Atomic Energy and the Physical Sciences, January 1950

    Energy Technology Data Exchange (ETDEWEB)

    Lilienthal, David E.

    1950-01-01

    The document represents the seventh semiannual Atomic Energy Commission (AEC) report to Congress. The report sums up briefly the major activities and developments in the national atomic energy program in Part I. Part II focuses on research in the physical sciences and progress in atomic energy.

  10. The power of science economic research and European decision-making : the case of energy and environment policies

    CERN Document Server

    Rossetti di Valdalbero, Domenico

    2010-01-01

    This book highlights the interaction between science and politics and between research in economics and European Union policy-making. It focuses on the use of Quantitative tools, Top-down and Bottom-up models in up-stream European decision-making process through five EU policy case studies: energy taxation, climate change, energy efficiency, renewable energy, and internalisation of external costs.

  11. Produktivitas Penulis Indonesia di Riset Energi Internasional (Kajian Jurnal ScienceDirect

    Directory of Open Access Journals (Sweden)

    Himawanto Himawanto

    2016-07-01

    Full Text Available National energy crisis is the biggest challenge that needs to be addressed through research activities in order to produce innovative technologies. While research products that have created will affect to the growth of scientific publications. ScienceDirect is one of reputable source of knowledge that also accommodates the national of energy research products. So its was revealed interesting in order measure the progress of science in Indonesia. Bibliometric evaluations used to determine product research capacity, scientists membership, and national territory champions. During 2006-2015 the performance of national scientists in international energy research collected in 18 scientific journals with of 322 articles results. Indonesia has the highest achievement through performance of scientists that majority affiliated with academic and government. Besides contributing independently, scientists also produces research work collaboratively reached 91.19%. The number of collaborative greatly affect to the national capability and demonstrates the expertise of Indonesia in leading of energy research cooperation. Moreover, there are many countries in four continents have participated and affect to the image of Indonesia in global arena. There are five island areas nationwide based on geographical expansion of institutions and researchers on the island of Java has participate significantly.

  12. Adult education about atomic energy, 1945-1948, as a case study in science for society

    International Nuclear Information System (INIS)

    Wakeley, L.D.

    1984-01-01

    The sudden existence of atomic energy presented five challenges to science education for the adult public: (1) inform adults that atomic energy existed; (2) teach them its scientific basis, and potential peacetime uses; (3) correct mistaken impressions from erroneous media coverage; (4) promote civic literacy and participation in decision making; and (5) inform voters about pending atomic energy legislation. Newspapers, magazines, radio, and newsreels were the major sources of informal adult education, together reaching 93% of adults. But these informational media lacked educational structure, and failed to meet the citizenship needs of adults. During that pre-television era, discussion groups were a common form of social gathering and nonformal education. Books and pamphlets for these groups were essential to a system of adult science education. They provided data for the open exchange of opinions that is essential to the process of adult education. The League of Women Voters of the United States established a network of discussion groups nationwide, providing printed materials for all five purposes. These programs enjoyed mixed success, providing at least local pockets of public enlightenment. By 1948, the Atomic Energy Commission was facilitating public education, especially in private industry and the business sector

  13. The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis

    International Nuclear Information System (INIS)

    Genzel, Ch.; Denks, I.A.; Gibmeier, J.; Klaus, M.; Wagener, G.

    2007-01-01

    In April 2005 the materials science beamline EDDI (Energy Dispersive DIffraction) at the Berlin synchrotron storage ring BESSY started operation. The beamline is operated in the energy-dispersive mode of diffraction using the high energy white photon beam provided by a superconducting 7 T multipole wiggler. Starting from basic information on the beamline set-up, its measuring facilities and data processing concept, the wide range of applications for energy-dispersive diffraction is demonstrated by a series of examples coming from different fields in materials sciences. It will be shown, that the EDDI beamline is especially suitable for the investigation of structural properties and gradients in the near surface region of polycrystalline materials. In particular, this concerns the analysis of multiaxial residual stress fields in the highly stressed surface zone of technical parts. The high photon flux further facilitates fast in situ experiments at room as well as high temperature to monitor for example the growth kinetics and reaction in thin film growth

  14. Pairing Essential Climate Science with Sustainable Energy Information: the "EARTH-The Operators' Manual" experiment

    Science.gov (United States)

    Akuginow, E.; Alley, R. B.; Haines-Stiles, G.

    2010-12-01

    Social science research on the effective communication of climate science suggests that today's audiences may be effectively engaged by presenting information about Earth's climate in the context of individual and community actions that can be taken to increase energy efficiency and to reduce carbon emissions. "EARTH-The Operators' Manual" (ETOM) is an informal science education and outreach project supported by NSF, comprising three related components: a 3-part broadcast television mini-series; on-site outreach at 5 major science centers and natural history museums strategically located across the USA; and a website with innovative social networking tools. A companion tradebook, written by series presenter and Penn State glaciologist Richard Alley, is to be published by W. W. Norton in spring 2011. Program 1, THE BURNING QUESTION, shows how throughout human history our need for energy has been met by burning wood, whale oil and fossil fuels, but notes that fossil fuels produce carbon dioxide which inevitably change the composition of Earth's atmosphere. The program uses little known stories (such as US Air Force atmospheric research immediately after WW2, looking at the effect of CO2 levels on heat-seeking missiles, and Abraham Lincoln's role in the founding of the National Academy of Sciences and the Academy's role in solving navigation problems during the Civil War) to offer fresh perspectives on essential but sometimes disputed aspects of climate science: that today's levels of CO2 are unprecedented in the last 400,000 and more years; that human burning of fossil fuel is the scientifically-proven source, and that multiple lines of evidence show Earth is warming. Program 2, TEN WAYS TO KEEP TEN BILLION SMILING, offers a list of appealing strategies (such as "Get Rich and Save the World": Texas & wind energy, and "Do More with Less": how glow worms make cool light without waste heat, suggesting a role for organic LEDs) to motivate positive responses to the

  15. Sensors for ultra-fast silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sadrozinski, H.F.-W., E-mail: hartmut@scipp.ucsc.edu [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Baselga, M.; Ely, S.; Fadeyev, V.; Galloway, Z.; Ngo, J.; Parker, C.; Schumacher, D.; Seiden, A.; Zatserklyaniy, A. [Santa Cruz Institute for Particle Physics, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Cartiglia, N. [INFN Torino, Torino (Italy); Pellegrini, G.; Fernández-Martínez, P.; Greco, V.; Hidalgo, S.; Quirion, D. [Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona (Spain)

    2014-11-21

    We report on electrical and charge collection tests of silicon sensors with internal gain as part of our development of ultra-fast silicon detectors. Using C–V and α TCT measurements, we investigate the non-uniform doping profile of so-called low-gain avalanche detectors (LGAD). These are n-on-p pad sensors with charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction, obtained with a highly doped implant. We compare the bias dependence of the pulse shapes of traditional sensors and of LGAD sensors with different dopant density of the diffusion layer, and extract the internal gain.

  16. Ultra-fast relaxation kinetics in semiconductors

    International Nuclear Information System (INIS)

    Luzzi, R.

    1983-01-01

    It is presented a brief description of relaxation processes in highly excited semiconductor plasmas (HESP). Comparison with experimental data obtained by means of ultra-fast laser light spectroscopy (UFLS) is made. Some aspects of response funtion theory in systems far-from-equilibrium are reviewed in Section II. In Section III we present some comments on the question of nonequilibrium thermodynamics relevant to the problem to be considered. In last section we present a brief summary of the different aspects of the subject. (author) [pt

  17. Ultrafast Optical Signal Processing with Bragg Structures

    Directory of Open Access Journals (Sweden)

    Yikun Liu

    2017-05-01

    Full Text Available The phase, amplitude, speed, and polarization, in addition to many other properties of light, can be modulated by photonic Bragg structures. In conjunction with nonlinearity and quantum effects, a variety of ensuing micro- or nano-photonic applications can be realized. This paper reviews various optical phenomena in several exemplary 1D Bragg gratings. Important examples are resonantly absorbing photonic structures, chirped Bragg grating, and cholesteric liquid crystals; their unique operation capabilities and key issues are considered in detail. These Bragg structures are expected to be used in wide-spread applications involving light field modulations, especially in the rapidly advancing field of ultrafast optical signal processing.

  18. Sensors for ultra-fast silicon detectors

    International Nuclear Information System (INIS)

    Sadrozinski, H.F.-W.; Baselga, M.; Ely, S.; Fadeyev, V.; Galloway, Z.; Ngo, J.; Parker, C.; Schumacher, D.; Seiden, A.; Zatserklyaniy, A.; Cartiglia, N.; Pellegrini, G.; Fernández-Martínez, P.; Greco, V.; Hidalgo, S.; Quirion, D.

    2014-01-01

    We report on electrical and charge collection tests of silicon sensors with internal gain as part of our development of ultra-fast silicon detectors. Using C–V and α TCT measurements, we investigate the non-uniform doping profile of so-called low-gain avalanche detectors (LGAD). These are n-on-p pad sensors with charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction, obtained with a highly doped implant. We compare the bias dependence of the pulse shapes of traditional sensors and of LGAD sensors with different dopant density of the diffusion layer, and extract the internal gain

  19. Femtosecond laser studies of ultrafast intramolecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, C. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

  20. Imacon 600 ultrafast streak camera evaluation

    International Nuclear Information System (INIS)

    Owen, T.C.; Coleman, L.W.

    1975-01-01

    The Imacon 600 has a number of designed in disadvantages for use as an ultrafast diagnostic instrument. The unit is physically large (approximately 5' long) and uses an external power supply rack for the image intensifier. Water cooling is required for the intensifier; it is quiet but not conducive to portability. There is no interlock on the cooling water. The camera does have several switch selectable sweep speeds. This is desirable if one is working with both slow and fast events. The camera can be run in a framing mode. (MOW)

  1. Ultra-fast relaxation kinetics in semiconductors

    International Nuclear Information System (INIS)

    Luzzi, R.

    1983-01-01

    It is presented a brief description of relaxation processes in highly excited semiconductor plasmas (HESP). Comparison with experimental data obtained by means of ultra-fast laser light spectroscopy (UFLS) is made. Some aspects of response function theory in systems far-from-equilibrium are reviewed in Section II. In Section III some comments on the question of nonequilibrium thermodynamics relevant to the problem to be considered are presented. In last Section a brief summary of the different aspects of the subject is also presented. (Author) [pt

  2. Organization of science and technology and the atomic energy program in Bangladesh

    International Nuclear Information System (INIS)

    Innas, M.; Islam, N.

    1977-01-01

    Bangladesh has developed an indigenous scientific community and a scientific and technological infrastructure. She is now making earnest endeavors to develop her scientific and technological capabilities to permit her to assimilate, adopt, and put to better social use the science of the advanced countries and, at the same time, establish a base for local production of science and technology geared to her own necessities with the ultimate object of achieving self-reliance. The National Council for Science and Technology (NCST) is the policy making and planning organ, which is attached to the Head of the State. The charters, functions, and mode of operation of these organs are discussed briefly. The Government established the Bangladesh Atomic Energy Commission (BAEC) in May 1973 and entrusted it with the task of promoting the peaceful uses of atomic energy in Bangladesh. Bangladesh stands on the Non-Proliferation Treaty and we will discuss the IAEA's safeguards system. In this context, the country's views on a Regional Fuel Cycle Center are also discussed. The paper finally reviews international, regional, and multilateral cooperation in the nuclear field

  3. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  4. The trouble with justification. Getting straight on the science and politics of nuclear energy

    International Nuclear Information System (INIS)

    Meskens, G.

    2012-01-01

    Full-text: The way nuclear energy technology 'escapes' a deliberate justification approach as an energy technology on a transnational level is today in sharp contrast with the way fossil fuel energy technologies are subject of global negotiations driven by the doom of climate change. The claim put forward in this lecture is that this 'denial' is a symptom of a contemporary settled 'comfort of polarisation' around the use of nuclear energy technology that is deeply rooted in the organisational structures of politics, science and informed civil society. The lecture argues for the need to develop a new rationale that aims to seek societal trust 'by method instead of proof', taking into account that the outcome of such a justification process might as well be an acceptance or a rejection of the technology. It sketches what this 'deliberate-political' approach would be in theory and practice, briefly hits at two contemporary myths that would relativize the need for this approach and concludes with a 'pragmatic' list of elements of an advanced framework for deliberation on nuclear energy technology and on energy in general. (author)

  5. Approaches to ultrafast neutron detectors

    International Nuclear Information System (INIS)

    Wang, C.L.; Kalibjian, R.; Singh, M.S.

    1984-01-01

    We discuss two approaches to obtain detectors of very high temporal resolution. In the first approach, uranium-coated cathode is used in a streak tube configuration. Secondary electrons accompanying the fission fragments from a neutron-uranium reaction are accelerated, focussed and energy analyzed through a pinhole and streaked. Calculations show that 20 ps time-resolution can be obtained. In the second approach, a uranium-coated cathode is integrated into a transmission line. State-of-the-art technology indicates that time resolution of 20 ps can be obtained by gating the cathode with a fast electric pulse

  6. Concept and design of a beam blanker with integrated photoconductive switch for ultrafast electron microscopy.

    Science.gov (United States)

    Weppelman, I G C; Moerland, R J; Hoogenboom, J P; Kruit, P

    2018-01-01

    We present a new method to create ultrashort electron pulses by integrating a photoconductive switch with an electrostatic deflector. This paper discusses the feasibility of such a system by analytical and numerical calculations. We argue that ultrafast electron pulses can be achieved for micrometer scale dimensions of the blanker, which are feasible with MEMS-based fabrication technology. According to basic models, the design presented in this paper is capable of generating 100 fs electron pulses with spatial resolutions of less than 10 nm. Our concept for an ultrafast beam blanker (UFB) may provide an attractive alternative to perform ultrafast electron microscopy, as it does not require modification of the microscope nor realignment between DC and pulsed mode of operation. Moreover, only low laser pulse energies are required. Due to its small dimensions the UFB can be inserted in the beam line of a commercial microscope via standard entry ports for blankers or variable apertures. The use of a photoconductive switch ensures minimal jitter between laser and electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy

    Science.gov (United States)

    Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony

    The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.

  8. Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations.

    Science.gov (United States)

    Franjic, Kresimir; Cowan, Michael L; Kraemer, Darren; Miller, R J Dwayne

    2009-12-07

    Mechanical and thermodynamic responses of biomaterials after impulsive heat deposition through vibrational excitations (IHDVE) are investigated and discussed. Specifically, we demonstrate highly efficient ablation of healthy tooth enamel using 55 ps infrared laser pulses tuned to the vibrational transition of interstitial water and hydroxyapatite around 2.95 microm. The peak intensity at 13 GW/cm(2) was well below the plasma generation threshold and the applied fluence 0.75 J/cm(2) was significantly smaller than the typical ablation thresholds observed with nanosecond and microsecond pulses from Er:YAG lasers operating at the same wavelength. The ablation was performed without adding any superficial water layer at the enamel surface. The total energy deposited per ablated volume was several times smaller than previously reported for non-resonant ultrafast plasma driven ablation with similar pulse durations. No micro-cracking of the ablated surface was observed with a scanning electron microscope. The highly efficient ablation is attributed to an enhanced photomechanical effect due to ultrafast vibrational relaxation into heat and the scattering of powerful ultrafast acoustic transients with random phases off the mesoscopic heterogeneous tissue structures.

  9. Theory of pump–probe ultrafast photoemission and X-ray absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, Takashi, E-mail: tfujikawa@faculty.chiba-u.jp; Niki, Kaori

    2016-01-15

    Highlights: • Pump–probe ultrafast XAFS and XPS spectra are theoretically studied. • Keldysh Green's function theory is applied. • Important many-body effects are explicitly included. - Abstract: Keldysh Green's function approach is extensively used in order to derive practical formulas to analyze pump–probe ultrafast photoemission and X-ray absorption spectra. Here the pump pulse is strong enough whereas the probe X-ray pulse can be treated by use of a perturbation theory. We expand full Green's function in terms of renormalized Green's function without the interaction between electrons and probe pulse. The present theoretical formulas allow us to handle the intrinsic and extrinsic losses, and furthermore resonant effects in X-ray Absorption Fine Structures (XAFS). To understand the radiation field screening in XPS spectra, we have to use more sophisticated theoretical approach. In the ultrafast XPS and XAFS analyses the intrinsic and extrinsic loss effects can interfere as well. In the XAFS studies careful analyses are necessary to handle extrinsic losses in terms of damped photoelectron propagation. The nonequilibrium dynamics after the pump pulse irradiation is well described by use of the time-dependent Dyson orbitals. Well above the edge threshold, ultrafast photoelectron diffraction and extended X-ray absorption fine structure (EXAFS) provide us with transient structural change after the laser pump excitations. In addition to these slow processes, the rapid oscillation in time plays an important role related to pump electronic excitations. Near threshold detailed information could be obtained for the combined electronic and structural dynamics. In particular high-energy photoemission and EXAFS are not so influenced by the details of excited states by pump pulse. Random-Phase Approximation (RPA)-boson approach is introduced to derive some practical formulas for time-dependent intrinsic amplitudes.

  10. Tracking of the nuclear wavepacket motion in cyanine photoisomerization by ultrafast pump-dump-probe spectroscopy.

    Science.gov (United States)

    Wei, Zhengrong; Nakamura, Takumi; Takeuchi, Satoshi; Tahara, Tahei

    2011-06-01

    Understanding ultrafast reactions, which proceed on a time scale of nuclear motions, requires a quantitative characterization of the structural dynamics. To track such structural changes with time, we studied a nuclear wavepacket motion in photoisomerization of a prototype cyanine dye, 1,1'-diethyl-4,4'-cyanine, by ultrafast pump-dump-probe measurements in solution. The temporal evolution of wavepacket motion was examined by monitoring the efficiency of stimulated emission dumping, which was obtained from the recovery of a ground-state bleaching signal. The dump efficiency versus pump-dump delay exhibited a finite rise time, and it became longer (97 fs → 330 fs → 390 fs) as the dump pulse was tuned to longer wavelengths (690 nm → 950 nm → 1200 nm). This result demonstrates a continuous migration of the leading edge of the wavepacket on the excited-state potential from the Franck-Condon region toward the potential minimum. A slowly decaying feature of the dump efficiency indicated a considerable broadening of the wavepacket over a wide range of the potential, which results in the spread of a population distribution on the flat S(1) potential energy surface. The rapid migration as well as broadening of the wavepacket manifests a continuous nature of the structural dynamics and provides an intuitive visualization of this ultrafast reaction. We also discussed experimental strategies to evaluate reliable dump efficiencies separately from other ultrafast processes and showed a high capability and possibility of the pump-dump-probe method for spectroscopic investigation of unexplored potential regions such as conical intersections. © 2011 American Chemical Society

  11. A report of the Basic Energy Sciences Advisory Committee: 1992 review of the Basic Energy Sciences Program of the Department of Energy

    International Nuclear Information System (INIS)

    1993-09-01

    The general quality of BES research at each of the 4 laboratories is high. Diversity of management at the different laboratories is beneficial as long as the primary BES mission and goals are clearly identified and effectively pursued. External sources of personnel should be encouraged. DOE has been designing a new high flux research reactor, the Advanced Neutron Source, to replace DOE's two aging research reactors; BESAC conducted a panel evaluation of neutron sources for the future. The two new light sources, Advanced Light Source and Advanced Photon source will come on line well before all of their beamline instrumentation can be funded, developed, and installed. Appointment of a permanent director and deputy for OBES would enhance OBES effectiveness in budget planning and intra-DOE program coordination. Some DOE and DP laboratories have substantial infrastructure which match well industry development-applications needs; interlaboratory partnerships in this area are encouraged. Funding for basic science research programs should be maintained at FY1993 levels, adjusted for inflation; OBES plans should be updated and monitored to maintain the balance between basic research and facilities construction and operation. The recommendations are discussed in detail in this document

  12. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources.

    Science.gov (United States)

    Pincelli, T; Petrov, V N; Brajnik, G; Ciprian, R; Lollobrigida, V; Torelli, P; Krizmancic, D; Salvador, F; De Luisa, A; Sergo, R; Gubertini, A; Cautero, G; Carrato, S; Rossi, G; Panaccione, G

    2016-03-01

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  13. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    International Nuclear Information System (INIS)

    Pincelli, T.; Rossi, G.; Petrov, V. N.; Brajnik, G.; Carrato, S.; Ciprian, R.; Torelli, P.; Krizmancic, D.; Salvador, F.; De Luisa, A.; Panaccione, G.; Lollobrigida, V.; Sergo, R.; Gubertini, A.; Cautero, G.

    2016-01-01

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  14. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    Science.gov (United States)

    Pincelli, T.; Petrov, V. N.; Brajnik, G.; Ciprian, R.; Lollobrigida, V.; Torelli, P.; Krizmancic, D.; Salvador, F.; De Luisa, A.; Sergo, R.; Gubertini, A.; Cautero, G.; Carrato, S.; Rossi, G.; Panaccione, G.

    2016-03-01

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  15. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    Energy Technology Data Exchange (ETDEWEB)

    Pincelli, T., E-mail: pincelli@iom.cnr.it; Rossi, G. [Dipartimento di Fisica, Università degli studi di Milano, Via Celoria 16, 20133 Milano (Italy); Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, 34149 Trieste (Italy); Petrov, V. N. [Saint Petersburg State Polytechnical University, Politechnicheskaya Street 29, 195251 Saint Petersburg (Russian Federation); Brajnik, G.; Carrato, S. [Università degli Studi di Trieste, Piazzale Europa 1, 34127 Trieste (Italy); Ciprian, R.; Torelli, P.; Krizmancic, D.; Salvador, F.; De Luisa, A.; Panaccione, G. [Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, 34149 Trieste (Italy); Lollobrigida, V. [Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Sergo, R.; Gubertini, A.; Cautero, G. [Sincrotrone Trieste S.C.p.A, Strada Statale 14-km 163.5 in AREA Science Park, Basovizza, 34149 Trieste (Italy)

    2016-03-15

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  16. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 2. Ecological sciences

    International Nuclear Information System (INIS)

    Vaughan, B.E.

    1984-02-01

    The 1983 annual report highlights research in five areas funded by the Ecological Sciences Division of the Office of Energy Research. The five areas include: western semi-arid ecosystems; marine sciences; mobilization fate and effects of chemical wastes; radionuclide fate and effects; and statistical and quantitative research. The work was accomplished under 19 individual projects. Individual projects are indexed separately

  17. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 2. Ecological sciences

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, B.E.

    1984-02-01

    The 1983 annual report highlights research in five areas funded by the Ecological Sciences Division of the Office of Energy Research. The five areas include: western semi-arid ecosystems; marine sciences; mobilization fate and effects of chemical wastes; radionuclide fate and effects; and statistical and quantitative research. The work was accomplished under 19 individual projects. Individual projects are indexed separately.

  18. Science Hall of Atomic Energy in Research Reactor Institute, Kyoto University

    International Nuclear Information System (INIS)

    Hayashi, Takeo

    1979-01-01

    The Science Hall of Atomic Energy was built as a subsidiary facility of the Research Reactor Institute, Kyoto University. The purpose of this facility is to accept outside demands concerning the application of the research reactor. The building is a two story building, and has the floor area of 901.47 m 2 . There are an exhibition room, a library, and a big lecture room. In the exhibition room, models of the Kyoto University Research Reactor and the Kyoto University Critical Assembly are placed. Various pictures concerning the application of the reactor are on the wall. In the library, people from outside of the Institute can use various books on science. Books for boys and girls are also stocked and used for public use. At the lecture room, various kinds of meeting can be held. (Kato, T.)

  19. A True Proteus: A history of energy conservation in German science and culture, 1847-1914

    Science.gov (United States)

    Wegener, F. D. A.

    2009-11-01

    This thesis follows the career of the law of energy conservation in German science and culture between 1847 and 1914. There is an interesting contrast between the initial reception of Hermann Helmholtz’ 1847 treatise ‘Über die Erhaltung der Kraft’, which was rejected by the editor of the Annalen der Physik, and its later status as a classic of science. ‘Energy’ was the shared concept of the disciplines. It was used by physiologists, physicists, psychologists, sociologists and philosophers. Moreover, the law of energy conservation also made a huge cultural impact. The period around 1900 has justly been called an energetic era. Why did the law of energy conservation become such a universal success? The obvious way to explain this success would be to say: because it is true, and subsequently comment upon its great scientific value. This thesis adopts a different perspective. It adopts Wittgenstein’s definition of meaning as use in language. Consequently, the meaning of the law is only referred to in relation to the way in which it was put to use in communicative practice. From this perspective it is immediately evident that the understanding of the law of energy conservation was subject to considerable change. Helmholtz initially conceptualized the law in terms of atoms and forces; Gustav Kirchhoff and Ernst Mach, rejected atoms and forces as hypothetical entities and they preferred to use the more mundane concept of work instead; Wilhelm Ostwald, finally, thought of energy as an immaterial substance. This thesis meticulously follows the changes in use and understanding to which the law was subject as it penetrated German science and culture. Communication and interests, rather than natural essences, are the central explanatory concepts of the thesis. From 1847 onwards Helmholtz and Du Bois-Reymond actively sought to spread the law of energy conservation among their colleagues and the general public. They told their fellow physiologists, for example, that

  20. Ultrafast proton shuttling in Psammocora cyan fluorescent protein.

    Science.gov (United States)

    Kennis, John T M; van Stokkum, Ivo H M; Peterson, Dayna S; Pandit, Anjali; Wachter, Rebekka M

    2013-09-26

    Cyan, green, yellow, and red fluorescent proteins (FPs) homologous to green fluorescent protein (GFP) are used extensively as model systems to study fundamental processes in photobiology, such as the capture of light energy by protein-embedded chromophores, color tuning by the protein matrix, energy conversion by Förster resonance energy transfer (FRET), and excited-state proton transfer (ESPT) reactions. Recently, a novel cyan fluorescent protein (CFP) termed psamFP488 was isolated from the genus Psammocora of reef building corals. Within the cyan color class, psamFP488 is unusual because it exhibits a significantly extended Stokes shift. Here, we applied ultrafast transient absorption and pump-dump-probe spectroscopy to investigate the mechanistic basis of psamFP488 fluorescence, complemented with fluorescence quantum yield and dynamic light scattering measurements. Transient absorption spectroscopy indicated that, upon excitation at 410 nm, the stimulated cyan emission rises in 170 fs. With pump-dump-probe spectroscopy, we observe a very short-lived (110 fs) ground-state intermediate that we assign to the deprotonated, anionic chromophore. In addition, a minor fraction (14%) decays with 3.5 ps to the ground state. Structural analysis of homologous proteins indicates that Glu-167 is likely positioned in sufficiently close vicinity to the chromophore to act as a proton acceptor. Our findings support a model where unusually fast ESPT from the neutral chromophore to Glu-167 with a time constant of 170 fs and resulting emission from the anionic chromophore forms the basis of the large psamFP488 Stokes shift. When dumped to the ground state, the proton on neutral Glu is very rapidly shuttled back to the anionic chromophore in 110 fs. Proton shuttling in excited and ground states is a factor of 20-4000 faster than in GFP, which probably results from a favorable hydrogen-bonding geometry between the chromophore phenolic oxygen and the glutamate acceptor, possibly

  1. Density Functional Methods for Shock Physics and High Energy Density Science

    Science.gov (United States)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Academic Design Of Canada's Energy Systems And Nuclear Science Research Centre

    International Nuclear Information System (INIS)

    Bereznai, G.; Perera, S.

    2010-01-01

    The University of Ontario Institute of Technology (UOIT) is at the forefront of alternative energy and nuclear research that focuses on the energy challenges that are faced by the province of Ontario, the industrial heartland of Canada. While the university was established as recently as 2002 and opened its doors to its first students in 2003, it has already developed a comprehensive set of undergraduate and graduate programs, and a reputation for research intensiveness. UOIT offers dedicated programs in nuclear engineering and energy systems engineering to ensure a continued supply of trained employees in these fields. The ability to provide talented and skilled personnel to the energy sector has emerged as a critical requirement of ensuring Ontario's energy future, and to meet this need UOIT requires additional teaching and research space in order to offer its energy related programs. The Governments of Canada and of the Province of Ontario recognized UOIT's achievements and contributions to post-secondary education in the field of clean energy in general and nuclear power in particular, and as part of the economic stimuli funded by both levels of government, approved $45 M CAD for the construction of a 10,000 m 2 'Energy Systems and Nuclear Science Research Centre' at UOIT. The building is scheduled to be ready for occupancy in the summer of 2011. The paper presents the key considerations that lead to the design of the building, and gives details of the education and research programs that were the key in determining the design and layout of the research centre. (authors)

  3. Fusion Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Fusion Energy Sciences, January 27-29, 2016, Gaithersburg, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choong-Seock [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Riley, Katherine [Argonne Leadership Computing Facility, Argonne, IL (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Esnet, Berkeley, CA (United States); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Esnet, Berkeley, CA (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Esnet, Berkeley, CA (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Andre, R. [TRANSP Group, Princeton, NJ (United States); Bernholdt, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bhattacharjee, Amitava [Princeton Univ., NJ (United States); Bonoli, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Boyd, Iain [Univ. of Michigan, Ann Arbor, MI (United States); Bulanov, Stepan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cary, John R. [Tech-X Corporation, Boulder, CO (United States); Chen, Yang [Univ. of Colorado, Boulder, CO (United States); Curreli, Davide [Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Ernst, Darin R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ethier, Stephane [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Green, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hager, Robert [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hakim, Ammar [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hassanein, A. [Purdue Univ., West Lafayette, IN (United States); Hatch, David [Univ. of Texas, Austin, TX (United States); Held, E. D. [Utah State Univ., Logan, UT (United States); Howard, Nathan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Izzo, Valerie A. [Univ. of California, San Diego, CA (United States); Jardin, Steve [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Jenkins, T. G. [Tech-X Corp., Boulder, CO (United States); Jenko, Frank [Univ. of California, Los Angeles, CA (United States); Kemp, Andreas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); King, Jacob [Tech-X Corp., Boulder, CO (United States); Kritz, Arnold [Lehigh Univ., Bethlehem, PA (United States); Krstic, Predrag [Stony Brook Univ., NY (United States); Kruger, Scott E. [Tech-X Corp., Boulder, CO (United States); Kurtz, Rick [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lin, Zhihong [Univ. of California, Irvine, CA (United States); Loring, Burlen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nandipati, Giridhar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pankin, A. Y. [Tech-X Corp., Boulder, CO (United States); Parker, Scott [Univ. of Colorado, Boulder, CO (United States); Perez, Danny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pigarov, Alex Y. [Univ. of California, San Diego, CA (United States); Poli, Francesca [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Pueschel, M. J. [Univ. of Wisconsin, Madison, WI (United States); Rafiq, Tariq [Lehigh Univ., Bethlehem, PA (United States); Rübel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Setyawan, Wahyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sizyuk, Valeryi A. [Purdue Univ., West Lafayette, IN (United States); Smithe, D. N. [Tech-X Corp., Boulder, CO (United States); Sovinec, C. R. [Univ. of Wisconsin, Madison, WI (United States); Turner, Miles [Dublin City University, Leinster (Ireland); Umansky, Maxim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vay, Jean-Luc [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Verboncoeur, John [Michigan State Univ., East Lansing, MI (United States); Vincenti, Henri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Voter, Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Weixing [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Wright, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Yuan, X. [TRANSP Group, Princeton, NJ (United States)

    2017-02-01

    The additional computing power offered by the planned exascale facilities could be transformational across the spectrum of plasma and fusion research — provided that the new architectures can be efficiently applied to our problem space. The collaboration that will be required to succeed should be viewed as an opportunity to identify and exploit cross-disciplinary synergies. To assess the opportunities and requirements as part of the development of an overall strategy for computing in the exascale era, the Exascale Requirements Review meeting of the Fusion Energy Sciences (FES) community was convened January 27–29, 2016, with participation from a broad range of fusion and plasma scientists, specialists in applied mathematics and computer science, and representatives from the U.S. Department of Energy (DOE) and its major computing facilities. This report is a summary of that meeting and the preparatory activities for it and includes a wealth of detail to support the findings. Technical opportunities, requirements, and challenges are detailed in this report (and in the recent report on the Workshop on Integrated Simulation). Science applications are described, along with mathematical and computational enabling technologies. Also see http://exascaleage.org/fes/ for more information.

  4. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a

  5. Workshop on materials science and the physics of non-conventional energy sources

    International Nuclear Information System (INIS)

    Furlan, G.; Nobili, D.; Sayigh, A.M.; Seraphin, B.O.

    1989-01-01

    The non-conventional energy activities started in 1974, on the island of Procida, Italy. About 50 leading physicists and engineers got together for two weeks in September to discuss the states of the art and consult with each other about various devices and ways of energy conversion. The esteemed Nobel Prize Laureate, Professor Abdus Salam, accepted to have the first meeting on non-conventional energy at the ICTP, Trieste, in September 1977. In 1987, the meeting was once again back in Trieste, Italy. Also, during the even years since 1978 until 1986, meetings were held in Trieste in the French language. The results of the last 10 years at ICTP are very clear to all fellow scientist and engineers. Some 150 applicants are chosen every year. The workshop is being graded gradually to emphasize the high technology and up-to-date achievements in the field. A good proportion of the physicists who were with us from the beginning are now top experts in the field and in charge of existing programmes in their own countries. The present programme emphasized the following topics: Material Science; Solar Energy Conversion with concentration on Photovoltaic Conversion; and Energy Storage. Refs, figs and tabs

  6. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    Science.gov (United States)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  7. Dynamical energy systems and modern physics: fostering the science and spirit of complementary and alternative medicine.

    Science.gov (United States)

    Schwartz, G E; Russek, L G

    1997-05-01

    When systems theory is carefully applied to the concept of energy, some novel and far-reaching implications for modern physics and complementary medicine emerge. The heart of systems theory is dynamic interactions: systems do not simply act on systems, they interact with them in complex ways. By definition, systems at any level (e.g., physical, biological, social, ecological) are open to information, energy, and matter to varying degrees, and therefore interact with other systems to varying degrees. We first show how resonance between two tuning forks, a classic demonstration in physics, can be seen to reflect synchronized dynamic interactions over time. We then derive how the dynamic interaction of systems in mutual recurrent feedback relationships naturally create dynamic "memories" for their interactions over time. The mystery of how a photon (or electron) "knows" ahead of time whether to function as a particle or wave in the single slit/double slit quantum physics paradigm is potentially solved when energetic interactions inherent in the experimental system are recognized. The observation that energy decreases with the square of distance is shown not to be immutable when viewed from a dynamical energy systems perspective. Implications for controversial claims in complementary and alternative medicine, such as memory for molecules retained in water (homeopathy), remote diagnosis, and prayer and healing, are considered. A dynamical energy systems framework can facilitate the development of what might be termed "relationship consciousness," which has the potential to nurture both the science and spirit of complementary medicine and might help to create integrated medicine.

  8. Water and Energy Consumption at King Abdullah University of Science and Technology

    KAUST Repository

    Wiche Latorre, Pia Alexandra

    2012-05-01

    Saudi Arabia is the greatest exporter of oil in the world and also the country with greatest desalination capacity. It is considered a rich country but not a developed one. Because water is scarce while energy is abundant, it becomes important to evaluate the environmental performance of populations in Saudi Arabia with regards to these two aspects. King Abdullah University of Science and Technology (KAUST) is a gated community in Saudi Arabia with high living standards where water and energy are free of cost (no constraint over use). Four environmental sustainability indicators were used to determine the environmental performance of KAUST in comparison to other countries. It was found that per capita, KAUST is between the five greatest water and energy consumers in the world. Important factors to this result are the fact that KAUST is still under construction, that the peak capacity for permanent residents has not yet been reached and that there is little control over the water and energy systems at KAUST. It was concluded that KAUST should reduce its water and energy consumption per capita. To this means, some proposed solutions were to have wide-spread awareness-raising campaigns to all people working and living in KAUST, and to improve control over air conditioning control systems.

  9. Optimization and practical implementation of ultrafast 2D NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation

    2013-09-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  10. Earth sciences uranium geology, exploration and mining, hydrology, 1986-1998. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1998-09-01

    This catalogue lists sales publications of the International Atomic Energy Agency dealing with Earth Sciences issued during the period 1986-1998. Most publications are published in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all these papers have abstracts in English. It should be noted that prices of books are quoted in Austrian Schillings. The prices do not include local taxes and are subject to change without notice. All books in this catalogue are 16 x 24 cm, paper-bound, unless otherwise stated

  11. Eleventh symposium on energy engineering sciences: Proceedings. Solid mechanics and processing: Analysis, measurement and characterization

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Eleventh Symposium on Energy Engineering Sciences was held on May 3--5, 1993, at the Argonne National Laboratory, Argonne, Illinois. These proceedings include the program, list of participants, and the papers that were presented during the eight technical sessions held at this meeting. This symposium was organized into eight technical sessions: Surfaces and interfaces; thermophysical properties and processes; inelastic behavior; nondestructive characterization; multiphase flow and thermal processes; optical and other measurement systems; stochastic processes; and large systems and control. Individual projects were processed separately for the databases.

  12. Designing an ultrafast laser virtual laboratory using MATLAB GUIDE

    International Nuclear Information System (INIS)

    Cambronero-López, F; Gómez-Varela, A I; Bao-Varela, C

    2017-01-01

    In this work we present a virtual simulator developed using the MATLAB GUIDE environment based on the numerical resolution of the nonlinear Schrödinger equation (NLS) and using the split step method for the study of the spatial–temporal propagation of nonlinear ultrashort laser pulses. This allows us to study the spatial–temporal propagation of ultrafast pulses as well as the influence of high-order spectral phases such as group delay dispersion and third-order dispersion on pulse compression in time. The NLS can describe several nonlinear effects, in particular in this paper we consider the Kerr effect, cross-polarized wave generation and cubic–quintic propagation in order to highlight the potential of this equation combined with the GUIDE environment. Graphical user interfaces are commonly used in science and engineering teaching due to their educational value, and have proven to be an effective way to engage and motivate students. Specifically, the interactive graphical interfaces presented provide the visualization of some of the most important nonlinear optics phenomena and allows users to vary the values of the main parameters involved. (paper)

  13. Designing an ultrafast laser virtual laboratory using MATLAB GUIDE

    Science.gov (United States)

    Cambronero-López, F.; Gómez-Varela, A. I.; Bao-Varela, C.

    2017-05-01

    In this work we present a virtual simulator developed using the MATLAB GUIDE environment based on the numerical resolution of the nonlinear Schrödinger equation (NLS) and using the split step method for the study of the spatial-temporal propagation of nonlinear ultrashort laser pulses. This allows us to study the spatial-temporal propagation of ultrafast pulses as well as the influence of high-order spectral phases such as group delay dispersion and third-order dispersion on pulse compression in time. The NLS can describe several nonlinear effects, in particular in this paper we consider the Kerr effect, cross-polarized wave generation and cubic-quintic propagation in order to highlight the potential of this equation combined with the GUIDE environment. Graphical user interfaces are commonly used in science and engineering teaching due to their educational value, and have proven to be an effective way to engage and motivate students. Specifically, the interactive graphical interfaces presented provide the visualization of some of the most important nonlinear optics phenomena and allows users to vary the values of the main parameters involved.

  14. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    Science.gov (United States)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  15. Ultra-fast Escape of a Octopus-inspired Rocket

    Science.gov (United States)

    Weymouth, Gabriel; Triantafyllou, Michael

    2013-11-01

    The octopus, squid, and other cephalopods inflate with water and then release a jet to accelerate in the opposite direction. This escape mechanism is particularly interesting in the octopus because they become initially quite bluff, yet this does not hinder them in achieving impressive bursts of speed. We examine this somewhat paradoxical maneuver using a simple deflating spheroid model in both potential and viscous flow. We demonstrate that the dynamic reduction of the width of the body completely changes the flow and forces acting on the escaping rocket in three ways. First, a body which reduces in size can generate an added mass thrust which counteracts the added mass inertia. Second, the motion of the shrinking wall acts similar to suction on a static wall, reducing separation and drag forces in a viscous fluid, but that this effects depends on the rate of size change. Third, using a combination of these two features it is possible to initially load the fluid with kinetic energy when heavy and bluff and then recover that energy when streamlined and light, enabling ultra-fast accelerations. As a notable example, these mechanisms allow a shrinking spheroid rocket in a heavy inviscid fluid to achieve speeds greater than an identical rocket in the vacuum of space. Southampton Marine and Maritime Institute.

  16. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A. Y.; Umemura, M. [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  17. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    International Nuclear Information System (INIS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  18. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

  19. The National Ignition Facility: Ushering in a new age for high energy density science

    International Nuclear Information System (INIS)

    Moses, E. I.; Boyd, R. N.; Remington, B. A.; Keane, C. J.; Al-Ayat, R.

    2009-01-01

    The National Ignition Facility (NIF) [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008); https://lasers.llnl.gov/], completed in March 2009, is the highest energy laser ever constructed. The high temperatures and densities achievable at NIF will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as access to new regimes in a variety of experiments relevant to x-ray astronomy, laser-plasma interactions, hydrodynamic instabilities, nuclear astrophysics, and planetary science. The experiments will impact research on black holes and other accreting objects, the understanding of stellar evolution and explosions, nuclear reactions in dense plasmas relevant to stellar nucleosynthesis, properties of warm dense matter in planetary interiors, molecular cloud dynamics and star formation, and fusion energy generation.

  20. Department of Energy: MICS (Mathematical Information, and Computational Sciences Division). High performance computing and communications program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, {open_quotes}The DOE Program in HPCC{close_quotes}), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). The information pointed to by the URL is updated frequently, and the interested reader is urged to access the WWW for the latest information.

  1. The science and the technology like input for the environmental administration of the energy sector

    International Nuclear Information System (INIS)

    Guerrero, Eduardo

    1999-01-01

    It is presented an analysis of the scientific-technological dynamics of Colombia in function of the environmental administration of the energy sector. The importance of the investigation is emphasized the flow of knowledge in terms of the competitiveness and environmental effectiveness of the electric, oil and carboniferous companies. Of critical way and positive, the effective of the institution is evaluated and relative suggestions are made to the interaction and coordination inter-institutional. Some of the variables that condition the offer and demand of science and technology are discussed and, with base in it, they think about elements to be kept in mind in the design and implementation of strategies and politics of environmental investigation for the energy sector

  2. Training Students’ Science Process Skills through Didactic Design on Work and Energy

    Science.gov (United States)

    Ramayanti, S.; Utari, S.; Saepuzaman, D.

    2017-09-01

    Science Process Skills (SPS) has not been optimally trained to the students in the learning activity. The aim of this research is finding the ways to train SPS on the subject of Work and Energy. One shot case study design is utilized in this research that conducted on 32 students in one of the High Schools in Bandung. The students’ SPS responses were analyzed by the development SPS based assessment portfolios. The results of this research showed the didactic design that had been designed to training the identifying variables skills, formulating hypotheses, and the experiment activity shows the development. But the didactic design to improve the students’ predicting skills shows that the development is still not optimal. Therefore, in the future studies need to be developed the didactic design on the subject Work and Energy that exercising these skills.

  3. High Performance Numerical Computing for High Energy Physics: A New Challenge for Big Data Science

    International Nuclear Information System (INIS)

    Pop, Florin

    2014-01-01

    Modern physics is based on both theoretical analysis and experimental validation. Complex scenarios like subatomic dimensions, high energy, and lower absolute temperature are frontiers for many theoretical models. Simulation with stable numerical methods represents an excellent instrument for high accuracy analysis, experimental validation, and visualization. High performance computing support offers possibility to make simulations at large scale, in parallel, but the volume of data generated by these experiments creates a new challenge for Big Data Science. This paper presents existing computational methods for high energy physics (HEP) analyzed from two perspectives: numerical methods and high performance computing. The computational methods presented are Monte Carlo methods and simulations of HEP processes, Markovian Monte Carlo, unfolding methods in particle physics, kernel estimation in HEP, and Random Matrix Theory used in analysis of particles spectrum. All of these methods produce data-intensive applications, which introduce new challenges and requirements for ICT systems architecture, programming paradigms, and storage capabilities.

  4. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode.

    Science.gov (United States)

    Bücker, K; Picher, M; Crégut, O; LaGrange, T; Reed, B W; Park, S T; Masiel, D J; Banhart, F

    2016-12-01

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A novel optical tool for controlling and probing ultrafast surface dynamics

    International Nuclear Information System (INIS)

    Yang, Yudong

    2017-12-01

    Ultrashort pulse laser sources have been greatly developed over the past few decades. The available pulse duration has been reduced to the single-cycle pulse regime. The discovery of high harmonic generation has freed us from the limitation of the laser wavelength. Moreover, the demonstration of isolated attosecond pulse generation has indicated the advent of the attosecond science era. Attosecond pulses undoubtedly allow one to study ultrafast dynamics with unprecedented time resolution. However, physical systems with genuine attosecond time scale dynamics are rather challenging to find. Ultrafast surface charge transfer, which is an important process in photochemistry and electrochemistry, is a good candidate experimental system exhibiting attosecond electronic dynamics. Specifically, the ultrafast surface charge transfer on the c(4 x 2)S/Ru(0001) surface was previously studied and the charge transfer time inferred to be 320 as using core-hole clock spectroscopy at a synchrotron facility. In order to measure this benchmark attosecond electronic dynamics with real time-resolving methods, pump pulses centered at 160 eV and probe pulses centered at 40 eV are required. To this end, a dedicated attosecond experimental beamline including an ultrashort laser pulse source and an attosecond pulse generation and characterization setup has been designed and is being developed. The author of this thesis was responsible for the construction of the attosecond experimental beamline which will be used ultrafast surface charge transfer studies. In this thesis, a completely functional attosecond extreme ultraviolet (XUV) beamline, which includes a few-cycle laser pulse source, an attosecond pulse generation and characterization setup, is described. A commercial Ti:sapphire-based chirped-pulse amplification (CPA) laser system is the overall source of the beamline. The laser system is actively carrier-envelope phase (CEP) stabilized and the output pulse duration is ∝35 fs. The

  6. A novel optical tool for controlling and probing ultrafast surface dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yudong

    2017-12-15

    Ultrashort pulse laser sources have been greatly developed over the past few decades. The available pulse duration has been reduced to the single-cycle pulse regime. The discovery of high harmonic generation has freed us from the limitation of the laser wavelength. Moreover, the demonstration of isolated attosecond pulse generation has indicated the advent of the attosecond science era. Attosecond pulses undoubtedly allow one to study ultrafast dynamics with unprecedented time resolution. However, physical systems with genuine attosecond time scale dynamics are rather challenging to find. Ultrafast surface charge transfer, which is an important process in photochemistry and electrochemistry, is a good candidate experimental system exhibiting attosecond electronic dynamics. Specifically, the ultrafast surface charge transfer on the c(4 x 2)S/Ru(0001) surface was previously studied and the charge transfer time inferred to be 320 as using core-hole clock spectroscopy at a synchrotron facility. In order to measure this benchmark attosecond electronic dynamics with real time-resolving methods, pump pulses centered at 160 eV and probe pulses centered at 40 eV are required. To this end, a dedicated attosecond experimental beamline including an ultrashort laser pulse source and an attosecond pulse generation and characterization setup has been designed and is being developed. The author of this thesis was responsible for the construction of the attosecond experimental beamline which will be used ultrafast surface charge transfer studies. In this thesis, a completely functional attosecond extreme ultraviolet (XUV) beamline, which includes a few-cycle laser pulse source, an attosecond pulse generation and characterization setup, is described. A commercial Ti:sapphire-based chirped-pulse amplification (CPA) laser system is the overall source of the beamline. The laser system is actively carrier-envelope phase (CEP) stabilized and the output pulse duration is ∝35 fs. The

  7. Pre-Service Science Teachers' Views about Nuclear Energy with Respect to Gender and University Providing Instruction

    Science.gov (United States)

    Ates, H.; Saracoglu, M.

    2016-01-01

    The purpose of this research was to investigate pre-service science teachers' (PST) views about nuclear energy and to examine what effects, if any, of gender and the university of instruction had on their views. Data were collected through the Risks and Benefits about Nuclear Energy Scale (Iseri, 2012). The sample consisted of 214 PSTs who…

  8. 3rd International Conference on Energy Equipment Science and Engineering (ICEESE 2017)

    Science.gov (United States)

    2018-03-01

    PREFACE On behalf of the organizing committee of the 2017 3rd International Conference on Energy Equipment Science and Engineering (ICEESE 2017), I would like to express a warm “Thank You” to all the participants, for their important contribution they brought to the Conference! I strongly appreciate the contribution of the authors, who submitted valuable papers and agreed to do successive revisions of their papers, following the recommendations received from the reviewers. ICEESE 2017 was held in Beijing, China during December28-31, 2017, which was organized by Wuhan University and Guizhou Minzu University. The conference provides a useful and wide platform both for display the latest research and for exchange of research results and thoughts in Energy Equipment Science and Engineering. The participants of the conference were from almost every part of the world, with background of either academia or industry, even well-known enterprise. The success and prosperity of the conference is reflected high level of the papers received. List of Committees available in this pdf.

  9. The Ultrafast Wolff Rearrangement in the Gas Phase

    Science.gov (United States)

    Steinbacher, Andreas; Roeding, Sebastian; Brixner, Tobias; Nuernberger, Patrick

    The Wolff rearrangement of gas-phase 5-diazo Meldrum's acid is disclosed with femtosecond ion spectroscopy. Distinct differences are found for 267 nm and 200 nm excitation, the latter leading to even two ultrafast rearrangement reactions.

  10. Ultrafast Plasmonic Electron Emission from Ag Nanolayers with Different Roughness

    Czech Academy of Sciences Publication Activity Database

    Márton, I.; Ayadi, V.; Rácz, P.; Stefaniuk, T.; Wróbel, Piotr; Földi, P.; Dombi, P.

    2016-01-01

    Roč. 11, č. 3 (2016), s. 811-816 ISSN 1557-1955 Institutional support: RVO:67985882 Keywords : Nanoparticles * Ultrafast phenomena * Electron emission Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.139, year: 2016

  11. Ultrafast dynamic ellipsometry and spectroscopies of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Laboratory; Bolme, Cindy B [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2010-01-01

    Ultrafast ellipsometry and transient absorption spectroscopies are used to measure material dynamics under extreme conditions of temperature, pressure, and volumetric compression induced by shock wave loading with a chirped, spectrally clipped shock drive pulse.

  12. Ultrafast characterization of optoelectronic devices and systems

    Science.gov (United States)

    Zheng, Xuemei

    The recent fast growth in high-speed electronics and optoelectronics has placed demanding requirements on testing tools. Electro-optic (EO) sampling is a well-established technique for characterization of high-speed electronic and optoelectronic devices and circuits. However, with the progress in device miniaturization, lower power consumption (smaller signal), and higher throughput (higher clock rate), EO sampling also needs to be updated, accordingly, towards better signal-to-noise ratio (SNR) and sensitivity, without speed sacrifice. In this thesis, a novel EO sampler with a single-crystal organic 4-dimethylamino-N-methy-4-stilbazolium tosylate (DAST) as the EO sensor is developed. The system exhibits sub-picosecond temporal resolution, sub-millivolt sensitivity, and a 10-fold improvement on SNR, compared with its LiTaO3 counterpart. The success is attributed to the very high EO coefficient, the very low dielectric constant, and the fast response, coming from the major contribution of the pi-electrons in DAST. With the advance of ultrafast laser technology, low-noise and compact femtosecond fiber lasers have come to maturation and become light-source options for ultrafast metrology systems. We have successfully integrated a femtosecond erbium-doped-fiber laser into an EO sampler, making the system compact and very reliable. The fact that EO sampling is essentially an impulse-response measurement process, requires integration of ultrashort (sub-picosecond) impulse generation network with the device under test. We have implemented a reliable lift-off and transfer technique in order to obtain epitaxial-quality freestanding low-temperature-grown GaAs (LT-GaAs) thin-film photo-switches, which can be integrated with many substrates. The photoresponse of our freestanding LT-GaAs devices was thoroughly characterized with the help of our EO sampler. As fast as 360 fs full-width-at-half-maximum (FWHM) and >1 V electrical pulses were obtained, with quantum efficiency

  13. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Date of birth: 26 June 1951. Specialization: Raman Spectroscopy, Time-resolved Ultrafast Spectroscopy, Nanosystems such as Graphene, Nanotubes, Physics of Soft Condensed Matter Address: Professor, Department of Physics, Indian Institute of Science, Bengaluru 560 012, Karnataka Contact: Office: (080) 2360 2238, ...

  14. Ultrafast demagnetisation dependence on film thickness: A TDDFT calculation

    Science.gov (United States)

    Singh, N.; Sharma, S.

    2018-04-01

    Ferromagnetic materials when subjected to intense laser pulses leads to reduction of their magnetisation on an ultrafast scale. Here, we perform an ab-initio calculation to study the behavior of ultrafast demagnetisation as a function of film thickness for Nickel as compared to the bulk of the material. In thin films surface formation results in amplification of demagnetisation with the percentage of demagnetisation depending upon the film thickness.

  15. Ultrafast optical signal processing using semiconductor quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing.......The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing....

  16. Tissue strain rate estimator using ultrafast IQ complex data

    OpenAIRE

    TERNIFI , Redouane; Elkateb Hachemi , Melouka; Remenieras , Jean-Pierre

    2012-01-01

    International audience; Pulsatile motion of brain parenchyma results from cardiac and breathing cycles. In this study, transient motion of brain tissue was estimated using an Aixplorer® imaging system allowing an ultrafast 2D acquisition mode. The strain was computed directly from the ultrafast IQ complex data using the extended autocorrelation strain estimator (EASE), which provides great SNRs regardless of depth. The EASE first evaluates the autocorrelation function at each depth over a set...

  17. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bücker, K.; Picher, M.; Crégut, O. [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France); LaGrange, T. [Interdisciplinary Centre for Electron Microscopy, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Reed, B.W.; Park, S.T.; Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 5653 Stoneridge Drive 117, Pleasanton, CA 94588 (United States); Banhart, F., E-mail: florian.banhart@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France)

    2016-12-15

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. - Highlights: • A detailed characterization of electron

  18. Investigation necessities in ecology and environmental sciences as support to the environmental administration of the energy sector

    International Nuclear Information System (INIS)

    Guerrero Forero, Eduardo; Angel Sanint, Enrique

    2000-01-01

    This work intends to establish the knowledge demand in ecology and environmental sciences needed for the environmental management of energy projects; in this development a large number of people were consulted in order to obtain results as broad and valid as possible. Using several methodological strategies and sources (pool, workshop, document search and feedback from experts) an analysis on the needs of research as a necessary input to the environmental management process was obtained. A sub-sector analysis (coal, electricity, oil and alternative energies) was preformed to get the detail necessary to point out specific topics that are considered a priority for the allocation of research funds. This work should be a guide to orient the ecological an environment research with the management needs of the energy sector. It also should be useful as a reference for the definition of science and technology policies for the energy sector, the national environmental system and the national system of science and technology

  19. Probing ultrafast changes of spin and charge density profiles with resonant XUV magnetic reflectivity at the free-electron laser FERMI.

    Science.gov (United States)

    Gutt, C; Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Raimondi, L; Nikolov, I P; Kiskinova, M; Jaiswal, S; Jakob, G; Kläui, M; Zabel, H; Pietsch, U

    2017-09-01

    We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M 2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q -resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Q z , we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.

  20. Optimal and robust control of quantum state transfer by shaping the spectral phase of ultrafast laser pulses.

    Science.gov (United States)

    Guo, Yu; Dong, Daoyi; Shu, Chuan-Cun

    2018-04-04

    Achieving fast and efficient quantum state transfer is a fundamental task in physics, chemistry and quantum information science. However, the successful implementation of the perfect quantum state transfer also requires robustness under practically inevitable perturbative defects. Here, we demonstrate how an optimal and robust quantum state transfer can be achieved by shaping the spectral phase of an ultrafast laser pulse in the framework of frequency domain quantum optimal control theory. Our numerical simulations of the single dibenzoterrylene molecule as well as in atomic rubidium show that optimal and robust quantum state transfer via spectral phase modulated laser pulses can be achieved by incorporating a filtering function of the frequency into the optimization algorithm, which in turn has potential applications for ultrafast robust control of photochemical reactions.