WorldWideScience

Sample records for energy recovery switch

  1. Superconductivity, energy storage and switching

    International Nuclear Information System (INIS)

    Laquer, H.L.

    1974-01-01

    The phenomenon of superconductivity can contribute to the technology of energy storage and switching in two distinct ways. On one hand the zero resistivity of the superconductor can produce essentially infinite time constants so that an inductive storage system can be charged from very low power sources. On the other hand, the recovery of finite resistivity in a normal-going superconducting switch can take place in extremely short times, so that a system can be made to deliver energy at a very high power level. Topics reviewed include: physics of superconductivity, limits to switching speed of superconductors, physical and engineering properties of superconducting materials and assemblies, switching methods, load impedance considerations, refrigeration economics, limitations imposed by present day and near term technology, performance of existing and planned energy storage systems, and a comparison with some alternative methods of storing and switching energy. (U.S.)

  2. Energy losses in switches

    International Nuclear Information System (INIS)

    Martin, T.H.; Seamen, J.F.; Jobe, D.O.

    1993-01-01

    The authors experiments show energy losses between 2 and 10 times that of the resistive time predictions. The experiments used hydrogen, helium, air, nitrogen, SF 6 polyethylene, and water for the switching dielectric. Previously underestimated switch losses have caused over predicting the accelerator outputs. Accurate estimation of these losses is now necessary for new high-efficiency pulsed power devices where the switching losses constitute the major portion of the total energy loss. They found that the switch energy losses scale as (V peak I peak ) 1.1846 . When using this scaling, the energy losses in any of the tested dielectrics are almost the same. This relationship is valid for several orders of magnitude and suggested a theoretical basis for these results. Currents up to .65 MA, with voltages to 3 MV were applied to various gaps during these experiments. The authors data and the developed theory indicates that the switch power loss continues for a much longer time than the resistive time, with peak power loss generally occurring at peak current in a ranging discharge instead of the early current time. All of the experiments were circuit code modeled after developing a new switch loss version based on the theory. The circuit code predicts switch energy loss and peak currents as a function of time. During analysis of the data they noticed slight constant offsets between the theory and data that depended on the dielectric. They modified the plasma conductivity for each tested dielectric to lessen this offset

  3. Counterpulse railgun energy recovery circuit

    International Nuclear Information System (INIS)

    Honig, E.M.

    1986-01-01

    This patent describes a counterpulse railgun energy recovery circuit for propelling a projectile along a railgun the counterpulse railgun energy recovery circuit consists of: a railgun having an effective inductance; a source inductor initially charged to an initial current; current means for initially charging the source inductor to the initial current; first current-zero type switching means; second current-zero type switching; third current-zero type switching; muzzle current-zero type switching means; transfer capacitor, the transfer capacitor is for cooperating with the first, second, third, and muzzle current-zero type switching means for providing a resonant circuit for transferring current from the source inductor to the effective inductance of the railgun during the propelling of a projectile along the railgun and for returning current from the effective inductance of the railgun to the source inductance after the projectile has exited the railgun

  4. Optimal Switching Table-Based Sliding Mode Control of an Energy Recovery Li-Ion Power Accumulator Battery Pack Testing System

    Directory of Open Access Journals (Sweden)

    Kil To Chong

    2013-10-01

    Full Text Available The main objective of the present work is to apply a sliding mode controller (SMC to medium voltage and high power output energy recovery Li-ion power accumulator battery pack testing systems (ERLPABTSs, which are composed of a three-level neutral-point-clamped (NPC three-phase voltage source inverter (VSI and a two-level buck-boost converter without an isolating transformer. An inner current decoupled control scheme for the aforementioned system is proposed and two sliding mode planes for active and reactive current control are designed based on the control scheme. An optimized switching table for current convergence is used according to the error sign of the equivalent input voltage and feedback voltage. The proposed ERLPABTS could be used to integrate discharging energy into the power grid when performing high accuracy current testing. The active and reactive power references for the grid-connected inverter are determined based on the discharging energy from the DC-DC converter. Simulations and experiments on a laboratory hardware platform using a 175 kW insulated gate bipolar transistor (IGBT-based ERLPABTS have been implemented and verified, and the performance is found satisfactory and superior to conventional ERLPABPTS.

  5. Optical processes in the performance and recovery of gas-phase switches

    International Nuclear Information System (INIS)

    Gundersen, M.

    1982-01-01

    In this paper several optical processes that may be used to affect gas-phase switch performance and operation are discussed, and approaches using a laser to increase recovery rates of switches are presented. In the latter the laser is used during the recovery phase rather than the conductive or closure phase. This papper suggests that it should be possible to use a low-power laser (e.g., one that is technologically feasible to use as part of a switch) to assist in opening the switch by quenching excited atomic and/or molecular species. The application of laser-induced energy extraction to gas-phase switches is also discussed

  6. Battleground Energy Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, Daniel [USDOE Gulf Coast Clean Energy Application Center, Woodlands, TX (United States)

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  7. Energy recovery from wastes

    International Nuclear Information System (INIS)

    De Stefanis, P.

    1999-01-01

    In this paper are reported analysis of some energy recovery form wastes plants. In this work are considered materials and energy flows, environmental impacts and related treatment costs and financial resources [it

  8. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young's modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young's modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  9. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-08-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young\\'s modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young\\'s modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  10. Energy storage, compression, and switching. Vol. 2

    International Nuclear Information System (INIS)

    Nardi, V.; Bostick, W.H.; Sahlin, H.

    1983-01-01

    This book is a compilation of papers presented at the Second International Conference on Energy Storage, Compression, and Switching, which was held in order to assemble active researchers with a major interest in plasma physics, electron beams, electric and magnetic energy storage systems, high voltage and high current switches, free-electron lasers, and pellet implosion plasma focus. Topics covered include: Slow systems: 50-60 Hz machinery, homopolar generators, slow capacitors, inductors, and solid state switches; Intermediate systems: fast capacitor banks; superconducting storage and switching; gas, vacuum, and dielectric switching; nonlinear (magnetic) switching; imploding liners capacitors; explosive generators; and fuses; and Fast systems: Marx, Blumlein, oil, water, and pressurized water dielectrics; switches; magnetic insulation; electron beams; and plasmas

  11. Incineration with energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, T.G.

    1986-02-01

    Motherwell Bridge Tacol Ltd. operate a 'Licence Agreement' with Deutsche Babcock Anlagen of Krefeld, West Germany, for the construction of Municipal Refuse Incineration plant and Industrial Waste plant with or without the incorporation of waste heat recovery equipment. The construction in the UK of a number of large incineration plants incorporating the roller grate incinerator unit is discussed. The historical background, combustion process, capacity, grate details, refuse analysis and use as fuel, heat recovery and costs are outlined.

  12. White Flame Energy switches to backhoes

    Energy Technology Data Exchange (ETDEWEB)

    Fiscor, S.

    2005-06-01

    The mountaintop coal operator, White Flame Energy has switched to different truck-shovel arrangement. Along with many surface mining operations throughout central Appalachia, the company is using hoe-configured hydraulic excavators as opposed to the traditional front-shovel arrangements. Located in Varney, WV, White Flame Energy uses two Terex O & K mining shovels, an RH170 and an RH 200, which have the capacity to move 2 million cu yards per month from five seams, primarily the Coalburg, Stockton, and No 5 Block and associated rider seams. The article records conversations on the operations with Mike Vines, the general manager, and Don Nicewonder, the owner of White Flame Energy. 2 photos.

  13. Switching off or switching source : energy consumption and household

    NARCIS (Netherlands)

    Gassmann, F.; Tsukada, R.

    2013-01-01

    "Access to energy is fundamental to improving quality of life and is a key imper- ative for economic development" (Energy Poverty Action). This is particularly true in Central Asia where winters are harsh and long. Changes in energy prices affect the purchasing power of households, hitting the poor

  14. Nutrient and energy recovery from urine

    NARCIS (Netherlands)

    Kuntke, P.

    2013-01-01

    Keywords: urine, urine treatment, nutrient recovery, microbial fuel cells, energy production from urine, membrane capacitive deionization.

    In conventional wastewater treatment plants large amounts of energy are required for the removal and recovery of nutrients (i.e. nitrogen and

  15. Lowering operation costs by energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, W; Hausmann, H; Hausmann, K H

    1976-01-01

    Heat recovery and the heat sources available as well as possible applications of the heat recovered are discussed. Groundwater, shower water and waste air are considered as energy sources. Energy recovery by means of finned-tube systems and the heat pump, and economic aspects of the techniques are described.

  16. Kinetic energy recovery systems in motor vehicles

    Science.gov (United States)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  17. Energy recovery from plastic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baur, A; Atzger, J

    1983-07-01

    The conversion of plastic wastes to energy is suggested as a practicable and advantageous alternative to recycling. A two-stage pilot gasification plant for the pyrolysis of wastes is described and the utilization of the resulting fuel gas discussed.

  18. The market wants small scale plants for energy recovery

    International Nuclear Information System (INIS)

    Lind, Oddvar

    1999-01-01

    The article deals with the development within energy conservation in Europe and describes some projects for energy recovery from wastes in Norway. A brief survey of Norwegian energy policy for and development of waste management and energy recovery is included

  19. Rf power amplification by energy storage and switching

    International Nuclear Information System (INIS)

    Vernon, W.

    1989-01-01

    This paper reports that during the last decade there have been several suggestions for RF storage and switching schemes. The principle behind these schemes is simply that energy from a source which is on for a long time at moderate power can be stored in a resonant cavity and dumped (switched) in a short time to yield higher power. This is also the basis of SLED which is driving the SLC, but the major difference is in the switching and the proposed power gains. In the case of SLED there is no switch only a phase agile RF source, and the maximum power gain is about a factor of 3. Proposed storage and switching schemes are often based on large ratios of charge to discharge times, say 5 μsec/50 nsec = 100 which could be the power amplification ratio. An early demonstration of the switching of a superconducting cavity was reported. It was observed that a peak power gain of 9 at low power levels with a cold cavity and a room-temperature switch. The switch was a He gas filled tube positioned in the leg of a waveguide T so that a η/2 stub turned into a η/4 stub when the gas broke down and became a good conductor. All switches encountered to date are some variant of this technique; the stubs reflects back an out-of-phase signal which cancels the one from the cavity so that no power escapes while the low-loss dielectric tube is non-conducting

  20. Stored energy recovery of irradiated copper

    International Nuclear Information System (INIS)

    Richard, R.T.; Chaplin, R.L.; Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.

    1990-01-01

    The stored energy released in Stage I recovery of reactor neutron irradiated copper was measured by differential thermal analysis calorimetry for three fluences up to a maximum of 3.5 x 10 18 n/cm 2 (E>0.1 MeV) after irradiation at temperatures of less than 10 K. The dependence of the stored energy upon fluence, and a tendency toward saturation, were observed. Theoretical reaction rate processes were compared directly with the experimental rates of stored energy release, and the parameters associated with the theory were compared with results from previous resistivity measurements. Good agreement was found for several parameters, but major differences with previous D + E substage results lead to the conclusion that the point defect model may not describe materials experiencing severe neutron damage. Computer studies of warmup rates were made for first and second order and for correlated recovery processes as a function of defect concentration and of external power input. First and second order processes show definite distortion in their recovery rate curves for high defect concentrations; the correlated recovery process shows a much less pronounced effect. This investigation of stored energy used several new approaches. The use of induced radioactivity within the sample as the heating source, and the use of computer generated theoretical stored energy release curves to analyze the data were unique. (author)

  1. Status of the Novosibirsk energy recovery linac

    International Nuclear Information System (INIS)

    Bolotin, V.P.; Vinokurov, N.A.; Gavrilov, N.G.; Kayran, D.A.; Knyazev, B.A.; Kolobanov, E.I.; Kotenkov, V.V.; Kubarev, V.V.; Kulipanov, G.N.; Matveenko, A.N.; Medvedev, L.E.; Miginsky, S.V.; Mironenko, L.A.; Oreshkov, A.D.; Ovchar, V.K.; Popik, V.M.; Salikova, T.V.; Serednyakov, S.S.; Skrinsky, A.N.; Shevchenko, O.A.; Scheglov, M.A.; Tcheskidov, V.G.

    2006-01-01

    The Novosibirsk terahertz free electron laser is based on the energy recovery linac (ERL) with room-temperature radiofrequency system. Some features of the ERL are discussed. The results of emittance measurements and electron optics tests are presented. The second stage of the ERL, which has four orbits, is described briefly

  2. Energy recovery from rivers and oceans

    International Nuclear Information System (INIS)

    2009-01-01

    This book gathers the different projects, systems and technologies allowing to recover the energy from rivers, ocean streams, waves and tides with their economic interest. Content: project of swell and waves energy recovery: Pelamis and Searev projects, buoys and breaking systems; streams and tidal energy: horizontal axis and vertical axis turbines, oscillating column and hydraulic systems; kinematic chains of energy generation systems; terrestrial hydro-energy: small-scale hydro-power, French regulation, opening of energy markets, renewable energy law, the French Pope and Lema laws, exploitation permits, markets and perspectives; small hydro-power technologies: turbines, generator, multiplier; R and D trends: turbines, engines, control systems, combined energies and uses; low-fall technology; duct-embedded systems; other technologies. (J.S.)

  3. Parametric studies on the harvested energy of piezoelectric switching techniques

    International Nuclear Information System (INIS)

    Neubauer, M; Krack, M; Wallaschek, J

    2010-01-01

    Piezoelectric energy harvesting techniques have experienced increasing research effort during the last few years. Possible applications including wireless, fully autonomous electronic devices, such as sensors, have attracted great interest. The key aspect of harvesting techniques is the amount of converted and stored energy, because the energy source and the conversion rate is limited. In particular, switching techniques offer many parameters that can be optimized. It is therefore crucial to examine the influence of these parameters in a precise manner. This paper addresses an accurate analytical modeling approach, facilitating the calculation of standard-DC and parallel SSHI-DC energy harvesting circuits. In particular the influence of the frequency ratio between the excitation and the electrical resonance of the switching LR-branch, and the voltage gaps across the rectifier diodes are studied in detail. Additionally a comparison with the SSDI damping network is performed. The relationship between energy harvesting and damping is indicated in this paper

  4. Switch green : Energy Star appliance feebate

    International Nuclear Information System (INIS)

    2007-01-01

    Between 1990 and 2004, greenhouse gas (GHG) emissions from the residential sector have grown by 10 per cent, and are likely to continue growing unless a policy aimed at reducing emissions is introduced. The residential sector is a significant contributor to Canada's overall GHG emissions, and an important source for potential reductions. This report presented the results of a study that described and evaluated a new economic instrument aimed at reducing greenhouse gas (GHG) emissions and energy consumption in Canada from household appliances, such as air conditioners, furnaces and boilers. Results of a quantitative analysis to determine the effect of changing taxation of residential appliances to reflect energy consumption and greenhouse gas emissions were presented. In addition, the report presented the results of a qualitative evaluation of the policy, using the criteria established in the 2005 budget plan, a framework for evaluating environmental tax proposals. The report outlined the context for the tax proposal that was evaluated and provided a summary of trends in Canada's greenhouse gas emissions and energy consumption as well as a discussion of important trends in residential energy consumption. A review of policies already in place to address energy consumption from household appliances was also presented. 11 tabs., 6 figs

  5. Multistage switched inductor boost converter for renewable energy application

    DEFF Research Database (Denmark)

    Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Bhaskar, Mahajan Sagar

    2017-01-01

    In this paper Multistage Switched Inductor Boost Converter (Multistage SIBC) is uttered for renewable energy applications. The projected converter is derived from an amalgamation of the conventional step-up converter and inductor stack. The number of inductor and duty ratio decides the overall...

  6. Energy conversion loops for flux-switching PM machine analysis

    NARCIS (Netherlands)

    Ilhan, E.; Motoasca, T.E.; Paulides, J.J.H.; Lomonova, E.

    2012-01-01

    Induction and synchronous machines have traditionally been the first choice of automotive manufacturers for electric/hybrid vehicles. However, these conventional machines are not able anymore to meet the increasing demands for a higher energy density due to space limitation in cars. Flux-switching

  7. Optimization of photovoltaic energy production through an efficient switching matrix

    Directory of Open Access Journals (Sweden)

    Pietro Romano

    2013-09-01

    Full Text Available This work presents a preliminary study on the implementation of a new system for power output maximization of photovoltaic generators under non-homogeneous conditions. The study evaluates the performance of an efficient switching matrix and the relevant automatic reconfiguration control algorithms. The switching matrix is installed between the PV generator and the inverter, allowing a large number of possible module configurations. PV generator, switching matrix and the intelligent controller have been simulated in Simulink. The proposed reconfiguration system improved the energy extracted by the PV generator under non-uniform solar irradiation conditions. Short calculation times of the proposed control algorithms allow its use in real time applications even where a higher number of PV modules is required.

  8. The best energy recovery project in Norway?

    International Nuclear Information System (INIS)

    Melaasen, Erik

    2001-01-01

    Norway is one of the world's leading producers of ferro-alloys and silicon metals. The high temperature required in the production process is obtained by using electric energy. The temperature of the waste gases varies between 200 and 900 o C. To recover the energy of hot dust-holding gases from ferro-alloy plants the waste gases are cooled by means of steam production. The ferro-alloy plant Globe Norge AS Hafslund Metall and the energy supply company Birka Energi have signed an agreement to build Norway's largest energy recovery plant. The plant will recover 260 GWh per year. The oil consumption will be reduced by 26000 tonne per year and the annual emission of carbon dioxide by 80000 tonne. Steam from the plant will be supplied to the two companies Borregaard and Glomma Papp. The article describes the plant in some detail

  9. Energy balance for uranium recovery from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.; Lindner, H. [The University of Texas, 1 University Station C2200, Austin, TX 78712 (United States)

    2013-07-01

    The energy return on investment (EROI) of an energy resource is the ratio of the energy it ultimately produces to the energy used to recover it. EROI is a key viability measure for a new recovery technology, particularly in its early stages of development when financial cost assessment would be premature or highly uncertain. This paper estimates the EROI of uranium recovery from seawater via a braid adsorbent technology. In this paper, the energy cost of obtaining uranium from seawater is assessed by breaking the production chain into three processes: adsorbent production, adsorbent deployment and mooring, and uranium elution and purification. Both direct and embodied energy inputs are considered. Direct energy is the energy used by the processes themselves, while embodied energy is used to fabricate their material, equipment or chemical inputs. If the uranium is used in a once-through fuel cycle, the braid adsorbent technology EROI ranges from 12 to 27, depending on still-uncertain performance and system design parameters. It is highly sensitive to the adsorbent capacity in grams of U captured per kg of adsorbent as well as to potential economies in chemical use. This compares to an EROI of ca. 300 for contemporary terrestrial mining. It is important to note that these figures only consider the mineral extraction step in the fuel cycle. At a reference performance level of 2.76 g U recovered per kg adsorbent immersed, the largest energy consumers are the chemicals used in adsorbent production (63%), anchor chain mooring system fabrication and operations (17%), and unit processes in the adsorbent production step (12%). (authors)

  10. Fast ferroelectric phase shifters for energy recovery linacs

    Directory of Open Access Journals (Sweden)

    S. Yu Kazakov

    2010-11-01

    Full Text Available Fast phase shifters are described that use a novel barium strontium titanate ceramic that can rapidly change its dielectric constant as an external bias voltage is changed. These phase shifters promise to reduce by ∼10 times the power requirements for the rf source needed to drive an energy recovery linac (ERL. Such phase shifters will be coupled with superconducting radiofrequency cavities so as to tune them to compensate for phase instabilities, whether beam-driven or those caused by microphonics. The most promising design is presented, which was successfully cold tested and demonstrated a switching speed of ∼30  ns for 77 deg, corresponding to <0.5  ns per deg of rf phase. Other crucial issues (losses, phase shift values, etc. are discussed.

  11. Microbial battery for efficient energy recovery.

    Science.gov (United States)

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi

    2013-10-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power.

  12. Multiaspect measurement analysis of breaking energy recovery

    International Nuclear Information System (INIS)

    Bartłomiejczyk, Mikołaj; Połom, Marcin

    2016-01-01

    Highlights: • A case study of implementation of eco energy technologies in municipal transport. • The “ready to use” methods are presented. • The “niche” ways of increasing efficiency, e.g. “intelligent heating”. • Novel multi way measurement method using GPS localization system. • Confirmation of the results by means of research and experimental measurement. - Abstract: Nowadays the issue of electric energy saving in public transport is becoming a key area of interest, which is connected both with a growth of environmental awareness in the society and an increase in the prices of fuel and electricity. That is why the reduction of energy consumption by increasing electrified urban transport, such as trams, trolleybuses, light rail and underground is becoming an increasingly important issue. Energy recovery during braking is possible in all modern electric vehicles, but in many cases this possibility is not fully taken advantage of, inter alia, because of an inadequate power supply structure. The aim of this article is to present practical examples of implementation of eco-friendly solutions in urban municipal transport. The article shows a thorough analysis of braking energy dispatch in the urban traction power supply system, which was based on extensive measurement research conducted in Gdynia trolleybus network. The authors applied multi way measurement method using Global Positioning System. The optimal conditions for implementation of several methods of energy recovery (storage energy systems, reconfiguration of supply system, using auxiliaries) have been shown. Great emphasis has been put on the confirmation of the results by means of research and experimental measurement.

  13. Passively-switched energy harvester for increased operational range

    International Nuclear Information System (INIS)

    Liu, Tian; Livermore, Carol; Pierre, Ryan St

    2014-01-01

    This paper presents modeling and experimental validation of a new type of vibrational energy harvester that passively switches between two dynamical modes of operation to expand the range of driving frequencies and accelerations over which the harvester effectively extracts power. In both modes, a driving beam with a low resonant frequency couples into ambient vibrations and transfers their energy to a generating beam that has a higher resonant frequency. The generating beam converts the mechanical power into electrical power. In coupled-motion mode, the driving beam bounces off the generating beam. In plucked mode, the driving beam deflects the generating beam until the driving beam passes from above the generating beam to below it or vice versa. Analytical system models are implemented numerically in the time domain for driving frequencies of 3 Hz to 27 Hz and accelerations from 0.1 g to 2.6 g, and both system dynamics and output power are predicted. A corresponding switched-dynamics harvester is tested experimentally, and its voltage, power, and dynamics are recorded. In both models and experiments, coupled-motion harvesting is observed at lower accelerations, whereas plucked harvesting and/or mixed mode harvesting are observed at higher accelerations. As expected, plucked harvesting outputs greater power than coupled-motion harvesting in both simulations and experiments. The predicted (1.8 mW) and measured (1.56 mW) maximum average power levels are similar under measured conditions at 0.5 g. When the system switches to dynamics that are characteristic of higher frequencies, the difference between predicted and measured power levels is more pronounced due to non-ideal mechanical interaction between the beams’ tips. Despite the beams’ non-ideal interactions, switched-dynamics operation increases the harvester’s operating range. (paper)

  14. Energy Conversion Loops for Flux-Switching PM Machine Analysis

    Directory of Open Access Journals (Sweden)

    E. Ilhan

    2012-10-01

    Full Text Available Induction and synchronous machines have traditionally been the first choice of automotive manufacturers for electric/hybrid vehicles. However, these conventional machines are not able anymore to meet the increasing demands for a higher energy density due to space limitation in cars. Flux-switching PM (FSPM machines with their high energy density are very suitable to answer this demand. In this paper, the energy conversion loop technique is implemented on FSPM for the first time. The energy conversion technique is a powerful tool for the visualization of machine characteristics, both linear and nonlinear. Further, the technique provides insight into the torque production mechanism. A stepwise explanation is given on how to create these loops for FSPM along with the machine operation.

  15. Nanoscale self-recovery of resistive switching in Ar+ irradiated TiO2-x films

    Science.gov (United States)

    Barman, A.; Saini, C. P.; Sarkar, P. K.; Das, D.; Dhar, S.; Singh, M.; Sinha, A. K.; Kanjilal, D.; Gupta, M.; Phase, D. M.; Kanjilal, A.

    2017-11-01

    Nanoscale evidence of self-recovery in resistive switching (RS) behavior was found in TiO2-x film by conductive atomic force microscopy when exposed to Ar+-ions above a threshold fluence of 1  ×  1016 ions cm-2. This revealed an evolution and gradual disappearance of bipolar RS-loops, followed by reappearance with increasing number of voltage sweep. This was discussed in the realm of oxygen vacancy (OV) driven formation, dissolution and reformation of conducting filaments. The presence of OVs in ion-beam irradiated TiO2-x films was evidenced by decreasing trend of work function in scanning-Kelvin probe microscopy, and was further verified by x-ray absorption near edge spectroscopy at Ti and O-K edges.

  16. Superconducting RF for energy-recovery linacs

    International Nuclear Information System (INIS)

    Liepe, M.; Knobloch, J.

    2006-01-01

    Since superconducting RF for particle accelerators made its first appearance in the 1970s, it has found highly successful application in a variety of machines. Recent progress in this technology has made so-called Energy-Recovery Linacs (ERLs)-originally proposed in 1965-feasible, and interest in this type of machine has increased enormously. A superconducting linac is the driving heart of ERLs, and emittance preservation and cost efficiency is of utmost importance. The resulting challenges for the superconducting cavity technology and RF field control are manifold. In March 2005 the first international workshop on ERLs was held at Newport News, VA, to explore the potential of ERLs and to discuss machine-physics and technology challenges and their solutions. This paper reviews the state-of-the-art in superconducting RF and RF control for ERLs, and summarizes the discussions of the SRF working group on this technology during the ERL2005 workshop

  17. Modeling and Simulation of Energy Recovery from a Photovoltaic ...

    African Journals Online (AJOL)

    Modeling and Simulation of Energy Recovery from a Photovoltaic Solar cell. ... Photovoltaic (PV) solar cell which converts solar energy directly into electrical energy is one of ... model of the solar panel which could represent the real systems.

  18. Natural gas decompression energy recovery: Energy savings potential in Italy

    International Nuclear Information System (INIS)

    Piatti, A.; Piemonte, C.; Rampini, E.; Vatrano, F.; Techint SpA, Milan; ENEA, Rome

    1992-01-01

    This paper surveyed the natural gas distribution systems employed in the Italian civil, industrial and thermoelectric sectors to identify those installations which can make use of gas decompression energy recovery systems (consisting of turbo-expanders or alternative expanders) to economically generate electric power. Estimates were then made of the total amount of potential energy savings. The study considered as eligible for energy savings interventions only those plants with a greater than 5,000 standard cubic meter per hour plant capacity. It was evaluated that, with suitable decompression equipment installed at 50 key installations (33 civil, 15 industrial), about 200 GWh of power could be produced annually, representing potential savings of about 22,000 petroleum equivalent tonnes of energy. A comparative analysis was done on three investment alternatives involving inputs of varying amounts of Government financial assistance

  19. The FFAG return loop for the CBETA Energy Recovery Linac

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-28

    The CBETA energy recovery linac uses a single xed eld alternating gradient (FFAG) beam line to return the beam for electron beams with four energies, ranging from 42 MeV to 150 MeV. To keep the beam line compact, the ends of the return line have a small radius of curvature, but the central part of the return line is straight. These are connected by transition lines that adiabatically change from one to the other. We rst describe the design or the arc cell. We then describe how a straight cell is created to be a good match to this arc cell. We then describe the design of the transition line between them. The design process makes use of eld maps for the desired magnets. Because we switch magnet types as we move from the arc, through the transition, and into the straight, there are discrete jumps in the elds that degrade the adiabaticity of the transition, and we describe corrections to manage that.

  20. Fast-opening vacuum switches for high-power inductive energy storage

    International Nuclear Information System (INIS)

    Cooperstein, G.

    1988-01-01

    The subject of fast-opening vacuum switches for high-power inductive energy storage is emerging as an exciting new area of plasma science research. This opening switch technology, which generally involves the use of plasmas as the switching medium, is key to the development of inductive energy storage techniques for pulsed power which have a number of advantages over conventional capacitive techniques with regard to cost and size. This paper reviews the state of the art in this area with emphasis on applications to inductive storage pulsed power generators. Discussion focuses on fast-opening vacuum switches capable of operating at high power (≥10 12 W). These include plasma erosion opening switches, ion beam opening switches, plasma filled diodes, reflex diodes, plasma flow switches, and other novel vacuum opening switches

  1. CW Energy Recovery Operation of XFELs

    International Nuclear Information System (INIS)

    Jacek Sekutowicz; S. Bogacz; Dave Douglas; Peter Kneisel; Gwyn P. Wiliams; Massimo Ferrario; Luca Serafini; Ilan Ben-Zvi; James Rose; Triveni Srinivasan-Rao; Patrick Colestock; Wolf-Dietrich Moeller; Bernd Petersen; Dieter Proch; S. Simrock; James B. Rosenzweig

    2003-01-01

    Commissioning of two large coherent light facilities at SLAC and DESY should begin in 2008 and in 2011 respectively. In this paper we look further into the future, hoping to answer, in a very preliminary way, two questions. First: What will the next generation of the XFEL facilities look like ? Believing that super-conducting technology offers several advantages over room-temperature technology, such as high quality beams with highly populated bunches and the possibility of energy recovery or higher overall efficiency, we focus this preliminary study on the superconducting option. From this belief the second question arises: ''What modifications in superconducting technology and in machine design are needed, as compared to the present DESY XFEL, and what kind of R and D program is required over the next few years to arrive at a technically feasible solution with even higher brilliance and increased overall conversion of AC power to photon beam power. In this paper we will very often refer to and profit from the DESY XFEL design, acknowledging its many technically innovative solutions

  2. Delta undulator for Cornell energy recovery linac

    Directory of Open Access Journals (Sweden)

    Alexander B. Temnykh

    2008-12-01

    Full Text Available In anticipation of a new era of synchrotron radiation sources based on energy recovery linac techniques, we designed, built, and tested a short undulator magnet prototype whose features make optimum use of the unique conditions expected in these facilities. The prototype has pure permanent magnet (PPM structure with 24 mm period, 5 mm diameter round gap, and is 30 cm long. In comparison with conventional undulator magnets it has the following: (i full x-ray polarization control.—It may generate varying linear polarized as well as left and right circular polarized x rays with photon flux much higher than existing Apple-II–type devices. (ii 40% stronger magnetic field in linear and approximately 2 times stronger in circular polarization modes. This advantage translates into higher x-ray flux. (iii Compactness.—The prototype can be enclosed in a ∼20  cm diameter cylindrical vacuum vessel. These advantages were achieved through a number of unconventional approaches. Among them is control of the magnetic field strength via longitudinal motion of the magnet arrays. The moving mechanism is also used for x-ray polarization control. The compactness is achieved using a recently developed permanent magnet soldering technique for fastening PM blocks. We call this device a “Delta” undulator after the shape of its PM blocks. The presented article describes the design study, various aspects of the construction, and presents some test results.

  3. Department of Energy Recovery Act Investment in Biomass Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  4. Preliminary experiments on energy recovery on a neutral beam injector

    International Nuclear Information System (INIS)

    Fumelli, M.

    1977-06-01

    Energy recovery tests performed on an injector of energetic neutral atoms in which the ion source is operated at the ground potential and the neutralizer is biased at the high energy potential corresponding to the desired neutral beam energy, are presented. The operation of the suppressor grid is studied in two different experiments. These tests underline the problems to be solved for an efficient recovery of the energy of the unneutralized beam fraction

  5. Energy Recovery in Existing Water Networks: Towards Greater Sustainability

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2017-02-01

    Full Text Available Analyses of possible synergies between energy recovery and water management are essential for achieving sustainable improvements in the performance of irrigation water networks. Improving the energy efficiency of water systems by hydraulic energy recovery is becoming an inevitable trend for energy conservation, emissions reduction, and the increase of profit margins as well as for environmental requirements. This paper presents the state of the art of hydraulic energy generation in drinking and irrigation water networks through an extensive review and by analyzing the types of machinery installed, economic and environmental implications of large and small hydropower systems, and how hydropower can be applied in water distribution networks (drinking and irrigation where energy recovery is not the main objective. Several proposed solutions of energy recovery by using hydraulic machines increase the added value of irrigation water networks, which is an open field that needs to be explored in the near future.

  6. Network switching strategy for energy conservation in heterogeneous networks.

    Directory of Open Access Journals (Sweden)

    Yujae Song

    Full Text Available In heterogeneous networks (HetNets, the large-scale deployment of small base stations (BSs together with traditional macro BSs is an economical and efficient solution that is employed to address the exponential growth in mobile data traffic. In dense HetNets, network switching, i.e., handovers, plays a critical role in connecting a mobile terminal (MT to the best of all accessible networks. In the existing literature, a handover decision is made using various handover metrics such as the signal-to-noise ratio, data rate, and movement speed. However, there are few studies on handovers that focus on energy efficiency in HetNets. In this paper, we propose a handover strategy that helps to minimize energy consumption at BSs in HetNets without compromising the quality of service (QoS of each MT. The proposed handover strategy aims to capture the effect of the stochastic behavior of handover parameters and the expected energy consumption due to handover execution when making a handover decision. To identify the validity of the proposed handover strategy, we formulate a handover problem as a constrained Markov decision process (CMDP, by which the effects of the stochastic behaviors of handover parameters and consequential handover energy consumption can be accurately reflected when making a handover decision. In the CMDP, the aim is to minimize the energy consumption to service an MT over the lifetime of its connection, and the constraint is to guarantee the QoS requirements of the MT given in terms of the transmission delay and call-dropping probability. We find an optimal policy for the CMDP using a combination of the Lagrangian method and value iteration. Simulation results verify the validity of the proposed handover strategy.

  7. Renewable and recovery energies for each industry sector

    International Nuclear Information System (INIS)

    Petitot, Pauline

    2018-01-01

    The French agency of environment and energy management (Ademe) has made available to the industrialists, a study about the proper choice of renewable and recovery energies capable to meet the energy and heat needs of their facilities. This article summarises in a table, sector by sector and for each renewable and recovery energy source, the capability of this energy source to supply part or the overall energy needs of some elementary industrial processes. Indication is given about the capability of an energy source to produce electricity as well

  8. Frequency response function of motors for switching noise energy with a new experimental approach

    International Nuclear Information System (INIS)

    Kim, Hyunsu; Yoon, Jong-Yun

    2017-01-01

    Switching energy in electrical vehicles can create serious noise from the motors. However, the characteristics of switching noise in vehicle motors are not clear due to the complexity of measuring them. This study proposes a new experimental method to investigate the switching noise energy of a vehicle motor based on frequency response functions. A function generator-amplifier system is used to gen- erate the switching energy instead of the complex battery-inverter system that has previously been used to examine the noise energy characteristics. Even though newly adapted experimental method is simple, the switching noise energy was explicitly investigated under various input signals. Thus, this simple new method can be used to investigate the dynamic characteristics of noise energy in a vehicle motor

  9. Frequency response function of motors for switching noise energy with a new experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunsu [Ensemble Center for Automotive Research, Seoul (Korea, Republic of); Yoon, Jong-Yun [Incheon National University, Incheon (Korea, Republic of)

    2017-06-15

    Switching energy in electrical vehicles can create serious noise from the motors. However, the characteristics of switching noise in vehicle motors are not clear due to the complexity of measuring them. This study proposes a new experimental method to investigate the switching noise energy of a vehicle motor based on frequency response functions. A function generator-amplifier system is used to gen- erate the switching energy instead of the complex battery-inverter system that has previously been used to examine the noise energy characteristics. Even though newly adapted experimental method is simple, the switching noise energy was explicitly investigated under various input signals. Thus, this simple new method can be used to investigate the dynamic characteristics of noise energy in a vehicle motor.

  10. Energy information. Status, cost, and need for energy, consumption and fuel switching data

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Milans, Flora H.; Hale, Richard A.; Weaver, Joanne E.; D'Amico, Nicholas C.

    1989-04-01

    In 1986, EIA's Manufacturing Energy Consumption Survey collected calendar year 1985 fuel switching and energy consumption information from a sample of manufacturers. Although the construction, agriculture, mining, fishing, and forestry segments of the industrial sector were not surveyed, in 1985 the manufacturing segment accounted for about 75 to 80 percent of the total energy consumed in the industrial sector. The results of the energy consumption segment of the survey were published in November 1988, and the results of the fuel switching segment were published in December 1988. In 1989, EIA will conduct the second triennial survey, collecting energy consumption and fuel switching data for 1988. EIA estimated that the cost of the survey to the U.S. government, consisting of EIA and Census Bureau costs to design and conduct the survey, was about $1.8 million (in 1988 dollars) and that the cost to the manufacturers participating in the survey was more than $4 million (in 1988 dollars). According to EIA's justification to the Office of Management and Budget (OMB) for the survey, most of the potential users of the survey data were federal offices. Officials of seven of the eight federal offices we contacted indicated various uses for the energy consumption data, such as updating the national input-output tables and energy accounts, analyzing the competitiveness of U.S. industries, and doing energy emergency contingency planning. Officials of five of the eight federal offices indicated uses for the fuel switching data and most frequently cited its use for contingency planning for emergencies or supply disruptions. EIA's justification to OMB also identified 17 states as potential users, but officials of the 3 state offices that we contacted told us that the EIA data would not be useful because it cannot be summarized for individual states

  11. Ultra-Fast Low Energy Switching Using an InP Photonic Crystal H0 Nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel

    2013-01-01

    Pump-probe measurements on InP photonic crystal H0 nanocavities show large-contrast ultrafast switching at low pulse energy. For large pulse energies, high-frequency carrier density oscillations are induced, leading to pulsesplitting.......Pump-probe measurements on InP photonic crystal H0 nanocavities show large-contrast ultrafast switching at low pulse energy. For large pulse energies, high-frequency carrier density oscillations are induced, leading to pulsesplitting....

  12. Modeling of plasma flow switches at low, intermediate and high energies

    International Nuclear Information System (INIS)

    Bowers, R.L.; Brownell, J.H.; Greene, A.E.; Peterson, D.L.; Roderick, N.; Turchi, P.

    1992-01-01

    Inductively stored pulsed power technology has been used over the past thirty years to produce multi-megaamp currents to implode low inductance loads and produce x-radiation. Because of the large difference in timescales for the delivery of magnetic energy to the load and the desire for high power x-radiation output (short timescale for the implosion), most inductively stored systems require at least one opening switch. The design and understanding of fast, efficient opening switches for multi-megaamp systems represents a long standing problem in pulsed power research. The Los Alamos Foil Implosion Project uses inductively stored magnetic energy to implode thin metallic liners. A plasma flow switch (PFS) has been investigated as the final pulse shaping step for this systems. The PFS consists of a wire array and a barrier foil located upstream from the load region. Several stages can be identified in the performance of the plasma flow switch. These are: (1) the vaporization of the wire array; (2) the assembly of the initiated plasma on tie barrier foil to form the switch plasma; (3) the motion of the switch plasma down the coaxial barrel; and (4) current switching to the load (the actual switching stage). The fourth stage affects the switch's efficiency, as well as the quality of the load implosion. Instabilities may develop during any of these four stages, and their presence may seriously degrade the structure of the switch plasma. Two primary criteria may be used to characterize good switching. The first is switching efficiency. A second criterion is transferred to the load during or after switching. This paper summarizes the computational design of the PFS experiments carried out on Pegasus 1. We conclude by considering the implications of these results for the design of a PFS for the higher energy regime (Procyon) regime

  13. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  14. Energy saving and recovery measures in integrated urban water systems

    Science.gov (United States)

    Freni, Gabriele; Sambito, Mariacrocetta

    2017-11-01

    The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).

  15. Utilizing waste heat. Energy recovery options for trade and industry

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, W

    1988-08-01

    The article shows options for efficient and low-cost thermal energy recovery. Heat recovery involves a number of problems, e.g. the type of waste heat, the uses of the energy recovered, and the best way of utilizing it. There is no generally applicable way of solving these problems. Some practical examples are presented. Economically efficient solutions require detailed technical knowledge as well as a good portion of creativity and imagination. (BR).

  16. Energy and exergy recovery in a natural gas compressor station – A technical and economic analysis

    International Nuclear Information System (INIS)

    Kostowski, Wojciech J.; Kalina, Jacek; Bargiel, Paweł; Szufleński, Paweł

    2015-01-01

    Highlights: • Energy and exergy flow in a natural gas compressor station. • Operational efficiency only 18.3% vs. 35.1% nominal. • 3 energy/exergy recovery systems proposed. • Up to 168.9 GW h/y electricity and 6.5 GW h/y heat recoverable. • Legal obstacles: operators not allowed to produce electricity. - Abstract: The paper presents possible solutions to improve the thermodynamic performance of a natural gas compressor station equipped with various type of compressor units and operated at part-load conditions. A method for setting a simplified energy and exergy balance based on the available metering information has been presented. For a case study plant, it has been demonstrated that the current part-load operation leads to a significant decrease in energy and exergy efficiency compared to the nominal state of machinery. Three alternative improvement strategies have been proposed: (1) installation of a heat recovery hot water generator for covering the existing heat demand of the plant; (2) installation of a heat recovery thermal oil heater for covering the existing heat demand and driving an organic Rankine cycle (ORC) for electricity generation; (3) installation of a heat recovery thermal oil heater with and ORC and gas expanders for switching into full-load operation of the gas turbine unit. Energy and exergy performance of the proposed strategies as well as their economic feasibility have been analyzed. The second scenario involving an ORC unit provides the highest local energy savings, however, its economic feasibility is not achieved under the current part-load operating conditions. A hypothetic scenario of the same station operated at full-load due to an increased gas transmission capacity demonstrate the economic feasibility (possible under optimistic price conditions). Finally, it has been shown that the possibility of waste energy recovery from natural gas transmission systems (in particular, from compressor stations) depends on legal

  17. Energy efficient SDN commodity switch based practical flow forwarding method

    KAUST Repository

    Alghadhban, Amer Mohammad JarAlla; Shihada, Basem

    2016-01-01

    -table size and the number of control messages. Consequently, the power consumption of network switches is in orders of magnitude less than other evaluated solutions. It also provides flow management flexibility and scalability. We compare EncPath with single

  18. A Switched-Capacitor Based High Conversion Ratio Converter for Renewable Energy Applications

    DEFF Research Database (Denmark)

    Li, Kerui; Yin, Zhijian; Yang, Yongheng

    2017-01-01

    A high step-up switched-capacitor based converter is proposed in this paper. The proposed converter features high conversion ratio, low voltage stress and continuous input current, which makes it very suitable for renewable energy applications like photovoltaic systems. More importantly...... voltage gain, low voltage stress on the switches, continuous input current, and relatively high efficiency....

  19. Scaling experiments on plasma opening switches for inductive energy storage applications

    International Nuclear Information System (INIS)

    Boller, J.R.; Commisso, R.J.; Cooperstein, G.

    1983-01-01

    A new type of fast opening switch for use with pulsed power accelerators is examined. This Plasma Opening Switch (POS) utilizes an injected carbon plasma to conduct large currents (circa 1 MA) for up to 100 ns while a vacuum inductor (circa 100 nH) is charged. The switch is then capable of opening on a short (circa 10 ns) timescale and depositing the stored energy into a load impedance. Output pulse widths and power levels are determined by the storage inductance and the load impedance. The switch operation is studied in detail both analytically and experimentally. Experiments are performed at the 5 kJ stored energy level on the Gamble I generator and at the 50 kJ level on the Gamble II generator. Results of both experiments are reported and the scaling of switch operation is discussed

  20. Complex processing of rubber waste through energy recovery

    Directory of Open Access Journals (Sweden)

    Roman Smelík

    2015-12-01

    Full Text Available This article deals with the applied energy recovery solutions for complex processing of rubber waste for energy recovery. It deals specifically with the solution that could maximize possible use of all rubber waste and does not create no additional waste that disposal would be expensive and dangerous for the environment. The project is economically viable and energy self-sufficient. The outputs of the process could replace natural gas and crude oil products. The other part of the process is also the separation of metals, which can be returned to the metallurgical secondary production.

  1. Biomass gasification: a strategy for energy recovery and disposal of ...

    African Journals Online (AJOL)

    Biomass gasification: a strategy for energy recovery and disposal of industrial and municipal wastes. Anurag Pandey, Anupam Shukla. Abstract. Energy from biological organic waste as an aspect of sustainable waste management is probably the most contentious. Solid and liquid wastes are a rapidly growing problem ...

  2. Modeling of switching energy of magnetic tunnel junction devices with tilted magnetization

    International Nuclear Information System (INIS)

    Surawanitkun, C.; Kaewrawang, A.; Siritaratiwat, A.; Kruesubthaworn, A.; Sivaratana, R.; Jutong, N.; Mewes, C.K.A.; Mewes, T.

    2015-01-01

    For spin transfer torque (STT), the switching energy and thermal stability of magnetic tunnel junctions (MTJ) bits utilized in memory devices are important factors that have to be considered simultaneously. In this article, we examined the minimum energy for STT induced magnetization switching in MTJ devices for different in-plane angles of the magnetization in the free layer and the pinned layer with respect to the major axis of the elliptical cylinder of the cell. Simulations were performed by comparing the analytical solution with macrospin and full micromagnetic calculations. The results show good agreement of the switching energy calculated by using the three approaches for different initial angles of the magnetization of the free layer. Also, the low-energy location specifies the suitable value of both time and current in order to reduce the heat effect during the switching process. - Highlights: • Switching energy model was firstly examined with tiled magnetization in STT-RAM. • Simulation was performed by analytical solution, macrospin and micromagnetic models. • Low energy results from three models show agreement for tilt angle in free layer. • We also found an optimal tilt angle of the pinned layer. • Low-energy location specifies the suitable switching location to reduce heat effect

  3. Resource and energy recovery options for fermentation industry residuals

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, S C [Santa Clara Univ., CA (USA); Manning, Jr, J F [Alabama Univ., Birmingham, AL (USA)

    1989-01-01

    Over the last 40 years, the fermentation industry has provided facility planners, plant operators and environmental engineers with a wide range of residuals management challenges and resource/energy recovery opportunities. In response, the industry has helped pioneer the use of a number of innovative resource and energy recovery technologies. Production of animal feed supplements, composts, fertilizers, soil amendments, commercial baking additives and microbial protein materials have all been detailed in the literature. In many such cases, recovery of by-products significantly reduces the need for treatment and disposal facilities. Stable, reliable anaerobic biological treatment processes have also been developed to recover significant amounts of energy in the form of methane gas. Alternatively, dewatered or condensed organic fermentation industry residuals have been used as fuels for incineration-based energy recovery systems. The sale or use of recovered by-products and/or energy can be used to offset required processing costs and provide a technically and environmentally viable alternative to traditional treatment and disposal strategies. This review examines resource recovery options currently used or proposed for fermentation industry residuals and the conditions necessary for their successful application. (author).

  4. Recovery of energy in a gaseous diffusion plant

    International Nuclear Information System (INIS)

    Ergalant, Jacques; Guais, J.-C.; Perrault, Michel; Vignet, Paul

    1975-01-01

    Any energy recovery, even partial, goes in the direction of savings in energy and should be sought for. The Tricastin plant, now in the course of being built, will be able to deliver several hundreds of MW for the purpose of urban and agricultural heating. The new Coredif project will more completely integrate the valorization of calories in its definition (choice of temperatures, design of the heat exchangers, recovery cycles). In fact the recent evolution in energy costs renders the otpimization of a plant equipped with a heat recovery system (1 to 2% on the cost of the uranium produced) now economically worth-while. In the same way, the choice of the site of the future plant may be conditioned by the possible uses of calories in its vicinity [fr

  5. Kinetic energy recovery and power management for hybrid electric vehicles

    OpenAIRE

    Suntharalingam, P

    2011-01-01

    The major contribution of the work presented in this thesis is a thorough investigation of the constraints on regenerative braking and kinetic energy recovery enhancement for electric/hybrid electric vehicles during braking. Regenerative braking systems provide an opportunity to recycle the braking energy, which is otherwise dissipated as heat in the brake pads. However, braking energy harnessing is a relatively new concept in the automotive sector which still requires further research and de...

  6. Theoretical Thermal Evaluation of Energy Recovery Incinerators

    Science.gov (United States)

    1985-12-01

    Army Logistics Mgt Center, Fort Lee , VA DTIC Alexandria, VA DTNSRDC Code 4111 (R. Gierich), Bethesda MD; Code 4120, Annapolis, MD; Code 522 (Library...Washington. DC: Code (I6H4. Washington. DC NAVSECGRUACT PWO (Code .’^O.’^). Winter Harbor. IVIE ; PWO (Code 4(1). Edzell. Scotland; PWO. Adak AK...NEW YORK Fort Schuyler. NY (Longobardi) TEXAS A&M UNIVERSITY W.B. Ledbetter College Station. TX UNIVERSITY OF CALIFORNIA Energy Engineer. Davis CA

  7. Thermal energy storage for industrial waste heat recovery

    Science.gov (United States)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  8. Computer program for sizing residential energy recovery ventilator

    International Nuclear Information System (INIS)

    Koontz, M.D.; Lee, S.M.; Spears, J.W.; Kesselring, J.P.

    1991-01-01

    Energy recovery ventilators offer the prospect of tighter control over residential ventilation rates than manual methods, such as opening windows, with a lesser energy penalty. However, the appropriate size of such a ventilator is not readily apparent in most situations. Sizing of energy recovery ventilation software was developed to calculate the size of ventilator necessary to satisfy ASHRAE Standard 62-1989, Ventilation for Acceptable Air Quality, or a user-specified air exchange rate. Inputs to the software include house location, structural characteristics, house operations and energy costs, ventilation characteristics, and HVAC system COP/efficiency. Based on these inputs, the program estimates the existing air exchange rate for the house, the ventilation rate required to meet the ASHRAE standard or user-specified air exchange rate, the size of the ventilator needed to meet the requirement, and the expected changes in indoor air quality and energy consumption. In this paper an illustrative application of the software is provided

  9. Ultrashort soliton switching based on coherent energy hiding.

    Science.gov (United States)

    Romagnoli, M; Wabnitz, S; Zoccolotti, L

    1991-08-15

    Coherent coupling between light and atoms may be exploited for conceiving a novel class of all-optical signalprocessing devices without a direct counterpart in the continuous-wave regime. We show that the self-switching of ultrashort soliton pulses on resonance with a transition of doping centers in a slab waveguide directional coupler is based on nonlinear group-velocity (instead of the usual phase-velocity) changes.

  10. Multi states electromechanical switch for energy efficient parallel data processing

    KAUST Repository

    Kloub, Hussam

    2011-04-01

    We present a design, simulation results and fabrication of electromechanical switches enabling parallel data processing and multi functionality. The device is applied in logic gates AND, NOR, XNOR, and Flip-Flops. The device footprint size is 2μm by 0.5μm, and has a pull-in voltage of 5.15V which is verified by FEM simulation. © 2011 IEEE.

  11. Multi states electromechanical switch for energy efficient parallel data processing

    KAUST Repository

    Kloub, Hussam; Smith, Casey; Hussain, Muhammad Mustafa

    2011-01-01

    We present a design, simulation results and fabrication of electromechanical switches enabling parallel data processing and multi functionality. The device is applied in logic gates AND, NOR, XNOR, and Flip-Flops. The device footprint size is 2μm by 0.5μm, and has a pull-in voltage of 5.15V which is verified by FEM simulation. © 2011 IEEE.

  12. Renewable energy recovery through selected industrial wastes

    Science.gov (United States)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  13. Ion energy recovery experiment based on magnetic electro suppression

    International Nuclear Information System (INIS)

    Kim, J.; Stirling, W.L.; Dagenhart, W.K.; Barber, G.C.; Ponte, N.S.

    1980-05-01

    A proof-of-principle experiment on direct recovery of residual hydrogen ions based on a magnetic electron suppression scheme is described. Ions extracted from a source plasma a few kilovolts above the ground potential (approx. 20 A) are accelerated to 40 keV by a negative potential maintained on a neutralizer gas cell. As the residual ions exit the gas cell, they are deflected from the neutral beam by a magnetic field that also suppresses gas cell electrons and then recovered on a ground-potential surface. Under optimum conditions, a recovery efficiency (the ratio of the net recovered current to the available full-energy ion current) of 80% +- 20% has been obtained. Magnetic suppression of the beam plasma electrons was rather easily achieved; however, handling the fractional-energy ions originating from molecular species (H 2 + and H 3 + ) proved to be extremely important to recovery efficiency

  14. Energy sector methane recovery and use: the importance of policy

    Energy Technology Data Exchange (ETDEWEB)

    Tom Kerr; Michelle Hershman

    2009-08-15

    To raise awareness about appropriate policy options to advance methane recovery and use in the energy sector, the IEA has conducted a series of analyses and studies over the past few years. This report continues IEA efforts by providing policy makers with examples and best practices in methane mitigation policy design and implementation. This report offers an overview of four types of methane mitigation projects that have the strongest links to the energy sector: oil and gas methane recovery and reduction of leaks and losses; coal mine methane; landfill methane; and manure methane recovery and use. It identifies successful policies that have been used to advance these important projects. This information is intended to guide policy makers as they search for low-cost, near-term solutions to climate change. 38 refs., 10 figs., 1 app.

  15. Micromagnetic simulation of energy consumption and excited eigenmodes in elliptical nanomagnetic switches

    International Nuclear Information System (INIS)

    Carlotti, G.; Madami, M.; Gubbiotti, G.; Tacchi, S.

    2014-01-01

    Sub-200 nm patterned magnetic dots are key elements for the design of magnetic switches, memory cells or elementary units of nanomagnetic logic circuits. In this paper, we analyse by micromagnetic simulations the magnetization reversal, the dissipated energy and the excited spin eigenmodes in bistable magnetic switches, consisting of elliptical nanodots with 100×60 nm lateral dimensions. Two different strategies for reversal are considered and the relative results compared: (i) the irreversible switching obtained by the application of an external field along the easy axis, in the direction opposite to the initial magnetization; (ii) the precessional switching accomplished by the application of a short magnetic field pulse, oriented perpendicular to the initial magnetization direction. The obtained results are discussed in terms of deviation from the macrospin behavior, energy dissipation and characteristics of the spectrum of spin eigenmodes excited during the magnetization reversal process

  16. Energy analysis of human stumbling: the limitations of recovery

    NARCIS (Netherlands)

    Forner Cordero, A.; Koopman, Hubertus F.J.M.; van der Helm, F.C.T.

    2005-01-01

    This study has analyzed the segmental energy changes in the recovery from a stumble induced during walking on a treadmill. Three strategies emerged according to the behavior of the perturbed limb, elevating, lowering, and delayed lowering. These three strategies showed different changes in the

  17. Assessment of the energy recovery potentials of solid waste ...

    African Journals Online (AJOL)

    Otoigiakih

    The main attributes of waste as a fuel are water content, calorific value, and burnable content. The study was conducted to evaluate the energy recovery potential of solid waste generated in. Akosombo. A total of twelve (12) samples were collected from the township in December, 2012 (dry month) and May, 2013 (Wet ...

  18. Stability Analysis of Static Slip-Energy Recovery Drive via ...

    African Journals Online (AJOL)

    The stability of the sub synchronous static slip energy recovery scheme for the speed control of slip-ring induction motor is presented. A set of nonlinear differential equations which describe the system dynamics are derived and linearized about an operating point using perturbation technique. The Eigenvalue analysis of the ...

  19. Datacenter EvoSwitch saves energy. Zero-energy and CO2-neutral ICT-infrastructures; Datacenter EvoSwitch bespaart op energie. ECT-infrastructuren energieneutraal en CO2-neutraal gehuisvest

    Energy Technology Data Exchange (ETDEWEB)

    Stegeman, K. [Kinxx PR, Utrecht (Netherlands)

    2010-07-15

    EvoSwitch in Haarlem is the first ICT datacenter in the Netherlands where businesses can house their ICT infrastructures on a CO2 neutral basis, thanks to green energy and investments in CO2 compensation and innovative and energy saving techniques. [Dutch] EvoSwitch in Haarlem is het eerste ICT-datacenter in Nederland waar bedrijven hun ICT-infrastructuren CO2-neutraal kunnen huisvesten. Dankzij groene energie en investeringen in CO2-compensatie, maar ook door innovatieve en energiebesparende technieken.

  20. Clock-Frequency Switching Technique for Energy Saving of Microcontroller Unit (MCU-Based Sensor Node

    Directory of Open Access Journals (Sweden)

    Pumin Duangmanee

    2018-05-01

    Full Text Available In this paper; a technique is proposed for reducing the energy consumption of microcontroller-based sensor nodes by switching the operating clock between low and high frequencies. The proposed concept is motivated by the fact that if the application codes of the microcontroller unit (MCU consist of no-wait state instruction sets, it consumes less energy when it operates with a higher frequency. When the application code of the MCU consists of wait instruction sets; e.g., a wait acknowledge signal, it switches to low clock frequency. The experimental results confirm that the proposed technique can reduce the MCU energy consumption up to 66.9%.

  1. Fast switching wideband rectifying circuit for future RF energy harvesting

    Science.gov (United States)

    Asmeida, Akrem; Mustam, Saizalmursidi Md; Abidin, Z. Z.; Ashyap, A. Y. I.

    2017-09-01

    This paper presents the design and simulation of fast switching microwave rectifying circuit for ultra wideband patch antenna over a dual-frequency band (1.8 GHz for GSM and 2.4 GHz for ISM band). This band was chosen due to its high signal availability in the surrounding environment. New rectifying circuit topology with pair-matching trunks is designed using Advanced Design System (ADS) software. These trunks are interfaced with power divider to achieve good bandwidth, fast switching and high efficiency. The power divider acts as a good isolator between the trunks and its straightforward design structure makes it a good choice for a single feed UWB antenna. The simulated results demonstrate that the maximum output voltage is 2.13 V with an input power of -5 dBm. Moreover, the rectifier offers maximum efficiency of 86% for the input power of -5 dBm at given band, which could easily power up wireless sensor networks (WSN) and other small devices sufficiently.

  2. Energy efficient SDN commodity switch based practical flow forwarding method

    KAUST Repository

    AlGhadhban, Amer

    2016-07-04

    Recent SDN researches suffer from over-accumulation of unhealthy flow-load. Instead, we leverage the SDN controller network view to encode the end-to-end path information into the packet address. Our solution EncPath significantly reduces the flow-table size and the number of control messages. Consequently, the power consumption of network switches is in orders of magnitude less than other evaluated solutions. It also provides flow management flexibility and scalability. We compare EncPath with single and multipath routing solutions and single path solution. Also, we operated them in proactive and reactive modes. We find that EncPath flow entries in core switches in a multihomed fat-tree with 144 hosts is approximately 1000 times smaller than Equal-Cost MultiPath (ECMP) and random routing. Additionally, the number of control messages to setup the network is reduced by a factor of 200×. This, consequently, affords data-plane and control-plane devices space to process other tasks. © 2016 IEEE.

  3. Energy efficiency of substance and energy recovery of selected waste fractions

    International Nuclear Information System (INIS)

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-01-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.

  4. Energy efficiency of substance and energy recovery of selected waste fractions.

    Science.gov (United States)

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-04-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Improving the Energy Market: Algorithms, Market Implications, and Transmission Switching

    Science.gov (United States)

    Lipka, Paula Ann

    This dissertation aims to improve ISO operations through a better real-time market solution algorithm that directly considers both real and reactive power, finds a feasible Alternating Current Optimal Power Flow solution, and allows for solving transmission switching problems in an AC setting. Most of the IEEE systems do not contain any thermal limits on lines, and the ones that do are often not binding. Chapter 3 modifies the thermal limits for the IEEE systems to create new, interesting test cases. Algorithms created to better solve the power flow problem often solve the IEEE cases without line limits. However, one of the factors that makes the power flow problem hard is thermal limits on the lines. The transmission networks in practice often have transmission lines that become congested, and it is unrealistic to ignore line limits. Modifying the IEEE test cases makes it possible for other researchers to be able to test their algorithms on a setup that is closer to the actual ISO setup. This thesis also examines how to convert limits given on apparent power---as is in the case in the Polish test systems---to limits on current. The main consideration in setting line limits is temperature, which linearly relates to current. Setting limits on real or apparent power is actually a proxy for using the limits on current. Therefore, Chapter 3 shows how to convert back to the best physical representation of line limits. A sequential linearization of the current-voltage formulation of the Alternating Current Optimal Power Flow (ACOPF) problem is used to find an AC-feasible generator dispatch. In this sequential linearization, there are parameters that are set to the previous optimal solution. Additionally, to improve accuracy of the Taylor series approximations that are used, the movement of the voltage is restricted. The movement of the voltage is allowed to be very large at the first iteration and is restricted further on each subsequent iteration, with the restriction

  6. An energy recovery electron linac-on-ring collider

    International Nuclear Information System (INIS)

    Merminga, L.; Krafft, G.A.; Lebedev, V.A.; Ben-Zvi, I.

    2000-01-01

    We present the design of high-luminosity electron-proton/ion colliders in which the electrons are produced by an Energy Recovering Linac (ERL). Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10 33 (per nucleon) level have been proposed recently as a means for studying hadronic structure. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations (2) reduction of the synchrotron radiation load in the detectors (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at currents of a few hundred mA and multi-GeV energies. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed and a list of required R and D for the realization of such a design is presented

  7. Development and operation of the JAERI superconducting energy recovery linacs

    Science.gov (United States)

    Minehara, Eisuke J.

    2006-02-01

    The Japan Atomic Energy Research Institute free-electron laser (JAERI FEL) group at Tokai, Ibaraki, Japan has successfully developed one of the most advanced and newest accelerator technologies named "superconducting energy recovery linacs (ERLs)" and some applications in near future using the ERLs. In the text, the current operation and high power JAERI ERL-FEL 10 kW upgrading program, ERL-light source design studies, prevention of the stainless-steel cold-worked stress-corrosion cracking failures and decommissioning of nuclear power plants in nuclear energy industries were reported and discussed briefly as a typical application of the ERL-FEL.

  8. Energy recovery from garden waste in a LCA perspective

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2015-01-01

    According to the common strategies regarding waste management and energy supply in EU countries, more efficient utilization of organic waste resources (including garden waste) with both nutrient and energy recovery is desired. Each of the most common treatments applied today – composting, direct...... use on land and incineration – only provides one of the two services. A technology ensuring both nutrient and energy utilization is anaerobic digestion (AD) that has become applicable for treatment of garden waste recently. In this study, life cycle assessment aimed to compare four garden waste...

  9. Possibilities of heat energy recovery from greywater systems

    Science.gov (United States)

    Niewitecka, Kaja

    2018-02-01

    Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  10. Energy-neutral sustainable nutrient recovery incorporated with the wastewater purification process in an enlarged microbial nutrient recovery cell

    Science.gov (United States)

    Sun, Dongya; Gao, Yifan; Hou, Dianxun; Zuo, Kuichang; Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Ren, Zhiyong Jason; Huang, Xia

    2018-04-01

    Recovery of nutrient resources from the wastewater is now an inevitable strategy to maintain the supply of both nutrient and water for our huge population. While the intensive energy consumption in conventional nutrient recovery technologies still remained as the bottleneck towards the sustainable nutrient recycle. This study proposed an enlarged microbial nutrient recovery cell (EMNRC) which was powered by the energy contained in wastewater and achieved multi-cycle nutrient recovery incorporated with in situ wastewater treatment. With the optimal recovery solution of 3 g/L NaCl and the optimal volume ratio of wastewater to recovery solution of 10:1, >89% of phosphorus and >62% of ammonium nitrogen were recovered into struvite. An extremely low water input ratio of water. It was proved the EMNRC system was a promising technology which could utilize the chemical energy contained in wastewater itself and energy-neutrally recover nutrient during the continuous wastewater purification process.

  11. Energy and Resource Recovery from Sludge. State of Science Report

    Energy Technology Data Exchange (ETDEWEB)

    Kalogo, Y; Monteith, H [Hydromantis Inc., Hamilton, ON (Canada)

    2008-07-01

    There is general consensus among sanitary engineering professionals that municipal wastewater and wastewater sludge is not a 'waste', but a potential source of valuable resources. The subject is a major interest to the members of the Global Water Research Coalition (GWRC). The GWRC is therefore preparing a strategic research plan related to energy and resource recovery from wastewater sludge. The initial focus of the strategy will be on sewage sludge as water reuse aspects have been part of earlier studies. The plan will define new research orientations for deeper investigation. The current state of science (SoS) Report was prepared as the preliminary phase of GWRC's future strategic research plan on energy and resource recovery from sludge.

  12. Optimal control of Formula One car energy recovery systems

    Science.gov (United States)

    Limebeer, D. J. N.; Perantoni, G.; Rao, A. V.

    2014-10-01

    The utility of orthogonal collocation methods in the solution of optimal control problems relating to Formula One racing is demonstrated. These methods can be used to optimise driver controls such as the steering, braking and throttle usage, and to optimise vehicle parameters such as the aerodynamic down force and mass distributions. Of particular interest is the optimal usage of energy recovery systems (ERSs). Contemporary kinetic energy recovery systems are studied and compared with future hybrid kinetic and thermal/heat ERSs known as ERS-K and ERS-H, respectively. It is demonstrated that these systems, when properly controlled, can produce contemporary lap time using approximately two-thirds of the fuel required by earlier generation (2013 and prior) vehicles.

  13. Energy and Resource Recovery from Sludge. State of Science Report

    Energy Technology Data Exchange (ETDEWEB)

    Kalogo, Y.; Monteith, H. [Hydromantis Inc., Hamilton, ON (Canada)

    2008-07-01

    There is general consensus among sanitary engineering professionals that municipal wastewater and wastewater sludge is not a 'waste', but a potential source of valuable resources. The subject is a major interest to the members of the Global Water Research Coalition (GWRC). The GWRC is therefore preparing a strategic research plan related to energy and resource recovery from wastewater sludge. The initial focus of the strategy will be on sewage sludge as water reuse aspects have been part of earlier studies. The plan will define new research orientations for deeper investigation. The current state of science (SoS) Report was prepared as the preliminary phase of GWRC's future strategic research plan on energy and resource recovery from sludge.

  14. Waste energy recovery in the industry in the ECE region

    International Nuclear Information System (INIS)

    1985-01-01

    In the ECE region industry accounts for about 44 per cent of total final energy consumption, 50-55 per cent of which is ''lost''. Since the early 1970s the efficiency of energy use has improved by 5 or 6 percentage points. The potential for further cost-effective savings is estimated at 10 to 20 percentage points, depending on the type of industrial activity, kind of waste energy, availability of outlets, investment strategies, awareness of the significantly improved technical possibilities and degree of co-operation between energy specialists and production engineers, equipment manufacturers, and industrial sectors at the national and international levels. The present publication argues the case for secondary energy recovery (SER) by end-users and international co-operation in technical, economic, environmental and methodological fields. It is based on data compiled by the secretariat of the Economic Commission for Europe on 1 June 1984 and given general distribution. Refs, figs and tabs

  15. Tracking studies in eRHIC energy-recovery recirculator

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-13

    Beam and polarization tracking studies in eRHIC energy recovery electron recirculator are presented, based on a very preliminary design of the FFAG lattice. These simulations provide examples of some of the beam and spin optics aspects of the linear FFAG lattice concept and its application in eRHIC, they provide code benchmarking for synchrotron radiation and spin diffusion in addition, and pave the way towards end-to-end 6-D(phasespace)+3D(spin) tracking simulations.

  16. Energy recovery system using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C

    2013-10-01

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  17. Electron energy recovery system for negative ion sources

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90* to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy

  18. Tackling fuel poverty through facilitating energy tariff switching: a participatory action research study in vulnerable groups.

    Science.gov (United States)

    Lorenc, A; Pedro, L; Badesha, B; Dize, C; Fernow, I; Dias, L

    2013-10-01

    A fifth of UK households live in fuel poverty, with significant health risks. Recent government strategy integrates public health with local government. This study examined barriers to switching energy tariffs and the impact of an energy tariff switching 'intervention' on vulnerable peoples' likelihood to, success in, switching tariffs. Participatory Action Research (PAR), conducted in West London. Community researchers from three voluntary/community organisations (VCOs) collaborated in recruitment, study design, data collection and analysis. VCOs recruited 151 participants from existing service users in three groups: Black and Minority Ethnic (BME) communities, older people (>75 yrs) and families with young children. Researchers conducted two semi-structured interviews with each participant, a week apart. The first interview asked about demographics, current energy supplier, financial situation, previous experience of tariff-switching and barriers to switching. Researchers then provided the 'intervention' - advice on tariff-switching, printed materials, access to websites. The second interview explored usefulness of the 'intervention', other information used, remaining barriers and information needs. Researchers kept case notes and a reflective log. Data was analysed thematically and collaboratively between the research coordinator and researchers. Quantitative data was analysed using SPSS, with descriptive statistics and Chi-squared tests. A total of 151 people were interviewed: 47 older people over 75 years, 51 families with young children, 51 BME (two were missing demographics). The majority were not White British or UK-born. Average household weekly income was £230. Around half described 'difficult' financial situations, 94% were receiving state benefits and 62% were in debt. Less than a third had tried to find a better energy deal; knowledge was the main barrier. After the intervention 19 people tried to switch, 13 did. Young families were most likely to

  19. A fast isotope switching system for high energy ions

    International Nuclear Information System (INIS)

    Niklaus, T.R.; Sie, S.H.; Suter, G.F.

    1998-01-01

    A fast bouncing system for the high energy end of an Accelerator Mass Spectrometry system has been devised for the AUSTRALIS at the CSIRO HIAF laboratory. Based on a method designed for excitation function measurements, it has been adapted as an isotope sequencer for AMS at the high energy side. In this scheme, different isotopes of the same energy are deflected off axis in the orbit plane by varying amounts at the entrance to the magnet and returned to the main axis at the exit by another deflection of the same magnitude in the same plane. Synchronised with the low energy side bouncer, the system will enable isotope ratios measurements with high precision by overcoming drifts in the source, beam transport and the accelerator itself

  20. Solar power satellite life-cycle energy recovery consideration

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  1. Solar power satellite—Life-cycle energy recovery considerations

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    1995-05-01

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for a cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead of monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power plant components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on Earth (rectenna) requires in the order of 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production, installation and operation, is in the order of two years.

  2. Antiferroelectric polarization switching and dynamic scaling of energy storage: A Monte Carlo simulation

    Science.gov (United States)

    Huang, B. Y.; Lu, Z. X.; Zhang, Y.; Xie, Y. L.; Zeng, M.; Yan, Z. B.; Liu, J.-M.

    2016-05-01

    The polarization-electric field hysteresis loops and the dynamics of polarization switching in a two-dimensional antiferroelectric (AFE) lattice submitted to a time-oscillating electric field E(t) of frequency f and amplitude E0, is investigated using Monte Carlo simulation based on the Landau-Devonshire phenomenological theory on antiferroelectrics. It is revealed that the AFE double-loop hysteresis area A, i.e., the energy loss in one cycle of polarization switching, exhibits the single-peak frequency dispersion A(f), suggesting the unique characteristic time for polarization switching, which is independent of E0 as long as E0 is larger than the quasi-static coercive field for the antiferroelectric-ferroelectric transitions. However, the dependence of recoverable stored energy W on amplitude E0 seems to be complicated depending on temperature T and frequency f. A dynamic scaling behavior of the energy loss dispersion A(f) over a wide range of E0 is obtained, confirming the unique characteristic time for polarization switching of an AFE lattice. The present simulation may shed light on the dynamics of energy storage and release in AFE thin films.

  3. Design of an all-optical switch and arbitrary proportion of energy output beam splitter

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Qing-Hua, E-mail: lqhua@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang 330031 (China); Zhang, Xuan; Chen, Shu-Wen; Hu, Ping; Yu, Tian-Bao [Department of Physics, Nanchang University, Nanchang 330031 (China); Huang, Yong-Zhen [The State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, CAS, Beijing 100083 (China)

    2013-11-15

    Based on the Kerr effect of photonic crystal, we design a simple structure of all-optical switch, which can be controlled by the pump intensity. At the same time, the structure can also realize the free control of energy output. It has low insertion loss and crosstalk. Numerical simulation results embody its high efficiency.

  4. Vehicle energy management for on/off controlled auxiliaries : fuel economy vs. switching frequency

    NARCIS (Netherlands)

    Chen, H.; Kessels, J.T.B.A.; Weiland, S.

    2015-01-01

    In this paper, an integrated approach for designing energy management strategies concerning vehicle auxiliaries with on/off control is proposed. This approach provides the possibility of making different trade-offs between fuel economy and switching frequency. In this paper, we demonstrate the

  5. Energy-Recovery Linacs for Commercial Radioisotope Production

    International Nuclear Information System (INIS)

    Johnson, Rolland Paul

    2016-01-01

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  6. Energy-Recovery Linacs for Commercial Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Muplus, Inc., Newport News, VA (United States)

    2016-11-19

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  7. Energy extraction system using dual-capacitor switching for quench protection of HTS magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yo Jong; Song, Seung Hyun; Jeon, Hae Ryong; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Lee, Woo Seung [JH ENGINEERING CO., LTD., Anyang (Korea, Republic of); Kang, Hyoung Ku [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-09-15

    The superconducting magnets have a large inductance as well as high operating current. Therefore, mega-joule scale energy can be stored in the magnet. The energy stored in the magnet is sufficient to damage the magnet when a quench occurs. Quench heater and dump resistor can be used to protect the magnet. However, using quench heater to create quench resistors through heat transfer can be slower than instantly switching resistors. Also, electrical short, overheating and breakdown can occur due to quench heater. Moreover, the number of dump resistor should be limited to avoid large terminal voltage. Therefore, in this paper, we propose a quench protection method for extracting the energy stored in a magnet by charging and discharging energy through a capacitor switching without increasing resistance. The simulation results show that the proposed system has a faster current decay within the allowable voltage level.

  8. Energy extraction system using dual-capacitor switching for quench protection of HTS magnet

    International Nuclear Information System (INIS)

    Chi, Yo Jong; Song, Seung Hyun; Jeon, Hae Ryong; Ko, Tae Kuk; Lee, Woo Seung; Kang, Hyoung Ku

    2017-01-01

    The superconducting magnets have a large inductance as well as high operating current. Therefore, mega-joule scale energy can be stored in the magnet. The energy stored in the magnet is sufficient to damage the magnet when a quench occurs. Quench heater and dump resistor can be used to protect the magnet. However, using quench heater to create quench resistors through heat transfer can be slower than instantly switching resistors. Also, electrical short, overheating and breakdown can occur due to quench heater. Moreover, the number of dump resistor should be limited to avoid large terminal voltage. Therefore, in this paper, we propose a quench protection method for extracting the energy stored in a magnet by charging and discharging energy through a capacitor switching without increasing resistance. The simulation results show that the proposed system has a faster current decay within the allowable voltage level

  9. Application of energy management coupled with fuel switching on a hydrotreater unit

    Directory of Open Access Journals (Sweden)

    Eman M. Gabr

    2016-03-01

    Full Text Available In the last decades, saving energy and protecting environment became the most important topics for search and survey. The energy engineer for any chemical process is obliged by restrictions of “Kyoto Protocol” for limitation of carbon dioxide emissions from fuel combustion, so he does his best to reduce utility consumption and thus reduce gas emission. Proper designing of the heat exchanger network (HEN for any process is an effective and successful method to minimize utility consumption and therefore minimize gas emission (mainly carbon gases (CO2 and sulfur gases (SOx. Fuel switching coupled with energy targeting achieved the least gas emission. In this work we choose a hydrotreater unit of a petroleum refinery as a case study due to its effective role and its obvious consumption of utility. We applied the methodology of energy targeting through HEN design (using pinch technology at several values of mean temperature difference (ΔTmin; where the maximum percentage of energy saving was 37% for hot and cold utility which directly leads to percentage reduction of gas emission by 29% for CO2 and 17% for SOx. Switching fuel oil to other types of fuel realized gas emission reduction percentage where the maximum reduction established was through natural gas fuel type and reached 54% for CO2 and 90% for SOx. Comparison between existing design and the optimum ΔTmin HEN led to few modifications with the least added capital cost for the hydrotreater existing design to revamp it through four scenarios; the first one depended on fuel switching to natural gas while the second one switched fuel to diesel oil, in the third scenario we applied heat integration only and the fourth one used both of heat integration and fuel switching in a parallel way.

  10. Energy recovery as a key technology for future mobility

    Energy Technology Data Exchange (ETDEWEB)

    Zellbeck, Hans; Risse, Silvio [Technische Univ. Dresden (Germany). Lehrstuhl fuer Verbrennungsmotoren

    2011-07-01

    Internal and external combustion engines in both stationary and mobile applications represent an essential, basic module for a functioning economy and society. In ensuring mobility worldwide by land and by sea, the combustion engine plays the dominant role. Customer requirements to be fulfilled are manifold. Accordingly a downward trend in the demand for or indeed the abandonment of the combustion engine in personal or freight transport is in the near future unforeseeable. With regard to the continuously increasing need for mobility subject to limited resources and rising environmental consciousness, the combustion engine and the means to improve its efficiency and sustainability are under intensive investigation. Along with the application of CO{sub 2}-neutral fuels, improvements in the system itself will be valuable to its future. More specifically, compared to many other techniques the recovery of energy losses resulting from the operation of these engines promises a very high degree of optimization. An overview of the current and predicted number of combustion engines in both stationary and mobile applications is given at the beginning of the paper. Furthermore, a differentiation between personal and freight traffic must be made since there is not only a difference in their respective power requirements but also in their lifecycles. The energy losses through exhaust gases and coolants, for example, are quantified and rated in terms of their capabilities on the basis of certain fields of application and utilization profiles. With regard to additional specific boundary conditions, various concepts ranging from recuperation in theory to actual recovery in practice under conditions approximating actual production are analysed in different application scenarios for their efficiency, ecological benefit, and economy. Retroactive or synergistic effects which may follow from their integration into the complete system are considered precisely with the help of examples

  11. Fuel switching in power-plants: Modelling and impact on the analysis of energy projects

    International Nuclear Information System (INIS)

    Varympopiotis, G.; Tolis, A.; Rentizelas, A.

    2014-01-01

    Highlights: • The impact of fuel-switching in electricity generation is researched. • 15 Scenarios of fuel-technology combinations are compared using a computational model. • Fuel-switching results to higher yields compared to single-fuelled plants. • Plants with natural gas combined cycle and solid fuel supercritical boilers are optimal. • Fuel-switching, offers higher flexibility and security of fuel supply. - Abstract: In electricity markets, where conditions are uncertain, the choice of the best technology and the optimisation of production processes may not anymore be enough to ensure optimal investment yield of energy business plans. Providing some aspects of flexibility might enhance their financial performance; fuel switching may prove to be an alternative option, offering operational flexibility over time, as well as significant financial benefits. Traditional investment analysis methods are considered marginally useful to analyse this case. Instead, the recent tools of time-dependent investment analysis are more appropriate, since they are not inherently restricted to immediate, irreversible decisions. In the present work, a time-dependent computational model is presented and applied in the case study of the Greek Power Sector, in order to estimate the potential advantages of the fuel switching concept. Moreover, the optimal timing of switching is derived, to ensure increasing yields of an average-capacity power-plant. The results of the research indicate significant financial benefits anticipated in most scenarios from applying fuel switching, compared to single-fuelled electricity generation units. Security of fuel supply and enhanced flexibility may also be offered to the power plant since more than one technology and fuels may be engaged

  12. Energy Recovery from a Non-Linear Electromagnetic System

    Directory of Open Access Journals (Sweden)

    Kęcik Krzysztof

    2018-03-01

    Full Text Available The paper presents study of a pseudo-magnetic levitation system (pseudo-maglev dedicated for energy harvesting. The idea rely on motion of a pseudo-levitating magnet in a coil’s terminal. The study based on real prototype harvester system, which in the pendulum dynamic vibration absorber is applied. For some parameters, the stability loss caused by the period doubling bifurcation is detected. The coexistence of two stable solutions, one of which is much better for energy harvesting is observed. The influence of the pseudo-maglev parameters on the recovered current and stability of the periodic solutions is presented in detail. The obtained results show, that the best energy recovery occurs for the high pseudo-maglev stiffness and close to the coil resistance. The amplitude’s excitation, the load resistances and the coupling coefficient strongly influence on the system’s response.

  13. Beam Diagnostics for the BNL Energy Recovery Linac Test Facility

    International Nuclear Information System (INIS)

    Cameron, Peter; Ben-Zvi, Ilan; Blaskiewicz, Michael; Brennan, Michael; Connolly, Roger; Dawson, William; Degen, Chris; DellaPenna, Al; Gassner, David; Kesselman, Martin; Kewish, Jorg; Litvinenko, Vladimir; Mead, Joseph; Oerter, Brian; Russo, Tom; Vetter, Kurt; Yakimenko, Vitaly

    2004-01-01

    An Energy Recovery Linac (ERL) test facility is presently under construction at BNL. The goals of this test facility are first to demonstrate stable intense CW electron beam with parameters typical for the RHIC e-cooling project (and potentially for eRHIC), second to test novel elements of the ERL (high current CW photo-cathode, superconducting RF cavity with HOM dampers, and feedback systems), and finally to test lattice dependence of stability criteria. Planned diagnostics include position monitors, loss monitors, transverse profile monitors (both optical and wires), scrapers/halo monitors, a high resolution differential current monitor, phase monitors, an energy spread monitor, and a fast transverse monitor (for beam break-up studies and the energy feedback system). We discuss diagnostics challenges that are unique to this project, and present preliminary system specifications. In addition, we include a brief discussion of the timing system

  14. Dynamically controlled energy dissipation for fast magnetic vortex switching

    Science.gov (United States)

    Badea, R.; Berezovsky, J.

    2017-09-01

    Manipulation of vortex states in magnetic media provides new routes towards information storage and processing technology. The typical slow relaxation times (˜100 ns) of magnetic vortex dynamics may present an obstacle to the realization of these applications. Here, we investigate how a vortex state in a ferromagnetic microdisk can be manipulated in a way that translates the vortex core while enhancing energy dissipation to rapidly damp the vortex dynamics. We use time-resolved differential magneto-optical Kerr effect microscopy to measure the motion of the vortex core in response to applied magnetic fields. We first map out how the vortex core becomes sequentially trapped by pinning sites as it translates across the disk. After applying a fast magnetic field step to translate the vortex from one pinning site to another, we observe long-lived dynamics of the vortex as it settles to the new equilibrium. We then demonstrate how the addition of a short (<10 ns) magnetic field pulse can induce additional energy dissipation, strongly damping the long-lived dynamics. A model of the vortex dynamics using the Thiele equation of motion explains the mechanism behind this effect.

  15. PERLE. Powerful energy recovery linac for experiments. Conceptual design report

    Science.gov (United States)

    Angal-Kalinin, D.; Arduini, G.; Auchmann, B.; Bernauer, J.; Bogacz, A.; Bordry, F.; Bousson, S.; Bracco, C.; Brüning, O.; Calaga, R.; Cassou, K.; Chetvertkova, V.; Cormier, E.; Daly, E.; Douglas, D.; Dupraz, K.; Goddard, B.; Henry, J.; Hutton, A.; Jensen, E.; Kaabi, W.; Klein, M.; Kostka, P.; Lasheras, N.; Levichev, E.; Marhauser, F.; Martens, A.; Milanese, A.; Militsyn, B.; Peinaud, Y.; Pellegrini, D.; Pietralla, N.; Pupkov, Y.; Rimmer, R.; Schirm, K.; Schulte, D.; Smith, S.; Stocchi, A.; Valloni, A.; Welsch, C.; Willering, G.; Wollmann, D.; Zimmermann, F.; Zomer, F.

    2018-06-01

    A conceptual design is presented of a novel energy-recovering linac (ERL) facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the powerful energy recovery linac experiment facility (PERLE) are derived from the design of the Large Hadron electron Collider, an electron beam upgrade under study for the LHC, for which it would be the key demonstrator. PERLE is thus projected as a facility to investigate efficient, high current (HC) (>10 mA) ERL operation with three re-circulation passages through newly designed SCRF cavities, at 801.58 MHz frequency, and following deceleration over another three re-circulations. In its fully equipped configuration, PERLE provides an electron beam of approximately 1 GeV energy. A physics programme possibly associated with PERLE is sketched, consisting of high precision elastic electron–proton scattering experiments, as well as photo-nuclear reactions of unprecedented intensities with up to 30 MeV photon beam energy as may be obtained using Fabry–Perot cavities. The facility has further applications as a general technology test bed that can investigate and validate novel superconducting magnets (beam induced quench tests) and superconducting RF structures (structure tests with HC beams, beam loading and transients). Besides a chapter on operation aspects, the report contains detailed considerations on the choices for the SCRF structure, optics and lattice design, solutions for arc magnets, source and injector and on further essential components. A suitable configuration derived from the here presented design concept may next be moved forward to a technical design and possibly be built by an international collaboration which is being established.

  16. Potential energy landscape and robustness of a gene regulatory network: toggle switch.

    Directory of Open Access Journals (Sweden)

    Keun-Young Kim

    2007-03-01

    Full Text Available Finding a multidimensional potential landscape is the key for addressing important global issues, such as the robustness of cellular networks. We have uncovered the underlying potential energy landscape of a simple gene regulatory network: a toggle switch. This was realized by explicitly constructing the steady state probability of the gene switch in the protein concentration space in the presence of the intrinsic statistical fluctuations due to the small number of proteins in the cell. We explored the global phase space for the system. We found that the protein synthesis rate and the unbinding rate of proteins to the gene were small relative to the protein degradation rate; the gene switch is monostable with only one stable basin of attraction. When both the protein synthesis rate and the unbinding rate of proteins to the gene are large compared with the protein degradation rate, two global basins of attraction emerge for a toggle switch. These basins correspond to the biologically stable functional states. The potential energy barrier between the two basins determines the time scale of conversion from one to the other. We found as the protein synthesis rate and protein unbinding rate to the gene relative to the protein degradation rate became larger, the potential energy barrier became larger. This also corresponded to systems with less noise or the fluctuations on the protein numbers. It leads to the robustness of the biological basins of the gene switches. The technique used here is general and can be applied to explore the potential energy landscape of the gene networks.

  17. Mechanical Energy Recovery during Walking in Patients with Parkinson Disease.

    Directory of Open Access Journals (Sweden)

    Mariangela Dipaola

    Full Text Available The mechanisms of mechanical energy recovery during gait have been thoroughly investigated in healthy subjects, but never described in patients with Parkinson disease (PD. The aim of this study was to investigate whether such mechanisms are preserved in PD patients despite an altered pattern of locomotion. We consecutively enrolled 23 PD patients (mean age 64±9 years with bilateral symptoms (H&Y ≥II if able to walk unassisted in medication-off condition (overnight suspension of all dopaminergic drugs. Ten healthy subjects (mean age 62±3 years walked both at their 'preferred' and 'slow' speeds, to match the whole range of PD velocities. Kinematic data were recorded by means of an optoelectronic motion analyzer. For each stride we computed spatio-temporal parameters, time-course and range of motion (ROM of hip, knee and ankle joint angles. We also measured kinetic (Wk, potential (Wp, total (WtotCM energy variations and the energy recovery index (ER. Along with PD progression, we found a significant correlation of WtotCM and Wp with knee ROM and in particular with knee extension in terminal stance phase. Wk and ER were instead mainly related to gait velocity. In PD subjects, the reduction of knee ROM significantly diminished both Wp and WtotCM. Rehabilitation treatments should possibly integrate passive and active mobilization of knee to prevent a reduction of gait-related energetic components.

  18. Investigating the Effect of Voltage-Switching on Low-Energy Task Scheduling in Hard Real-Time Systems

    Science.gov (United States)

    2005-01-01

    We investigate the effect of voltage-switching on task execution times and energy consumption for dual-speed hard real - time systems , and present a...scheduling algorithm and apply it to two real-life task sets. Our results show that energy can be conserved in embedded real - time systems using energy...aware task scheduling. We also show that switching times have a significant effect on the energy consumed in hard real - time systems .

  19. Handbook of solid waste disposal: materials and energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pavoni, J L; Heer, Jr, J E; Hagerty, D J

    1975-01-01

    Traditional and innovative solid waste disposal techniques and new developments in materials and energy recovery systems are analyzed. Each method is evaluated in terms of system methodology, controlling process parameters, and process requirements, by-products, economics, and case histories. Medium and high temperature incineration; wet pulping; landfill with leachate recirculation; the Hercules, Inc., system; USBM front-end and back-end systems; pyrolysis; waste heat utilization, the Combustion Power Unit-400; use of refuse as a supplementary fuel; and methane production from anaerobic fermentation systems are considered, as well as sanitary landfilling, incineration, and composting. European solid waste management techniques are evaluated for their applicability to the US.

  20. Energy demands during a judo match and recovery.

    Science.gov (United States)

    Degoutte, F; Jouanel, P; Filaire, E

    2003-06-01

    To assess energy demand during a judo match and the kinetics of recovery by measuring the metabolites of the oxypurine cascade, lipolytic activity, and glycolytic pathway. Venous blood samples were taken from 16 national judoists (mean (SEM) age 18.4 (1.6) years), before (T(1)) and three minutes (T(2)), one hour (T(3)), and 24 hours (T(4)) after a match. A seven day diet record was used to evaluate nutrient intake. Nutrient analysis indicated that these athletes followed a low carbohydrate diet. Plasma lactate concentration had increased to 12.3 (1.8) mmol/l at the end of the match. An increase in the levels of extracellular markers of muscle adenine nucleotide catabolism, urea, and creatinine was observed at T(2), while uric acid levels remained unchanged. High concentrations of urea persisted for 24 hours during the recovery period. Ammonia, hypoxanthine, xanthine, and creatinine returned to control levels within the 24 hour recovery period. Uric acid concentrations rose from T(3) and had not returned to baseline 24 hours after the match. The levels of triglycerides, glycerol, and free fatty acids had increased significantly (p<0.05) after the match (T(2)) but returned to baseline values within 24 hours. Concentrations of high density lipoprotein cholesterol and total cholesterol were significantly increased after the match. These results show that a judo match induces both protein and lipid metabolism. Carbohydrate availability, training adaptation, and metabolic stress may explain the requirement for these types of metabolism.

  1. On-off QD switch that memorizes past recovery from quenching by diazonium salts.

    Science.gov (United States)

    Liras, Marta; González-Béjar, María; Scaiano, J C

    2010-09-07

    The understanding of the interaction of CdSe/ZnS semiconductor quantum dots (QD) with their chemical environment is fundamental, yet far from being fully understood. p-Methylphenyldiazonium tetrafluoroborate has been used to get some insight into the effect of diazonium salts on the spectroscopy of QD. Our study reveals that the surface of CdSe/ZnS quantum dots can be modified by diazonium salts (although not functionalized), showing and on-off fluorescence behaviour that memorizes past quenching recoveries. Facile modification of the surface confers protection against quenching by new molecules of diazonium salt and other known quenchers such as 4-amino-TEMPO. The reaction mechanism has been explored in detail by using different spectroscopic techniques. At the first time after addition of diazonium salt over QD the fluorescent is turned off with Stern-Volmer behaviour; the fluorescence recovers following irradiation. Subsequent additions of diazonium salts do not cause the same degree of quenching. We have noted that the third addition (following two cycles of addition and irradiation) is unable to quench the fluorescence. Monitoring the process using NMR techniques reveals the formation of p-difluoroborane toluene as a result of the irradiation of diazonium-treated QD; the treatment leads to the fluorination of the QD surface.

  2. Push-pull converter with energy saving circuit for protecting switching transistors from peak power stress

    Science.gov (United States)

    Mclyman, W. T. (Inventor)

    1981-01-01

    In a push-pull converter, switching transistors are protected from peak power stresses by a separate snubber circuit in parallel with each comprising a capacitor and an inductor in series, and a diode in parallel with the inductor. The diode is connected to conduct current of the same polarity as the base-emitter juction of the transistor so that energy stored in the capacitor while the transistor is switched off, to protect it against peak power stress, discharges through the inductor when the transistor is turned on, and after the capacitor is discharges through the diode. To return this energy to the power supply, or to utilize this energy in some external circuit, the inductor may be replaced by a transformer having its secondary winding connected to the power supply or to the external circuit.

  3. Switching and energy-storage characteristics in PLZT 2/95/5 antiferroelectric ceramic system

    Directory of Open Access Journals (Sweden)

    A. Peláiz-Barranco

    2016-12-01

    Full Text Available Switching mechanisms and energy-storage properties have been investigated in (Pb0.98La0.02(Zr0.95Ti0.050.995O3 antiferroelectric ceramics. The electric field dependence of polarization (P–E hysteresis loops indicates that both the ferroelectric (FE and antiferroelectric (AFE phases coexist, being the AFE more stable above 100∘C. It has been observed that the temperature has an important influence on the switching parameters. On the other hand, the energy-storage density, which has been calculated from the P–E hysteresis loops, shows values higher than 1J/cm3 for temperatures above 100∘C with around 73% of efficiency as average. These properties indicate that the studied ceramic system reveals as a promising AFE material for energy-storage devices application.

  4. Voltage-controlled low-energy switching of nanomagnets through Ruderman-Kittel-Kasuya-Yosida interactions for magnetoelectric device applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Bahniman, E-mail: bghosh@utexas.edu; Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K. [Microelectronics Research Center, University of Texas at Austin, 10100 Burnet Road, Bldg. 160, Austin, Texas 78758 (United States)

    2016-07-21

    In this article, we consider through simulation low-energy switching of nanomagnets via electrostatically gated inter-magnet Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions on the surface of three-dimensional topological insulators, for possible memory and nonvolatile logic applications. We model the possibility and dynamics of RKKY-based switching of one nanomagnet by coupling to one or more nanomagnets of set orientation. Potential applications to both memory and nonvolatile logic are illustrated. Sub-attojoule switching energies, far below conventional spin transfer torque (STT)-based memories and even below CMOS logic appear possible. Switching times on the order of a few nanoseconds, comparable to times for STT switching, are estimated for ferromagnetic nanomagnets, but the approach also appears compatible with the use of antiferromagnets which may allow for faster switching.

  5. Voltage-controlled low-energy switching of nanomagnets through Ruderman-Kittel-Kasuya-Yosida interactions for magnetoelectric device applications

    International Nuclear Information System (INIS)

    Ghosh, Bahniman; Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K.

    2016-01-01

    In this article, we consider through simulation low-energy switching of nanomagnets via electrostatically gated inter-magnet Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions on the surface of three-dimensional topological insulators, for possible memory and nonvolatile logic applications. We model the possibility and dynamics of RKKY-based switching of one nanomagnet by coupling to one or more nanomagnets of set orientation. Potential applications to both memory and nonvolatile logic are illustrated. Sub-attojoule switching energies, far below conventional spin transfer torque (STT)-based memories and even below CMOS logic appear possible. Switching times on the order of a few nanoseconds, comparable to times for STT switching, are estimated for ferromagnetic nanomagnets, but the approach also appears compatible with the use of antiferromagnets which may allow for faster switching.

  6. Exergy recovery during LNG regasification: Electric energy production - Part two

    International Nuclear Information System (INIS)

    Dispenza, Celidonio; Dispenza, Giorgio; Rocca, Vincenzo La; Panno, Giuseppe

    2009-01-01

    In liquefied natural gas (LNG) regasification facilities, for exergy recovery during regasification, an option could be the production of electric energy recovering the energy available as cold. In a previous paper, the authors propose an innovative process which uses a cryogenic stream of LNG during regasification as a cold source in an improved combined heat and power (CHP) plant. Considering the LNG regasification projects in progress all over the World, an appropriate design option could be based on a modular unit having a mean regasification capacity of 2 x 10 9 standard cubic meters/year. This paper deals with the results of feasibility studies, developed by the authors at DREAM in the context of a research program, on ventures based on thermodynamic and economic analysis of improved CHP cycles and related innovative technology which demonstrate the suitability of the proposal

  7. Vacuum system of the compact Energy Recovery Linac

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T., E-mail: tohru.honda@kek.jp; Tanimoto, Y.; Nogami, T.; Takai, R.; Obina, T.; Asaoka, S.; Uchiyama, T.; Nakamura, N. [High Energy Accelerator Research Organization (KEK) (1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan) (Japan)

    2016-07-27

    The compact Energy Recovery Linac (cERL), a test accelerator to establish important technologies demanded for future ERL-based light sources, was constructed in late 2013 at KEK. The accelerator was successfully commissioned in early 2014, and demonstrated beam circulation with energy recovery. In the cERL vacuum system, low-impedance vacuum components are required to circulate high-intensity, low-emittance and short-bunch electron beams. We therefore developed ultra-high-vacuum (UHV)-compatible flanges that can connect beam tubes seamlessly, and employed retractable beam monitors, namely, a movable Faraday cup and screen monitors. In most parts of the accelerator, pressures below 1×10{sup −7} Pa are required to mitigate beam-gas interactions. Particularly, near the photocathode electron gun and the superconducting (SC) cavities, pressures below 1×10{sup −8} Pa are required. The beam tubes in the sections adjoining the SC cavities were coated with non-evaporable getter (NEG) materials, to reduce gas condensation on the cryo-surfaces. During the accelerator commissioning, stray magnetic fields from the permanent magnets of some cold cathode gauges (CCGs) were identified as a source of the disturbance to the beam orbit. Magnetic shielding was specially designed as a remedy for this issue.

  8. Preliminary experiments on energy recovery on a neutral beam injector

    International Nuclear Information System (INIS)

    Fumelli, M.

    1977-06-01

    Experimental tests of energy recovery are made on an injector of energetic neutral atoms in which the ion source (the circular periplasmatron) is operated at the ground potential and the neutralizer is biased at the high negative potential corresponding to the desired neutral beam energy. To prevent the acceleration of the neutralizer plasma electrons toward the collector of the decelerated ions (the recovery electrode), a potential barrier is created by means of a negatively biased long cylindrical grid (called the suppressor grid) surrounding the beam. For a given negative potential (relative to the neutralizer) applied to this grid a plasma sheath develops at the periphery of the beam. At the entry of the grid the width of this sheath is generally much smaller than the beam radius. However, the ions are deflected by the electric field of the sheath outward through the grid. The ion density in the sheath is thus decreasing as the beam propagates and the result is a sheath-widening process which in turn causes more ions to be deflected. If the suppressor grid is sufficiently long the sheath will eventually fill the whole section of the beam, the potential on the axis will fall below the neutralizer potential and stop the electrons. Concurrently, most of the ions are deflected out of the suppressor. These ions can be decelerated and collected outside the region where the neutral beam propagates. A drawing of such a system is shown

  9. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.

    Science.gov (United States)

    Loughlin, Daniel H; Macpherson, Alexander J; Kaufman, Katherine R; Keaveny, Brian N

    2017-10-01

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NO x ) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls. Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.

  10. The causal link between energy and output growth: Evidence from Markov switching Granger causality

    International Nuclear Information System (INIS)

    Kandemir Kocaaslan, Ozge

    2013-01-01

    In this paper we empirically investigate the causal link between energy consumption and economic growth employing a Markov switching Granger causality analysis. We carry out our investigation using annual U.S. real GDP, total final energy consumption and total primary energy consumption data which cover the period between 1968 and 2010. We find that there are significant changes in the causal relation between energy consumption and economic growth over the sample period under investigation. Our results show that total final energy consumption and total primary energy consumption have significant predictive content for real economic activity in the U.S. economy. Furthermore, the causality running from energy consumption to output growth seems to be strongly apparent particularly during the periods of economic downturn and energy crisis. We also document that output growth has predictive power in explaining total energy consumption. Furthermore, the power of output growth in predicting total energy consumption is found to diminish after the mid of 1980s. - Highlights: • Total energy consumption has predictive content for real economic activity. • The causality from energy to output growth is apparent in the periods of recession. • The causality from energy to output growth is strong in the periods of energy crisis. • Output growth has predictive power in explaining total energy consumption. • The power of output growth in explaining energy diminishes after the mid of 1980s

  11. Pricing the (European) option to switch between two energy sources: An application to crude oil and natural gas

    International Nuclear Information System (INIS)

    Gatfaoui, Hayette

    2015-01-01

    We consider a firm, which can choose between crude oil and natural gas to run its business. The firm selects the energy source, which minimizes its energy or production costs at a given time horizon. Assuming the energy strategy to be established over a fixed time window, the energy choice decision will be made at a given future date T. In this light, the firm's energy cost can be considered as a long position in a risk-free bond by an amount of the terminal oil price, and a short position in a European put option to switch from oil to gas by an amount of the terminal oil price too. As a result, the option to switch from crude oil to natural gas allows for establishing a hedging strategy with respect to energy costs. Modeling stochastically the underlying asset of the European put, we propose a valuation formula of the option to switch and calibrate the pricing formula to empirical data on a daily basis. Hence, our innovative framework handles widely the hedge against the price increase of any given energy source versus the price of another competing energy source (i.e. minimizing energy costs). Moreover, we provide a price for the cost-reducing effect of the capability to switch from one energy source to another one (i.e. hedging energy price risk). - Highlights: • We consider a firm, which chooses either crude oil or natural gas as an energy source. • The capability to switch offers the firm a hedge against energy commodity price risk. • A European put option prices the ability to switch from crude oil to natural gas. • The capability to switch between two energy sources reduces the firm's energy costs. • The discount illustrates the efficiency of the energy management policy (e.g. timing).

  12. Solutions for energy recovery of animal waste from leather industry

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe; Pană, Constantin; Mihaescu, Lucian; Cernat, Alexandru; Negurescu, Niculae; Mocanu, Raluca; Negreanu, Gabriel

    2017-01-01

    Highlights: • Animal fats in blend with diesel fuel for energy valorification through combustion. • Animal waste from tanneries as fuel and for biogas production. • Experimental tests using animal fats as fuel for diesel engines. • Experimental tests modifying the characteristic parameters. - Abstract: Secondary products from food and leather industries are regarded as animal wastes. Conversion of these animal wastes into fuels represents an energy recovery solution not only because of their good combustion properties, but also from the viewpoint of supply stability. A tannery factory usually processes 60–70 t/month of crude leathers, resulting in 12–15 t/month of waste. Fats, which can be used as the input fuel for diesel engines (in crude state or as biodiesel), represent 10% of this animal waste, while the rest are proteins that can be used to generate biogas through anaerobic digestion. Herein, we analyse two approaches to the use of animal waste from tanneries: as fuel for diesel engines and for biogas generation for heat production. Diesel fuelling and fuelling by animal wastes are compared in terms of the engine performance and pollutant emissions. The effects of animal waste usage on the pollutant emissions level, exhaust gas temperature, indicated mean effective pressure, maximum pressure, and engine efficiency are analysed. The energy recovery technologies for animal waste, which are analysed in this work, can be easily implemented and can simultaneously solve the problem posed by animal wastes by using them as an alternative to fossil fuels. Animal fats can be considered an excellent alternative fuel for diesel engines without major constructive modifications.

  13. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  14. Energy-switching potential energy surface for the water molecule revisited: A highly accurate singled-sheeted form.

    Science.gov (United States)

    Galvão, B R L; Rodrigues, S P J; Varandas, A J C

    2008-07-28

    A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.

  15. Methanation and energy recovery from biogas: mutually beneficial?

    International Nuclear Information System (INIS)

    Couturier, Ch.

    2000-01-01

    Biogas is credited with a development potential of 18 million tons of oil equivalent by 2020 for the European Union. In terms of scale, this corresponds to the quantity of natural gas consumed today in France. Ten per cent of these resources are today being used, with wide variations from one country to another. If we compare this production to the population levels, it is the Northern European countries of Denmark, Sweden and the Netherlands which emerge at the top of the list. Recovery of biogas is proportionally three times higher in these states than in France or in Belgium and six times that of Southern Europe. At a time when biogas appears in the European 'campaign for takeoff' as a sector likely to produce 'MW' in the short term, the identification of factors (including subsidies, purchase prices for energy and tax incentives) that have influenced the growth of methanation and recovery of biogas in certain countries hold valuable lessons for us all. (authors)

  16. ORC waste heat recovery in European energy intensive industries: Energy and GHG savings

    International Nuclear Information System (INIS)

    Campana, F.; Bianchi, M.; Branchini, L.; De Pascale, A.; Peretto, A.; Baresi, M.; Fermi, A.; Rossetti, N.; Vescovo, R.

    2013-01-01

    Highlights: • A methodology to estimate ORC industrial heat recovery potential is defined. • Heat recovery applications for different industrial processes are shown. • Cement, steel, glass and oil and gas applications are considered in EU27. • Savings in electricity costs and greenhouse gases are quantified. - Abstract: Organic Rankine Cycle (ORC) is a technology with important opportunities in heat recovery from energy intensive industrial processes. This paper represents the first comprehensive estimate of ORC units that can be installed in cement, steel, glass and oil and gas industries in the 27 countries of the European Union based on an accurate methodology related to real plants in operation or under construction. An evaluation of energy savings, depending on the number of operating hours per year and of the consequent decrease in CO 2 emission and electricity expenditure, is also provided. The study, carried out in the framework of an European research project on heat recovery in energy intensive industries, found that, in the most convenient considered scenario, up to about 20,000 GW h of thermal energy per year can be recovered and 7.6 M ton of CO 2 can be saved by the application of ORC technology to the investigated and most promising industrial sectors

  17. Greenhouse effect reduction and energy recovery from waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy)]. E-mail: lidia.lombardi@pin.unifi.it; Carnevale, Ennio [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy); Corti, Andrea [Dipartimento di Ingegneria dell' Informazione, Universita degli Studi di Siena, Via Roma 56, 53100 Siena (Italy)

    2006-12-15

    Waste management systems are a non-negligible source of greenhouse gases. In particular, methane and carbon dioxide emissions occur in landfills due to the breakdown of biodegradable carbon compounds operated on by anaerobic bacteria. The conventional possibilities of reducing the greenhouse effect (GHE) from waste landfilling consists in landfill gas (LFG) flaring or combustion with energy recovery in reciprocating engines. These conventional treatments are compared with three innovative possibilities: the direct LFG feeding to a fuel cell (FC); the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a stationary FC; the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a vehicle FC. The comparison is carried out from an environmental point of view, calculating the specific production of GHE per unit mass of waste disposed in landfill equipped with the different considered technologies.

  18. Completing the cycle : Energy and Resource Recovery Centres

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, D. [Pearl Earth Sciences, Corp., Ajax, Ontario (Canada)]. E-mail: ddickson@pearlearth.com

    2006-07-01

    Pearl Earth Sciences, Corp.'s Energy and Resource Recovery Centres support technologies that will provide long-term environmental and economical benefits to industry and society at large. Using a closed-loop production process with zero emissions we offer producers of waste a solution for their end of life products. Our prime goals are to have the flexibility to respond to individual waste market challenges using innovative ultra-high-temperature plasma conversion technology and to focus on the production of value-added industrial products such as a clean synthesis gas (ProGaz), Hydrogen, metals and other recovered materials. The syn-gas with its high hydrogen content can be used in the emerging 'distributed power generation' markets, to power automotive, stationary and portable fuel cells, as well as Internal Combustion Engine (ICE) vehicles; chemical processing or direct feed to a pipeline.

  19. Completing the cycle : Energy and Resource Recovery Centres

    International Nuclear Information System (INIS)

    Dickson, D.

    2006-01-01

    Pearl Earth Sciences, Corp.'s Energy and Resource Recovery Centres support technologies that will provide long-term environmental and economical benefits to industry and society at large. Using a closed-loop production process with zero emissions we offer producers of waste a solution for their end of life products. Our prime goals are to have the flexibility to respond to individual waste market challenges using innovative ultra-high-temperature plasma conversion technology and to focus on the production of value-added industrial products such as a clean synthesis gas (ProGaz), Hydrogen, metals and other recovered materials. The syn-gas with its high hydrogen content can be used in the emerging 'distributed power generation' markets, to power automotive, stationary and portable fuel cells, as well as Internal Combustion Engine (ICE) vehicles; chemical processing or direct feed to a pipeline

  20. Investigating the Effect of Voltage-Switching on Low-Energy Task Scheduling in Hard Real-Time Systems

    National Research Council Canada - National Science Library

    Swaminathan, Vishnu; Chakrabarty, Krishnendu

    2005-01-01

    We investigate the effect of voltage-switching on task execution times and energy consumption for dual-speed hard real-time systems, and present a new approach for scheduling workloads containing periodic tasks...

  1. Outage Analysis of Cooperative Transmission with Energy Harvesting Relay: Time Switching versus Power Splitting

    Directory of Open Access Journals (Sweden)

    Guanyao Du

    2015-01-01

    Full Text Available This paper investigates the multiuser transmission network with an energy harvesting (EH cooperative relay, where a source transmits independent information to multiple destinations with the help of an energy constrained relay. The relay can harvest energy from the radio frequency (RF signals transmitted from the source, and it helps the multiuser transmission only by consuming the harvested energy. By adopting the time switching and the power splitting relay receiver architectures, we firstly propose two protocols, the time switching cooperative multiuser transmission (TSCMT protocol and the power splitting cooperative multiuser transmission (PSCMT protocol, to enable the simultaneous information processing and EH at the relay for the system. To evaluate the system performance, we theoretically analyze the system outage probability for the two proposed protocols and then derive explicit expressions for each of them, respectively. Numerical results are provided to demonstrate the accuracy of our analytical results and reveal that compared with traditional noncooperative scheme our proposed protocols are green solutions to offer reliable communication and lower system outage probability without consuming additional energy. In particular, for the same transmit power at the source, the PSCMT protocol is superior to the TSCMT protocol to obtain lower system outage probability.

  2. Energy-Efficient Distributed Filtering in Sensor Networks: A Unified Switched System Approach.

    Science.gov (United States)

    Zhang, Dan; Shi, Peng; Zhang, Wen-An; Yu, Li

    2016-04-21

    This paper is concerned with the energy-efficient distributed filtering in sensor networks, and a unified switched system approach is proposed to achieve this goal. For the system under study, the measurement is first sampled under nonuniform sampling periods, then the local measurement elements are selected and quantized for transmission. Then, the transmission rate is further reduced to save constrained power in sensors. Based on the switched system approach, a unified model is presented to capture the nonuniform sampling, the measurement size reduction, the transmission rate reduction, the signal quantization, and the measurement missing phenomena. Sufficient conditions are obtained such that the filtering error system is exponentially stable in the mean-square sense with a prescribed H∞ performance level. Both simulation and experiment studies are given to show the effectiveness of the proposed new design technique.

  3. A switched energy saving position controller for variable-pressure electro-hydraulic servo systems.

    Science.gov (United States)

    Tivay, Ali; Zareinejad, Mohammad; Rezaei, S Mehdi; Baghestan, Keivan

    2014-07-01

    The electro-hydraulic servo system (EHSS) demonstrates a relatively low level of efficiency compared to other available actuation methods. The objective of this paper is to increase this efficiency by introducing a variable supply pressure into the system and controlling this pressure during the task of position tracking. For this purpose, an EHSS structure with controllable supply pressure is proposed and its dynamic model is derived from the basic laws of physics. A switching control structure is then proposed to control both the supply pressure and the cylinder position at the same time, in a way that reduces the overall energy consumption of the system. The stability of the proposed switching control system is guaranteed by proof, and its performance is verified by experimental testing. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Efficient energy extraction from a diode-pumped Q-switched Tm,Ho:YLiF4 laser

    Science.gov (United States)

    Mcguckin, B. T.; Menzies, R. T.; Hemmati, H.

    1991-01-01

    The operation of a diode-laser pumped thulium, holmium yttrium-lithium-fluoride laser (Tm,Ho:YLF) in Q-switched mode is reported. Output energies of 200 microjoules in pulses of 22 ns duration are recorded at Q-switch frequencies commensurate with an effective upper laser level lifetime of 6 ms. This lifetime is appreciably longer than that observed in other hosts permitting stored energy extraction of 64 percent, close to the projected maximum performance from these materials.

  5. Energy-Recovery Pressure-Reducer in District Heating System

    Directory of Open Access Journals (Sweden)

    Dariusz Borkowski

    2018-06-01

    Full Text Available Already existing man-made infrastructures that create water flow and unused pressure are interesting energy sources to which micro-hydropower plants can be applied. Apart from water supply systems (WSSs, which are widely described in the literature, significant hydropower potential can also be found in district heating systems (DHSs. In this paper, a prototype, a so-called energy-recovery pressure-reducer (ERPR, utilized for a DHS, is presented. It consisted of a pump as a turbine coupled to a permanent magnet synchronous generator (PMSG. The latter was connected to the power grid through the power electronic unit (PEU. The variable-speed operation allowed one to modify the turbine characteristics to match the substation’s hydraulic conditions. The proposed ERPR device could be installed in series to the existing classic pressure reducing valve (PRV as an independent device that reduces costs and simplifies system installation. The test results of the prototype system located in a substation of Cracow’s DHS are presented. The steady-state curves and regulation characteristics show the prototype’s operating range and efficiency. In this study, the pressure-reducer impact on the electrical and hydraulic systems, and on the environment, were analyzed. The operation tests during the annual heating season revealed an average system’s efficiency of 49%.

  6. Energy and nutrient recovery from anaerobic treatment of organic wastes

    Science.gov (United States)

    Henrich, Christian-Dominik

    The objective of the research was to develop a complete systems design and predictive model framework of a series of linked processes capable of providing treatment of landfill leachate while simultaneously recovering nutrients and bioenergy from the waste inputs. This proposed process includes an "Ammonia Recovery Process" (ARP) consisting of: (1) ammonia de-sorption requiring leachate pH adjustment with lime or sodium hydroxide addition followed by, (2) ammonia re-absorption into a 6-molar sulfuric acid spray-tower followed by, (3) biological activated sludge treatment of soluble organic residuals (BOD) followed by, (4) high-rate algal post-treatment and finally, (5) an optional anaerobic digestion process for algal and bacterial biomass, and/or supplemental waste fermentation providing the potential for additional nutrient and energy recovery. In addition, the value provided by the waste treatment function of the overall processes, each of the sub-processes would provide valuable co-products offering potential GHG credit through direct fossil-fuel replacement, or replacement of products requiring fossil fuels. These valuable co-products include, (1) ammonium sulfate fertilizer, (2) bacterial biomass, (3) algal biomass providing, high-protein feeds and oils for biodiesel production and, (4) methane bio-fuels. Laboratory and pilot reactors were constructed and operated, providing data supporting the quantification and modeling of the ARP. Growth parameters, and stoichiometric coefficients were determined, allowing for design of the leachate activated sludge treatment sub-component. Laboratory and pilot algal reactors were constructed and operated, and provided data that supported the determination of leachate organic/inorganic-nitrogen ratio, and loading rates, allowing optimum performance of high-rate algal post-treatment. A modular and expandable computer program was developed, which provided a systems model framework capable of predicting individual component

  7. Shark, new motor design concept for energy saving applied to switched reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Tataru Kjaer, A.M.

    2005-07-01

    The aim of this thesis is to document and promote a relatively new concept of designing electrical machine with improved efficiency, without using more or better material. The concept, called Shark, consists in replacing the cylindrical air gap by a non-linear shape obtained by translating specific geometrical pattern on the longitudinal axis of the electrical machine. This shape modification increases the air gap area and thus the energy conversion, taking place in the machine. Whilst other methods of improving the efficiency consider the use of more and/or better magnetic material and/or optimisation of the magnetic circuit of the radial cross-section of the machine, the proposed method makes use of the longitudinal cross-section of the machine. In spite of a few reports claiming the improvement of the efficiency by applying the optimisation of the longitudinal cross-section, none analysis of various air gap shapes and of their influence on the magnetic performance has been reported. Due to a simple geometry, the Switched Reluctance Machine has been selected for demonstration of the Shark principle. Initially, linear and finite element analyses are considered. They provide the basic knowledge of the manner in which various Shark air gap, having different dimensions, influence the energy conversion in the machine. The saturation mechanisms, specific to each Shark profile are analysed and optimum Shark profile and its dimensions are selected for implementation in a demonstration machine. Due to the lack of quick analysis tools, an analytical model of the Shark Switched Reluctance Machine is also proposed in this thesis. This model is conceived by modifying one of the existing models of cylindrical air gap Switched Reluctance Machines, such as to account for the presence of the Shark profiles in the air gap. The calculations are verified by measurement on two demonstration machines, having cylindrical and Shark air gaps. The measurement proved the theory right and

  8. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.

    Science.gov (United States)

    Hsu, Wen-Yang; Schmid, Alexandre

    2017-08-01

    Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.

  9. The Energy Balance of Plasma in a Coaxial Plasma Opening Switch

    International Nuclear Information System (INIS)

    Xu Xiang; Wang Younian

    2006-01-01

    The two-dimensional energy balance in a coaxial plasma opening switch (POS) is studied based on the single-fluid magnetohydrodynamic (MHD) equations coupled with the generalized Ohm's law. The energy transfers between the plasma and the magnetic field are considered during the penetration of the magnetic field as the Ohmic heating is included in the energy-balance equation. The focus is on the energy partition between the magnetic-field energy and the dissipated magnetic-field energy in a high-density POS with different rise-in-time electric currents at the generator boundary. The simulation code is tested in two cases: the constant-in-time current case and the linear rise-in-time current case. For the sinusoidally rise-in-time current similar to that of the experiments, it is shown that at the end of the conduction phase the dissipated magnetic-field energy is 36.5% of the input electromagnetic energy, which is consistent with the experimental results

  10. Initial use of fast switched dual energy CT for coronary artery disease

    Science.gov (United States)

    Pavlicek, William; Panse, Prasad; Hara, Amy; Boltz, Thomas; Paden, Robert; Yamak, Didem; Licato, Paul; Chandra, Naveen; Okerlund, Darin; Dutta, Sandeep; Bhotika, Rahul; Langan, David

    2010-04-01

    Coronary CT Angiography (CTA) is limited in patients with calcified plaque and stents. CTA is unable to confidently differentiate fibrous from lipid plaque. Fast switched dual energy CTA offers certain advantages. Dual energy CTA removes calcium thereby improving visualization of the lumen and potentially providing a more accurate measure of stenosis. Dual energy CTA directly measures calcium burden (calcium hydroxyapatite) thereby eliminating a separate non-contrast series for Agatston Scoring. Using material basis pairs, the differentiation of fibrous and lipid plaques is also possible. Patency of a previously stented coronary artery is difficult to visualize with CTA due to resolution constraints and localized beam hardening artifacts. Monochromatic 70 keV or Iodine images coupled with Virtual Non-stent images lessen beam hardening artifact and blooming. Virtual removal of stainless steel stents improves assessment of in-stent re-stenosis. A beating heart phantom with 'cholesterol' and 'fibrous' phantom coronary plaques were imaged with dual energy CTA. Statistical classification methods (SVM, kNN, and LDA) distinguished 'cholesterol' from 'fibrous' phantom plaque tissue. Applying this classification method to 16 human soft plaques, a lipid 'burden' may be useful for characterizing risk of coronary disease. We also found that dual energy CTA is more sensitive to iodine contrast than conventional CTA which could improve the differentiation of myocardial infarct and ischemia on delayed acquisitions. These phantom and patient acquisitions show advantages with using fast switched dual energy CTA for coronary imaging and potentially extends the use of CT for addressing problem areas of non-invasive evaluation of coronary artery disease.

  11. Proposed continuous wave energy recovery operation of an XFEL

    International Nuclear Information System (INIS)

    J. Sekutowicz; S. A. Bogacz; D. Douglas; P. Kneisel; G. P. Williams; M. Ferrario; L. Serafini; I. Ben-Zvi; J. Rose; J. Smedley; T. Srinivasan-Rao; W.-D. Moeller; B. Petersen; D. Proch; S. Simrock; P. Colestock; J. B. Rosenzweig

    2004-01-01

    Commissioning of two large coherent light facilities at SLAC and DESY should begin in 2008 and in 2011 respectively. In this paper we look further into the future, hoping to answer, in a very preliminary way, two questions. First: ''What will the next generation of XFEL facilities look like?'' Believing that superconducting technology offers advantages such as high quality beams with highly populated bunches, the possibility of energy recovery and higher overall efficiency than warm technology, we focus this preliminary study on the superconducting option. From this belief the second question arises: ''What modifications in superconducting technology and in the machine design are needed, as compared to the present DESY XFEL, and what kind of R and D program should be proposed to arrive in the next few years at a technically feasible solution with even higher brilliance and increased overall conversion of AC power to photon beam power?'' In this paper we will very often refer to and profit from the DESY XFEL design, acknowledging its many technically innovative solutions

  12. Continuous wave energy recovery operation of an XFEL

    International Nuclear Information System (INIS)

    Jacek Sekutowicz; Bogacz, S. A.; Douglas, D.; Kneisel, Peter; Williams, G. P.; Ferrario, M.; Serafini, L.; Ben-Zvi, I.; Rose, J.; Srinivasan-Rao, T.; Mueller, W.-D.; Petersen, B.; Proch, D.; Simrock, S.; Colestock, P.; Rosenzweig, J. B.

    2003-01-01

    Commissioning of two large coherent light facilities at SLAC and DESY should begin in 2008 and in 2011 respectively. In this paper we look further into the future, hoping to answer, in a very preliminary way, two questions. First: ''What will the next generation of XFEL facilities look like?'' Believing that superconducting technology offers advantages such as high quality beams with highly populated bunches, the possibility of energy recovery and higher overall efficiency than warm technology, we focus this preliminary study on the superconducting option. From this belief the second question arises: ''What modifications in superconducting technology and in the machine design are needed, as compared to the present DESY XFEL, and what kind of R and D program should be proposed to arrive in the next few years at a technically feasible solution with even higher brilliance and increased overall conversion of AC power to photon beam power?'' In this paper we will very often refer to and profit from the DESY XFEL design, acknowledging its many technically innovative solutions

  13. Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion.

    Science.gov (United States)

    Cao, Maosheng; Wang, Xixi; Cao, Wenqiang; Fang, Xiaoyong; Wen, Bo; Yuan, Jie

    2018-06-07

    Electromagnetic energy radiation is becoming a "health-killer" of living bodies, especially around industrial transformer substation and electricity pylon. Harvesting, converting, and storing waste energy for recycling are considered the ideal ways to control electromagnetic radiation. However, heat-generation and temperature-rising with performance degradation remain big problems. Herein, graphene-silica xerogel is dissected hierarchically from functions to "genes," thermally driven relaxation and charge transport, experimentally and theoretically, demonstrating a competitive synergy on energy conversion. A generic approach of "material genes sequencing" is proposed, tactfully transforming the negative effects of heat energy to superiority for switching self-powered and self-circulated electromagnetic devices, beneficial for waste energy harvesting, conversion, and storage. Graphene networks with "well-sequencing genes" (w = P c /P p > 0.2) can serve as nanogenerators, thermally promoting electromagnetic wave absorption by 250%, with broadened bandwidth covering the whole investigated frequency. This finding of nonionic energy conversion opens up an unexpected horizon for converting, storing, and reusing waste electromagnetic energy, providing the most promising way for governing electromagnetic pollution with self-powered and self-circulated electromagnetic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Energy-Based Adaptive Sliding Mode Speed Control for Switched Reluctance Motor Drive

    Directory of Open Access Journals (Sweden)

    M. M. Namazi Isfahani

    2012-03-01

    Full Text Available Torque ripple minimization of switched reluctance motor drives is a major subject based on these drives’ extensive use in the industry. In this paper, by using a well-known cascaded torque control structure and taking the machine physical structure characteristics into account, the proposed energy-based (passivity-based adaptive sliding algorithm derived from the view point of energy dissipation, control stability and algorithm robustness. First, a nonlinear dynamic model is developed and decomposed into separate slow and fast passive subsystems which are interconnected by negative feedbacks. Then, an outer loop speed control is employed by adaptive sliding controller to determine the appropriate torque command. Finally, to reduce torque ripple in switched reluctance motor a high-performance passivity-based current controller is proposed. It can overcome the inherent nonlinear characteristics of the system and make the whole system robust to uncertainties and bounded disturbances. The performance of the proposed controller algorithm has been demonstrated in simulation, and experimental using a 4KW, four-phase, 8/6 pole SRM DSP-based drive system.

  15. Processes of energy recovery / energy valorization at low temperature levels. State of the art. Extended abstract

    International Nuclear Information System (INIS)

    Manificat, A.; Megret, O.

    2012-09-01

    This study aims to realize a state of art of the processes of energy recovery at low level of temperature and their valorizations. The information provided will target particularly the thermal systems of waste and biomass treatment. After reminding the adequate context of development with these solutions and define the scope of the current work, the study begins with the definition of different concepts such as low-grade heat (fatal energy) and exergy, and also the presentation of the fiscal environment as well as the economic and regulatory situation, with information about the TGAP, prices of energy and energy efficiency. The second chapter focuses on the different sources of energy at low temperature level that can be recoverable in order to assess their potentials and their characteristics. The Determination of the temperature range of these energy sources will be put in relation with the needs and demands of users from different industrial sectors. The third part of the study is a review of various technologies for energy recovery and valorization at low temperature. It is useful to distinguish different types of heat exchangers interesting to implement. Moreover, innovative processes allow us to consider new perspectives other than a direct use of heat recovered. For example, we can take into account systems for producing electricity (ORC cycle, hot air engines, thermoelectric conversion), or cold generation (sorption refrigeration machine, Thermo-ejector refrigeration machine) or techniques for energy storage with PCM (Phase Change Material). The last chapter deals to the achievement of four study cases written in the form of sheet and aimed at assess the applicability of the processes previously considered, concerning the field of waste. (authors)

  16. Energy Recovery from Wastewater Treatment Plants in the United States: A Case Study of the Energy-Water Nexus

    OpenAIRE

    Ashlynn S. Stillwell; David C. Hoppock; Michael E. Webber

    2010-01-01

    This manuscript uses data from the U.S. Environmental Protection Agency to analyze the potential for energy recovery from wastewater treatment plants via anaerobic digestion with biogas utilization and biosolids incineration with electricity generation. These energy recovery strategies could help offset the electricity consumption of the wastewater sector and represent possible areas for sustainable energy policy implementation. We estimate that anaerobic digestion could save 628 to 4,940 mil...

  17. Coupling analysis of energy conversion in multi-mode vibration structural control using a synchronized switch damping method

    International Nuclear Information System (INIS)

    Ji, Hongli; Qiu, Jinhao; Xia, Pinqi; Inman, Daniel

    2012-01-01

    Modal coupling is an important issue in the analysis and control of structural systems with multi-degrees of freedom (MDOF). In this paper, modal coupling induced by energy conversion in the structural control of an MDOF system using a synchronized switch damping method is investigated theoretically and validated numerically. In the analysis, it is supposed that the voltage on the piezoelectric actuator is switched at the displacement extrema of a given mode. Two types of coupling in energy conversion are considered. The first is whether the switching action based on one mode induces energy conversion of the other modes. The second is whether the vibration of one mode affects the energy conversion of the other modes. The results indicate that the modal coupling in energy conversion is very complicated. In most cases the switching action based on one mode does induce energy conversion of another mode, but the efficiency depends on the frequency ratio of the two modes. The vibration of one mode affects the energy conversion of another mode only when the frequency ratio of the two modes takes some special values. Discussions are also given on the potential application of the theoretical results in the design of an energy harvesting device. (paper)

  18. The influence of the switch from fossil fuels to solar and wind energy on the electricity prices in Germany

    NARCIS (Netherlands)

    A.B. Dorsman (Andre); A. Khoshrou (Abdolrahman); E.J. Pauwels (Eric)

    2016-01-01

    textabstractGermany is actively pursuing a switch from fossil fuel to renewables, the so-called Energiewende (energy transition). Due to the fact that the supply of wind and solar energy is less predictable than the supply of fossil fuel, stabilizing the grid has become more challenging. On sunny

  19. Characterization of secondary electron collection for energy recovery from high energy ions with a magnetic field

    International Nuclear Information System (INIS)

    Hagihara, Shota; Wada, Takayuki; Nakamoto, Satoshi; Takeno, Hiromasa; Yasaka, Yasuyoshi; Furuyama, Yuichi; Taniike, Akira

    2015-01-01

    A traveling wave direct energy converter (TWDEC) is expected to be used as an energy recovery device for fast protons produced during the D- 3 He nuclear fusion reaction. Some protons, however, are not fully decelerated and pass through the device. A secondary electron direct energy converter (SEDEC) was proposed as an additional device to recover the protons passing through a TWDEC. In our previous study, magnetic field was applied for efficient secondary electron (SE) collection, but the SEs were reflected close to the collector due to the magnetic mirror effect and the collection was degraded. Herein, a new arrangement of magnets is proposed to be set away from the collector, and experiments in various conditions are performed. An appropriate arrangement away from the collector resulted in the improvement of SE collection. (author)

  20. A Vertical Flux-Switching Permanent Magnet Based Oscillating Wave Power Generator with Energy Storage

    Directory of Open Access Journals (Sweden)

    Yu Zou

    2017-06-01

    Full Text Available In this paper, an effective low-speed oscillating wave power generator and its energy storage system have been proposed. A vertical flux-switching permanent magnet (PM machine is designed as the generator while supercapacitors and batteries are used to store the energy. First, the overall power generation system is established and principles of the machine are introduced. Second, three modes are proposed for the energy storage system and sliding mode control (SMC is employed to regulate the voltage of the direct current (DC bus, observe the mechanical input, and feedback the status of the storage system. Finally, experiments with load and sinusoidal mechanical inputs are carried out to validate the effectiveness and stability of power generation for wave energy. The results show that the proposed power generation system can be employed in low-speed environment around 1 m/s to absorb random wave power, achieving over 60% power efficiency. The power generation approach can be used to capture wave energy in the future.

  1. Pseudospark switches

    International Nuclear Information System (INIS)

    Billault, P.; Riege, H.; Gulik, M. van; Boggasch, E.; Frank, K.

    1987-01-01

    The pseudospark discharge is bound to a geometrical structure which is particularly well suited for switching high currents and voltages at high power levels. This type of discharge offers the potential for improvement in essentially all areas of switching operation: peak current and current density, current rise, stand-off voltage, reverse current capability, cathode life, and forward drop. The first pseudospark switch was built at CERN at 1981. Since then, the basic switching characteristics of pseudospark chambers have been studied in detail. The main feature of a pseudospark switch is the confinement of the discharge plasma to the device axis. The current transition to the hollow electrodes is spread over a rather large surface area. Another essential feature is the easy and precise triggering of the pseudospark switch from the interior of the hollow electrodes, relatively far from the main discharge gap. Nanosecond delay and jitter values can be achieved with trigger energies of less than 0.1 mJ, although cathode heating is not required. Pseudospark gaps may cover a wide range of high-voltage, high-current, and high-pulse-power switching at repetition rates of many kilohertz. This report reviews the basic researh on pseudospark switches which has been going on at CERN. So far, applications have been developed in the range of thyratron-like medium-power switches at typically 20 to 40 kV and 0.5 to 10 kA. High-current pseudospark switches have been built for a high-power 20 kJ pulse generator which is being used for long-term tests of plasma lenses developed for the future CERN Antiproton Collector (ACOL). The high-current switches have operated for several hundred thousand shots, with 20 to 50 ns jitter at 16 kV charging voltage and more than 100 kA peak current amplitude. (orig.)

  2. Possibilities of saving energy by using intelligent star-delta switches; Energiesparmoeglichkeiten mit intelligenten Stern-Dreieckschaltern

    Energy Technology Data Exchange (ETDEWEB)

    Gloor, R.

    2006-07-01

    This final report published by the Swiss Federal Office of Energy (SFOE) presents the results of a study made on so-called intelligent switches that switch an induction motor automatically into star configuration when at low load and, when higher loading returns, back again into the delta configuration. The results of theoretical calculations and measurements made in practice are discussed. The results are presented for various application areas including hydraulics, dynamic converters and standard applications. Also, the use of switches in applications such as wood-cutters, transport systems and stone-crushers are looked at. The results are discussed and the possible risks involved in the use of star-delta switches are looked at. Conclusions are drawn on their use from the economical point of view.

  3. Development of energy-efficient processes for natural gas liquids recovery

    International Nuclear Information System (INIS)

    Yoon, Sekwang; Binns, Michael; Park, Sangmin; Kim, Jin-Kuk

    2017-01-01

    A new NGL (natural gas liquids) recovery process configuration is proposed which can offer improved energy efficiency and hydrocarbon recovery. The new process configuration is an evolution of the conventional turboexpander processes with the introduction of a split stream transferring part of the feed to the demethanizer column. In this way additional heat recovery is possible which improves the energy efficiency of the process. To evaluate the new process configuration a number of different NGL recovery process configurations are optimized and compared using a process simulator linked interactively with external optimization methods. Process integration methodology is applied as part of the optimization to improve energy recovery during the optimization. Analysis of the new process configuration compared with conventional turbo-expander process designs demonstrates the benefits of the new process configuration. - Highlights: • Development of a new energy-efficient natural gas liquids recovery process. • Improving energy recovery with application of process integration techniques. • Considering multiple different structural changes lead to considerable energy savings.

  4. Shark - new motor design concept for energy saving-applied to Switched Reluctance Motor

    DEFF Research Database (Denmark)

    Tataru, Ana Mari

    with respect to a corresponding cylindrical air gap machine. Furthermore, the two Switched Reluctance Machines are compared with other motor technologies such as Induction Motor and Brushless DC Motor. Analysis of the forces produced in the Shark SRM reveals particular aspects, adding some difficulties...... geometrical pattern on the longitudinal axis of the electrical machine. This shape modification increases the air gap area and thus the energy conversion, taking place in the machine. Whilst other methods of improving the efficiency consider the use of more and/or better magnetic material and/or optimisation...... of the magnetic circuit of the radial cross-section of the machine, the proposed method makes use of the longitudinal cross-section of the machine. In spite of a few reports claiming the improvement of the efficiency by applying the optimisation of the longitudinal cross-section, none analysis of various air gap...

  5. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    Science.gov (United States)

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Optimal switching using coherent control

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper

    2013-01-01

    that the switching time, in general, is not limited by the cavity lifetime. Therefore, the total energy required for switching is a more relevant figure of merit than the switching speed, and for a particular two-pulse switching scheme we use calculus of variations to optimize the switching in terms of input energy....

  7. Design and Implementation of a High Efficiency, Low Component Voltage Stress, Single-Switch High Step-Up Voltage Converter for Vehicular Green Energy Systems

    Directory of Open Access Journals (Sweden)

    Yu-En Wu

    2016-09-01

    Full Text Available In this study, a novel, non-isolated, cascade-type, single-switch, high step-up DC/DC converter was developed for green energy systems. An integrated coupled inductor and voltage lift circuit were applied to simplify the converter structure and satisfy the requirements of high efficiency and high voltage gain ratios. In addition, the proposed structure is controllable with a single switch, which effectively reduces the circuit cost and simplifies the control circuit. With the leakage inductor energy recovery function and active voltage clamp characteristics being present, the circuit yields optimizable conversion efficiency and low component voltage stress. After the operating principles of the proposed structure and characteristics of a steady-state circuit were analyzed, a converter prototype with 450 W, 40 V of input voltage, 400 V of output voltage, and 95% operating efficiency was fabricated. The Renesas MCU RX62T was employed to control the circuits. Experimental results were analyzed to validate the feasibility and effectiveness of the proposed system.

  8. Energy Recovery for the Main and Auxiliary Sources of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Binggang Cao

    2010-10-01

    Full Text Available Based on the traditional regenerative braking electrical circuit, a novel energy recovery system for the main and auxiliary sources of electric vehicles (EVs has been developed to improve their energy efficiency. The electrical circuit topology is presented in detail. During regenerative braking, the recovered mechanical energy is stored in both the main source and the auxiliary source at the same time. The mathematical model of the proposed system is derived step by step. Combining the merits and defects of H2 optimal control and H∞ robust control, a H2/H∞ controller is designed to guarantee both the system performance and robust stability. The perfect match between the simulated and experimental results validates the notion that the proposed novel energy recovery system is both feasible and effective, as more energy is recovered than that with the traditional energy recovery systems, in which recovered energy is stored only in the main source.

  9. Energy Recovery for the Main and Auxiliary Sources of Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Min Ye [Key Laboratory for Highway Construction Technology and Equipment of Ministry of Education, Chang’an University, Xi’an (China); Sengjie Jiao [Key Laboratory for Highway Construction Technology and Equipment of Ministry of Education, Chang’an University, Xi’an (China); Binggang Cao [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an (China)

    2010-09-15

    Based on the traditional regenerative braking electrical circuit, a novel energy recovery system for the main and auxiliary sources of electric vehicles (EVs) has been developed to improve their energy efficiency. The electrical circuit topology is presented in detail. During regenerative braking, the recovered mechanical energy is stored in both the main source and the auxiliary source at the same time. The mathematical model of the proposed system is derived step by step. Combining the merits and defects of H2 optimal control and H-infinity robust control, a H2/H-infinity controller is designed to guarantee both the system performance and robust stability. The perfect match between the simulated and experimental results validates the notion that the proposed novel energy recovery system is both feasible and effective, as more energy is recovered than that with the traditional energy recovery systems, in which recovered energy is stored only in the main source.

  10. Energy Recovery for the Main and Auxiliary Sources of Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ye, M.; Jiao, S. [Key Laboratory for Highway Construction Technology and Equipment of Ministry of Education, Chang' an University, Xi' an 710064 (China); Cao, B. [School of Mechanical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2010-10-15

    Based on the traditional regenerative braking electrical circuit, a novel energy recovery system for the main and auxiliary sources of electric vehicles (EVs) has been developed to improve their energy efficiency. The electrical circuit topology is presented in detail. During regenerative braking, the recovered mechanical energy is stored in both the main source and the auxiliary source at the same time. The mathematical model of the proposed system is derived step by step. Combining the merits and defects of H{sub 2} optimal control and H{sub {infinity}} robust control, a H{sub 2}/H{sub {infinity}} controller is designed to guarantee both the system performance and robust stability. The perfect match between the simulated and experimental results validates the notion that the proposed novel energy recovery system is both feasible and effective, as more energy is recovered than that with the traditional energy recovery systems, in which recovered energy is stored only in the main source. (authors)

  11. Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, M. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Opus International Consultants (New Zealand); AL-Waked, R. [Mechanical Engineering Department, Prince Mohammad Bin Fahd University (PMU), P.O. Box 1614, AlKhobar 31952 (Saudi Arabia); Morrison, G. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Behnia, M. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia)

    2010-10-15

    The thermal performance of an enthalpy/membrane heat exchanger is experimentally investigated. The heat exchanger utilizes a 60gsm Kraft paper as the heat and moisture transfer surface for HVAC energy recovery. The heat exchanger sensible, latent and total effectiveness have been determined through temperature and moisture content measurements. The annual energy consumption of an air conditioner coupled with an enthalpy/membrane heat exchanger is also studied and compared with a conventional air conditioning cycle using in-house modified HPRate software. The heat exchanger effectiveness are used as thermal performance indicators and incorporated in the modified software. Energy analysis showed that an air conditioning system coupled with a membrane heat exchanger consumes less energy than a conventional air conditioning system in hot and humid climates where the latent load is high. It has been shown that in humid climate a saving of up to 8% in annual energy consumption can be achieved when membrane heat exchanger is used instead of a conventional HVAC system. (author)

  12. A 66pW Discontinuous Switch-Capacitor Energy Harvester for Self-Sustaining Sensor Applications.

    Science.gov (United States)

    Wu, Xiao; Shi, Yao; Jeloka, Supreet; Yang, Kaiyuan; Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-06-01

    We present a discontinuous harvesting approach for switch capacitor DC-DC converters that enables ultra-low power energy harvesting. By slowly accumulating charge on an input capacitor and then transferring it to a battery in burst-mode, switching and leakage losses in the DC-DC converter can be optimally traded-off with the loss due to non-ideal MPPT operation. The harvester uses a 15pW mode controller, an automatic conversion ratio modulator, and a moving sum charge pump for low startup energy upon a mode switch. In 180nm CMOS, the harvester achieves >40% end-to-end efficiency from 113pW to 1.5μW with 66pW minimum input power, marking a >10× improvement over prior ultra-low power harvesters.

  13. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.

    Science.gov (United States)

    Toshiki, Kosuke; Giang, Pham Quy; Serrona, Kevin Roy B; Sekikawa, Takahiro; Yu, Jeoung-soo; Choijil, Baasandash; Kunikane, Shoichi

    2015-02-01

    Currently, most developing countries have not set up municipal solid waste management systems with a view of recovering energy from waste or reducing greenhouse gas emissions. In this article, we have studied the possible effects of introducing three energy recovery processes either as a single or combination approach, refuse derived fuel production, incineration and waste power generation, and methane gas recovery from landfill and power generation in Ulaanbaatar, Mongolia, as a case study. We concluded that incineration process is the most suitable as first introduction of energy recovery. To operate it efficiently, 3Rs strategies need to be promoted. And then, RDF production which is made of waste papers and plastics in high level of sorting may be considered as the second step of energy recovery. However, safety control and marketability of RDF will be required at that moment. Copyright © 2014. Published by Elsevier B.V.

  14. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment

    KAUST Repository

    Ivanov, Ivan; Ren, Lijiao; Siegert, Michael; Logan, Bruce E.

    2013-01-01

    Microbial electrolysis cells (MECs) are potential candidates for sustainable wastewater treatment as they allow for recovery of the energy input by producing valuable chemicals such as hydrogen gas. Evaluating the effectiveness of MEC treatment

  15. THE CALCULATION OF THE ENERGY RECOVERY ELECTRIFIED URBAN TRANSPORT DURING THE INSTALLATION DRIVE FOR TRACTION SUBSTATION

    Directory of Open Access Journals (Sweden)

    A. A. Sulim

    2014-01-01

    Full Text Available At present a great attention is paid to increasing of energy efficiency at operated electrified urban transport. Perspective direction for increasing energy efficiency at that type of transport is the application of regenerative braking. For additional increasing of energy efficiency there were suggested the use of capacitive drive on tires of traction substation. One of the main task is the analysis of energy recovery application  with drive and without it.These analysis demonstrated that the calculation algorithms don’t allow in the full volume to carry out calculations of amount and cost of energy recovery without drive and with it. That is why we see the current interest to this topic. The purpose of work is to create methods of algorithms calculation for definite amount and cost of consumed, redundant and recovery energy of electrified urban transport due to definite regime of motion on wayside. There is algorithm developed, which allow to calculate amount and cost of consumed, redundant and recovery energy of electrified urban transport on wayside during the installation capacitive drive at traction substation. On the basis of developed algorithm for the definite regime of wagon motion of subway there were fulfilled the example of energy recovery amount and its cost calculation, among them with limited energy intensity drive, when there are 4 trains on wayside simultaneously.

  16. Enhancement of galloping-based wind energy harvesting by synchronized switching interface circuits

    Science.gov (United States)

    Zhao, Liya; Liang, Junrui; Tang, Lihua; Yang, Yaowen; Liu, Haili

    2015-04-01

    Galloping phenomenon has attracted extensive research attention for small-scale wind energy harvesting. In the reported literature, the dynamics and harvested power of a galloping-based energy harvesting system are usually evaluated with a resistive AC load; these characteristics might shift when a practical harvesting interface circuit is connected for extracting useful DC power. In the family of piezoelectric energy harvesting interface circuits, synchronized switching harvesting on inductor (SSHI) has demonstrated its advantage for enhancing the harvested power from existing base vibrations. This paper investigates the harvesting capability of a galloping-based wind energy harvester using SSHI interfaces, with a focus on comparing the performances of Series SSHI (S-SSHI) and Parallel SSHI (P-SSHI) with that of a standard DC interface, in terms of power at various wind speeds. The prototyped galloping-based piezoelectric energy harvester (GPEH) comprises a piezoelectric cantilever attached with a square-sectioned bluff body made of foam. Equivalent circuit model (ECM) of the GPEH is established and system-level circuit simulations with SSHI and standard interfaces are performed and validated with wind tunnel tests. The benefits of SSHI compared to standard circuit become more significant when the wind speed gets higher; while SSHI circuits lose the benefits at small wind speeds. In both experiment and simulation, the superiority of P-SSHI is confirmed while S-SSHI demands further investigation. The power output is increased by 43.75% with P-SSHI compared to the standard circuit at a wind speed of 6m/s.

  17. Energy Efficiency Enhancement of Photovoltaics by Phase Change Materials through Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2016-09-01

    Full Text Available Photovoltaic (PV panels convert a certain amount of incident solar radiation into electricity, while the rest is converted to heat, leading to a temperature rise in the PV. This elevated temperature deteriorates the power output and induces structural degradation, resulting in reduced PV lifespan. One potential solution entails PV thermal management employing active and passive means. The traditional passive means are found to be largely ineffective, while active means are considered to be energy intensive. A passive thermal management system using phase change materials (PCMs can effectively limit PV temperature rises. The PCM-based approach however is cost inefficient unless the stored thermal energy is recovered effectively. The current article investigates a way to utilize the thermal energy stored in the PCM behind the PV for domestic water heating applications. The system is evaluated in the winter conditions of UAE to deliver heat during water heating demand periods. The proposed system achieved a ~1.3% increase in PV electrical conversion efficiency, along with the recovery of ~41% of the thermal energy compared to the incident solar radiation.

  18. Irradiation of optically activated SI-GaAs high-voltage switches with low and high energy protons

    CERN Document Server

    Bertolucci, Ennio; Mettivier, G; Russo, P; Bisogni, M G; Bottigli, U; Fantacci, M E; Stefanini, A; Cola, A; Quaranta, F; Vasanelli, L; Stefanini, G

    1999-01-01

    Semi-Insulating Gallium Arsenide (SI-GaAs) devices have been tested for radiation hardness with 3-4 MeV or 24 GeV proton beams. These devices can be operated in dc mode as optically activated electrical switches up to 1 kV. Both single switches (vertical Schottky diodes) and multiple (8) switches (planar devices) have been studied, by analyzing their current-voltage (I-V) reverse characteristics in the dark and under red light illumination, both before and after irradiation. We propose to use them in the system of high-voltage (-600 V) switches for the microstrip gas chambers for the CMS experiment at CERN. Low energy protons (3-4 MeV) were used in order to produce a surface damage below the Schottky contact: their fluence (up to 2.6*10/sup 15/ p/cm/sup 2/) gives a high-dose irradiation. The high energy proton irradiation (energy: 24 GeV, fluence: 1.1*10/sup 14/ p/cm/sup 2/) reproduced a ten years long proton exposure of the devices in CMS experiment conditions. For low energy irradiation, limited changes of ...

  19. Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami [Eaton Corporation, Menomonee Falls, WI (United States)

    2015-10-01

    Eaton Corporation proposed a comprehensive project to develop and demonstrate advanced component technology that will reduce the cost of implementing Organic Rankine Cycle (ORC) Waste Heat Recovery (WHR) systems to Heavy-Duty Diesel engines, making adaptation of this fuel efficiency improving technology more commercially attractive to end-users in the next 5 to 10 year time period. Accelerated adaptation and implementation of new fuel efficiency technology into service is critical for reduction of fuel used in the commercial vehicle segment.

  20. Variation in emission and energy recovery concerning incident angle in a scheme recovering high energy ions by secondary electrons

    International Nuclear Information System (INIS)

    Wada, Takayuki; Konno, Shota; Nakamoto, Satoshi; Takeno, Hiromasa; Furuyama, Yuichi; Taniike, Akira

    2016-01-01

    As an energy recovery device for fast protons produced in D- 3 He nuclear fusion, secondary electron (SE) direct energy converter (SEDEC) was proposed in addition to traveling wave direct energy converter (TWDEC). Some protons passing through a TWDEC come into an SEDEC, where protons penetrate to a number of foil electrodes and emitted SEs are recovered. Following to a development of SE orbit control by magnetic field, dependence on incident angle of protons was examined to optimize structure of SEDEC. Based on a theoretical expectation, experiments were performed by changing incident angle of protons and variation in emission and energy recovery were measured. Both emission and energy recovery increased as the angle increased, and differences with theoretical expectation are discussed. (author)

  1. Energy recovery from municipal solid wastes in Italy: Actual study and perspective for future

    International Nuclear Information System (INIS)

    Brunetti, N.; Ciampa, F.; De Cecco, C.

    1992-01-01

    Materials and energy recovery from municipal solid wastes (MSW) and assimilable waste, and their re-use is one of strong points of current regulations and tendencies, both at the national and at community level in Europe. In Italy, the interest in energy recovery from renewable sources has been encouraged by energy-savings law which included financial incentives for thermal plant building if low grade fuels such as MSW were employed. New electric power prices imposed by Italian Electric Power Authority, ENEL, encourage energy recovery from waste burners. This paper aims to point out the present state of energy recovery from wastes in Italy, trends and prospects to satisfy, with new plants, the need for waste thermal destruction and part of the demand for energy in the different Italian regions: only about 10% of MSW are burned and just a small percentage of the estimated amount of recoverable energy (2 MTOE/y) is recuperated. Different technological cycles are discussed: incineration of untreated wastes and energy recovery; incineration (or gasification) of RDF (refuse derived fuels) and heat-electricity co-generation; burning of RDF in industrial plants, in addition to other fuels

  2. Possibilities of using energy recovery in underground mines

    Directory of Open Access Journals (Sweden)

    Obracaj Dariusz

    2018-01-01

    Full Text Available In underground mines, there are many sources of energy that are often irrecoverably lost and which could be used in the energy structure of a mine. Methane contained in the ventilation air, the water from the dewatering of the mines and the exhaust air from the mine shafts are the most important sources of energy available to a mine. Among other sources of energy available in a mine, you can also distinguish waste energy from the process of the desalination of water or energy from the waste. The report reviewed the sources of energy available in a mine, assessed the amount of recoverable energy and indicated the potential for its use.

  3. Method for energy recovery of spent ERL beams

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, Frank; Hannon, Fay; Rimmer, Robert; Whitney, R. Roy

    2018-01-16

    A method for recovering energy from spent energy recovered linac (ERL) beams. The method includes adding a plurality of passive decelerating cavities at the beam dump of the ERL, adding one or more coupling waveguides between the passive decelerating cavities, setting an adequate external Q (Qext) to adjust to the beam loading situation, and extracting the RF energy through the coupling waveguides.

  4. CO2 recovery system using solar energy; Taiyo energy wo riyoshita CO2 bunri kaishu system

    Energy Technology Data Exchange (ETDEWEB)

    Hosho, F; Naito, H; Yugami, H; Arashi, H [Tohoku University, Sendai (Japan)

    1997-11-25

    As a part of studies on chemical absorption process with MEA (monoethanolamine) for CO2 recovery from boiler waste gas in thermal power plants, use of solar heat as MEA regenerating energy was studied. An integrated stationary evacuated concentrator (ISEC) effective as collector in a medium temperature range was used to realize a regenerating temperature range of 100-120degC. ISEC is featured by vacuum insulation, use of selective absorbing membranes for an absorber, a CPC (compound parabolic concentrator)-shaped reflection mirror, and high-efficiency. An MEA regenerator is composed of an ISEC and PG(propylene glycol)-MEA heat exchanger, and circulates PG as heat medium. Heat collection experiment was also made using water instead of MEA. Both batch and continuous systems could supply a heat quantity necessary for MEA regeneration. CO2 concentration in the top of the regenerator rapidly decreased with PG circulation regenerating MEA. As mol ratios of CO2/MEA were compared between before and after regeneration, a recovery rate was estimated to be 59.4% for the batch system. 8 figs., 4 tabs.

  5. Improving Energy Efficiency of Cooperative Femtocell Networks via Base Station Switching Off

    Directory of Open Access Journals (Sweden)

    Woongsup Lee

    2016-01-01

    Full Text Available Recently, energy efficiency (EE of cellular networks has become an important performance metric, and several techniques have been proposed to increase the EE. Among them, turning off base stations (BSs when not needed is considered as one of the most powerful techniques due to its simple operation and effectiveness. Herein, we propose a novel BS switching-off technique for cooperative femtocell networks where multiple femtocell BSs (FBSs simultaneously send packets to the same mobile station (MS. Unlike conventional schemes, cooperative operation of FBSs, also known as coordinated multipoint (CoMP transmission, is considered to determine which BSs are turned off in the proposed technique. We first formulate the optimization problem to find the optimal set of FBSs to be turned off. Then, we propose a suboptimal scheme operating in a distributed manner in order to reduce the computational complexity of the optimal scheme. The suboptimal scheme is based on throughput ratio (TR which specifies the importance of a particular FBS for the cooperative transmission. Through simulations, we show that the energy consumption can be greatly reduced with the proposed technique, compared with conventional schemes. Moreover, we show that the suboptimal scheme also achieves the near-optimal performance even without the excessive computations.

  6. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  7. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  8. Maximizing recovery of energy and nutrients from urban wastewaters

    International Nuclear Information System (INIS)

    Selvaratnam, T.; Henkanatte-Gedera, S.M.; Muppaneni, T.; Nirmalakhandan, N.; Deng, S.; Lammers, P.J.

    2016-01-01

    Historically, UWWs (urban wastewaters) that contain high levels of organic carbon, N (nitrogen), and P (phosphorous) have been considered an environmental burden and have been treated at the expense of significant energy input. With the advent of new pollution abatement technologies, UWWs are now being regarded as a renewable resource from which, useful chemicals and energy could be harvested. This study proposes an integrated, algal-based system that has the potential to treat UWWs to the desired discharge standards in a sustainable manner while recovering high fraction of its energy content as well as its N- and P-contents for use as fertilizers. Key embodiments of the system being proposed are: i) cultivation of an extremophile microalga, Galdieria sulphuraria, in UWW for removal of carbon, N, and P via single-step by mixotrophic metabolism; ii) extraction of energy-rich biocrude and biochar from the cultivated biomass via hydrothermal processing; and, iii) enhancement of biomass productivity via partial recycling of the nutrient-rich AP (aqueous product) from hydrothermal-processed biomass to the cultivation step to optimize productivity, and formulation of fertilizers from the remaining AP. This paper presents a process model to simulate this integrated system, identify the optimal process conditions, and establish ranges for operational parameters. - Highlights: • Developed model for algal system for wastewater treatment/energy production. • Evaluated energy efficiency in algal wastewater treatment/energy production. • Optimized algal wastewater treatment/energy production. • Demonstrated feasibility of energy-positive wastewater treatment.

  9. Energy efficiency of acetone, butanol, and ethanol (ABE) recovery by heat-integrated distillation.

    Science.gov (United States)

    Grisales Diaz, Victor Hugo; Olivar Tost, Gerard

    2018-03-01

    Acetone, butanol, and ethanol (ABE) is an alternative biofuel. However, the energy requirement of ABE recovery by distillation is considered elevated (> 15.2 MJ fuel/Kg-ABE), due to the low concentration of ABE from fermentation broths (between 15 and 30 g/l). In this work, to reduce the energy requirements of ABE recovery, four processes of heat-integrated distillation were proposed. The energy requirements and economic evaluations were performed using the fermentation broths of several biocatalysts. Energy requirements of the processes with four distillation columns and three distillation columns were similar (between 7.7 and 11.7 MJ fuel/kg-ABE). Double-effect system (DED) with four columns was the most economical process (0.12-0.16 $/kg-ABE). ABE recovery from dilute solutions by DED achieved energy requirements between 6.1 and 8.7 MJ fuel/kg-ABE. Vapor compression distillation (VCD) reached the lowest energy consumptions (between 4.7 and 7.3 MJ fuel/kg-ABE). Energy requirements for ABE recovery DED and VCD were lower than that for integrated reactors. The energy requirements of ABE production were between 1.3- and 2.0-fold higher than that for alternative biofuels (ethanol or isobutanol). However, the energy efficiency of ABE production was equivalent than that for ethanol and isobutanol (between 0.71 and 0.76) because of hydrogen production in ABE fermentation.

  10. A progress report of the switch-based data acquisition system prototype project and the application of switches from industry to high-energy physics event building

    International Nuclear Information System (INIS)

    Barsotti, E.; Booth, A.; Bowden, M.; Swoboda, C.

    1990-01-01

    A prototype of a data acquisition system based on a new scalable, highly-parallel, open-system architecture is being developed at Fermilab. The major component of the new architecture, the parallel event builder, is based on a telecommunications industry technique used in the implementation of switching systems, a barrel-shift switch. The architecture is scalable both in the expandability of the number of input channels and in the throughput of the system. Because of its scalability, the system is well suited for low to high-rate experiments, test beams and all SSC detectors. The architecture is open in that as new technologies are developed and made into commercial products (e.g., arrays of processors and workstations and standard data links), these new products can be easily integrated into the system with minimal system modifications and no modifications to the system's basic architecture. Scalability and openness should guarantee that the data acquisition system does not become obsolete during the lifetime of the experiment. The paper first gives a description of the architecture and the prototype project and then details both the prototype project's software and hardware status including details of some architecture simulation studies. Suggestions for future R and D work on the new data acquisition system architecture are then described. The paper concludes by examining interconnection networks from industry and their application to event building and to other areas of high-energy physics data acquisition systems

  11. Optimized energy recovery in line with balancing of an ATES

    NARCIS (Netherlands)

    Behi, M.; Mirmohammadi, S.A.; Suma, A.B.; Palm, B.E.

    2014-01-01

    The present study explores the potential imbalance problem of the Aquifer Thermal Energy Storage (ATES) system at the Eindhoven University of Technology (TU/e) campus, Eindhoven. This ATES is one of the largest European aquifer thermal energy storage systems, and has a seasonal imbalance problem.

  12. Reducing Building HVAC Costs with Site-Recovery Energy

    Science.gov (United States)

    Pargeter, Stephen J.

    2012-01-01

    Building owners are caught between two powerful forces--the need to lower energy costs and the need to meet or exceed outdoor air ventilation regulations for occupant health and comfort. Large amounts of energy are wasted each day from commercial, institutional, and government building sites as heating, ventilation, and air conditioning (HVAC)…

  13. Recovery Act. Development of a Model Energy Conservation Training Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-07-05

    The overall objective of this project was to develop an updated model Energy Conservation training program for stationary engineers. This revision to the IUOE National Training Fund’s existing Energy Conservation training curriculum is designed to enable stationary engineers to incorporate essential energy management into routine building operation and maintenance tasks. The curriculum uses a blended learning approach that includes classroom, hands-on, computer simulation and web-based training in addition to a portfolio requirement for a workplace-based learning application. The Energy Conservation training program goal is development of a workforce that can maintain new and existing commercial buildings at optimum energy performance levels. The grant start date was July 6, 2010 and the project continued through September 30, 2012, including a three month non-funded extension.

  14. ENERGY RECOVERY FOR CONTINUOUS DYEING PROCESS IN TEXTILE INDUSTRY ENTERPRISES

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The paper ascertains and presents alteration in the energy consumption as a consequence of utilizing the low-temperature waste streams commonly used in the lines of continuous dyeing at the finishing shops of textile enterprises of Belarus. The utilization realizes through the engagement of lithium-bromide absorption heat pumps with various energy characteristics such as the heating coefficient (relative conversion ratio COPhp = 1,15; 1,7; 2,2 and the heating capacity. The latter associates with the converted heat-flow energy utilization variant with the heat-transfer medium heating system scheme (one-, twoand multistage heating. The article considers transition to previously not applied service-water preheating due to the technological acceptance of feeding higher temperature water into the dyeing machine and widening specification of the heattransfer media. The authors adduce variants of internal and external energy use and their evaluation based on the relative energy and exergy characteristics. With results of the thermodynamic analysis of the modernized production effectiveness the researchers prove that alongside with traditional and apparent interior utilization of the energy associated with the stream heat recuperation, it is advisable to widen the range of applied heat-transfer media. The transition to the service water twoand multi-stage preheating is feasible. The study shows that the existing energy supply efficiency extremely low index-numbers improve by one or two degrees. Since they are conditioned, inter alia, by the machinery design, traditional approach to energy supply and heat-medium usage as well as the enterprise whole heating system answering requirements of the bygone era of cheap energy resources. The authors examine the continuous dyeing line modernization options intending considerable investments. Preliminary economic assessment of such inevitable modernization options for the enterprise entire heat-and-power system

  15. Methods for functionality improvement of digital electronics with low switching energy

    International Nuclear Information System (INIS)

    Wetzstein, Olaf

    2010-01-01

    This thesis is a contribution to automate electronic circuit design for technologies dealing with low switching energy.The intention is to increase the stability of Rapid Single Flux Quantum (RSFQ) circuits. In order to achieve this goal, new design tools are introduced and innovative circuit topologies are implemented.The concepts that have been elaborated are demonstrated using RSFQ circuits, but they are valid for any other digital electronics.Future developments with main focus on power efficiency will take advantage of these new concepts and design tools.The aim of this work is to analyze the influences of thermal noise on the reliability of sensitive electronics.By means of an analytic description, the influence of thermal noise is classified. Based on this estimation the stability of circuits is evaluated. This approach of correlating the topology of a circuit with its immunity to thermal noise is unique so far.The results of the analysis demonstrate that using a symmetric circuit topology significantly improves the circuit's robustness against both the influence of thermal noise and parameter spread caused by the fabrication process. In order to realize symmetric circuits, phase-shifting-elements such as pi-junctions become important.The technology that permits the fabrication of phase-shifting-elements has been developed during the recent years.The essential work flow which is necessary to implement these elements into RSFQ electronics is presented in detail in this work. The predicted improvements are experimentally proved.

  16. Modeling and evaluating proliferation resistance of nuclear energy systems for strategy switching proliferation

    International Nuclear Information System (INIS)

    Yue, M.; Cheng, L.-Y.; Bari, R.A.

    2013-01-01

    Highlights: ► Sensitivity analysis is carried out for the model and physical input parameters. ► Interphase drag has minor effect on the dryout heat flux (DHF) in 1D configuration. ► Model calibration on pressure drop experiments fails to improve prediction of DHF. ► Calibrated classical model provides the best agreement with DHF data from 1D tests. ► Further validation of drag models requires data from 2D and 3D experiments on DHF. - Abstract: This paper reports a Markov model based approach to systematically evaluating the proliferation resistance (PR) of nuclear energy systems (NESs). The focus of the study is on the development of the Markov models for a class of complex PR scenarios, i.e., mixed covert/overt strategy switching proliferation, for NESs with two modes of material flow, batch and continuous. In particular, a set of diversion and/or breakout scenarios and covert/overt misuse scenarios are studied in detail for an Example Sodium Fast Reactor (ESFR) system. Both probabilistic and deterministic PR measures are calculated using a software tool that implements the proposed approach and can be used to quantitatively compare proliferation resistant characteristics of different scenarios for a given NES, according to the computed PR measures

  17. Energy storage, compression, and switching in a theta-pinch fusion test reactor

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1976-01-01

    A new 488 MJ superconducting magnetic energy storage and transfer system is being proposed for a Scyllac Fusion Test Reactor. The 1280 module system uses vacuum interrupters to switch 26 kA storage currents in 0.7 ms through a capacitive transfer circuit at 60 kV to the compression coils in the machine. Many of the components of the system have been built and tested and a prototype section of the machine is planned. Prototype coils with 381 kJ at 26 kA currents will be built by industry using advanced superconducting wire. The wire uses a Cu and Cu--Ni matrix around filaments of Nb--Ti to minimize eddy current losses. These wires are presently used in a 10 kA braided conductor for 300 kJ pre-prototype coils, and can withstand field changes of approximately 10 7 gauss/sec without inducing normal transitions. Three such 300 kJ coils are being constructed in industry for the LASL program

  18. Hydrogen Gas Recycling for Energy Efficient Ammonia Recovery in Electrochemical Systems

    NARCIS (Netherlands)

    Kuntke, Philipp; Rodríguez Arredondo, Mariana; Widyakristi, Laksminarastri; Heijne, ter Annemiek; Sleutels, Tom H.J.A.; Hamelers, Hubertus V.M.; Buisman, Cees J.N.

    2017-01-01

    Recycling of hydrogen gas (H2) produced at the cathode to the anode in an electrochemical system allows for energy efficient TAN (Total Ammonia Nitrogen) recovery. Using a H2 recycling electrochemical system (HRES) we achieved high TAN transport rates at low energy input. At

  19. 76 FR 71082 - Strata Energy, Inc., Ross Uranium Recovery Project; New Source Material License Application...

    Science.gov (United States)

    2011-11-16

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 40-9091; NRC-2011-0148] Strata Energy, Inc., Ross Uranium Recovery Project; New Source Material License Application; Notice of Intent To Prepare a... intent to prepare a supplemental environmental impact statement. SUMMARY: Strata Energy, Inc. (Strata...

  20. Buck Converter with Soft-Switching Cells for PV Panel Applications

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2016-03-01

    Full Text Available In power conversion of photovoltaic (PV energy, a hard-switching buck converter always generates some disadvantages. For example, serious electromagnetic interference (EMI, high switching losses, and stresses on an active switch (metal-oxide-semiconductor-field-effect-transistor, MOSFET, and high reverse-recovery losses of a freewheeling diode result in low conversion efficiency. To release these disadvantages, a buck converter with soft-switching cells for PV panel applications is proposed. To create zero-voltage-switching (ZVS features of the active switches, a simple active soft-switching cell with an inductor, a capacitor, and a MOSFET is incorporated into the proposed buck converter. Therefore, the switching losses and stresses of the active switches and EMI can be reduced significantly. To reduce reverse-recovery losses of a freewheeling diode, a simple passive soft-switching cell with a capacitor and two diodes is implemented. To verify the performance and the feasibility of the proposed buck converter with soft-switching cells for PV panel applications, a prototype soft-switching buck converter is built and implemented by using a maximum-power-point-tracking (MPPT method. Simulated and experimental results are presented from a 100 W soft-switching buck converter for PV panel applications.

  1. A regional synergy approach to energy recovery: The case of the Kwinana industrial area, Western Australia

    International Nuclear Information System (INIS)

    Beers, D. van; Biswas, W.K.

    2008-01-01

    Energy is a key issue in the Kwinana industrial area, Western Australia's major heavy industrial region, where the major energy consuming industries consume upto 80 PJ/yr of energy in their processes. Over the past decade, significant progress has been made towards the reduction of energy consumption and reduction of greenhouse gases in Kwinana. One way to further advance sustainable energy use is through the realisation of regional synergies. These concern the capture, recovery and reuse of by-products, water and energy between industries in close proximity. Kwinana is recognised as a leading edge example in regional synergy development, but more synergy opportunities appear to exist. The centre for sustainable resource processing (CSRP) is undertaking research to develop new synergies in Kwinana, including energy utility synergies. As part of the research, a methodology was developed and applied to identify and evaluate the economic, technical, and environmental feasibility of collaborative energy recovery opportunities from industry flue gases in Kwinana. The trial application demonstrated the significant potential to mitigate CO 2 emissions through energy recovery from flue gases by applying technologies to convert the embedded energy into useful thermal and electric applications. This article discusses the methodology and outcomes from the trial applications, including the impact of carbon taxes, reducing costs of emerging technologies, and increasing energy prices

  2. Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction

    International Nuclear Information System (INIS)

    Broberg Viklund, Sarah; Johansson, Maria T.

    2014-01-01

    Highlights: • Technologies for recovery and use of industrial excess heat were investigated. • Heat harvesting, heat storage, heat utilization, and heat conversion technologies. • Heat recovery potential for Gävleborg County in Sweden was calculated. • Effects on global CO 2 emissions were calculated for future energy market scenarios. - Abstract: Industrial excess heat is a large untapped resource, for which there is potential for external use, which would create benefits for industry and society. Use of excess heat can provide a way to reduce the use of primary energy and to contribute to global CO 2 mitigation. The aim of this paper is to present different measures for the recovery and utilization of industrial excess heat and to investigate how the development of the future energy market can affect which heat utilization measure would contribute the most to global CO 2 emissions mitigation. Excess heat recovery is put into a context by applying some of the excess heat recovery measures to the untapped excess heat potential in Gävleborg County in Sweden. Two different cases for excess heat recovery are studied: heat delivery to a district heating system and heat-driven electricity generation. To investigate the impact of excess heat recovery on global CO 2 emissions, six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrial excess heat in Gävleborg County is not used today. The results show that with the proposed recovery measures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be supplied from this heat. Electricity generation would result in reduced global CO 2 emissions in all of the analyzed scenarios, while heat delivery to a DH system based on combined heat and power production from biomass would result in increased global CO 2 emissions when the CO 2 emission charge is low

  3. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia, E-mail: lidia.lombardi@unicusano.it [Niccolò Cusano University, via Don Carlo Gnocchi, 3, 00166 Rome (Italy); Carnevale, Ennio [Industrial Engineering Department, University of Florence, via Santa Marta, 3, 50129 Florence (Italy); Corti, Andrea [Department of Information Engineering and Mathematics, University of Siena, via Roma, 56, 53100 (Italy)

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net

  4. Centrifugal Compressor Unit-based Heat Energy Recovery at Compressor Stations

    Directory of Open Access Journals (Sweden)

    V. S. Shadrin

    2016-01-01

    Full Text Available About 95% of the electricity consumed by air compressor stations around the world, is transformed into thermal energy, which is making its considerable contribution to global warming. The present article dwells on the re-use (recovery of energy expended for air compression.The article presents the energy analysis of the process of compressing air from the point of view of compressor drive energy conversion into heat energy. The temperature level of excess heat energy has been estimated in terms of a potential to find the ways of recovery of generated heat. It is shown that the temperature level formed by thermal energy depends on the degree of air compression and the number of stages of the compressor.Analysis of technical characteristics of modern equipment from leading manufacturers, as well as projects of the latest air compressor stations have shown that there are two directions for the recovery of heat energy arising from the air compression: Resolving technological problems of compressor units. The use of the excess heat generation to meet the technology objectives of the enterprise. This article examines the schematic diagrams of compressor units to implement the idea of heat recovery compression to solve technological problems: Heating of the air in the suction line during operation of the compressor station in winter conditions. Using compression heat to regenerate the adsorbent in the dryer of compressed air.The article gives an equity assessment of considered solutions in the total amount of heat energy of compressor station. Presented in the present work, the analysis aims to outline the main vectors of technological solutions that reduce negative impacts of heat generation of compressor stations on the environment and creating the potential for reuse of energy, i.e. its recovery.

  5. Design of water and heat recovery networks for the simultaneous minimisation of water and energy consumption

    International Nuclear Information System (INIS)

    Polley, Graham Thomas; Picon-Nunez, Martin; Lopez-Maciel, Jose de Jesus

    2010-01-01

    This paper describes procedures for the design of processes in which water and energy consumption form a large part of the operating cost. Good process design can be characterised by a number of properties, amongst the most important are: efficient use of raw materials, low capital cost and good operability. In terms of thermodynamic analysis these processes can be characterised as being either a 'pinch' problem or a 'threshold' problem. This paper concentrates on developing designs for problems of the threshold type. Most of the problems discussed by previous workers have been of this type. With these properties in mind this work looks at the design of integrated water and energy systems that exhibit the following features: 1. minimum water consumption, 2. minimum energy consumption, and 3. simple network structure. The approach applies for single contaminant. It is shown that the water conservation problem and the heat recovery problems can be de-coupled and the water conservation options should be established first. It is then shown that the number of heaters and heat recovery units required for the system, the quantity and type of hot utility needed for the plant and the complexity of the heat recovery network can all be determined without having to design any heat recovery network. This allows the engineer to select the better water conservation option before embarking on the design of the heat recovery network. For this type of problem the design of the heat recovery network itself is usually simple and straightforward.

  6. Energy uses and recovery in sludge disposal, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J L [Stanford Research Inst., Menlo Park, CA; Bomberger, D C; Lewis, F M

    1977-08-01

    Capital and operating costs were compared for 3 plant capacities having average dry weather flows of 10, 100, and 500 mgd. Five sludge handling options were considered. They were chemical conditioning with vacuum filtration, low pressure wet air oxidation, high pressure wet air oxidation aerobic and anaerobic digestion, and chemical oxidation with filter press dewatering. The plant sizes considered generated 11.5, 77, and 384 TPD of sludge. High pressure wet air oxidation and aerobic digestion operating costs were the most sensitive to electrical power costs, while the 2 incineration options without heat treatment were the least sensitive. Sludge drying and incineration of a 20% solids cake were the most sensitive to fuel costs, while aerobic and anaerobic digestion were not directly affected. Heat treatment of sludge and dewatering to a 40% cake had the lowest fuel requirements of the 3 incineration options but increased the total plant electric power consumption by >25%. The net Btus consumed were compared. The net consumption was lowest for anaerobic digestion, filter press plus incineration, and heat treatment plus incineration. Excluding heat recovery credit except for steam required in sludge heat treating, these 3 options are still lowest in net Btus consumed.

  7. Photochemical removal of aniline in aqueous solutions: switching from photocatalytic degradation to photo-enhanced polymerization recovery.

    Science.gov (United States)

    Tang, Heqing; Li, Jing; Bie, Yeqiang; Zhu, Lihua; Zou, Jing

    2010-03-15

    Organic pollutants may be treated by either a degradation process or a recovery process in the view point of sustainable chemistry. Photocatalytic removal of aniline was investigated in aqueous solutions. It was found that the photocatalytic oxidation of aniline resulted in its degradation or polymerization, depending on its concentration. Hence a new treatment strategy was proposed in combination of photocatalytic degradation and polymerization, where the polymerization was in fact a recovery process. When aniline concentration was as low as 0.1 mmol L(-1), it was possible to photocatalytically degrade aniline, which could be further enhanced by increasing solution pH, modifying TiO(2) surface with the addition of anions, or coupling with the photoreduction of added oxidants. When aniline concentration was increased to about 1 mmol L(-1), the photocatalytic oxidation was observed to yield the polymerization of aniline, leading to nanocomposites of polyaniline (PAN) and TiO(2). Alternatively, the photo-enhanced chemical polymerization of aniline at higher concentrations (>or=50 mmol L(-1)) in the presence of chemical oxidants produced PAN nanostructures. The conversion of pollutant aniline to valuable PAN nanostructures or nano-PAN/TiO(2) composites is suggestive for possible applications in the treatment of aniline wastewaters as a sustainable environmental protection measure. (c) 2009 Elsevier B.V. All rights reserved.

  8. Energy efficiency benefits of introducing optical switching in Data Center Networks

    DEFF Research Database (Denmark)

    Pilimon, Artur; Zeimpeki, Alexandra; Fagertun, Anna Manolova

    2017-01-01

    layers of the network topology. The analysis is based on network-level simulations using a transport network planning tool applied to small-scale setups of the considered DCNs. The obtained results show that introducing all-optical switching within the DCN leads to reduced power consumption in all......In this paper we analyze the impact of WDM-enhanced optical circuit switching on the power consumption of multiple Data Center Network (DCN) architectures. Traditional three-tier Tree, Fat-Tree and a ring-based structure are evaluated and optical switching is selectively introduced on different...... an optically switched core benefits most the ring-based network. For the latter, the core ring nodes need fewer long-reach transponders at the trunk interfaces and benefit from more efficient traffic grooming in the access part....

  9. Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability

    Science.gov (United States)

    Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...

  10. Energy recovery ventilation as a radon mitigation method for Navy family housing in Guam

    International Nuclear Information System (INIS)

    1993-12-01

    Energy recovery ventilation involves the exchange of contaminated indoor air with fresh, uncontaminated outdoor air with recovery of energy. During radon mitigation diagnostics, air change measurements were performed within three typical Navy family houses, and some were found to be well below recommended minimum standards. The only practical way to solve the indoor air quality problem was to increase the ventilation rate. Options were evaluated, and it was decided to install energy recovery ventilation (ERV) systems. An ERV system is a packaged unit complete with blower fans, controls, and air-to-air heat exchanger. However, because of economical limits on the quantity of conditioned air that can be exchanged, ERV has a finite range of application in radon abatement. In Guam, ERV has potential applications in up to 370 units and in an additional 154 units if the mechanical systems are moved indoors. The performance of ERV systems were evaluated during a demonstration program to determine the removal efficiency of radon

  11. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    Directory of Open Access Journals (Sweden)

    Taina Tervahauta

    2014-08-01

    Full Text Available This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP, UASB reactor performance, chemical oxygen demand (COD mass balance and methanization. Grey water sludge treatment with black water increased the energy recovery by 23% in the UASB reactor compared to black water treatment. The increase in the energy recovery can cover the increased heat demand of the UASB reactor and the electricity demand of the grey water bioflocculation system with a surplus of 0.7 kWh/cap/y electricity and 14 MJ/cap/y heat. However, grey water sludge introduced more heavy metals in the excess sludge of the UASB reactor and might therefore hinder its soil application.

  12. On the Suitability of Interleaved Switched Capacitor Converter as an Interface for Electric Vehicle Dual Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Amjadi, Zahra; Williamson, Sheldon

    2010-09-15

    This paper presents the analysis and novel hybrid controller design for an interleaved 2-quadrant switched capacitor (SC) bidirectional DC/DC converter for a hybrid electric vehicle (HEV) dual energy storage system. The designed novel control strategy enables simpler dynamics compared to a standard buck converter with input filter, good regulation capability, low EMI, lower source current ripple, ease of control, and continuous input current waveform in both buck as well as boost modes of operation.

  13. FLYWHEEL BASED KINETIC ENERGY RECOVERY SYSTEMS (KERS) INTEGRATED IN VEHICLES

    OpenAIRE

    THOMAS MATHEWS; NISHANTH D

    2013-01-01

    Today, many hybrid electric vehicles have been developed in order to reduce the consumption of fossil fuels; unfortunately these vehicles require electrochemical batteries to store energy, with high costs as well as poor conversion efficiencies. By integrating flywheel hybrid systems, these drawbacks can be overcome and can potentially replace battery powered hybrid vehicles cost effectively. The paper will explain the engineering, mechanics of the flywheel system and it’s working in detail. ...

  14. Energy recovery from air flow in underground railway systems

    Energy Technology Data Exchange (ETDEWEB)

    Morrone, B.; Mariani, A. [Seconda Univ. degli studi di Napoli, Aversa (Italy). Dept. of Aerospace and Mechanical Engineering; Costanzo, M.L. [Tecnosistem spa, Napoli (Italy)

    2010-07-01

    The 20-20-20 energy policy of the European Union commits members to reduce carbon dioxide (CO{sub 2}) emissions by 20 per cent by 2020, and stipulates that 20 per cent of final-use energy is to be supplied by renewable energy sources. This paper proposed the concept of recovering energy from underground trains by using the air flow inside tunnels to drive energy conversion systems such as turbines to generate electricity. Underground trains use much of their power to overcome the aerodynamic resistance moving the air in front of the train, creating a piston effect when travelling inside tunnels at relatively low speed. Numerical simulations were used in this study to determine how much electricity could be produced. A one-dimensional numerical analysis of a specific subway train track was used to evaluate the air flow magnitude inside the tunnel. Once the air flow features were detected, the potential electricity production was evaluated by considering the characteristics of a Wells turbine. Two types of 3-dimensional models of the tunnel and train were presented. One considered a long straight tunnel with a train running in it, and a small portion of a bypass tunnel. The other considered a large part of an opposite tunnel connected to the main one through the by-pass tunnel. Both the 3D models revealed a maximum flow rate of 2.5 x 105 m{sup 3}/h, while the 1D model showed an air flow of 1.5 x 105 m{sup 3}/h. The difference was due primarily to the presence of fans in the 1D Model and different modelling assumptions. It was concluded that one single Wells type turbine placed in a by-pass tunnel can produce 32.6 kWh per day, or about 10 MWh per year, resulting in a CO{sub 2} savings of about 5.5 tons per year. 8 refs., 1 tab., 11 figs.

  15. Energy recovery from municipal solid waste, an environmental and safety mini-overview survey

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.L.

    1976-06-01

    The environmental and safety aspects of processing municipal solid wastes to recover energy and materials are reviewed in some detail. The state of the art in energy recovery, energy potential for the near and long-term, and constraints to commercialization are discussed. Under the environmental and safety aspects the state of the art, need for research and development, and need for coordination among federal agencies and private industry are considered. Eleven principal types of refuse-to-energy processes are described and a projected energy balance is derived for each process. (JSR)

  16. Reduction efficiency prediction of CENIBRA's recovery boiler by direct minimization of gibbs free energy

    Directory of Open Access Journals (Sweden)

    W. L. Silva

    2008-09-01

    Full Text Available The reduction efficiency is an important variable during the black liquor burning process in the Kraft recovery boiler. This variable value is obtained by slow experimental routines and the delay of this measure disturbs the pulp and paper industry customary control. This paper describes an optimization approach for the reduction efficiency determination in the furnace bottom of the recovery boiler based on the minimization of the Gibbs free energy. The industrial data used in this study were directly obtained from CENIBRA's data acquisition system. The resulting approach is able to predict the steady state behavior of the chemical composition of the furnace recovery boiler, - especially the reduction efficiency when different operational conditions are used. This result confirms the potential of this approach in the analysis of the daily operation of the recovery boiler.

  17. Special Report "The American Recovery and Reinvestment Act and the Department of Energy"

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) was signed into law on February 17, 2009, as a way to jumpstart the U.S. economy, create or save millions of jobs, spur technological advances in science and health, and invest in the Nation's energy future. This national effort will require an unprecedented level of transparency and accountability to ensure that U.S. citizens know where their tax dollars are going and how they are being spent. As part of the Recovery Act, the Department of Energy will receive more than $38 billion to support a number of science, energy, and environmental initiatives. Additionally, the Department's authority to make or guarantee energy-related loans has increased to about $127 billion. The Department plans to disburse the vast majority of the funds it receives through grants, cooperative agreements, contracts, and other financial instruments. The supplemental funding provided to the Department of Energy under the Recovery Act dwarfs the Department's annual budget of about $27 billion. The infusion of these funds and the corresponding increase in effort required to ensure that they are properly controlled and disbursed in a timely manner will, without doubt, strain existing resources. It will also have an equally challenging impact on the inherent risks associated with operating the Department's sizable portfolio of missions and activities and, this is complicated by the fact that, in many respects, the Recovery Act requirements represent a fundamental transformation of the Department's mission. If these challenges are to be met successfully, all levels of the Department's structure and its many constituents, including the existing contractor community; the national laboratory system; state and local governments; community action groups and literally thousands of other contract, grant, loan and cooperative agreement recipients throughout the Nation will have to strengthen existing or

  18. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks

  19. Thermoelectric energy recovery at ionic-liquid/electrode interface

    Energy Technology Data Exchange (ETDEWEB)

    Bonetti, Marco; Nakamae, Sawako; Huang, Bo Tao; Wiertel-Gasquet, Cécile; Roger, Michel [Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS-UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Salez, Thomas J. [Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS-UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); École des Ponts ParisTech, 6 et 8 avenue Blaise Pascal, Champs-sur-Marne, F-77455 Marne-la-Vallée (France)

    2015-06-28

    A thermally chargeable capacitor containing a binary solution of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide in acetonitrile is electrically charged by applying a temperature gradient to two ideally polarisable electrodes. The corresponding thermoelectric coefficient is −1.7 mV/K for platinum foil electrodes and −0.3 mV/K for nanoporous carbon electrodes. Stored electrical energy is extracted by discharging the capacitor through a resistor. The measured capacitance of the electrode/ionic-liquid interface is 5 μF for each platinum electrode while it becomes four orders of magnitude larger, ≈36 mF, for a single nanoporous carbon electrode. Reproducibility of the effect through repeated charging-discharging cycles under a steady-state temperature gradient demonstrates the robustness of the electrical charging process at the liquid/electrode interface. The acceleration of the charging by convective flows is also observed. This offers the possibility to convert waste-heat into electric energy without exchanging electrons between ions and electrodes, in contrast to what occurs in most thermogalvanic cells.

  20. Energy-Efficient Bioalcohol Recovery by Gel Stripping

    Science.gov (United States)

    Godbole, Rutvik; Ma, Lan; Hedden, Ronald

    2014-03-01

    Design of energy-efficient processes for recovering butanol and ethanol from dilute fermentations is a key challenge facing the biofuels industry due to the high energy consumption of traditional multi-stage distillation processes. Gel stripping is an alternative purification process by which a dilute alcohol is stripped from the fermentation product by passing it through a packed bed containing particles of a selectively absorbent polymeric gel material. The gel must be selective for the alcohol, while swelling to a reasonable degree in dilute alcohol-water mixtures. To accelerate materials optimization, a combinatorial approach is taken to screen a matrix of copolymer gels having orthogonal gradients in crosslinker concentration and hydrophilicity. Using a combination of swelling in pure solvents, the selectivity and distribution coefficients of alcohols in the gels can be predicted based upon multi-component extensions of Flory-Rehner theory. Predictions can be validated by measuring swelling in water/alcohol mixtures and conducting h HPLC analysis of the external liquid. 95% + removal of butanol from dilute aqueous solutions has been demonstrated, and a mathematical model of the unsteady-state gel stripping process has been developed. NSF CMMI Award 1335082.

  1. Audit Report on "The Department of Energy's American Recovery and Reinvestment Act -- Florida State Energy Program"

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-01

    The Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) provides grants to states, territories, and the District of Columbia to support their energy priorities through the State Energy Program (SEP). The SEP provides Federal financial assistance to carry out energy efficiency and renewable energy projects that meet each state's unique energy needs while also addressing national goals such as energy security. Federal funding is based on a grant formula that takes into account population and energy consumption. The SEP emphasizes the state's role as the decision maker and administrator for the program. The American Recovery and Reinvestment Act of 2009 (Recovery Act) expanded the SEP, authorizing $3.1 billion in grants. Based on existing grant formulas and after reviewing state-level plans, EERE made awards to states. The State of Florida's Energy Office (Florida) was allocated $126 million - a 90-fold increase over Florida's average annual SEP grant of $1.4 million. Per the Recovery Act, this funding must be obligated by September 30, 2010, and spent by April 30, 2012. As of March 10, 2010, Florida had expended $13.2 million of the SEP Recovery Act funds. Florida planned to use its grant funds to undertake activities that would preserve and create jobs; save energy; increase renewable energy sources; and, reduce greenhouse gas emissions. To accomplish Recovery Act objectives, states could either fund new or expand existing projects. As a condition of the awards, EERE required states to develop and implement sound internal controls over the use of Recovery Act funds. Based on the significant increase in funding from the Recovery Act, we initiated this review to determine whether Florida had internal controls in place to provide assurance that the goals of the SEP and Recovery Act will be met and accomplished efficiently and effectively. We identified weaknesses in the implementation of SEP Recovery Act projects that

  2. Platforms for energy and nutrient recovery from domestic wastewater: A review.

    Science.gov (United States)

    Batstone, D J; Hülsen, T; Mehta, C M; Keller, J

    2015-12-01

    Alternative domestic wastewater treatment processes that recover energy and nutrients while achieving acceptable nutrient limits (650mgCODL(-1). PRR offers the possibility for recovery of nitrogen and other nutrients (including potassium) through assimilative recovery. However, the energetic overhead of this is substantial, requiring 5kWhkgN(-1) as electricity, which compares to ammonia fixation costs. The lower energy costs, and near to market status of LEM treatment make it likely as a recovery platform in the shorter term, while ability to recover other elements such as nitrogen and potassium, as well as enhance favourability on concentrated wastewaters may enhance the desirability of partitioning in the longer term. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Thermal comfort analysis of a low temperature waste energy recovery system. SIECHP

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Martin, R. [Departamento de Ingenieria Termica y de Fluidos, Universidad Politecnica de Cartagena, C/Dr. Fleming, s/n (Campus Muralla), 30202 Cartagena, Murcia (Spain); Rey Martinez, F.J.; Velasco Gomez, E. [Departamento de Ingenieria Energetica y Fluidomecanica, ETSII, Universidad de Valladolid, Paseo del Cauce s/n, 47011 Valladolid (Spain)

    2008-07-01

    The use of a recovery device is justified in terms of energy savings and environmental concerns. But it is clear that the use of a recovery system also has to lead to controlling indoor environmental quality, nowadays a priority concern. In this article, experimental research has been carried out whose aim is to study the thermal comfort provided by a combined recovery equipment (SIECHP), consisting of a ceramic semi-indirect evaporative cooler (SIEC) and a heat pipe device (HP) to recover energy at low temperature in air-conditioning systems. To characterize this device empirically in terms of thermal comfort (TC), Fanger's predicted mean vote (PMV), draught rate, and vertical air temperature difference were used in this study as the TC criteria. (author)

  4. Enhancing Low-Grade Thermal Energy Recovery in a Thermally Regenerative Ammonia Battery Using Elevated Temperatures

    KAUST Repository

    Zhang, Fang

    2015-02-13

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA. A thermally regenerative ammonia battery (TRAB) is a new approach for converting low-grade thermal energy into electricity by using an ammonia electrolyte and copper electrodes. TRAB operation at 72°C produced a power density of 236±8 Wm-2, with a linear decrease in power to 95±5 Wm-2 at 23°C. The improved power at higher temperatures was due to reduced electrode overpotentials and more favorable thermodynamics for the anode reaction (copper oxidation). The energy density varied with temperature and discharge rates, with a maximum of 650 Whm-3 at a discharge energy efficiency of 54% and a temperature of 37°C. The energy efficiency calculated with chemical process simulation software indicated a Carnot-based efficiency of up to 13% and an overall thermal energy recovery of 0.5%. It should be possible to substantially improve these energy recoveries through optimization of electrolyte concentrations and by using improved ion-selective membranes and energy recovery systems such as heat exchangers.

  5. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    Energy Technology Data Exchange (ETDEWEB)

    Grezes, C.; Alzate, J. G.; Cai, X.; Wang, K. L. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Ebrahimi, F.; Khalili Amiri, P. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Inston, Inc., Los Angeles, California 90024 (United States); Katine, J. A. [HGST, Inc., San Jose, California 95135 (United States); Langer, J.; Ocker, B. [Singulus Technologies AG, Kahl am Main 63796 (Germany)

    2016-01-04

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memory and logic integrated circuits.

  6. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  7. Direct energy recovery from helium ion beams by a beam direct converter with secondary electron suppressors

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Yamamoto, Y.; Toku, H.; Kobayashi, A.; Okazaki, T.

    1989-01-01

    A 5-yr study of beam direct energy conversion was performed at the Kyoto University Institute of Atomic Energy to clarify the essential features of direct energy recovery from monoenergetic ion beams so that the performance characteristics of energy recovery can be predicted reasonably well by numerical calculations. The study used an improved version of an electrostatically electron-suppressed beam direct converter. Secondary electron suppressor grids were added, and a helium ion beam was used with typical parameters of 15.4 keV, 90 mA, and 100 ms. This paper presents a comparison of experimental results with numerical results by the two-dimensional Kyoto University Advanced Dart (KUAD) code, including evaluation of atomic processes

  8. Role of primary sedimentation on plant-wide energy recovery and carbon footprint.

    Science.gov (United States)

    Gori, Riccardo; Giaccherini, Francesca; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego

    2013-01-01

    The goal of this paper is to show the effect of primary sedimentation on the chemical oxygen demand (COD) and solids fractionation and consequently on the carbonaceous and energy footprints of wastewater treatment processes. Using a simple rational procedure for COD and solids fraction quantification, we quantify the effects of varying fractions on CO2 and CO2-equivalent mass flows, process energy demand and energy recovery. Then we analysed two treatment plants with similar biological nutrient removal processes in two different climatic regions and quantified the net benefit of gravity separation before biological treatment. In the cases analysed, primary settling increases the solid fraction of COD that is processed in anaerobic digestion, with an associated increase in biogas production and energy recovery, and a reduction in overall emissions of CO2 and CO2-equivalent from power importation.

  9. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    International Nuclear Information System (INIS)

    Lai, Z N; Wu, P; Wu, D Z; Wang, L Q

    2013-01-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m 3 /h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result

  10. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    Science.gov (United States)

    Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.

  11. Self-tuning fuzzy logic control of a switched reluctance generator for wind energy applications

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2012-01-01

    determination, self-tuning FLC for speed control, and a current controller. The turn-on and turn-off angle determination, as its name implies, controls the turn-on and turn-off angles of power switches to improve the efficiency and torque regulation of the SRG. The self-tuning FLC is the speed controller which......This paper presents a new self-tuning fuzzy logic control (FLC) based speed controller of a switched reluctance generator (SRG) for wind power applications. Due to its doubly salient structure and magnetic saturation, the SRG possesses an inherent characteristic of strong nonlinearity. In addition...

  12. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  13. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    NARCIS (Netherlands)

    Tervahauta, T.H.; Bryant, I.M.; Hernandez Leal, L.; Buisman, C.J.N.; Zeeman, G.

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were

  14. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.

    2015-01-01

    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel

  15. Integrated energy and emission management for diesel engines with waste heat recovery using dynamic models

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.C.; Feru, E.

    2015-01-01

    Rankine-cycle Waste Heat Recovery (WHR) systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine and WHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI

  16. Integrated Energy & Emission Management for Heavy-Duty Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  17. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  18. Anaerobic Digestion Performance in the Energy Recovery of Kiwi Residues

    Science.gov (United States)

    Martins, Ramiro; Boaventura, Rui; Paulista, Larissa

    2017-12-01

    World production and trade of fruits generate losses in the harvest, post-harvest, handling, distribution and consumption phases, corresponding to 6.8% of total production. These residues present high potential as a substrate for the anaerobic digestion process and biogas generation. Thus, the energy valuation of the agro-industrial residues of kiwi production was evaluated by anaerobic digestion, aiming at optimizing the biogas production and its quality. Ten assays were carried out in a batch reactor (500 mL) under mesophilic conditions and varying a number of operational factors: different substrate/inoculum ratios; four distinct values for C: N ratio; inoculum from different digesters; and inoculum collected at different times of the year. The following parameters were used to control and monitor the process: pH, alkalinity, volatile fatty acids (VFA), volatile solids (VS) and chemical oxygen demand (COD). Among the tests performed, the best result obtained for the biogas production corresponded to the use of 2 g of substrate and 98 mL of inoculum of the anaerobic digester of the Wastewater Treatment Plant (WWTP) of Bragança, with addition of 150 mg of bicarbonate leading to a production of 1628 L biogas.kg-1 VS (57% methane). In relation to the biogas quality, the best result was obtained with 20 g of substrate and 380 mL of inoculum from the anaerobic digester sludge of WWTP of Ave (with addition 600 mg of sodium bicarbonate), presenting a value of 85% of CH4, with a production of 464 L biogas.kg-1 VS.

  19. City of Camden, New Jersey Program offering widespread energy recovery (power): Final report

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, Stanley [City of Camden, NJ (United States). Dept. of Development and Planning Bureau of Housing Services

    2013-12-31

    The Camden Residential POWER Program, Program Offering Widespread Energy Recovery, is a program designed to benefit Camden homeowners, stabilize neighborhoods and put local contractors to work. Camden POWER granted up to $18,600 to fund energy efficient home improvements and necessary life/safety rehabilitation repairs. The program was designed as a self-sustaining, neighborhood approach to bringing long-term energy and financial savings to the community. Valuable home upgrades were completed, including high-efficiency furnaces, hot water heaters, insulation, insulated roofs and blower door guided air-sealing. The goal of all improvements were to reduce energy consumption, lower utility bills, improve property values and promote neighborhood stabilization.

  20. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    Science.gov (United States)

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  1. Feasibility analysis of a small-scale ORC energy recovery system for vehicular application

    International Nuclear Information System (INIS)

    Capata, Roberto; Toro, Claudia

    2014-01-01

    Highlights: • We analyzed the feasibility of an “on-board” ORC recovery system to power auxiliaries. • Performance of the ORC cycle has been simulated with CAMEL-Pro™. • Several relevant ORC components have been designed. • Approximate characteristics dimensions of HRSG and evaporator have been calculated and a preliminary layout provided. • The evaluation of a possible assembling of the system has been developed. - Abstract: This paper analyses the feasibility of an “on-board” innovative and patented ORC recovery system. The vehicle thermal source can be either a typical diesel engine (1400 cc) or a small gas turbine set (15–30 kW). The sensible heat recovered from the exhaust gases feeds the energy recovery system that can produce sufficient extra power to sustain the conditioning system and other auxiliaries. The concept is suitable for all types of thermally propelled vehicles, but it is studied here for automotive applications. The characteristics of the organic cycle-based recovery system are discussed, and a preliminary design of the main components, such as the heat recovery exchanger, the evaporator and the pre-heater is presented. The main challenge are the imposed size and weight limitations that require a particular design for this compact recovery system. A possible system layout is analyzed and the requirements for a prototypal application are investigated

  2. Maximization of energy recovery inside supersonic separator in the presence of condensation and normal shock wave

    International Nuclear Information System (INIS)

    Shooshtari, S.H. Rajaee; Shahsavand, A.

    2017-01-01

    Natural gases provide around a quarter of energy consumptions around the globe. Supersonic separators (3S) play multifaceted role in natural gas industry processing, especially for water and hydrocarbon dew point corrections. These states of the art devices have minimum energy requirement and favorable process economy compared to conventional facilities. Their relatively large pressure drops may limit their application in some situations. To maximize the energy recovery of the dew point correction facility, the pressure loss across the 3S unit should be minimized. The optimal structure of 3s unit (including shock wave location and diffuser angle) is selected using simultaneous combination of normal shock occurrence and condensation in the presence of nucleation and growth processes. The condense-free gas enters the non-isentropic normal shock wave. The simulation results indicate that the normal shock location, pressure recovery coefficient and onset position strongly vary up to a certain diffuser angle (β = 8°) with the maximum pressure recovery of 0.88 which leads to minimum potential energy loss. Computational fluid dynamic simulations show that separation of boundary layer does not happen for the computed optimal value of β and it is essentially constant when the inlet gas temperatures and pressures vary over a relatively broad range. - Highlights: • Supersonic separators have found numerous applications in oil and gas industries. • Maximum pressure recovery is crucial for such units to maximize energy efficiency. • Simultaneous condensation and shock wave occurrence are studied for the first time. • Diverging nozzle angle of 8° can provide maximum pressure recovery of 0.88. • The optimal diffuser angle remains constant over a broad range of inlet conditions.

  3. High repetition rate, high energy, actively Q-switched all-in-fiber laser

    Science.gov (United States)

    Lecourt, J. B.; Bertrand, A.; Guillemet, S.; Hernandez, Y.; Giannone, D.

    2010-05-01

    We report an actively Q-switched Ytterbium-doped all-in-fibre laser delivering 10ns pulses with high repetition rate (from 100kHz to 1MHz). The laser operation has been validated at three different wavelengths (1040, 1050 and 1064nm). The laser can deliver up to 20Watts average power with an high beam quality (M2 = 1).

  4. Energy Saving in Three-Phase Diode Rectifiers Using EI Technique with Adjustable Switching Frequency Scheme

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Yang, Yongheng

    2016-01-01

    A front-end rectifier can significantly impact a power electronics system performance and efficiency for applications such as motor drive where the system commonly operates under partial loading conditions. This paper proposes an adjustable switching frequency scheme using an electronic inductor...

  5. Aortic endograft surveillance: use of fast-switch kVp dual-energy computed tomography with virtual noncontrast imaging.

    Science.gov (United States)

    Maturen, Katherine E; Kleaveland, Patricia A; Kaza, Ravi K; Liu, Peter S; Quint, Leslie E; Khalatbari, Shokoufeh H; Platt, Joel F

    2011-01-01

    To assess endoleak detection and patients' radiation exposure using fast-switch peak kilovoltage (kVp) dual-energy computed tomography (DECT) with virtual noncontrast (VNC) imaging. Institutional review board approved retrospective review of triphasic CTs for endograft follow-up: single-energy true noncontrast (TNC) and dual-energy arterial- and venous-phase postcontrast scans on GE HD-750 64-detector scanners. Iodine-subtracted VNC images generated from dual-energy data. Two radiologists (VNC readers) independently performed 2 reading sessions without TNC images: (1) arterial and VNC and (2) venous and VNC. Interrater agreement, leak detection sensitivity, and dose estimates were calculated. Original dictations described 24 endoleaks in 78 scans. Virtual noncontrast reader agreement was high (κ = 0.78-0.79). Virtual noncontrast reader ranges for sensitivity and negative predictive value for leak detection were 87.5% to 95.8% and 94.0% to 98.0% in venous phase. Dose reduction estimate was 40% by eliminating one phase and 64% by eliminating 2 phases of imaging. Virtual noncontrast images from fast-switch peak kilovoltage DECT data can substitute for TNC imaging in the postendograft aorta, conferring substantial dose reduction. Eliminating 1 of 2 postcontrast phases further reduces dose, with greater negative predictive value for leak detection in the venous versus the arterial phase. Thus, the use of a monophasic venous-phase DECT with VNC images is suggested for long-term endograft surveillance in stable patients.

  6. Moisture transfer through the membrane of a cross-flow energy recovery ventilator: Measurement and simple data-driven modeling

    Science.gov (United States)

    CR Boardman; Samuel V. Glass

    2015-01-01

    The moisture transfer effectiveness (or latent effectiveness) of a cross-flow, membrane based energy recovery ventilator is measured and modeled. Analysis of in situ measurements for a full year shows that energy recovery ventilator latent effectiveness increases with increasing average relative humidity and surprisingly increases with decreasing average temperature. A...

  7. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Science.gov (United States)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain; Jung, Hun Bok; Carroll, Kenneth C.

    2018-01-23

    An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.

  8. Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit

    International Nuclear Information System (INIS)

    Wang, Yang; Zhao, Fu-Yun; Kuckelkorn, Jens; Liu, Di; Liu, Li-Qun; Pan, Xiao-Chuan

    2014-01-01

    The recently-built school buildings have adopted novel heat recovery ventilator and air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification and indoor air quality indicated by the CO 2 concentration have been numerically modeled concerning the effects of delivering ventilation flow rate and supplying air temperature. Numerical results indicate that the promotion of mechanical ventilation rate can simultaneously boost the dilution of indoor air pollutants and the non-uniformity of indoor thermal and pollutant distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air conditioning unit decreases with the increasing temperatures of supplying air. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented. - Highlights: • Low energy school buildings and classroom environment. • Heat recovery facility operating with an air conditioning unit. • Displacement ventilation influenced by the heat recovery efficiency. • Energy conservation of cooling and ventilation through heat recovery. • Enhancement of classroom environment with reduction of school building energy

  9. Energy saving in the baking industry by more selective use of energy and by recovery of waste heat

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, L.; Nieman, W.; Rouwen, W.

    1986-01-01

    Approximately 7000 Tj energy are used yearly by the bakery industry in the Netherlands. Until now, very little is known about energy use in this sector, this being partly due to the extremely decentralised production. The aim of the study is to pinpoint and evaluate methods for energy saving and heat recovery in the bakery. Priority was given to the procedures or places where a large amount of energy is used or is lost. A second important part of the study is to identify the situations where energy can easly be saved in very simple ways. The study was subsidised by the European Economic Community, the Industry group for bakeries and the Dutch Ministry for Economic Affairs. Monitoring was in the hands of a committee, with representation by the Nederlandse Bakkerijstichting (Dutch Bakery Organisation), the Stichting Voorlichting Energiebesparing Nederland (Organisation for Information about Energy Conservation), the Ministry of Agriculture/Fisheries and the Ministry of Economic Affairs.

  10. Assessment of infiltration heat recovery and its impact on energy consumption for residential buildings

    International Nuclear Information System (INIS)

    Solupe, Mikel; Krarti, Moncef

    2014-01-01

    Highlights: • Five steady-state air infiltration heat recovery or IHR models are described and compared. • IHR models are incorporated within whole-building simulation analysis tool. • IHR can reduce the thermal loads of residential buildings by 5–30%. - Abstract: Infiltration is a major contributor to the energy consumption of buildings, particularly in homes where it accounts for one-third of the heating and cooling loads. Traditionally, infiltration is calculated independent of the building envelope performance, however, it has been established that a thermal coupling exists between the infiltration and conduction heat transfer of the building envelope. This effect is known as infiltration heat recovery (IHR). Experiments have shown that infiltration heat recovery can typically reduce the infiltration thermal load by 10–20%. Currently, whole-building energy simulation tools do not account for the effect of infiltration heat recovery on heating and cooling loads. In this paper, five steady-state IHR models are described to account for the thermal interaction between infiltration air and building envelope components. In particular, inter-model and experimental comparisons are carried out to assess the prediction accuracy of five IHR models. In addition, the results from a series of sensitivity analyses are presented, including an evaluation of the predictions for heating energy use associated with four audited homes obtained from whole-building energy simulation analysis with implemented infiltration heat recovery models. Experimental comparison of the IHR models reveal that the predictions from all the five models are consistent and are within 2% when 1-D flow and heat transfer conditions are considered. When implementing IHR models to a whole-building simulation environment, a reduction of 5–30% in heating consumption is found for four audited residential homes

  11. Solar Energy for a Solvent Recovery Stage in a Biodiesel Production Process

    Directory of Open Access Journals (Sweden)

    José A. León

    2016-01-01

    Full Text Available Recent research and development of clean energy have become essential due to the global climate change problem, which is caused largely by fossil fuels burning. Therefore, biodiesel, a renewable and ecofriendly biofuel with less environmental impact than diesel, continues expanding worldwide. The process for biodiesel production involves a significant energy demand, specifically in the methanol recovery stage through a flash separator and a distillation column. Traditionally, the energy required for this process is supplied by fossil fuels. It represents an opportunity for the application of renewable energy. Hence, the current study presents a system of thermal energy storage modeled in TRNSYS® and supported by simulations performed in ASPEN PLUS®. The aim of this research was to supply solar energy for a methanol recovery stage in a biodiesel production process. The results highlighted that it is feasible to meet 91% of the energy demand with an array of 9 parabolic trough collectors. The array obtained from the simulation was 3 in series and 3 in parallel, with a total area of 118.8 m2. It represents an energy saving of 70 MWh per year.

  12. Energetic recovery from LNG gasification plant : cold energy utilization in agro-alimentary industry

    International Nuclear Information System (INIS)

    Messineo, A.; Panno, D.

    2009-01-01

    It is known how the complete gasification of liquefied natural gas (LNG) can return about 230 kWh/t of energy. Nevertheless out of 51 gasification plants in the world, only 31 of them are equipped with systems for the partial recovery of the available energy. At the moment most of these plants mainly produce electric energy; however the employment of the cold energy results very interesting, in fact, it can be recovered for agrofood transformation and conservation as well as for some loops in the cold chain. Cold energy at low temperatures requires high amounts of mechanical energy and it unavoidably increases as the required temperature diminishes. Cold energy recovery from LNG gasification would allow considerable energy and economic savings to these applications, as well as environmental benefits due to the reduction of climate-changing gas emissions. The task of this work is to assess the possibility to create around a gasification plant an industrial site for firms working on the transformation and conservation of agrofood products locally grown. The cold recovered from gasification would be distributed to those firms through an opportune liquid Co 2 network distribution capable of supplying the cold to the different facilities. A LNG gasification plant in a highly agricultural zone in Sicily would increase the worth of the agrofood production, lower transformation and conservation costs when compared to the traditional systems and bring economic and environmental benefits to the interested areas. [it

  13. An assessment of climate change impacts on micro-hydropower energy recovery in water supply networks

    Science.gov (United States)

    Brady, Jennifer; Patil, Sopan; McNabola, Aonghus; Gallagher, John; Coughlan, Paul; Harris, Ian; Packwood, Andrew; Williams, Prysor

    2015-04-01

    Continuity of service of a high quality water supply is vital in sustaining economic and social development. However, water supply and wastewater treatment are highly energy intensive processes and the overall cost of water provision is rising rapidly due to increased energy costs, higher capital investment requirements, and more stringent regulatory compliance in terms of both national and EU legislation. Under the EU Directive 2009/28/EC, both Ireland and the UK are required to have 16% and 15% respectively of their electricity generated by renewable sources by 2020. The projected impacts of climate change, population growth and urbanisation will place additional pressures on resources, further increasing future water demand which in turn will lead to higher energy consumption. Therefore, there is a need to achieve greater efficiencies across the water industry. The implementation of micro-hydropower turbines within the water supply network has shown considerable viability for energy recovery. This is achieved by harnessing energy at points of high flow or pressure along the network which can then be utilised on site or alternatively sold to the national grid. Micro-hydropower can provide greater energy security for utilities together with a reduction in greenhouse gas emissions. However, potential climate change impacts on water resources in the medium-to-long term currently act as a key barrier to industry confidence as changes in flow and pressure within the network can significantly alter the available energy for recovery. The present study aims to address these uncertainties and quantify the regional and local impacts of climate change on the viability of energy recovery across water infrastructure in Ireland and the UK. Specifically, the research focuses on assessing the potential future effects of climate change on flow rates at multiple pressure reducing valve sites along the water supply network and also in terms of flow at a number of wastewater

  14. A compact seven switches topology and reduced DC-link capacitor size for single-phase stand-alone PV system with hybrid energy storages

    DEFF Research Database (Denmark)

    Liu, Xiong; Wang, Peng; Loh, Poh Chiang

    2011-01-01

    Single-phase stand-alone PV system is suitable for household applications in remote area. Hybrid battery/ultra-capacitor energy storage can reduce charge and discharge cycles and avoid deep discharges of battery. This paper proposes a compact seven switches structure for stand-alone PV system......, which otherwise needs nine switches configuration, inclusive of one switch for boost converter, four switches for single-phase inverter and four switches for two DC/DC converters of battery and ultra-capacitor. It is well-known that a bulky DC-link capacitor is always required to absorb second......-order harmonic current caused by single-phase inverter. In the proposed compact topology, a small size DC-link capacitor can achieve the same function through charging/discharging control of ultra-capacitor to mitigate second-order ripple current. Simulation results are provided to validate the effectiveness...

  15. Thermoelectric automotive waste heat energy recovery using maximum power point tracking

    International Nuclear Information System (INIS)

    Yu Chuang; Chau, K.T.

    2009-01-01

    This paper proposes and implements a thermoelectric waste heat energy recovery system for internal combustion engine automobiles, including gasoline vehicles and hybrid electric vehicles. The key is to directly convert the heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC-DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Both analysis and experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.

  16. A statistical approach to electrical storage sizing with application to the recovery of braking energy

    International Nuclear Information System (INIS)

    Musolino, V.; Pievatolo, A.; Tironi, E.

    2011-01-01

    In the context of efficient energy use, electrical energy in electric drives plays a fundamental role. High efficiency energy storage systems permit energy recovery, peak shaving and power quality functions. Due to their cost and the importance of system integration, there is a need for a correct design based on technical-economical optimization. In this paper, a method to design a centralized storage system for the recovery of the power regenerated by a number of electric drives is presented. It is assumed that the drives follow deterministic power cycles, but shifted by an uncertain amount. Therefore the recoverable energy and, consequently, the storage size requires the optimization of a random cost function, embedding both the plant total cost and the saving due to the reduced energy consumption during the useful life of the storage. The underlying stochastic model for the power profile of the drives as a whole is built from a general Markov chain framework. A numerical example, based on Monte Carlo simulations, concerns the maximization of the recoverable potential energy of multiple bridge cranes, supplied by a unique grid connection point and a centralized supercapacitor storage system. -- Highlights: ► Recovery of braking power produced by multiple electric drives. ► Temporal power profile modeled through the multinomial distribution and Markov chains. ► Storage sizing via random cost function optimization. ► The search region for the optimization is given explicitly. ► The value of energy recovered during the useful life of the storage outweighs its cost.

  17. Design and Analysis of a Linear Hybrid Excitation Flux-Switching Generator for Direct Drive Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2013-01-01

    Full Text Available Linear generators have the advantage of a simple structure of the secondary, which is suitable for the application of wave energy conversion. Based on the vernier hybrid machines (VHMs, widely used for direct drive wave energy converters, this paper proposes a novel hybrid excitation flux-switching generator (LHEFSG, which can effectively improve the performance of this kind of generators. DC hybrid excitation windings and multitooth structure were used in the proposed generator to increase the magnetic energy and overcome the disadvantages of easily irreversible demagnetization of VHMs. Firstly, the operation principle and structure of the proposed generator are introduced. Secondly, by using the finite element method, the no-load performance of the proposed generator is analyzed and composed with ones of conventional VHM. In addition, the on-load performance of the proposed generator is obtained by finite element analysis (FEA. A dislocation of pole alignments method is implemented to reduce the cogging force. Lastly, a prototype of the linear flux-switching generator is used to verify the correctness of FEA results. All the results validate that the proposed generator has better performance than its counterparts.

  18. Wastewater Treatment Energy Recovery Potential For Adaptation To Global Change: An Integrated Assessment

    Science.gov (United States)

    Breach, Patrick A.; Simonovic, Slobodan P.

    2018-04-01

    Approximately 20% of wastewaters globally do not receive treatment, whereas wastewater discharges are projected to increase, thereby leading to excessive water quality degradation of surface waters on a global scale. Increased treatment could help alleviate water quality issues by constructing more treatment plants; however, in many areas there exist economic constraints. Energy recovery methods including the utilization of biogas and incineration of biosolids generated during the treatment process may help to alleviate treatment costs. This study explores the potential for investments in energy recovery from wastewater to increase treatment levels and thus improve surface water quality. This was done by examining the relationships between nutrient over-enrichment, wastewater treatment, and energy recovery at a global scale using system dynamics simulation as part of the ANEMI integrated assessment model. The results show that a significant amount of energy can be recovered from wastewater, which helps to alleviate some of the costs of treatment. It was found that wastewater treatment levels could be increased by 34%, helping to offset the higher nutrient loading from a growing population with access to improved sanitation. The production of renewable natural gas from biogas was found to have the potential to prolong the depletion of natural gas resources used to produce electricity and heat. It is recommended that agricultural nutrient discharges be better managed to help reduce nutrient over-enrichment on global scale. To increase the utility of the simulation, a finer spatial scale should be used to consider regional treatment, economic, and water quality characteristics.

  19. Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste.

    Science.gov (United States)

    Burnley, Stephen; Coleman, Terry; Peirce, Adam

    2015-05-01

    A life cycle assessment was carried out to assess a selection of the factors influencing the environmental impacts and benefits of incinerating the fraction of municipal waste remaining after source-separation for reuse, recycling, composting or anaerobic digestion. The factors investigated were the extent of any metal and aggregate recovery from the bottom ash, the thermal efficiency of the process, and the conventional fuel for electricity generation displaced by the power generated. The results demonstrate that incineration has significant advantages over landfill with lower impacts from climate change, resource depletion, acidification, eutrophication human toxicity and aquatic ecotoxicity. To maximise the benefits of energy recovery, metals, particularly aluminium, should be reclaimed from the residual bottom ash and the energy recovery stage of the process should be as efficient as possible. The overall environmental benefits/burdens of energy from waste also strongly depend on the source of the power displaced by the energy from waste, with coal giving the greatest benefits and combined cycle turbines fuelled by natural gas the lowest of those considered. Regardless of the conventional power displaced incineration presents a lower environmental burden than landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Low-Power Adiabatic Computing with Improved Quasistatic Energy Recovery Logic

    Directory of Open Access Journals (Sweden)

    Shipra Upadhyay

    2013-01-01

    Full Text Available Efficiency of adiabatic logic circuits is determined by the adiabatic and non-adiabatic losses incurred by them during the charging and recovery operations. The lesser will be these losses circuit will be more energy efficient. In this paper, a new approach is presented for minimizing power consumption in quasistatic energy recovery logic (QSERL circuit which involves optimization by removing the nonadiabatic losses completely by replacing the diodes with MOSFETs whose gates are controlled by power clocks. Proposed circuit inherits the advantages of quasistatic ERL (QSERL family but is with improved power efficiency and driving ability. In order to demonstrate workability of the newly developed circuit, a 4 × 4 bit array multiplier circuit has been designed. A mathematical expression to calculate energy dissipation in proposed inverter is developed. Performance of the proposed logic (improved quasistatic energy recovery logic (IQSERL is analyzed and compared with CMOS and reported QSERL in their representative inverters and multipliers in VIRTUOSO SPECTRE simulator of Cadence in 0.18 μm UMC technology. In our proposed (IQSERL inverter the power efficiency has been improved to almost 20% up to 50 MHz and 300 fF external load capacitance in comparison to CMOS and QSERL circuits.

  1. APPLICATIONS OF THERMAL ENERGY STORAGE TO WASTE HEAT RECOVERY IN THE FOOD PROCESSING INDUSTRY, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.

    1979-07-31

    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  2. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  3. Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well

    International Nuclear Information System (INIS)

    Jeon, Jun-Seo; Lee, Seung-Rae; Pasquinelli, Lisa; Fabricius, Ida Lykke

    2015-01-01

    High-temperature aquifer thermal energy storage system usually shows higher performance than other borehole thermal energy storage systems. Although there is a limitation in the widespread use of the HT-ATES system because of several technical problems such as clogging, corrosion, etc., it is getting more attention as these issues are gradually alleviated. In this study, a sensitivity analysis of recovery efficiency in two cases of HT-ATES system with a single well is conducted to select key parameters. For a fractional factorial design used to choose input parameters with uniformity, the optimal Latin hypercube sampling with an enhanced stochastic evolutionary algorithm is considered. Then, the recovery efficiency is obtained using a computer model developed by COMSOL Multiphysics. With input and output variables, the surrogate modeling technique, namely the Gaussian-Kriging method with Smoothly Clopped Absolute Deviation Penalty, is utilized. Finally, the sensitivity analysis is performed based on the variation decomposition. According to the result of sensitivity analysis, the most important input variables are selected and confirmed to consider the interaction effects for each case and it is confirmed that key parameters vary with the experiment domain of hydraulic and thermal properties as well as the number of input variables. - Highlights: • Main and interaction effects on recovery efficiency in HT-ATES was investigated. • Reliability depended on fractional factorial design and interaction effects. • Hydraulic permeability of aquifer had an important impact on recovery efficiency. • Site-specific sensitivity analysis of HT-ATES was recommended.

  4. Level of satiety: In vitro energy metabolism in brain during hypophagic and hyperphagic body weight recovery

    International Nuclear Information System (INIS)

    Kasser, T.R.; Harris, R.B.; Martin, R.J.

    1989-01-01

    Rates of in vitro glucose and fatty acid oxidation were examined in four brain sites during hypophagic and hyperphagic recovery of normal body weight. Rats were fed 40, 100, or 160% of normal intake, via gastric intubation, for 3 wk. Another group of rats was starved until body weight loss was equivalent to weight loss in 40%-fed rats. Groups of rats were killed at the conclusion of tube feeding or fasting and at specific periods during recovery of body weight. Brain sites examined were the ventrolateral hypothalamus (VLH), ventromedial hypothalamus (VMH), a caudal brain stem site encompassing the area postrema-nucleus of the solitary tract (AP-NTS), and cortex. During recovery, rats previously fed 160% of normal intake (anorectic) maintained low rates of VLH fatty acid oxidation and were hypophagic until most excess fat was depleted. Conversely, rats previously fed 40% of normal intake (hungry) maintained high rates of VLH fatty acid oxidation and were hyperphagic until most deficient fat was repleted. Rats previously starved maintained high rates of VLH fatty acid oxidation during hyperphagic recovery, although levels of VLH fatty acid oxidation and food intake were initially low on refeeding. Rates of glucose oxidation in the brain sites examined did not relate well to energy balance status and the needed adjustments in food intake. The results indicated that the level of glucose oxidation in the VLH and AP-NTS responded to the level of energy immediately coming into the system (food intake)

  5. Life cycle greenhouse gases and non-renewable energy benefits of kraft black liquor recovery

    International Nuclear Information System (INIS)

    Gaudreault, Caroline; Malmberg, Barry; Upton, Brad; Miner, Reid

    2012-01-01

    The life cycle greenhouse gas (GHG) and fossil fuel benefits of black liquor recovery are analyzed. These benefits are due to the production of energy that can be used in the pulping process or sold, and the recovery of the pulping chemicals that would otherwise need to be produced from other resources. The fossil GHG emissions and non-renewable energy consumption of using black liquor in the kraft recovery system are approximately 90% lower than those for a comparable fossil fuel-based system. Across all scenarios, the systems relying on black liquor solids achieve a median reduction of approximately 140 kg CO 2 eq./GJ of energy produced, compared to the systems relying on fossil fuels to provide the same energy and pulping chemical production functions. The benefits attributable to the recovery of pulping chemicals vary from 44% to 75% of the total benefit. Applied to the total production of kraft pulp in the U.S., the avoided emissions are equivalent to the total Scopes 1 and 2 emissions from the entire U.S. forest products industry. These results do not depend on the accounting method for biogenic carbon (because biogenic CO 2 emissions are the same for the systems compared) and the results are valid across a range of assumptions about the displaced fossil fuel, the GHG-intensity of the electricity grid, the fossil fuels used in the lime kiln, and the level of cogeneration at pulp and paper mills. The benefits occur without affecting the amount of wood harvested or the amount of chemical pulp produced. -- Highlights: ► Black liquor, a by-product of kraft pulping, represents about half of the energy used in the paper industry. ► The greenhouse gases (GHG) benefits of black liquor recovery compared to an equivalent fossil fuel system were analyzed. ► The GHG emissions of the black liquor system are approximately 90% lower than those for the fossil fuel system. ► The benefits from the recovery of the chemicals vary from 44% to 75% of the total benefit.

  6. CONSTRUCTIVE MODELLING FOR ZONE OF RECOVERY ENERGY DISTRIBUTION OF DC TRACTION

    Directory of Open Access Journals (Sweden)

    V. I. Shynkarenko

    2016-10-01

    Full Text Available Purpose.The article is aimed to develop the means and methods of forming a plurality of real and potential structural diagrams for zones of energy recovery and different locations of trains for further training neuro-fuzzy networks on the basis of expert solutions and also for the formation of good control. Methodology. Methodology of mathematical and algorithmic constructivism for modeling the structural diagrams of the electric supply system and modes of traction power consumption and the train’s locations in zones of energy recovery was applied. This approach involves the development of constructive-synthesizing structures (CSS with transformation by specialization, interpretation, specification and implementation. Development CSS provides an extensible definition media, relations and the signature of operations and constructive axiomatic. The most complex and essential part of the axioms is the set formed by the substitution rules defining the process of withdrawal of the corresponding structures. Findings. A specialized and specified CSS, which allows considering all the possibilities and features, that supply power traction systems with modern equipment, stations and trains location was designed. Its feature: the semantic content of the terminal alphabet images of electrical traction network and power consumers with relevant attributes. A special case of the formation of the structural diagram shows the possibilities CSS in relation to this problem. Originality. A new approach to solving the problem of rational use of energy recovery, which consists in application of the methods and means of artificial neural networks, expert systems, fuzzy logic and mathematical and algorithmic constructivism. This paper presents the methods of constructive simulation of a production-distribution of energy recovery zone structure in the system of the DC traction. Practical value. The tasks decision of the rational use of energy recovery can

  7. What is an energy recovery linac, and why there might be one in your future

    Energy Technology Data Exchange (ETDEWEB)

    Krafft, Geoffrey [Jefferson Laboratory, Newport News, VA (United States); Old Dominion University, Norfolk, VA (United States)

    2016-07-01

    Applying beam energy recovery allows a class of novel accelerators to be built with performance characteristics beyond that possible in ring accelerators or non-recirculated linear accelerators. Although the idea was published 50 years ago, and was explored and developed as a result of ''Star Wars'' strategic defense programs in the 1980s and 1990s, renewed interest in energy recovery linacs (ERLs) has flowered as a result of continuous development and improvement of superconducting beam acceleration systems. Many applications to electron accelerators where the very best beam quality is required at high average current have been and are being explored. Examples include advanced X-ray sources, electron sources for electron ion colliders, internal target experiments and applications, lithography, and other topics. Examples highlighting new performance possibilities and the present perception on the limits of ERLs are given.

  8. Environmental, economic, and energy impacts of material recovery facilities. A MITE Program evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This report documents an evaluation of the environmental, economic, and energy impacts of material recovery facilities (MRFs) conducted under the Municipal Solid Waste Innovative Technology Evaluation (MITE) Program. The MITE Program is sponsored by the US Environmental Protection Agency to foster the demonstration and development of innovative technologies for the management of municipal solid waste (MSW). This project was also funded by the National Renewable Energy Laboratory (NREL). Material recovery facilities are increasingly being used as one option for managing a significant portion of municipal solid waste (MSW). The owners and operators of these facilities employ a combination of manual and mechanical techniques to separate and sort the recyclable fraction of MSW and to transport the separated materials to recycling facilities.

  9. Status of RF system for the JAERI energy-recovery linac FEL

    International Nuclear Information System (INIS)

    Sawamura, Masaru; Nagai, Ryoji

    2006-01-01

    The two types of the RF sources are used for the JAERI ERL-FEL. One is an all-solid state amplifier and the other is an inductive output tube (IOT). There are advantages of little failure and wide bandwidth for the all-solid state amplifier, low cost and high efficiency for IOT. The property of low cost with the IOT is suitable for a large machine like an energy recovery linac (ERL)

  10. Federal role in resource recovery will focus on waste-to-energy R and D

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, R.A.

    1981-05-01

    Virtually all of the federal programs created in recent years to sponsor resource recovery R and D have been slated for budget cuts or termination by the administration of President Ronald Reagan. The only programs that will survive revised fiscal budgets will be waste-to-energy R and D studies sponsored by DOE and EPA. Differing reactions to such cuts are apparent: the affected agencies are protesting, while private industry welcomes this hands-off policy.

  11. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    OpenAIRE

    Tervahauta, Taina; Bryant, Isaac; Leal, Lucía; Buisman, Cees; Zeeman, Grietje

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP), UASB reactor performance, chemical oxygen demand (COD) mass balance and methanization. Grey water sludge treatment with black water increased...

  12. A hydraulic test stand for demonstrating the operation of Eaton’s energy recovery system (ERS)

    OpenAIRE

    Wang, Meng (Rachel); Danzl, Per; Mahulkar, Vishal; Piyabongkarn, Damrongrit (Neng); Brenner, Paul

    2016-01-01

    Fuel cost represents a significant operating expense for owners and fleet managers of hydraulic off-highway vehicles. Further, the upcoming Tier IV compliance for off-highway applications will create further expense for after-treatment and cooling. Solutions that help address these factors motivate fleet operators to consider and pursue more fuelefficient hydraulic energy recovery systems. Electrical hybridization schemes are typically complex, expensive, and often do not satisfy customer pay...

  13. Material resources, energy, and nutrient recovery from waste: are waste refineries the solution for the future?

    DEFF Research Database (Denmark)

    Tonini, Davide; Martinez-Sanchez, Veronica; Astrup, Thomas Fruergaard

    2013-01-01

    Waste refineries focusing on multiple outputs of material resources, energy carriers, and nutrients may potentially provide more sustainable utilization of waste resources than traditional waste technologies. This consequential life cycle assessment (LCA) evaluated the environmental performance....... Overall, the waste refinery provided global warming (GW) savings comparable with efficient incineration, MBT, and bioreactor landfilling technologies. The main environmental benefits from waste refining were a potential for improved phosphorus recovery (about 85%) and increased electricity production (by...

  14. The European investment bank and financing the installation of urban refuse treatment plants with energy recovery

    International Nuclear Information System (INIS)

    Marty-Gauquie, H.

    1992-01-01

    The European Investment Bank (BEI), the world's leading international financing institution, with an annual loans total of 15.3 billion Ecus in 1991, every year finances a number of projects for the treatment of refuse, with energy recovery from waste and heat distribution. This article describes the missions of the BEI and the parameters taken into account for authorizing investment. (author). 2 figs., 2 tabs

  15. Energy recovery from municipal solid waste by refuse derived fuel production in Malaysia

    International Nuclear Information System (INIS)

    Sanaz Saheri; Noorezlin Ahmad Baseri; Masoud Aghajani Mir; Malmasi Saeed

    2010-01-01

    Energy recovery from municipal solid waste (MSW) is so beneficial both for the energy and for the positive environmental implications. Mainly related to the saving of primary energy derived from fossil fuel. Malaysia as a fast growing population country has the average amount of municipal solid waste (MSW) generated around 0.5-0.8 kg/person/day and it has been increased to 1.7 kg/person/day in major cities. Regarding characterization exercise, the main parts of the Malaysian MSW were found to be food, paper and plastic, which made up almost 80 % of the waste by weight. Furthermore, the average moisture content of the MSW was about 55 %, making incineration a challenging mission. In addition waste sectors in Malaysia contributes to 1.3 million ton of CH 4 compare to total CH 4 emission which is 2.2 MT. In order to overcome waste problem considering other technical, environmental and economical methods seems to be necessarily. Resource recovery centers recovers the maximum proportion of recyclable and recoverable resources from the mixed municipal solid waste .The resource recovery process itself is one of the step-by-step segregation and elimination of all non-combustibles , and separation of the combustibles in the desired form of fuel for good combustion. Then, a further mechanical separation process converts combustible materials to refuse derived fuel (RDF) with moisture content between 20 and 30 % and an average calorific fuel value of about 3450 kcal/kg. So, the aim of this paper is taking into account resource recovery from waste using refuse derived fuel as a secondary resource with regarding advantages and disadvantages of this kind of energy production in Malaysia as a developing country. (author)

  16. Energy and water conservation at lignite-fired power plants using drying and water recovery technologies

    International Nuclear Information System (INIS)

    Liu, Ming; Qin, Yuanzhi; Yan, Hui; Han, Xiaoqu; Chong, Daotong

    2015-01-01

    Highlights: • Pre-drying and water recovery technologies were used to conserve energy and water. • The energy and water conservation potential were analyzed with reference cases. • The air-cooling unit produces water when the water content of lignite is high enough. • Influences of main parameters on energy and water conservation were analyzed. - Abstract: Lignite is considered as a competitive energy raw material with high security of supply viewed from a global angle. However, lignite-fired power plants have many shortcomings, including high investment, low energy efficiency and high water use. To address these issues, the drying and water recovery technologies are integrated within lignite-fired power plants. Both air-cooling and wet-cooling units with three kinds of lignite as feeding fuel were analyzed quantitatively. Results showed that energy conservation and water conservation are obtained simultaneously. The power plant firing high moisture lignite becomes more environmental friendly with higher power generation efficiency and a lower water makeup rate than the one firing low moisture lignite. And further calculation revealed that the air-cooling unit needs no makeup water and even produces some water as it generates power, when the water carrying coefficient is higher than 40 g/MJ.

  17. Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels

    KAUST Repository

    Zhu, Xiuping

    2014-06-17

    Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.

  18. Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels

    KAUST Repository

    Zhu, Xiuping; Yang, Wulin; Hatzell, Marta C.; Logan, Bruce E.

    2014-01-01

    Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.

  19. Optimally efficient swimming in hyper-redundant mechanisms: control, design, and energy recovery

    International Nuclear Information System (INIS)

    Wiens, A J; Nahon, M

    2012-01-01

    Hyper-redundant mechanisms (HRMs), also known as snake-like robots, are highly adaptable during locomotion on land. Researchers are currently working to extend their capabilities to aquatic environments through biomimetic undulatory propulsion. In addition to increasing the versatility of the system, truly biomimetic swimming could also provide excellent locomotion efficiency. Unfortunately, the complexity of the system precludes the development of a functional solution to achieve this. To explore this problem, a rapid optimization process is used to generate efficient HRM swimming gaits. The low computational cost of the approach allows for multiple optimizations over a broad range of system conditions. By observing how these conditions affect optimal kinematics, a number of new insights are developed regarding undulatory swimming in robotic systems. Two key conditions are varied within the study, swimming speed and energy recovery. It is found that the swimmer mimics the speed control behaviour of natural fish and that energy recovery drastically increases the system's efficiency. Remarkably, this efficiency increase is accompanied by a distinct change in swimming kinematics. With energy recovery, the swimmer converges to a clearly anguilliform gait, without, it tends towards the carangiform mode. (paper)

  20. Differential current measurement in the BNL energy recovery linac test facility

    International Nuclear Information System (INIS)

    Cameron, Peter

    2006-01-01

    An energy recovery linac (ERL) test facility is presently under construction at BNL [V.N. Litvinenko, et al., High current energy recovery linac at BNL, PAC, 2005; I. Ben-Zvi, et al., Extremely high current, high brightness energy recovery linac, PAC, 2005]. The goal of this test facility is to demonstrate CW operation with an average beam current greater than 100mA, and with greater than 99.95% efficiency of current recovery. This facility will serve as a test bed for the novel high current CW photo-cathode [A. Burrill, et al., Multi-alkali photocathode development at BNL, PAC, 2005; A. Murray, et al., State-of-the-art electron guns and injector designs for energy recovery linacs, PAC, 2005], the superconducting RF cavity with HOM dampers [R. Calaga, et al., High current superconducting cavities at RHIC, EPAC, 2004; R. Calaga, et al., in: Proceedings of the 11th workshop on RF superconductivity, Lubeck, Germany, 2003], and the lattice [D. Kayran, V. Litvinenko, Novel method of emittance preservation in ERL merging system in presence of strong space charge forces, PAC, 2005; D. Kayran, et al., Optics for high brightness and high current ERL project at BNL, PAC, 2005] and feedback systems needed to insure the specified beam parameters. It is an important stepping stone for electron cooling in RHIC [I. Ben-Zvi, et al., Electron cooling of RHIC, PAC, 2005], and essential to meet the luminosity specifications of RHICII [T. Hallman, et al., RHICII/eRHIC white paper, available at http://www.bnl.gov/henp/docs/NSAC_RHICII-eRHIC_2-15-03.pdf]. The expertise and experience gained in this effort might also extend forward into a 10-20GeV ERL for the electron-ion collider eRHIC [http://www.agsrhichome.bnl.gov/eRHIC/, Appendix A, The linac-ring option, 2005]. We report here on the use of a technique of differential current measurement to monitor the efficiency of current recovery in the test facility, and investigate the possibility of using such a monitor in the machine

  1. Conductive graphene as passive saturable absorber with high instantaneous peak power and pulse energy in Q-switched regime

    Science.gov (United States)

    Zuikafly, Siti Nur Fatin; Khalifa, Ali; Ahmad, Fauzan; Shafie, Suhaidi; Harun, SulaimanWadi

    2018-06-01

    The Q-switched pulse regime is demonstrated by integrating conductive graphene as passive saturable absorber producing relatively high instantaneous peak power and pulse energy. The fabricated conductive graphene is investigated using Raman spectroscopy. The single wavelength Q-switching operates at 1558.28 nm at maximum input pump power of 151.47 mW. As the pump power is increased from threshold power of 51.6 mW to 151.47 mW, the pulse train repetition rate increases proportionally from 47.94 kHz to 67.8 kHz while the pulse width is reduced from 9.58 μs to 6.02 μs. The generated stable pulse produced maximum peak power and pulse energy of 32 mW and 206 nJ, respectively. The first beat node of the measured signal-to-noise ratio is about 62 dB indicating high pulse stability.

  2. Technology Roadmap. Energy Loss Reduction and Recovery in Industrial Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-11-01

    To help guide R&D decision-making and gain industry insights on the top opportunities for improved energy systems, ITP sponsored the Energy Loss Reduction and Recoveryin Energy Systems Roadmapping Workshopin April 2004 in Baltimore, Maryland. This Technology Roadmapis based largely on the results of the workshop and additional industrial energy studies supported by ITP and EERE. It summarizes industry feedback on the top opportunities for R&D investments in energy systems, and the potential for national impacts on energy use and the environment.

  3. A role for nuclear energy in the recovery of oil from the tar sands of Alberta

    International Nuclear Information System (INIS)

    Puttagunta, V.R.; Sochaski, R.O.; Robertson, R.F.S.

    1976-12-01

    Techniques of oil recovery from the tar sands and the energy requirements of this operation are described. Fossil fuels, and CANDU reactors are examined as competitive sources of energy for the tar sands plants. The CANDU-OCR reactor appears to have the necessary flexibility to fit into many of the possible methods of recovering oil from the tar sands. Cost comparisons of fossil and nuclear sources show that, for the supply of process steam, the nuclear source is competitive under the criteria of debt financing or low discount rates on capital, continued escalation, and long plant capital write-off period. (author)

  4. Optimized Design of Thermoelectric Energy Harvesting Systems for Waste Heat Recovery from Exhaust Pipes

    Directory of Open Access Journals (Sweden)

    Marco Nesarajah

    2017-06-01

    Full Text Available With the increasing interest in energy efficiency and resource protection, waste heat recovery processes have gained importance. Thereby, one possibility is the conversion of the heat energy into electrical energy by thermoelectric generators. Here, a thermoelectric energy harvesting system is developed to convert the waste heat from exhaust pipes, which are very often used to transport the heat, e.g., in automobiles, in industrial facilities or in heating systems. That is why a mockup of a heating is built-up, and the developed energy harvesting system is attached. To build-up this system, a model-based development process is used. The setup of the developed energy harvesting system is very flexible to test different variants and an optimized system can be found in order to increase the energy yield for concrete application examples. A corresponding simulation model is also presented, based on previously developed libraries in Modelica®/Dymola®. In the end, it can be shown—with measurement and simulation results—that a thermoelectric energy harvesting system on the exhaust pipe of a heating system delivers extra energy and thus delivers a contribution for a more efficient usage of the inserted primary energy carrier.

  5. Bioenergy, material, and nutrients recovery from household waste: Advanced material, substance, energy, and cost flow analysis of a waste refinery process

    DEFF Research Database (Denmark)

    Tonini, Davide; Dorini, Gianluca Fabio; Astrup, Thomas Fruergaard

    2014-01-01

    Energy, materials, and resource recovery from mixed household waste may contribute to reductions in fossil fuel and resource consumption. For this purpose, legislation has been enforced to promote energy recovery and recycling. Potential solutions for separating biogenic and recyclable materials...

  6. Multi-fuctional heat recovery systems. Really energy saving; Multifunktionale Waermerueckgewinnung. Wie man wirklich Energie spart

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, Heinz [SEW Systemtechnik fuer Energierecycling und Waermeflussbegrenzung GmbH, Kempen (Germany)

    2009-10-15

    An energy saving leeds only to a correct optimized operation, if a demand-oriented total design is integrated into the building. In special for air-conditioning energy saving measures are presented and essential criteria named, to save in fact effectively, efficiently, reliably and profitably energy and enhance simultanously user quality. (orig./GL)

  7. Prioritizing Data/Energy Thresholding-Based Antenna Switching for SWIPT-Enabled Secondary Receiver in Cognitive Radio Networks

    KAUST Repository

    Benkhelifa, Fatma; Alouini, Mohamed-Slim

    2017-01-01

    Simultaneous wireless power and information transfer (SWIPT) is considered in cognitive radio networks with a multi-antenna energy harvesting (EH) secondary receiver (SR). The SR harvests the energy from the secondary transmitter and primary transmitter. The SR uses the antenna switching technique which selects a subset of antennas to decode the information (namely the information decoding (ID) antennas) and the rest to harvest the energy (namely the EH antennas). The AS technique is performed via a thresholding-based strategy inspired from the maximum ratio combining technique with an output threshold (OT-MRC) which is proposed in two ways: the prioritizing data selection (PDS) scheme, and the prioritizing energy selection (PES) scheme. For both schemes, we study the expressions and the asymptotic results of the probability mass function of the selected ID antennas, the average harvested energy, the power outage probability, and the data outage probability. We deduce the performance of the joint PDS and PES scheme. We evaluate all performance metrics for the Rayleigh and Nakagami fading channels. Through the simulation results, we show the impact of different simulation parameters on the performance metrics. We also show that there is a tradeoff between the data and energy performance metrics.

  8. Prioritizing Data/Energy Thresholding-Based Antenna Switching for SWIPT-Enabled Secondary Receiver in Cognitive Radio Networks

    KAUST Repository

    Benkhelifa, Fatma

    2017-12-04

    Simultaneous wireless power and information transfer (SWIPT) is considered in cognitive radio networks with a multi-antenna energy harvesting (EH) secondary receiver (SR). The SR harvests the energy from the secondary transmitter and primary transmitter. The SR uses the antenna switching technique which selects a subset of antennas to decode the information (namely the information decoding (ID) antennas) and the rest to harvest the energy (namely the EH antennas). The AS technique is performed via a thresholding-based strategy inspired from the maximum ratio combining technique with an output threshold (OT-MRC) which is proposed in two ways: the prioritizing data selection (PDS) scheme, and the prioritizing energy selection (PES) scheme. For both schemes, we study the expressions and the asymptotic results of the probability mass function of the selected ID antennas, the average harvested energy, the power outage probability, and the data outage probability. We deduce the performance of the joint PDS and PES scheme. We evaluate all performance metrics for the Rayleigh and Nakagami fading channels. Through the simulation results, we show the impact of different simulation parameters on the performance metrics. We also show that there is a tradeoff between the data and energy performance metrics.

  9. Switch: a planning tool for power systems with large shares of intermittent renewable energy.

    Science.gov (United States)

    Fripp, Matthias

    2012-06-05

    Wind and solar power are highly variable, so it is it unclear how large a role they can play in future power systems. This work introduces a new open-source electricity planning model--Switch--that identifies the least-cost strategy for using renewable and conventional generators and transmission in a large power system over a multidecade period. Switch includes an unprecedented amount of spatial and temporal detail, making it possible to address a new type of question about the optimal design and operation of power systems with large amounts of renewable power. A case study of California for 2012-2027 finds that there is no maximum possible penetration of wind and solar power--these resources could potentially be used to reduce emissions 90% or more below 1990 levels without reducing reliability or severely raising the cost of electricity. This work also finds that policies that encourage customers to shift electricity demand to times when renewable power is most abundant (e.g., well-timed charging of electric vehicles) could make it possible to achieve radical emission reductions at moderate costs.

  10. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Mike S. [Terralog Technologies USA, Inc., Calgary (Canada); Detwiler, Russell L. [Terralog Technologies USA, Inc., Calgary (Canada); Lao, Kang [Terralog Technologies USA, Inc., Calgary (Canada); Serajian, Vahid [Terralog Technologies USA, Inc., Calgary (Canada); Elkhoury, Jean [Terralog Technologies USA, Inc., Calgary (Canada); Diessl, Julia [Terralog Technologies USA, Inc., Calgary (Canada); White, Nicky [Terralog Technologies USA, Inc., Calgary (Canada)

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  11. The effects of swimming and running on energy intake during 2 hours of recovery.

    Science.gov (United States)

    Lambert, C P; Flynn, M G; Braun, W A; Boardley, D J

    1999-12-01

    To determine energy intake in the 2 hrs after swimming (S) and running (R) at the same relative exercise intensity and duration (71.8 +/- 2.5% VO2max; 45 min) to evaluate whether a difference in recovery energy intake could explain the greater body fat observed in swimmers relative to runners. this was a randomized crossover design. running exercise was conducted on a motorized treadmill (Quinton) while swimming was conducted in a 45.7 m pool. eight well-trained competitive male triathletes participated in this investigation. subjects were blinded to the purpose of the study and swam and ran on separate occasions for 45 min at 71.8 +/- 2.5% of VO2max. Subjects were then placed in a room with a variety of foods and beverages for 2 hrs after R and S. energy intake (kJ/2 hrs and kcal/2 hrs) was determined by weighing and measuring the food remaining in the room after 2 hrs of postexercise recovery. Expired gases, heart rates, and Ratings of Perceived Exertion were obtained at 15 min intervals throughout exercise. Blood samples for serum glucose and lactate were obtained preexercise and immediately, 15 min, and 135 min postexercise. Perceived hunger and thirst ratings were obtained after the subjects were seated in the room containing the food. Serum glucose was significantly (p energy intake (4584 +/- 611 kJ/2 hrs; 1095 +/- 146 kcal/2 hrs for R and 4383 +/- 484 kJ/2 hrs; 1047 +/- 116 kcal for S) or blood lactate. The type of exercise, swimming or running, did not significantly influence energy intake during 2 hours of postexercise recovery.

  12. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.

    Science.gov (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L

    2017-02-01

    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Energy consumption by forward osmosis treatment of landfill leachate for water recovery.

    Science.gov (United States)

    Iskander, Syeed Md; Zou, Shiqiang; Brazil, Brian; Novak, John T; He, Zhen

    2017-05-01

    Forward osmosis (FO) is an alternative approach for treating landfill leachate with potential advantages of reducing leachate volume and recovering high quality water for direct discharge or reuse. However, energy consumption by FO treatment of leachate has not been examined before. Herein, the operational factors such as recirculation rates and draw concentrations were studied for their effects on the quantified energy consumption by an FO system treating actual leachate collected from two different landfills. It was found that the energy consumption increased with a higher recirculation rate and decreased with a higher draw concentration, and higher water recovery tended to reduce energy consumption. The highest energy consumption was 0.276±0.033kWhm -3 with the recirculation rate of 110mLmin -1 and 1-M draw concentration, while the lowest of 0.005±0.000kWhm -3 was obtained with 30mLmin -1 recirculation and 3-M draw concentration. The leachate with lower concentrations of the contaminants had a much lower requirement for energy, benefited from its higher water recovery. Osmotic backwashing appeared to be more effective for removing foulants, but precise understanding of membrane fouling and its controlling methods will need a long-term study. The results of this work have implied that FO treatment of leachate could be energy efficient, especially with the use of a suitable draw solute that can be regenerated in an energy efficient way and/or through combination with other treatment technologies that can reduce contaminant concentrations before FO treatment, which warrants further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Enhancing energy recovery in the steel industry: Matching continuous charge with off-gas variability smoothing

    International Nuclear Information System (INIS)

    Dal Magro, Fabio; Meneghetti, Antonella; Nardin, Gioacchino; Savino, Stefano

    2015-01-01

    Highlights: • A system based on phase change material is inserted into the off-gas-line of a continuous charge electric arc furnace. • The off-gas temperature profile after scrap preheating is smoothed. • A heat transfer fluid through phase change material containers allows to control overheating issues. • The smoothed off-gas profiles enable efficient downstream power generation. • The recovery system investment cost is decreased due to lower sizes of components. - Abstract: In order to allow an efficient energy recovery from off-gas in the steel industry, the high variability of heat flow should be managed. A temperature smoothing device based on phase change materials at high temperatures is inserted into the off-gas line of a continuous charge electric arc furnace process with scrap preheating. To address overheating issues, a heat transfer fluid flowing through containers is introduced and selected by developing an analytical model. The performance of the smoothing system is analyzed by thermo-fluid dynamic simulations. The reduced maximum temperature of off-gas allows to reduce the size and investment cost of the downstream energy recovery system, while the increased minimum temperature enhances the steam turbine load factor, thus increasing its utilization. Benefits on environmental issues due to dioxins generation are also gained

  15. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.

    Science.gov (United States)

    Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir

    2017-03-01

    Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg -1 to 16.60 MJ kg -1 depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm -3 at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kW e . The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.

  16. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian; Fuller, Merrian C.; Billingsley, Megan A.

    2011-02-25

    Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on 'shovel-ready' projects to create and retain jobs, is unprecedented. Thousands of newly funded players - cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars and driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA

  17. An Energy Efficient Hydraulic Winch Drive Concept Based on a Speed-variable Switched Differential Pump

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben O.; Pedersen, Henrik Clemmensen

    2017-01-01

    controls. Such solutions are typically constituted by many and rather expensive components, and are furthermore often suffering from low frequency dynamics. In this paper an alternative solution is proposed for winch drive operation, which is based on the so-called speed-variable switched differential pump......, originally designed for direct drive of hydraulic differential cylinders. This concept utilizes three pumps, driven by a single electric servo drive. The concept is redesigned for usage in winch drives, driven by flow symmetric hydraulic motors and single directional loads as commonly seen in e.g. active...... heave compensation applications. A general drive configuration approach is presented, along with a proper control strategy and design. The resulting concept is evaluated when applied for active heave compensation. Results demonstrate control performance on level with conventional valve solutions...

  18. Anaerobic digestion of stillage fractions - estimation of the potential for energy recovery in bioethanol plants.

    Science.gov (United States)

    Drosg, B; Fuchs, W; Meixner, K; Waltenberger, R; Kirchmayr, R; Braun, R; Bochmann, G

    2013-01-01

    Stillage processing can require more than one third of the thermal energy demand of a dry-grind bioethanol production plant. Therefore, for every stillage fraction occurring in stillage processing the potential of energy recovery by anaerobic digestion (AD) was estimated. In the case of whole stillage up to 128% of the thermal energy demand in the process can be provided, so even an energetically self-sufficient bioethanol production process is possible. For wet cake the recovery potential of thermal energy is 57%, for thin stillage 41%, for syrup 40% and for the evaporation condensate 2.5%. Specific issues for establishing AD of stillage fractions are evaluated in detail; these are high nitrogen concentrations, digestate treatment and trace element supply. If animal feed is co-produced at the bioethanol plant and digestate fractions are to be reused as process water, a sufficient quality is necessary. Most interesting stillage fractions as substrates for AD are whole stillage, thin stillage and the evaporation condensate. For these fractions process details are presented.

  19. Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive.

    Science.gov (United States)

    Grosso, Mario; Motta, Astrid; Rigamonti, Lucia

    2010-07-01

    This paper deals with a key issue related to municipal waste incineration, which is the efficiency of energy recovery. A strong driver for improving the energy performances of waste-to-energy plants is the recent Waste Framework Directive (Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives), which allows high efficiency installations to benefit from a status of "recovery" rather than "disposal". The change in designation means a step up in the waste hierarchy, where the lowest level of priority is now restricted to landfilling and low efficiency wastes incineration. The so-called "R1 formula" reported in the Directive, which counts for both production of power and heat, is critically analyzed and correlated to the more scientific-based approach of exergy efficiency. The results obtained for waste-to-energy plants currently operating in Europe reveal some significant differences in their performance, mainly related to the average size and to the availability of a heat market (district heating). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor.

    Science.gov (United States)

    Qin, Linbo; Han, Jun; He, Xiang; Zhan, Yiqiu; Yu, Fei

    2015-05-01

    In the steel industry, about 0.86 ton of oily sludge is produced for every 1000 tons of rolling steel. Due to the adverse impact on human health and the environment, oily sludge is designated as a hazardous waste in the Resource Conservation and Recovery Act (RCRT). In this paper, the pyrolysis treatment of oily sludge is studied in a fluidized bed reactor at a temperature range of 400-600 °C. During oily sludge pyrolysis, a maximum oil yield of 59.2% and a minimum energy loss of 19.0% are achieved at 500 °C. The energy consumption of treating 1 kg oily sludge is only 2.4-2.9 MJ. At the same time, the energy of produced oil, gas and solid residue are 20.8, 6.32, and 0.83 MJ, respectively. In particular, it is found that the solid residue contains more than 42% iron oxide, which can be used as the raw material for iron production. Thus, the simultaneous recovery of energy and iron from oil sludge by pyrolysis is feasible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Exergy losses of resource recovery from a waste-to-energy plant

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Laner, D.; Astrup, Thomas Fruergaard

    2013-01-01

    Metal resources recovered from waste incineration bottom ash (BA) are of lower quality as compared to primary resources, but to date no framework for expressing the quality losses exists. Exergy is a concept that may have the potential to evaluate the resource quality in waste management....... In this study, focusing on recovery from waste-to-energy plants with basic and advanced BA treatment, the goal is to give an indication about quality of selected recovered resources (Fe, Al, and Cu) by means of exergy analysis. Metal flows are modeled through both incineration scenarios, and then chemical....... The results indicate that exergy losses due to mixing are insignificant as compared to chemical exergies of metals in all flows. Total exergy losses for Fe, Al, and Cu recovery in the two WtE systems range from 38% to 90%....

  2. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    International Nuclear Information System (INIS)

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-01-01

    Highlights: → Energy balances were calculated for the thermal treatment of biodegradable wastes. → For wood and RDF, combustion in dedicated facilities was the best option. → For paper, garden and food wastes and mixed waste incineration was the best option. → For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  3. Low-inductance switch and capacitor energy storage modules made of packages of industrial condensers IK50-3

    International Nuclear Information System (INIS)

    Bykov, Yu A; Krastelev, E G; Sedin, A A; Feduschak, V F

    2017-01-01

    A low-inductance module of a high-current capacitive energy storage with an operating voltage of 40 kV is developed. The design of the module is based on the application of capacitive sections of the industrial condenser IK50-3. The module includes two capacitors of 0.35 μF each, one common low-jitter triggered gas switch and 2 groups of output cables of 4 from each capacitor. A bus bars topology developed for the switch and cables connections provides a small total inductance of the discharge circuit, for the module with the output cables KVIM of 0.5 m long, it is lower than 40 nH. The set of 10 modules is now used for driving the 20 stages linear transformer for a fast charging of the pulse forming line of the high-current nanosecond accelerator. A design of the module and the results of tests of a single module and a set of 10 are presented. (paper)

  4. Energy recovery in SUDS towards smart water grids: A case study

    International Nuclear Information System (INIS)

    Ramos, Helena M.; Teyssier, Charlotte; Samora, Irene; Schleiss, Anton J.

    2013-01-01

    The development of a methodology for urban flood adaptation and energy recovery solutions is resting on the concept of Sustainable Urban Drainage Systems (SUDS) as a measure to reduce risks of urban flooding while fully utilizing the available resources. Flood drainage systems are infrastructures essential in urban areas, which include retention ponds that can be used as water storage volumes to damp floods and simultaneously to produce energy, constituting innovative solutions to be integrated in future smart water grid′s designs. The consideration of urban flooding as a problem caused by excess water that can be harvested and re-used is expected to provide a comprehensive representation of a water-energy nexus for future urban areas. The study comprises an optimization of energy recovery in SUDS of a small district area of Lisbon down-town through the use of a low-head hydropower converter. The status-quo solution based on a basin catchment for the average expected runoff is analysed, with influence of the tidal backwater effect of the Atlantic Ocean which causes difficulties to the drainage of excess flow. The methodology used to reach the flow damping and the optimized solution for energy production is presented. -- Highlights: •An innovative solution for Sustainable Urban Drainage Systems (SUDS). •Use of retention ponds to reduce risks of urban flooding while producing energy. •Use of recently developed hydropower converters for low heads. •Solution to be integrated in future smart water networks for increasing efficiency. •Water and energy nexus for sustainable operation towards future smart cities

  5. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment

    International Nuclear Information System (INIS)

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  6. Food Waste to Energy: How Six Water Resource Recovery Facilities are Boosting Biogas Production and the Bottom Line

    Science.gov (United States)

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and...

  7. Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Fruergaard, Thilde; Astrup, Thomas; Ekvall, T.

    2009-01-01

    The energy system plays an essential role in accounting of greenhouse gas (GHG) emissions from waste management systems and waste technologies. This paper focuses on energy use and energy recovery in waste management and outlines how these aspects should be addressed consistently in a GHG perspec...

  8. Microbial fuel cells for direct electrical energy recovery from urban wastewaters.

    Science.gov (United States)

    Capodaglio, A G; Molognoni, D; Dallago, E; Liberale, A; Cella, R; Longoni, P; Pantaleoni, L

    2013-01-01

    Application of microbial fuel cells (MFCs) to wastewater treatment for direct recovery of electric energy appears to provide a potentially attractive alternative to traditional treatment processes, in an optic of costs reduction, and tapping of sustainable energy sources that characterizes current trends in technology. This work focuses on a laboratory-scale, air-cathode, and single-chamber MFC, with internal volume of 6.9 L, operating in batch mode. The MFC was fed with different types of substrates. This study evaluates the MFC behaviour, in terms of organic matter removal efficiency, which reached 86% (on average) with a hydraulic retention time of 150 hours. The MFC produced an average power density of 13.2 mW/m(3), with a Coulombic efficiency ranging from 0.8 to 1.9%. The amount of data collected allowed an accurate analysis of the repeatability of MFC electrochemical behaviour, with regards to both COD removal kinetics and electric energy production.

  9. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dexin [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-31

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.

  10. Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

    KAUST Repository

    Werner, Craig M.

    2014-06-01

    Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination. In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generated more power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses. Membrane bioreactors incorporate semipermeable membranes within a biological wastewater

  11. Ecosystem-service tradeoffs associated with switching from annual to perennial energy crops in riparian zones of the US Midwest.

    Directory of Open Access Journals (Sweden)

    Timothy D Meehan

    Full Text Available Integration of energy crops into agricultural landscapes could promote sustainability if they are placed in ways that foster multiple ecosystem services and mitigate ecosystem disservices from existing crops. We conducted a modeling study to investigate how replacing annual energy crops with perennial energy crops along Wisconsin waterways could affect a variety of provisioning and regulating ecosystem services. We found that a switch from continuous corn production to perennial-grass production decreased annual income provisioning by 75%, although it increased annual energy provisioning by 33%, decreased annual phosphorous loading to surface water by 29%, increased below-ground carbon sequestration by 30%, decreased annual nitrous oxide emissions by 84%, increased an index of pollinator abundance by an average of 11%, and increased an index of biocontrol potential by an average of 6%. We expressed the tradeoffs between income provisioning and other ecosystem services as benefit-cost ratios. Benefit-cost ratios averaged 12.06 GJ of additional net energy, 0.84 kg of avoided phosphorus pollution, 18.97 Mg of sequestered carbon, and 1.99 kg of avoided nitrous oxide emissions for every $1,000 reduction in income. These ratios varied spatially, from 2- to 70-fold depending on the ecosystem service. Benefit-cost ratios for different ecosystem services were generally correlated within watersheds, suggesting the presence of hotspots--watersheds where increases in multiple ecosystem services would come at lower-than-average opportunity costs. When assessing the monetary value of ecosystem services relative to existing conservation programs and environmental markets, the overall value of enhanced services associated with adoption of perennial energy crops was far lower than the opportunity cost. However, when we monitized services using estimates for the social costs of pollution, the value of enhanced services far exceeded the opportunity cost. This

  12. Switching from static to adaptable and dynamic building envelopes: A paradigm shift for the energy efficiency in buildings

    Directory of Open Access Journals (Sweden)

    Marco Perino

    2015-11-01

    Full Text Available The key role of the building envelope in attaining building energy efficiency and satisfactory indoor comfort has long been established. Nevertheless, until recent times, all efforts and attention have mainly been focused on increasing and optimizing the thermal insulation of the envelope components. This strategy was a winning approach for a long time, but its limitations became obvious when users and designers started to consider the overall energy demand of a building and started to aim for Zero Energy Building (ZEB or nearly ZEB goals. New and more revolutionary concepts and technologies needed to be developed to satisfy such challenging requirements. The potential benefits of this technological development are relevant since the building envelope plays a key role in controlling the energy and mass flows from outdoors to indoors (and vice versa and, moreover, the facades offer a significant opportunity for solar energy exploitation. Several researches have demonstrated that the limitation of the existing facades could be overcome only by switching from ‘static’ to ‘responsive’ and ‘dynamic’ systems, such as Multifunctional Facade Modules (MFMs and Responsive Building Elements (RBE. These components are able to continuously and pro-actively react to outdoor and indoor environment conditions and facilitate and enhance the exploitation of renewable and low exergy sources. In order to reduce the energy demand, to maximize the indoor comfort conditions and to produce energy at the site, these almost ‘self-sufficient’, or even ‘positive energy’ building skins frequently incorporate different technologies and are functionally connected to other building services and installations. An overview of the technological evolution of the building envelope that has taken place, ranging from traditional components to the innovative skins, will be given in this paper, while focusing on the different approaches that have characterized this

  13. Opportunities for Fundamental University-Based Research in Energy and Resource Recovery

    Science.gov (United States)

    Zoback, M. D.; Hitzman, M.; Tester, J. W.

    2012-12-01

    In this talk we present, from a university perspective, a few examples of fundamental research needs related to improved energy and resource recovery. One example of such a research need is related to the fact that it is not widely recognized that meeting domestic and worldwide energy needs with renewables such as wind and solar will be materials intensive. If widely deployed, the elements required by renewable technologies will be needed in significant quantities and shortage of these "energy critical elements" could significantly inhibit the adoption of otherwise game changing energy technologies. It is imperative to better understand the geology, metallurgy, and mining engineering of critical mineral deposits if we are to sustainably develop these new technologies. Unfortunately, there is currently no consensus among federal and state agencies, the national and international mining industry, the public, and the U.S. academic community regarding the importance of economic geology in the context of securing sufficient energy critical elements to undertake large-scale renewable energy development. Another option for transitioning away from our current hydrocarbon-based energy system to non-carbon based sources, is geothermal energy - from both conventional hydrothermal resources and enhanced or engineered geothermal systems (EGS). Although geothermal energy is currently used for both electric and non-electric applications worldwide from conventional hydrothermal resources and in ground source heat pumps, most of the emphasis in the US has been generating electricity. To this end, there is a need for research, development and demonstration in five important areas - estimating the magnitude and distribution of recoverable geothermal resources, establishing requirements for extracting and utilizing energy from EGS reservoirs the including drilling, reservoir design and stimulation, exploring end use options for district heating, electricity generation and co

  14. Highly efficient actively Q-switched Yb:LGGG laser generating 3.26 mJ of pulse energy

    Science.gov (United States)

    Li, Yanbin; Zhang, Jian; Zhao, Ruwei; Zhang, Baitao; He, Jingliang; Jia, Zhitai; Tao, Xutang

    2018-05-01

    An efficient acousto-optic Q-switched laser operation of Yb:(LuxGd1-x)3Ga5O12 (x = 0.062) (Yb:LGGG) crystal is demonstrated, producing stable pulses with repetition rate ranging from 1 to 20 kHz. Under the absorbed pump power of 8.75 W, the maximum average output power of 3.26 W is obtained at the pulse repletion rate of 1 kHz, corresponding to the slope efficiency as high as 52%. The pulse width of 14.5 ns is achieved with the pulse energy and peak power of 3.26 mJ and 225 kW, respectively. It indicates great potential of Yb:LGGG crystal for generating pulsed lasers.

  15. Longitudinal transport measurements in an energy recovery accelerator with triple bend achromat arcs

    Directory of Open Access Journals (Sweden)

    F. Jackson

    2016-12-01

    Full Text Available Longitudinal properties of electron bunches (energy spread and bunch length and their manipulation are of importance in free electron lasers (FELs, where magnetic bunch length compression is a common feature of beam transport. Recirculating accelerators and energy recovery linac accelerators (ERLs have been used as FEL drivers for several decades and control of longitudinal beam transport is particularly important in their magnet lattices. We report on measurements of longitudinal transport properties in an ERL-FEL, the ALICE (Accelerators and Lasers in Combined Experiments accelerator at Daresbury Laboratory. ALICE is an energy recovery research accelerator that drives an infrared free electron laser. By measuring the time of arrival of electron bunches, the canonical longitudinal transport quantities were measured in the beam transport and bunch compression sections of the lattice. ALICE includes a four-dipole bunch compression chicane providing fixed longitudinal transport, and triple bend achromat arcs including sextupole magnets where the first and second order longitudinal transport can be adjusted. The longitudinal transport properties in these lattice sections were measured and compared with the theoretical model of the lattice. A reasonable level of agreement has been found. The effect of sextupoles in second order, as well as first order, longitudinal correction is considered, with the measurements indicating the level of alignment of the beam to the center of the sextupole.

  16. Start-To-End Simulations of the Energy Recovery Linac Prototype FEL

    CERN Document Server

    Gerth, Christopher; Muratori, Bruno; Owen, Hywel; Thompson, Neil R

    2004-01-01

    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that serves as a testbed for the study of beam dynamics and accelerator technology important for the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives for the ERLP are the operation of an oscillator infra-red FEL and demonstration of energy recovery from an electron bunch with an energy spread induced by the FEL. In this paper we present start-to-end simulations including the FEL of the ERLP. The beam dynamics in the high-brightness injector, which consists of a DC photocathode gun and a super-conducting booster, have been modelled using the particle tracking code ASTRA. After the main linac, in which the particles are accelerated to 35 MeV, particles have been tracked with the code ELEGANT. The 3D code GENESIS was used to model the FEL interaction with the electron beam. Different modes of operation and their impact on the design of the ERLP are discussed.

  17. Evaluation of an integrated continuous stirred microbial electrochemical reactor: Wastewater treatment, energy recovery and microbial community.

    Science.gov (United States)

    Wang, Haiman; Qu, Youpeng; Li, Da; Zhou, Xiangtong; Feng, Yujie

    2015-11-01

    A continuous stirred microbial electrochemical reactor (CSMER) was developed by integrating anaerobic digestion (AD) and microbial electrochemical system (MES). The system was capable of treating high strength artificial wastewater and simultaneously recovering electric and methane energy. Maximum power density of 583±9, 562±7, 533±10 and 572±6 mW m(-2) were obtained by each cell in a four-independent circuit mode operation at an OLR of 12 kg COD m(-3) d(-1). COD removal and energy recovery efficiency were 87.1% and 32.1%, which were 1.6 and 2.5 times higher than that of a continuous stirred tank reactor (CSTR). Larger amount of Deltaproteobacteria (5.3%) and hydrogenotrophic methanogens (47%) can account for the better performance of CSMER, since syntrophic associations among them provided more degradation pathways compared to the CSTR. Results demonstrate the CSMER holds great promise for efficient wastewater treatment and energy recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Impact of innovations on future energy supply - chemical enhanced oil recovery (CEOR).

    Science.gov (United States)

    Bittner, Christian

    2013-01-01

    The International Energy Agency (IEA) expects an increase of global energy demand by one-third during next 20 years together with a change in the global energy mix. A key-influencing factor is a strong expected increase in oil and gas production in the United States driven by 'new' technologies such as hydraulic fracturing. Chemical enhanced oil recovery (CEOR) is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. In the case of polymer flooding with poly acrylamide, the number of full field implementations has increased in recent years. In the meantime new polymers have been developed to cover previously unmet needs - such polymers can be applied in fields of high salinity and high temperature. Use of surfactants is in an earlier stage, but pilot tests show promising results.

  19. Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system

    CSIR Research Space (South Africa)

    Madzivhandila, V

    2010-10-01

    Full Text Available Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system Vhutshilo Madzivhandilaa, Thokozani... temperature and the thermal efficiency of the plant. The 13th Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� 1. Introduction The IGCC (Integrated Gasification Combined Cycle) is one...

  20. Experimental analysis of energy performance of a ventilated window for heat recovery under controlled conditions

    DEFF Research Database (Denmark)

    Appelfeld, David; Svendsen, Svend

    2011-01-01

    balance of the ventilated window and clarified the methodology for thermal performance evaluation. Comparison between windows with and without ventilation using the window-room-ventilation heat balance revealed that a ventilated window can potentially contribute to energy savings. In addition...... transmittance introduced by the ventilation was higher than the effect of heat recovery. Accordingly, the use of the ventilated windows might be most suitable for window unit with low ventilation rates. The results correlated with theoretical calculations in standards and software. However, the concept...

  1. CAS - CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs

    CERN Document Server

    2018-01-01

    These proceedings collate lectures given at the course on Free Electron Lasers and Energy Recovery Linacs (FELsand ERLs), organised by the CERN Accelerator School (CAS). The course was held at the Hotel Scandic HamburgEmporio, Hamburg, Germany from 31 May to 10 June 2016, in collaboration with DESY. Following introductorylectures on radiation issues, the basic requirements on linear accelerators and ERLs are discussed. Undulators andthe process of seeding and lasing are then treated in some detail, followed by lectures on various beam dynamicsand controls issues.

  2. Dynamics of the Energy Transfer to the Load During the Operation of a Plasma Opening Switch

    International Nuclear Information System (INIS)

    Dolinsky, Yu.; Krasik, Ya.E.; Felsteiner, J.

    1999-01-01

    The main efforts of the theoretical and experimental studies related to the Plasma Opening Switch (POS) have been devoted to the understanding of an anomalous fast magnetic field penetration through the plasma. At present this phenomenon can be explained based on the electron magnetohydrodynamic theory.l The second important phenomenon is related with POS opening. Existing models explain POS opening as a result of cut-off of the electron current component in the double layer2 by self-magnetic field of the POS current or by the increase of the Hall potential in the current layer due to ion erosion.3 Nevertheless both models consider POS opening in the region which was preliminary occupied by the plasma. In a recent experiment4 it was shown that the POS opening is related with a fast charged particle flow in the downstream region, namely at the load. In this work we present results of theoretical studies of the phase of the POS operation when the self-magnetic field of the POS current appears at the downstream side of the plasma. Our study has been done within the framework of two-fluid magnetohydrodynamic theory. Taking into account the Hall electric field which is responsible for a strong ion acceleration in the axial direction, we found the velocity of the ions. In addition we show, that due to the inductive electric field caused by the motion of the axial current carrying plasma, the velocity of the magnetic field penetration is equal to the Alfven velocity

  3. SU-G-IeP3-04: Effective Dose Measurements in Fast Kvp Switch Dual Energy Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raudabaugh, J; Moore, B [Duke Medical Physics, Duke Radiation Dosimetry Laboratory (United States); Nguyen, G; Yoshizumi, T [Duke Radiology, Duke Radiation Dosimetry Laboratory (United States); Lowry, C; Nelson, R [Duke Radiology (United States)

    2016-06-15

    Purpose: The objective of this study was two-fold: (a) to test a new approach to approximating organ dose by using the effective energy of the combined 80kV/140kV beam in dual-energy (DE) computed tomography (CT), and (b) to derive the effective dose (ED) in the abdomen-pelvis protocol in DECT. Methods: A commercial dual energy CT scanner was employed using a fast-kV switch abdomen/pelvis protocol alternating between 80 kV and 140 kV. MOSFET detectors were used for organ dose measurements. First, an experimental validation of the dose equivalency between MOSFET and ion chamber (as a gold standard) was performed using a CTDI phantom. Second, the ED of DECT scans was measured using MOSFET detectors and an anthropomorphic phantom. For ED calculations, an abdomen/pelvis scan was used using ICRP 103 tissue weighting factors; ED was also computed using the AAPM Dose Length Product (DLP) method and compared to the MOSFET value. Results: The effective energy was determined as 42.9 kV under the combined beam from half-value layer (HVL) measurement. ED for the dual-energy scan was calculated as 16.49 ± 0.04 mSv by the MOSFET method and 14.62 mSv by the DLP method. Conclusion: Tissue dose in the center of the CTDI body phantom was 1.71 ± 0.01 cGy (ion chamber) and 1.71 ± 0.06 (MOSFET) respectively; this validated the use of effective energy method for organ dose estimation. ED from the abdomen-pelvis scan was calculated as 16.49 ± 0.04 mSv by MOSFET and 14.62 mSv by the DLP method; this suggests that the DLP method provides a reasonable approximation to the ED.

  4. Energy Balance and Performance Indices for Kraft Recovery Boilers; Standardmetod foer beraekning av energibalans oever sodapanna

    Energy Technology Data Exchange (ETDEWEB)

    Kjoerk, Anders

    2007-09-15

    It has been recognized that different rules exist in calculating energy flows to and from a Recovery boiler. In this report definitions are given with the intention that the branch should adopt a common position in reporting power production for the Swedish system with charge on emission of nitrogen oxides, for the EU Emissions Trading Scheme and for the electricity certificate system. Legislation and guidelines are described as also different standards for determination of boiler efficiency. The definition of the liquor heating value is discussed as also the different ways in which an energy balance could be set up. For the Emissions Trading Scheme a literature survey of interpretations made in other countries has been made. The recommendation is to define the heat input as the product of the virgin liquor flow and the net calorific value of virgin liquor. A net calorific value as defined in SS-ISO 1928 is determined in an environment with excess of oxygen and is consequently named net calorific value in oxidizing condition. In a Recovery boiler part of that heat is required for reduction of sulfur and a net calorific value in reducing condition are therefore defined in a branch specific way. The flow of liquor could be calculated using a heat balance based on steam generation. The envelope for that heat balance could be selected as to fit each individual installation; however some general recommendations are given. In reporting energy flow for the EU Emissions Trading Scheme and to EPA it is recommended to use the net calorific value in oxidizing condition. This definition should also be good for reporting to Statistics Sweden, Swedish Forest Industries Federation and for internal use. For reporting to the electricity certificate system the part of the total power production with origin from biofuel should be stated. The heat of reduction is not available for power production and consequently the recommendation is to use the net calorific value in reducing

  5. Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes

    KAUST Repository

    Wan, Chun Feng

    2015-11-11

    Pressure retarded osmosis (PRO) is a promising technology to reduce the specific energy consumption of a seawater reverse osmosis (SWRO) plant. In this study, it is projected that 25.6-40.7millionkWh/day of energy can be recovered globally, if the brines from SWRO are used as the draw solution and diluted to the seawater level in a PRO system. Detailed integrated SWRO-PRO processes are developed in this study with the option to form a closed-loop SWRO-PRO process that can substantially reduce the pretreatment cost of desalination. The governing mathematical models that describe both the transport phenomena on a module level and the energy flow on a system level are developed to evaluate the performances of the SWRO-PRO processes. The model aims to investigate the performance of the hollow fibers as dilution occurs and provides guidelines on hollow fiber module design and process operation. Determining the dilution factor and the corresponding operating pressure of PRO is the key to optimize the integrated process. The specific energy consumptions of three SWRO-involved processes; namely, (1) SWRO without a pressure exchanger, (2) SWRO with a pressure exchanger, and (3) SWRO with pressure exchangers and PRO are compared. The results show that the specific energy consumptions for the above three processes are 5.51, 1.79 and 1.08kWh/(m of desalinated water) for a 25% recovery SWRO plant; and 4.13, 2.27 and 1.14kWh/(m of desalinated water) for a 50% recovery SWRO plant, using either freshwater or wastewater as the feed solution in PRO.

  6. Improving material and energy recovery from the sewage sludge and biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    Kliopova, Irina, E-mail: irina.kliopova@ktu.lt; Makarskienė, Kristina

    2015-02-15

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg{sup −1} of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  7. Improving material and energy recovery from the sewage sludge and biomass residues

    International Nuclear Information System (INIS)

    Kliopova, Irina; Makarskienė, Kristina

    2015-01-01

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg −1 of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  8. Artificial Knee Joints Actuators with Energy Recovery Capabilities: A Comparison of Performance

    Directory of Open Access Journals (Sweden)

    Roberta Alò

    2016-01-01

    Full Text Available The human knee absorbs more energy than it expends in level ground walking. For this reason it would be useful if the actuation system of a wearable robot for lower limbs was able to recover energy thus improving portability. Presently, we recognize three promising technologies with energy recovery capabilities already available in the literature: the Series Elastic Actuator (SEA, the Clutchable Series Elastic Actuator (C-SEA, and the flywheel Infinitely Variable Transmission (F-IVT actuator. In this paper, a simulation model based comparison of the performance of these actuators is presented. The focus is on two performance indexes: the energy consumed by the electric motor per gait and the peak torque/power requested to the electric motor. Both quantities are related to the portability of the device: the former affects the size of the batteries for a given desired range; the latter affects the size and the weight of the electric motor. The results show that, besides some well-explained limitations of the presented methodology, the C-SEA is the most energy efficient whereas the F-IVT allows cutting down the motor torque/peak power strongly. The analysis also leads to defining how it is possible to improve the F-IVT to achieve a reduction of the energy consumption.

  9. Waste Energy Recovery from Natural Gas Distribution Network: CELSIUS Project Demonstrator in Genoa

    Directory of Open Access Journals (Sweden)

    Davide Borelli

    2015-12-01

    Full Text Available Increasing energy efficiency by the smart recovery of waste energy is the scope of the CELSIUS Project (Combined Efficient Large Scale Integrated Urban Systems. The CELSIUS consortium includes a world-leading partnership of outstanding research, innovation and implementation organizations, and gather competence and excellence from five European cities with complementary baseline positions regarding the sustainable use of energy: Cologne, Genoa, Gothenburg, London, and Rotterdam. Lasting four-years and coordinated by the City of Gothenburg, the project faces with an holistic approach technical, economic, administrative, social, legal and political issues concerning smart district heating and cooling, aiming to establish best practice solutions. This will be done through the implementation of twelve new high-reaching demonstration projects, which cover the most major aspects of innovative urban heating and cooling for a smart city. The Genoa demonstrator was designed in order to recover energy from the pressure drop between the main supply line and the city natural gas network. The potential mechanical energy is converted to electricity by a turboexpander/generator system, which has been integrated in a combined heat and power plant to supply a district heating network. The performed energy analysis assessed natural gas saving and greenhouse gas reduction achieved through the smart systems integration.

  10. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  11. Coronary wave energy: a novel predictor of functional recovery after myocardial infarction.

    Science.gov (United States)

    De Silva, Kalpa; Foster, Paul; Guilcher, Antoine; Bandara, Asela; Jogiya, Roy; Lockie, Tim; Chowiencyzk, Phil; Nagel, Eike; Marber, Michael; Redwood, Simon; Plein, Sven; Perera, Divaka

    2013-04-01

    Revascularization after acute coronary syndromes provides prognostic benefit, provided that the subtended myocardium is viable. The microcirculation and contractility of the subtended myocardium affect propagation of coronary flow, which can be characterized by wave intensity analysis. The study objective was to determine in acute coronary syndromes whether early wave intensity analysis-derived microcirculatory (backward) expansion wave energy predicts late viability, defined by functional recovery. Thirty-one patients (58±11 years) were enrolled after non-ST elevation myocardial infarction. Regional left ventricular function and late-gadolinium enhancement were assessed by cardiac magnetic resonance imaging, before and 3 months after revascularization. The backward-traveling (microcirculatory) expansion wave was derived from wave intensity analysis of phasic coronary pressure and velocity in the infarct-related artery, whereas mean values were used to calculate hyperemic microvascular resistance. Twelve-hour troponin T, left ventricular ejection fraction, and percentage late-gadolinium enhancement mass were 1.35±1.21 µg/L, 56±11%, and 8.4±6.0%, respectively. The infarct-related artery backward-traveling (microcirculatory) expansion wave was inversely correlated with late-gadolinium enhancement infarct mass (r=-0.81; Pwave threshold of 2.8 W m(-2) s(-2)×10(5) predicted functional recovery with sensitivity and specificity of 0.91 and 0.82 (AUC 0.88). Hyperemic microvascular resistance correlated with late-gadolinium enhancement mass (r=0.48; P=0.03) but not left ventricular recovery (r=-0.34; P=0.07). The microcirculation-derived backward expansion wave is a new index that correlates with the magnitude and location of infarction, which may allow for the prediction of functional myocardial recovery. Coronary wave intensity analysis may facilitate myocardial viability assessment during cardiac catheterization.

  12. Energy efficiency improvement of a Kraft process through practical stack gases heat recovery

    International Nuclear Information System (INIS)

    Mostajeran Goortani, B.; Mateos-Espejel, E.; Moshkelani, M.; Paris, J.

    2011-01-01

    A process scheme for the optimal recovery of heat from stack gases considering energy and technical constraints has been developed and applied to an existing Kraft pulping mill. A system based on a closed loop recirculation of hot oil is used to recover the heat from stack gases and distribute it to the appropriate cold streams. The recovery of heat from stack gases is part of an overall optimization of the Kraft mill. Tools such as Pinch Analysis and exergy analysis are used to evaluate the process streams. The results indicate that 10.8 MW of heat from stack gases can be reused to heat process streams such as the deaerator water, hot water, drying filtrates, and black liquor. A simulation model of the recirculation loop has been developed to determine the specifications of the recovery system. The total heat exchanger surface area required by the system is 3460 m 2 , with a hot oil recirculation temperature of 137 o C. The anticipated total investment is $10.3 M, with a payback time of 1.8 years. - Highlights: → We developed a process design for recovering heat from stack gases in a Kraft mill. → The recovered heat is optimally distributed to the process cold streams. → Heat recovery system has a total surface area of 3500 m 2 without gases condensation. → A reduction of 7 percent in total process steam demand is anticipated. → A total investment of 10.3 M$ is needed with a payback time of less than two years

  13. Study of energy recovery and power generation from alternative energy source

    Directory of Open Access Journals (Sweden)

    Abdulhakim Amer A. Agll

    2014-11-01

    Full Text Available The energy requirement pattern of world is growing up and developing technology. The available sources, while exhausting and not friendly to the environment, are highly used. Looking at partial supply and different options of environment problems associated with usage, renewable energy sources are getting attention. MSW (Municipal solid waste composition data had been collected from 1997 to 2009, in Benghazi Libya, to evaluate the waste enthalpy. An incinerator with capacity of 47,250 kg/h was confirmed to burn all the quantity of waste generated by the city through the next 15 years. Initial study was performed to investigate energy flow and resource availability to insure sustainable MSW required by the incinerator to work at its maximum capacity during the designated period. The primary purpose of the paper is to discuss the design of Rankin steam cycle for the generation of both power (PG and combined heat power (CHP. In the power generation case, the system was found to be able to generate electrical power of 13.1 MW. Including the combined heat power case, the results showed that the system was able to produce 6.8 million m3/year of desalinated water and generate 11.33 MW of electricity. In conclusion, the CHP designed system has the greatest potential to maximize energy saving, due to the optimal combination of heat production and electricity generation.

  14. Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass

    International Nuclear Information System (INIS)

    Yao, Zhiyi; Li, Wangliang; Kan, Xiang; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2017-01-01

    There is a rapid growing interest in using biomass as an alternative source for clean and sustainable energy production. In this work, a hybrid system was developed to combine anaerobic digestion (AD) and gasification for energy recovery from yard waste and woody biomass. The feasibility of the proposed hybrid system was validated experimentally and numerically and the energy efficiency was maximized by varying energy input in the drying process. The experiments were performed in two stages. At the first stage, AD of yard waste was conducted by mixing with anaerobic sludge. At the second stage, co-gasification was added as post-treatment for the AD residue for syngas production. The co-gasification experiments of AD residue and woody biomass were conducted at varying mixing ratios and varying moisture contents of AD residue. Optimal energy efficiency was found to be 70.8% at mixing ratio of 20 wt% AD residue with 30 wt% moisture content. Two kinetic models were then adapted for prediction of biogas produced in AD process and syngas produced in gasification process, respectively. Both experimental and numerical results showed that full utilization of biomass could be realized to produce energy through the combination of these two technologies. - Highlights: • The feasibility of the proposed two-stage hybrid system was validated experimentally and numerically. • The proposed hybrid system could effectively improve the quality of produced gas. • The operating parameters were optimized to improve the overall energy efficiency of the system. • Drying process was found to play an important role in determining overall energy efficiency. • Optimal moisture content of AD residue was investigated for maximizing energy efficiency.

  15. A switch by design : User-centred design of smart energy technologies to change habits of using energy at home

    NARCIS (Netherlands)

    Kobus, C.B.A.

    2016-01-01

    This doctoral thesis demonstrates that households are able and willing to permanently change their habits of using energy, if they are supported by well-designed, user-friendly technology. Previous studies have assessed the impact of smart energy technologies and new tariff structures to make

  16. Computational and experimental optimization of the exhaust air energy recovery wind turbine generator

    International Nuclear Information System (INIS)

    Tabatabaeikia, Seyedsaeed; Ghazali, Nik Nazri Bin Nik; Chong, Wen Tong; Shahizare, Behzad; Izadyar, Nima; Esmaeilzadeh, Alireza; Fazlizan, Ahmad

    2016-01-01

    Highlights: • Studying the viability of harvesting wasted energy by exhaust air recovery generator. • Optimizing the design using response surface methodology. • Validation of optimization and computation result by performing experimental tests. • Investigation of flow behaviour using computational fluid dynamic simulations. • Performing the technical and economic study of the exhaust air recovery generator. - Abstract: This paper studies the optimization of an innovative exhaust air recovery wind turbine generator through computational fluid dynamic (CFD) simulations. The optimization strategy aims to optimize the overall system energy generation and simultaneously guarantee that it does not violate the cooling tower performance in terms of decreasing airflow intake and increasing fan motor power consumption. The wind turbine rotor position, modifying diffuser plates, and introducing separator plates to the design are considered as the variable factors for the optimization. The generated power coefficient is selected as optimization objective. Unlike most of previous optimizations in field of wind turbines, in this study, response surface methodology (RSM) as a method of analytical procedures optimization has been utilised by using multivariate statistic techniques. A comprehensive study on CFD parameters including the mesh resolution, the turbulence model and transient time step values is presented. The system is simulated using SST K-ω turbulence model and then both computational and optimization results are validated by experimental data obtained in laboratory. Results show that the optimization strategy can improve the wind turbine generated power by 48.6% compared to baseline design. Meanwhile, it is able to enhance the fan intake airflow rate and decrease fan motor power consumption. The obtained optimization equations are also validated by both CFD and experimental results and a negligible deviation in range of 6–8.5% is observed.

  17. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.

    Science.gov (United States)

    Jeswani, H K; Azapagic, A

    2016-04-01

    Even though landfilling of waste is the least favourable option in the waste management hierarchy, the majority of municipal solid waste (MSW) in many countries is still landfilled. This represents waste of valuable resources and could lead to higher environmental impacts compared to energy recovered by incineration, even if the landfill gas is recovered. Using life cycle assessment (LCA) as a tool, this paper aims to find out which of the following two options for MSW disposal is more environmentally sustainable: incineration or recovery of biogas from landfills, each producing either electricity or co-generating heat and electricity. The systems are compared on a life cycle basis for two functional units: 'disposal of 1 tonne of MSW' and 'generation of 1 kWh of electricity'. The results indicate that, if both systems are credited for their respective recovered energy and recyclable materials, energy from incineration has much lower impacts than from landfill biogas across all impact categories, except for human toxicity. The impacts of incineration co-generating heat and electricity are negative for nine out of 11 categories as the avoided impacts for the recovered energy and materials are higher than those caused by incineration. By improving the recovery rate of biogas, some impacts of landfilling, such as global warming, depletion of fossil resources, acidification and photochemical smog, would be significantly reduced. However, most impacts of the landfill gas would still be higher than the impacts of incineration, except for global warming and human toxicity. The analysis on the basis of net electricity produced shows that the LCA impacts of electricity from incineration are several times lower in comparison to the impacts of electricity from landfill biogas. Electricity from incineration has significantly lower global warming and several other impacts than electricity from coal and oil but has higher impacts than electricity from natural gas or UK grid. At

  18. Avalanche photoconductive switching

    Science.gov (United States)

    Pocha, M. D.; Druce, R. L.; Wilson, M. J.; Hofer, W. W.

    This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV to 35 kV and rise times of 300 to 500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10(exp 3) to over 10(exp 5). Switches with two very different physical configurations and with two different illumination wavelengths (1.06 micrometer, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation.

  19. Avalanche photoconductive switching

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L.; Wilson, M.J.; Hofer, W.W.

    1989-01-01

    This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV--35 kV and rise times of 300--500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10{sup 3} to over 10{sup 5}. Switches with two very different physical configurations and with two different illumination wavelengths (1.06 {mu}m, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation. 3 refs., 6 figs.

  20. Electron bunch structure in energy recovery linac with high-voltage dc photoelectron gun

    Directory of Open Access Journals (Sweden)

    Y. M. Saveliev

    2016-09-01

    Full Text Available The internal structure of electron bunches generated in an injector line with a dc photoelectron gun is investigated. Experiments were conducted on the ALICE (accelerators and lasers in combined experiments energy recovery linac at Daresbury Laboratory. At a relatively low dc gun voltage of 230 kV, the bunch normally consisted of two beamlets with different electron energies, as well as transverse and longitudinal characteristics. The beamlets are formed at the head and the tail of the bunch. At a higher gun voltage of 325 kV, the beam substructure is much less pronounced and could be observed only at nonoptimal injector settings. Experiments and computer simulations demonstrated that the bunch structure develops during the initial beam acceleration in the superconducting rf booster cavity and can be alleviated either by increasing the gun voltage to the highest possible level or by controlling the beam acceleration from the gun voltage in the first accelerating structure.

  1. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  2. Emittance growth caused by bends in the Los Alamos free-electron laser energy recovery experiment

    International Nuclear Information System (INIS)

    Carlsten, B.E.

    1987-01-01

    Experimentally transporting the beam from the wiggler to the decelerators in the energy recovery experiment (ERX) at the Los Alamos National Laboratory free-electron laser was more difficult than expected because of the large initial emittance in the beam. This emittance was apparently caused in an early 60 0 achromatic bend. To get this beam through subsequent bends without wall interception, the quadrupole focusing had to be changed from the design amount; as a result, the emittance grew further. This paper discusses various mechanisms for this emittance growth in the 60 0 bend, including effects caused by path changes in the bend resulting from wake-field-induced energy changes of particles in the beam and examines emittance filters, ranging from a simple aperture near a beam crossover to more complicated telescope schemes designed to regain the original emittance before the 60 0 bend

  3. Heat pipe heat exchanger and its potential to energy recovery in the tropics

    Directory of Open Access Journals (Sweden)

    Yau Yat H.

    2015-01-01

    Full Text Available The heat recovery by the heat pipe heat exchangers was studied in the tropics. Heat pipe heat exchangers with two, four, six, and eight numbers of rows were examined for this purpose. The coil face velocity was set at 2 m/s and the temperature of return air was kept at 24°C in this study. The performance of the heat pipe heat exchangers was recorded during the one week of operation (168 hours to examine the performance data. Then, the collected data from the one week of operation were used to estimate the amount of energy recovered by the heat pipe heat exchangers annually. The effect of the inside design temperature and the coil face velocity on the energy recovery for a typical heat pipe heat exchanger was also investigated. In addition, heat pipe heat exchangers were simulated based on the effectiveness-NTU method, and their theoretical values for the thermal performance were compared with the experimental results.

  4. ThermoEnergy Ammonia Recovery Process for Municipal and Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    Alex G. Fassbender

    2001-01-01

    Full Text Available The Ammonia Recovery Process (ARP is an award-winning, low-cost, environmentally responsible method of recovering nitrogen, in the form of ammonia, from various dilute waste streams and converting it into concentrated ammonium sulfate. The ThermoEnergy Biogas System utilizes the new chemisorption-based ARP to recover ammonia from anaerobically digested wastes. The process provides for optimal biogas production and significantly reduced nitrogen levels in the treated water discharge. Process flows for the ammonia recovery and ThermoEnergy biogas processes are presented and discussed. A comparison with other techniques such as biological nitrogen removal is made. The ARP technology uses reversible chemisorption and double salt crystal precipitation to recover and concentrate the ammonia. The ARP technology was successfully proven in a recent large-scale field demonstration at New York City’s Oakwood Beach Wastewater Treatment Plant, located on Staten Island. This project was a joint effort with Foster Wheeler Environmental Corporation, the Civil Engineering Research Foundation, and New York City Department of Environmental Protection. Independent validated plant data show that ARP consistently recovers up to 99.9% of the ammonia from the city’s centrate waste stream (derived from dewatering of sewage sludge, as ammonium sulfate. ARP technology can reduce the nitrogen (ammonia discharged daily into local bodies of water by municipalities, concentrated animal farming operations, and industry. Recent advances to ARP enhance its performance and economic competitiveness in comparison to stripping or ammonia destruction technologies.

  5. Environmental assessment of alternative treatment schemes for energy and nutrient recovery from livestock manure.

    Science.gov (United States)

    Pedizzi, C; Noya, I; Sarli, J; González-García, S; Lema, J M; Moreira, M T; Carballa, M

    2018-04-20

    The application of livestock manure on agricultural land is being restricted due to its significant content of phosphorus (P) and nitrogen (N), leading to eutrophication. At the same time, the growing demand for N and P mineral fertilizers is increasing their production costs and causing the depletion of natural phosphate rock deposits. In the present work, seven technologically feasible treatment schemes for energy (biogas) and nutrient recovery (e.g., struvite precipitation) and/or removal (e.g., partial nitritation/anammox) were evaluated from an environmental perspective. In general, while approaches based solely on energy recovery and use of digestate as fertilizer are commonly limited by community regulations, strategies pursuing the generation of high-quality struvite are not environmentally sound alternatives. In contrast, schemes that include further solid/liquid separation of the digestate improved the environmental profile, and their combination with an additional N-removal stage would lead to the most environmental-friendly framework. However, the preferred scenario was identified to be highly dependent on the particular conditions of each site, integrating environmental, social and economic criteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Thermodynamic analysis of direct expansion configurations for electricity production by LNG cold energy recovery

    International Nuclear Information System (INIS)

    Franco, Alessandro; Casarosa, Claudio

    2015-01-01

    In the present paper, after a brief review of the perspectives of the various schemes proposed for electricity generation from the regasification of Liquefied Natural Gas (LNG), a detailed analysis of two particular direct expansion solutions is proposed. The purpose is to identify the upper level of the energy that can be recovered with the aim of electricity production, using configurations with direct expansion. The analysis developed resorting to a simplified thermodynamic model, shows that using a direct expansion configurations with multistage turbine, values of power production typical of optimized ORC plant configurations (120 kJ for each kg of natural gas that flows through the plant) can be obtained. The development of a direct expansion plant with multistage turbine and internal heat recovery systems could permit to approach the production of more than 160 kJ for each kg of flowing liquefied natural gas. Considering values of the mass flow rate typical of LNG gas stations (e.g. 70 kg/s); this corresponds to an output power ranging between 8.3 MW and 11.4 MW. - Highlights: • Recovery of the cold energy contained in Liquefied Natural Gas. • Thermodynamic analysis of systems for electricity generation in regasification. • Direct expansion solutions with multistage expansion. • Comparison of direct expansion solutions with conventional ORC systems. • Power output in conditions typical of existing LNG regasification terminals

  7. Thermodynamic and thermoeconomic analyses of seawater reverse osmosis desalination plant with energy recovery

    International Nuclear Information System (INIS)

    El-Emam, Rami Salah; Dincer, Ibrahim

    2014-01-01

    This paper investigates the performance of a RO (reverse osmosis) desalination plant at different seawater salinity values. An energy recovery Pelton turbine is integrated with the desalination plant. Thermodynamic analysis, based on the first and second laws of thermodynamics, as well as a thermo-based economic analysis is performed for the proposed system. The effects of the system components irreversibilities on the economics and cost of product water are parametrically studied through the thermoeconomic analysis. The exergy analysis shows that large irreversibilities occur in the high pressure pump and in the RO module. Both thermodynamic and thermoeconomic performances of the overall system are investigated under different operating parameters. For the base case; the system achieves an exergy efficiency of 5.82%. The product cost is estimated to be 2.451 $/m 3 and 54.2 $/MJ when source water with salinity of 35,000 ppm is fed to the system. - Highlights: • Thermodynamic and exergoeconomic analyses are performed for SWRO with energy recovery. • Parametric studies are done to study effects of operating conditions on performance. • Different seawater sources with different salinity values are tested. • At base case, plant exergy efficiency is 5.82% and product cost is 2.451 $/m 3

  8. Potential of Electronic Plastic Waste as a Source of Raw Material and Energy Recovery

    International Nuclear Information System (INIS)

    Norazli Othman; Nor Ezlin Ahmad Basri; Lariyah Mohd Sidek

    2009-01-01

    Nowadays, the production of electronic equipment is one of the fastest growing industrial activities in this world. The increase use of plastic in this sector resulted in an increase of electronic plastic waste. Basically, electronic plastic material contains various chemical elements which act as a flame retardant when electronic equipment is operated. In general, the concept of recycling electronic plastic waste should be considered in order to protect the environment. For this purpose, research has been conducted to different resins of electronic plastic waste to identify the potential of electronic plastic waste as a source of raw material and energy recovery. This study was divided into two part for example determination of physical and chemical characteristics of plastic resins and calculation of heating value for plastic resins based on Dulong formula. Results of this research show that the average calorific value of electronic waste is 30,872.42 kJ/ kg (7,375 kcal/ kg). The emission factor analysis showed that the concentration of emission value that might occur during waste management activities is below the standard set by the Environment Quality Act 1974. Basically, this research shows that electronic plastic waste has the potential to become the source of raw material and energy recovery. (author)

  9. Experimental verificatio of load resistance switching for global stabilization of high-energy response of a nonlinear wideband electromagnetic vibration energy harvester

    International Nuclear Information System (INIS)

    Sato, T; Masuda, A; Sanada, T

    2015-01-01

    This paper presents an experimental verification of a self-excitation control of a resonance- type vibration energy harvester with a Duffing-type nonlinearity which is designed to perform effectively in a wide frequency range. For the conventional linear vibration energy harvester, the performance of the power generation at the resonance frequency and the bandwidth of the resonance peak are trade-off. The resonance frequency band can be expanded by introducing a Duffing-type nonlinear oscillator in order to enable the harvester to generate larger electric power in a wider frequency range. However, since such nonlinear oscillator can have multiple stable steady-state solutions in the resonance band, it is difficult for the nonlinear harvester to maintain the high performance of the power generation constantly. The principle of self-excitation and entrainment has been utilized to provide the global stability to the highest-energy solution by destabilizing other unexpected lower-energy solutions by introducing a switching circuit of the load resistance between positive and the negative values depending on the response amplitude of the oscillator. It has been experimentally validated that this control law imparts the self-excitation capability to the oscillator to show an entrainment into the highest-energy solution. (paper)

  10. Compatibility analysis of material and energy recovery in a regional solid waste management system.

    Science.gov (United States)

    Chang, Ying-Hsi; Chang, Ni-Bin

    2003-01-01

    The rising prices of raw materials and concerns about energy conservation have resulted in an increasing interest in the simultaneous recovery of materials and energy from waste streams. Compatibility exists for several economic, environmental, and managerial reasons. Installing an on-site or off-site presorting facility before an incinerator could be a feasible alternative to achieve both goals if household recycling programs cannot succeed in local communities. However, the regional impacts of presorting solid waste on a waste-to-energy facility remain unclear because of the inherent complexity of solid waste compositions and properties over different areas. This paper applies a system-based approach to assess the impact of installing a refuse-derived fuel (RDF) process before an incinerator. Such an RDF process, consisting of standard unit operations of shredding, magnetic separation, trommel screening, and air classification, might be useful for integrating the recycling and presorting efforts for a large-scale municipal incinerator from a regional sense. An optimization modeling analysis is performed to characterize such integration potential so that the optimal size of the RDF process and associated shipping patterns for flow control can be foreseen. It aims at exploring how the waste inflows with different rates of generation, physical and chemical compositions, and heating values collected from differing administrative districts can be processed by either a centralized presorting facility or an incinerator to meet both the energy recovery and throughput requirements. A case study conducted in Taipei County, which is one of the most densely populated metropolitan areas in Taiwan, further confirms the application potential of such a cost-benefit analysis.

  11. International perspective on energy recovery from landfill gas. A joint report of the IEA Bioenergy Programme and the IEA CADDET Renewable Energy Technologies Programme

    International Nuclear Information System (INIS)

    2000-02-01

    This report presents a review of the current status of energy recovery from landfill gas. Utilisation, collection and treatment technologies are examined, and ten case studies of landfill gas utilisation are given. Non-technical issues such as barrier to energy recovery from landfill gas, landfill gas generation, and landfill gas emissions are addressed, and recommendations are outlined. The potential market for landfill gas, and market opportunities are considered. Details of the objectives of the International Energy Agency (IEA), the IEA Bioenergy Programme, and the IEA CADDET Renewable Energy Technologies Programme are included in appendices. (UK)

  12. Impact of the resource conservation and recovery act on energy facility siting

    International Nuclear Information System (INIS)

    Tevepaugh, C.W.

    1982-01-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 is a multifaceted approach to the management of both solid and hazardous waste. The focus of this research is on the RCRA mandated proposed regulations for the siting of hazardous waste disposal facilities. This research is an analysis of the interactions among hazardous waste disposal facilities, energy supply technologies and land use issues. This study addresses the impact of RCRA hazardous waste regulations in a descriptive and exploratory manner. A literature and legislative review, interviews and letters of inquiry were synthesized to identify the relationship between RCRA hazardous waste regulations and the siting of selected energy supply technologies. The results of this synthesis were used to determine if and how RCRA influences national land use issues. It was found that the interaction between RCRA and the siting of hazardous waste disposal facilities required by energy supply technologies will impact national land use issues. All energy supply technologies reviewed generate hazardous waste. The siting of industrial functions such as energy supply facilities and hazardous waste disposal facilities will influence future development patterns. The micro-level impacts from the siting of hazardous waste disposal facilities will produce a ripple effect on land use with successive buffer zones developing around the facilities due to the interactive growth of the land use sectors

  13. Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy

    OpenAIRE

    Özyoğurtçu, Gamze; Mobedi, Moghtada; Özerdem, Barış

    2014-01-01

    The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period an...

  14. Energy recovery storage systems in electrical vehicles with batteries; Tecnicas de armazenamiento de energia em veiculos electricos a baterias

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, M.; Maia, J.; Foito, D.

    2004-07-01

    In this paper are presented three energy recovery storage systems that can be used in electrical vehicles with batteries. The first storage system uses ultra capacitors that is electrical energy storage, the second system is based on superconductivity magnetic storage, and the third system uses on kinetic energy stored in flywheels. It is also presented the power electronics needed to perform the energy systems. (Author)

  15. Energy poverty reduction by fuel switching. Impact evaluation of the LPG conversion program in Indonesia

    International Nuclear Information System (INIS)

    Andadari, Roos Kities; Mulder, Peter; Rietveld, Piet

    2014-01-01

    In low- and middle-income countries, Liquefied Petroleum Gas (LPG) can be an attractive alternative to the widespread use of traditional kerosene. Not only is LPG a relatively clean, safe and cost-effective fuel for households, its large-scale adoption also reduces the heavy burden of kerosene consumption subsidies on government budgets. Against this background, we evaluate the impact of a large government program to substitute LPG for kerosene in Indonesia. Using a household survey across urban, suburban and rural regions we find that this program was very effective in causing a large scale shift from kerosene to LPG. This shift was positively influenced by level of education, household size and household income. Contradicting the energy-ladder model, the LPG program, reinforced by an increase in the price of kerosene, led to increased stacking of fuels, including increasing consumption of both electricity and traditional biomass. In addition, our analysis shows that the LPG program failed to substantially reduce the overall number of energy-poor people, but it has been effective in alleviating extreme energy-poverty. Finally, we find that medium and higher income households in suburban areas benefitted most from the LPG program. - Highlights: • Impact evaluation of a government program to substitute LPG for kerosene in Indonesia. • The program caused a large scale shift from kerosene to LPG. • Contradicting the energy-ladder model, the program led to increased stacking of fuels. • The program did not substantially reduce overall energy poverty, but alleviated extreme energy-poverty. • Medium and higher income households in suburban areas benefitted most from the LPG program

  16. Application of users’ light-switch stochastic models to dynamic energy simulation

    DEFF Research Database (Denmark)

    Camisassi, V.; Fabi, V.; Andersen, Rune Korsholm

    2015-01-01

    deterministic inputs, due to the uncertain nature of human behaviour. In this paper, new stochastic models of users’ interaction with artificial lighting systems are developed and implemented in the energy simulation software IDA ICE. They were developed from field measurements in an office building in Prague......The design of an innovative building should include building overall energy flows estimation. They are principally related to main six influencing factors (IEA-ECB Annex 53): climate, building envelope and equipment, operation and maintenance, occupant behaviour and indoor environment conditions...

  17. An Energy-Efficient Reconfigurable Circuit Switched Network-on-Chip

    NARCIS (Netherlands)

    Wolkotte, P.T.; Smit, Gerardus Johannes Maria; Rauwerda, G.K.; Smit, L.T.

    Network-on-Chip (NoC) is an energy-efficient on-chip communication architecture for multi-tile System-on-Chip (SoC) architectures. The SoC architecture, including its run-time software, can replace inflexible ASICs for future ambient systems. These ambient systems have to be flexible as well as

  18. Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, I-38123 Trento (Italy); Torretta, Vincenzo, E-mail: vincenzo.torretta@uninsubria.it [Insubria University of Varese, Department of Biotechnologies and Life Sciences, Via G.B. Vico 46, I-21100 Varese (Italy)

    2014-05-01

    Highlights: • The aim is to support the drying of sewage sludge, using a solar greenhouse. • The system allows the exploitation of heat available from OFMSW aerobic process. • Another aim is to face the problem of OFMSW treatment, in particular food waste. • Energy and mass balances are presented for a case study. - Abstract: In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications.

  19. Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation

    International Nuclear Information System (INIS)

    Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano; Torretta, Vincenzo

    2014-01-01

    Highlights: • The aim is to support the drying of sewage sludge, using a solar greenhouse. • The system allows the exploitation of heat available from OFMSW aerobic process. • Another aim is to face the problem of OFMSW treatment, in particular food waste. • Energy and mass balances are presented for a case study. - Abstract: In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications

  20. Potentials and limitations of energy recovery from municipal solid waste in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Schulenburg, Hong Giang

    2012-11-01

    The major aim of study is the evaluation of the potentials and limitations of energy recovery from MSW in Vietnam through a comparative assessment of the climate change impacts (via CO2-eq.) among waste-to-energy (WtE) options in order to select the suitable technique for waste management. Recovered energy by these waste management options is assumed to replace the energy from fossil fuels-based sources, including three power possibilities. A survey on national legal and institutional framework for solid waste management was therefore undertaken to point out the strength and weakness and suggest the developing and improvement policies in this field. A view on economic benefit is also one important objective and it represented in terms of ''CO2- Avoidance Cost'' among different investment options. Sensitivity analysis has been carried out with regard to the optimum technical parameters and the change of energy mix in 2020-2030 in order to assess the variations of overall GHGs impacts in Vietnam. Due to waste composition, the energy mix and legal framework on solid waste management at national level are not robust, therefore the outcomes of this study do not aim to select the best waste management approach or to pose the Vietnamese waste managers or decision makers under pressure. Instead, it endeavors to indicate the potential of GHGs savings and the economic benefits that could be gained by introducing WtE practices. It also aims to suggest the improvement of national legal framework in solid waste management and energy development plan in order to transfer the technical knowledge and experience on WtE technology from developed countries to Vietnam.

  1. High-energy azimuthally polarized laser beam generation from an actively Q-switched Nd:YAG laser with c-cut YVO4 crystal

    Science.gov (United States)

    Guo, Jing; Zhang, Baofu; Jiao, Zhongxing; He, Guangyuan; Wang, Biao

    2018-05-01

    A high-energy, azimuthally polarized (AP) and actively Q-switched Nd:YAG laser is demonstrated. The thermal bipolar lensing effect in the Nd:YAG laser rod is used as a polarization discriminator, and a c-cut YVO4 crystal is inserted into the laser cavity to increase the mode-selecting ability of the cavity for AP mode. The laser generated AP pulses with maximum pulse energy as high as 4.2 mJ. To the best of our knowledge, this is the highest pulse energy obtained from an actively Q-switched AP laser. The pulse energy remained higher than 1 mJ over a wide range of repetition rates from 5 kHz to 25 kHz.

  2. Multifunctional energy landscape for a DNA G-quadruplex: An evolved molecular switch

    Science.gov (United States)

    Cragnolini, Tristan; Chakraborty, Debayan; Šponer, Jiří; Derreumaux, Philippe; Pasquali, Samuela; Wales, David J.

    2017-10-01

    We explore the energy landscape for a four-fold telomere repeat, obtaining interconversion pathways between six experimentally characterised G-quadruplex topologies. The results reveal a multi-funnel system, with a variety of intermediate configurations and misfolded states. This organisation is identified with the intrinsically multi-functional nature of the system, suggesting a new paradigm for the classification of such biomolecules and clarifying issues regarding apparently conflicting experimental results.

  3. Nutritional Improvement and Energy Intake Are Associated with Functional Recovery in Patients after Cerebrovascular Disorders.

    Science.gov (United States)

    Nii, Maria; Maeda, Keisuke; Wakabayashi, Hidetaka; Nishioka, Shinta; Tanaka, Atsuko

    2016-01-01

    Malnutrition affects the activities of daily living (ADLs) in convalescent patients with cerebrovascular disorders. We investigated the relationship between nutritional improvement, energy intake at admission, and recovery of ADLs. We evaluated 67 patients with cerebrovascular disorders admitted to our rehabilitation hospital between April 2013 and April 2015. These patients received interventions from the rehabilitation nutritional support team according to the following criteria: weight loss of 2 kg or more and body mass index of 19 kg/m(2) or lower. Exclusion criteria included a body mass index of 25 kg/m(2) or higher, duration of intervention of less than 14 days, or transfer to an acute care hospital because of clinical deterioration. We assessed nutritional status using the Geriatric Nutritional Risk Index (GNRI) and ADL using the Functional Independence Measure (FIM) score, FIM gain, and FIM efficiency. The mean age of the patients was 78.7 ± 8.0 years. The numbers of patients in each category of cerebrovascular disorder were 39 with cerebral infarction, 16 with intracerebral hemorrhage, 8 with subarachnoid hemorrhage, and 4 others. Compared with the counterpart group, the group with an improvement in GNRI had a greater gain in FIM (median 17 and 20, respectively; P = .036) and a higher FIM efficiency (.14 and .22, respectively; P = .020). Multivariate stepwise regression analysis showed that an improvement in GNRI, increasing energy intake at admission, and intracerebral hemorrhage were associated independently with greater FIM efficiency. This study suggested that nutritional improvement and energy intake at admission are associated with recovery of ADL after cerebrovascular disorders. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. Energy expenditure in children with cerebral palsy and moderate / severe malnutrition during nutritional recovery.

    Science.gov (United States)

    García-Contreras, Andrea A; Vásquez-Garibay, Edgar M; Romero-Velarde, Enrique; Ibarra-Gutierrez, Ana I; Troyo-Sanroman, Rogelio

    2015-05-01

    To analyze the total energy expenditure (TEE) and resting energy expenditure (REE) in children with cerebral palsy (CP) and moderate or severe malnutrition during nutritional recovery. In an intervention study, thirteen subjects with CP (10 females and 3 males with a mean age of 9y11m ± 2y3m), level V of the Gross Motor Function Classification System and moderate or severe malnutrition were included. Eight were fed by nasogastric tube and five by gastrostomy. They were compared with 57 healthy participants (31 females and 26 males with mean age of 8y7m ± 10m). Anthropometric measurements, body composition and energy expenditure by bioelectrical impedance analysis (BIA) and indirect calorimetry (IC) were performed in both groups. TEE and REE were higher in healthy children than in children with CP in kcal/d and kcal/cm/d but were lower in kcal/kg/d (p children with CP produced a significant increase in energy expenditure. TEE and REE, in children with CP, are lower than in healthy children. Estimating the REE in children with CP and malnutrition is better performed in kcal/kg/d than in kcal/cm/d. Fat-free mass (FFM) is a good predictor of the REE in healthy children and children with CP. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. Energy recovery from waste incineration: Assessing the importance of district heating networks

    International Nuclear Information System (INIS)

    Fruergaard, T.; Christensen, T.H.; Astrup, T.

    2010-01-01

    Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO 2 accounts showed significantly different results: waste incineration in one network caused a CO 2 saving of 48 kg CO 2 /GJ energy input while in the other network a load of 43 kg CO 2 /GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

  6. Energy Recovery from Scrap Tires: A Sustainable Option for Small Islands like Puerto Rico

    Directory of Open Access Journals (Sweden)

    Eddie N. Laboy-Nieves

    2014-05-01

    Full Text Available Puerto Rico generates and disposes nearly five million/year scrap tires (ST, of which 4.2% is recycled and 80% is exported. The Island has one of the world highest electrical service tariff ($0.28 kWh, because of its dependency on fossil fuels for power generation. The Government has not considered ST for electricity production, despite more than 13,000 ST are generated daily, and paradoxically exported for that purpose. Theoretically, if ST recycling increases to 10% and assuming that the caloric value of ST be 33 MJ/kg, it was estimated that scrap tires processed with pyrolysis can supply annually about 379 MWh, a potential value that shall not be unnoticed. This paper is a literature review to describe the legal, technical, and economic framework for the viability of ST for power generation in Puerto Rico using pyrolysis, the most recommended process for ST energy recovery. Data of ST from Puerto Rico was used to model the potential of ST for pyrolytic energy conversion. The herein article is intended to invite other insular countries and territories, to join efforts with the academic and scientific community, and with the energy generation sector, to validate ST as a sustainable option for energy generation.

  7. ER@CEBAF: A test of 5-pass energy recovery at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, S. A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Douglas, D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Dubbe, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hutton, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Michalski, T. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pilat, F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Y. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Satogata, T. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Spata, M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tennant, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tiefenback, M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Korysko, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-06-06

    Jefferson Lab personnel have broad expertise in the design, commissioning, and operation of multiple energy recovery linacs (ERLs): the CEBAF Front-End Test (early 1990s), CEBAF-ER (2003), the IR Free Electron Laser (FEL) Demo, the IR FEL Upgrade, and the UV FEL Driver (1997-2014). Continued development of this core competency has led to this collaborative proposal to explore the forefronts of ERL technology at high energy in a unique expansion of CEBAF capability to a 5-pass ERL with negligible switchover time and programmatic impact to the CEBAF physics program. Such a capability would enable world-class studies of open issues in high-energy ERL beam dynamics that are relevant to future facilities such as electron-ion colliders (EICs). This proposal requests support from the CEBAF Program Advisory Committee to seek funding for hardware installation, and a prospective 12 days of beam time circa Fall 2018 for commissioning this high-energy multi-pass ERL experiment in CEBAF.

  8. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: a Rayleigh-based method

    Science.gov (United States)

    Schout, Gilian; Drijver, Benno; Gutierrez-Neri, Mariene; Schotting, Ruud

    2014-01-01

    High-temperature aquifer thermal energy storage (HT-ATES) is an important technique for energy conservation. A controlling factor for the economic feasibility of HT-ATES is the recovery efficiency. Due to the effects of density-driven flow (free convection), HT-ATES systems applied in permeable aquifers typically have lower recovery efficiencies than conventional (low-temperature) ATES systems. For a reliable estimation of the recovery efficiency it is, therefore, important to take the effect of density-driven flow into account. A numerical evaluation of the prime factors influencing the recovery efficiency of HT-ATES systems is presented. Sensitivity runs evaluating the effects of aquifer properties, as well as operational variables, were performed to deduce the most important factors that control the recovery efficiency. A correlation was found between the dimensionless Rayleigh number (a measure of the relative strength of free convection) and the calculated recovery efficiencies. Based on a modified Rayleigh number, two simple analytical solutions are proposed to calculate the recovery efficiency, each one covering a different range of aquifer thicknesses. The analytical solutions accurately reproduce all numerically modeled scenarios with an average error of less than 3 %. The proposed method can be of practical use when considering or designing an HT-ATES system.

  9. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  10. Safe Disposal of Medical and Plastic Waste and Energy Recovery Possibilities using Plasma Pyrolysis Technology

    International Nuclear Information System (INIS)

    Nema, S.K.; Mukherjee, S.

    2010-01-01

    Plasma pyrolysis and plasma gasification are emerging technologies that can provide complete solution to organic solid waste disposal. In these technologies plasma torch is used as a workhorse to convert electrical energy into heat energy. These technologies dispose the organic waste in an environment friendly manner. Thermal plasma provides extremely high temperature in oxygen free or controlled air environment which is required for pyrolysis or gasification reactions. Plasma based medical waste treatment is an extremely complex technology since it has to contend with extreme temperatures and corrosion-prone environment, complex pyro-chemistry resulting in toxic and dangerous products, if not controlled. In addition, one has to take care of complete combustion of pyrolyzed gases followed by efficient scrubbing to meet the emission standards set by US EPA and Central Pollution Control Board, India. In medical waste, high volume and low packing density waste with nonstandard composition consisting of a variety of plastics, organic material and liquids used to be present. The present paper describes the work carried out at Institute for Plasma Research, India, on plasma pyrolysis of (i) medical waste disposal and the results of emission measurement done at various locations in the system and (ii) energy recovery from cotton and plastic waste. The process and system development has been done in multiple steps. Different plasma pyrolysis models were made and each subsequent model was improved upon to meet stringent emission norms and to make the system energy efficient and user friendly. FCIPT, has successfully demonstrated up to 50 kg/ hr plasma pyrolysis systems and have installed plasma pyrolysis facilities at various locations in India . Plastic Waste disposal along with energy recovery in 15 kg/ hr model has also been developed and demonstrated at FCIPT. In future, this technology has great potential to dispose safely different waste streams such as biomass

  11. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    International Nuclear Information System (INIS)

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management

  12. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management.

  13. Cost-effective treatment of swine wastes through recovery of energy and nutrients.

    Science.gov (United States)

    Amini, Adib; Aponte-Morales, Veronica; Wang, Meng; Dilbeck, Merrill; Lahav, Ori; Zhang, Qiong; Cunningham, Jeffrey A; Ergas, Sarina J

    2017-11-01

    Wastes from concentrated animal feeding operations (CAFOs) are challenging to treat because they are high in organic matter and nutrients. Conventional swine waste treatment options in the U.S., such as uncovered anaerobic lagoons, result in poor effluent quality and greenhouse gas emissions, and implementation of advanced treatment introduces high costs. Therefore, the purpose of this paper is to evaluate the performance and life cycle costs of an alternative system for treating swine CAFO waste, which recovers valuable energy (as biogas) and nutrients (N, P, K + ) as saleable fertilizers. The system uses in-vessel anaerobic digestion (AD) for methane production and solids stabilization, followed by struvite precipitation and ion exchange (IX) onto natural zeolites (chabazite or clinoptilolite) for nutrient recovery. An alternative approach that integrated struvite recovery and IX into a single reactor, termed STRIEX, was also investigated. Pilot- and bench-scale reactor experiments were used to evaluate the performance of each stage in the treatment train. Data from these studies were integrated into a life cycle cost analysis (LCCA) to assess the cost-effectiveness of various process alternatives. Significant improvement in water quality, high methane production, and high nutrient recovery (generally over 90%) were observed with both the AD-struvite-IX process and the AD-STRIEX process. The LCCA showed that the STRIEX system can provide considerable financial savings compared to conventional systems. AD, however, incurs high capital costs compared to conventional anaerobic lagoons and may require larger scales to become financially attractive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Investigation of a tubular dual-stator flux-switching permanent-magnet linear generator for free-piston energy converter

    Science.gov (United States)

    Sui, Yi; Zheng, Ping; Tong, Chengde; Yu, Bin; Zhu, Shaohong; Zhu, Jianguo

    2015-05-01

    This paper describes a tubular dual-stator flux-switching permanent-magnet (PM) linear generator for free-piston energy converter. The operating principle, topology, and design considerations of the machine are investigated. Combining the motion characteristic of free-piston Stirling engine, a tubular dual-stator PM linear generator is designed by finite element method. Some major structural parameters, such as the outer and inner radii of the mover, PM thickness, mover tooth width, tooth width of the outer and inner stators, etc., are optimized to improve the machine performances like thrust capability and power density. In comparison with conventional single-stator PM machines like moving-magnet linear machine and flux-switching linear machine, the proposed dual-stator flux-switching PM machine shows advantages in higher mass power density, higher volume power density, and lighter mover.

  15. Conceptual design of a high-speed electromagnetic switch for a modified flux-coupling-type SFCL and its application in renewable energy system.

    Science.gov (United States)

    Chen, Lei; Chen, Hongkun; Yang, Jun; Shu, Zhengyu; He, Huiwen; Shu, Xin

    2016-01-01

    The modified flux-coupling-type superconducting fault current (SFCL) is a high-efficient electrical auxiliary device, whose basic function is to suppress the short-circuit current by controlling the magnetic path through a high-speed switch. In this paper, the high-speed switch is based on electromagnetic repulsion mechanism, and its conceptual design is carried out to promote the application of the modified SFCL. Regarding that the switch which is consisting of a mobile copper disc, two fixed opening and closing coils, the computational method for the electromagnetic force is discussed, and also the dynamic mathematical model including circuit equation, magnetic field equation as well as mechanical motion equation is theoretically deduced. According to the mathematical modeling and calculation of characteristic parameters, a feasible design scheme is presented, and the high-speed switch's response time can be less than 0.5 ms. For that the modified SFCL is equipped with this high-speed switch, the SFCL's application in a 10 kV micro-grid system with multiple renewable energy sources are assessed in the MATLAB software. The simulations are well able to affirm the SFCL's performance behaviors.

  16. Energy efficiency and fuel switching in Canadian industry under greenhouse gas regulation

    International Nuclear Information System (INIS)

    Margolick, M.

    1992-01-01

    The application of financial instruments to greenhouse gas control, particularly a greenhouse gas tax, is discussed. As of June 1991, Finland, the Netherlands, Sweden and Norway have imposed taxes on greenhouse gas emissions, while taxes are imminent in Denmark and Germany. A study has been carried out to model the effects of such taxes on greenhouse gas emissions in Canada, using the Intra-Sectoral Technology Use Model (ISTUM) and an end-use energy demand computer model. Only carbon dioxide and methane were considered. The limitations of the ISTUM model are discussed. Industry results are presented by sector, including an overview of greenhouse gas-producing processes, emission reduction measures possible, energy and greenhouse emissions, and results of taxes at varying levels. Different basic physical and chemical processes among industries would cause widely varying responses to a greenhouse gas tax. Issues which bear directly on greenhouse gas emissions include the burning of biomass fuels in the pulp and paper industry, strategic choices between existing and new technologies in the iron and steel sector, the possibility of a nearly greenhouse gas-free aluminum smelting sector, and the advent of reformulated gasoline requirements and declining crude oil quantity in the petroleum refining sector. 15 refs., 6 figs

  17. Adrenal incidentaloma triage with single source (fast kVp switch) dual energy CT

    Science.gov (United States)

    Glazer, Daniel I; Keshavarzi, Nahid R; Parker, Robert A; Kaza, Ravi K; Platt, Joel F; Francis, Isaac R

    2015-01-01

    Purpose To evaluate single source dual energy CT (DECT) for distinguishing benign and indeterminate adrenal nodules, with attention to effects of phase of intravenous contrast enhancement. Materials and methods An IRB-approved, HIPAA-compliant retrospective review revealed 273 contrast-enhanced abdominal DECTs from November 2009–March 2012. 50 adrenal nodules ≥ 0.8 cm were identified in 41 patients: 22 female, 19 male, average age 66 (range 36–88 years). CT post-processing and measurements were independently performed by two radiologists (R1 and R2) for each nodule: (1) HU on true non-contrast images; (2) post-contrast HU on monochromatic spectral images at 40, 75, and 140 keV; (3) post-contrast material density (mg/cc) on virtual non-contrast (VNC) images. Nodules were separated into benign (VNC images, benign nodules had significantly lower material density (R1: 992.4 mg/cc ± 9.9; R2: 992.7 mg/cc ±9.6) than indeterminate nodules (R1: 1001.1mg/cc ±20.5 (p .038); R2: 1007.6 HU ±13.4 (p <.0001). Conclusion DECT tools can mathematically subtract iodine or minimize its effects in high energy reconstructions, approximating non-contrast imaging and potentially reducing the need for additional studies to triage adrenal nodules detected on post-contrast DECT exams. PMID:25055267

  18. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  19. Energy Recovery Hydropower: Prospects for Off-Setting Electricity Costs for Agricultural, Municipal, and Industrial Water Providers and Users; July 2017 - September 2017

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Curtis, Taylor L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Johnson, Kurt [Telluride Energy; Telluride, CO (United States)

    2018-01-11

    Energy recovery hydropower is one of the most cost-effective types of new hydropower development because it is constructed utilizing existing infrastructure, and it is typically able to complete Federal Energy Regulatory Commission (FERC) review in 60 days. Recent changes in federal and state policy have supported energy recovery hydropower. In addition, some states have developed programs and policies to support energy recovery hydropower, including resource assessments, regulatory streamlining initiatives, and grant and loan programs to reduce project development costs. This report examines current federal and state policy drivers for energy recovery hydropower, reviews market trends, and looks ahead at future federal resource assessments and hydropower reform legislation.

  20. A novel switched inductor configuration for modified SEPIC DC-to-DC converter for renewable energy application

    DEFF Research Database (Denmark)

    Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Blaabjerg, Frede

    2017-01-01

    The proposed work is on the Modified SEPIC Converter (MSC) and its different configuration with switched inductor structure (SI). In this paper, five different configuration of modified SEPIC Converter namely-Modified SEPIC converter without switched inductor configuration (MSC-LLL), Modified SEP...

  1. CAS on Free-Electron Lasers and Energy Recovery Linacs in Hamburg

    CERN Multimedia

    CERN Accelerator School

    2016-01-01

    The CERN Accelerator School (CAS) and DESY held a jointly-organised specialised course on Free-Electron Lasers and Energy Recovery Linacs (FELs and ERLs) in Hamburg, Germany, from 31 May to 10 June 2016.      The course was held in the Hotel Scandic Emporio in Hamburg and was attended by 68 participants of 13 nationalities, coming from countries as far away as China, Iran and Japan. The intensive programme comprised 44 lectures and one seminar. Following introductory lectures on electromagnetism, relativity and synchrotron radiation issues, the basic requirements of linacs and ERLs were discussed. Detailed lectures on the theory of FEL science followed. Undulators and the process of lasing and seeding were covered in some detail along with lectures on various beam dynamics and beam control issues. Case studies, for which seven hours were allocated, completed the academic programme. For these, the students were divided into small groups and tasked with completing the basic desig...

  2. Combustion of used tires for energy recovery. Yozumi taiya shokyaku ni suru netsuriyo

    Energy Technology Data Exchange (ETDEWEB)

    Ishizawa, N. (Toyo Tire and Rubber Co. Ltd., Osaka (Japan))

    1993-03-15

    The recycled automobile tires in 1991 amounts to 87%, and the tires are used most effectively for heat generation. The utilization of tires for heat in Japan and in other countries are outlined, and a detailed report is made on the use of used tires as fuel at coal cogeneration plants in tire manufacturing plants. The 'utilization percent for heat' is steadily increasing among the recycling applications of used tires. Energy recovery by dry distillation method and by direct combustion method is discussed. The states of used tire utilization in America, West Germany, and Britain are introduced. A concrete example of utilization for heat of used tires at a tire manufacturing plant is shown. Used tires are chopped into chips, mixed and burned in a coal boiler, the generated steam is used as the heat source for private power generation, and the power is used as the power source for the plant. 15 refs., 5 figs., 7 tabs.

  3. Numerical and experimental investigation on frosting of energy-recovery ventilator

    Science.gov (United States)

    Bilodeau, Stephane; Mercadier, Yves; Brousseau, Patrick

    Frosting of energy-recovery ventilators results in two major problems: increase of pressure losses and reduction of heat transfer rates. Frost formation of heat and mass exchangers used in these ventilation systems is investigated both experimentally and numerically. A numerical model for the prediction of the thermal behavior of the exchanger is presented. The model is validated with experimental data and is then employed to conduct a parametric study. Results indicate that the absolute humidity is the prevailing parameter for characterizing the frosting phenomenon. A frost-mass-fraction chart is established in terms of the absolute humidity of the warm exhaust stream and of the temperature of the cold supply stream. The effect of time and mass flowrate is also evaluated. The transient three-dimensional model shows that the absolute humidity and the temperature of both air flows vary nonlinearly in the frosted zone.

  4. Modeling and Simulation of Membrane-Based Dehumidification and Energy Recovery Process

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [ORNL; Abdelaziz, Omar [ORNL; Qu, Ming [ORNL

    2017-01-01

    This paper introduces a first-order physics-based model that accounts for the fundamental heat and mass transfer between a humid-air vapor stream on feed side to another flow stream on permeate side. The model comprises a few optional submodels for membrane mass transport; and it adopts a segment-by-segment method for discretizing heat and mass transfer governing equations for flow streams on feed and permeate sides. The model is able to simulate both dehumidifiers and energy recovery ventilators in parallel-flow, cross-flow, and counter-flow configurations. The predicted tresults are compared reasonably well with the measurements. The open-source codes are written in C++. The model and open-source codes are expected to become a fundament tool for the analysis of membrane-based dehumidification in the future.

  5. R'07 World Congress - Recovery of materials and energy for resource efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This final congress report summarises the topics dealt with at the R'07 World Congress on the recovery of materials and energy for resource efficiency. The congress was held in 2007 in Davos, Switzerland. Details on the organisation and participants are given and the experts who held plenary lectures are listed. Brief details are given on oral and poster sessions, along with details on how the proceedings of the congress can be obtained. Workshops held at the conference covered the following topics: Plastics recycling, biofuels and E-waste, workshops on zero wastes, scarce metals and the identification and management of social implications over the product life cycle (footprint). An Internet-address where the results of the sessions can be obtained is given along with a summary of excursions and social events held within the framework of the congress. Finally, participant feedback is presented in graphical form.

  6. Analysis of switching surges generated by current interruption in an energy-storage coil

    International Nuclear Information System (INIS)

    Chowdhuri, P.

    1981-01-01

    The paper presents an analysis of the transient voltages which are generated when the current in a large magnetic energy storage coil is interrupted by a dc vacuum circuit breaker. The effect of the various parameters in the circuit on the transient voltage is discussed. The self inductance of the dump resistor must be minimized to control the generated transient. Contrary to general belief, a capacitor across the coil is not an effective surge suppressor. In fact, the capacitor may excite oscillations of higher magnitude. However, a capacitor, in addition to a surge suppressor, may be used to modify the frequency components of the transient voltage so that these frequency components are not coincident with the natural frequencies of the coil. Otherwise, resonant oscillations inside the coil may attain damaging magnitudes. The capacitor would also reduce the steepness of the wavefront of the transient across the coil, thus reducing the nonlinear voltage distribution inside the coil

  7. Recovery of energy from geothermal brine and other hot water sources

    Science.gov (United States)

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  8. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment

    KAUST Repository

    Ivanov, Ivan

    2013-10-01

    Microbial electrolysis cells (MECs) are potential candidates for sustainable wastewater treatment as they allow for recovery of the energy input by producing valuable chemicals such as hydrogen gas. Evaluating the effectiveness of MEC treatment for different wastewaters requires new approaches to quantify performance, and the establishment of specific procedures and parameters to characterize the outcome of fed-batch treatability tests. It is shown here that Coulombic efficiency can be used to directly calculate energy consumption relative to wastewater treatment in terms of COD removal, and that the average current, not maximum current, is a better metric to evaluate the rate of the bioelectrochemical reactions. The utility of these methods was demonstrated using simulated current profiles and actual wastewater tests. Industrial and domestic wastewaters were evaluated using small volume MECs, and different inoculation strategies. The energy needed for treatment was 2.17kWhkgCOD-1 for industrial wastewater and 2.59kWhkgCOD-1 for domestic wastewater. When these wastewaters were combined in equal amounts, the energy required was reduced to 0.63kWhkgCOD-1. Acclimation of the MEC to domestic wastewater, prior to tests with industrial wastewaters, was the easiest and most direct method to optimize MEC performance for industrial wastewater treatment. A pre-acclimated MEC accomplished the same removal (1847 ± 53 mg L-1) as reactor acclimated to only the industrial wastewater (1839 ± 57 mg L-1), but treatment was achieved in significantly less time (70 h versus 238 h). © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  9. Comparison between two braking control methods integrating energy recovery for a two-wheel front driven electric vehicle

    International Nuclear Information System (INIS)

    Itani, Khaled; De Bernardinis, Alexandre; Khatir, Zoubir; Jammal, Ahmad

    2016-01-01

    Highlights: • Comparison between two braking methods for an EV maximizing the energy recovery. • Wheels slip ratio control based on robust sliding mode and ECE R13 control methods. • Regenerative braking control strategy. • Energy recovery of a HESS with respect to road surface type and road condition. - Abstract: This paper presents the comparison between two braking methods for a two-wheel front driven Electric Vehicle maximizing the energy recovery on the Hybrid Energy Storage System. The first method consists in controlling the wheels slip ratio while braking using a robust sliding mode controller. The second method will be based on ECE R13H constraints for an M1 passenger vehicle. The vehicle model used for simulation is a simplified five degrees of freedom model. It is driven by two 30 kW permanent magnet synchronous motor (PMSM) recovering energy during braking phases. Several simulation results for extreme braking conditions will be performed and compared on various road type surfaces using Matlab/Simulink®. For an initial speed of 80 km/h, simulation results demonstrate that the difference of energy recovery efficiency between the two control braking methods is beneficial to the ECE constraints control method and it can vary from 3.7% for high friction road type to 11.2% for medium friction road type. At low friction road type, the difference attains 6.6% due to different reasons treated in the paper. The stability deceleration is also discussed and detailed.

  10. Diagnostic performance of calcification-suppressed coronary CT angiography using rapid kilovolt-switching dual-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Yunaga, Hiroto; Ohta, Yasutoshi; Kitao, Shinichiro; Ogawa, Toshihide [Tottori University, Division of Radiology, Department of Pathophysiological Therapeutic Science, Faculty of Medicine, Yonago City, Tottori (Japan); Kaetsu, Yasuhiro [Kakogawa Higashi Hospital, Department of Cardiology, Kakogawa (Japan); Watanabe, Tomomi; Furuse, Yoshiyuki; Yamamoto, Kazuhiro [Tottori University, Division of Cardiology, Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Yonago (Japan)

    2017-07-15

    Multi-detector-row computed tomography angiography (MDCTA) plays an important role in the assessment of patients with suspected coronary artery disease. However, MDCTA tends to overestimate stenosis in calcified coronary artery lesions. The aim of our study was to evaluate the diagnostic performance of calcification-suppressed material density (MD) images produced by using a single-detector single-source dual-energy computed tomography (ssDECT). We enrolled 67 patients with suspected or known coronary artery disease who underwent ssDECT with rapid kilovolt-switching (80 and 140 kVp). Coronary artery stenosis was evaluated on the basis of MD images and virtual monochromatic (VM) images. The diagnostic performance of the two methods for detecting coronary artery disease was compared with that of invasive coronary angiography as a reference standard. We evaluated 239 calcified segments. In all the segments, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy for detecting significant stenosis were respectively 88%, 88%, 75%, 95% and 88% for the MD images, 91%, 71%, 56%, 95% and 77% for the VM images. PPV was significantly higher on the MD images than on the VM images (P < 0.0001). Calcification-suppressed MD images improved PPV and diagnostic performance for calcified coronary artery lesions. (orig.)

  11. A linear programming approach for the optimal planning of a future energy system. Potential contribution of energy recovery from municipal solid wastes

    DEFF Research Database (Denmark)

    Xydis, George; Koroneos, C.

    2012-01-01

    In the present paper the mismatch between the energy supply levels and the end use, in a broader sense, was studied for the Hellenic energy system. The ultimate objective was to optimize the way to meet the country's energy needs in every different administrative and geographical region using...... renewable energy sources (RES) and at the same time to define the remaining available space for energy recovery units from municipal solid waste (MSW) in each region to participate in the energy system. Based on the results of the different scenarios examined for meeting the electricity needs using linear...

  12. Next generation of CO2 enhanced water recovery with subsurface energy storage in China

    Science.gov (United States)

    Li, Qi; Kühn, Michael; Ma, Jianli; Niu, Zhiyong

    2017-04-01

    Carbon dioxide (CO2) utilization and storage (CCUS) is very popular in comparison with traditional CO2 capture and storage (CCS) in China. In particular, CO2 storage in deep saline aquifers with enhanced water recovery (CO2-EWR) [1] is gaining more and more attention as a cleaner production technology. The CO2-EWR was written into the "U.S.-China Joint Announcement on Climate Change" released November 11, 2014. "Both sides will work to manage climate change by demonstrating a new frontier for CO2 use through a carbon capture, use, and sequestration (CCUS) project that will capture and store CO2 while producing fresh water, thus demonstrating power generation as a net producer of water instead of a water consumer. This CCUS project with enhanced water recovery will eventually inject about 1.0 million tonnes of CO2 and create approximately 1.4 million cubic meters of freshwater per year." In this article, at first we reviewed the history of the CO2-EWR and addressed its current status in China. Then, we put forth a new generation of the CO2-EWR with emphasizing the collaborative solutions between carbon emission reductions and subsurface energy storage or renewable energy cycle [2]. Furthermore, we figured out the key challenging problems such as water-CCUS nexus when integrating the CO2-EWR with the coal chemical industry in the Junggar Basin, Xinjiang, China [3-5]. Finally, we addressed some crucial problems and strategic consideration of the CO2-EWR in China with focuses on its technical bottleneck, relative advantage, early opportunities, environmental synergies and other related issues. This research is not only very useful for the current development of CCUS in the relative "cold season" but also beneficial for the energy security and clean production in China. [1] Li Q, Wei Y-N, Liu G, Shi H (2015) CO2-EWR: a cleaner solution for coal chemical industry in China. Journal of Cleaner Production 103:330-337. doi:10.1016/j.jclepro.2014.09.073 [2] Streibel M

  13. Diagnostic performance of calcification-suppressed coronary CT angiography using rapid kilovolt-switching dual-energy CT.

    Science.gov (United States)

    Yunaga, Hiroto; Ohta, Yasutoshi; Kaetsu, Yasuhiro; Kitao, Shinichiro; Watanabe, Tomomi; Furuse, Yoshiyuki; Yamamoto, Kazuhiro; Ogawa, Toshihide

    2017-07-01

    Multi-detector-row computed tomography angiography (MDCTA) plays an important role in the assessment of patients with suspected coronary artery disease. However, MDCTA tends to overestimate stenosis in calcified coronary artery lesions. The aim of our study was to evaluate the diagnostic performance of calcification-suppressed material density (MD) images produced by using a single-detector single-source dual-energy computed tomography (ssDECT). We enrolled 67 patients with suspected or known coronary artery disease who underwent ssDECT with rapid kilovolt-switching (80 and 140 kVp). Coronary artery stenosis was evaluated on the basis of MD images and virtual monochromatic (VM) images. The diagnostic performance of the two methods for detecting coronary artery disease was compared with that of invasive coronary angiography as a reference standard. We evaluated 239 calcified segments. In all the segments, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy for detecting significant stenosis were respectively 88%, 88%, 75%, 95% and 88% for the MD images, 91%, 71%, 56%, 95% and 77% for the VM images. PPV was significantly higher on the MD images than on the VM images (P < 0.0001). Calcification-suppressed MD images improved PPV and diagnostic performance for calcified coronary artery lesions. • Computed tomography angiography tends to overestimate stenosis in calcified coronary artery. • Dual-energy CT enables us to suppress calcification of coronary artery lesions. • Calcification-suppressed material density imaging reduces false-positive diagnosis of calcified lesion.

  14. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology

    International Nuclear Information System (INIS)

    Ortega-Fernández, Iñigo; Zavattoni, Simone A.; Rodríguez-Aseguinolaza, Javier; D'Aguanno, Bruno; Barbato, Maurizio C.

    2017-01-01

    Highlights: •A packed bed TES system is proposed for heat recovery in CAES technology. •A CFD-based approach has been developed to evaluate the behaviour of the TES unit. •TES system enhancement and improvement alternatives are also demonstrated. •TES performance evaluated according to the first and second law of thermodynamics. -- Abstract: Compressed air energy storage (CAES) represents a very attracting option to grid electric energy storage. Although this technology is mature and well established, its overall electricity-to-electricity cycle efficiency is lower with respect to other alternatives such as pumped hydroelectric energy storage. A meager heat management strategy in the CAES technology is among the main reasons of this gap of efficiency. In current CAES plants, during the compression stage, a large amount of thermal energy is produced and wasted. On the other hand, during the electricity generation stage, an extensive heat supply is required, currently provided by burning natural gas. In this work, the coupling of both CAES stages through a thermal energy storage (TES) unit is introduced as an effective solution to achieve a noticeable increase of the overall CAES cycle efficiency. In this frame, the thermal energy produced in the compression stage is stored in a TES unit for its subsequent deployment during the expansion stage, realizing an Adiabatic-CAES plant. The present study addresses the conceptual design of a TES system based on a packed bed of gravel to be integrated in an Adiabatic-CAES plant. With this objective, a complete thermo-fluid dynamics model has been developed, including the implications derived from the TES operating under variable-pressure conditions. The formulation and treatment of the high pressure conditions were found being particularly relevant issues. Finally, the model provided a detailed performance and efficiency analysis of the TES system under charge/discharge cyclic conditions including a realistic operative

  15. Batch pervaporative fermentation with coupled membrane and its influence on energy consumption in permeate recovery and distillation stage

    International Nuclear Information System (INIS)

    Leon, Juan A.; Palacios-Bereche, Reynaldo; Nebra, Silvia A.

    2016-01-01

    In the ethanol production process from sugarcane molasses, the distillation process is a high-energy demand stage. The distillation energy efficiency is strongly associated with the alcoholic fermentation performance in the process. The final ethanol concentration in the alcoholic wines has a direct impact on consumption of thermal energy in ethanol separation. In this paper, ethanol production with a H-SBMF (Hybrid-Simple Batch Membrane Fermenter) using PDMS (polydimethylsiloxane) pervaporation membrane was modelled and simulated, in order to determine its influence on energy consumption in distillation. Steam in distillation and electrical energy needs in permeate recovery were mainly influenced by membrane adaptation. The H-SBMF achieved a higher ethanol production in the range of 10–13% compared to the conventional batch fermenter, and an increase in productivity of 150%. The distillation system consisted of two sets of columns: the ethanol recovery column and the rectification column. The permeate recovery system (i.e. vacuum and compression) was regarded in order to evaluate the electrical energy requirement, and the thermal energy demand was evaluated. A decrease in steam consumption was evidenced by the adaptation of the membrane to the fermenter. Higher energy efficiencies were achieved in distillation with larger membrane areas, achieving almost 17% steam reduction. - Highlights: • Higher and faster ethanol productions were achieved by fermenter hybridization. • Multi-stage permeate compression and inter-stage heat recovery were assumed. • Energy demand was studied based on an integrated fermentation and distillation scheme. • High-energy efficiency was attained in the distillation to produce hydrated alcohol.

  16. The Application of High Temperature Superconducting Materials to Power Switches

    CERN Document Server

    March, S A; Ballarino, A

    2009-01-01

    Superconducting switches may find application in superconducting magnet systems that require energy extraction. Such superconducting switches could be bypass-switches that are operated in conjunction with a parallel resistor or dump-switches where all of the energy is dissipated in the switch itself. Bypass-switches are more suited to higher energy circuits as a portion of the energy can be dissipated in the external dump resistor. Dump- switches require less material and triggering energy as a lower switch resistance is needed to achieve the required total dump resistance. Both superconducting bypass-switches and superconducting dump-switches can be ther- mally activated. Switching times that are comparable to those obtained with mechanical bypass-switch systems can be achieved using a co-wound heater that is powered by a ca- pacitor discharge. Switches that have fast thermal diffusion times through the insulation can be modelled as a lumped system whereas those with slow thermal diffusion times were modelle...

  17. Energy to save the world: use of portable nuclear energy for hydrocarbon recovery, electrical generation, and water reclamation

    International Nuclear Information System (INIS)

    Deal, John R. Grizz; Pearson, Cody

    2010-01-01

    Nuclear-based electric and steam generation has traditionally been limited to large-scale plants that require enormous capital and infrastructure. A new wave of nuclear reactors is ready for introduction into locales and industry that previously have been unable to take advantage of the clean, safe, and cheap energy nuclear affords. One of these 'new kids on the block' is the Hyperion Power Module (HPM), an original design developed in Los Alamos National Laboratory. Through the U.S. government's technology transfer initiative, the exclusive license to develop and commercialize the invention has been granted to Hyperion Power Generation (HPG). The Hyperion Power 'Module' was specifically designed for applications in remote areas where cost, safety, and security is of concern. The Hyperion Power Module, a self-contained, self-regulating reactor, is breaking new ground in the nuclear industry and filling a heretofore-unmet need for moderately sized power applications either distributed or dedicated. Employing proven science in a new way, Hyperion provides a safe, clean power solution for remote locations or locations that must currently employ less than satisfactory alternatives. Generating nearly 70 megawatts of thermal energy and from 25 to 30 megawatts of electrical energy, the Power Module is the world's first small mobile reactor, taking advantage of the natural laws of chemistry and physics and leveraging all of the engineering and technology advancements made over the last fifty years. The HPM is comparable in size to a deep residential hot tub and is designed to be cited underground in a containment vessel. The CEO of Hyperion will outline the benefits of small nuclear reactors by examining their impact on the U.S. economy, national security, the environment, remote regions, and developing nations. The speaker will also focus on the four main applications of the Hyperion Reactor: military bases; oil and gas recovery and refining; remote communities lacking

  18. Demonstration of low emittance in the Cornell energy recovery linac injector prototype

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2013-07-01

    Full Text Available We present a detailed study of the six-dimensional phase space of the electron beam produced by the Cornell Energy Recovery Linac Photoinjector, a high-brightness, high repetition rate (1.3 GHz DC photoemission source designed to drive a hard x-ray energy recovery linac (ERL. A complete simulation model of the injector has been constructed, verified by measurement, and optimized. Both the horizontal and vertical 2D transverse phase spaces, as well as the time-resolved (sliced horizontal phase space, were simulated and directly measured at the end of the injector for 19 and 77 pC bunches at roughly 8 MeV. These bunch charges were chosen because they correspond to 25 and 100 mA average current if operating at the full 1.3 GHz repetition rate. The resulting 90% normalized transverse emittances for 19   (77  pC/bunch were 0.23±0.02 (0.51±0.04  μm in the horizontal plane, and 0.14±0.01 (0.29±0.02  μm in the vertical plane, respectively. These emittances were measured with a corresponding bunch length of 2.1±0.1 (3.0±0.2  ps, respectively. In each case the rms momentum spread was determined to be on the order of 10^{-3}. Excellent overall agreement between measurement and simulation has been demonstrated. Using the emittances and bunch length measured at 19  pC/bunch, we estimate the electron beam quality in a 1.3 GHz, 5 GeV hard x-ray ERL to be at least a factor of 20 times better than that of existing storage rings when the rms energy spread of each device is considered. These results represent a milestone for the field of high-brightness, high-current photoinjectors.

  19. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.

    Science.gov (United States)

    Medina Jimenez, Ana Carolina; Nordi, Guilherme Henrique; Palacios Bereche, Milagros Cecilia; Bereche, Reynaldo Palacios; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-11-01

    Brazil has a large population with a high waste generation. The municipal solid waste (MSW) generated is deposited mainly in landfills. However, a considerable fraction of the waste is still improperly disposed of in dumpsters. In order to overcome this inadequate deposition, it is necessary to seek alternative routes. Between these alternatives, it is possible to quote gasification and incineration. The objective of this study is to compare, from an energetic and economic point of view, these technologies, aiming at their possible implementation in Brazilian cities. A total of two configurations were evaluated: (i) waste incineration with energy recovery and electricity production in a steam cycle; and (ii) waste gasification, where the syngas produced is used as fuel in a boiler of a steam cycle for electricity production. Simulations were performed assuming the same amount of available waste for both configurations, with a composition corresponding to the MSW from Santo André, Brazil. The thermal efficiencies of the gasification and incineration configurations were 19.3% and 25.1%, respectively. The difference in the efficiencies was caused by the irreversibilities associated with the gasification process, and the additional electricity consumption in the waste treatment step. The economic analysis presented a cost of electrical energy produced of 0.113 (US$ kWh -1 ) and 0.139 (US$ kWh -1 ) for the incineration and gasification plants respectively.

  20. Design and Experimental Analysis of an Exhaust Air Energy Recovery Wind Turbine Generator

    Directory of Open Access Journals (Sweden)

    Ahmad Fazlizan

    2015-06-01

    Full Text Available A vertical axis wind turbine (VAWT was positioned at the discharge outlet of a cooling tower electricity generator. To avoid a negative impact on the performance of the cooling tower and to optimize the turbine performance, the determination of the VAWT position in the discharge wind stream was conducted by experiment. The preferable VAWT position is where the higher wind velocity matches the positive torque area of the turbine rotation. With the proper matching among the VAWT configurations (blade number, airfoil type, operating tip-speed-ratio, etc. and exhaust air profile, the turbine system was not only able to recover the wasted kinetic energy, it also reduced the fan motor power consumption by 4.5% and increased the cooling tower intake air flow-rate by 11%. The VAWT had a free running rotational speed of 479 rpm, power coefficient of 10.6%, and tip-speed-ratio of 1.88. The double multiple stream tube theory was used to explain the VAWT behavior in the non-uniform wind stream. For the actual size of a cooling tower with a 2.4 m outlet diameter and powered by a 7.5 kW fan motor, it was estimated that a system with two VAWTs (side-by-side can generate 1 kW of power which is equivalent to 13% of energy recovery.

  1. Beam-dynamics driven design of the LHeC energy-recovery linac

    Science.gov (United States)

    Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; Bogacz, S. Alex

    2015-12-01

    The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ˜150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  2. Beam-dynamics driven design of the LHeC energy-recovery linac

    Directory of Open Access Journals (Sweden)

    Dario Pellegrini

    2015-12-01

    Full Text Available The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ∼150  mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  3. New halo formation mechanism at the KEK compact energy recovery linac

    Science.gov (United States)

    Tanaka, Olga; Nakamura, Norio; Shimada, Miho; Miyajima, Tsukasa; Ueda, Akira; Obina, Takashi; Takai, Ryota

    2018-02-01

    The beam halo mitigation is a very important challenge for reliable and safe operation of a high-energy machine. A systematic beam halo study was conducted at the KEK compact energy recovery linac (cERL) since non-negligible beam loss was observed in the recirculation loop during a common operation. We found that the beam loss can be avoided by making use of the collimation system. Beam halo measurements have demonstrated the presence of vertical beam halos at multiple locations in the beam line (except the region near the electron gun). Based on these observations, we made a conjecture that the transverse beam halo is attributed to the longitudinal bunch tail arising at the photocathode. The transfer of particles from the longitudinal space to a transverse halo may have been observed and studied in other machines, considering nonlinear effects as their causes. However, our study demonstrates a new unique halo formation mechanism, in which a transverse beam halo can be generated by a longitudinal bunch tail due to transverse rf kicks from the accelerating (monopole) fields of the radio-frequency cavities. This halo formation occurs when nonrelativistic particles enter the cavities with a transverse offset, even if neither nonlinear optics nor nonlinear beam effects are present. A careful realignment of the injector system will mitigate the present halo. Another possible cure is to reduce the bunch tails by changing the photocathode material from the present GaAs to a multi-alkali that is known to have a shorter longitudinal tail.

  4. Total Energy Recovery System for Agribusiness: Lake County study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fogleman, S.F.; Fisher, L.A.; Black, A.R.

    1978-04-01

    A brief summary is given of the results of a previously reported study designed to evaluate the costs and viability of combined thermodynamic and biologic cycles in a system known as the Total Energy Recovery System for Agribusiness (TERSA). This conceptual system involved the combined geothermally assisted activities of greenhouse crop and mushroom growing, fish farming, and biogas generation in an integrated biologic system such that the waste or by-products of each subsystem cycle were recovered to service input needs of companion cycles. An updated direct use geothermal system based on TERSA that is viable for implementation in Lake County is presented. Particular consideration is given to: location of geothermal resources, availability of land and irrigation quality water, compatibility of the specific direct use geothermal activities with adjacent and local uses. Private interest and opposition, and institutional factors as identified. Factors relevant to local TERSA implementation are discussed, followed by sites considered, selection criteria, site slection, and the modified system resulting. Particular attention is paid to attempt to make clear the process followed in applying this conceptual design to the specific task of realistic local implementation. Previous publications on geothermal energy and Lake County are referenced where specific details outside the scope of this study may be found. (JGB)

  5. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.

    Science.gov (United States)

    Kumari, Sinu; Das, Debabrata

    2015-10-01

    The aim of the present study was to enhance the gaseous energy recovery from sugarcane bagasse. The two stage (biohydrogen and biomethanation) batch process was considered under mesophilic condition. Alkali pretreatment (ALP) was used to remove lignin from sugarcane bagasse. This enhanced the enzymatic digestibility of bagasse to a great extent. The maximum lignin removal of 60% w/w was achieved at 0.25 N NaOH concentration (50°C, 30 min). The enzymatic hydrolysis efficiency was increased to about 2.6-folds with alkali pretreated sugarcane bagasse as compared to untreated one. The maximum hydrogen and methane yields from the treated sugarcane bagasse by biohydrogen and biomethanation processes were 93.4 mL/g-VS and 221.8 mL/g-VS respectively. This process resulted in significant increase in energy conversion efficiency (44.8%) as compared to single stage hydrogen production process (5.4%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Compact compressive arc and beam switchyard for energy recovery linac-driven ultraviolet free electron lasers

    Science.gov (United States)

    Akkermans, J. A. G.; Di Mitri, S.; Douglas, D.; Setija, I. D.

    2017-08-01

    High gain free electron lasers (FELs) driven by high repetition rate recirculating accelerators have received considerable attention in the scientific and industrial communities in recent years. Cost-performance optimization of such facilities encourages limiting machine size and complexity, and a compact machine can be realized by combining bending and bunch length compression during the last stage of recirculation, just before lasing. The impact of coherent synchrotron radiation (CSR) on electron beam quality during compression can, however, limit FEL output power. When methods to counteract CSR are implemented, appropriate beam diagnostics become critical to ensure that the target beam parameters are met before lasing, as well as to guarantee reliable, predictable performance and rapid machine setup and recovery. This article describes a beam line for bunch compression and recirculation, and beam switchyard accessing a diagnostic line for EUV lasing at 1 GeV beam energy. The footprint is modest, with 12 m compressive arc diameter and ˜20 m diagnostic line length. The design limits beam quality degradation due to CSR both in the compressor and in the switchyard. Advantages and drawbacks of two switchyard lines providing, respectively, off-line and on-line measurements are discussed. The entire design is scalable to different beam energies and charges.

  7. Dune recovery after storm erosion on a high-energy beach: Vougot Beach, Brittany (France)

    Science.gov (United States)

    Suanez, Serge; Cariolet, Jean-Marie; Cancouët, Romain; Ardhuin, Fabrice; Delacourt, Christophe

    2012-02-01

    On 10th March 2008, the high energy storm Johanna hit the French Atlantic coast, generating severe dune erosion on Vougot Beach (Brittany, France). In this paper, the recovery of the dune of Vougot Beach is analysed through a survey of morphological changes and hydrodynamic conditions. Data collection focused on the period immediately following storm Johanna until July 2010, i.e. over two and a half years. Results showed that the dune retreated by a maximum of almost 6 m where storm surge and wave attack were the most energetic. Dune retreat led to the creation of accommodation space for the storage of sediment by widening and elevating space between the pre- and post-storm dune toe, and reducing impacts of the storm surge. Dune recovery started in the month following the storm event and is still ongoing. It is characterised by the construction of "secondary" embryo dunes, which recovered at an average rate of 4-4.5 cm per month, although average monthly volume changes varied from - 1 to 2 m 3.m - 1 . These embryo dunes accreted due to a large aeolian sand supply from the upper tidal beach to the existing foredune. These dune-construction processes were facilitated by growth of vegetation on low-profile embryo dunes promoting backshore accretion. After more than two years of survey, the sediment budget of the beach/dune system showed that more than 10,000 m 3 has been lost by the upper tidal beach. We suggest that seaward return currents generated during the storm of 10th March 2008 are responsible for offshore sediment transport. Reconstitution of the equilibrium beach profile following the storm event may therefore have generated cross-shore sediment redistribution inducing net erosion in the tidal zone.

  8. Comparison of energy and material recovery of household waste management from the environmental point of view - Case Kaunas, Lithuania

    International Nuclear Information System (INIS)

    Luoranen, Mika; Soukka, Risto; Denafas, Gintaras; Horttanainen, Mika

    2009-01-01

    The results of life cycle assessment of five different energy recovery-based waste management system options are presented. The system options were designed for the city of Kaunas, Lithuania. The Kaunas model was formed according to the Simple Integrated System Management concept developed at Lappeenranta University of Technology. CML2001 was selected as the method according to which the life cycle impact assessment profiles were compiled and analyzed. The results suggest that energy recovery from biowaste, paper and cardboard derived from households could be a more recommendable waste management option than material recovery of the fractions (composting of biowaste and recycling of paper and cardboard). The calculations were carried out with limited process information, and cannot thus be generalized in all parts

  9. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.

    Science.gov (United States)

    Panepinto, Deborah; Genon, Giuseppe

    2014-07-01

    Given the desirability of reducing fossil fuel consumption, together with the increasing production of combustible solid wastes, there is clearly a need for waste treatment systems that achieve both volume reduction and energy recovery. Direct incineration method is one such system. The aim of this work was to analyze the municipal solid waste incineration plant currently under construction in the province of Turin (Piedmont, North Italy), especially the potential for energy recovery, and the consequent environmental effects. We analyzed two kinds of energy recovery: electric energy (electrical configuration) only, and both electric and thermal energy (cogenerative configuration), in this case with a different connection hypothesis to the district heating network. After we had evaluated the potential of the incinerator and considered local demographic, energy and urban planning effects, we assumed different possible connections to the district heating network. We computed the local and global environmental balances based on the characteristics of the flue gas emitted from the stack, taking into consideration the emissions avoided by the substituted sources. The global-scale results provided relevant information on the carbon dioxide emissions parameter. The results on the local scale were used as reference values for the implementation of a Gaussian model (Aermod) that allows evaluation of the actual concentration of the pollutants released into the atmosphere. The main results obtained highlight the high energy efficiency of the combined production of heat and electricity, and the opportunity to minimize the environmental impact by including cogeneration in a district heating scheme. © The Author(s) 2014.

  10. An approach for exhaust gas energy recovery of internal combustion engine: Steam-assisted turbocharging

    International Nuclear Information System (INIS)

    Fu, Jianqin; Liu, Jingping; Deng, Banglin; Feng, Renhua; Yang, Jing; Zhou, Feng; Zhao, Xiaohuan

    2014-01-01

    Highlights: • The calculation method for SAT engine was developed and introduced. • SAT can effectively promote the low-speed performances of IC engine. • At 1500 r/min, intake pressure reaches target value and torque is increased by 25%. • The thermal efficiency of SAT engine only has a slight increase. - Abstract: An approach for IC engine exhaust gas energy recovery, named as steam-assisted turbocharging (SAT), is developed to assist the exhaust turbocharger. A steam generating plant is coupled to the exhaust turbocharged engine’s exhaust pipe, which uses the high-temperature exhaust gas to generate steam. The steam is injected into turbine inlet and used as the supplementary working medium for turbine. By this means, turbine output power and then boosting pressure can be promoted due to the increase of turbine working medium. To reveal the advantages and energy saving potentials of SAT, this concept was applied to an exhaust turbocharging engine, and a parameter analysis was carried out. Research results show that, SAT can effectively promote the low-speed performances of IC engine, and make the peak torque shift to low-speed area. At 1500 r/min, the intake gas pressure can reach the desired value and the torque can be increased by 25.0% over the exhaust turbocharging engine, while the pumping mean effective pressure (PMEP) and thermal efficiency only have a slight increase. At 1000 r/min, the improvement of IC engine performances is very limited due to the low exhaust gas energy

  11. Improving material and energy recovery from the sewage sludge and biomass residues.

    Science.gov (United States)

    Kliopova, Irina; Makarskienė, Kristina

    2015-02-01

    Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10-40 mm) of pre-composted materials--sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg(-1) of the net calorific value, about 23% were composted, the rest--evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning, comparison analysis with widely used bio-fuel-sawdust and conclusions made are presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. End-pumped Nd:YAG Q-switched laser with high energy and narrow pulse for glass carving

    Science.gov (United States)

    Ling, Ming; Jin, Guang-yong; Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu

    2009-05-01

    In order to raise the accuracy of glass carving and improve deep cutting, a novel diode end-pumed solid-state laser is researched. Selecting proper volume of laser crytal, one continue wave laser diode which longitudinally pumped Nd:YAG crystal is performed and an applied optics coupling system is designed with self focusing.Computing with ray trace software and MATLAB software, the best parameter is obtained, so pumping beam is coupled efficiently to Nd:YAG.Used a Cr4+:YAG crystal with the singnal transmission of 82% and a line plane-concave cavity, nanosecond narrow pulse is gotten. After two thermal-electrical coolers kept the laser to work at constant temperature instead of water cooling, the volume of laser is markedly reduced. The method of thermal-electrical cooling could increase the system efficiency,achieve the effect of low mode output.Experimental results indicate that the maximum laser output energy in 1064 nm is 118mJ,pulse width is 5 ns, conversion efficiency from light to light is 15.7% under the condition of the incident power of 5 W and the diameter of the output laser spot is less than 1 mm. This end-pumped Nd:YAG Q-switched laser with the light output of high quality and long life, which has 0.01 mm accuracy after lens focusing can satisfy the glass carving with higher precision, rapid speed as well as easy control. It can be used in carving all kinds of glass and replace current CO2 laser.

  13. Advanced simulations of energy demand and indoor climate of passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University...... simulation program ESP-r to model the heat and air flows and the results show the feasibility of the proposed ventilation concept in terms of low energy consumption and good indoor climate....

  14. LCA of local strategies for energy recovery from waste in England, applied to a large municipal flow

    International Nuclear Information System (INIS)

    Tunesi, Simonetta

    2011-01-01

    An intense waste management (WM) planning activity is currently undergoing in England to build the infrastructure necessary to treat residual wastes, increase recycling levels and the recovery of energy from waste. From the analyses of local WM strategic and planning documents we have identified the emerging of three different energy recovery strategies: established combustion of residual waste; pre-treatment of residual waste and energy recovery from Solid Recovered Fuel in a dedicated plant, usually assumed to be a gasifier; pre-treatment of residual waste and reliance on the market to accept the 'fuel from waste' so produced. Each energy recovery strategy will result in a different solution in terms of the technology selected; moreover, on the basis of the favoured solution, the total number, scale and location of thermal treatment plants built in England will dramatically change. To support the evaluation and comparison of these three WM strategy in terms of global environmental impacts, energy recovery possibilities and performance with respect to changing 'fuel from waste' market conditions, the LCA comparison of eight alternative WM scenarios for a real case study dealing with a large flow of municipal wastes was performed with the modelling tool WRATE. The large flow of waste modelled allowed to formulate and assess realistic alternative WM scenarios and to design infrastructural systems which are likely to correspond to those submitted for approval to the local authorities. The results show that all alternative scenarios contribute to saving abiotic resources and reducing global warming potential. Particularly relevant to the current English debate, the performance of a scenario was shown to depend not from the thermal treatment technology but from a combination of parameters, among which most relevant are the efficiency of energy recovery processes (both electricity and heat) and the calorific value of residual waste and pre-treated material. The

  15. Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, Kenneth L

    2013-03-31

    In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile

  16. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.

    Science.gov (United States)

    Papageorgiou, A; Barton, J R; Karagiannidis, A

    2009-07-01

    Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the

  17. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J. R.; Wang, D. [Gas Technology Institute; Bischoff, B.; Ciora, [Media and Process Technology; Radhakrishnan, B.; Gorti, S. B.

    2013-01-14

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina

  18. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK.

    Science.gov (United States)

    Yap, H Y; Nixon, J D

    2015-12-01

    Energy recovery from municipal solid waste plays a key role in sustainable waste management and energy security. However, there are numerous technologies that vary in suitability for different economic and social climates. This study sets out to develop and apply a multi-criteria decision making methodology that can be used to evaluate the trade-offs between the benefits, opportunities, costs and risks of alternative energy from waste technologies in both developed and developing countries. The technologies considered are mass burn incineration, refuse derived fuel incineration, gasification, anaerobic digestion and landfill gas recovery. By incorporating qualitative and quantitative assessments, a preference ranking of the alternative technologies is produced. The effect of variations in decision criteria weightings are analysed in a sensitivity analysis. The methodology is applied principally to compare and assess energy recovery from waste options in the UK and India. These two countries have been selected as they could both benefit from further development of their waste-to-energy strategies, but have different technical and socio-economic challenges to consider. It is concluded that gasification is the preferred technology for the UK, whereas anaerobic digestion is the preferred technology for India. We believe that the presented methodology will be of particular value for waste-to-energy decision-makers in both developed and developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential

    International Nuclear Information System (INIS)

    Briassoulis, D.; Hiskakis, M.; Babou, E.; Antiohos, S.K.; Papadi, C.

    2012-01-01

    Highlights: ► Definition of parameters characterising agricultural plastic waste (APW) quality. ► Analysis of samples to determine APW quality for recycling or energy recovery. ► Majority of APW samples from various countries have very good quality for recycling. ► Upper limit of 50% w/w soil contamination in APW acceptable for energy recovery. ► Chlorine and heavy metals content in APW below the lowest limit for energy recovery. - Abstract: A holistic environmentally sound waste management scheme that transforms agricultural plastic waste (APW) streams into labelled guaranteed quality commodities freely traded in open market has been developed by the European research project LabelAgriWaste. The APW quality is defined by the APW material requirements, translated to technical specifications, for recycling or energy recovery. The present work investigates the characteristics of the APW quality and the key factors affecting it from the introduction of the virgin product to the market to the APW stream reaching the disposer. Samples of APW from different countries were traced from their application to the field through their storage phase and transportation to the final destination. The test results showed that the majority of APW retained their mechanical properties after their use preserving a “very good quality” for recycling in terms of degradation. The degree of soil contamination concerning the APW recycling and energy recovery potential fluctuates depending on the agricultural plastic category and application. The chlorine and heavy metal content of the tested APW materials was much lower than the maximum acceptable limits for their potential use in cement industries.

  20. Potential recovery of industrial wood and energy wood raw material in different cutting and climate scenarios for Finland

    International Nuclear Information System (INIS)

    Kaerkkaeinen, Leena; Nuutinen, Tuula; Matala, Juho; Kellomaeki, Seppo; Haerkoenen, Kari

    2008-01-01

    The aim of this study was to estimate the simultaneous recovery of industrial wood and raw material for energy wood from cuttings in Finland during the next 50 years. Two cutting scenarios (maximum and sustainable cuttings) and two climate scenarios (current and changing climate) were analysed to determine their impacts on harvesting potential. The analysis was carried out using sample plot and tree data from the ninth National Forest Inventory and a management-oriented large-scale forestry model (MELA) into which the transfer functions based on physiological modelling were incorporated to describe the impacts of climate change. Depending on the climate scenario, the volume of potential recovery of industrial wood in the maximum cutting scenario during the period 2003-2013 varied from 103 to 105 million m 3 a -1 , while the amount of potential energy wood raw material was 35 Tg a -1 . During the period 2043-2053, in the current climate scenario, the potential recovery of industrial wood was 64 million m 3 a -1 and energy wood raw material 22 Tg a -1 , and in the changing climate scenario, 85 million m 3 a -1 and 29 Tg a -1 , respectively. In the sustainable cutting scenario, depending on the climate scenario used, the potential recovery of industrial wood during the period 2003-2013 varied from 74 to 76 million m 3 a -1 , while the amount of potential energy wood was 25 Tg a -1 . During the period 2043-2053, in the current climate scenario, the potential recovery of industrial wood was 80 million m 3 a -1 and energy wood raw material 26 Tg a -1 , and in the changing climate scenario, 88 million m 3 a -1 and 29 Tg a -1 , respectively. (author)

  1. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.

    Science.gov (United States)

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H

    2010-07-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas

  2. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration

    International Nuclear Information System (INIS)

    Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H.

    2010-01-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

  3. Experimental studies of 7-cell dual axis asymmetric cavity for energy recovery linac

    Directory of Open Access Journals (Sweden)

    I. V. Konoplev

    2017-10-01

    Full Text Available High average current, transportable energy recovery linacs (ERLs can be very attractive tools for a number of applications including next generation high-luminosity, compact light sources. Conventional ERLs are based on an electron beam circulating through the same set of rf cavity cells. This leads to an accumulation of high-order modes inside the cavity cells, resulting in the development of a beam breakup (BBU instability, unless the beam current is kept below the BBU start current. This limits the maximum current which can be transported through the ERL and hence the intensity of the photon beam generated. It has recently been proposed that splitting the accelerating and decelerating stages, tuning them separately and coupling them via a resonance coupler can increase the BBU start current. The paper presents the first experimental rf studies of a dual axis 7-cell asymmetric cavity and confirms the properties predicted by the theoretical model. The field structures of the symmetric and asymmetric modes are measured and good agreement with the numerical predictions is demonstrated. The operating mode field flatness was also measured and discussed. A novel approach based on the coupled mode (Fano-like model has been developed for the description of the cavity eigenmode spectrum and good agreement between analytical theory, numerical predictions and experimental data is shown. Numerical and experimental results observed are analyzed, discussed and a good agreement between theory and experiment is demonstrated.

  4. Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion.

    Science.gov (United States)

    Jensen, Paul D; Mehta, Chirag M; Carney, Chris; Batstone, D J

    2016-05-01

    Cattle paunch is comprised of partially digested cattle feed, containing mainly grass and grain and is a major waste produced at cattle slaughterhouses contributing 20-30% of organic matter and 40-50% of P waste produced on-site. In this work, Temperature Phased Anaerobic Digestion (TPAD) and struvite crystallization processes were developed at pilot-scale to recover methane energy and nutrients from paunch solid waste. The TPAD plant achieved a maximum sustainable organic loading rate of 1-1.5kgCODm(-3)day(-1) using a feed solids concentration of approximately 3%; this loading rate was limited by plant engineering and not the biology of the process. Organic solids destruction (60%) and methane production (230LCH4kg(-1) VSfed) achieved in the plant were similar to levels predicted from laboratory biochemical methane potential (BMP) testing. Model based analysis identified no significant difference in batch laboratory parameters vs pilot-scale continuous parameters, and no change in speed or extent of degradation. However the TPAD process did result in a degree of process intensification with a high level of solids destruction at an average treatment time of 21days. Results from the pilot plant show that an integrated process enabled resource recovery at 7.8GJ/dry tonne paunch, 1.8kgP/dry tonne paunch and 1.0kgN/dry tonne paunch. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A Comparative Computational Fluid Dynamics Study on an Innovative Exhaust Air Energy Recovery Wind Turbine Generator

    Directory of Open Access Journals (Sweden)

    Seyedsaeed Tabatabaeikia

    2016-05-01

    Full Text Available Recovering energy from exhaust air systems of building cooling towers is an innovative idea. A specific wind turbine generator was designed in order to achieve this goal. This device consists of two Giromill vertical axis wind turbines (VAWT combined with four guide vanes and two diffuser plates. It was clear from previous literatures that no comprehensive flow behavior study had been carried out on this innovative device. Therefore, the working principle of this design was simulated using the Analysis System (ANSYS Fluent computational fluid dynamics (CFD package and the results were compared to experimental ones. It was perceived from the results that by introducing the diffusers and then the guide vanes, the overall power output of the wind turbine was improved by approximately 5% and 34%, respectively, compared to using VAWT alone. In the case of the diffusers, the optimum angle was found to be 7°, while for guide vanes A and B, it was 70° and 60° respectively. These results were in good agreement with experimental results obtained in the previous experimental study. Overall, it can be concluded that exhaust air recovery turbines are a promising form of green technology.

  6. Feasibility Study for High Power RF – Energy Recovery in Particle Accelerators

    CERN Document Server

    Betz, Michael

    2010-01-01

    When dealing with particle accelerators, especially in systems with travelling wave structures and low beam loading, a substantial amount of RF power is dissipated in 50Ω termination loads. For the Super Proton Synchrotron (SPS) at Cern this is 69 % of the incident RF power or about 1 MW. Different ideas, making use of that otherwise dissipated power, are presented and their feasibility is reviewed. The most feasible one, utilizing an array of semiconductor based RF/DC modules, is used to create a design concept for energy recovery in the SPS. The modules are required to operate at high power, high efficiency and with low harmonic radiation. Besides the actual RF rectifier, they contain additional components to ensure a graceful degradation of the overall system. Different rectifier architectures and semiconductor devices are compared and the most suitable ones are chosen. Two prototype devices were built and operated with up to 400 W of pulsed RF power. Broadband measurements – capturing all harmonics up ...

  7. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    Science.gov (United States)

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Bioflocculation of grey water for improved energy recovery within decentralized sanitation concepts.

    Science.gov (United States)

    Hernández Leal, L; Temmink, H; Zeeman, G; Buisman, C J N

    2010-12-01

    Bioflocculation of grey water was tested with a lab-scale membrane bioreactor in order to concentrate the COD. Three concentration factors were tested based on the ratio of sludge retention time (SRT) and hydraulic retention time (HRT): 3, 8 and 12. COD concentration factor was up to 7.1, achieving a final concentration of 7.2 g COD L(-1). Large fractions of suspended COD were recovered in the concentrate (57%, 81% and 82% at SRT/HRT ratios of 3, 8 and 12, respectively) indicating a strong bioflocculation of grey water. A maximum of 11% of COD mineralization of grey water was measured at the longest SRT tested (1 d). The integration of bioflocculation of grey water in decentralized sanitation concepts may increase the overall production of methane by 73%, based on the biogas produced by black water only. Therefore, bioflocculation is a promising grey water pre-treatment step for energy recovery within decentralized sanitation concepts. 2010 Elsevier Ltd. All rights reserved.

  9. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    Directory of Open Access Journals (Sweden)

    H. Hahn

    2010-12-01

    Full Text Available Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC are based on energy recovery linacs (ERLs with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC temperatures in a prototype research and development (R&D five-cell niobium superconducting rf (SRF cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R&D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  10. Axial turbine with underwater generator for energy recovery; Axialturbine mit Unterwassergenerator zur Energierueckgewinnung

    Energy Technology Data Exchange (ETDEWEB)

    Welzel, B. [Stuttgart Univ. (Germany). Inst. fuer Stroemungsmechanik und Hydraulische Stroemungsmaschinen

    1997-12-31

    Within the framework of a project sponsored by the Stiftung Energieforschung Baden-Wuerttemberg, an axial turbine was developed as a flash evaporator, which permits energy recovery in all sectors where liquids in piping undergoes pressure relaxation. A specific feature of this turbine is that it forms part, complete with generator, of a single pipeline and that it does not cause any pressure variations worth mentioning in case of mains failure. The report describes the turbine, its advantages, and a pilot operation carried out with a prototype. The turbine`s performance is compared with a return pump. Further, the optimization of the hydraulic design by computer and the results of a market analysis are dealt with. (orig.) [Deutsch] Im Rahmen einer von der Stiftung Energieforschung Baden-Wuerttemberg gefoerderten Neuentwicklung wurde eine Axialturbine als Entspannungsturbine entwickelt, mit der eine Energierueckgewinnung in allen Bereichen erfolgen kann, in denen Fluessigkeiten in Rohrleitungssystemen entspannt werden. Die Turbine zeichnet sich unter anderem dadurch aus, dass sie komplett, inklusive Generator, innerhalb einer Rohrleitung angeordnet ist und bei Netzausfall keine nennenswerte Druckschwankung erzeugt. Es werden die Turbine, deren Vorteile sowie der mit einem Prototypen durchgefuehrte Betriebsversuch beschrieben. Weiterhin werden ein Vergleich des Betriebsverhaltens mit einer rueckwaertslaufenden Pumpe, die rechnerische Optimierung der hydraulischen Formgebung sowie die Ergebnisse einer Marktanalyse behandelt. (orig.)

  11. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Hahn, H.; Ben-Zvi, I.; Calaga, R.; Hammons, L.; Johnson, E.C.; Kewisch, J.; Litvinenko, V.N.; Xu, W.

    2010-01-01

    Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC) are based on energy recovery linacs (ERLs) with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM) damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC) temperatures in a prototype research and development (R and D) five-cell niobium superconducting rf (SRF) cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R and D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  12. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    Science.gov (United States)

    Hahn, H.; Ben-Zvi, I.; Calaga, R.; Hammons, L.; Johnson, E. C.; Kewisch, J.; Litvinenko, V. N.; Xu, Wencan

    2010-12-01

    Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC) are based on energy recovery linacs (ERLs) with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM) damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC) temperatures in a prototype research and development (R&D) five-cell niobium superconducting rf (SRF) cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R&D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  13. Characterization of Printed Circuit Boards for Metal and Energy Recovery after Milling and Mechanical Separation

    Directory of Open Access Journals (Sweden)

    Waldir A. Bizzo

    2014-06-01

    Full Text Available The proper disposal of electrical and electronic waste is currently a concern of researchers and environmental managers not only because of the large volume of such waste generated, but also because of the heavy metals and toxic substances it contains. This study analyzed printed circuit boards (PCBs from discarded computers to determine their metal content and characterized them as solid waste and fuel. The analysis showed that PCBs consist of approximately 26% metal, made up mainly of copper, lead, aluminum, iron and tin, as well as other heavy metals such as cadmium and nickel. Comparison with the results of other studies indicated that the concentration of precious metals (gold and silver has declined over time. Analysis of the leachate revealed high concentrations of cadmium and lead, giving the residue the characteristics of hazardous waste. After milling the PCBs, we found that larger amounts of metal were concentrated in smaller fractions, while the lightest fraction, obtained by density separation, had a gross calorific value of approximately 11 MJ/kg, although with a high ash content. Milling followed by density separation proved potentially useful for recovery of metals and energy-rich fractions.

  14. Recovery of crown mass for energy with whole-tree skidding methods; Puupolttoaineen tuottaminen kokopuujuontomenetelmillae

    Energy Technology Data Exchange (ETDEWEB)

    Nousiainen, I. [Finntech Ltd Oy, Jyvaeskylae (Finland); Vesisenaho, T. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    The main aim of the project `Recovery of crown mass for energy with whole-tree skidding methods` was to develop the integrated harvesting method of wood raw material and wood fuel based on whole-tree skidding. The developed method gives also the possibility to deliver to sawmills raw material in the form of log section. In the harvesting chain under development whole-trees are felled and bunched with a normal one-grip harvester. The whole-trees are skidded to the roadside by a forwarder equipped with a clam bunk. At the roadside the trees are delimbed and cut with the one-grip harvester used for felling and bunching. According to the results of the field tests the harvesting costs of logging residues are in certain final cutting conditions even under 10 FIM/m{sup 3}, when the average stem size is over 0,500 m{sup 3}. In the developed method felling and bunching of whole trees with the one-grip harvester and skidding of whole-trees with the clam skidder succeeded well. The problems of the method concentrate on delimbing and bucking of whole-trees in landing site

  15. Recovery of crown mass for energy with whole-tree skidding methods; Puupolttoaineen tuottaminen kokopuujuontomenetelmillae

    Energy Technology Data Exchange (ETDEWEB)

    Nousiainen, I [Finntech Ltd Oy, Jyvaeskylae (Finland); Vesisenaho, T [VTT Energy, Jyvaeskylae (Finland)

    1997-12-31

    The main aim of the project `Recovery of crown mass for energy with whole-tree skidding methods` was to develop the integrated harvesting method of wood raw material and wood fuel based on whole-tree skidding. The developed method gives also the possibility to deliver to sawmills raw material in the form of log section. In the harvesting chain under development whole-trees are felled and bunched with a normal one-grip harvester. The whole-trees are skidded to the roadside by a forwarder equipped with a clam bunk. At the roadside the trees are delimbed and cut with the one-grip harvester used for felling and bunching. According to the results of the field tests the harvesting costs of logging residues are in certain final cutting conditions even under 10 FIM/m{sup 3}, when the average stem size is over 0,500 m{sup 3}. In the developed method felling and bunching of whole trees with the one-grip harvester and skidding of whole-trees with the clam skidder succeeded well. The problems of the method concentrate on delimbing and bucking of whole-trees in landing site

  16. Energy recovery of the H2S and CO2 elimination with technology by hybrid plasma

    International Nuclear Information System (INIS)

    Salazar T, J. A.

    2014-01-01

    This document is a research focused on energy recovery from acid gas removal contained in natural gas as hydrogen sulfide (H 2 S) and carbon dioxide (CO 2 ), by obtaining highly energetic gas such as syngas (mixture of hydrogen and carbon monoxide, in particular) using plasma technology in its hybrid form, namely, gliding arc plasma, that has the property to behave like a thermal plasma and cold plasma, besides possessing among other virtues the ability to treat large flows continuously at atmospheric pressure without the need of using noble gases, with a power consumption of no more than 1000 W. Furthermore, this type of plasma has demonstrated to be a clean and efficient not only by high conversion rates of H 2 S (86%) and CO 2 (56%) and high percentages of selectivity in the production of hydrogen (H 2 ) and carbon monoxide carbon (CO) obtained in this work, but because it can even be seriously considered to replace other technologies currently used in the process of sweetening natural gas as adsorption, absorption and sequestering membranes. The results shown are based on a series of analysis, simulations, experiments and calculations, from the design of the plasma generating source based on an impulse-phase circuit, to the electrical characterization results and simulation by acquiring electrical signals, without forgetting the characterization of the resulting chemical components using various analytical techniques such as mass spectrometry, gas chromatography (GC), optical emission spectroscopy (OES), optical spectroscopy Fourier inverse transformed (XRD) and scanning electron microscopy (Sem), X-ray diffraction (XRD) and multi-gas detectors (iBrid MX6). Additionally, performed chemical kinetics and reaction mechanism of the compounds involved in the degradation of H 2 S and CO 2 similar to those experienced as well as the study of energy efficiency (Ece), specific energy (Se), all this to meet a projects needs 127499, entitled -Development of alternative

  17. Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication

    International Nuclear Information System (INIS)

    Lee, Jechan; Yang, Xiao; Cho, Seong-Heon; Kim, Jae-Kon; Lee, Sang Soo; Tsang, Daniel C.W.; Ok, Yong Sik; Kwon, Eilhann E.

    2017-01-01

    Highlights: • CO 2 reacts with VOCs enhancing syngas generation from pyrolysis of biomass. • CO 2 reduces tar formation by expediting thermal cracking of VOCs. • Properties of biochar can be easily modified using CO 2 as a pyrolysis agent. • A detailed mass balance for pyrolysis of red pepper stalk was provided. • Energy saving can be expected in pyrolysis of biomass using CO 2 . - Abstract: This study focused on the mechanistic understanding of CO 2 in pyrolysis process of agricultural waste to achieve waste management, energy recovery, and biochar fabrication. In order to scrutinize the genuine role of CO 2 in the biomass pyrolysis, all pyrogenic products such as syngas, pyrolytic oil (i.e., tar), and biochar generated from pyrolysis of red pepper stalk in N 2 and CO 2 were characterized. Thermo-gravimetric analysis confirmed that during the thermolysis of red pepper stalk, the magnitude of exothermic reaction in CO 2 from 220 to 400 °C was substantially different from that in N 2 , resulting in the different extents of carbonization. The physico-chemical properties of biochar produced in CO 2 were varied compared to biochar produced in N 2 . For example, the surface area of biochar produced in CO 2 was increased from 32.46 to 109.15 m 2 g −1 . This study validates the role of CO 2 not only as expediting agent for the thermal cracking of volatile organic carbons (VOCs) but also as reacting agent with VOCs. This genuine influence of CO 2 in pyrolysis of red pepper stalk led to enhanced generation of syngas, which consequently reduced tar production because VOCs evolving from devolatilization of biomass served as substrates for syngas via reaction between CO 2 and VOCs. The enhanced generation of CO reached up to 3000 and 6000% at 600 and 690 °C, respectively, whereas 33.8% tar reduction in CO 2 was identified at 600 °C.

  18. Performance improvement of a slip energy recovery drive system by a voltage-controlled technique

    Energy Technology Data Exchange (ETDEWEB)

    Tunyasrirut, Satean [Department of Instrumentation Engineering, Faculty of Engineering, Pathumwan Institute of Technology, 833 Rama1 Road, Pathumwan, Bangkok 10330 (Thailand); Kinnares, Vijit [Department of Electrical Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Ngamwiwit, Jongkol [Department of Control Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2010-10-15

    This paper introduces the performance improvement of a slip energy recovery drive system for the speed control of a wound rotor induction motor by a voltage-controlled technique. The slip energy occurred in the rotor circuit is transferred back to ac mains supply through a reactor instead of a step up transformer. The objective of the voltage-controlled technique is to increase power factor of the system and to reduce low order harmonics of the input line current. The drive system is designed and implemented using a voltage source inverter in conjunction with a boost chopper for DC link voltage, instead of a conventional drive using a 6 pulse converter or a Scherbius system. The slip power is recovered by the help of a voltage source inverter (VSI) based on a space vector pulse width modulation (SVPWM) technique. In order to keep the speed of the wound rotor induction motor constant over a certain range of operating conditions, the servo state feedback controller designed by a linear quadratic regulator (LQR) is also introduced in this paper. The overall control system is implemented on DSP, DS1104'TMS320F240 controller board. The performance improvement of the proposed system is tested in comparison with the conventional Scherbius system and the modified conventional Scherbius system by a 12 pulse converter in conjunction with a chopper at steady state and at dynamic conditions. A 220 W wound motor is employed for testing. It is found that the motor speed can be controlled to be constant in the operating range of 450-1200 rpm at no load and full load. It is also found that the efficiency of the proposed system is remarkably increased since the harmonics of the input ac line current is reduced while the ac line input power factor is increased. (author)

  19. Resolving Key Uncertainties in Subsurface Energy Recovery: One Role of In Situ Experimentation and URLs (Invited)

    Science.gov (United States)

    Elsworth, D.

    2013-12-01

    Significant uncertainties remain and influence the recovery of energy from the subsurface. These uncertainties include the fate and transport of long-lived radioactive wastes that result from the generation of nuclear power and have been the focus of an active network of international underground research laboratories dating back at least 35 years. However, other nascent carbon-free energy technologies including conventional and EGS geothermal methods, carbon-neutral methods such as carbon capture and sequestration and the utilization of reduced-carbon resources such as unconventional gas reservoirs offer significant challenges in their effective deployment. We illustrate the important role that in situ experiments may play in resolving behaviors at extended length- and time-scales for issues related to chemical-mechanical interactions. Significantly, these include the evolution of transport and mechanical characteristics of stress-sensitive fractured media and their influence of the long-term behavior of the system. Importantly, these interests typically relate to either creating reservoirs (hydroshearing in EGS reservoirs, artificial fractures in shales and coals) or maintaining seals at depth where the permeating fluids may include mixed brines, CO2, methane and other hydrocarbons. Critical questions relate to the interaction of these various fluid mixtures and compositions with the fractured substrate. Important needs are in understanding the roles of key processes (transmission, dissolution, precipitation, sorption and dynamic stressing) on the modification of effective stresses and their influence on the evolution of permeability, strength and induced seismicity on the resulting development of either wanted or unwanted fluid pathways. In situ experimentation has already contributed to addressing some crucial issues of these complex interactions at field scale. Important contributions are noted in understanding the fate and transport of long-lived wastes

  20. Energy and cost savings potential of oscillating heat pipes for waste heat recovery ventilation

    Directory of Open Access Journals (Sweden)

    Govinda Mahajan

    2017-11-01

    Full Text Available The feasibility of using finned oscillating heat pipes (OHPs for heat exchange between counter-flowing air streams in HVAC air systems (i.e., outdoor and exhaust air flows, along with the associated cost savings in typical North American climates, is investigated. For a prescribed temperature difference and volumetric flow rate of air, rudimentary design parameters for a viable OHP Heat Recovery Ventilator (OHP-HRV were determined using the ε-NTU (effectiveness-Number of Transfer Unit method. The two-phase heat transfer within the OHP-HRV is modeled via effective evaporation/condensation heat transfer coefficients, while the latent heat transfer required to initiate OHP operation via boiling and evaporation is also considered. Results suggest that an OHP-HRV can possess a reasonable pressure drop (5 kW. The proposed OHP-HRV can possess an effectiveness near 0.5 and can pre-cool/heat HVAC air by >5°C. Potential energy and cost savings associated with using an OHP-HRV were estimated for commercial building envelopes in various regions of the United States. It is found that the proposed OHP-HRV can save more than $2500 annually in cities that have continental climatic conditions, such as Chicago and Denver, and for the selected locations the average yearly cost savings per building is found to be on-the-order of $700. Overall, the OHP-HRV shows potential in effectively reducing energy consumption and the operational cost of air handling units in buildings.

  1. Energy to save the world: use of portable nuclear energy for hydrocarbon recovery, electrical generation, and water reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Deal, John R. Grizz; Pearson, Cody [Hyperion Power Generation, Inc., 369 Montezuma Ave, Suite 508, Santa Fe, NM 87501 (United States)

    2010-07-01

    Nuclear-based electric and steam generation has traditionally been limited to large-scale plants that require enormous capital and infrastructure. A new wave of nuclear reactors is ready for introduction into locales and industry that previously have been unable to take advantage of the clean, safe, and cheap energy nuclear affords. One of these 'new kids on the block' is the Hyperion Power Module (HPM), an original design developed in Los Alamos National Laboratory. Through the U.S. government's technology transfer initiative, the exclusive license to develop and commercialize the invention has been granted to Hyperion Power Generation (HPG). The Hyperion Power 'Module' was specifically designed for applications in remote areas where cost, safety, and security is of concern. The Hyperion Power Module, a self-contained, self-regulating reactor, is breaking new ground in the nuclear industry and filling a heretofore-unmet need for moderately sized power applications either distributed or dedicated. Employing proven science in a new way, Hyperion provides a safe, clean power solution for remote locations or locations that must currently employ less than satisfactory alternatives. Generating nearly 70 megawatts of thermal energy and from 25 to 30 megawatts of electrical energy, the Power Module is the world's first small mobile reactor, taking advantage of the natural laws of chemistry and physics and leveraging all of the engineering and technology advancements made over the last fifty years. The HPM is comparable in size to a deep residential hot tub and is designed to be cited underground in a containment vessel. The CEO of Hyperion will outline the benefits of small nuclear reactors by examining their impact on the U.S. economy, national security, the environment, remote regions, and developing nations. The speaker will also focus on the four main applications of the Hyperion Reactor: military bases; oil and gas recovery and refining

  2. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2.

    Science.gov (United States)

    Haakestad, Magnus W; Fonnum, Helge; Lippert, Espen

    2014-04-07

    Mid-infrared (3-5 μm) pulses with high energy are produced using nonlinear conversion in a ZnGeP(2)-based master oscillator-power amplifier, pumped by a Q-switched cryogenic Ho:YLF oscillator. The master oscillator is based on an optical parametric oscillator with a V-shaped 3-mirror ring resonator, and the power amplifier is based on optical parametric amplification in large-aperture ZnGeP(2) crystals. Pulses with up to 212 mJ energy at 1 Hz repetition rate are obtained, with FWHM duration 15 ns and beam quality M(2) = 3.

  3. Development of high gradient superconducting radio frequency cavities for international linear collider and energy recovery linear accelerator

    International Nuclear Information System (INIS)

    Saito, Kenji; Furuta, Fumio; Saeki, Takayuki

    2009-01-01

    Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented. (author)

  4. Development of High Gradient Superconducting Radio Frequency Cavities for International Linear Collider and Energy Recovery Linear Accelerator

    Science.gov (United States)

    Saito, Kenji; Furuta, Fumio; Saeki, Takayuki

    Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented.

  5. Climate change mitigation by recovery of energy from the water cycle: a new challenge for water management.

    Science.gov (United States)

    van der Hoek, J P

    2012-01-01

    Waternet is responsible for drinking water treatment and distribution, wastewater collection and treatment, and surface water management and control (quality and quantity) in and around Amsterdam. Waternet has the ambition to operate climate neutral in 2020. To realise this ambition, measures are required to compensate for the emission of 53,000 ton CO(2)-eq/year. Energy recovery from the water cycle looks very promising. First, calculations reveal that energy recovery from the water cycle in and around Amsterdam may contribute to a total reduction in greenhouse gas emissions up to 148,000 ton CO(2)-eq/year. The challenge for the coming years is to choose combinations of all the possibilities to fulfil the energy demand as much as possible. Only then the use of fossil fuel can be minimized and inevitable greenhouse gas emissions can be compensated, supporting the target to operate climate neutral in 2020.

  6. Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization.

    Science.gov (United States)

    Negro, Viviana; Mancini, Giuseppe; Ruggeri, Bernardo; Fino, Debora

    2016-08-01

    The citrus peels and residue of fruit juices production are rich in d-limonene, a cyclic terpene characterized by antimicrobial activity, which could hamper energy valorization bioprocess. Considering that limonene is used in nutritional, pharmaceutical and cosmetic fields, citrus by-products processing appear to be a suitable feedstock either for high value product recovery or energy bio-processes. This waste stream, more than 10MTon at 2013 in European Union (AIJN, 2014), can be considered appealing, from the view point of conducting a key study on limonene recovery, as its content of about 1%w/w of high value-added molecule. Different processes are currently being studied to recover or remove limonene from citrus peel to both prevent pollution and energy resources recovery. The present review is aimed to highlight pros and contras of different approaches suggesting an energy sustainability criterion to select the most effective one for materials and energy valorization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. New Integrated Multilevel Converter for Switched Reluctance Motor Drives in Plug-in Hybrid Electric Vehicles with Flexible Energy Conversion

    DEFF Research Database (Denmark)

    Gan, Chun; Wu, Jianhua; Hu, Yihua

    2017-01-01

    This paper presents an integrated multilevel converter of switched reluctance motors (SRMs) fed by a modular front-end circuit for plug-in hybrid electric vehicle (PHEV) applications. Several operating modes can be achieved by changing the on-off states of the switches in the front-end circuit......, the battery can be charged by the external AC source or generator when the vehicle is in standstill condition. The SRM-based PHEV can operate at different speeds by coordinating power flow from the generator and battery. Simulation in MATLAB/Simulink and experiments on a three-phase 12/8 SRM confirm...

  8. Ethanol fermentation from molasses at high temperature by thermotolerant yeast Kluyveromyces sp. IIPE453 and energy assessment for recovery.

    Science.gov (United States)

    Dasgupta, Diptarka; Ghosh, Prasenjit; Ghosh, Debashish; Suman, Sunil Kumar; Khan, Rashmi; Agrawal, Deepti; Adhikari, Dilip K

    2014-10-01

    High temperature ethanol fermentation from sugarcane molasses B using thermophilic Crabtree-positive yeast Kluyveromyces sp. IIPE453 was carried out in batch bioreactor system. Strain was found to have a maximum specific ethanol productivity of 0.688 g/g/h with 92 % theoretical ethanol yield. Aeration and initial sugar concentration were tuning parameters to regulate metabolic pathways of the strain for either cell mass or higher ethanol production during growth with an optimum sugar to cell ratio 33:1 requisite for fermentation. An assessment of ethanol recovery from fermentation broth via simulation study illustrated that distillation-based conventional recovery was significantly better in terms of energy efficiency and overall mass recovery in comparison to coupled solvent extraction-azeotropic distillation technique for the same.

  9. Recirculation System for Geothermal Energy Recovery in Sedimentary Formations: Laboratory Experiments and Numerical Simulations

    Science.gov (United States)

    Elkhoury, J. E.; Detwiler, R. L.; Serajian, V.; Bruno, M. S.

    2012-12-01

    Geothermal energy resources are more widespread than previously thought and have the potential for providing a significant amount of sustainable clean energy worldwide. In particular, hot permeable sedimentary formations provide many advantages over traditional geothermal recovery and enhanced geothermal systems in low permeability crystalline formations. These include: (1) eliminating the need for hydraulic fracturing, (2) significant reduction in risk for induced seismicity, (3) reducing the need for surface wastewater disposal, (4) contributing to decreases in greenhouse gases, and (5) potential use for CO2 sequestration. Advances in horizontal drilling, completion, and production technology from the oil and gas industry can now be applied to unlock these geothermal resources. Here, we present experimental results from a laboratory scale circulation system and numerical simulations aimed at quantifying the heat transfer capacity of sedimentary rocks. Our experiments consist of fluid flow through a saturated and pressurized sedimentary disc of 23-cm diameter and 3.8-cm thickness heated along its circumference at a constant temperature. Injection and production ports are 7.6-cm apart in the center of the disc. We used DI de-aired water and mineral oil as working fluids and explored temperatures from 20 to 150 oC and flow rates from 2 to 30 ml/min. We performed experiments on sandstone samples (Castlegate and Kirby) with different porosity, permeability and thermal conductivity to evaluate the effect of hydraulic and thermal properties on the heat transfer capacity of sediments. The producing fluid temperature followed an exponential form with time scale transients between 15 and 45 min. Steady state outflow temperatures varied between 60% and 95% of the set boundary temperature, higher percentages were observed for lower temperatures and flow rates. We used the flow and heat transport simulator TOUGH2 to develop a numerical model of our laboratory setting. Given

  10. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    Science.gov (United States)

    Ma, Zheshu; Chen, Hua; Zhang, Yong

    2017-09-01

    The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  11. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry

    International Nuclear Information System (INIS)

    Chaniago, Yus Donald; Minh, Le Quang; Khan, Mohd Shariq; Koo, Kee-Kahb; Bahadori, Alireza; Lee, Moonyong

    2015-01-01

    Highlights: • Thermally coupled distillation process is proposed for waste solvent recovery. • A systematic optimization procedure is used to optimize distillation columns. • Response surface methodology is applied to optimal design of distillation column. • Proposed advanced distillation allows energy efficient waste solvent recovery. - Abstract: The semiconductor industry is one of the largest industries in the world. On the other hand, the huge amount of solvent used in the industry results in high production cost and potential environmental damage because most of the valuable chemicals discharged from the process are incinerated at high temperatures. A distillation process is used to recover waste solvent, reduce the production-related costs and protect the environment from the semiconductor industrial waste. Therefore, in this study, a distillation process was used to recover the valuable chemicals from semiconductor industry discharge, which otherwise would have been lost to the environment. The conventional sequence of distillation columns, which was optimized using the Box and sequential quadratic programming method for minimum energy objectives, was used. The energy demands of a distillation problem may have a substantial influence on the profitability of a process. A thermally coupled distillation and heat pump-assisted distillation sequence was implemented to further improve the distillation performance. Finally, a comparison was made between the conventional and advanced distillation sequences, and the optimal conditions for enhancing recovery were determined. The proposed advanced distillation configuration achieved a significant energy saving of 40.5% compared to the conventional column sequence

  12. Design and Control of a Multi-Functional Energy Recovery Power Accumulator Battery Pack Testing System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Bo Long

    2014-03-01

    Full Text Available In this paper, aiming at the energy loss and harmonic problems in the conventional power accumulator battery pack testing system (PABPTS, an improved multi-functional energy recovery PABPTS (ERPABPTS for electric vehicles (EVs was proposed. The improved system has the functions of harmonic detection, suppression, reactive compensation and energy recovery. The ERPABPTS, which contains a bi-directional buck-boost direct current (DC-DC converter and a bi-directional alternating current (AC-DC converter with an inductor-capacitor-inductor (LCL type filter interfacing to the AC-grid, is proposed. System configuration and operation principle of the combined system are discussed first, then, the reactive compensation and harmonic suppression controller under balanced grid-voltage condition are presented. Design of a fourth order band-pass Butterworth filter for current harmonic detection is put forward, and the reactive compensator design procedure considering the non-linear load is also illustrated. The proposed scheme is implemented in a 175-kW prototype in the laboratory. Simulation and experimental results show that the combined configuration can effectively realize energy recovery for high accuracy current test requirement, meanwhile, can effectively achieve reactive compensation and current harmonic suppression.

  13. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    Directory of Open Access Journals (Sweden)

    Ma Zheshu

    2017-09-01

    Full Text Available The increase of ship’s energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI and energy efficiency operational indicator (EEOI aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  14. Cryogenic system for the Energy Recovery Linac and vertical test facility at BNL

    International Nuclear Information System (INIS)

    Than, R.; Soria, V.; Lederle, D.; Orfin, P.; Porqueddu, R.; Talty, P.; Zhang, Y.; Tallerico, T.; Masi, L.

    2011-01-01

    A small cryogenic system and warm helium vacuum pumping system provides cooling to either the Energy Recovery Linac's (ERL) cryomodules that consist of a 5-cell cavity and an SRF gun or a large Vertical Test Dewar (VTD) at any given time. The cryogenic system consists of a model 1660S PSI piston plant, a 3800 liter storage dewar, subcooler, a wet expander, a 50 g/s main helium compressor, and a 170 m 3 storage tank. A system description and operating plan of the cryogenic plant and cryomodules is given. The cryogenic system for ERL and the Vertical Test Dewar has a plant that can produce the equivalent of 300W at 4.5K with the addition of a wet expander 350 W at 4.5K. Along with this system, a sub-atmospheric, warm compression system provides pumping to produce 2K at the ERL cryomodules or the Vertical Test Dewar. The cryogenic system for ERL and the Vertical Test Dewar makes use of existing equipment for putting a system together. It can supply either the ERL side or the Vertical Test Dewar side, but not both at the same time. Double valve isolation on the liquid helium supply line allows one side to be warmed to room temperature and worked on while the other side is being held at operating temperature. The cryogenic system maintain the end loads from 4.4K to 2K or colder depending on capacity. Liquid helium storage dewar capacity allows ERL or the VTD to operate above the plant's capacity when required and ERL cryomodules ballast reservoirs and VTD reservoir allows the end loads to operate on full vacuum pump capacity when required.

  15. Comparative life cycle assessment of alternative strategies for energy recovery from used cooking oil.

    Science.gov (United States)

    Lombardi, Lidia; Mendecka, Barbara; Carnevale, Ennio

    2018-06-15

    The separate collection of Used Cooking Oil (UCO) is gaining popularity through several countries in Europe. An appropriate management of UCO waste stream leads to substantial benefits. In this study, we analyse two different possibilities of UCO energy reuse: the direct feed to a reciprocating internal combustion engine (ICE) for cogeneration purpose, and the processing to generate biodiesel. Concerning biodiesel production, we analyse four among conventional and innovative technologies, characterised by different type and amount of used chemicals, heat and electricity consumptions and yields. We perform a systematic evaluation of environmental benefits and drawbacks by applying life cycle assessment (LCA) analysis to compare the alternatives. For the impact assessment, two methods are selected: the Global Warming Potential (GWP) and Cumulative Exergy Consumption (CExC). Results related only to the processing phases (i.e. not including yet the avoided effects) show that the recovery of UCO in cogeneration plant has in general lower values in terms of environmental impacts than its employment in biodiesel production. When products and co-products substitution are included, the savings obtained by the substitution of conventional diesel production, in the biodiesel cases, are significantly higher than the avoided effects for electricity and heat in the cogeneration case. In particular, by using the UCO in the biodiesel production processes, the savings vary from 41.6 to 54.6 GJ ex per tUCO, and from 2270 to 2860 kg CO 2eq per tUCO for CExC and GWP, respectively. A particular focus is put on sensitivity and uncertainty analyses. Overall, high uncertainty of final results for process impacts is observed, especially for the supercritical methanol process. Low uncertainty values are evaluated for the avoided effects. Including the uncertain character of the impacts, cogeneration scenario and NaOH catalysed process of biodiesel production result to be the most suitable

  16. Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yang Na [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Chen Miao; Shao Liming [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); He Pinjing, E-mail: xhpjk@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-12-15

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

  17. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery.

    Science.gov (United States)

    Yang, Na; Zhang, Hua; Chen, Miao; Shao, Li-Ming; He, Pin-Jing

    2012-12-01

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO(2)-eq t(-1) rw. Within all process stages, the emission of fossil CO(2) from the combustion of MSW was the main contributor (111-254 kg CO(2)-eq t(-1) rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO(2)-eq t(-1) rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Osmotically-driven membrane processes for water reuse and energy recovery

    Science.gov (United States)

    Achilli, Andrea

    Osmotically-driven membrane processes are an emerging class of membrane separation processes that utilize concentrated brines to separate liquid streams. Their versatility of application make them an attractive alternative for water reuse and energy production/recovery. This work focused on innovative applications of osmotically-driven membrane processes. The novel osmotic membrane bioreactor (OMBR) system for water reuse was presented. Experimental results demonstrated high sustainable flux and relatively low reverse diffusion of solutes from the draw solution into the mixed liquor. Membrane fouling was minimal and controlled with osmotic backwashing. The OMBR system was found to remove greater than 99% of organic carbon and ammonium-nitrogen. Forward osmosis (FO) can employ different draw solution in its process. More than 500 inorganic compounds were screened as draw solution candidates, the desktop screening process resulted in 14 draw solutions suitable for FO applications. The 14 draw solutions were then tested in the laboratory to evaluate water flux and reverse salt diffusion through the membrane. Results indicated a wide range of water flux and reverse salt diffusion depending on the draw solution utilized. Internal concentration polarization was found to lower both water flux and reverse salt diffusion by reducing the draw solution concentration at the interface between the support and dense layer of the membrane. A small group of draw solutions was found to be most suitable for FO processes with currently available FO membranes. Another application of osmotically-driven membrane processes is pressure retarded osmosis (PRO). PRO was investigated as a viable source of renewable energy. A PRO model was developed to predict water flux and power density under specific experimental conditions. The predictive model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to

  19. Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.

    2012-09-15

    discharge. Such a new system may offer a promising avenue for drinking water treatment and energy recovery. (Author)

  20. A low-rank matrix recovery approach for energy efficient EEG acquisition for a wireless body area network.

    Science.gov (United States)

    Majumdar, Angshul; Gogna, Anupriya; Ward, Rabab

    2014-08-25

    We address the problem of acquiring and transmitting EEG signals in Wireless Body Area Networks (WBAN) in an energy efficient fashion. In WBANs, the energy is consumed by three operations: sensing (sampling), processing and transmission. Previous studies only addressed the problem of reducing the transmission energy. For the first time, in this work, we propose a technique to reduce sensing and processing energy as well: this is achieved by randomly under-sampling the EEG signal. We depart from previous Compressed Sensing based approaches and formulate signal recovery (from under-sampled measurements) as a matrix completion problem. A new algorithm to solve the matrix completion problem is derived here. We test our proposed method and find that the reconstruction accuracy of our method is significantly better than state-of-the-art techniques; and we achieve this while saving sensing, processing and transmission energy. Simple power analysis shows that our proposed methodology consumes considerably less power compared to previous CS based techniques.

  1. Costs, CO{sub 2}- and primary energy balances of forest-fuel recovery systems at different forest productivity

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Lisa; Gustavsson, Leif [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-05-15

    Here we examine the cost, primary energy use, and net carbon emissions associated with removal and use of forest residues for energy, considering different recovery systems, terrain, forwarding distance and forest productivity. We show the potential recovery of forest fuel for Sweden, its costs and net carbon emissions from primary energy use and avoided fossil carbon emissions. The potential annual net recovery of forest fuel is about 66 TWh, which would cost one billion EUR{sub 2005} to recover and would reduce fossil emissions by 6.9 Mt carbon if coal were replaced. Of the forest fuel, 56% is situated in normal terrain with productivity of >30 t dry-matter ha{sup -1} and of this, 65% has a forwarding distance of <400 m. In normal terrain with >30 t dry-matter ha{sup -1} the cost increase for the recovery of forest fuel, excluding stumps, is around 4-6% and 8-11% for medium and longer forwarding distances, respectively. The stump and small roundwood systems are less cost-effective at lower forest fuel intensity per area. For systems where loose material is forwarded, less dry-matter per hectare increases costs by 6-7%, while a difficult terrain increases costs by 3-4%. Still, these systems are quite cost-effective. The cost of spreading ash is around 40 EUR{sub 2005} ha{sup -1}, while primary energy use for spreading ash in areas where logging residues, stumps, and small roundwood are recovered is about 0.025% of the recovered bioenergy. (author)

  2. The Effect of a Dairy-Based Recovery Beverage on Post-Exercise Appetite and Energy Intake in Active Females

    Science.gov (United States)

    Brown, Meghan A.; Green, Benjamin P.; James, Lewis J.; Stevenson, Emma J.; Rumbold, Penny L. S.

    2016-01-01

    This study was designed to assess the effect of a dairy-based recovery beverage on post-exercise appetite and energy intake in active females. Thirteen active females completed three trials in a crossover design. Participants completed 60 min of cycling at 65% V̇O2peak, before a 120 min recovery period. On completion of cycling, participants consumed a commercially available dairy-based beverage (DBB), a commercially available carbohydrate beverage (CHO), or a water control (H2O). Non-esterified fatty acids, glucose, and appetite-related peptides alongside measures of subjective appetite were sampled at baseline and at 30 min intervals during recovery. At 120 min, energy intake was assessed in the laboratory by ad libitum assessment, and in the free-living environment by weighed food record for the remainder of the study day. Energy intake at the ad libitum lunch was lower after DBB compared to H2O (4.43 ± 0.20, 5.58 ± 0.41 MJ, respectively; p = 0.046; (95% CI: −2.28, −0.20 MJ)), but was not different to CHO (5.21 ± 0.46 MJ), with no difference between trials thereafter. Insulin and GLP-17-36 were higher following DBB compared to H2O (p = 0.015 and p = 0.001, respectively) but not to CHO (p = 1.00 and p = 0.146, respectively). In addition, glucagon was higher following DBB compared to CHO (p = 0.008) but not to H2O (p = 0.074). The results demonstrate that where DBB consumption may manifest in accelerated recovery, this may be possible without significantly affecting total energy intake and subsequent appetite-related responses relative to a CHO beverage. PMID:27338460

  3. Energy recovery potential and life cycle impact assessment of municipal solid waste management technologies in Asian countries using ELP model

    Energy Technology Data Exchange (ETDEWEB)

    Pandyaswargo, Andante Hadi; Onoda, Hiroshi; Nagata, Katsuya [Waseda Univ., Saitama (Japan). Graduate School of Environment and Energy Engineering

    2012-11-01

    Natural resource scarcity and the effects of environmental destruction have pushed societies to use and reuse resources more efficiently. Waste should no longer be seen as a burden but rather as another source of material such as energy fuel. This study analyzes the potential of three waste management technologies - incineration with energy recovery, composting, and sanitary landfill gas collection - as ways to recover energy and material from municipal solid waste. The study applies the environmental load point (ELP) method and utilizes municipal waste characteristics and composition from India, Indonesia, and China as case studies. The ELP methodology employs integrated weighting in the quantification process to get a one-unit result. This study particularly uses analytic hierarchical process questionnaires to get the weighting value of the nine impact categories: energy depletion, global warming, ozone depletion, resource consumption, ecosystem influence, water pollution, waste disposal, air pollution, and acid rain. The results show that the scenario which includes composting organic waste and sanitary landfill with gas collection for energy recovery has medium environmental impact and the highest practicability. The optimum material and energy potential is from the Chinese case study in which 254 tonnes of compost fertilizer and 60 MWh of electricity is the estimated output for every 1,000 tonnes of waste treated. (orig.)

  4. A Single-Stage LED Tube Lamp Driver with Power-Factor Corrections and Soft Switching for Energy-Saving Indoor Lighting Applications

    Directory of Open Access Journals (Sweden)

    Chun-An Cheng

    2017-01-01

    Full Text Available This paper presents a single-stage alternating current (AC/direct current (DC light-emitting diode (LED tube lamp driver for energy-saving indoor lighting applications; this driver features power-factor corrections and soft switching, and also integrates a dual buck-boost converter with coupled inductors and a half-bridge series resonant converter cascaded with a bridge rectifier into a single-stage power-conversion topology. The features of the presented driver are high efficiency (>91%, satisfying power factor (PF > 0.96, low input-current total-harmonic distortion (THD < 10%, low output voltage ripple factor (<7.5%, low output current ripple factor (<8%, and zero-voltage switching (ZVS obtained on both power switches. Operational principles are described in detail, and experimental results obtained from an 18 W-rated LED tube lamp for T8/T10 fluorescent lamp replacements with input utility-line voltages ranging from 100 V to 120 V have demonstrated the functionality of the presented driver suitable for indoor lighting applications.

  5. Active energy recovery clamping circuit to improve the performance of power converters

    Science.gov (United States)

    Whitaker, Bret; Barkley, Adam

    2017-05-09

    A regenerative clamping circuit for a power converter using clamping diodes to transfer charge to a clamping capacitor and a regenerative converter to transfer charge out of the clamping capacitor back to the power supply input connection. The regenerative converter uses a switch connected to the midpoint of a series connected inductor and capacitor. The ends of the inductor and capacitor series are connected across the terminals of the power supply to be in parallel with the power supply.

  6. A reduced switch count UPF power conditioner for grid connected variable speed wind energy conversion system employing PM generators: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Raju, A.B.; Fernandes, B.G.; Chatterjee, K. [Indian Institute of Technology, Mumbai (India). Dept. of Electrical Engineering

    2004-07-01

    In this paper, modelling and simulation of a grid connected variable speed wind energy conversion system (VSWECS) with reduced switch count power converter is presented. The system consists of a permanent magnet synchronous generator (PMSG), two-pulse width modulated B-4 power converters and a maximum power point tracker (MPPT). Mathematical models of each element of the system are developed separately and are then integrated to simulate the whole system for various wind velocities. The complete system is simulated using MATLAB/SIMULINK and simulation results are presented. (author)

  7. Acoustically assisted spin-transfer-torque switching of nanomagnets: An energy-efficient hybrid writing scheme for non-volatile memory

    International Nuclear Information System (INIS)

    Biswas, Ayan K.; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2013-01-01

    We show that the energy dissipated to write bits in spin-transfer-torque random access memory can be reduced by an order of magnitude if a surface acoustic wave (SAW) is launched underneath the magneto-tunneling junctions (MTJs) storing the bits. The SAW-generated strain rotates the magnetization of every MTJs' soft magnet from the easy towards the hard axis, whereupon passage of a small spin-polarized current through a target MTJ selectively switches it to the desired state with > 99.99% probability at room temperature, thereby writing the bit. The other MTJs return to their original states at the completion of the SAW cycle

  8. Tattoo removal in micropigs with low-energy pulses from a Q-switched Nd:YAG laser at 1064 nm

    Science.gov (United States)

    Hu, Xin-Hua; Wooden, W. A.; Cariveau, Mickael J.; Fang, Qiyin; Bradfield, J. F.; Kalmus, Gerhard W.; Vore, S. J.; Sun, Y.

    2001-05-01

    Treatment of pigmented lesions in skin with visible or near- infrared nanosecond (ns) laser pulses often causes significant collateral tissue damage because the current approach uses pulses with energy of 300 mJ or larger. Additionally, this requires large Q-switched laser systems. To overcome these disadvantages, we have investigated a different approach in delivering ns laser pulses for cutaneous lesion treatment. Tattoo removal in an animal model with a focused laser beam from a Q-switched Nd:YAG laser has been investigated in two Yucatan micropigs tattooed with blue, black, green and red pigments. The tattoos were treated with a focused beam of 12-ns pulses at 1064 nm, with different depth under the skin surface, while the micropig was translated to achieve an effect of single pulse per ablation site in the skin. With the pulse energy reduced to a range from 38 to 63 mJ, we found that nearly complete clearance was achieved for blue and black tattoos while clearance of red and green tattoos was incomplete. Analysis of the skin appearance suggested that the pulse energy can be decreased to below 20 mJ which may lead to further reduction of the collateral tissue damage and improve the clearance of red and green tattoos.

  9. Efficiency of energy recovery from municipal solid waste and the resultant effect on the greenhouse gas balance.

    Science.gov (United States)

    Gohlke, Oliver

    2009-11-01

    Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.

  10. Heat recovery and energy saving using a Baker Perkins Simplex 2000 bread baking oven. A demonstration at Mothers Pride Bakery

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    A report is given of a new bread oven, a Baker Perkins Simplex 2000, installed at British Bakeries' Watnall plant under the Energy Efficiency Demonstration Scheme. The energy saving features include 1) a new design of heating system, 2) combustion air pre-heated with burner flue gases, 3) heat recovery from oven chamber to heat hot water and 4) an in-line lidding system. Results are presented for an independent monitoring of both the new oven and one of a conventional design to compare energy consumption and performance. It is shown that the simplex 2000 reduced energy costs at the Watnall plant by Pound 45,900/year. Additional benefits of the new oven include reduced production labour requirements and an increase in productivity of 100% compared with previous models. (UK).

  11. Energy recovery from waste food by combustion or gasification with the potential for regenerative dehydration: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Caton, P.A.; Carr, M.A.; Kim, S.S.; Beautyman, M.J. [US Naval Academy, Department of Mechanical Engineering, 590 Holloway Road, Annapolis, MD 21402 (United States)

    2010-06-15

    Energy recovery from food waste was studied using the food service at the US Naval Academy as a case study. Post-consumer food waste was captured over a period of ten days to estimate individual waste per meal and total waste per month. The food waste was analyzed for chemical composition and water content using ultimate and proximate analysis, and for energy content, and compared with the same analyses of wood (a more typical biomass fuel). Three different samples of food waste showed relative uniformity of properties despite being sampled on different days, with different menus. Food waste had lower oxygen content, higher nitrogen and ash content, and higher energy content than wood. The food waste in this study had approximately 70% water content. Temperatures and emissions from combustion of wood pellets, dried pelletized food waste, and dried non-pelletized food waste were measured and compared using a modified residential pellet stove. Temperatures were higher for food waste due to the higher energy content. Emissions of NO, HC, and soot were slightly higher for food waste. Despite the large water content, thermodynamic analysis showed that regenerative dehydration, in which waste energy from the combustion system is used to remove water from the incoming wet fuel, is possible. An excess enthalpy ratio is defined to formalize the comparison of waste sensible enthalpy with the energy required for dehydration. Analysis of fuel-lean combustion and fuel-rich gasification shows that little, if any, external energy would necessarily be required to remove the water from the incoming fuel. An equilibrium model was used to simulate waste food gasification by extending the simulation to high water content levels. Probable ranges for successful food waste gasification are identified. Energy recovery of waste food could result in cost savings by offsetting traditional fuel-use (e.g. natural gas for heating) and by reducing disposal costs. (author)

  12. Energy recovery from waste food by combustion or gasification with the potential for regenerative dehydration: A case study

    International Nuclear Information System (INIS)

    Caton, P.A.; Carr, M.A.; Kim, S.S.; Beautyman, M.J.

    2010-01-01

    Energy recovery from food waste was studied using the food service at the US Naval Academy as a case study. Post-consumer food waste was captured over a period of ten days to estimate individual waste per meal and total waste per month. The food waste was analyzed for chemical composition and water content using ultimate and proximate analysis, and for energy content, and compared with the same analyses of wood (a more typical biomass fuel). Three different samples of food waste showed relative uniformity of properties despite being sampled on different days, with different menus. Food waste had lower oxygen content, higher nitrogen and ash content, and higher energy content than wood. The food waste in this study had approximately 70% water content. Temperatures and emissions from combustion of wood pellets, dried pelletized food waste, and dried non-pelletized food waste were measured and compared using a modified residential pellet stove. Temperatures were higher for food waste due to the higher energy content. Emissions of NO, HC, and soot were slightly higher for food waste. Despite the large water content, thermodynamic analysis showed that regenerative dehydration, in which waste energy from the combustion system is used to remove water from the incoming wet fuel, is possible. An excess enthalpy ratio is defined to formalize the comparison of waste sensible enthalpy with the energy required for dehydration. Analysis of fuel-lean combustion and fuel-rich gasification shows that little, if any, external energy would necessarily be required to remove the water from the incoming fuel. An equilibrium model was used to simulate waste food gasification by extending the simulation to high water content levels. Probable ranges for successful food waste gasification are identified. Energy recovery of waste food could result in cost savings by offsetting traditional fuel-use (e.g. natural gas for heating) and by reducing disposal costs.

  13. New solid state opening switches for repetitive pulsed power technology

    Energy Technology Data Exchange (ETDEWEB)

    Lyubutin, S K; Mesyats, G A; Rukin, S N; Slovikovskii, B G; Turov, A M [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Electrophysics

    1997-12-31

    In 1991 the authors discovered a semiconductor opening switch (SOS) effect that occurs in p{sup +}-p-n-n{sup +} silicon structures at a current density of up to 60 kA/cm{sup 2}. This effect was used to develop high-power semiconductor opening switches in intermediate inductive storage circuits. The breaking power of the opening switches was as high as 5 GW, the interrupted current being up to 45 kA, reverse voltage up to 1 MV and the current interruption time between 10 and 60 ns. The opening switches were assembled from quantity-produced Russian-made rectifying diodes type SDL with hard recovery characteristic. On the basis of experimental and theoretical investigations of the SOS effect, new SOS diodes were designed and manufactured by the Electrophysical Institute. The paper gives basic parameters of the SOS diodes. The new diodes offer higher values of interrupted current and shorter times of current interruption together with a considerable increase in the energy switching efficiency. The new SOS diodes were used to develop repetitive all-solid-state pulsed generators with an output voltage of up to 250 kV, pulse repetition rate up to 5 kHz, and pulse duration between 10 and 30 ns. (author). 2 tabs., 3 figs., 4 refs.

  14. Energy recovery from waste processing; La recuperation de l'energie issue du traitement des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, H.

    2000-07-15

    This report discusses the feasibility of energy production by waste reprocessing. After an analysis of the situation, the different steps of the methane and gas production, are detailed. Many scenari of energy efficiency are compared. The report proposes also solutions to enhance the treatment units of energy production. Propositions are discussed around five main axis: the energy improvement and the product improvement, the safety and the public health, the compensation by economical tools of the greenhouse effect impacts, the competition equilibrium between energy produced by the wastes and other energy forms and the decrease of the processing cost of wastes producing energy. (A.L.B.)

  15. Energy recovery on a thermo-refrigerating pump: 56% of saving; Recuperation d'energie sur une thermofrigopompe: 56% d'economie

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2002-12-01

    Air conditioning engineering in medical buildings is characterized by very specific constraints. The quality and safety of the care given to patients depends on the mastery of ambient temperature conditions, hygrometry, and air hygiene. For these reasons, the Protestant hospital of Caluire (69, France) has chosen a thermo-refrigerating pump/heat pump for its air conditioning: simultaneous production of heat and coldness, three modes of operation (winter, summer and mid-seasons), thermal comfort adapted to each type of room, instrumentation for the quantification of the thermal performances of the installation, and 56% of the energy needs are supplied by the energy recovery made on the pump. (J.S.)

  16. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances.

    Science.gov (United States)

    Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H

    2012-05-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water).

    Science.gov (United States)

    Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced. (c) IWA Publishing 2008.

  18. A Thermal Energy Recovery System and its Applications in Building (A Short Comunication

    Directory of Open Access Journals (Sweden)

    Afsane Chavoshani

    2016-01-01

    Full Text Available In this paper a heat recovery system from oil heater as a water heater is proposed and analyzed. The potential of heat recovery is studied technically and economically. A model was built and experiments on it are discussed. Recovery of waste heat from the oil heater stack and its application in building is proven to be economically beneficial. The most part of this apparatus was a double-walled tanks and oil heater stack act as firebox for water heater. This tank with 200 liters volume was made of galvanized iron sheets and painted with black color for adsorption of solar radiation. The tank of water heater was filled with 12-15○C water. Sampling was performed at 8 in the morning to 8 at night during one week. The analysis results show that the heat recovery system is recognized as a well option for the examined residential building from both economic and environmental points of view. With the operation considering optimal economic benefits, cost is reduced by about 50%. With maximizing the environmental advantages, CO2 emissions are decreased.

  19. Load ratio determines the ammonia recovery and energy input of an electrochemical system

    NARCIS (Netherlands)

    Rodríguez Arredondo, Mariana; Kuntke, Philipp; Heijne, Ter Annemiek; Hamelers, Hubertus V.M.; Buisman, Cees J.N.

    2017-01-01

    Complete removal and recovery of total ammonia nitrogen (TAN) from wastewaters in (bio)electrochemical systems has proven to be a challenge. The system performance depends on several factors, such as current density, TAN loading rate and pH. The interdependence among these factors is not well

  20. Work-family balance and energy : a day-level study on recovery conditions

    NARCIS (Netherlands)

    Sanz-Vergel, A.I.; Demerouti, E.; Moreno-Jiménez, B.; Mayo, M.

    2010-01-01

    The present study examines whether daily recovery inhibiting and enhancing conditions predict day-levels of work-family conflict (WFC), work-family facilitation (WFF), exhaustion and vigor. Forty-nine individuals from various professional backgrounds in Spain provided questionnaire and daily survey

  1. Work-Family Balance and Energy: A Day-Level Study on Recovery Conditions

    Science.gov (United States)

    Sanz-Vergel, Ana Isabel; Demerouti, Evangelia; Moreno-Jimenez, Bernardo; Mayo, Margarita

    2010-01-01

    The present study examines whether daily recovery inhibiting and enhancing conditions predict day-levels of work-family conflict (WFC), work-family facilitation (WFF), exhaustion and vigor. Forty-nine individuals from various professional backgrounds in Spain provided questionnaire and daily survey measures over a period of five working days.…

  2. Isolated converter with synchronized switching leg

    NARCIS (Netherlands)

    2003-01-01

    An amplification device is disclosed providing a way of integrating a switch mode power supply and a class D amplifier (switch mode amplifier). This results in the usage of basically one magnetic component (1), one major energy storage element (4) and switches (20, 30) that are controlled in such a

  3. A gain-coefficient switched Alexandrite laser

    International Nuclear Information System (INIS)

    Lee, Chris J; Van der Slot, Peter J M; Boller, Klaus-J

    2013-01-01

    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.

  4. Switching Phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).

  5. RF-MEMS capacitive switches with high reliability

    Science.gov (United States)

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  6. Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations.

    Science.gov (United States)

    Fernández-Arévalo, T; Lizarralde, I; Fdz-Polanco, F; Pérez-Elvira, S I; Garrido, J M; Puig, S; Poch, M; Grau, P; Ayesa, E

    2017-07-01

    The growing development of technologies and processes for resource treatment and recovery is offering endless possibilities for creating new plant-wide configurations or modifying existing ones. However, the configurations' complexity, the interrelation between technologies and the influent characteristics turn decision-making into a complex or unobvious process. In this frame, the Plant-Wide Modelling (PWM) library presented in this paper allows a thorough, comprehensive and refined analysis of different plant configurations that are basic aspects in decision-making from an energy and resource recovery perspective. In order to demonstrate the potential of the library and the need to run simulation analyses, this paper carries out a comparative analysis of WWTPs, from a techno-economic point of view. The selected layouts were (1) a conventional WWTP based on a modified version of the Benchmark Simulation Model No. 2, (2) an upgraded or retrofitted WWTP, and (3) a new Wastewater Resource Recovery Facilities (WRRF) concept denominated as C/N/P decoupling WWTP. The study was based on a preliminary analysis of the organic matter and nutrient energy use and recovery options, a comprehensive mass and energy flux distribution analysis in each configuration in order to compare and identify areas for improvement, and a cost analysis of each plant for different influent COD/TN/TP ratios. Analysing the plants from a standpoint of resources and energy utilization, a low utilization of the energy content of the components could be observed in all configurations. In the conventional plant, the COD used to produce biogas was around 29%, the upgraded plant was around 36%, and 34% in the C/N/P decoupling WWTP. With regard to the self-sufficiency of plants, achieving self-sufficiency was not possible in the conventional plant, in the upgraded plant it depended on the influent C/N ratio, and in the C/N/P decoupling WWTP layout self-sufficiency was feasible for almost all influents

  7. A comparison of the energy use of in situ product recovery techniques for the Acetone Butanol Ethanol fermentation.

    Science.gov (United States)

    Outram, Victoria; Lalander, Carl-Axel; Lee, Jonathan G M; Davis, E Timothy; Harvey, Adam P

    2016-11-01

    The productivity of the Acetone Butanol Ethanol (ABE) fermentation can be significantly increased by application of various in situ product recovery (ISPR) techniques. There are numerous technically viable processes, but it is not clear which is the most economically viable in practice. There is little available information about the energy requirements and economics of ISPR for the ABE fermentation. This work compares various ISPR techniques based on UniSim process simulations of the ABE fermentation. The simulations provide information on the process energy and separation efficiency, which is fed into an economic assessment. Perstraction was the only technique to reduce the energy demand below that of a batch process, by approximately 5%. Perstraction also had the highest profit increase over a batch process, by 175%. However, perstraction is an immature technology, so would need significant development before being integrated to an industrial process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Bio-oil production from hydrothermal liquefaction of Pteris vittata L.: Effects of operating temperatures and energy recovery.

    Science.gov (United States)

    Chen, Jinbo

    2018-06-14

    Hyper-accumulator biomass, Pteris vittata L., was hydrothermally converted into bio-oils via hydrothermal liquefaction (HTL) in sub-supercritical water. The distributions and characterizations of various products as well as energy recovery under different temperatures (250-390 °C) were investigated. The highest bio-oil yield of 16.88% was obtained at 350 °C with the hydrothermal conversion of 61.79%, where the bio-oil was dominated by alcohols, esters, phenols, ketones and acidic compounds. The higher heating values of bio-oil were in the range of 19.93-35.45 MJ/kg with a H/C ratio of 1.26-1.46, illustrating its high energy density and potential for use as an ideal liquid fuel. The main gaseous products were CO 2 , H 2 , CO, and CH 4 with the H 2 yield peaking at 22.94%. The total energy recovery from bio-oils and solid residues fell within the range of 37.72-45.10%, highlighting the potential of HTL to convert hyper-accumulator biomass into valuable fuels with high conversion efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Recovery of biogas as a source of renewable energy from ice-cream production residues and wastewater.

    Science.gov (United States)

    Demirel, Burak; Orok, Murat; Hot, Elif; Erkişi, Selin; Albükrek, Metin; Onay, Turgut T

    2013-01-01

    Proper management of waste streams and residues from agro-industry is very important to prevent environmental pollution. In particular, the anaerobic co-digestion process can be used as an important tool for safe disposal and energy recovery from agro-industry waste streams and residues. The primary objective of this laboratory-scale study was to determine whether it was possible to recover energy (biogas) from ice-cream production residues and wastewater, through a mesophilic anaerobic co-digestion process. A high methane yield of 0.338 L CH4/gCOD(removed) could be achieved from anaerobic digestion of ice-cream wastewater alone, with almost 70% of methane in biogas, while anaerobic digestion of ice-cream production residue alone did not seem feasible. When wastewater and ice-cream production residue were anaerobically co-digested at a ratio of 9:1 by weight, the highest methane yield of 0.131 L CH4/gCOD(removed) was observed. Buffering capacity seemed to be imperative in energy recovery from these substrates in the anaerobic digestion process.

  10. Passive solar energy recovery in non-transparent facades; Passive solare Energiegewinnung im nicht-transparenten Fassadenbereich

    Energy Technology Data Exchange (ETDEWEB)

    Liersch, K.W. [Brandenburgische Technische Univ. Cottbus (Germany). Lehrstuhl fuer Baukonstruktion und Bauphysik

    1999-10-01

    Evaluation of theoretical and practical studies has shown that non-bearing glass facades of reduced transparency hold a considerable potential for energy recovery. The most important factors governing this process are solar irradiation and inhibition of reflection in the long-wave range. Net energy recovery can be expressed in terms of the decrease of the mean effective heat transmission coefficient. The achievable gains are the smaller the more effective the heat insulating properties of the wall are, i.e. the lower the U-value of the non-transparent wall is. In the case of outer walls with additional heat insulation and a heat transmission coefficient of less than k{sub w} = approx. 0.25 W/ (m-2K) energy recovery is practically negligible, with little scope for improvement through facade orientation. [Deutsch] Die Auswertung der theoretischen und messtechnischen Untersuchungen zeigt, dass mittels einer vorgehaengten, reduziert transparenten Glasfassade betraechtliche Waermegewinne zu erzielen sind. Diese ergeben sich aus der Sonnenzustrahlung sowie der Behinderung langwelliger Waermeabstrahlung. Die Gewinne lassen sich durch eine Abminderung des mittleren effektiven Waermedurchgangskoeffizienten darstellen. Die zu erzielenden Gewinne sind allerdings um so geringer, je besser die sonstige waermeschutztechnische Ausruestung der betreffenden Wand, d.h. je niedriger der k-Wert der nicht-transparenten Wandflaeche ist. Das bedeutet, dass bei Aussenwaenden mit Zusatzdaemmung und einem Waermedurchgangskoeffizienten unterhalb k{sub W}{approx}0,25 W/(m{sup 2}K) der Gewinn nicht mehr nennenswert ist, wobei dann auch die Ausrichtung der Fassade zur Himmelsrichtung das Ergebnis nur noch in geringem Umfang beeinflusst. (orig.)

  11. The Benefit of Variable-Speed Turbine Operation for Low Temperature Thermal Energy Power Recovery

    OpenAIRE

    Brasz, Joost J.

    2014-01-01

    This paper analyzes, given the large variation in turbine discharge pressure with changing ambient temperatures, whether variable-speed radial-inflow turbine operation has a similar benefit for Organic Rankine Cycle (ORC) power recovery systems as variable-speed centrifugal compression has for chiller applications. The benefit of variable-speed centrifugal compression over fixed-speed operation is a reduction in annual electricity consumption of almost 40 %. Air-conditioning systems are by ne...

  12. Enhancing Low-Grade Thermal Energy Recovery in a Thermally Regenerative Ammonia Battery Using Elevated Temperatures

    KAUST Repository

    Zhang, Fang; LaBarge, Nicole; Yang, Wulin; Liu, Jia; Logan, Bruce E.

    2015-01-01

    ). The energy density varied with temperature and discharge rates, with a maximum of 650 Whm-3 at a discharge energy efficiency of 54% and a temperature of 37°C. The energy efficiency calculated with chemical process simulation software indicated a Carnot

  13. Design for a 1.3 MW, 13 MeV Beam Dump for an Energy Recovery Linac

    CERN Document Server

    Sinclair, Charles K; Smith, Colin H

    2005-01-01

    The electron beam exiting an Energy Recovery Linac (ERL) is dumped close to the injection energy. This energy is chosen as low as possible while allowing the beam quality specifications to be met. As ERLs are designed for high average beam current, beam dumps are required to handle high beam power at low energy. Low energy electrons have a short range in practical dump materials, requiring the beam size at the dump face be enlarged to give acceptable power densities and heat fluxes. Cornell University is developing a 100 mA average current ERL as a synchrotron radiation source. The 13 MeV optimum injection energy requires a 1.3 MW beam dump. We present a mature design for this dump, using an array of water-cooled extruded copper tubes. This array is mounted in the accelerator vacuum normal to the beam. Fatigue failure resulting from abrupt thermal cycles associated with beam trips is a potential failure mechanism. We report on designs for a 75 kW, 750 keV tube-cooled beryllium plate dump for electron gun test...

  14. Multimaterial Decomposition Algorithm for the Quantification of Liver Fat Content by Using Fast-Kilovolt-Peak Switching Dual-Energy CT: Experimental Validation.

    Science.gov (United States)

    Hyodo, Tomoko; Hori, Masatoshi; Lamb, Peter; Sasaki, Kosuke; Wakayama, Tetsuya; Chiba, Yasutaka; Mochizuki, Teruhito; Murakami, Takamichi

    2017-02-01

    Purpose To assess the ability of fast-kilovolt-peak switching dual-energy computed tomography (CT) by using the multimaterial decomposition (MMD) algorithm to quantify liver fat. Materials and Methods Fifteen syringes that contained various proportions of swine liver obtained from an abattoir, lard in food products, and iron (saccharated ferric oxide) were prepared. Approval of this study by the animal care and use committee was not required. Solid cylindrical phantoms that consisted of a polyurethane epoxy resin 20 and 30 cm in diameter that held the syringes were scanned with dual- and single-energy 64-section multidetector CT. CT attenuation on single-energy CT images (in Hounsfield units) and MMD-derived fat volume fraction (FVF; dual-energy CT FVF) were obtained for each syringe, as were magnetic resonance (MR) spectroscopy measurements by using a 1.5-T imager (fat fraction [FF] of MR spectroscopy). Reference values of FVF (FVF ref ) were determined by using the Soxhlet method. Iron concentrations were determined by inductively coupled plasma optical emission spectroscopy and divided into three ranges (0 mg per 100 g, 48.1-55.9 mg per 100 g, and 92.6-103.0 mg per 100 g). Statistical analysis included Spearman rank correlation and analysis of covariance. Results Both dual-energy CT FVF (ρ = 0.97; P iron. Phantom size had a significant effect on dual-energy CT FVF after controlling for FVF ref (P iron concentrations, the linear coefficients of dual-energy CT FVF decreased and those of MR spectroscopy FF increased (P iron, dual-energy CT FVF led to underestimateion of FVF ref to a lesser degree than FF of MR spectroscopy led to overestimation of FVF ref . © RSNA, 2016 Online supplemental material is available for this article.

  15. Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

    KAUST Repository

    Werner, Craig M.

    2014-01-01

    Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents

  16. Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well

    DEFF Research Database (Denmark)

    Jeon, Jun-Seo; Lee, Seung-Rae; Pasquinelli, Lisa

    2015-01-01

    ., it is getting more attention as these issues are gradually alleviated. In this study, a sensitivity analysis of recovery efficiency in two cases of HT-ATES system with a single well is conducted to select key parameters. For a fractional factorial design used to choose input parameters with uniformity...... with Smoothly Clopped Absolute Deviation Penalty, is utilized. Finally, the sensitivity analysis is performed based on the variation decomposition. According to the result of sensitivity analysis, the most important input variables are selected and confirmed to consider the interaction effects for each case...

  17. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 282 Renewable Energy Opportunities at Fort Gordon, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Brian K.; Gorrissen, Willy J.; Hand, James R.; Horner, Jacob A.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Williamson, Jennifer L.; Nesse, Ronald J.

    2010-09-30

    This document provides an overview of renewable resource potential at Fort Gordon, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the American Recovery and Reinvestment Act (ARRA) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Gordon took place on March 9, 2010.

  18. Coulomb Blockade Plasmonic Switch.

    Science.gov (United States)

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  19. Observation of high-power coherent synchrotron radiation in the THz region from the JAEA energy recovery linac

    International Nuclear Information System (INIS)

    Takahashi, Toshiharu; Okuda, Shuichi; Minehara, Eisuke J.; Hajima, Ryoichi; Sawamura, Masaru; Nagai, Ryoji; Kikuzawa, Nobihiro; Iijima, Hokuto; Nishitani, Tomohiro; Nishimori, Nobuyuki

    2007-01-01

    The energy recovery linac (ERL) is able to generate high-power coherent synchrotron radiation (CSR) in the terahertz and the millimeter-wave regions, because it produces shorter bunches than usual storage rings and a higher current than conventional linacs. The spectrum of CSR has been measured at the JAEA-ERL in the wavenumber range from 0.5 to 15 cm -1 . The detected power was 2x10 -4 W/cm -1 at 2.5 cm -1 for the average beam current of 17.7 μA. When the infrared FEL was operated with the undulator in the ERL, the CSR spectrum was shifted to the longer wavelengths because of the energy broadening of the electron beam. (author)

  20. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration

    DEFF Research Database (Denmark)

    Damgaard, Anders; Riber, C.; Fruergaard, Thilde

    2010-01-01

    Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion...... impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during...... of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction...