WorldWideScience

Sample records for energy project development

  1. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  2. Developing Government Renewable Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  3. Neighborhood Energy/Economic Development project

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Energy costs impact low income communities more than anyone else. Low income residents pay a larger percentage of their incomes for energy costs. In addition, they generally have far less discretionary energy use to eliminate in response to increasing energy prices. Furthermore, with less discretionary income, home energy efficiency improvements are often too expensive. Small neighborhood businesses are in the same situation. Improved efficiency in the use of energy can improve this situation by reducing energy costs for residents and local businesses. More importantly, energy management programs can increase the demand for local goods and services and lead to the creation of new job training and employment opportunities. In this way, neighborhood based energy efficiency programs can support community economic development. The present project, undertaken with the support of the Urban Consortium Energy Task Force, was intended to serve as a demonstration of energy/economic programming at the neighborhood level. The San Francisco Neighborhood Energy/Economic Development (NEED) project was designed to be a visible demonstration of bringing the economic development benefits of energy management home to low-income community members who need it most. To begin, a Community Advisory Committee was established to guide the design of the programs to best meet needs of the community. Subsequently three neighborhood energy/economic development programs were developed: The small business energy assistance program; The youth training and weatherization program; and, The energy review of proposed housing development projects.

  4. Project finance and international energy development

    International Nuclear Information System (INIS)

    Pollio, G.

    1998-01-01

    This paper explores the preference for and the features unique to project finance, one of the favoured vehicles for funding energy development. Our main focus is on the interests of project sponsors, commercial banks and host governments. Inclusion of the latter reflects the fact host governments are often leading participants in primary energy and energy-related projects; more recently, they have come to use limited recourse structures to finance local infrastructure development. Traditional analyses, whilst providing useful insights into the interests of leading project participants, are incapable of isolation a single motive or set of motives that can comprehensively account for all of the features common to this form of debt. Within an options-theoretic framework, most of these ambiguities are resolved. Risk management, long recognised as one of the primary reasons for choosing project finance over rival debt structures, is affirmed as a key explanatory factor. One the other hand, options pricing theory provides a radically different perspective on how to project finance contributes to the realisation of these objectives. (author)

  5. Landfill Gas Energy Project Development Handbook

    Science.gov (United States)

    View handbook that provides an overview of LFG energy project development guidance and presents the technological, economic and regulatory considerations that affect the feasibility and success of these projects.

  6. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

  7. Renewable energy project development

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J.

    1996-12-31

    The author presents this paper with three main thrusts. The first is to discuss the implementation of renewable energy options in China, the second is to identify the key project development steps necessary to implement such programs, and finally is to develop recommendations in the form of key issues which must be addressed in developing such a program, and key technical assistance needs which must be addressed to make such a program practical.

  8. The NEED (National Energy Education Development) Project

    Science.gov (United States)

    Hogan, D.; Spruill, M.

    2012-04-01

    The NEED (National Energy Education Development) Project is a non-profit organization which provides a wide range of K-12 curriculum on energy education topics. The curriculum is specific for primary, elementary, intermediate and secondary levels with age appropriate activities and reading levels. The NEED Project covers a wide range of topics from wind energy, nuclear energy, solar energy, hydropower, hydrogen, fossil fuels, energy conservation, energy efficiency and much more. One of the major strengths of this organization is its Teacher Advisory Board. The curriculum is routinely revised and updated by master classroom teachers who use the lessons and serve on the advisory board. This ensures it is of the highest quality and a useful resource. The NEED Project through a variety of sponsors including businesses, utility companies and government agencies conducts hundreds of teacher professional development workshops each year throughout the United States and have even done some workshops internationally. These workshops are run by trained NEED facilitators. At the workshops, teachers gain background understanding of the energy topics and have time to complete the hands on activities which make up the curriculum. The teachers are then sent a kit of equipment after successfully completing the workshop. This allows them to teach the curriculum and have their students perform the hands on labs and activities in the classroom. The NEED Project is the largest provider of energy education related curriculum in the United States. Their efforts are educating teachers about energy topics and in turn educating students in the hope of developing citizens who are energy literate. Many of the hands on activities used to teach about various energy sources will be described and demonstrated.

  9. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  10. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. For the purposes of this Guide, large-scale Federal renewable energy projects are defined as renewable energy facilities larger than 10 megawatts (MW) that are sited on Federal property and lands and typically financed and owned by third parties.1 The U.S. Department of Energy’s Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This Guide is intended to provide a general resource that will begin to develop the Federal employee’s awareness and understanding of the project developer’s operating environment and the private sector’s awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this Guide has been organized to match Federal processes with typical phases of commercial project development. FEMP collaborated with the National Renewable Energy Laboratory (NREL) and professional project developers on this Guide to ensure that Federal projects have key elements recognizable to private sector developers and investors. The main purpose of this Guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project. This framework begins the translation between the Federal and private sector operating environments. When viewing the overall

  11. Renewable Energy Project Development Assistance (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-07-01

    This fact sheet provides information on the Tribes selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  12. Navajo-Hopi Land Commission Renewable Energy Development Project (NREP)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Benally, Deputy Director,

    2012-05-15

    The Navajo Hopi Land Commission Office (NHLCO), a Navajo Nation executive branch agency has conducted activities to determine capacity-building, institution-building, outreach and management activities to initiate the development of large-scale renewable energy - 100 megawatt (MW) or larger - generating projects on land in Northwestern New Mexico in the first year of a multi-year program. The Navajo Hopi Land Commission Renewable Energy Development Project (NREP) is a one year program that will develop and market a strategic business plan; form multi-agency and public-private project partnerships; compile site-specific solar, wind and infrastructure data; and develop and use project communication and marketing tools to support outreach efforts targeting the public, vendors, investors and government audiences.

  13. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. The U.S. Department of Energy's Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This guide is intended to provide a general resource that will begin to develop the Federal employee's awareness and understanding of the project developer's operating environment and the private sector's awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this guide has been organized to match Federal processes with typical phases of commercial project development. The main purpose of this guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project.

  14. Sustainable Energy in Remote Indonesian Grids. Accelerating Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Brian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burman, Kari [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elchinger, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hardison, R. [Winrock International, Little Rock, AR (United States); Karsiwulan, D. [Winrock International, Little Rock, AR (United States); Castermans, B. [Winrock International, Little Rock, AR (United States)

    2015-06-30

    Sustainable Energy for Remote Indonesian Grids (SERIG) is a U.S. Department of Energy (DOE) funded initiative to support Indonesia’s efforts to develop clean energy and increase access to electricity in remote locations throughout the country. With DOE support, the SERIG implementation team consists of the National Renewable Energy Laboratory (NREL) and Winrock International’s Jakarta, Indonesia office. Through technical assistance that includes techno-economic feasibility evaluation for selected projects, government-to-government coordination, infrastructure assessment, stakeholder outreach, and policy analysis, SERIG seeks to provide opportunities for individual project development and a collective framework for national replication office.

  15. Project Finance and Projects in the Energy Sector in Developing Countries

    OpenAIRE

    ERMELA KRIPA; HALIT XHAFA

    2013-01-01

    The purpose of this study is to show the importance of using project finance in infrastructure investments in developing countries. The paper will be focused only on one infrastructure sector, which is energy. Structurally, power project finance has involved largely buildown-transfer (BOT) project structures and long-term contracts. The projects largely reflect a rational allocation of risks among public and private participants. Private sponsors and lenders generally assume risks for complet...

  16. Energy Efficient Community Development in California: Chula Vista Research Project

    Energy Technology Data Exchange (ETDEWEB)

    Gas Technology Institute

    2009-03-31

    In 2007, the U.S. Department of Energy joined the California Energy Commission in funding a project to begin to examine the technical, economic and institutional (policy and regulatory) aspects of energy-efficient community development. That research project was known as the Chula Vista Research Project for the host California community that co-sponsored the initiative. The researches proved that the strategic integration of the selected and economically viable buildings energy efficiency (EE) measures, photovoltaics (PV), distributed generation (DG), and district cooling can produce significant reductions in aggregate energy consumption, peak demand and emissions, compared to the developer/builder's proposed baseline approach. However, the central power plant emission reductions achieved through use of the EE-DG option would increase local air emissions. The electric and natural gas utility infrastructure impacts associated with the use of the EE and EE-PV options were deemed relatively insignificant while use of the EE-DG option would result in a significant reduction of necessary electric distribution facilities to serve a large-scale development project. The results of the Chula Vista project are detailed in three separate documents: (1) Energy-Efficient Community Development in California; Chula Vista Research Project report contains a detailed description of the research effort and findings. This includes the methodologies, and tools used and the analysis of the efficiency, economic and emissions impacts of alternative energy technology and community design options for two development sites. Research topics covered included: (a) Energy supply, demand, and control technologies and related strategies for structures; (b) Application of locally available renewable energy resources including solar thermal and PV technology and on-site power generation with heat recovery; (c) Integration of local energy resources into district energy systems and existing

  17. Financing Renewable Energy Projects in Developing Countries: A Critical Review

    Science.gov (United States)

    Donastorg, A.; Renukappa, S.; Suresh, S.

    2017-08-01

    Access to clean and stable energy, meeting sustainable development goals, the fossil fuel dependency and depletion are some of the reasons that have impacted developing countries to transform the business as usual economy to a more sustainable economy. However, access and availability of finance is a major challenge for many developing countries. Financing renewable energy projects require access to significant resources, by multiple parties, at varying points in the project life cycles. This research aims to investigate sources and new trends in financing RE projects in developing countries. For this purpose, a detail and in-depth literature review have been conducted to explore the sources and trends of current RE financial investment and projects, to understand the gaps and limitations. This paper concludes that there are various internal and external sources of finance available for RE projects in developing countries.

  18. Minerals and energy: major development projects - April 2005 listing

    Energy Technology Data Exchange (ETDEWEB)

    Ian Haine (and others) [Australian Bureau of Agricultural and Resource Economics (ABARE), Canberra, ACT (Australia)

    2005-06-01

    The article describes trends in project development and investment in the minerals and energy sector in Australia. It lists competed projects and committed projects. Black coal projects completed during November 2004 to April 2005 were: Dendrobium underground and Mandalong longwall mining expansion projects in New South Wales and development of Curragh North and Eaglefield opencut mine in Queensland. One of the more significant newly listed projects is Macarthur Coal's Queensland Coke Project near Rockhampton. Capital cost and values of projects are included. The full listing of 229 projects is available electronically from ABARE. The list is released around May and November each year. 10 figs., 4 tabs.

  19. Financing the development of renewable energy projects of territorial interest

    International Nuclear Information System (INIS)

    Regnier, Yannick; Bailleul, Esther; Claustre, Raphael; Bessiere, Patrick; Boumard, Erwan; Peulemeulle, Justine; Causse, Laurent; Coton, Patrice; Djemouai, Nadia; Dubus, Jean-Michel; Duffes, Thomas; Gauduchon, Marie-Veronique; Raguet, Alex; Ghewy, Etienne; Heitz, Philippe; Jedliczka, Marc; Jourdain, Pierre; Julien, Emmanuel; Marcenac, Guillaume; Marillier, Frederic; Massias, Louis; Picot, Roland; Poize, Noemie; Quantin, Jacques; Rabian, Jean; Rocaboy, Dominique; Rumolino, Claudio; Sabin, Patrick; Saultier, Patrick; Tincelin-Salomon, Claire; Trillaud, Nicolas; Vachette, Philippe; Verhaeghe, Laure

    2016-11-01

    This report highlights the relationship between a territorial project (its autonomous strategy) and projects of renewable energy which could and should be developed. It focuses on large projects of electric power production, notably those based on solar and wind energy for which such a territorial anchoring is not as obvious as for the production of heat or gas (heat networks are necessarily local, and biomass production and supply as well). Thus, its outlines how these projects can be a benefit for a territory, the stakes of participation for the different local actors, and discusses how such a participation is to be organised. It describes different aspects of the way a project development phase is to be financed: stakes (financing needs, risks, peculiarities of local financing, project management and governance), financing typologies, development ease and safety, support of development financing (capital-risk tools, intervention of local public companies, advance payments, subsidies). The last part addresses how to locally finance the other project phases (stakes during construction and exploitation, intervention modes by participation, financial tools or loans)

  20. Development of heat pump technology in eco-energy city project

    Energy Technology Data Exchange (ETDEWEB)

    Omata, Tomio [New Energy Development Organization (Japan); Ogisu, Yoshihiro [Office of Eco-Energy City Project, Energy Conservation Center (Japan)

    1999-07-01

    In the New Sunshine Project conducted by MITI Japan, Eco-Energy City-Project covers the research area of utilization of industrial and municipal waste heat. For the further utilization of waste heat, several research programs are carried out for recovery and conversion of waste heat, transportation and storage of waste heat and final use of rather low temperature heat transported. Various types of heat driven heat pumps are developed in the Eco-Energy City Project. Concept of the Project is to utilize industrial and municipal waste heat for the city where energy demand is increasing. These heat pumps will contribute for the reduction of CO{sub 2} emission. (orig.)

  1. Development perspectives of alternative energy projects before the new energy regulation

    International Nuclear Information System (INIS)

    Valencia V; Jaime A; Perez O, Jaime A; Moreno O, German

    2000-01-01

    Large electric energy generation systems are dominant in the energy markets. This has been like that, because the economic balances have not included yet some parameters, and specifically environmental variables, that started being considered in the international markets. Colombian generation and transmission expanding plans are commented and the possibilities for the developing of alternative energy projects are referred to those plans. Additionally, a regional experience in the definition of criteria for electric energy service coverage enlargement allowing for alternative energy inclusion is presents, remarking their successful application as a competitive alternative for rural energizing

  2. Balancing energy, development and climate priorities in India. Current trends and future projections

    International Nuclear Information System (INIS)

    Shukla, P.R.; Garg, A.; Dhar, S.; Halsnaes, K.

    2007-09-01

    This report gives a short introduction to the project: Projecting future energy demand: Balancing development, energy and climate priorities in large developing countries. Furthermore, the report analyses Indian energy, development and climate change, followed by an assessment of cross-country results that gives a range of key indicators of the relationship between economic growth, energy, and local and global pollutants. The focus is on the energy sector policies that mainstream climate interests within development choices. (BA)

  3. Application of demography to energy facility development projects. Working Paper No. 39

    International Nuclear Information System (INIS)

    Krannich, R.S.; Stanfield, G.G.

    1977-01-01

    The emergence of concern regarding socioeconomic consequences of large-scale development projects has resulted in a growing literature directed as estimating the types and levels of various impact dimensions which can be expected to result in human communities experiencing such development. Among these dimensions, a focus on population change has been prevalent. Accurate demographic predictions may be viewed as critical for the adequate comprehension of and preparation for impacts deriving from projects such as energy facility developments. Unfortunately, the state of the art in projecting demographic consequences of energy projects has been generally inadequate. Several of the more influential prior methods for estimating local demographic effects of developing energy facilities are critiqued, although their specific prediction figures are not summarized. The studies reviewed were found to be of dubious practical utility, probably due in part to the failure of basic demography to provide a base of support for applied demographic research. This report sets forth recommendations for the development of a theoretical perspective which would more adequately serve the needs of practitioners attempting to predict local demographic effects of energy facility development

  4. Energy research and development projects in the Nordic countries. Directory 1987

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This is the fifth directory of research, development and demonstration projects in the Nordic countries within the field of energy. The directory includes projects running in 1987. 2378 projects are described, all of them financed through special public funds (i.e. external funding). The energy research organisation in each Nordic country is briefly reviewed in the appendixes, and a list of relevant newsletters are given. The directory is published at the request of the Nordic Council of Ministers and a special Energy Research Committee set up by the Nordic energy ministers in order to coordinate and promote Nordic information sharing in the energy field. (author)

  5. Project evaluation for energy supply in rural areas of developing countries

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui; Christensen, J. M.

    1990-01-01

    This paper reports the methodological experiences of the project: Energy Supply Technologies in Developing Countries, carried out in collaboration with the Department of Energy, Zambia. Existing methods for project evaluation, based on cost-benefit analysis, will be briefly presented, particularly...... as regards their inadequacy for assessing energy projects in rural areas.An alternative practical and PC-based approach will be presented in which emphasis is placed on the problem formulation phase, including the socio-economic, cultural and political aspects of the problem. This approach has been prepared...

  6. Role of Renewable Energy Certificates in Developing New Renewable Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Holt, E.; Sumner, J.; Bird, L.

    2011-06-01

    For more than a decade, renewable energy certificates (RECs) have grown in use, becoming a common way to track ownership of the renewable and environmental attributes of renewable electricity generation. In recent years, however, questions have risen about the role RECs play in the decision to build new renewable energy projects. Information from a variety of market participants suggests that the importance of RECs in building new projects varies depending on a number of factors, including electricity market prices, the cost-competitiveness of the project, the presence or absence of public policies supportive of new projects, contract duration, and the perspective of different market participants. While there is no single answer to the role that RECs play, there are situations in which REC revenues are essential to project economics, as well as some where REC revenues may have little impact. To strengthen the role RECs play in both compliance and voluntary markets, there are a number of options that could be considered. In compliance markets, lawmakers or regulators would have to adopt measures that strengthen the role of RECs in the development of new projects, while in voluntary markets, it would be up to program leaders and market participants themselves to implement measures.

  7. Great Plains Wind Energy Transmission Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task

  8. New York State Energy Research and Development Authority. Research projects` update project status as of March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report provides an update of the New York State Energy Research and Development Authority (NYSERDA) program. The NYSERDA research and development program has five major areas: industry, buildings, energy resources, transportation, and environment. NYSERDA organizes projects within these five major areas based on energy use and supply, and end-use sectors. Therefore, issues such as waste management, energy products and renewable energy technologies are addressed in several areas of the program. The project descriptions presented are organized within the five program areas. Descriptions of projects completed between the period April 1, 1996, and March 31, 1997, including technology-transfer activities, are at the end of each subprogram section.

  9. U.S. Department of Energy Wind Turbine Development Projects

    International Nuclear Information System (INIS)

    Migliore, P.G.; Calvert, S.D.

    1999-01-01

    This paper provides an overview of wind-turbine development activities in the Unites States and relates those activities to market conditions and projections. Several factors are responsible for a surge in wind energy development in the United States, including a federal production tax credit, ''green power'' marketing, and improving cost and reliability. More development is likely, as approximately 363 GW of new capacity will be needed by 2020 to meet growing demand and replace retiring units. The U.S. Department of Energy (DOE) is helping two companies develop next-generation turbines intended to generate electricity for $0.025/kWh or less. We expect to achieve this objective through a combination of improved engineering methods and configuration advancements. This should ensure that wind power will compete effectively against advanced combined-cycle plants having projected generating costs of $0.031/kWh in 2005. To address the market for small and intermediate-size wind turbines, DOE is assisting five companies in their attempts to develop new turbines having low capital cost and high reliability. Additional information regarding U.S. wind energy programs is available on the internet site www.nrel.gov/wind/. E-mail addresses for the turbine manufacturers are found in the Acknowledgements

  10. Energy availabilities for state and local development: projected energy patterns for 1980 and 1985

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, D. P.; Rice, P. L.; Pai, V. P.

    1978-06-01

    This report presents projections of the supply, demand, and net imports of seven fuel types and four final consuming sectors for BEAs, states, census regions, and the nation for 1980 and 1985. The data are formatted to present regional energy availability from primary extraction, as well as from regional transformation processes. As constructed, the tables depict energy balances between availability and use for each of the specific fuels. The objective of the program is to provide a consistent base of historic and projected energy information within a standard format. Such a framework should aid regional policymakers in their consideration of regional growth issues that may be influenced by the regional energy system. This basic data must be supplemented by region-specific information which only the local policy analyst can bring to bear in his assessment of the energy conditions which characterize each region. The energy data, coupled with specific knowledge of projected economic growth and employment patterns, can assist EDA in developing its grant-in-aid investment strategy.

  11. Energy Storage Project

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  12. Project ARBRE: Lessons for bio-energy developers and policy-makers

    International Nuclear Information System (INIS)

    Piterou, Athena; Shackley, Simon; Upham, Paul

    2008-01-01

    Project Arable Biomass Renewable Energy (ARBRE) was a 'flagship' project in the UK to demonstrate electricity generation from dedicated energy crops, employing the high efficiency of gasification combined cycle technology while also contributing to the waste management problem of sewage disposal. The plant never reached commercial operation and this paper provides the first detailed public account of the reasons, drawing on interviews with the main actors. Project ARBRE failed due to three unfortunate developments: the withdrawal for reasons of commercial strategy of the main company that initiated and financed the project; bankruptcy of the turnkey contractor appointed to oversee the project; and technical problems with the gasification technology, which could not be resolved within the financial and time constraints. All these factors acted in reinforcing manner and they were individually preventable: documenting the process of failure is a learning experience that can prevent their recurrence

  13. Hawaii Energy Strategy Project 2: Fossil Energy Review. Task IV. Scenario development and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, N.D.; Breazeale, K. [ed.

    1993-12-01

    The Hawaii Energy Strategy (HES) Program is a seven-project effort led by the State of Hawaii Department of Business, Economic Development & Tourism (DBEDT) to investigate a wide spectrum of Hawaii energy issues. The East-West Center`s Program on Resources: Energy and Minerals, has been assigned HES Project 2, Fossil Energy Review, which focuses on fossil energy use in Hawaii and the greater regional and global markets. HES Project 2 has four parts: Task I (World and Regional Fossil Energy Dynamics) covers petroleum, natural gas, and coal in global and regional contexts, along with a discussion of energy and the environment. Task II (Fossil Energy in Hawaii) focuses more closely on fossil energy use in Hawaii: current utilization and trends, the structure of imports, possible future sources of supply, fuel substitutability, and energy security. Task III`s emphasis is Greenfield Options; that is, fossil energy sources not yet used in Hawaii. This task is divided into two sections: first, an in-depth {open_quotes}Assessment of Coal Technology Options and Implications for the State of Hawaii,{close_quotes} along with a spreadsheet analysis model, which was subcontracted to the Environmental Assessment and Information Sciences Division of Argonne National Laboratory; and second, a chapter on liquefied natural gas (LNG) in the Asia-Pacific market and the issues surrounding possible introduction of LNG into the Hawaii market.

  14. Sustainable energy for cashew production chain using innovative clean technology project developments

    Energy Technology Data Exchange (ETDEWEB)

    Pannir Selvam, P.V.; Nandenha, Julio; Santiago, Brunno Henrique de Souza; Silva, Rosalia Tatiane da [Universidade Federal do Rio Grande do Norte (GPEC/DEQ/UFRN), Lagoa Nova, RN (Brazil). Dept. de Engenharia Quimica. Grupo de Pesquisa em Engenharia de Custos e Processos], e-mail: pannirbr@gmail.com

    2006-07-01

    The main objective is to develop a new process synthesis based on the residual biomass waste for the energy production applied to the fruit processing plant with co-production of hot, cold thermal energy using biogas from the wood biomass and animal wastes. After carried out the bibliographical research about the current state of art technology, an engineering project had been developed with the use of the software Super Pro Designer V 4.9. Some simulations of processes of the fast pyrolysis, gasification, bio digestion, generation of energy have been realized including the system integration of energy production as innovation of the present work. Three cases study have been developed: first, the current process of conventional energy using combustion, another one using combined pyrolysis and gasification, and the last one with bio digestion for combined power, heat and chilling. The results about the project investment and the cost analysis, economic viability and cash balance were obtained using software Orc 2004. Several techno-economic parameters of the selected cases study involving process innovation were obtained and compared, where a better energy and materials utilization were observed in relation to conventional process. This project which is still in development phase, involves small scale energy integrated system design. The energy and the process integration cashew fruit production chain, based on the clean technology process design, has enable significant improvement in terms of economic and environmental using optimal system configurations with viability and sustainability. (author)

  15. Offshore Wind Energy Permitting: A Survey of U.S. Project Developers

    Energy Technology Data Exchange (ETDEWEB)

    Van Cleve, Frances B.; Copping, Andrea E.

    2010-11-30

    The U.S. Department of Energy (DOE) has adopted a goal to generate 20% of the nation’s electricity from wind power by 2030. Achieving this “20% Wind Scenario” in 2030 requires acceleration of the current rate of wind project development. Offshore wind resources contribute substantially to the nation’s wind resource, yet to date no offshore wind turbines have been installed in the U.S. Progress developing offshore wind projects has been slowed by technological challenges, uncertainties about impacts to the marine environment, siting and permitting challenges, and viewshed concerns. To address challenges associated with siting and permitting, Pacific Northwest National Laboratory (PNNL) surveyed offshore wind project developers about siting and project development processes, their experience with the environmental permitting process, and the role of coastal and marine spatial planning (CMSP) in development of the offshore wind industry. Based on the responses to survey questions, we identify several priority recommendations to support offshore wind development. Recommendations also include considerations for developing supporting industries in the U.S. and how to use Coastal and Marine Spatial Planning (CMSP) to appropriately consider ocean energy among existing ocean uses. In this report, we summarize findings, discuss the implications, and suggest actions to improve the permitting and siting process.

  16. International research and development projects in nuclear energy: Experience and future prospects

    International Nuclear Information System (INIS)

    Strohl, P.

    1983-01-01

    From the very beginning nuclear energy appeared as a fruitful field for international co-operation and particularly for international projects and joint ventures. By pooling scientific, technical and financial resources, the participating countries sought to promote the development of technology and the transition of nuclear energy to the industrial stage. Governments and therefore intergovernmental organizations were the driving force behind the establishment of joint projects in various R and D sectors, often in association with industry and private research institutes. The situation changed considerably from the end of the 1960s onwards. Despite some remarkable technical achievements, international co-operation did not develop to the extent predicted at the outset. Industry took over in the exploitation of proven technologies, and industrial co-operation agreements have become an important feature in some key areas of nuclear energy. This trend raises questions as to the future of joint R and D projects organized through intergovernmental co-operation. Although such projects are still very useful, they tend to be concentrated in those few sectors which continue to be of direct interest to the Governments; for instance, fundamental research, radioactive waste management and nuclear safety. The position of nuclear energy has changed, and the benefits to be drawn from this form of international co-operation must be critically re-assessed accordingly. While advantage to be gained from international projects for countries which are the most advanced in the development of nuclear energy is not the same as it was at the beginning, the transfer of experience and knowledge to less advanced countries is still the main concern of projects dealing with safety and regulatory matters. The experience thus gained provides a very useful insight into the legal and institutional framework of joint projects

  17. Scotts Valley Energy Office and Human Capacity Building that will provide energy-efficiency services and develop sustainable renewable energy projects.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Temashio [Scotts Valley Band of Pomo Indians

    2013-06-28

    The primary goal of this project is to develop a Scotts Valley Energy Development Office (SVEDO). This office will further support the mission of the Tribe's existing leadership position as the DOE Tribal Multi-County Weatherization Energy Program (TMCWEP) in creating jobs and providing tribal homes and buildings with weatherization assistance to increase energy efficiency, occupant comfort and improved indoor air quality. This office will also spearhead efforts to move the Tribe towards its further strategic energy goals of implementing renewable energy systems through specific training, resource evaluation, feasibility planning, and implementation. Human capacity building and continuing operations are two key elements of the SVEDO objectives. Therefore, the project will 1) train and employ additional Tribal members in energy efficiency, conservation and renewable resource analyses and implementation; 2) purchase materials and equipment required to implement the strategic priorities as developed by the Scotts Valley Tribe which specifically include implementing energy conservation measures and alternative energy strategies to reduce energy costs for the Tribe and its members; and 3) obtain a dedicated office and storage space for ongoing SVEDO operations.

  18. Minerals and energy: major development projects - April 2006 listing

    Energy Technology Data Exchange (ETDEWEB)

    William Mollard [Australian Bureau of Agricultural and Resource Economics (ABARE), Canberra, ACT (Australia)

    2006-06-15

    ABARE's project list, released around May and November each year, lists completed and committed projects in the minerals and energy sector in Australia. Santos' $200 million Casino gas field project in Bass Strait will produce natural gas and condensate while output from Berwyndale South will be coal seam methane. Five coal projects were completed in the six months to April 2006. The largest of these was Xstrata's Newlands Northern underground mine. In the same region, BMA's (BHP Billiton Mitsubishi Alliance) $102 million Broadmeadow underground mine and BHP/Mitsui Coal's $50 million Poitrel opencut mine, both near Moranbah, were brought into production. In New South Wales, two projects a new mine and a mine infrastructure development, both near Singletonwere commissioned. Xstrata's new Ravensworth West opencut mine will produce up to 1.5 million tonnes a year of thermal coal. Excel Coal's $73 million Wambo Rail project involved building a rail loop and loading facilities at its Wambo operation. Queensland coal mine projects and coal infrastructure developments account for 19 per cent (or $6.3 billion) of the estimated capital cost of $34 billion for all advanced projects. The largest coal mine development is the $1 billion Dawson mine expansion which is expected to add around 12 million tonnes of coking and thermal coal capacity, commencing in early 2007. Anglo Coal/Mitsui is also developing the large new Lake Lindsay opencut mine. Rio Tinto is developing its $440 million Clermont opencut mine. Twelve other advanced coal mine developments in Queensland are expected to raise coal production capacity by around 30 million tonnes a year by 2008. 10 figs., 4 tabs.

  19. Project financing renewable energy schemes

    International Nuclear Information System (INIS)

    Brandler, A.

    1993-01-01

    The viability of many Renewable Energy projects is critically dependent upon the ability of these projects to secure the necessary financing on acceptable terms. The principal objective of the study was to provide an overview to project developers of project financing techniques and the conditions under which project finance for Renewable Energy schemes could be raised, focussing on the potential sources of finance, the typical project financing structures that could be utilised for Renewable Energy schemes and the risk/return and security requirements of lenders, investors and other potential sources of financing. A second objective is to describe the appropriate strategy and tactics for developers to adopt in approaching the financing markets for such projects. (author)

  20. Final project report: High energy rotor development, test and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Under the auspices of the {open_quotes}Government/Industry Wind Technology Applications Project{close_quotes} [{open_quotes}Letter of Interest{close_quotes} (LOI) Number RC-1-11101], Flo Wind Corp. has successfully developed, tested, and delivered a high-energy rotor upgrade candidate for their 19-meter Vertical Axis Wind Turbine. The project included the demonstration of the innovative extended height-to-diameter ratio concept, the development of a continuous span single-piece composite blade, the demonstration of a continuous blade manufacturing technique, the utilization of the Sandia National Laboratories developed SNLA 2150 natural laminar flow airfoil and the reuse of existing wind turbine and wind power plant infrastructure.

  1. Role of Halden Reactor Project for world-wide nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M.A.; Volkov, B.

    2011-07-01

    The great interest for utilization of nuclear materials to produce energy in the middle of last century needed special investigations using first class research facilities. Common problems in the area of nuclear fuel development motivated the establishment of joint research efforts. The OECD Halden Reactor Project (HRP) is a good example of such a cooperative research effort, which has been performing for more than 50 years. During that time, the Halden Reactor evolved from a prototype heavy water reactor envisaged as a power source for different applications to a research reactor that is able to simulate in-core conditions of modern commercial power reactors. The adaptability of the Halden Reactor enables the HRP to be an important international test facility for nuclear fuels and materials development. The long-term international cooperation is based on the flexible HRP organizational structure which also provides the continued success. [1,2] This paper gives a brief history of the Halden Reactor Project and its contribution to world-wide nuclear energy development. Recent expansion of the Project to the East and Asian countries may also assist and stimulate the development of a nuclear industry within these countries. The achievements of the HRP rely on the versatility of the research carried out in the reactor with reliable testing techniques and in-pile instrumentation. Diversification of scientific activity in the areas of development of alternative energy resources and man-machine technology also provide the HRP with a stable position as one of the leaders in the world scientific community. All of these aspects are described in this paper together with current experimental works, including the investigation of ULBA (Kazakhstan) production fuel in comparison with other world fuel suppliers, as well as other future and prospective plans of the Project.(Author)

  2. Role of Halden Reactor Project for world-wide nuclear energy development

    International Nuclear Information System (INIS)

    McGrath, M.A.; Volkov, B.

    2011-01-01

    The great interest for utilization of nuclear materials to produce energy in the middle of last century needed special investigations using first class research facilities. Common problems in the area of nuclear fuel development motivated the establishment of joint research efforts. The OECD Halden Reactor Project (HRP) is a good example of such a cooperative research effort, which has been performing for more than 50 years. During that time, the Halden Reactor evolved from a prototype heavy water reactor envisaged as a power source for different applications to a research reactor that is able to simulate in-core conditions of modern commercial power reactors. The adaptability of the Halden Reactor enables the HRP to be an important international test facility for nuclear fuels and materials development. The long-term international cooperation is based on the flexible HRP organizational structure which also provides the continued success. [1,2] This paper gives a brief history of the Halden Reactor Project and its contribution to world-wide nuclear energy development. Recent expansion of the Project to the East and Asian countries may also assist and stimulate the development of a nuclear industry within these countries. The achievements of the HRP rely on the versatility of the research carried out in the reactor with reliable testing techniques and in-pile instrumentation. Diversification of scientific activity in the areas of development of alternative energy resources and man-machine technology also provide the HRP with a stable position as one of the leaders in the world scientific community. All of these aspects are described in this paper together with current experimental works, including the investigation of ULBA (Kazakhstan) production fuel in comparison with other world fuel suppliers, as well as other future and prospective plans of the Project.(Author)

  3. Optimal sampling plan for clean development mechanism energy efficiency lighting projects

    International Nuclear Information System (INIS)

    Ye, Xianming; Xia, Xiaohua; Zhang, Jiangfeng

    2013-01-01

    Highlights: • A metering cost minimisation model is built to assist the sampling plan for CDM projects. • The model minimises the total metering cost by the determination of optimal sample size. • The required 90/10 criterion sampling accuracy is maintained. • The proposed metering cost minimisation model is applicable to other CDM projects as well. - Abstract: Clean development mechanism (CDM) project developers are always interested in achieving required measurement accuracies with the least metering cost. In this paper, a metering cost minimisation model is proposed for the sampling plan of a specific CDM energy efficiency lighting project. The problem arises from the particular CDM sampling requirement of 90% confidence and 10% precision for the small-scale CDM energy efficiency projects, which is known as the 90/10 criterion. The 90/10 criterion can be met through solving the metering cost minimisation problem. All the lights in the project are classified into different groups according to uncertainties of the lighting energy consumption, which are characterised by their statistical coefficient of variance (CV). Samples from each group are randomly selected to install power meters. These meters include less expensive ones with less functionality and more expensive ones with greater functionality. The metering cost minimisation model will minimise the total metering cost through the determination of the optimal sample size at each group. The 90/10 criterion is formulated as constraints to the metering cost objective. The optimal solution to the minimisation problem will therefore minimise the metering cost whilst meeting the 90/10 criterion, and this is verified by a case study. Relationships between the optimal metering cost and the population sizes of the groups, CV values and the meter equipment cost are further explored in three simulations. The metering cost minimisation model proposed for lighting systems is applicable to other CDM projects as

  4. Barriers to clean development mechanism renewable energy projects in Mexico

    International Nuclear Information System (INIS)

    Lokey, Elizabeth

    2009-01-01

    Mexico is not reaching its full potential to capture benefits from clean development mechanism (CDM) projects because of its limited market for independent power producers (IPPs) and the barriers imposed on these entities by the state-run electric utility that controls most of the country's generation and transmission. This state-run entity has pursued CDM revenues only in isolated cases where international financial assistance was given because it is bound by law to pursue the least-cost generation option for its customers. Recent changes in Mexican legislation that provide incentives for renewable energy development could open the marketplace for these types of projects. (author)

  5. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 16. Development and execution of pilot research projects at the CASINDO partner universities

    Energy Technology Data Exchange (ETDEWEB)

    Wijnker, M. [Eindhoven University of Technology TUE, Eindhoven (Netherlands)

    2011-09-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. Each of the five Indonesian universities managed to develop pilot research projects and wrote research proposals to outline and strengthen their ideas. All of the universities also purchased equipment for the purpose of executing this research. UNCEN (Cenderawasih University, Jayapura, Papua, Indonesia) and UNDIP (Diponegoro University in Semarang, Java, Indonesia) managed to finalize their research within the project period and wrote reports on their results. The other universities could not yet present results due to delay in one or several of the steps within the procedure.

  6. Making energy projects happen

    International Nuclear Information System (INIS)

    Gilliland, S.F.; Utt, W.P.; Neff, N.T.

    1988-01-01

    In today's business environment, control of energy cost is a major challenge for businesses, institutions, and governmental agencies. New technologies are available to reduce energy costs through cogeneration, cheaper fuels, or other means. Often it is not possible for a Plant Owner to undertake such a project, regardless of how desirable it may be. The authors of this paper show that by applying the principles of Project Structuring and developing a comprehensive project team, the desired reduction in energy costs can be achieved. Various examples are cited, and guidelines are given for an Owner to use

  7. California Energy Commission Public Interest EnergyResearch/Energy System Integration -- Transmission-Planning Research&Development Scoping Project

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

    2004-07-01

    The objective of this Public Interest Energy Research (PIER)scoping project is to identify options for public-interest research and development (R&D) to improve transmission-planning tools, techniques, and methods. The information presented was gathered through a review of current California utility, California Independent System Operator (ISO), and related western states electricity transmission-planning activities and emerging needs. This report presents the project teams findings organized under six topic areas and identifies 17 distinct R&D activities to improve transmission-planning in California and the West. The findings in this report are intended for use, along with other materials, by PIER staff, to facilitate discussions with stakeholders that will ultimately lead to development of a portfolio of transmission-planning R&D activities for the PIER program.

  8. Energy: options for the future. Curriculum development project for high school teachers. Final report. [Packet

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, T.O.

    1978-04-01

    Recent state and regional energy crises demonstrate the delicate balance between energy systems, the environment, and the economy. Indeed, the interaction between these three elements of society is very complex. This project develops curriculum materials that would better provide students with an understanding and awareness of fundamental principles of energy supply, conversion processes, and utilization now and in the future. The project had two specific objectives: to transfer knowledge of energy systems, analysis techniques, and advanced technologies from the energy analyst community to the teacher participants; and to involve teachers in the preparation of modular case studies on energy issues for use within the classroom. These curriculum modules are intended to enhance the teacher's ability to provide energy-related education to students within his or her own academic setting. The project is organized as a three-week summer program, as noted in the flyer (Appendix A). Mornings are spent in seminars with energy and environmental specialists (their handout lecture notes are included as Appendix B); afternoons are devoted to high school curriculum development based on the seminar discussions. The curriculum development is limited to five areas: conservation, electricity demand scheduling, energy in the food system, new technologies (solar, wind, biomass), and environment. Appendix C consists of one-day lession plans in these areas.

  9. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig W

    2012-11-16

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy's Wind and Hydropower Technologies Program's goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental groups, and

  10. Moonlight project promotes energy-saving technology

    Science.gov (United States)

    Ishihara, A.

    1986-01-01

    In promoting energy saving, development of energy conservation technologies aimed at raising energy efficiency in the fields of energy conversion, its transportation, its storage, and its consumption is considered, along with enactment of legal actions urging rational use of energies and implementation of an enlightenment campaign for energy conservation to play a crucial role. Under the Moonlight Project, technical development is at present being centered around the following six pillars: (1) large scale energy saving technology; (2) pioneering and fundamental energy saving technology; (3) international cooperative research project; (4) research and survey of energy saving technology; (5) energy saving technology development by private industry; and (6) promotion of energy saving through standardization. Heat pumps, magnetohydrodynamic generators and fuel cells are discussed.

  11. Battleground Energy Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, Daniel [USDOE Gulf Coast Clean Energy Application Center, Woodlands, TX (United States)

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  12. Research, development and demonstration in the energy area in Switzerland - List of projects 2000/2001

    International Nuclear Information System (INIS)

    2002-01-01

    This report prepared by the Swiss Federal Office of Energy (SFOE) reviews research, development and demonstration projects in the energy area that were partly or wholly supported by the Swiss Federation in the years 2000/2001. A list of over 1,000 projects is presented, whereby many projects supported by the Swiss Cantons and local authorities are not included in the statistics. The report also contains figures on the efforts made by the private economy in these areas. The classification of the projects in the four main areas 'efficient use of energy', 'renewable energy sources', 'nuclear energy' and 'energy economics' is presented. This allows comparison with other publications such as the Federal Energy-Research Concept or the Overviews of the Energy-Research Programme Managers. The classification system is also compared with that used by the International Energy Agency (IEA). The Network for Information and Technology Transfer (ENET) is also presented, which has a comprehensive data base at its disposal and which maintains a systematic collection of energy-relevant publications. Details on these projects can be obtained from the appropriate heads of programmes and SFOE departmental heads, whose addresses are given in the report

  13. Management of projects for energy efficiency

    Directory of Open Access Journals (Sweden)

    Vuković Miodrag M.

    2014-01-01

    Full Text Available In an effort to lower operating costs and improve competitiveness, many organizations today are preparing projects in the field of energy saving. On the other hand, companies that provide energy services and implement these projects, need to build competences in this area to well manage the projects which are subject to energy savings and by this to justify the confidence of investors. This paper presents research that shows the most important factors for the development of local capacity in project management in the field of energy efficiency.

  14. Energy research and development projects in the Nordic countries. Directory 1985. Energiforskningsprojekter i Norden. Katalog 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This is the third directory of research, development and demonstration projects in the Nordic countries within the field of energy. The 1985 directory includes projects running in 1985. 1757 projects are described and all of them are financed through special public funds (i.e. external funding). The directory is published at the request of the Nordic Council of Ministers and a special Energy Research Committee set up by the Nordic energy ministers in order to coordinate and promote Nordic information sharing in the energy field. (author)

  15. Cuban energy development perspectives

    International Nuclear Information System (INIS)

    Berdellans Escobar, Ilse; Perez Martin, David; Lopez Lopez, Ileana; Ricardo Mora, Henry; Gomez De la Torre, Yoandys

    2005-01-01

    In this paper from energy demand scenario calculated for the country until 2025, energy supply options were assessed. Three energy development scenarios considering economic and social development projections and different energy options were evaluated: a reference scenario which includes the nowadays energy development projections; a second scenario basing the development on intensive use of domestic fossil fuels; and a third scenario, where the development is based on the maximum use of domestic renewable energy potential. The results are analyzed and recommendations are formulated

  16. Project development laboratories energy fuels and oils based on NRU “MPEI”

    Science.gov (United States)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Khomenkov, A. M.; Paramonova, A. O.; Khtoo Naing, Aung

    2017-11-01

    In the process of improving the efficiency of power plants a hot topic is the use of high-quality fuels and lubricants. In the process of transportation, preparation for use, storage and maintenance of the properties of fuels and lubricants may deteriorate, which entails a reduction in the efficiency of power plants. One of the ways to prevent the deterioration of the properties is a timely analysis of the relevant laboratories. In this day, the existence of laboratories of energy fuels and energy laboratory oil at thermal power stations is satisfactory character. However, the training of qualified personnel to work in these laboratories is a serious problem, as the lack of opportunities in these laboratories a complete list of required tests. The solution to this problem is to explore the possibility of application of methods of analysis of the properties of fuels and lubricants in the stage of training and re-training of qualified personnel. In this regard, on the basis of MPEI developed laboratory projects of solid, liquid and gaseous fuels, power and energy oils and lubricants. Projects allow for a complete list of tests required for the timely control of properties and prevent the deterioration of these properties. Assess the financial component of the implementation of the developed projects based on the use of modern equipment used for tests. Projects allow for a complete list of tests required for the timely control of properties and prevent the deterioration of these properties.

  17. The Danish energy crop research and development project - main conclusions

    International Nuclear Information System (INIS)

    Gylling, Morten

    2003-01-01

    Production of energy crops in Denmark is more or less non-existent in Denmark at the time being. However, the need for biomass on the other side of year 2005 exceeds the existing biomass resources and a substantial amount of energy crops will be necessary in order to fulfil the goals in Energy 21. The targeted share of the use of renewable energy sources by year 2030 is approximately 30%. Energy crops are seen as the most important new resource in order to create a balanced input mix of renewable in the energy system. The energy crops are mainly seen as fuel in small and medium sized CHP plants and in the big power plants. The Danish energy crop project consists of three main parts: a demonstration part, a research and development part, and an overall assessment part. Based on the results from the project the following overall conclusions can be made: Seen from a strictly market and production economic point of view energy crops will not be competitive in a foreseeable future, neither as a production for farmers nor as a fuel at the utility companies; The costs per GJ of energy crops are still higher than a GJ of straw; The cost difference between annual and perennial energy crops are slightly in favour of perennials, however the conditions on the individual farms should govern the choice between annual and perennial energy crops; Energy crops must be seen as part of an overall environmental scheme covering both agriculture and the energy sector; Given the right production scheme energy crops can be grown on environmental sensitive areas and on most ground water protection areas; Adding the potential sustainability benefits like reduced nutrient leakage and reduced CO 2 emissions energy crops seem to be a sensible and sustainable solution; Due to different handling, storage and fuel characteristics an all year delivery scheme of energy crops should include a mix of different energy crops to keep overall cost down. (BA)

  18. Analysis of Project Finance | Energy Analysis | NREL

    Science.gov (United States)

    Analysis of Project Finance Analysis of Project Finance NREL analysis helps potential renewable energy developers and investors gain insights into the complex world of project finance. Renewable energy project finance is complex, requiring knowledge of federal tax credits, state-level incentives, renewable

  19. Renewable energy projects under the clean development mechanism : myth or reality?

    International Nuclear Information System (INIS)

    Timilsina, G.

    2005-01-01

    This paper discussed the fate of Renewable Energy (RE) in Canada. The importance of RE is now increasing from both an environmental and energy security perspective, and has been projected as a key solution to climate change problems. RE is also one of the key greenhouse gas (GHG) mitigation options to be considered under the Clean Development Mechanism (CDM). Canada possesses more than 100 GW of technical potential for RE resources, including wind, solar and small hydro. Less than 10 per cent of this potential has been exploited to date. A number of programs have been developed to facilitate the deployment of Renewable Energy Technologies (RETs), including financial incentives, renewable portfolio standards and green power procurement policies. However, Canadian policies are less aggressive than those of other countries. This study showed that the supply of certified emission reductions (CERs) resulting from negative and low cost CDM options, such as energy efficiency improvements, afforestation and reforestation, could surpass the total demand for CERs during the first commitment period of the Kyoto Protocol. Implementation of RE projects under the CDM could be undermined. It was recommended that increased support of the Global Environment Facility (GEF), use of the Special Climate Change Fund, and special attention to RE from both host and investing countries should become mandatory as alternative strategies to promote RE. In addition, it should be acknowledged that the development of RETs faces a number of barriers and challenges, including competition from conventional energy technologies; lack of customer and investor confidence; regulatory and institutional barriers; and technical barriers such as transmission access. 19 refs., 1 tab

  20. Development of the business area construction and energy of EnergieRegion Nuernberg. Transfer from project management to a regional network

    International Nuclear Information System (INIS)

    Seiverth, A.

    2006-01-01

    The association EnergieRegion Nuernberg is a regional authority network, which is employed with the promotion of sustainable handling of the factor energy in the region Nuernberg and with the proliferation of this region as internationally recognized location for energy engineering, energy industry and energy science. The intention is to use the important industrial, service-oriented and scientific potential optimally. For this reason a functional co-ordination and communication platform had to be created for the cross-linking of the appropriate participants from economics, research and public administration. Therefore, the author of the contribution under consideration accompanies the development process of the business field construction and energy of this association in the background of the current trends in the construction and energy sector in the region Nuernberg. Under this aspect, the author reports on the following aspects: (a) Success factors of the project management in a regional network; (b) Operationalisation of the success of the project by means of a model; (c) Analysis of the different aspects of energetic measures; (d) Determination of chances and risks of the range building and energy in the region Nuernberg; (e) Comparison of the success of the model projects with the model for the determination of project success; (f) Determination of strengths and weaknesses of the project management in the business field construction and energy of the energy region Nuernberg

  1. A role for NGOs in international renewable energy project development

    Energy Technology Data Exchange (ETDEWEB)

    Bartholf, T.R.

    1997-12-01

    An NGO is an international term for non-government organizations, often it is used in connection with non-profit, community-based and/or voluntary business activities. To be successful in supporting energy projects, these organizations generally exhibit certain characteristics: they are familiar with the end-use requirements; they are typically neutral to the technology; they emphasize training; they do not carry a large bureacratic structure, at home or in the field; they typically can adapt to do numerous functions; they can often attract other support. The author discusses several examples of such organizations who have been highly successful. The author sees a continuing role for such groups in developing renewable energy sources in the rural setting to include: continued development of new activity in rural areas; development of institutional framework for future market activity; an increased role in managing international development activities; more direct involvement with for-profit technical and financial organizations.

  2. Basic survey for promoting energy efficiency in developing countries. Database development project directory of energy conservation technology in Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    In order to promote energy conservation in developing countries, the gist of Japanese energy saving technologies was edited into a database. The Asian territory is expected of remarkable economic development and increased energy consumption including that for fossil fuels. Therefore, this project of structuring a database has urgent importance for the Asian countries. New and wide-area discussions were given to revise the 1995 edition. The committee was composed of members from high energy consuming areas such as iron and steel, paper and pulp, chemical, oil refining, cement, electric power, machinery, electric devices, and industrial machinery industries. Technical literatures and reports were referred to, and opinions were heard from specialists and committee members representing the respective areas. In order to reflect the current status and particular conditions in specific industrial areas, additions were given under the assistance and guidance from the specialists. The energy saving technologies recorded in the database may be called small to medium scale technologies, with the target placed on saving energy by 10% or more. Small-scale energy saving technologies were omitted. Flow charts for manufacturing processes were also added. (NEDO)

  3. OFFER SOLUTIONS FOR THE DEVELOPMENT OF PROJECTS OF ENERGY-EFFICIENT HIGH-RISE BUILDINGS IN UKRAINE

    Directory of Open Access Journals (Sweden)

    DYACHENKO L. Yu.

    2016-04-01

    Full Text Available Raising of problem. Today, the question of ecology is in the first place all over the world. Our homes are not just destroying nature, but also need a lot of energy. 40% of the world's energy goes to lighting, air conditioning, heating, etc. Ukraine is a country, in which there are many cities with large industrial zones. By introducing a number of innovations for increasing energy efficiency we can improve the ecological situation in the country. The purpose of the article is offer solutions for the development of projects of energy-efficient high-rise buildings in Ukraine. Conclusion. Proposed solutions for the development of projects of energy-efficient high-rise buildings in Ukraine will allow to solve the problems: ecology, energy saving, saving of natural resources in the country in the near future.

  4. Energy research and development projects in the Nordic countries. Directory 1986. Energiforskningsprojekter i Norden. Katalog 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This is the fourth directory of research, development and demonstration projects in the Nordic countries within the field of energy. The 1986 directory includes projects running in 1986. 2172 projects are described and all of them are financed through special public funds (i.e. external funding). The energy research organisation in each Nordic country is briefly reviewed in the appendixes, and a list of relevant newsletters are given. The directory is published at the request if the Nordic Council of Ministers and a special Energy Reseach Committee set up by the Nordic energy ministers in order to coordinate and promote Nordic information sharing in the energy field. (author)

  5. Advanced energy projects FY 1994 research summaries

    International Nuclear Information System (INIS)

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation's energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects

  6. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    1992-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems. Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential. There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 -- September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated

  7. Scoping study into community-based renewable energy projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This scoping study has been carried out by the Centre for Sustainable Energy (CSE), a charity which promotes energy efficiency and renewable energy. CSE have used their involvement in the development of the Energy Club (the first energy service company for householders in the UK) and the Bristol Environment and Energy Trust (a cross-sector organisation initiating environmental projects) as the basis of the study. This study is the first phase of a long term project to set up two small-scale renewable energy schemes to demonstrate the benefits of a community based approach. Specific objectives of the study were: to identify, quantify and cost, renewable energy resources for interested community organisations; to evaluate two routes for developing community based projects - Environment Trusts and Energy Clubs'; to organise a seminar with the objective of bringing together community interest groups with experts in renewable energy; to identify two communities with viable renewable projects for the next phase - full feasibility studies/pilot projects. (author)

  8. Research and development project report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report summarizes results of research and development projects administered by NEDO for FY 1996. Overview of new energy projects and twelve chapters for individual projects are provided in the report. The new energy technology development projects administered by NEDO are classified into twelve categories, i.e., Development of technologies for solar energy utilization, Development of geothermal resources, Development of technologies for exploration and utilization of geothermal energy, Development of coal energy utilization technologies, Development of coal resources, Development of energy conversion and storage technologies, Development of hydrogen, alcohol and biomass technologies, Development of other oil-alternative energy technologies, Introduction and promotion of new energy sources, International energy-promotion activities, Promotion of development and introduction, and Activities of the NEDO Information Center. To ensure energy security and actively cope with environmental problems such as by taking carbon dioxide emission control measures, NEDO has stepped up its efforts to develop new energy- and energy saving-related technologies and introduce and diffuse them. 79 figs., 37 tabs.

  9. World Energy Projection System model documentation

    International Nuclear Information System (INIS)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA

  10. World Energy Projection System model documentation

    Energy Technology Data Exchange (ETDEWEB)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  11. Project of Atomic Energy Technology Record

    International Nuclear Information System (INIS)

    Song, K. C.; Ko, Y. C.; Kwon, K. C.

    2012-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records whole process, from the background to the performance, of each category in all fields of nuclear science technology which have been researched and developed at KAERI. This project includes development of Data And Documents Advanced at KAERI. This project includes development of Data And Documents Advanced Management System(DADAMS) to collect, organize and preserve various records occurred in each research and development process. In addition, it means the whole records related to nuclear science technology for the past, present and future. This report summarizes research contents and results of 'Project of Atomic Energy Technology Record'. Section 2 summarizes the theoretical background, the current status of records management in KAERI and the overview of this project. And Section 3 to 6 summarize contents and results performed in this project. Section 3 is about the process of sectoral technology record, Section 4 summarizes the process of Information Strategy Master Plan(ISMP), Section 5 summarizes the development of Data And Documents Advanced Management System(DADAMS) and Section 6 summarizes the process of collecting, organizing and digitalizing of records

  12. High Temperature Reactors for a proposed IAEA Coordinated Research Project on Energy Neutral Mineral Development Processes

    International Nuclear Information System (INIS)

    Haneklaus, Nils; Reitsma, Frederik; Tulsidas, Harikrishnan

    2014-01-01

    The International Atomic Energy Agency (IAEA) is promoting a new Coordinated Research Project (CRP) to elaborate on the applicability and potential of using High Temperature Reactors (HTRs) to provide process heat and/or electricity to power energy intensive mineral development processes. The CRP aims to provide a platform for cooperation between HTR-developers and mineral development processing experts. Energy intensive mineral development processes with (e.g. phosphate-, gold-, copper-, rare earth ores) or without (e.g. titanium-, aluminum ore) the possibility to recover accompanying uranium and/or thorium that could be developed and used to run the HTR for “energy neutral” processing of the primary ore shall be discussed according to the participants needs. This paper specifically focuses on the aspects that need to be addressed by HTR-designers and developers. First requirements that should be fulfilled by the HTR-designs are highlighted together with the desired outcomes of the research project. (author)

  13. High Temperature Reactors for a new IAEA Coordinated Research Project on energy neutral mineral development processes

    Energy Technology Data Exchange (ETDEWEB)

    Haneklaus, Nils, E-mail: n.haneklaus@berkeley.edu [Department of Nuclear Engineering, University of California, Berkeley, 4118 Etcheverry Hall, MC 1730, Berkeley, CA 94720-1730 (United States); Reitsma, Frederik [IAEA, Division of Nuclear Power, Section of Nuclear Power Technology Development, VIC, PO Box 100, Vienna 1400 (Austria); Tulsidas, Harikrishnan [IAEA, Division of Nuclear Fuel Cycle and Waste Technology, Section of Nuclear Fuel Cycle and Materials, VIC, PO Box 100, Vienna 1400 (Austria)

    2016-09-15

    The International Atomic Energy Agency (IAEA) is promoting a new Coordinated Research Project (CRP) to elaborate on the applicability and potential of using High Temperature Reactors (HTRs) to provide process heat and/or electricity to power energy intensive mineral development processes. The CRP aims to provide a platform for cooperation between HTR-developers and mineral development processing experts. Energy intensive mineral development processes with (e.g. phosphate-, gold-, copper-, rare earth ores) or without (e.g. titanium-, aluminum ore) the possibility to recover accompanying uranium and/or thorium that could be developed and used as raw material for nuclear reactor fuel enabling “energy neutral” processing of the primary ore if the recovered uranium and/or thorium is sufficient to operate the greenhouse gas lean energy source used shall be discussed according to the participants needs. This paper specifically focuses on the aspects to be addressed by HTR-designers and developers. First requirements that should be fulfilled by the HTR-designs are highlighted together with the desired outcomes of the research project.

  14. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 17. Development of Education Programs at Indonesian Universities

    Energy Technology Data Exchange (ETDEWEB)

    Wijnker, M. [Eindhoven University of Technology TUE, Eindhoven (Netherlands)

    2011-08-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. All five Indonesian partner universities managed to develop and implement an education program within the timeline of the CASINDO project. UMY (Muhammadiyah University of Yogyakarta, Indonesia), UNRAM (University of Mataram, Mataram, Indonesia) and UNCEN (Cenderawasih University, Jayapura, Papua, Indonesia) have chosen to develop a certificate program. UNDIP (Diponegoro University in Semarang, Java, Indonesia) and USU (University of Sumatra Utara, Medan, Indonesia) have both developed a master program in sustainable energy. UNDIP has already discussed the proposal of their master program with the Ministry of Education and will have to make some improvements. USU will first start the program as a specialisation within the Mechanical Engineering department and in some time continues to make it an independent master program. At all universities both contact persons and lecturers have put a lot of effort in developing the programs and succeeded. Additionally, through CASINDO a network of lecturers between the universities has developed, which will ease future cooperation, after the CASINDO project will have finished.

  15. INFORMATION TECHNOLOGIES IN MANAGEMENT OF ENERGY SAVING PROJECTS

    Directory of Open Access Journals (Sweden)

    Дмитро Валерійович МАРГАСОВ

    2015-06-01

    Full Text Available The information technology structure is considered of energy saving projects. The project management diagram of energy saving projects is developed, using GIS, ICS, BIM and other control and visual systems.

  16. VALUES-ORIENTED PROJECT MANAGEMENT OF RENEWABLE ENERGY

    Directory of Open Access Journals (Sweden)

    Олександр Михайлович ВОЗНИЙ

    2017-03-01

    Full Text Available The value-oriented approach to project management of renewable energy based on classification stage of the life cycle of products of the projects, adapted to the goals and objectives of information modeling, which allowed to formulate stricter requirements information models used at different stages of the power plant is proposed. A classification of the alternative energy projects, which highlighting areas for activities is proposed. The list of stakeholders that have an impact on alternative energy projects and presented their classification is defined. The value of alternative energy projects considered from the standpoint of a utilitarian approach, using the concept of utility and on the basis of this concept proposed classification values of alternative energy projects. Criteria values as indicators for assessing the value of alternative energy projects and their weights determined by pairwise comparison. To take into account the changes of the value criteria over time proposed to use the key control points value, assessed value criteria in various key points of control, defined indicator of the total value of alternative energy projects. The classification of risks and tools for value-oriented risk management in alternative energy projects is proposed. Further study authors plan to link the development of mechanisms for harmonization value alternative energy projects for their stakeholders.

  17. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 27. Biogas Construction Plan in Segoroyoso Village Yogyakarta Region

    Energy Technology Data Exchange (ETDEWEB)

    Lesmana, Surya Budi; Putra, Sri Atmaja [Muhammadiyah University of Yogyakarta, Yogyakarta (Indonesia)

    2011-10-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara (WNT) and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. To achieve the CASINDO objective seven Technical Working Groups have been established with the aim to conduct the technical activities under the various work packages and to produce the agreed deliverables. This report presents results from Technical Working Group IV on Renewable Energy project development. Its main aims were: To identify suitable non-hydro RE projects that can be developed in the province; To conduct an energy needs assessment in a selected location; To develop a business plan for a proposed solution to the identified main energy problem of the target community; To identify potential investors; To construct the project.

  18. Forest energy project in Central Finland; Keski-Suomen metsaeenergia -projekti

    Energy Technology Data Exchange (ETDEWEB)

    Ahokas, M [Association of Central Finland, Jyvaeskylae (Finland); Kuitto, P J [VTT Energy, Jyvaeskylae (Finland)

    1997-12-31

    The Forest Energy Project of Central Finland is one of the topleading regional demonstration project in Finland for testing and studying of the complete energy wood delivery chains and energy wood utilization. It is a large development and technology transfer venture concentrated primarily on practical needs. Total delivery chains are formed of the best machine and method alternatives, and they are also demonstrated. The project offers hence a wide test field for regional and national techno/economical wood fuel development. The target of this provincial project is to collect and demonstrate the most promising energy wood procurement technologies and methods for utilization of energy producers, forest industry and small and medium sized industries co-operating with forest owners, contractors and forest organizations. An essential target of the project is to direct the know-how, concentrated in the project, to development of the energy field. The project is directed to international information delivery, to concrete widening of cooperation, on transfer of testing and training activities and utilization experiences in the field of wood energy. The Forest Energy Project of Central Finland is a demonstration project supervised by the Regional Council of Central Finland. The project is a part of the national Bioenergy Research Programme. A large number of provincial partners interested in wood fuels, e.g. energy wood suppliers, energy producers, communes, forest industry, forestry boards, forestry associations, wood delivery contractors, and equipment producers, take part in the project

  19. Forest energy project in Central Finland; Keski-Suomen metsaeenergia -projekti

    Energy Technology Data Exchange (ETDEWEB)

    Ahokas, M. [Association of Central Finland, Jyvaeskylae (Finland); Kuitto, P.J. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    The Forest Energy Project of Central Finland is one of the topleading regional demonstration project in Finland for testing and studying of the complete energy wood delivery chains and energy wood utilization. It is a large development and technology transfer venture concentrated primarily on practical needs. Total delivery chains are formed of the best machine and method alternatives, and they are also demonstrated. The project offers hence a wide test field for regional and national techno/economical wood fuel development. The target of this provincial project is to collect and demonstrate the most promising energy wood procurement technologies and methods for utilization of energy producers, forest industry and small and medium sized industries co-operating with forest owners, contractors and forest organizations. An essential target of the project is to direct the know-how, concentrated in the project, to development of the energy field. The project is directed to international information delivery, to concrete widening of cooperation, on transfer of testing and training activities and utilization experiences in the field of wood energy. The Forest Energy Project of Central Finland is a demonstration project supervised by the Regional Council of Central Finland. The project is a part of the national Bioenergy Research Programme. A large number of provincial partners interested in wood fuels, e.g. energy wood suppliers, energy producers, communes, forest industry, forestry boards, forestry associations, wood delivery contractors, and equipment producers, take part in the project

  20. Final Report for NIREC Renewable Energy Research & Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Borland, Walt [Nevada Institute for Renewable Energy Commercialization (NIREC), Las Vegas, NV (United States)

    2017-05-02

    This report is a compilation of progress reports and presentations submitted by NIREC to the DOE’s Solar Energy Technologies Office for award number DE-FG36-08GO88161. This compilation has been uploaded to OSTI by DOE as a substitute for the required Final Technical Report, which was not submitted to DOE by NIREC or received by DOE. Project Objective: The primary goal of NIREC is to advance the transformation of the scientific innovation of the institutional partner’s research in renewable energy into a proof of the scientific concept eventually leading to viable businesses with cost effective solutions to accelerate the widespread adoption of renewable energy. NIREC will a) select research projects that are determined to have significant commercialization potential as a result of vetting by the Technology and commercialization Advisory Board, b) assign an experienced Entrepreneur-in-Residence (EIR) to each manage the scientific commercialization-preparedness process, and c) facilitate connectivity with venture capital and other private-sector capital sources to fund the rollout, scaling and growth of the resultant renewable energy business.

  1. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 24. Energy Efficiency in Central Java

    Energy Technology Data Exchange (ETDEWEB)

    Windarto, Joko; Nugroho, Agung; Hastanto, Ari; Mahartoto, Gigih [Diponegoro University, Semarang (Indonesia)

    2012-01-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. Energy has a very important role and has become a basic necessity in national sustainable development. Therefore, energy should be used sparingly and in a rational manner so that present and future energy demand can be met. Given the importance of using energy efficiently Government needs to devise a framework regulating the utilization of energy resources through the efficient application of technology and stimulating energy-saving behaviours. The purpose of this technical working group in CASINDO project is to research the steps and policy measures needed to improve the efficiency of electrical energy consumption in the household, industrial, and commercial buildings sector for Central Java. The government's efforts in promoting energy efficiency in Indonesia are still hampered by public awareness factor. This study exists to promote public awareness of energy efficiency by describing the financial benefits and possibilities of savings energies in order to support the government's energy saving program, replacement of old equipment that uses high power consumption with a new low-power one, reduction of unnecessary lighting, appreciation to the people who find and develop energy-efficient power utilization, persuade industries to uses the speed controller driver for production and fan motor to streamline the electrical energy usage.

  2. Environmental impacts of wind-energy projects

    National Research Council Canada - National Science Library

    Committee on Environmental Impacts of Wind Energy Projects, National Research Council

    2007-01-01

    .... Although the use of wind energy to generate electricity is increasing rapidly in the United States, government guidance to help communities and developers evaluate and plan proposed wind-energy projects is lacking...

  3. Energy development

    Science.gov (United States)

    Lovich, Jeffrey E.; Jones, L.L.C.; Lovich, R. L.; Halama, K.J.

    2016-01-01

    Large areas of the desert southwest are currently developed or being evaluated for construction of utility-scale renewable energy projects. These projects include numerous solar and wind energy facilities some of which will be massive. Unfortunately, peer-reviewed scientific publications are not yet available to evaluate the potential effects of solar-based utility-scale renewable energy development (USRED) on any species of wildlife, including amphibians and reptiles (herpetofauna). Scientific publications on the effects of wind-based USRED and operation (USREDO) are focused almost exclusively on flying wildlife including birds and bats. To the best of our knowledge the only publications on the effects of wind-based USREDO on herpetofauna are three publications on desert tortoise ecology at a wind energy facility near Palm Springs, California. Those studies suggested that not all effects of USREDO were detrimental in the short-term. However, additional research is required to determine if wind energy operation is compatible with conservation of this long-lived species over longer periods of time.

  4. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 38. Pro-poor Energy Strategy in Yogyakarta

    Energy Technology Data Exchange (ETDEWEB)

    Rosyidi Sri Atmaja P.; Lesmana, Surya Budi Lesmana [Muhammadiyah University of Yogyakarta, Yogyakarta (Indonesia)

    2011-12-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. Chapter 2 provides a review of the national, regional and local policy and programs on energy access for poor communities that have been implemented in Yogyakarta region. However, the two villages, i.e., Dusun Srumbung, Segoroyoso village, Pleret District, Bantul Regency and Dusun Wirokerten, Botokenceng Village, Banguntapan District, Bantul Regency, Yogyakarta Region, selected as locations for energy need assessments in this project have not received any support from the energy programs mentioned in this section. Chapter 3 gives the criteria used to select the locations. Chapter 4 provides the results and analysis of the participatory rural appraisal used for the energy needs assessments which have been carried out in the selected locations. Chapter presents the renewable energy potentials in the study area. Chapter 6 gives the results of a stakeholder analysis for implementing the proposed programmes and roadmap. Chapter 7 is the roadmap for RE project implementation for poor community and provincial budget analysis.

  5. New England Wind Energy Education Project (NEWEEP)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, Robert C.; Craddock, Kathryn A.; von Allmen, Daniel R.

    2012-04-25

    Project objective is to develop and disseminate accurate, objective information on critical wind energy issues impacting market acceptance of hundreds of land-based projects and vast off-shore wind developments proposed in the 6-state New England region, thereby accelerating the pace of wind installation from today's 140 MW towards the region's 20% by 2030 goals of 12,500 MW. Methodology: This objective will be accomplished by accumulating, developing, assembling timely, accurate, objective and detailed information representing the 'state of the knowledge' on critical wind energy issues impacting market acceptance, and widely disseminating such information. The target audience includes state agencies and local governments; utilities and grid operators; wind developers; agricultural and environmental groups and other NGOs; research organizations; host communities and the general public, particularly those in communities with planned or operating wind projects. Information will be disseminated through: (a) a series of topic-specific web conference briefings; (b) a one-day NEWEEP conference, back-to-back with a Utility Wind Interest Group one-day regional conference organized for this project; (c) posting briefing and conference materials on the New England Wind Forum (NEWF) web site and featuring the content on NEWF electronic newsletters distributed to an opt-in list of currently over 5000 individuals; (d) through interaction with and participation in Wind Powering America (WPA) state Wind Working Group meetings and WPA's annual All-States Summit, and (e) through the networks of project collaborators. Sustainable Energy Advantage, LLC (lead) and the National Renewable Energy Laboratory will staff the project, directed by an independent Steering Committee composed of a collaborative regional and national network of organizations. Major Participants - the Steering Committee: In addition to the applicants, the initial collaborators committing

  6. Financing green energy projects in Malaysia

    International Nuclear Information System (INIS)

    Eddynor Manshor; Yvonne Lunsong; Norhayati Kamaruddin

    2000-01-01

    Kyoto Protocol is the first global commitment to reduce greenhouse gas (GHG) emissions. Malaysia, which signed the Protocol on 12 March 1999, must also take steps to address the climate change concerns. The use of renewable energy sources is seen as a feasible way to address the issue. Despite their environment-friendliness, these sources of energy are grossly under-utilised even though Malaysia is amply endowed with renewable energies, particularly biomass and solar. As a unique domestic resource, recurring energy savings from energy efficiency could also qualify as renewable energy. At present, the contribution of renewable energy in the country's energy mix is very small compared to its large potential. The Malaysian Government recognizes the potential of this form of energy. As part of its fuel diversification policy, the government plans to expand the four-fuel strategy to include renewable energy as the fifth fuel. Due to all year constant sunshine and vast oil palm cultivation, both solar and palm oil residues are identified as the most promising green energy option. Efforts are underway to embark on programs to demonstrate and evaluate the viability of these emerging green technologies. A few organizations are given grants to undertake pre-feasibility studies of pre-commercialization demonstration projects. When approved, viable projects could also qualify for technical and financial assistance from foreign partners. However, grants are limited and under World Trade Organization rules such subsidies should not exceed 30 percent in most cases. Commercialization of green energy projects must therefore involve full participation of private developers and financial institutions. Yet, virtually no attempt is made to promote financing of such projects in Malaysia. In most cases, financial institutions are not aware of the economic potential of these unique and under exploited sources. This paper will discuss problems in financing green energy projects and then

  7. Accuracy of past projections of US energy consumption

    International Nuclear Information System (INIS)

    O'Neill, B.C.; Desai, Mausami

    2005-01-01

    Energy forecasts play a key role in development of energy and environmental policy. Evaluations of the accuracy of past projections can provide insight into the uncertainty that may be associated with current forecasts. They can also be used to identify sources of inaccuracies, and potentially lead to improvements in projections over time. Here we assess the accuracy of projections of US energy consumption produced by the Energy Information Administration over the period 1982-2000. We find that energy consumption projections have tended to underestimate future consumption. Projections 10-13 years into the future have had an average error of about 4%, and about half that for shorter time horizons. These errors mask much larger, offsetting errors in the projection of GDP and energy intensity (EI). GDP projections have consistently been too high, and EI projection consistently too low, by more than 15% for projections of 10 years or more. Further work on the source of these sizable inaccuracies should be a high priority. Finally, we find no evidence of improvement in projections of consumption, GDP, or EI since 1982

  8. Carbon credit of renewable energy projects in Malaysia

    Science.gov (United States)

    Lim, X.; Lam, W. H.; Shamsuddin, A. H.

    2013-06-01

    The introduction of Clean Development Mechanism (CDM) to Malaysia improves the environment of the country. Besides achieving sustainable development, the carbon credit earned through CDM enhances the financial state of the nation. Both CDM and renewable energy contribute to the society by striving to reduce carbon emission. Most of the CDM projects are related to renewable energy, which recorded 69% out of total CDM projects. This paper presents the energy overview and status of renewable energies in the country. Then, the renewable energy will be related to the CDM.

  9. Carbon credit of renewable energy projects in Malaysia

    International Nuclear Information System (INIS)

    Lim, X; Lam, W H; Shamsuddin, A H

    2013-01-01

    The introduction of Clean Development Mechanism (CDM) to Malaysia improves the environment of the country. Besides achieving sustainable development, the carbon credit earned through CDM enhances the financial state of the nation. Both CDM and renewable energy contribute to the society by striving to reduce carbon emission. Most of the CDM projects are related to renewable energy, which recorded 69% out of total CDM projects. This paper presents the energy overview and status of renewable energies in the country. Then, the renewable energy will be related to the CDM.

  10. Forest Energy Project of Central Finland; Keski-Suomen metsaeenergiaprojekti

    Energy Technology Data Exchange (ETDEWEB)

    Ahokas, M [Regional Council of Central Finland, Jyvaeskylae (Finland); Kuitto, P J [VTT Energy, Jyvaeskylae (Finland). Fuel Production

    1997-12-01

    The Forest Energy Project of Central Finland (1994 - 1996) was one of the leading regional demonstration projects in Finland for testing and studying of the complete energy wood delivery chains and energy wood utilisation. The target of this provincial project was to collect and demonstrate the most promising energy wood procurement technologies and methods for utilisation of energy producers, forest industry and small and medium sized industries co- operating with forest owners, contractors and forest organisations. The project was a large development and technology transfer venture concentrated primarily on practical needs. Total delivery chains were formed of the best machine and method alternatives, and they were also demonstrated. The project offered hence a wide test field for regional and national techno / economical wood fuel development. The Forest Energy Project of Central Finland was a demonstration project supervised by the Regional Council of Central Finland. The project was a part of the national Bioenergy Research Programme. VTT Energy and the Forestry Board of Central Finland were responsible for the practical development work. A large number of provincial partners interested in wood fuels took part in the project. The project were carried out during the years 1994 - 1996. The total costs were 4.4 million FIM. The aim is to create a practical model for the entire system, by which enables the economically profitable increment of the utilisation of chip fuels in Central Finland by 100 GWh/1996 and 500 GWh/a (about 250 000 m{sup 3}) to the end of the decade. (orig.)

  11. The bill project on energy transition: what will happen to renewable energies

    International Nuclear Information System (INIS)

    Darson, Alice

    2015-01-01

    The author comments and discusses the content of the French bill project on energy transition, and the controversies on this bill project within the French Parliament. She addresses the objectives of the bill project (share of renewable energies, case of overseas territories), the issue of building construction and renovation, the issue of transports (fleet size, electric vehicles, use of renewable energy), the development of renewable energies (notably for overseas territories, issue of mandatory purchase, issue of connection), the simplification and clarification of procedures, and the possibility for citizen, enterprises, territories and State to act together

  12. DOE Energy Challenge Project

    Energy Technology Data Exchange (ETDEWEB)

    Frank Murray; Michael Schaepe

    2009-04-24

    Project Objectives: 1. Promote energy efficiency concepts in undergraduate and graduate education. 2. Stimulate and interest in pulp and paper industrial processes, which promote and encourage activities in the area of manufacturing design efficiency. 3. Attract both industrial and media attention. Background and executive Summary: In 1997, the Institute of Paper Science and Technology in conjunction with the U.S. Department of Energy developed a university design competition with an orientation to the Forest Products Industry. This university design competition is in direct alignment with DOE’s interests in instilling in undergraduate education the concepts of developing energy efficient processes, minimizing waste, and providing environmental benefits and in maintaining and enhancing the economic competitiveness of the U.S. forest products industry in a global environment. The primary focus of the competition is projects, which are aligned with the existing DOE Agenda 2020 program for the industry and the lines of research being established with the colleges comprising the Pulp and Paper Education and Research Alliance (PPERA). The six design competitions were held annually for the period 1999 through 2004.

  13. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 38. Pro-poor Energy Strategy in Central Java

    Energy Technology Data Exchange (ETDEWEB)

    Sumardi, R. Rizal Isnanto; Firdausi, Aulia Latifah Insan [Diponegoro University, Semarang (Indonesia)

    2012-01-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects.

  14. Energy Storage and Distributed Energy Generation Project, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  15. World energy projections to 2030

    International Nuclear Information System (INIS)

    Criqui, P.; Kouvaritakis, N.

    2000-01-01

    This paper provides a description of the international energy projections elaborated with the POLES energy model for the purpose of analysing, in other papers of this issue, the impacts of technological change at world level and to 2030. Section 2 describes the key exogenous hypotheses on population and economic growth used for this projection, as well as the main resulting changes for the world energy system and in terms of CO 2 emissions. In Section 3 the dynamics of the energy systems are further analysed for four main world regions, while Section 4 is dedicated to the identification of the key uncertainties and of their possible impacts on future energy development. Finally, the last section presents the key messages of this outlook, which shows a rapidly growing world economy and energy consumption with increasing oil and gas prices, although this last feature remains subject to uncertainties on resource endowment estimates. (orig.)

  16. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Holst, Kent (Iowa Stored Energy Plant Agency, Traer, IA); Huff, Georgianne; Schulte, Robert H. (Schulte Associates LLC, Northfield, MN); Critelli, Nicholas (Critelli Law Office PC, Des Moines, IA)

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  17. Financing wind energy projects

    International Nuclear Information System (INIS)

    Blom, P.

    1996-01-01

    Triodos Bank has more than 10 years of experience with developing and financing wind projects in the Netherlands. Over 50 Megawatt has been installed with direct involvement of the bank. The experience is both as a bank and as a venture capital fund. In this contribution the perspective will be more from a venture capital point of view than as a bank. The bank's activities in the wind energy sector started in 1986 by forming a joint venture with an engineering bureau, experienced i wind energy but not yet in developing wind projects. From 1989 onwards the joint venture started to build wind farms, both as a private company and in a joint venture with utilities. The European Investment Bank became involved with a long-term debt finance facility (15 years, fixed interest loan). The main difficulties were long-term commitments from landowners (Dike authorities) and utilities with regard to power contracts. The development got really stuck when utilities refused to pay a fair price anymore. Also, site development became more and more difficult. Even the poor technical performance improved drastically and did not frighten developers and banks too much. (author)

  18. Small scale renewable solar energy and the best result project

    Energy Technology Data Exchange (ETDEWEB)

    Bilbao, J.; Miguel, A.H.; Perez-Burgos, A.M. [Valladolid Univ. (Spain)

    2008-07-01

    The European Community has established programmes with different Projects in relation with the develop of an energy system according to de Kyoto objectives, improving energy efficiency, maintaining security supply and doubling the share of renewable energy use. The Best Result Project (Building and Energy Systems and Technology in Renewable Energy Sources Update and Linked Training), is financed by the European Commission, Intelligent Energy Agency (EIE) and the project objectives are to develop training and diffusion activities in the field of Renewable Energy Technology. The project aims to raise the renewable energy knowledge among suppliers and general public. The project activities are: basis and specialized training events, workshops, meetings, visits and e-learning common platform. The final objective is to extend the market of small scale RES applications in the building and energy sector through common and local activities addressing RES suppliers and consumers. (orig.)

  19. Energy Strategic Planning & Sufficiency Project

    Energy Technology Data Exchange (ETDEWEB)

    Retziaff, Greg

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follows: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  20. 75 FR 81637 - Commercial Lease for the Cape Wind Energy Project

    Science.gov (United States)

    2010-12-28

    ... Commercial Lease for the Cape Wind Energy Project AGENCY: Bureau of Ocean Energy Management, Regulation and... Renewable Energy Development on the Outer Continental Shelf (``OCS'') for the Cape Wind Energy Project... requirements of 30 CFR 285.231. The Lease is for the Cape Wind Energy Project (``Project'') which grants Cape...

  1. Renewable energy projects in the Dominican Republic

    Energy Technology Data Exchange (ETDEWEB)

    Viani, B.

    1997-12-01

    This paper describes a US/Dominican Republic program to develop renewable energy projects in the country. The objective is to demonstrate the commercial viability of renewable energy generation projects, primarily small-scale wind and hydropower. Preliminary studies are completed for three micro-hydro projects with a total capacity of 262 kWe, and two small wind power projects for water pumping. In addition wind resource assessment is ongoing, and professional training and technical assistance to potential investors is ongoing. Projects goals include not less than ten small firms actively involved in installation of such systems by September 1998.

  2. Forestry and biomass energy projects

    DEFF Research Database (Denmark)

    Swisher, J.N.

    1994-01-01

    This paper presents a comprehensive and consistent methodology to account for the costs and net carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both...... biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone...... is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction. The methodology allows consistent comparisons of the costs and quantities of carbon stored in different types of projects and/or national programs, facilitating the inclusion of forestry and biomass...

  3. Assessing the role of renewable energy policies in landfill gas to energy projects

    International Nuclear Information System (INIS)

    Li, Shanjun; Yoo, Han Kyul; Macauley, Molly; Palmer, Karen; Shih, Jhih-Shyang

    2015-01-01

    Methane (CH 4 ) is the second most prevalent greenhouse gas and has a global warming potential at least 28 times as high as carbon dioxide (CO 2 ). In the United States, Municipal Solid Waste (MSW) landfills are reported to be the third-largest source of human-made methane emissions, responsible for 18% of methane emissions in 2011. Capturing landfill gas (LFG) for use as an energy source for electricity or heat produces alternative energy as well as environmental benefits. A host of federal and state policies encourage the development of landfill gas to energy (LFGE) projects. This research provides the first systematic economic assessment of the role of these policies on adoption decisions. Results suggest that Renewable Portfolio Standards and investment tax credits have contributed to the development of these projects, accounting for 13 of 277 projects during our data period from 1991 to 2010. These policy-induced projects lead to 10.4 MMTCO 2 e reductions in greenhouse gas emissions and a net benefit of $41.8 million. - Highlights: • Examine the role of renewable energy policies in landfill gas to energy projects • Renewable Portfolio Standards and investment tax credit had impacts. • Investment tax credit policy is cost-effectiveness in promoting these projects. • Policy-induced projects lead to significant environmental benefits

  4. Hot Dry Rock Geothermal Energy Development Project. Annual report, fiscal year 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    The feasibility of extracting geothermal energy from hot dry rock in the earth's crust was investigated. The concept being investigated involves drilling a deep hole, creating an artificial geothermal reservoir at the bottom of the hole by hydraulic fracturing, and then intersecting the fracture with a second borehole. At the beginning of FY77, the downhole system was complete, but the impedance to the flow of fluid was too high to proceed confidently with the planned energy extraction demonstration. Therefore, in FY77 work focused on an intensive investigation of the characteristics of the downhole system and on the development of the necessary tools and techniques for understanding and improving it. Research results are presented under the following section headings: introduction and history; hot dry rock resource assessment and site selection; instrumentation and equipment development; drilling and fracturing; reservoir engineering; energy extraction system; environmental studies; project management and liaison; and, looking back and ahead. (JGB)

  5. Rationale for energy research and development programme

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    This paper describes the rationale for the expenditure of government money on energy research and development. The Committee, organized in 1974, established the following order of project priorities: projects to determine current and future energy demand; projects concerned with the conservation and more efficient use of energy; projects concerned with the assessment of indigenous energy resources; projects concerned with the assessment of the human, financial, and organizational resources for energy production and use; and projects concerned with economic, technological, social, and environmental aspects of energy use and production over the next 15 years and beyond the next 15 years. Significant factors affecting the national energy economy, the strategy for energy research and development, and the results of committee activities are summarized. An energy scenario research is laid out. (MCW)

  6. Framework for Project Development in the Renewable Energy Sector

    Energy Technology Data Exchange (ETDEWEB)

    Springer, R.

    2013-02-01

    The concepts, descriptions, diagrams, and acronyms developed and described herein are meant to provide a contextual framework as well as a systematic, repeatable process to assist a potential project sponsor in understanding and navigating early-stage project development. Professional project developers will recognize these concepts and hold them as intuitive and even obvious, though the fundamentals of this specialized field are rarely written down and defined as they are here.

  7. Project finance for alternative energy

    International Nuclear Information System (INIS)

    Mills, S.J.

    1993-01-01

    This paper is intended to provide general advice to sponsors of renewable energy projects who expect to raise project-based financing from commercial banks to fund the development of their projects. It will set out, for the benefit of such sponsors, how bankers typically approach the analysis of these undertakings and in particular the risk areas on which they concentrate. By doing so it should assist sponsors to maximise their prospects of raising bank finance. (author)

  8. Risk management tools from the traditional energy industry to wind energy projects

    International Nuclear Information System (INIS)

    Randall, G.; Marks, R.

    2010-01-01

    Risk-based analysis techniques are used to quantify and prioritize a wide variety of problems within the traditional fossil fuel and nuclear power industries. This poster presentation evaluated some of the risk analysis tools and methods used by the energy industry to quantify and manage wind energy development risks. A comprehensive risk-based approach for identifying the probability and consequences of potential concerns was presented for a sample wind energy project. The process determined objectives in relation to the project's net present value. Contributing domains included the energy production, prices, and operating costs of the project. Decision criteria used to evaluate the desirability of the wind project were then developed. Monte Carlo simulations were the used to aggregate individual risks into an overall total. The contribution of each element to the decision objective was calculated separately. The element outputs were than combined into a measure of aggregate risk exposure. Aggregate results were used to calculate the decision criteria. The decision objective was to determine if the energy cost was less than the avoided cost of other project options. The study showed that the approach can allow decision-makers to mitigate risks. However, the results are dependent on the quality of the input data. tabs., figs.

  9. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  10. The Energy Economics of Financial Structuring for Renewable Energy Projects

    Science.gov (United States)

    Rana, Vishwajeet

    2011-12-01

    This dissertation focuses on the various financial structuring options for the renewable energy sector. The projects in this sector are capital-intensive to build but have relatively low operating costs in the long run when compared to traditional energy resources. The large initial capital requirements tend to discourage investors. To encourage renewable investments the government needs to provide financial incentives. Since these projects ultimately generate returns, the government's monetary incentives go to the sponsors and tax equity investors who build and operate such projects and invest capital in them. These incentives are usually in the form of ITCs, PTCs and accelerated depreciation benefits. Also, in some parts of the world, carbon credits are another form of incentive for the sponsors and equity investors to invest in such turnkey projects. The relative importance of these various considerations, however, differs from sponsor to sponsor, investor to investor and from project to project. This study focuses mainly on the US market, the federal tax benefits and incentives provided by the government. This study focuses on the energy economics that are used for project decision-making and parties involved in the transaction as: Project Developer/Sponsor, Tax equity investor, Debt investor, Energy buyer and Tax regulator. The study fulfils the knowledge gap in the decision making process that takes advantage of tax monetization in traditional after-tax analysis for renewable energy projects if the sponsors do not have the tax capacity to realize the total benefits of the project. A case-study for a wind farm, using newly emerging financial structures, validates the hypothesis that these renewable energy sources can meet energy industry economic criteria. The case study also helps to validate the following hypotheses: a) The greater a sponsor's tax appetite, the tower the sponsor's equity dilution. b) The use of leverage increases the cost of equity financing

  11. Energy for sustainable development

    International Nuclear Information System (INIS)

    Toepfer, Klaus

    2003-01-01

    Considerations about 'post-Kyoto' targets and other ways to achieve the objectives of the Protocol are critical. Scientific evidence presented by the IPCC in its third assessment in 2002 clearly indicates the need not only to implement the Protocol, but also to agree on further emission reductions in the medium term in order to keep changes in the world's climate at a manageable level. UNEP's Energy Programme addresses the environmental consequences of energy production and use, such as global climate change and local air pollution. UNEP assists decision makers in government and the private sector to make better, more informed energy choices, which fully integrate environmental and social costs. Since UNEP is not an implementing organization, its role as facilitator is core. The majority of UNEP's energy activities link to mitigation - the reduction of greenhouse gas emissions - but these are generally accompanied by broader objectives related to energy and sustainable development. This includes climate change mitigation, but not as the sole objective since many of UNEP's partners in developing countries have more immediate development objectives. UNEP's main programmes are: The Solar and Wind Energy Resource Assessment (SWERA) project, that provides solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy market development; A new Global Environment Facility (GEF) funded programme aiming at promoting industrial energy efficiency through a cleaner production/environmental management system framework. A parallel programme, Energy Management and Performance Related Energy Savings Scheme (EMPRESS), supports energy efficiency efforts in Eastern and Central Europe; The Mediterranean Renewable Energy Programme promotes the financing of renewable energy projects in the Mediterranean basin; The Rural Energy Enterprise Development (REED) seeks to develop new sustainable energy enterprises

  12. Energy for sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Toepfer, Klaus [United Nations Environment Programme (Kenya)

    2003-09-01

    Considerations about 'post-Kyoto' targets and other ways to achieve the objectives of the Protocol are critical. Scientific evidence presented by the IPCC in its third assessment in 2002 clearly indicates the need not only to implement the Protocol, but also to agree on further emission reductions in the medium term in order to keep changes in the world's climate at a manageable level. UNEP's Energy Programme addresses the environmental consequences of energy production and use, such as global climate change and local air pollution. UNEP assists decision makers in government and the private sector to make better, more informed energy choices, which fully integrate environmental and social costs. Since UNEP is not an implementing organization, its role as facilitator is core. The majority of UNEP's energy activities link to mitigation - the reduction of greenhouse gas emissions - but these are generally accompanied by broader objectives related to energy and sustainable development. This includes climate change mitigation, but not as the sole objective since many of UNEP's partners in developing countries have more immediate development objectives. UNEP's main programmes are: The Solar and Wind Energy Resource Assessment (SWERA) project, that provides solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy market development; A new Global Environment Facility (GEF) funded programme aiming at promoting industrial energy efficiency through a cleaner production/environmental management system framework. A parallel programme, Energy Management and Performance Related Energy Savings Scheme (EMPRESS), supports energy efficiency efforts in Eastern and Central Europe; The Mediterranean Renewable Energy Programme promotes the financing of renewable energy projects in the Mediterranean basin; The Rural Energy Enterprise Development (REED) seeks to develop new

  13. Focus on energy conservation: a project list

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    The Urban Land Institute (ULI) has prepared the following list of outstanding energy conserving projects for the US Department of Energy. As requested by the Department, the list includes descriptions of land developments and individual buildings suggested by members of ULI and by other sources. The projects have been selected to exemplify the major energy saving techniques in use today, with emphasis on those strategies most significant for people engaged in the business of land development. To make the list a useful reference for developers and public officials, ULI has attempted to cover energy conservation in the broadest sense from overall site planning to the functioning of individual building components. Focusing too closely on the myriad types of hardware available has been avoided and examples of the basic considerations important to energy-conscious planning and design are provided. Details on some heating, ventilation and air conditioning systems are provided in order to acquaint readers with major innovations in the field.

  14. Projected wood energy impact on US forest wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Skog, K.E. [USDA Forest Service, Madison, WI (United States)

    1993-12-31

    The USDA Forest Service has developed long-term projections of wood energy use as part of a 1993 assessment of demand for and supply of resources from forest and range lands in the United States. To assess the impact of wood energy demand on timber resources, a market equilibrium model based on linear programming was developed to project residential, industrial, commercial, and utility wood energy use from various wood energy sources: roundwood from various land sources, primary wood products mill residue, other wood residue, and black liquor. Baseline projections are driven by projected price of fossil fuels compared to price of wood fuels and the projected increase in total energy use in various end uses. Wood energy use is projected to increase from 2.67 quad in 1986 to 3.5 quad in 2030 and 3.7 quad in 2040. This is less than the DOE National Energy Strategy projection of 5.5 quad in 2030. Wood energy from forest sources (roundwood) is projected to increase from 3.1 billion (10{sup 9}) ft{sup 3} in 1986 to 4.4. billion ft{sup 3} in 2030 and 4.8 billion ft{sup 3} in 2040 (88, 124 and 136 million m{sup 3}, respectively). This rate of increase of roundwood use for fuel -- 0.8 percent per year -- is virtually the same as the projected increase rate for roundwood for pulpwood. Pulpwood roundwood is projected to increase from 4.2 billion ft{sup 3} in 1986 to 6.0 billion ft{sup 3} in 2030 and 6.4 billion ft{sup 3} in 2040 (119, 170 and 183 million m{sup 3}, respectively).

  15. Project finance for renewable energy

    International Nuclear Information System (INIS)

    Mills, S.J.; Taylor, M.

    1994-01-01

    This paper is intended to provide general advice to sponsors of renewable energy projects who expect to raise project-based financing from commercial banks to fund the development of their projects. It sets out, for the benefit of such sponsors, how bankers typically approach the analysis of these undertakings and in particular the risk areas on which they concentrate. By doing so it should assist sponsors to maximize their prospects of raising bank finance. The watchword for sponsors approaching banks must be ''Be Prepared'' . (author)

  16. Intermediate evaluation of USAID/Cairo energy policy planning project

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, T.J.; Wright, S.B. (Oak Ridge National Lab., TN (United States)); Barron, W.F. (Hong Kong Univ. (Hong Kong)); Kamel, A.M. (Ain Shams Univ., Cairo (Egypt)); Santiago, H.T. (USDOE, Washington, DC (United States))

    1992-01-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an intermediate evaluation'' of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  17. Intermediate evaluation of USAID/Cairo energy policy planning project

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, T.J.; Wright, S.B. [Oak Ridge National Lab., TN (United States); Barron, W.F. [Hong Kong Univ. (Hong Kong); Kamel, A.M. [Ain Shams Univ., Cairo (Egypt); Santiago, H.T. [USDOE, Washington, DC (United States)

    1992-09-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an ``intermediate evaluation`` of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  18. Education in Sustainable Energy by European Projects

    Science.gov (United States)

    Stanescu, Corina; Stefureac, Crina

    2010-05-01

    Our schools have been involved in several European projects having with the primary objective of educating the young generation to find ways for saving energy and for using the renewable energy. Small changes in our behaviour can lead to significant energy savings and a major reduction in emissions. In our presentation we will refer to three of them: - The Comenius 1 project "Energy in the Consumers' Hands" tried to improve the quality of education for democratic citizenship in all participant schools by creating a model of curricula concerning the integrative teaching of democratic citizenship using the topic approaches based on key concept - energy as important element of the community welfare. The students studied on the following topics: • Sources of energy • The clean use of fossil based resources; • The rational use of energyEnergy and the environment - The project "Solar Schools Forum" (SSF) focuses on environmental education in schools, in particular addressing the topics of Renewable Energy (RE) and Energy Efficiency (EE). The youth need to become more aware of energy-related problems, and how they can change their own lifestyles to limit environmental damage caused by the daily use of energy. As the decision-makers of tomorrow we need to empower them to make the right choices. The SSF is aimed at improving knowledge about RE and EE among children and young people, using a fun approach and aimed at generating greater enthusiasm for clean energy. The youth will also be encouraged to help raise awareness and so act as multipliers in their own communities, starting with their families and friends. As a result of this project we involved in developing and implementing an optional course for high school students within the Solar Schools Forum project. The optional course entitled "Sustainable energy and the environment" had a great deal of success, proof of this success being the fact that it is still taught even today, three years after its

  19. Advanced energy projects FY 1997 research summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  20. The project to design and develop an energy-related program for public housing residents: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    This demonstration project studied how to minimize the costs associated with public housing tenants in standard public housing as well as under homeownership transfers. A related problem was how to graduate the tenants to another level of responsibility and self-sufficiency through resident business developments and training in energy-related fields. The goal that emanated was the design and development of an energy-related demonstration program that educates public housing residents, facilities indigenous business development where appropriate, and trains residents to provide needed services.

  1. Energy consumption development 1980 - 2020 - a historical development, driving forces and projections; Energibruksutvikling 1980 - 2020 - historisk utvikling, drivkrefter og fremskrivninger

    Energy Technology Data Exchange (ETDEWEB)

    Espegren, Kari Aamodt; Rosenberg, Eva; Fidje, Audun

    2005-10-01

    The Institute for Energy Technology has on commission from the Norwegian Water Resources and Energy Directorate studied the development in the energy consumption in the period 1980 - 2020 and the energy use development towards 2020. With the historical developments in the various sectors, the Ministry of Finance projections and dialogs with firms and industries as basis various basic scenarios for the development in the energy consumption towards 2020 are made. The total end energy utilisation in a stationary sector would be approx. 151 Twh in 2001. In the basis scenario this will increase with 10 % to 167 Twh in 2020. The largest increase would be in the service sector with approx. 9 Twh net energy. In the household sector the increase would be approx. Twh while in the industrial sector about 1.5 Twh. Analysis carried out with the MARKAL model shows that it would be macro conomically profitable to implement energy conservation measures corresponding to 19 Twh in 2020. The composition of the energy carriers would be somewhat altered in 2020 compared to 2001. The oil consumption would particularly be reduced while the use of gas, bio nergy and district heating would increase.

  2. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 4. Inception report

    Energy Technology Data Exchange (ETDEWEB)

    Van der Linden, N.; Smekens, K. [Unit Policy Studies, Energy research Centre of the Netherlands ECN, Petten (Netherlands); Wijnker, M.; Lemmens, L. [Eindhoven University of Technology TUE, Eindhoven (Netherlands); Kamphuis, E. [ETC Nederland, Leusden (Netherlands); Permana, I. [Technical Education Development Centre TEDC, Bandung (Indonesia); Winarno, O.T. [Institute of Technology of Bandung ITB, Bandung (Indonesia)

    2009-10-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This inception report presents the proposed programmes for addressing the identified training needs, the proposed changes to the monitoring framework and other relevant issues discussed during the inception phase.

  3. Average regional end-use energy price projections to the year 2030

    International Nuclear Information System (INIS)

    1991-01-01

    The energy prices shown in this report cover the period from 1991 through 2030. These prices reflect sector/fuel price projections from the Annual Energy Outlook 1991 (AEO) base case, developed using the Energy Information Administration's (EIA) Intermediate Future Forecasting System (IFFS) forecasting model. Projections through 2010 are AEO base case forecasts. Projections for the period from 2011 through 2030 were developed separately from the AEO for this report, and the basis for these projections is described in Chapter 3. Projections in this report include average energy prices for each of four Census Regions for the residential, commercial, industrial, and transportation end-use sectors. Energy sources include electricity, distillate fuel oil, liquefied petroleum gas, motor gasoline, residual fuel oil, natural gas, and steam coal. (VC)

  4. Seneca Compressed Air Energy Storage (CAES) Project

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-11-30

    Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any

  5. Arctic Energy Technology Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  6. Technology Base Research Project for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, K.

    1985-06-01

    The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.

  7. Energy research projects in the Nordic countries - catalogue 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The Nordic energy ministers at their meeting February 9, 1982 agreed upon a working plan for the Nordic energy cooperation. As part of this plan a contact group was established in order to maintain coordination and cooperation within the area of energy research and development. This group decided April 1982 to establish a catalogue of energy research projects in the Nordic countries. A pilot catalogue was published in June 1982. The 1983 catalogue gives an up-to-date survey of energy research and development projects in the Nordic countries. About 2125 projects are described, and information is given on investigator(s), performing organization, financing body, funds, and period. The catalogue is prepared by the Nordic energy libraries through their cooperation in Nordic Atomic Libraries Joint Secretariat. The information is also included in the data base Nordic Energy Index (NEI), which is online accessible at I/S Datacentralen, Copenhagen, via EURONET, SCANNET, TYMNET, AND TELENET. (BP)

  8. Renewable Energy Development in Indian Country: A Handbook for Tribes

    Energy Technology Data Exchange (ETDEWEB)

    MacCourt, D. C.

    2010-06-01

    This handbook is designed to be an accessible reference for those who are new to tribal energy project development or seek a refresher on key development issues as they navigate the project development process. It builds upon the wealth of feedback and experiences shared by tribal and other participants in the National Renewable Energy Laboratory's tribal energy training sessions to provide tribal leaders, tribal economic and energy enterprises, and those supporting them with a general overview of the renewable energy project development process as well as detailed guidance on the following: how to structure a renewable energy project transaction to protect tribal interests, with an emphasis on joint project development efforts undertaken with nontribal parties; key energy development agreements, including power sale agreements, transmission and interconnection agreements, and land leases; and ways tribes can finance renewable energy projects, including the sources of funding or financing that may be available, the types of investors that may be available, and federal tax incentives for renewable energy projects.

  9. Projection of future transport energy demand of Thailand

    International Nuclear Information System (INIS)

    Limanond, Thirayoot; Jomnonkwao, Sajjakaj; Srikaew, Artit

    2011-01-01

    The objective of this study is to project transport energy consumption in Thailand for the next 20 years. The study develops log-linear regression models and feed-forward neural network models, using the as independent variables national gross domestic product, population and the numbers of registered vehicles. The models are based on 20-year historical data between years 1989 and 2008, and are used to project the trends in future transport energy consumption for years 2010-2030. The final log-linear models include only gross domestic product, since all independent variables are highly correlated. It was found that the projection results of this study were in the range of 54.84-59.05 million tonnes of oil equivalent, 2.5 times the 2008 consumption. The projected demand is only 61-65% of that predicted in a previous study, which used the LEAP model. This major discrepancy in transport energy demand projections suggests that projects related to this key indicator should take into account alternative projections, because these numbers greatly affect plans, policies and budget allocation for national energy management. - Research highlights: → Thailand transport energy consumption would increase to 54.4-59.1 MTOE in Year 2030. → The log-linear models yield a slightly higher projection than the ANN models. → The elasticity of transport energy demand with respect to GDP is 0.995.

  10. Projection of future transport energy demand of Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Limanond, Thirayoot, E-mail: tlimanond@yahoo.co [School of Transportation Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Jomnonkwao, Sajjakaj [School of Transportation Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Srikaew, Artit [School of Electrical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand)

    2011-05-15

    The objective of this study is to project transport energy consumption in Thailand for the next 20 years. The study develops log-linear regression models and feed-forward neural network models, using the as independent variables national gross domestic product, population and the numbers of registered vehicles. The models are based on 20-year historical data between years 1989 and 2008, and are used to project the trends in future transport energy consumption for years 2010-2030. The final log-linear models include only gross domestic product, since all independent variables are highly correlated. It was found that the projection results of this study were in the range of 54.84-59.05 million tonnes of oil equivalent, 2.5 times the 2008 consumption. The projected demand is only 61-65% of that predicted in a previous study, which used the LEAP model. This major discrepancy in transport energy demand projections suggests that projects related to this key indicator should take into account alternative projections, because these numbers greatly affect plans, policies and budget allocation for national energy management. - Research highlights: {yields} Thailand transport energy consumption would increase to 54.4-59.1 MTOE in Year 2030. {yields} The log-linear models yield a slightly higher projection than the ANN models. {yields} The elasticity of transport energy demand with respect to GDP is 0.995.

  11. Energy Strategic Planning & Self-Sufficiency Project

    Energy Technology Data Exchange (ETDEWEB)

    Greg Retzlaff

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follow: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  12. Regional energy projects in the Eurasian Area

    Directory of Open Access Journals (Sweden)

    Vesić Dobrica

    2012-03-01

    Full Text Available The Eurasian area has a very rich energy reserves, and is characterized by a complex network of relationships between major suppliers and consumers. The central place in this area has Russia as a country richest in energy resources in Eurasia. Beside her, the European Union is the largest economic and political grouping in the world, and a huge consumer of energy. The dynamic development of Chinese economy requires more energy imports by China. Dependence of the European Union and China on imported energy is high and will grow in the future. Russia is the world's dominant natural gas producer and one of the two largest oil producers in the world. Russia is the largest natural gas supplier of the EU and a significant oil and natural gas supplier of China. Energy projects in Eurasia are the result of the need to strengthen the stability of energy supplies, efforts to diversify sources of supply, and the geographic redistribution of Russian oil and gas exports. Although the interests of the main actors often do not agree, the reasons of energy security affect the development of joint energy projects.

  13. Financing energy projects in Africa

    International Nuclear Information System (INIS)

    Godier, Kevin; Marks, Jon

    1999-12-01

    Contains Executive Summary and Chapters on: Overview of financing trends in Africa; Multilateral support - Bedrock of Africa's first generation energy projects; ECA insurance and financing; Bilateral development finance; Offshore commercial bank lending; Local commercial bank finance; Capital markets; Legal ramifications ; Risk factors; Conclusions. (Author)

  14. Worlds Largest Wave Energy Project 2007 in Wales

    DEFF Research Database (Denmark)

    Christensen, Lars; Friis-Madsen, Erik; Kofoed, Jens Peter

    2006-01-01

    This paper introduces world largest wave energy project being developed in Wales and based on one of the leading wave energy technologies. The background for the development of wave energy, the total resource ands its distribution around the world is described. In contrast to wind energy turbines...... Dragon has to be scaled in accordance with the wave climate at the deployment site, which makes the Welch demonstrator device the worlds largest WEC so far with a total width of 300 meters. The project budget, the construction methods and the deployment site are also given....... a large number of fundamentally different technologies are utilised to harvest wave energy. The Wave Dragon belongs to the wave overtopping class of converters and the paper describes the fundamentals and the technical solutions used in this wave energy converter. An offshore floating WEC like the Wave...

  15. International Energy Outlook 2016 With Projections to 2040

    Energy Technology Data Exchange (ETDEWEB)

    Conti, John [USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Petroleum, Natural Gas, and Biofuels Analysis; Holtberg, Paul [USDOE Energy Information Administration (EIA), Washington, DC (United States). Analysis Integration Team; Diefenderfer, Jim [USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Electricity, Coal, Nuclear, and Renewables Analysis; LaRose, Angelina [USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Integrated and International Energy Analysis; Turnure, James T. [USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Consumption and Efficiency Analysis; Westfall, Lynn [USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Markets and Financial Analysis

    2016-05-01

    The International Energy Outlook 2016 (IEO2016) presents an assessment by the U.S. Energy Information Administration (EIA) of the outlook for international energy markets through 2040. U.S. projections appearing in IEO2016 are consistent with those published in EIA’s Annual Energy Outlook 2015 (AEO2015). IEO2016 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, federal and state governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Department of Energy Organization Act of 1977 (Public Law 95-91), Section 205(c). The IEO2016 energy consumption projections are divided according to Organization for Economic Cooperation and Development members (OECD) and nonmembers (non-OECD). OECD members are divided into three basic country groupings: OECD Americas (United States, Canada, and Mexico/Chile), OECD Europe, and OECD Asia (Japan, South Korea, and Australia/New Zealand). Non-OECD countries are divided into five separate regional subgroups: non-OECD Europe and Eurasia (which includes Russia); non-OECD Asia (which includes China and India); Middle East; Africa; and non-OECD Americas (which includes Brazil). In some instances, the IEO2016 energy production models have different regional aggregations to reflect important production sources (for example, Middle East OPEC is a key region in the projections for liquids production). Complete regional definitions are listed in Appendix M. IEO2016 focuses exclusively on marketed energy. Nonmarketed energy sources, which continue to play an important role in some developing countries, are not included in the estimates. The IEO2016 projections are based on existing U.S. and foreign government laws and regulations. In general, IEO2016 reflects the effects of current policies—often stated through regulations—within the projections. EIA analysts attempt to interpret the

  16. Analysis of renewable energy projects' implementation in Russia

    Science.gov (United States)

    Ratner, S. V.; Nizhegorodtsev, R. M.

    2017-06-01

    With the enactment in 2013 of a renewable energy scheme by contracting qualified power generation facilities working on renewable energy sources (RES), the process of construction and connection of such facilities to the Federal Grid Company has intensified in Russia. In 2013-2015, 93 projects of solar, wind, and small hydropower energy were selected on the basis of competitive bidding in the country with the purpose of subsequent support. Despite some technical and organizational problems and a time delay of some RES projects, in 2014-2015 five solar generating facilities with total capacity of 50 MW were commissioned, including 30 MW in Orenburg oblast. However, the proportion of successful projects is low and amounts to approximately 30% of the total number of announced projects. The purpose of this paper is to analyze the experience of implementation of renewable energy projects that passed through a competitive selection and gained the right to get a partial compensation for the construction and commissioning costs of RES generating facilities in the electric power wholesale market zone. The informational background for the study is corporate reports of project promoters, analytical and information materials of the Association NP Market Council, and legal documents for the development of renewable energy. The methodological base of the study is a theory of learning curves that assumes that cost savings in the production of high-tech products depends on the production growth rate (economy of scale) and gaining manufacturing experience (learning by doing). The study has identified factors that have a positive and a negative impact on the implementation of RES projects. Improvement of promotion measures in the renewable energy development in Russia corresponding to the current socio-economic situation is proposed.

  17. Institutional support for projects development

    International Nuclear Information System (INIS)

    Tobar, Carlos

    2000-01-01

    The paper describes the institutional support to develop projects on renewable energy, also describes the different ways to obtain financial support from the public sector and the interaction among private sector, universities and non governmental agencies in training, research and generation of energy

  18. Benefit–cost analysis of non-marginal climate and energy projects

    International Nuclear Information System (INIS)

    Dietz, Simon; Hepburn, Cameron

    2013-01-01

    Conventional benefit–cost analysis incorporates the normally reasonable assumption that the policy or project under examination is marginal. Among the assumptions this entails is that the policy or project is small, so the underlying growth rate of the economy does not change. However, this assumption may be inappropriate in some important circumstances, including in climate-change and energy policy. One example is global targets for carbon emissions, while another is a large renewable energy project in a small economy, such as a hydropower dam. This paper develops some theory on the evaluation of non-marginal projects, with empirical applications to climate change and energy. We examine the conditions under which evaluation of a non-marginal project using marginal methods may be wrong, and in our empirical examples we show that both qualitative and large quantitative errors are plausible. - Highlights: • This paper develops the theory of the evaluation of non-marginal projects. • It also includes empirical applications to climate change and energy. • We show when evaluation of a non-marginal project using marginal methods is wrong

  19. Indigenous Environmental Education: The Case of Renewable Energy Projects

    Science.gov (United States)

    Lowan-Trudeau, Gregory

    2017-01-01

    This article presents insights from an inquiry into renewable energy development by Indigenous communities across Canada. The focus is on Indigenous leadership in developing renewable energy projects that align with traditional ecological philosophies while also providing increased economic and energy security, sovereignty, and educational…

  20. Energy for sustainable rural development

    NARCIS (Netherlands)

    Hulscher, W.S.; Hulscher, W.S.; Hommes, E.W.; Hommes, E.W.

    1992-01-01

    Rural energy in developing countries is discussed with a view to sustainable development. The project-oriented approach in rural energy which has often dominated in the past, is contrasted with an overall strategy for sustainable rural energy demand and supply. An outline for a demand-oriented

  1. Renewable based hydrogen energy projects in remote and island communities

    International Nuclear Information System (INIS)

    Miles, S.; Gillie, M.

    2009-01-01

    Task 18 working group of the International Energy Agency's Hydrogen Implementing Agreement has been evaluating and documenting experiences with renewable based hydrogen energy projects in remote and island communities in the United Kingdom, Canada, Norway, Iceland, Gran Canaria, Spain and New Zealand. The objective was to examine the lessons learned from existing projects and provide recommendations regarding the effective development of hydrogen systems. In order to accomplish this task, some of the drivers behind the niche markets where hydrogen systems have already been developed, or are in the development stages, were studied in order to determine how these could be expanded and modified to reach new markets. Renewable based hydrogen energy projects for remote and island communities are currently a key niche market. This paper compared various aspects of these projects and discussed the benefits, objectives and barriers facing the development of a hydrogen-based economy

  2. Concerns in Marine Renewable Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Sharon; Previsic, Mirko; Nelson, Peter; Woo, Sheri

    2010-06-17

    To accelerate the adoption of these emerging marine hydrokinetic technologies, navigational and environmental issues and concerns must be identified and addressed. As hydrokinetic projects move forward, various stakeholders will need to be engaged; one of the key issues that project proponents face as they engage stakeholders is that many conflicting uses and environmental issues are not well-understood. Much of this lack of understanding comes from a limited understanding of the technologies themselves. To address this issue, in September 2008, RE Vision consulting, LLC, was selected by the Department of Energy, under their market acceleration program, to apply a scenario-based assessment approach to the emerging hydrokinetic technology sector. The goal was to improve understanding of potential environmental and navigation impacts of these technologies and focus stakeholders on the critical issues. To meet this goal, the study established baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios captured variations in technical approaches and deployment scales and thus grounded the analysis in realistic constraints. The work conducted under this award provides an important foundation to other market acceleration activities carried out by the DOE and other stakeholders in this sector. The scenarios were then evaluated using a framework developed by H.T. Harvey & Associates to identify and characterize key environmental concerns and uncertainties. In collaboration with PCCI and the U.S. Coast Guard, navigation issues were assessed and guidelines developed to assure the safe operation of these systems. Finally, the work highlights “next steps” to take to continue development and adoption of marine hydrokinetic energy. Throughout the project, close collaboration with device developers, project developers and regulatory stakeholders was pursued to ensure that assumptions and constraints are realistic. Results concur

  3. Demonstrating sustainable energy: A review-based model of sustainable energy demonstration projects

    NARCIS (Netherlands)

    Bossink, Bart

    2017-01-01

    This article develops a model of sustainable energy demonstration projects, based on a review of 229 scientific publications on demonstrations in renewable and sustainable energy. The model addresses the basic organizational characteristics (aim, cooperative form, and physical location) and learning

  4. Ponnequin Wind Energy Project Weld County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The purpose of this environmental assessment (EA) is to provide the U.S. Department of Energy (DOE) and the public with information on potential environmental impacts associated with the development of the Ponnequin Wind Energy Project in Colorado. This EA and public comments received on it will be used in DOE`s deliberations on whether to release funding for the project. This document provides a detailed description of the proposed project and an assessment of potential impacts associated with its construction and operations. Resources and conditions considered in the analysis include streams; wetlands; floodplains; water quality; soils; vegetation; air quality; socioeconomic conditions; energy resources; noise; transportation; cultural resources; visual and land use resources; public health and safety; wildlife; threatened, endangered, and candidate species; and cumulative impacts. The analysis found that the project would have minimal impacts on these resources and conditions, and would not create impacts that exceed the significance criteria defined in this document. 90 refs., 5 figs.

  5. Map of the portfolio of projects of energy efficiency and of renewable energies by the AFD group and the FFEM

    International Nuclear Information System (INIS)

    Guillaumie, Koulm; Briand, Claude; Ries, Alain

    2007-09-01

    The AFD (the French Agency for Development) and the FFEM (French Fund for World Environment) are involved in cooperation and partnership projects for the development of energy efficiency, notably, but not only, in developing and emerging countries. This report first proposes a classification of these projects according to a typology which comprises the concerned sectors (urban planning and housing, fuels, hydroelectricity and wind energy, electricity distribution, industries and services, transports and mobility, capacity building, multi-sector), the intervener (AFD, FFEM, and Proparco, an AFD's subsidy), the project evolution in time (number of projects, evolution of funding), the funding type (loan types, subsidy, credit line), and the geographical area. The second part discusses the conditions to start projects in energy management: legal framework, economic conditions, funding, social and environmental factors, and technical factors. Appendices propose a set of ten technical sheets which indicate and discuss conditions of success as well as obstacles for different types of projects: big dams, mini hydroelectric projects, wind energy, biomass/biogas co-generation, bio-fuels, decentralised rural electrification based on renewable energy projects, collective transports and energy efficiency in transports, development of partnerships and institutional support, multi-sector tools of investment, and carbon market

  6. Krakow clean fossil fuels and energy efficiency project

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Pierce, B.L. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  7. Reference Projections Energy and Emissions 2005-2020

    International Nuclear Information System (INIS)

    Van Dril, A.W.N.; Elzenga, H.E.

    2005-10-01

    The Reference Projection 2005-2020 covers the future development of Dutch energy use, greenhouse gas emissions and air pollution up to 2020. The Reference projection is based on assumptions regarding economic, structural, technological and policy developments. Two scenarios have been used. The Strong Europe (SE) scenario is characterized by moderate economic growth and strong public responsibility. The Global Economy (GE) scenario assumes high economic growth and has a strong orientation towards private responsibility. Energy consumption continues to grow in both scenarios and energy intensity is declining in the GE-scenario. Gradual rise of temperature is now included in the estimates for space heating and air conditioning. Energy prices for end users will rise, due to increased imports of natural gas and rising costs of electricity generation. The share of renewables in electricity consumption increases considerably due to subsidies for wind at sea and biomass, up to the target of 9% in 2010. Emissions of non-CO2 greenhouse gases are reduced and stabilise after 2010. The Dutch Kyoto target is probably met in both scenarios, assuming considerable emission reduction ef-forts abroad. Acidifying emissions of NOx and SO2 stabilise after reductions, but at levels that exceed their national emission ceiling (NEC). Emissions of volatile organic compounds are projected to fall with approximately 25% between 2002 and 2010 below their NEC. Emissions of ammonia are projected to meet their NEC. The emission of particulate matter (PM10) will stabilise at present levels

  8. Attractiveness Evaluation of Investment in Wind Energy Projects

    Directory of Open Access Journals (Sweden)

    Paulius Rudzkis

    2012-07-01

    Full Text Available Last decade as prices of fossil energy resources were almost constantly going upwards, increasing flow of investments is directed to renewable energy resources. Development and application of green energy became one of priority objectives in many countries. While in the context of wind energy production Lithuania lags behind the EU average, its potential of wind energy usage has great perspective. In this article using random processes, cost-benefit and financial analysis, attractiveness of investment in wind energy projects is examined. Given the stochastic nature of wind energy and by looking into investment profitableness and risk factors, effectiveness of wind turbine is evaluated. Analysis showed that wind energy projects could be considered as having high profit-to-risk factor and should generate significant interest of investment community.

  9. Geothermal energy in Italy - its importance, potential and projects

    International Nuclear Information System (INIS)

    Berger, W.

    2005-01-01

    This article discusses the perspectives for the use of geothermal energy in Italy. Starting with an overview of the principles of the use of geothermal energy in general, the article goes on to review Italy's geothermal resources and their relevance to energy supply. Figures are given on the political situation in Italy concerning energy and the rapidly increasing demands made on electricity supply. Political support for renewable energy in Italy is looked at and models for financing projects are examined. Examples of geothermal energy projects are given and the perspectives for further developments in this industry are looked at

  10. Project for a renewable energy research centre

    Directory of Open Access Journals (Sweden)

    Andrea Giachetta

    2011-04-01

    Full Text Available In Liguria, where sustainable approaches to the design, construction and management of buildings enjoy scant currency, the idea of a company from Milan (FERA s.r.l. setting up a research centre for studies into renewable energy resources, could well open up very interesting development opportunities.The project includes: environmental rehabilitation (restoration projects; strategies for the protection of water resources and waste management systems; passive and active solar systems (solar thermal and experiments with thermodynamic solar energy; hyperinsulation systems, passive cooling of buildings; use of natural materials; bio-climatic use of vegetation. The author describes the project content within the context of the multidisciplinary work that has gone into it.

  11. Incentive Mechanism of Micro-grid Project Development

    Directory of Open Access Journals (Sweden)

    Yong Long

    2018-01-01

    Full Text Available Due to the issue of cost and benefit, the investment demand and consumption demand of micro-grids are insufficient in the early stages, which makes all parties lack motivation to participate in the development of micro-grid projects and leads to the slow development of micro-grids. In order to promote the development of micro-grids, the corresponding incentive mechanism should be designed to motivate the development of micro-grid projects. Therefore, this paper builds a multi-stage incentive model of micro-grid project development involving government, grid corporation, energy supplier, equipment supplier, and the user in order to study the incentive problems of micro-grid project development. Through the solution and analysis of the model, this paper deduces the optimal subsidy of government and the optimal cooperation incentive of the energy supplier, and calculates the optimal pricing strategy of grid corporation and the energy supplier, and analyzes the influence of relevant factors on optimal subsidy and incentive. The study reveals that the cost and social benefit of micro-grid development have a positive impact on micro-grid subsidy, technical level and equipment quality of equipment supplier as well as the fact that government subsidies positively adjust the level of cooperation incentives and price incentives. In the end, the validity of the model is verified by numerical analysis, and the incentive strategy of each participant is analyzed. The research of this paper is of great significance to encourage project development of micro-grids and to promote the sustainable development of micro-grids.

  12. Influences of economic development in the Brazilian energy efficiency projects

    Directory of Open Access Journals (Sweden)

    Javier Cárcel Carrasco

    2012-09-01

    Full Text Available This work has as main goal to present some of the issues regarding the effects of the Brazilian economy in the effectiveness of national energy efficiency projects in order to provide some guidelines for optimizing the energy saving actions. The replacement of traditional electric motors with high efficiency motors has been considered, or that brings innovation and increases the need to search for new technologies for Brazilian industries. We must consider whether this new paradigm requires a strong federal government's investment in Brazil in order to allow the implementation of energy efficiency programs, mainly in small and medium industries. This document is divided into three main parts. The first part deals with some aspects of the economic crisis. The second presents the most important data of the National Electricity Conservation (PROCEL and Energy Efficiency Program of the ANEEL (National Electric Energy Agency. The third shows data on Small and Medium Industries and how their energy efficiency programs were affected.

  13. Project of the basic survey of cooperation for the heightening of energy efficiency in developing countries. Project for inviting engineers from developing countries to Japan (Malaysia); Hatten tojokoku energy shohi koritsuka kyoryoku kiso chosa nado jigyo. Hatten tojokoku gijutsusha shohei jigyo (Malaysia)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    For the purpose of plannably and effectively spreading the results of demonstrative researches on energy conservation and environmental technology in developing countries which were jointly made with Japan and Japan`s advanced energy conservation and environment technology, etc., the project invited engineers of developing countries to Japan, gave the intensive research instruction, made the required information exchange, and attempted improving R and D ability of the engineers and smoothening transfer/spread of the technology concerned. Malaysia has been advancing strongly the economic growth along `the 6th Malaysia Plan,` and aims, as a national target, at completing industrialization by 2020 and reaching the level of developed countries. However, the environment problem in Malaysia is worsening. In this invitation project, two-week training was given to 15 trainees, paying attention to the following three items: (1) introduction of technologies of energy conservation and environment in Japan, (2) actual field training at research institutes and corporations which have high-technology on energy conservation and environment, and (3) information exchanges with executive officials, scientists, and researchers in Japan. 6 figs.

  14. Nuclear energy for sustainable energy growth in developing countries

    International Nuclear Information System (INIS)

    Galvao, R.

    2005-01-01

    Nuclear energy is a tool to eliminate poverty in developing countries and there is a need for training and expertise. The international community is asked to support the development of generation IV reactors and fusion reactors. No policy is yet established for a wide range international collaboration. A mechanism for secondary participation in major international nuclear energy projects should be established and less expensive projects complementary to the main stream ones should be developed. IGNITOR Project is not established as a broad international collaboration. However its cost, approximately one tenth of ITER, time to construct, estimated around five years, and main physical objective, i.e, a burning-plasma experiment, makes it very attractive for participation of developing countries. Remote operation and data analysis: ITER GRID: real time interactions of large, geographically extended teams; real time interactions between small specialized groups; requirement of fast between-pulse analysis; simulations producing very large data sets (GB → TB → PB); grid can be assembled with many small computers clusters; suitable for participation of low-budget groups; expertise available from high-energy physics

  15. Hot rock energy projects : Australian context

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, B.A.; Malavazos, M. [Society of Petroleum Engineers, Richardson, TX (United States); Hill, A.J.; Coda, J. [Primary Industries and Resources South Australia, Adelaide (Australia)]|[Australian Geothermal Energy Group, Adelaide (Australia); Budd, A.R.; Holgate, F.L. [Australian Geothermal Energy Group, Adelaide (Australia)]|[Geoscience Australia, Adelaide (Australia)

    2008-10-15

    The Australia Geothermal Energy Group is an alliance of companies, government agencies and research organizations with an interest in promoting geothermal energy use. Hot rocks (HR) geothermal energy is a valued addition to the portfolio of safe, secure and competitive energy supplies because it offers the potential of inexhaustible geothermal heat energy with zero emissions. Australia's vast HR resources have attracted global interest and government support for HR projects, which call upon integrated expertise from the petroleum minerals and power industries. Funding from the Australian government is aimed at reducing critical, sector-wide uncertainties and equates to nearly 25 per cent of the cost of the private sector's field efforts to date. A national HR resource assessment and a road-map for the commercialization of Australian HR plays will be published in 2008 to help in the decision making process by portfolio managers. The challenges and prospects for HR projects in Australia were presented. It has been estimated that converting only 1 per cent of Australia's crustal energy from depths of 5 km and 150 degrees C to electricity would supply 26,000 years of Australia's 2005 primary power use. The factors that distinguish Australian HR resources include abundant radioactive granites and areas of recent volcanic activity; and, Australia is converging with Indonesia on a plate scale resulting in common, naturally occurring subhorizontally fractured basement rocks that are susceptible to hydraulic fracture stimulation. Most projects are focused on HR to develop enhanced or engineered geothermal systems (EGS) to fuel binary power plants. Approximately 80 percent of these projects are located in South Australia. 14 refs., 3 tabs., 3 figs.

  16. Factors of the uneven regional development of wind energy projects (a case of the Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Frantál, Bohumil; Kunc, Josef

    2010-01-01

    Roč. 62, č. 3 (2010), s. 183-199 ISSN 0016-7193 R&D Projects: GA AV ČR(CZ) KJB700860801 Institutional research plan: CEZ:AV0Z30860518 Keywords : wind energy * diffusion of innovation * social acceptance * uneven development Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  17. The renewable energy development framework - II. The foundations of renewable energy development: Economic foundations of renewable energies; International foundations of renewable energies; European foundations of renewable energy development; Foundations of renewable energy development in internal law

    International Nuclear Information System (INIS)

    Combes Motel, Pascale; Thebaut, Matthieu; Loic Grard; Michallet, Isabelle

    2012-01-01

    A first article analysis the reasons for the development of renewable energies (economic and environmental reasons, European commitments in terms of production objectives), how these renewable energies can be developed (acceptation by the population, administrative, technological, and financial constraints, political instruments related to market, taxes and purchase prices). A second article proposes a discussion about the way international law deals with renewable energies as far as texts as well as actors are concerned. The third article describes the European ambitions regarding renewable energies as a product of national perspectives (national action plans and projects) as well as of European perspectives (financing, integrated actions). The last article presents and comments various legal texts dealing with the development of renewable energies in France (texts concerning the right to energy, the environment law, planning tools, incentive measures)

  18. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 22. Energy Profile of Yogyakarta Province 2007. Regional CASINDO Team of Yogyakarta

    Energy Technology Data Exchange (ETDEWEB)

    Al Hasibi, R.A. [Universitas Muhammadiyah Yogyakarta PUSPER-UMY, Yogyakarta (Indonesia)

    2011-09-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report gives an overview of the province Yogyakarta, Indonesia, focusing on the energy balance in 2007.

  19. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 23. Energy Profile of Yogyakarta Province 2008. Regional CASINDO Team of Yogyakarta

    Energy Technology Data Exchange (ETDEWEB)

    Al Hasibi, R.A. [Universitas Muhammadiyah Yogyakarta PUSPER-UMY, Yogyakarta (Indonesia)

    2011-09-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report gives an overview of the province Yogyakarta, Indonesia, focusing on the energy balance in 2008.

  20. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 21. Energy Profile of Yogyakarta Province 2006. Regional CASINDO Team of Yogyakarta

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report gives an overview of the province Yogyakarta, Indonesia, focusing on the energy balance in 2006.

  1. Mt. Apo geothermal project : a learning experience in sustainable development

    International Nuclear Information System (INIS)

    Ote, Leonardo M.; De Jesus, Agnes C.

    1997-01-01

    The Mt. Apo geothermal project, a critical component of the Philippine energy program met stiff opposition from 1988-1991. Seemingly unresolvable legal, environmental and cultural issues between the government developer, the Philippine National Oil Company-Energy Development Corporation (PNOC-EDC) and various affected sectors delayed the project for two years. The paper discusses the efforts undertaken by the developer to resolve these conflicts through a series of initiatives that transformed the project into a legally, environmentally and socially acceptable project. Lastly, the PNOC-EDC experience has evolved a new set of procedures for the environmental evaluation of development project in the Philippines. (author)

  2. Map of projects of energy efficiency and of renewable energies by the AFD and FFEM

    International Nuclear Information System (INIS)

    Briand, Claude; Ries, Alain

    2008-04-01

    The AFD (the French Agency for Development) and the FFEM (French Fund for World Environment) are involved in cooperation and partnership projects for the development of energy efficiency, notably, but not only, in developing and emerging countries. This report proposes a review and an analysis of these projects in terms of concerned sectors, interveners, type of financing, and geographical area. It also comments and discusses the evolutions of financial commitments. In a second part, and based on these experiences, the report highlights the starting conditions for projects in energy efficiency. These conditions are distinguished in terms of national context, of economic conditions, of financing, of technical capacities, and of environmental and social factors

  3. Public perceptions of opportunities for community-based renewable energy projects

    International Nuclear Information System (INIS)

    Rogers, J.C.; Simmons, E.A.; Convery, I.; Weatherall, A.

    2008-01-01

    It now widely acknowledged that the UK needs to increase renewable energy capacity and it has been claimed that community-based renewable energy projects, with high levels of public participation, are more likely to be accepted by the public than top-down development of large-scale schemes and may bring additional benefits such as increased engagement with sustainable energy issues. However, little research has investigated public expectations of how people would like to participate in such projects and why. The aim of this study was to explore one rural community's response to a proposed sustainable energy project. A questionnaire survey and semi-structured interviews provided quantitative and qualitative data. There was widespread support for local generation and use of renewable energy, with respondents expecting benefits from a project in terms of increased community spirit and conservation of natural resources. However, desire for active involvement was lower and residents viewed themselves participating as consultees, rather than project leaders. We suggest community renewable energy projects are likely to gain public acceptance but are unlikely to become widespread without greater institutional support

  4. Poland - Electricity and gas marked development study and practical guidelines for using EU funds. Practical guidelines for using EU funds for energy projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-12-01

    The present report is prepared as part of the project 'Poland - Electricity and gas market development study and practical guidelines for using EU - funds'. The EU structural and cohesion funds are presently considered the most relevant funds concerning support to energy projects. In general, the Polish administration of the EU structural funds is strongly decentralized. The eligible project types to be supported from the various structural funds are described in a number of sector programmes. The sector programmes are described in vertical view, meaning that it is difficult to assess what kind of energy projects are eligible for support and, if eligible, then under which programme. This report presents a horizontal view of the various programmes in order to give an overview of the possibilities of support to energy related projects. The background for this report is a study of the following sector programmes: 1. Improvement of the competitiveness of enterprises. 2. Human resources development. 3. Restructuring and modernization of food sector and rural development. 4. Fisheries and fish processing. 5. Transport - maritime economy. 6. Integrated regional operational programme. 7. Technical assistance. Based on this review, it can be stated that energy projects in general have a low priority but can be supported under various measures within the programmes. (BA)

  5. Including Energy Efficiency and Renewable Energy Policies in Electricity Demand Projections

    Science.gov (United States)

    Find more information on how state and local air agencies can identify on-the-books EE/RE policies, develop a methodology for projecting a jurisdiction's energy demand, and estimate the change in power sector emissions.

  6. Baseline projections of transportation energy consumption by mode: 1981 update

    Energy Technology Data Exchange (ETDEWEB)

    Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

    1982-04-01

    A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

  7. Energy projections 1979

    International Nuclear Information System (INIS)

    1979-01-01

    The projections, prepared by Department of Energy officials, examine possible UK energy demand and supply prospects to the end of the century. They are based on certain broad long term assumptions about economic growth, technical improvements and movements in energy prices. The projections are intended to provide a broad quantitative framework for the consideration of possible energy futures and policy choices. Two cases are considered. In the first, the UK economy is assumed to grow at about 3 per cent to the end of the century and, in the second, at a lower level of about 2 per cent per annum. In both it is assumed that world oil prices will rise significantly above present levels (reaching some 30 dollars a barrel in terms of 1977 prices for Saudi Arabian marker crude by the end of the century). After incorporation of allowances for energy conservation which approximate to a reduction of some 20 per cent in demand, total primary fuel requirements in the year 2000 are estimated in the range 445 to 510 million tonnes of coal equivalent (mtce), representing an average rate of growth of 0.9 to 1.5 per cent a year. Potential indigenous energy supply by the end of the century is estimated in the range 390 to 410 mtce. This includes a possible installed nuclear capacity of up to 40 Gigawatts, approximately a fourfold increase on capacity already installed or under construction, and indigenous coal production of up to 155 million tonnes a year. The projections highlight the UK's prospective emergence during the later part of the century from a period from 1980 of energy surplus and the increasing roles which energy conservation, nuclear power and coal will be called upon to play as oil becomes scarcer and more expensive in the international market and as indigenous oil and gas production declines. (author)

  8. Project management for economical nuclear energy

    International Nuclear Information System (INIS)

    Majerle, P.P.

    2005-01-01

    The price of electricity is significantly influenced by the cost of the initial generation asset. The cost of the initial nuclear generation asset is significantly influenced by the design and construction duration. Negative variations in the cost and duration of actual design and construction have historically impacted the early relative economics of nuclear power generation. Successful management of plant design information will mitigate the risks of the design and construction of future nuclear plants. Information management tools that can model the integrated delivery of large complex projects enable the project owners to accurately evaluate project progress, as well as the economic impact of regulatory, political, or market activities not anticipated in the project execution plan. Significant differences exist in the electrical energy markets, project delivery models, and fuel availability between continents and countries. However, each market and project delivery model is challenged by the need to produce economical electrical energy. The information management system presented in this paper provides a means to capture in a single integrated computerized database the design information developed during plant design, procurement, and construction and to allow this information to be updated and retrieved in real time by all project participants. Utilization of the information management system described herein will enable diverse project teams to rapidly and reliably input, share, and retrieve power plant information, thereby supporting project management's goal to make good on its commitment to the economic promise of tomorrow's nuclear electrical power generation by achieving cost-effective construction. (authors)

  9. Nature conservation guidelines for renewable energy projects

    International Nuclear Information System (INIS)

    1994-01-01

    English Nature commissions this report in order to identify the likely nature conservation implications of renewable energy developments and for wind farm proposals in particular, to give guidance on siting criteria to minimise the nature conservation impact. The report is intended to be of use to developers, local planning authority staff and other interested parties in considering a renewable energy project. In consequence, the report concentrates on planning and nature conservation matters and outlines technical issues where relevant. (UK)

  10. Cumulative biological impacts framework for solar energy projects in the California Desert

    Science.gov (United States)

    Davis, Frank W.; Kreitler, Jason R.; Soong, Oliver; Stoms, David M.; Dashiell, Stephanie; Hannah, Lee; Wilkinson, Whitney; Dingman, John

    2013-01-01

    This project developed analytical approaches, tools and geospatial data to support conservation planning for renewable energy development in the California deserts. Research focused on geographical analysis to avoid, minimize and mitigate the cumulative biological effects of utility-scale solar energy development. A hierarchical logic model was created to map the compatibility of new solar energy projects with current biological conservation values. The research indicated that the extent of compatible areas is much greater than the estimated land area required to achieve 2040 greenhouse gas reduction goals. Species distribution models were produced for 65 animal and plant species that were of potential conservation significance to the Desert Renewable Energy Conservation Plan process. These models mapped historical and projected future habitat suitability using 270 meter resolution climate grids. The results were integrated into analytical frameworks to locate potential sites for offsetting project impacts and evaluating the cumulative effects of multiple solar energy projects. Examples applying these frameworks in the Western Mojave Desert ecoregion show the potential of these publicly-available tools to assist regional planning efforts. Results also highlight the necessity to explicitly consider projected land use change and climate change when prioritizing areas for conservation and mitigation offsets. Project data, software and model results are all available online.

  11. Creation and conservation of energy in Japan. [Sunshine and Moonlight Projects

    Energy Technology Data Exchange (ETDEWEB)

    Hoashi, K.

    1980-03-15

    Japan needs to increase alternatve energy supply by the year 2000. For the development of new energy sources, the Sunshine Project was initiated; it covers solar, geothermal, and coal liquefaction. For conservation of energy, the Moonlight Project was also begun. Some data on the schedules and budgets are given. 4 tables. (DLC)

  12. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Worthington, Monty [ORPC Alaska, LLC, Anchorage, AK (United States)

    2014-02-05

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the

  13. Advanced Energy Industries, Inc. SEGIS developments.

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  14. Implementing a Zero Energy Ready Home Multifamily Project

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation, Davis, CA (United States); German, Alea [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-08-01

    An objective of this project was to gain a highly visible foothold for residential buildings built to the U.S. Department of Energy's Zero Energy Ready Home (ZERH) specification that can be used to encourage participation by other California builders. This report briefly describes two single family homes that were ZERH-certified, and focuses on the experience of working with developer Mutual Housing on a 62 unit multi-family community at the Spring Lake subdivision in Woodland, CA. The Spring Lake project is expected to be the first ZERH certified multi-family project nationwide. This report discusses challenges encountered, lessons learned, and how obstacles were overcome.

  15. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 13. Integration of Renewable Energy Technologies in the national curriculum SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Kamphuis, E. [ETC Nederland, Leusden (Netherlands); Permana, I. [Technical Education Development Centre TEDC, Bandung (Indonesia)

    2011-11-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report focuses on the achievements for settling a national curriculum for Renewable Energy Technologies (RET) within the framework of national programme SPECTRUM, which includes all curricula of the medium technical schools in Indonesia.

  16. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  17. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    Science.gov (United States)

    Baresi, Larry

    1989-03-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  18. Hualapai Tribal Utility Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Hualapai Tribal Nation

    2008-05-25

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon

  19. SIHTI 2. Energy and environmental technology. Yearbook 1995. Project presentations

    International Nuclear Information System (INIS)

    Korhonen, M.; Thun, R.

    1997-01-01

    Detrimental impacts of various energy production forms, their prevention and costs to enterprises and to the society are studied in the National Research Programme on Energy and Environmental Technology - SIHTI 2. For this evaluation work databases on Finland's energy production, fuels and boilers and emissions of various production forms are needed. This is one of the main subtasks of the SIHTI Programme. Development of methods and tools required for environmental decision making and for the assessment of environmental costs and testing of their usability and reliability are equally important. Emission measurements are a problem field that continuously sets new challenges. In addition to energy production and its environmental impacts, environmental issues of the woodprocessing industries form another important research field of SIHTI 2 programme. A common aim of both fields is to reduce emissions of detrimental substances, to recycle raw materials, and to minimise and reuse wastes. Research and development projects are being carried out by a number of universities of different fields of science and technology, by research organisations and enterprises, and many projects are realised in close co-operation. In 1995, the programme comprised 28 R and D projects by universities and 22 enterprise-led projects. Results of these projects are presented in this yearbook. Part of the research projects continued from the preceding year and part were new projects continuing in 1996

  20. MODEL OF INTEGRATED VALUE OF PROJECTS IN THE FIELD OF ALTERNATIVE ENERGY

    Directory of Open Access Journals (Sweden)

    Наталія Ігорівна БОРИСОВА

    2015-05-01

    Full Text Available Development of alternative energy sources requires the implementation of complex problems, the solution of which is necessary to apply the project approach. The uniqueness of alternative energy projects (AEP necessitates individual approach to evaluating the effectiveness of each. The paper contains the results of the project management features's analysis in the field of alternative energy, determining the values and developing of the value management integrated conceptual model of AEP. In assessing the effectiveness of AEP considered the socio-economic and commercial aspects. Value management integrated conceptual model of AEP was obtained by combining the classical model of the project management goals with the project values model "Five "E" and two "A". The classical model of the project management goals have been complemented with risk parameters.

  1. Energy efficient maintenance. Project report; Energioptimerende vedligehold. Projektrapport

    Energy Technology Data Exchange (ETDEWEB)

    Bjerg, J. (Center for Drift og Vedligehold, Frederici (Denmark)); Dam Wied, M.; Skjershede Nielsen, P.; Holt, J. (NRGi Raadgivning A/S, Aarhus (Denmark)); Dam, M. (Energi Horsens, Horsens (Denmark)); Holk Lauridsen, V. (Teknologisk Institut, Energieffektivisering og Ventilation, Taastrup (Denmark))

    2010-03-15

    Together with four case companies, the project developed and tested a model for energy-efficient maintenance. In each of the companies, the model was adjusted through a cooperation process aiming at combining energy optimisation and maintenance as part of specific production optimisation. When correctly planned, energy-efficient maintenance is interesting for all companies. An overall solution was made, which can facilitate major energy savings and production efficiency improvement. (LN)

  2. Status of LMFBR development project in Japan

    International Nuclear Information System (INIS)

    Nagane, G.; Akebi, M.; Matsuno, Y.

    1987-01-01

    Initiation of the LMFBR development project in Japan was decided by the Atomic Energy Commission of Japan in 1966. In 1967, the Power Reactor and Nuclear Fuel Development Corporation (PNC) was established to realize the project as a part of its tasks of a wide scope covering all the reseatch and development activities concerning fuel cycle. In the present paper the status of experimental fast reactor (Joyo), which is the first milestone of the LMFBR project, prototype fast reactor (Monju) and R and D activities supporting the project including that for larger LMFBRs in the future is described. (author)

  3. PROJECT APPROACH TO ENERGY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Інга Борисівна СЕМКО

    2016-02-01

    Full Text Available Project management is widely used around the world as a tool to improve business performance. Correct implementation of the program of implementation of energy efficiency is accompanied by the adoption of an appropriate legislative framework, support programs, the approval of market-based instruments. Currently, it is paying enough attention to the effective application of market-based instruments, although most of the activities in the field of energy efficiency from the economic side are quite profitable. The authors suggested the use of the methodology of project management to the management of energy-saving measures, new approaches to the place and role of project management in the hierarchy of guidance. As a result, this innovation can improve the competitiveness of enterprises. The conclusions that the energy-saving project management allows you to get the best results for their implementation by reducing the time, resources, risk reduction.

  4. Fire-Protection Research for Energy-Technology Projects: FY 1981 year-end report

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.

    1982-07-20

    This report summarizes research conducted in fiscal year 1981 for the DOE-supported project, Fire Protection Research for Energy Technology Projects. Initiated in 1977, this ongoing research program was conceived to advance fire protection strategies for Energy Technology Projects to keep abreast of the unique fire problems that are developing with the complexity of energy technology research. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Employing these facilities as models for methodology development, we are simultaneously advancing three major task areas: (1) determination of unique fire hazards of current fusion energy facilities; (2) evaluation of the ability of accepted fire management measures to meet and negate hazards; and (3) performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models.

  5. Fire-Protection Research for Energy-Technology Projects: FY 1981 year-end report

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.

    1982-01-01

    This report summarizes research conducted in fiscal year 1981 for the DOE-supported project, Fire Protection Research for Energy Technology Projects. Initiated in 1977, this ongoing research program was conceived to advance fire protection strategies for Energy Technology Projects to keep abreast of the unique fire problems that are developing with the complexity of energy technology research. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Employing these facilities as models for methodology development, we are simultaneously advancing three major task areas: (1) determination of unique fire hazards of current fusion energy facilities; (2) evaluation of the ability of accepted fire management measures to meet and negate hazards; and (3) performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models

  6. 76 FR 22719 - Cape Wind Energy Project

    Science.gov (United States)

    2011-04-22

    ... Energy Project AGENCY: Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE), Interior..., or disapprove a Construction and Operations Plan (COP) for the Cape Wind Energy Project located on..., easements, or rights-of-way for renewable energy projects on the OCS. The Secretary delegated that authority...

  7. Final Report. Montpelier District Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Jessie [City of Montpelier Vermont, Montpelier, VT (United States). Dept. of Public Works; Motyka, Kurt [City of Montpelier Vermont, Montpelier, VT (United States). Dept. of Public Works; Aja, Joe [State of Vermont, Montpelier, VT (United States). Dept. of Buildings and General Services; Garabedian, Harold T. [Energy & Environmental Analytics, Montpelier, VT (United States)

    2015-03-30

    The City of Montpelier, in collaboration with the State of Vermont, developed a central heat plant fueled with locally harvested wood-chips and a thermal energy distribution system. The project provides renewable energy to heat a complex of state buildings and a mix of commercial, private and municipal buildings in downtown Montpelier. The State of Vermont operates the central heat plant and the system to heat the connected state buildings. The City of Montpelier accepts energy from the central heat plant and operates a thermal utility to heat buildings in downtown Montpelier which elected to take heat from the system.

  8. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 27. Biogas construction plan in Jeruk Manis Village in Lombok, West Nusa Tenggara

    Energy Technology Data Exchange (ETDEWEB)

    Natsir, A. [University of Mataram, Mataram (Indonesia)

    2011-10-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara (WNT) and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. The proposed small-scale renewable energy project to be developed under the Casindo Technical Working Group IV in West Nusa Tenggara is focused on household biogas. The project will be implemented in Jeruk Manis, which has been selected as the target location for the implementation of the renewable energy project in the program Casindo. Administratively, the village of 'Jeruk Manis' is located in the district Sikur, East Lombok, West Nusa Tenggara province. The number of households eligible as the target of the program in Jeruk Manis is 63. To implement the project, the Casindo team in WNT has partnered with Hivos and its BIRU program (Biogas Rumah program or Indonesia Domestic Biogas Programme). The biogas digester construction will be conducted by BIRU Lombok, in collaboration with a construction partner organization called Yayasan Mandiri Membangun Masyarakat Sejahtera (YM3S) and managed by the Casindo project team from the Faculty of Engineering at the University of Mataram. If the project is implemented, it will bring many benefits for poor people in the target location, which are likely to be sustained for a long time. While the benefits of developing biogas in the selected low-income location are obvious and abundant, there are also many challenges. The main problem for the proposed project is finding other interested funders to support the building of household biogas, as the financial capacity of the target households is very small.

  9. Survey report for fiscal 1993 on basic survey project for energy consumption efficiency improvement in developing countries. Database development project 5 (The Philippines); 1993 nendo hatten tojokoku energy shohi koritsuka kiso chosa jigyo (database kochiku jigyo). 5. Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Volume 5 covers the Philippines. The database development project has two goals. One is to collect basic data for joint projects for preparing energy conservation master plans for China and Indonesia, and the other is to build a comprehensive database for 8 countries including the said 2 countries (China, Indonesia, the Philippines, Thailand, Malaysia, Korea, Taiwan, and Japan) for contribution to the enhancement of energy conservation in the region involved. This Volume 5, dealing with 5 countries out of the 8 excluding China, Indonesia, and Japan, accommodates data on the Philippines, with whom a data collecting contract has just been signed in this fiscal year, which cannot be appropriately accommodated in Volume 1. The data referred to just above include the progress marked in this fiscal year in the preparation for the collection of actual data about energy consumption in Filipino factories scheduled to be carried out in and after the next fiscal year. (NEDO)

  10. Renewable Energy Project Financing: Impacts of the Financial Crisis and Federal Legislation

    Energy Technology Data Exchange (ETDEWEB)

    Schwabe, P.; Cory, K.; Newcomb, J.

    2009-07-01

    Extraordinary financial market conditions have disrupted the flows of equity and debt investment into U.S. renewable energy (RE) projects since the fourth quarter of 2008. The pace and structure of renewable energy project finance has been reshaped by a combination of forces, including the financial crisis, global economic recession, and major changes in federal legislation affecting renewable energy finance. This report explores the impacts of these key market events on renewable energy project financing and development.

  11. Computational methods for planning and evaluating geothermal energy projects

    International Nuclear Information System (INIS)

    Goumas, M.G.; Lygerou, V.A.; Papayannakis, L.E.

    1999-01-01

    In planning, designing and evaluating a geothermal energy project, a number of technical, economic, social and environmental parameters should be considered. The use of computational methods provides a rigorous analysis improving the decision-making process. This article demonstrates the application of decision-making methods developed in operational research for the optimum exploitation of geothermal resources. Two characteristic problems are considered: (1) the economic evaluation of a geothermal energy project under uncertain conditions using a stochastic analysis approach and (2) the evaluation of alternative exploitation schemes for optimum development of a low enthalpy geothermal field using a multicriteria decision-making procedure. (Author)

  12. Research, development and demonstration in the energy area in Switzerland - List of projects 2000/2001; Forschung, Entwicklung und Demonstration im Bereich der Energie in der Schweiz. Liste der Projekte 2000/2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report prepared by the Swiss Federal Office of Energy (SFOE) reviews research, development and demonstration projects in the energy area that were partly or wholly supported by the Swiss Federation in the years 2000/2001. A list of over 1,000 projects is presented, whereby many projects supported by the Swiss Cantons and local authorities are not included in the statistics. The report also contains figures on the efforts made by the private economy in these areas. The classification of the projects in the four main areas 'efficient use of energy', 'renewable energy sources', 'nuclear energy' and 'energy economics' is presented. This allows comparison with other publications such as the Federal Energy-Research Concept or the Overviews of the Energy-Research Programme Managers. The classification system is also compared with that used by the International Energy Agency (IEA). The Network for Information and Technology Transfer (ENET) is also presented, which has a comprehensive data base at its disposal and which maintains a systematic collection of energy-relevant publications. Details on these projects can be obtained from the appropriate heads of programmes and SFOE departmental heads, whose addresses are given in the report.

  13. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 25. Renewable Energy Action Plan of West Nusa Tenggara Province 2010-2025

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report is expected to become a reference for government and private sectors in the development of renewable energy in West Nusa Tenggara Province, not only the development of renewable energy for electricity generation, but also for other needs such as fuel for industry and cooking fuel for households. The Renewable Energy Action Plan of West Nusa Tenggara Province is a follow-up of the enactment of Presidential Regulation No. 5 Year 2006 concerning National Energy Policy, which the Central Government has set a target utilization of renewable energy by 2025 by 17%. Furthermore, this document contains data and information regarding current utilization of renewable energy, renewable energy potential and development opportunities, target of renewable energy development and action plans necessary to achieve the targets.

  14. Analysis of the efficiency of some international projects in Ukraine for future of nuclear energy

    International Nuclear Information System (INIS)

    Radovskaya, O.; Pysmennaya, U.; Zenyuk, D.

    2001-01-01

    The report presents the review of the status and perspectives for nuclear energy development in Ukraine. The role of certain projects for young experts is evaluated - among these projects the basic one is the IAEA Technical Co-operation Project UKR/4/006 S trategy for Nuclear Energy Development , as well as projects of the Ukrainian Nuclear Society and the Institute of Nuclear and Energy Law. (authors)

  15. Goals of energy efficiency: sectorial projections; Metas de eficiencias energeticas: projecoes setoriais

    Energy Technology Data Exchange (ETDEWEB)

    Badanhan, Luis Fernando; Souza, Hamilton Moss [Ministerio das Minas e Energia (SPE/MME), Brasilia, DF (Brazil). Secretaria de Planejamento Energetico. Dept. de Desenvolvimento Energetico

    2010-07-01

    This paper projects annual goals of energy efficiency discriminated by economy sectors, taking as reference the projection of electric power reduction of 10% in the year of 2030, stipulated in the Energy National Plan (ENP 2030). As introduction for the analysis, the paper presents the methodological aspects of energy efficiency projection presently adopted for the planning of Brazilian electric system expansion for long and average terms. For the projection of energy efficiency goals, it was developed an econometric model based on indexes of demand of energy discriminated for each economic sector. From the results, a sensibility analysis was made considering different ratios of Gross National Product growing.

  16. Large Energy Development Projects: Lessons Learned from Space and Politics

    International Nuclear Information System (INIS)

    Schmitt, Harrison H.

    2005-01-01

    The challenge to global energy future lies in meeting the needs and aspirations of the ten to twelve billion earthlings that will be on this planet by 2050. At least an eight-fold increase in annual production will be required by the middle of this century. The energy sources that can be considered developed and 'in the box' for consideration as sources for major increases in supply over the next half century are fossil fuels, nuclear fission, and, to a lesser degree, various forms of direct and stored solar energy and conservation. None of these near-term sources of energy will provide an eight-fold or more increase in energy supply for various technical, environmental and political reasons.Only a few potential energy sources that fall 'out of the box' appear worthy of additional consideration as possible contributors to energy demand in 2050 and beyond. These particular candidates are deuterium-tritium fusion, space solar energy, and lunar helium-3 fusion. The primary advantage that lunar helium-3 fusion will have over other 'out of the box' energy sources in the pre-2050 timeframe is a clear path into the private capital markets. The development and demonstration of new energy sources will require several development paths, each of Apollo-like complexity and each with sub-paths of parallel development for critical functions and components

  17. Energy, environment and development in Bhutan

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Sk Noim; Taplin, Ros [Graduate School of the Environment, Macquarie University, Sydney, NSW 2109 (Australia); Yu, Xiaojiang [Department of Geography, Hong Kong Baptist University, Kowloon (China)

    2007-12-15

    Bhutan's energy and environmental situation and approaches to development are reviewed and analyzed in this paper. Conservation of natural resources and human happiness have been placed as central strategic policy themes and have been given high priority in the national development plans of Bhutan. Bhutan's unique approach to development via Gross National Happiness (GNH) or the Middle Path of development is being facilitated by the Royal Government of Bhutan as a tool to balance poverty alleviation, environmental conservation and development. However, challenges exist due to the constraints of resources, good governance, legal frameworks, and human capacity. This paper reviews selected sustainable energy projects (e.g. energy from renewables or energy conservation) in Bhutan and finds that in fact, Bhutan's renewable energy resources (e.g. water and forests) which have proved to be indispensable for development are vulnerable due to the adverse impacts of climate change and environmental degradation. Appropriate measures in order to reduce potential environmental degradation and mitigate climate change impacts have been acknowledged globally and these have potential for application in Bhutan. For example, implementation of sustainable energy projects under the Clean Development Mechanism (CDM) of the Kyoto Protocol could offer an opportunity for mitigating climate change impacts and also contributing to sustainable development. (author)

  18. Adjustable Model of Renewable Energy Projects for Sustainable Development: A Case Study of the Nišava District in Serbia

    Directory of Open Access Journals (Sweden)

    Violeta Dimić

    2018-03-01

    Full Text Available This paper explores and ranks the key performance indicators of multi-criteria decision-making in the process of selecting renewable energy sources (RES. Different categories of factors (e.g., political, legal, technological, economic and financial, sociocultural, and physical are crucial for the analysis of such projects. In this paper, we apply the fuzzy analytic hierarchy process (fuzzy AHP method—a mathematical method—in order to analyze the main criteria for such projects, which include the environment, the organizational management structure, project participants, and participants’ relationship with the performance indicators. In order of ranking, the indicators are the following: time, costs, quality, monitoring the project’s sustainability, user feedback, and users’ health and safety. The aim of this paper is to point out the necessity of creating an adjustable model for renewable energy projects in order to proceed with the sustainable development of the southeast part of Serbia. This model should lead the creation process for such a project, with the aim of increasing its energy efficiency.

  19. Social impacts of community renewable energy projects: findings from a woodfuel case study

    International Nuclear Information System (INIS)

    Rogers, Jennifer C.; Simmons, Eunice A.; Convery, Ian; Weatherall, Andrew

    2012-01-01

    There is much current interest in the potential of community-based renewable energy projects to contribute to transition towards low carbon energy systems. As well as displacing fossil fuel consumption by increasing renewable energy generation, projects are expected to have a range of social impacts which may result in additional positive sustainability outcomes. These include potential to increase: acceptance of renewable energy developments; awareness of renewable and sustainable energy technologies and issues; uptake of low carbon technologies; and sustainable/pro-environmental behaviours. To date however, there has been little investigation of whether and how these impacts occur. This paper presents results from qualitative research investigating the social impacts of a community woodfuel project as experienced by project participants and other local stakeholders. Findings show projects can raise awareness of renewable energy technologies and increase uptake of renewables. Overall the case study project successfully changed the local social context for development of woodfuel heating, reducing risk for all involved in the future development of this sector, particularly in the immediate locality. There was some evidence of increased engagement with wider sustainability issues but this was limited to direct participants, suggesting local projects need to be supported by wider systemic change to maximise impacts. - Highlights: ► We assessed the social impacts of a community woodfuel project. ► The project increased awareness and uptake of woodfuel heating. ► Impacts were achieved as a result of the locally-specific approach. ► Local projects can seed cultural change promoting transition to a low carbon society.

  20. World energy projection system: Model documentation

    Science.gov (United States)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES), provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report.

  1. World energy projection system: Model documentation

    International Nuclear Information System (INIS)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) (Figure 1). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES) provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report

  2. How sustainable is Japan's foreign aid policy? An analysis of Japan's official development assistance and funding for energy sector projects

    Science.gov (United States)

    Yamaguchi, Hideka

    Japan has adopted a sustainable development strategy since the late 1980s in the effort to address social and environmental damages caused by past Japan-funded projects in partner nations. Even after about a decade and a half of the policy implementation, however, there are few reports which critically examine effects of the adoption of the idea of sustainable development. This dissertation evaluates Japan's foreign aid policy to determine the extent to which new revisions of aid policy have improved the environmental sustainability of the policy. This dissertation reviews the mainstream idea of sustainable development (also known as the sustainable development paradigm in this dissertation) to reveal the nature of the idea of sustainable development that Japan's foreign aid policy depends on. A literature review of two development discourses---modernization theory and ecological modernization theory---and three types of critiques against the sustainable development paradigm---focused on adverse impacts of modern science, globalization, and environmental overuse---reveals core logics of and problems with the sustainable development paradigm. Japan's foreign aid policy impacts on energy sector development in recipient countries is examined by means of a quantitative analysis and a qualitative analysis. Specifically, it examines the effect of Japan's ODA program over fifteen years that proposed to facilitate sustainable development in developing countries. Special emphasis is given to investigation of ODA disbursements in the energy sector and detailed case studies of several individual energy projects are performed. The dissertation discovers that the sustainable development paradigm guiding Japan's ODA has little capacity to accomplish its goals to bring about social and ecological improvement in developing countries. This dissertation finds three fundamental weaknesses in Japanese ODA policy on energy sector development as well as the sustainable development

  3. Canada's energy perspectives and policies for sustainable development

    International Nuclear Information System (INIS)

    Hofman, Karen; Li Xianguo

    2009-01-01

    A regression analysis is performed to make projections for the Canadian energy production and consumption. These have been increasing and are projected to increase even further in the near future. The primary energy production and consumption are projected to increase by 52% and 34%, respectively, by 2025 over 2004 if business as usual. The amount of fossil energy resources is finite and the extraction, transportation and combustion of fossil fuels cause environmental pollution and climate change. On the other hand, energy plays an important role in the economic and social development of Canada. Canada can develop further from an energy balance point of view, but this alone cannot be sustainable, because of the negative consequences of the major energy use on the environment. Application of energy localization and diversification is a promising solution, but in order to reach that, better energy efficiency and more use of renewable energy are necessary. Instead of non-compulsory policies Canada's policy approach should have more compulsory policies. Only then Canada can be made to develop further in a sustainable manner

  4. Evidence-based development of school-based and family-involved prevention of overweight across Europe: The ENERGY-project's design and conceptual framework

    Directory of Open Access Journals (Sweden)

    Klepp Knut

    2010-05-01

    Full Text Available Abstract Background There is an urgent need for more carefully developed public health measures in order to curb the obesity epidemic among youth. The overall aim of the "EuropeaN Energy balance Research to prevent excessive weight Gain among Youth" (ENERGY-project is the development and formative evaluation of a theory-informed and evidence-based multi-component school-based and family-involved intervention program ready to be implemented and evaluated for effectiveness across Europe. This program aims at promoting the adoption or continuation of health behaviors that contribute to a healthy energy balance among school-aged children. Earlier studies have indicated that school and family environments are key determinants of energy-balance behaviors in schoolchildren. Schools are an important setting for health promotion in this age group, but school-based interventions mostly fail to target and involve the family environment. Methods Led by a multidisciplinary team of researchers from eleven European countries and supported by a team of Australian experts, the ENERGY-project is informed by the Environmental Research Framework for Weight gain Prevention, and comprises a comprehensive epidemiological analysis including 1 systematic reviews of the literature, 2 secondary analyses of existing data, 3 focus group research, and 4 a cross European school-based survey. Results and discussion The theoretical framework and the epidemiological analysis will subsequently inform stepwise intervention development targeting the most relevant energy balance-related behaviors and their personal, family-environmental and school-environmental determinants applying the Intervention Mapping protocol. The intervention scheme will undergo formative and pilot evaluation in five countries. The results of ENERGY will be disseminated among key stakeholders including researchers, policy makers and the general population. Conclusions The ENERGY-project is an international

  5. Developing benefit schemes and financial compensation measures for fishermen impacted by marine renewable energy projects

    International Nuclear Information System (INIS)

    Reilly, Kieran; O’Hagan, Anne Marie; Dalton, Gordon

    2016-01-01

    Commercial fishermen are arguably the stakeholder group most likely to be directly impacted by the expansion of the marine renewable energy (MRE) sector. The potential opposition of fishermen may hinder the development of MRE projects and the provision of benefit schemes could to enhance acceptance. Benefit schemes refer to additional voluntary measures that are provided by a developer to local stakeholders. The aim of this study is to explore the issue of the provision of benefit packages to local fishing communities and financial compensation measures for fishermen who may be impacted by MRE projects. Semi-structured interviews were conducted with fourteen fishermen from three separate case study sites around the island of Ireland where MRE projects were being developed. In addition, ten company fisheries liaison officers (CFLOs) who have worked on MRE projects in the UK and Ireland were also interviewed. The interviews were analysed under the headings of local employment, benefits in kind, compensation and community funds and ownership of projects. Analysis shows that there is uncertainty among fishermen over whether they would benefit or gain employment from MRE. Provision of re-training schemes and preferential hiring practices could be used by MRE developers to reduce this uncertainty. There was also agreement between fishermen and CFLOs on the need for the provision of an evidence-base and a standard approach for the calculation of disruption payments. A formal structure for the provision of benefit schemes for fishermen would be useful. Furthermore, schemes that provide a range of benefits to fishermen and other stakeholders over the lifetime of a MRE project are more likely to be successful at enhancing acceptance. - Highlights: • There is uncertainty among fishermen over benefits from MRE projects. • Re-training is required for fishermen to avail of employment opportunities. • Evidence-base is required for calculation of disruption payments.

  6. Bill project on energy transition for a green growth - Nr 2188. Impact study

    International Nuclear Information System (INIS)

    Valls, Manuel; Royal, Segolene

    2014-01-01

    This document first proposes a statement by the Minister on Ecology on the motivations of the French bill project on energy transition which notably addresses the development of new energies, expresses a strong political commitment on energy, addresses the big issue of energy saving (with objectives of job creation and price reduction in the building sector), promotes a development of renewable energies based on local resources, aims at the emergence of citizen participation in energy choices and issues. The content of the bill project is then commented. The main addressed issues are: to define common objectives for a successful energy transition, an energy independence and for the struggle against climate change, a better renovation of buildings to save energy, to reduce prices and to create jobs, to develop clean transports to improve air quality and to protect health, to struggle against energy wastes and to promote circular economy, to promote renewable energies, to strengthen nuclear safety and citizen information, to simplify and clarify procedures, to enable citizens, local communities and the State to act together. The document then proposes the text of the bill project. A second part is a report of an impact study of these different issues and objectives addressed in the bill project

  7. Environmental assessment, expanded Ponnequin wind energy project, Weld County, Colorado

    International Nuclear Information System (INIS)

    1999-02-01

    The US Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCo) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE's deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program

  8. Environmental assessment, expanded Ponnequin wind energy project, Weld County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The US Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCo) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE`s deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.

  9. Reference projection energy and emissions 2010-2020

    International Nuclear Information System (INIS)

    Daniels, B.; Kruitwagen, S.

    2010-12-01

    The Reference Projection 2010-2020 examines the future development of Dutch energy use, greenhouse gas emissions and air pollution up to 2020. The Reference projection is based on assumptions regarding economic, structural, technological and policy developments. With regard to the latter, the 'Schoon en Zuinig' (Clean and Efficient) policy programme for energy and climate, introduced in 2007, plays an important role. According to Schoon en Zuinig, greenhouse gas emissions have to be reduced by 30% in 2020 compared to 1990; the annual energy efficiency improvement has to increase to 2% and the target share of renewable energy production in total consumption in 2020 is 20%. To assess the effects of the policy measures from the 'Schoon en Zuinig' policy programme, the Reference projection explores three policy variants: one without policies introduced after 2007, one including only post-2007 policies that are already fixed, and one including proposed policy measures as well. Here, policies refer to Dutch as well as to European policies. The results indicate that the climate and energy targets will not be reached with the current instruments. Including proposed policy measures, the estimated greenhouse gas reduction will amount to 16-24% relative to 1990, the renewable energy share will rise to 13-16% and the annual energy efficiency improvement between 2011 and 2020 will amount to between 1.1 and 1.6%. European targets for greenhouse gas emissions can be reached, especially in the case of implementation of the proposed policies. As for renewable energy, the implementation of proposed policies is imperative for attaining the target, but likely to be insufficient. Current European targets for air pollutants are within reach. 2020 emission levels of most air pollutants are lower than the current 2010 National Emission Ceilings, with the exception of ammonia, where there is a substantial chance that the 2020 emissions will exceed the 2010 ceiling. However, ceilings are

  10. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 15. Research agendas of the Indonesian partner universities. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Wijnker, M. [Eindhoven University of Technology TUE, Eindhoven (Netherlands)

    2010-09-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report provides an overview of the status of development of research agendas at the five partner universities. The research agendas consists of a research proposals, purchasing and installation of research equipment, cooperation with industries and conducting the research proposals. Start of the development of the agendas is determining the fields of interest and formulating research projects. Research development is an ongoing process and therefore by the end of 2011 part 2 of this report will be prepared which will present the new developments in the research agendas over the coming year.

  11. Environmental impacts of wind-energy projects

    National Research Council Canada - National Science Library

    Committee on Environmental Impacts of Wind Energy Projects; National Research Council; Division on Earth and Life Studies; National Research Council

    2007-01-01

    .... Environmental Impacts of Wind-Energy Projects offers an analysis of the environmental benefits and drawbacks of wind energy, along with an evaluation guide to aid decision-making about projects...

  12. Energy consumption projection of Nepal: An econometric approach

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Østergaard, Poul A.; Dalgaard, Tommy

    2014-01-01

    In energy dependent economies, energy consumption is often linked with the growth in Gross Domestic Product (GDP). Energy intensity, defined herewith, as the ratio of the total primary energy consumption (TPE) to the GDP, is a useful concept for understanding the relation between energy demand...... and economic development. The scope of this article is to assess the future primary energy consumption of Nepal, and the projection is carried out along with the formulation of simple linear logarithmic energy consumption models. This initiates with a hypothesis that energy consumption is dependent...... with the national macro-economic parameters. To test the hypothesis, nexus between energy consumption and possible determinant variables are examined. Status of energy consumption between the period of 1996 and 2009, and for the same period, growth of economic parameters are assessed. Three scenarios are developed...

  13. Social assessment of energy projects. How?

    International Nuclear Information System (INIS)

    Munksgaard, J.; Larsen, A.

    1997-08-01

    This is the final report of the project: Social assessment of Energy Projects. The aim of the project is to improve the basis of working out social assessments of energy projects in practice. The report raises the question: How should social assessments of energy projects be made? A social assessment is using a national perspective, i.e. it accounts the effects of the project for individuals and institutions in Denmark. The assessment is based on economics which means that effects generated by the project are valuated in DKK - as far as possible. The aim of the social assessment is to support a more effective use of the resources in Denmark. A social assessment should include an analysis of the distributional effects. The analysis can be made as an account including a social cash flow analysis. The distribution analysis will illustrate the gains and losses for the different groups of individuals affected carrying out the project. In that way the analysis will show who potentially will support the project and who will be against the project. (EG) EFP-92. 37 refs

  14. DOE Heat Pump Centered Integrated Community Energy Systems Project

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J. M.

    1979-01-01

    The Heat Pump Centered Integrated Community Energy Systems (HP-ICES) Project is a multiphase undertaking seeking to demonstrate one or more operational HP-ICES by the end of 1983. The seven phases include System Development, Demonstration Design, Design Completion, HP-ICES Construction, Operation and Data Acquisition, HP-ICES Evaluation, and Upgraded Continuation. This project is sponsored by the Community Systems Branch, Office of Buildings and Community Systems, Assistant Secretary for Conservation and Solar Applicaions, U.S. Department of Energy (DOE). It is part of the Community Systems Program and is managed by the Energy and Environmental Systems Division of Argonne Natinal Laboratory.

  15. Regional hydrogen roadmap. Project development framework for the Sahara Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Benhamou, Khalid [Sahara Wind Inc., Rabat (Morocco); Arbaoui, Abdelaziz [Ecole National Superieure des Arts et Metiers ENSAM Meknes (Morocco); Loudiyi, Khalid [Al Akhawayn Univ. (Morocco); Ould Mustapha, Sidi Mohamed [Nouakchott Univ. (Mauritania). Faculte des Sciences et Techniques

    2010-07-01

    The trade winds that blow along the Atlantic coast from Morocco to Senegal represent one of the the largest and most productive wind potentials available on earth. Because of the erratic nature of winds however, wind electricity cannot be integrated locally on any significant scale, unless mechanisms are developed for storing these intermittent renewable energies. Developing distributed wind energy solutions feeding into smaller electricity markets are essential for solving energy access issues and enabling the development of a local, viable renewable energy industry. These may be critical to address the region's economic challenges currently under pressure from Sub-Saharan migrant populations. Windelectrolysis for the production of hydrogen can be used in grid stabilization, as power storage, fuel or chemical feedstock in specific industries. The objective of the NATO SfP 'Sahara Trade Winds to Hydrogen' project is to support the region's universities through an applied research framework in partnership with industries where electrolysis applications are relevant. By powering two university campuses in Morocco and Mauritania with small grid connected wind turbines and 30 kW electrolyzers generating hydrogen for power back-up as part of ''green campus concepts'' we demonstrated that wind-electrolysis for the production of hydrogen could absorb larger quantities of cheap generated wind electricity in order to maximize renewable energy uptakes within the regions weaker grid infrastructures. Creating synergies with local industries to tap into a widely available renewable energy source opens new possibilities for end users such as utilities or mining industries when processing raw minerals, whose exports generates key incomes in regions most exposed to desertification and climate change issue. Initiated by Sahara Wind Inc. a company from the private sector, along with the Al Akhawayn University, the Ecole Nationale Superieure

  16. Sustainable Energy (SUSEN) project

    International Nuclear Information System (INIS)

    Richter, Jiri

    2012-01-01

    Research Centre Rez and University of West Bohemia started preparatory work on the 'Sustainable Energy' project, financed from EU structural funds. The goals and expected results of the project, its organization, estimated costs, time schedule and current status are described. (orig.)

  17. Decision making and risk analysis during the development of wind energy projects

    International Nuclear Information System (INIS)

    Vanhaesebroeck, M.

    2004-11-01

    This study aims at determining a methodology or criteria which can be used as decision making tools for the development of wind power projects and for the objective profitability comparison between several projects. In the first part, the different steps of the development of a wind power project in France are described. For each step, the cost of the studies, the related approaches and the main risks of abandonment are precised. The potential time drifts in the planning of the project are identified on the basis of the experience feedback of the first years of wind power development in France. In the second part, the possibilities of using classical investment choice techniques are analyzed. The characteristics having more impact on the project profitability are identified. In the third part, the sequential models with increasing information are used to evaluate a project, whatever its level of development. Finally, a concrete case is considered to see how these models can be used as decision making tools during key steps of wind farms development. (J.S.)

  18. NREL Energy Storage Projects. FY2014 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ban, Chunmei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burton, Evan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeff [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Grad, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jun, Myungsoo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matt [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Gi-Heon [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Neubauer, Jeremy [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shi, Ying [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Kandler [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sprague, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tenent, Robert [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Chuanbo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Chao [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Han, Taeyoung [General Motors, Detroit, MI (United States); Hartridge, Steve [CD-adapco, Detroit, MI (United States); Shaffer, Christian E. [EC Power, Aurora, CO (United States)

    2015-03-01

    The National Renewable Energy Laboratory supports energy storage R&D under the Office of Vehicle Technologies at the U.S. Department of Energy. The DOE Energy Storage Program’s charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation’s goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are; Advanced Battery Development through the United States Advanced Battery Consortium (USABC); Battery Testing, Analysis, and Design; Applied Battery Research (ABR); and Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT) In FY14, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL’s R&D projects in FY14 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY14 projects under NREL’s Energy Storage R&D program are briefly described below. Each of these is discussed in depth in this report.

  19. Research, development and demonstration in the energy area in Switzerland - List of projects 2000/2001; Forschung, Entwicklung und Demonstration im Bereich der Energie in der Schweiz. Liste der Projekte 2000/2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report prepared by the Swiss Federal Office of Energy (SFOE) reviews research, development and demonstration projects in the energy area that were partly or wholly supported by the Swiss Federation in the years 2000/2001. A list of over 1,000 projects is presented, whereby many projects supported by the Swiss Cantons and local authorities are not included in the statistics. The report also contains figures on the efforts made by the private economy in these areas. The classification of the projects in the four main areas 'efficient use of energy', 'renewable energy sources', 'nuclear energy' and 'energy economics' is presented. This allows comparison with other publications such as the Federal Energy-Research Concept or the Overviews of the Energy-Research Programme Managers. The classification system is also compared with that used by the International Energy Agency (IEA). The Network for Information and Technology Transfer (ENET) is also presented, which has a comprehensive data base at its disposal and which maintains a systematic collection of energy-relevant publications. Details on these projects can be obtained from the appropriate heads of programmes and SFOE departmental heads, whose addresses are given in the report.

  20. Research, development and demonstration in the energy area in Switzerland - List of projects 2000/2001; Liste des projets 2000/2001: recherche, developpement et demonstration dans le domaine de l'energie en Suisse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report prepared by the Swiss Federal Office of Energy (SFOE) reviews research, development and demonstration projects in the energy area that were partly or wholly supported by the Swiss Federation in the years 2000/2001. A list of over 1,000 projects is presented, whereby many projects supported by the Swiss Cantons and local authorities are not included in the statistics. The report also contains figures on the efforts made by the private economy in these areas. The classification of the projects in the four main areas 'efficient use of energy', 'renewable energy sources', 'nuclear energy' and 'energy economics' is presented. This allows comparison with other publications such as the Federal Energy-Research Concept or the Overviews of the Energy-Research Programme Managers. The classification system is also compared with that used by the International Energy Agency (IEA). The Network for Information and Technology Transfer (ENET) is also presented, which has a comprehensive data base at its disposal and which maintains a systematic collection of energy-relevant publications. Details on these projects can be obtained from the appropriate heads of programmes and SFOE departmental heads, whose addresses are given in the report.

  1. Directory of financing sources for foreign energy projects

    Energy Technology Data Exchange (ETDEWEB)

    La Ferla, L. [La Ferla Associates, Washington, DC (United States)

    1995-09-01

    The Office of National Security Policy has produced this Directory of Financing Sources for Foreign Energy Projects. The Directory reviews programs that offer financing from US government agencies, multilateral organizations, public, private, and quasi-private investment funds, and local commercial and state development banks. The main US government agencies covered are the US Agency for International Development (USAID), the Export-Import Bank of the US (EXIM Bank), Overseas Private Investment Corporation (OPIC), US Department of Energy, US Department of Defense, and the US Trade and Development Agency (TDA). Other US Government Sources includes market funds that have been in part capitalized using US government agency funds. Multilateral organizations include the World Bank, International Finance Corporation (IFC), Asian Development Bank (ADB), European Bank for Reconstruction and Development (EBRD), and various organizations of the United Nations. The Directory lists available public, private, and quasi-private sources of financing in key emerging markets in the Newly Independent States and other developing countries of strategic interest to the US Department of Energy. The sources of financing listed in this directory should be considered indicative rather than inclusive of all potential sources of financing. Initial focus is on the Russian Federation, Ukraine, india, China, and Pakistan. Separate self-contained sections have been developed for each of the countries to enable the user to readily access market-specific information and to support country-specific Departmental initiatives. For each country, the directory is organized to follow the project life cycle--from prefeasibility, feasibility, project finance, cofinancing, and trade finance, through to technical assistance and training. Programs on investment and export insurance are excluded.

  2. The project 'nuclear long-distance energy'

    International Nuclear Information System (INIS)

    Harth, R.

    1976-01-01

    The Kernforschungsanlage Juelich is intensively involved in research work with the aim of developing new technological skills for the future supply of energy and to lead the way in industry. In the forefront are a rational utilisation of primary energy and a better adjustment of the energy available, to fulfil requirements. In addition, the supply from nuclear power plants was analysed and a new energy supply system was achieved. It offers the possibility of giving nuclear-produced power to a large proportion of consumers fulfilling their heat and electricity needs, in which the accessible degrees of utilisation lie between 49% and 67%. The project 'nuclear long distance energy' is the theme of a report included in the Congress on Rational Utilisation of Energy, held from 20th to 23rd. september 1976 in Berlin. (orig.) [de

  3. Renewable Energy Development in Hermosa Beach, California

    Science.gov (United States)

    Morris, K.

    2016-12-01

    The City of Hermosa Beach, California, with the support of the AGU's TEX program, is exploring the potential for renewable energy generation inside the City, as part of the implementation of the City's 2015 Municipal Carbon Neutral Plan. Task 1: Estimate the technical potential of existing and future technologies Given the City's characteristics, this task will identify feasible technologies: wind, solar, tidal/wave, wastewater biogas, landfill biogas, microscale anaerobic digestion (AD), and complementary energy storage. Some options may be open to the City acting alone, but others will require working with municipal partners and private entities that provide services to Hermosa Beach (e.g., wastewater treatment). Energy storage is a means to integrate intermittent renewable energy output. Task 2: Review transaction types and pathways In this task, feasible technologies will be further examined in terms of municipal ordinances and contractual paths: (a) power purchase agreements (PPAs) with developers, under which the City would purchase energy or storage services directly; (b) leases with developers, under which the City would rent sites (e.g., municipal rooftops) to developers; (c) ordinances related to permitting, under which the City would reduce regulatory barriers to entry for developers; (d) pilot projects, under which the City would engage with developers to test new technologies such as wind/wave/microscale AD (pursuant to PPAs and/or leases); and (e) existing projects, under which the City would work with current wastewater and landfill contractors to understand (i) current plans to develop renewable energy, and (ii) opportunities for the City to work with such contractors to promote renewable energy. Task 3: Estimate costs by technology Finally, the last task will gather existing information about the costs, both current and projected, of the feasible technologies, including (i) overnight construction cost (capital); (ii) integration costs (e

  4. Prospects for local community wind energy projects in the UK

    International Nuclear Information System (INIS)

    Taylor, Derek; Open Univ., Milton Keynes

    1993-01-01

    This paper examines the prospects for local community wind energy projects in the UK. After explaining the advantages of such projects compared to purely commercial developments, the scale and funding for the projects are discussed. It is argued that such projects are beneficial both financially to individual members and also to the local rural economies particularly in deprived regions. (UK)

  5. Environmental Assessment Expanded Ponnequin Wind Energy Project Weld County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-03-02

    The U.S.Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCO) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. DOE completed an environmental assessment of the original proposed project in August 1997. Since then, the geographic scope and the design of the project changed, necessitating additional review of the project under the National Environmental Policy Act. The project now calls for the possible construction of up to 48 wind turbines on State and private lands. PSCo and its partners have initiated construction of the project on private land in Weld County, Colorado. A substation, access road and some wind turbines have been installed. However, to date, DOE has not provided any funding for these activities. DOE, through its Commercialization Ventures Program, has solicited applications for financial assistance from state energy offices, in a teaming arrangement with private-sector organizations, for projects that will accelerate the commercialization of emerging renewable energy technologies. The Commercialization Ventures Program was established by the Renewable Energy and Energy Efficiency Technology Competitiveness Act of 1989 (P.L. 101-218) as amended by the Energy Policy Act of 1992 (P.L. 102-486). The Program seeks to assist entry into the marketplace of newly emerging renewable energy technologies, or of innovative applications of existing technologies. In short, an emerging renewable energy technology is one which has already proven viable but which has had little or no operational experience. The Program is managed by the Department of Energy, Office of Energy Efficiency and Renewable Energy. The

  6. Supporting the IEE-EU project 'Development of the market for energy-efficient servers'; Unterstuetzung des IEE-EU-Projekts 'Development of the market for energy efficient servers'

    Energy Technology Data Exchange (ETDEWEB)

    Huser, A.

    2009-11-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at work done within the framework of the European Union's project that aims to demonstrate the considerable potential for energy saving and cost reductions for IT servers in practice, and to support the market development for energy efficient servers. Guidelines for the procurement and management of energy efficient servers and server infrastructure that provide detailed recommendations for practical use are described. A two-page leaflet is reviewed that has been specially drawn up for the managing directors and IT managers of small and medium-sized companies. The most important recommendations for improved energy efficiency are reviewed and commented on. Optimisation measures are reviewed and energy-savings to be made are quoted.

  7. Minnesota wood energy scale-up project 1994 establishment cost data

    Energy Technology Data Exchange (ETDEWEB)

    Downing, M. [Oak Ridge National Lab., TN (United States); Pierce, R. [Champion International, Alexandria, MN (United States); Kroll, T. [Minnesota Department of Natural Resources-Forestry, St. Cloud, MN (United States)

    1996-03-18

    The Minnesota Wood Energy Scale-up Project began in late 1993 with the first trees planted in the spring of 1994. The purpose of the project is to track and monitor economic costs of planting, maintaining and monitoring larger scale commercial plantings. For 15 years, smaller scale research plantings of hybrid poplar have been used to screen for promising, high-yielding poplar clones. In this project 1000 acres of hybrid poplar trees were planted on Conservation Reserve Program (CRP) land near Alexandria, Minnesota in 1994. The fourteen landowners involved re-contracted with the CRP for five-year extensions of their existing 10-year contracts. These extended contracts will expire in 2001, when the plantings are 7 years old. The end use for the trees planted in the Minnesota Wood Energy Scale-up Project is undetermined. They will belong to the owner of the land on which they are planted. There are no current contracts in place for the wood these trees are projected to supply. The structure of the wood industry in the Minnesota has changed drastically over the past 5 years. Stumpage values for fiber have risen to more than $20 per cord in some areas raising the possibility that these trees could be used for fiber rather than energy. Several legislative mandates have forced the State of Minnesota to pursue renewable energy including biomass energy. These mandates, a potential need for an additional 1700 MW of power by 2008 by Northern States Power, and agricultural policies will all affect development of energy markets for wood produced much like agricultural crops. There has been a tremendous amount of local and international interest in the project. Contractual negotiations between area landowners, the CRP, a local Resource Conservation and Development District, the Minnesota Department of Natural Resources and others are currently underway for additional planting of 1000 acres in spring 1995.

  8. Renewable Energy for Rural Economic Development

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Cathy L. [Utah State Univ., Logan, UT (United States); Stafford, Edwin R. [Utah State Univ., Logan, UT (United States)

    2013-09-30

    When Renewable Energy for Rural Economic Development (RERED) began in 2005, Utah had no commercial wind power projects in operation. Today, the state hosts two commercial wind power plants, the Spanish Fork Wind Project and the Milford Wind Corridor Project, totaling 324 megawatts (MW) of wind capacity. Another project in San Juan County is expected to break ground very soon, and two others, also in San Juan County, are in the approval process. RERED has played a direct role in advancing wind power (and other renewable energy and clean technology innovations) in Utah through its education outreach and research/publication initiatives. RERED has also witnessed and studied some of the persistent barriers facing wind power development in communities across Utah and the West, and its research expanded to examine the diffusion of other energy efficiency and clean technology innovations. RERED leaves a legacy of publications, government reports, and documentary films and educational videos (archived at www.cleantech.usu.edu) to provide important insights for entrepreneurs, policymakers, students, and citizens about the road ahead for transitioning society onto a cleaner, more sustainable future.

  9. Risk analysis for renewable energy projects due to constraints arising

    Science.gov (United States)

    Prostean, G.; Vasar, C.; Prostean, O.; Vartosu, A.

    2016-02-01

    Starting from the target of the European Union (EU) to use renewable energy in the area that aims a binding target of 20% renewable energy in final energy consumption by 2020, this article illustrates the identification of risks for implementation of wind energy projects in Romania, which could lead to complex technical implications, social and administrative. In specific projects analyzed in this paper were identified critical bottlenecks in the future wind power supply chain and reasonable time periods that may arise. Renewable energy technologies have to face a number of constraints that delayed scaling-up their production process, their transport process, the equipment reliability, etc. so implementing these types of projects requiring complex specialized team, the coordination of which also involve specific risks. The research team applied an analytical risk approach to identify major risks encountered within a wind farm project developed in Romania in isolated regions with different particularities, configured for different geographical areas (hill and mountain locations in Romania). Identification of major risks was based on the conceptual model set up for the entire project implementation process. Throughout this conceptual model there were identified specific constraints of such process. Integration risks were examined by an empirical study based on the method HAZOP (Hazard and Operability). The discussion describes the analysis of our results implementation context of renewable energy projects in Romania and creates a framework for assessing energy supply to any entity from renewable sources.

  10. Activities of electric utilities in alternative energy projects

    International Nuclear Information System (INIS)

    Silva, D.B. da; Reis Neto, J.L. dos

    1990-01-01

    Since oil crisis, in 1973 and 1979, some electrical utilities in Brazil begun investments in alternative projects for example production of electrolytic hydrogen, peats with energetics goals, steam from electric boiler, and methanol from wood gasification. With oil substitution goals, these projects have not success actually, after attenuated the crisis. However, the results acquired is experience for the development of the brazilian energy patterns. (author)

  11. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 19. Development or improvement of infrastructure for knowledge valorisation

    Energy Technology Data Exchange (ETDEWEB)

    Wijnker, M. [Eindhoven University of Technology TUE, Eindhoven (Netherlands)

    2011-11-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. All five universities managed to organise workshops visited each by 30-60 participants. At these workshops the relationship and possibilities for co-operation between university, industry, companies, communities etc. were discussed. In total 13-14 workshops have been organised. Most workshops focussed on a specific topic interesting to both local industry and university. Although the contents, audience and (in-depth) discussions were very different at each university, it can be said that ties with local industry in all regions have been improved.

  12. Actuarial pricing of energy efficiency projects: lessons foul and fair

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Paul E-mail: pamathew@lbl.gov; Kromer, J. Stephen; Sezgen, Osman; Meyers, Steven

    2005-07-01

    Recent market convulsions in the energy industry have generated a plethora of post-mortem analyses on a wide range of issues, including accounting rules, corporate governance, commodity markets, and energy policy. While most of these analyses have focused on business practices related to wholesale energy trading, there has been limited analysis of retail energy services, particularly energy efficiency projects. We suggest that there were several business concepts and strategies in the energy efficiency arena whose inherent value may have been masked by the larger failure of companies such as Enron. In this paper, we describe one such concept, namely, actuarial pricing of energy efficiency projects, which leverages a portfolio-based approach to risk management. First, we discuss the business drivers, contrasting this approach with conventional industry practice. We then describe the implementation of this approach, including an actuarial database, pricing curves, and a pricing process compatible with commodity pricing. We conclude with a discussion of the prospects and barriers for the further development of transparent and quantifiable risk management products for energy efficiency, a prerequisite for developing energy efficiency as a tradeable commodity. We address these issues from an experiential standpoint, drawing mostly on our experience in developing and implementing such strategies at Enron.

  13. Actuarial pricing of energy efficiency projects: lessons foul and fair

    International Nuclear Information System (INIS)

    Mathew, Paul; Kromer, J. Stephen; Sezgen, Osman; Meyers, Steven

    2005-01-01

    Recent market convulsions in the energy industry have generated a plethora of post-mortem analyses on a wide range of issues, including accounting rules, corporate governance, commodity markets, and energy policy. While most of these analyses have focused on business practices related to wholesale energy trading, there has been limited analysis of retail energy services, particularly energy efficiency projects. We suggest that there were several business concepts and strategies in the energy efficiency arena whose inherent value may have been masked by the larger failure of companies such as Enron. In this paper, we describe one such concept, namely, actuarial pricing of energy efficiency projects, which leverages a portfolio-based approach to risk management. First, we discuss the business drivers, contrasting this approach with conventional industry practice. We then describe the implementation of this approach, including an actuarial database, pricing curves, and a pricing process compatible with commodity pricing. We conclude with a discussion of the prospects and barriers for the further development of transparent and quantifiable risk management products for energy efficiency, a prerequisite for developing energy efficiency as a tradeable commodity. We address these issues from an experiential standpoint, drawing mostly on our experience in developing and implementing such strategies at Enron

  14. Pilot project of atomic energy technology record

    International Nuclear Information System (INIS)

    Song, K. C.; Kim, Y. I.; Kim, Y. G.

    2011-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records in each category as a whole summary from the background to the performance at all fields of nuclear science technology which researched and developed at KAERI. This project includes Data and Document Management System(DDMS) that will be the system to collect, organize and preserve various records occurred in each research and development process. To achieve these goals, many problems should be solved to establish technology records process, such as issues about investigation status of technology records in KAERI, understanding and collection records, set-up project system and selection target field, definition standards and range of target records. This is a research report on the arrangement of research contents and results about pilot project which records whole nuclear technology researched and developed at KAERI in each category. Section 2 summarizes the overview of this pilot project and the current status of technology records in domestic and overseas, and from Section 3 to Section 6 summarize contents and results which performed in this project. Section 3 summarizes making TOC(Table of Content) and technology records, Section 4 summarizes sectoral templates, Section 5 summarizes writing detailed plan of technology records, and Section 6 summarizes Standard Document Numbering System(SDNS). Conclusions of this report are described in Section 7

  15. Project development symposium

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Papers were presented on the following: project evaluation; case studies - minerals; finance; applied finance; legal; manpower/industrial relations; and new technologies. Those papers on the coal industry were: mine planning for coal project development; the planning and management of a lignite exploration contract in Thailand; development of the West Cliff extended project; Ulan: a resource development; Saxonvale mine development a case study in project planning and project management; the role of marketing in the development of a new coal project; technical support for coal marketing; infrastructure development for the Ulan project; underground mine project developments; the bucketwheel excavator at Goonyella - a case study; tax aspects of mining development projects; cost of capital mining development projects; and trends in development project finance. 16 papers were abstracted separately.

  16. Panorama 2012 - Marine renewable energy sources: their place in energy policy, projects and players

    International Nuclear Information System (INIS)

    Vinot, Simon

    2011-10-01

    Marine energy sources are now a reality in the scientific landscape and, from now on, will be an increasingly important feature of the industry. Driven by public policy and renewable energy development targets, projects are multiplying, and industry players are jostling for maximum advantage in the first bidding rounds. (author)

  17. Comparing Life-Cycle Costs of ESPCs and Appropriations-Funded Energy Projects: An Update to the 2002 Report

    International Nuclear Information System (INIS)

    Shonder, John A.; Hughes, Patrick; Atkin, Erica

    2006-01-01

    A study was sponsored by FEMP in 2001 - 2002 to develop methods to compare life-cycle costs of federal energy conservation projects carried out through energy savings performance contracts (ESPCs) and projects that are directly funded by appropriations. The study described in this report follows up on the original work, taking advantage of new pricing data on equipment and on $500 million worth of Super ESPC projects awarded since the end of FY 2001. The methods developed to compare life-cycle costs of ESPCs and directly funded energy projects are based on the following tasks: (1) Verify the parity of equipment prices in ESPC vs. directly funded projects; (2) Develop a representative energy conservation project; (3) Determine representative cycle times for both ESPCs and appropriations-funded projects; (4) Model the representative energy project implemented through an ESPC and through appropriations funding; and (5) Calculate the life-cycle costs for each project.

  18. WEC3: Wave Energy Converter Code Comparison Project: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Combourieu, Adrien; Lawson, Michael; Babarit, Aurelien; Ruehl, Kelley; Roy, Andre; Costello, Ronan; Laporte Weywada, Pauline; Bailey, Helen

    2017-01-01

    This paper describes the recently launched Wave Energy Converter Code Comparison (WEC3) project and present preliminary results from this effort. The objectives of WEC3 are to verify and validate numerical modelling tools that have been developed specifically to simulate wave energy conversion devices and to inform the upcoming IEA OES Annex VI Ocean Energy Modelling Verification and Validation project. WEC3 is divided into two phases. Phase 1 consists of a code-to-code verification and Phase II entails code-to-experiment validation. WEC3 focuses on mid-fidelity codes that simulate WECs using time-domain multibody dynamics methods to model device motions and hydrodynamic coefficients to model hydrodynamic forces. Consequently, high-fidelity numerical modelling tools, such as Navier-Stokes computational fluid dynamics simulation, and simple frequency domain modelling tools were not included in the WEC3 project.

  19. Driftless Area Initiative Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Angie [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Bertjens, Steve [Natural Resources Conservation Service, Madison, WI (United States); Lieurance, Mike [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Berguson, Bill [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.; Buchman, Dan [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% greater than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices

  20. Advanced Energy Projects: FY 1993, Research summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  1. Advanced Energy Projects: FY 1993, Research summaries

    International Nuclear Information System (INIS)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included

  2. Washoe Tribe Nevada Inter-Tribal Energy Consortium Energy Organization Enhancement Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jennifer [Washoe Tribe of NV and Ca

    2014-11-06

    The Washoe Tribe of Nevada and California was awarded funding from the Department of Energy to complete the Nevada Inter-Tribal Energy Consortium Energy Organization Enhancement Project. The main goal of the project was to enhance the capacity of the Nevada Inter-Tribal Energy Consortium (NITEC) to effectively assist tribes within Nevada to technically manage tribal energy resources and implement tribal energy projects.

  3. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    Science.gov (United States)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  4. Advanced Energy Projects FY 1990 research summaries

    International Nuclear Information System (INIS)

    1990-09-01

    This report serves as a guide to prepare proposals and provides summaries of the research projects active in FY 1990, sponsored by the Office of Basic Energy Sciences Division of Advanced Energy Projects, Department of Energy. (JF)

  5. Energy investment in developing countries

    International Nuclear Information System (INIS)

    Rovani, Y.

    1982-01-01

    The developing countries are likely to represent the fastest growing component of the global energy demand over the next two decades. The paper presents considerations based on the World Bank's approach to the energy sector in these countries. It is considered that an accelerated development of conventional indigenous sources of energy is absolutely vital if developing countries are to attain a satisfactory rate of economic growth. The cost of the energy investment, the power sector issues, the optimal use of the resources, the role of the external financing and the need of technical assistance are reviewed. One emphasizes the role of the World Bank in analyzing and preparing projects, and in mobilizing financing from other official and commercial sources

  6. The project for an energy-enriched curriculum: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The Project for an Energy-Enriched Curriculum (PEEC) reported was a long-running effort at infusing energy/environment/economics (E/E/E) themes into the K-12 curriculum. While it was conducted as a single integrated effort by the National Science Teachers Association (NSTA), it is supported by a series of contracts and grants, during the period 1976 to 1984, from the Energy Research and Development Administration (ERDA) and the US Department of Energy (DOE).

  7. Wind-To-Hydrogen Energy Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the

  8. Central Arkansas Energy Project. Coal to medium-Btu gas

    Science.gov (United States)

    1982-05-01

    The Central Arkansas Energy Project has as its objective the conversion of coal in a central location to a more readily usable energy source, medium Btu gas (MBG), for use at dispersed locations as fuel for power production and steam generation, or as a feedstock for chemical processing. The project elements consist of a gasification facility to produce MBG from coal, a pipeline to supply the MBG to the dispersed sites. The end of line users investigated were the repowering or refueling of an existing Arkansas Power and Light Co. Generating station, an ammonia plant, and a combined cycle cogeneration facility for the production of steam and electricity. Preliminary design of the gasification plant including process engineering design bases, process flow diagrams, utility requirements, system description, project engineering design, equipment specifications, plot plan and section plot plans, preliminary piping and instrument diagrams, and facilities requirements. Financial analyses and sensitivities are determined. Design and construction schedules and manpower loadings are developed. It is concluded that the project is technically feasible, but the financial soundness is difficult to project due to uncertainty in energy markets of competing fuels.

  9. Research and development project plans for FY 1995; 1995 nendo kenkyu kaihatsu jigyo keikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The present research and development project plans for FY 1995 administrated by NEDO consist of research and development of new energy, and research and development of industrial technology. Are illustrated further enhancement of new energy introduction promotion measures, new stage of international projects, promotion of new energy and new energy technology development, further enhancement of industrial and scientific technology research and development, integrated measures against global and urban environment problems, and budget of NEDO projects in FY 1995. The research and development of new energy includes coal conversion technology, solar energy technology, geothermal energy technology, energy conversion and storage technology, hydrogen, alcohol and biomass energy technology, geothermal energy resources, coal resources development, new energy promotion department activities, NEDO information center activities, and so on. On the other hand, the research and development of industrial technology includes research and development of industrial technology, and global environment technology. The research and development of industrial technology consists of superconductivity, new materials, biotechnology, electronics, information and communications, machinery and aerospace, natural resources, humanity, life and society, and various leading researches.

  10. Quarterly status of Department of Energy projects

    International Nuclear Information System (INIS)

    1982-01-01

    This Quarterly Status of Department of Energy Projects is prepared by the Office of project and Facilities Management, MA-30. The report is designed to provide Department of Energy (DOE) management officials with a summary of the important baseline data that exists in the DOE project data base. This data base is maintained chiefly from periodic field management reports required by DOE Order 5700.4. Since most of the current estimates in this report are from field project managers, they do not necessarily have full Headquarters approval. The current budget data sheet estimates that appear in the report are considered appropriate for reporting external to the Department and reflect the President's FY 1983 Budget to Congress. Moneys allocated and estimated costs, and the construction status are tabulated for projects under the subject categories of: conservation and renewable energy; defense programs; environmental protection, safety and emergency preparedness; energy research; defense programs; nuclear energy; and management and administration

  11. Energy utilization in surface mining project : with case study illustration

    International Nuclear Information System (INIS)

    Sinha, D.K.; De, Amitosh

    1992-01-01

    The importance of reducing energy consumption per tonne of output in the mining projects needs an innovative approach and style to change the behaviour and postures of the technical characteristics. The need for suitable energy policy can not be overlooked with the addition of new large size surface mining projects having a lot of technological development. But the immediate prescription to the problem is to pinpoint specific high energy consuming areas prefixed by thorough diagnosis and followed by deep scientific thought into it. To that extent this paper makes a primary attempt to characterise the various problems. (author). 7 tabs

  12. Financing Opportunities for Renewable Energy Development in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, K.; Hillman, D.; Busche, S.

    2013-04-01

    This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

  13. Clean and efficient energy conversion processes (Cecon-project). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The objectives of the work programme reported are the development and testing of two optimised energy conversion processes, both consisting of a radiant surface gas burner and a ceramic heat exchanger. The first sub-objective of the programme is related to industrial heating, drying and curing processes requireing low and medium heat fluxes. It is estimated that around one tenth of the total EC industrial energy use is associated with such processes. The majority of these processes currently use convection and conduction as the main heat transfer mechanisms and overall energy efficiencies are typically below 25%. For many drying and finishing processes (such as curing powder coatings and drying paints, varnishes, inks, and for the fabrication of paper and textiles), radiant heating can achieve much faster dyring rates and higher energy efficiency than convective heating. In the project new concepts of natural gas fired radiant heating have been investigated which would be much more efficient than the existing processes. One element of the programme was the evelopment of gas burners having enhanced radiant efficiencies. A second concerned the investigation of the safety of gas burners containing significant volumes of mixed gas and air. Finally the new gas burners were tested in combination with the high temperature heat exchanger to create highly efficient radiant heating systems. The second sub-objective concerned the development of a compact low cost heat exchanger capable of achieving high levels of heat recovery (up to 60%) which could be easily installed on industrial processes. This would make heat recovery a practical proposition on processes where existing heat recovery technology is currently not cost effective. The project will have an impact on industrial processes consuming around 80 MTOE of energy per year within EU countries (1 MTOE equals 41.8 PJ). The overall energy saving potential of the project is estimated to be around 22 MTOE which is around 10

  14. General Motors LLC Final Project Report: Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bozeman, Jeffrey [General Motors LLC, Detroit, MI (United States); Chen, Kuo-Huey [General Motors LLC, Detroit, MI (United States)

    2014-12-09

    On November 3, 2009, General Motors (GM) accepted U.S. Department of Energy (DOE) Cooperative Agreement award number DE-EE0000014 from the National Energy Technology Laboratory (NETL). GM was selected to execute a three-year cost shared research and development project on Solid State Energy Conversion for Vehicular Heating, Ventilation & Air Conditioning (HVAC) and for Waste Heat Recovery.

  15. A Collaborative Project for the Development of Energy Amplifier

    International Nuclear Information System (INIS)

    Joo, H. K.; Kim, S. J.; Kim, Y. H.; Lee, Y. W.; Cho, C. H.; Song, T. Y.

    2009-11-01

    An energy amplifier can be an option for the future system for electricity generation and for management of spent fuel. An energy amplifier system is composed of a proton accelerator and a proton transportation system, a target system, a subcritical reactor, and a heat transfer system. A development plan for energy amplifier should be individually prepared for each sub-sytem. For the development of a subcritical reactor, a feasibility and conceptual studies is recommended to be carried out till the basic research phase which is performed with the development of the accelerator system. The feasibility study needs 1∼2 years of research period and 1.5 man-year of efforts. The conceptual design for the subcritical reactor will determine a reactor concept, the power of reactor and accelerator, the interface with a target system, fuel design, the performance and safety analysis of the core, and the fuel cycle option including thorium cycle, and it requires 2∼3 years of research period and 6 man-year of man power

  16. Experiences with commercial wind energy development in Hawaii

    International Nuclear Information System (INIS)

    Conover, K.

    1993-04-01

    This project, open-quotes Experiences with Commercial Wind Energy Development in Hawaii,close quotes was undertaken in order to examine the wind energy experience in Hawaii and to determine what has and has not worked in developing Hawaii's wind resource. Specific objectives include: establishing the background and environment in Hawaii in terms of the policies and attitudes that impact both the existing and future wind power developments; documenting the formation and development aspects of existing and planned wind power stations; and summarizing the operational problems encountered by these projects

  17. Public opinion and communicative action around renewable energy projects

    Science.gov (United States)

    Fast, Stewart

    This thesis investigates how rural communities negotiate the development of renewable energy projects. Public and local community acceptance of these new technologies in rural areas around the world is uncertain and spatially uneven and represents an area of emerging public policy interest and one where scholarly theory is rapidly developing. This thesis uses Habermasian concepts of public sphere, communicative action and deliberative democracy, as well as the concept of "wicked problems" from the planning studies literature combined with geographical concepts of place and scale to advance theoretical and empirical understanding of how public opinion on renewable energy technologies is formed in place. It documents energy use patterns, attitudes and socio-political relations at a time when considerable state and business efforts are directed at the construction of solar, wind, biomass and small-hydro technologies in rural regions. These concepts and theories are applied in a case study of rural communities in the Eastern Ontario Highlands, an impoverished area undergoing rapid restructuring driven by centralization of services and amenity migration but with abundant natural resources in form of forests, numerous waterways and open space which have attracted a broad range of new energy developments. Overall high levels of support for alternative energy development particularly for solar power were found, albeit for reasons of local energy security and not for reasons of preventing climate change. There was some evidence that seasonal residents are less supportive of hydro and biomass projects than permanent residents possibly reflecting broader trends in rural economies away from productive uses of land to consumptive appreciation of rural landscapes. The thesis suggests that collective action to advance energy projects in the case study area require agreement along three world-claims (truth, rightness and truthfulness) and that communication leading to discourse

  18. Practical guidance material for the development, energy and climate country studies

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.; Garg, A.; Olhoff, A.; Denton, F.

    2006-10-15

    The document is developed as part of the Development, Energy and Climate project in order to facilitate methodological consistency and the use of common assumptions in national case studies in Bangladesh, Brazil, China, India, Senegal and South Africa that are conducted as part of the project. In addition to this document the project and country studies are also based on in depth thematic work in three areas namely; 1) Development pathways and climate change; 2) Assessment of Policy Instruments in the Context of Current Market Structure, Institutional Capacities and Risks in Developing Countries; 3) Climate change impacts, vulnerability, and adaptation in the energy sector with a special emphasis given to linkages between adaptation and mitigation policies. The Development, Energy, and Climate project will identify promising energy policy options in the participating countries that are consistent with their national sustainable development objectives. The project teams from Bangladesh, Brazil, China, India, South Africa and Senegal will examine how energy sector policies can be evaluated using specific sustainable development indicators and existing analytical approaches and tools relevant to the countries. The country studies will address energy sector issues, adaptation policies, and alternative scenarios for technology penetration processes. The policy options and the sustainable development impacts of implementing these will be discussed in national stakeholder dialogues with broad participation of government, private sector and NGOs. Cross-country interactions about conceptual and common methodological issues will be covered in three thematic papers. The project will produce a synthesis of the country case studies as an input to various international processes in order to build support for approaches that integrate sustainable development, energy and climate policies. (au)

  19. The OMEGA Project: Open Market Energy Generation Allocation in deregulated electricity markets

    International Nuclear Information System (INIS)

    Contreras, J.; Conejo, A.J.

    2002-01-01

    The OMEGA project is part of the 5th Framework Programme for R and D that the European Union has started in the year 2000. It is a highly complex and interdisciplinary project, with five countries and several companies involved. The project aims at developing a decision support system for electricity producers to support energy management and energy trading groups within these companies in the commercial activities on open and competitive electricity markets using an e-commerce framework. This paper presents the OMEGA project, describes the objectives pursued, evaluates the project workplan, shows the complex project management structure, highlights the management problems, and presents relevant conclusions. (author)

  20. The OMEGA Project: Open Market Energy Generation Allocation in deregulated electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, J. [Universidad de Castilla-La Mancha, (Spain). Project Management Group, Escuela Tecnica Superior de Ingenieros Industriales; Conejo, A.J. [Universidad de Castilla-La Mancha, (Spain). Power Engineering Group, Escuela Tecnica Superior de Ingenieros Industriales

    2002-08-01

    The OMEGA project is part of the 5th Framework Programme for R and D that the European Union has started in the year 2000. It is a highly complex and interdisciplinary project, with five countries and several companies involved. The project aims at developing a decision support system for electricity producers to support energy management and energy trading groups within these companies in the commercial activities on open and competitive electricity markets using an e-commerce framework. This paper presents the OMEGA project, describes the objectives pursued, evaluates the project workplan, shows the complex project management structure, highlights the management problems, and presents relevant conclusions. (author)

  1. Sustainability assessment of renewable energy projects: research report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report describes the results of a study that examined the development of an appraisal framework for renewable energy projects in the UK. The aim was to develop a framework that reflected the quality of life capital approach and could take into account social, economic and environmental effects at a range of different scales. The report describes in some detail: the steps leading to the definition, refinement and testing of the appraisal framework; the assessment methodology; baseline characterisation and evaluation; and application. Three fictional case studies (wind farm in a remote upland rural area, energy recovery facility in an urban fringe location and wood fuelled renewable energy plant in less remote rural area) are used to test the approach.

  2. Energy autarky: A conceptual framework for sustainable regional development

    International Nuclear Information System (INIS)

    Mueller, Matthias Otto; Staempfli, Adrian; Dold, Ursula; Hammer, Thomas

    2011-01-01

    Energy autarky is presented as a conceptual framework for implementing sustainable regional development based on the transformation of the energy subsystem. It is conceptualized as a situation in which the energy services used for sustaining local consumption, local production and the export of goods and services are derived from locally renewable energy resources. Technically, the implementation of higher degrees of energy autarky rests on increasing energy efficiency, realizing the potential of renewable energy resources and relying on a decentralized energy system. Practically, a transition towards regional energy autarky requires administrations and civil society actors to initialize and develop projects at the local level, ensure their acceptance and support by the regional population and implement the project in collaboration with relevant actors. Besides the description of the concept and the benefits its implementation brings, this article provides a process for implementation, and some examples from Austria, Germany and Switzerland. - Highlights: → We introduce energy autarky as a conceptual framework for sustainable development. → Transforming the energy subsystem creates various benefits for communities. → Local participation should lead to social acceptance of renewables. → We review and discuss projects implementing energy autarky. → Further research needs to compare successful implementations with failures.

  3. Putting rural energy access projects into perspective: What lessons are relevant?

    International Nuclear Information System (INIS)

    Vleuten, Frank van der; Stam, Nienke; Plas, Robert-Jan van der

    2013-01-01

    As the Secretary General of the United Nations and the president of the World Bank are calling upon countries to commit themselves to universal access to modern energy services by 2030, and international players such as the International Energy Agency, the EU, and ESMAP are building scenarios how to accomplish this, this article demonstrates the non-linear dynamics of scaling up rural energy access, drawing among others from over 70 energy access projects implemented by the EASE network of national energy and development NGOs in eight countries and on experiences combining microfinance and (clean) energy access. The article shows that scaling up rural energy access demands careful tuning of support to the business models of rural entrepreneurs, in which development finance has only a limited role to play. The article argues for market development approaches that take a programmatic approach, change their intervention model as the market matures, and build on smart use of the limited sector capacity. The ultimate challenge is how to down-tune ambitions and spending power of the development community to match the absorption capacity of rural markets and the reality of entrepreneurs on the ground. - Highlights: • Practitioner's experiences and lessons, based on over 70 implemented projects. • Relevant for “Sustainable Energy for All” high-level initiative. • Match high international ambitions with low capacity of rural energy markets

  4. Plutonium immobilization project development and testing technical project office quality assurance program description

    International Nuclear Information System (INIS)

    Gould, T.H.; MacLean, L.M.; Ziemba, J.M.

    1999-01-01

    The Plutonium Immobilization Project (PIP) is one of several fissile materials disposition projects managed by the Department of Energy (DOE) Office of Fissile Materials Disposition (OFMD). The PIP is expected to evolve from the current Development and Testing (D and T) effort, to design, to construction, and finally to operations. Overall management and technical management of the D and T effort resides at the Lead Laboratory, Lawrence Livermore National Laboratory (LLNL), through the LLNL Manager, Fissile Materials Disposition Program (FMDP). Day to day project activities are managed by the D and T Technical Project Office (TPO), which reports to the LLNL Manager, FMDP. The D and T TPO consists of the Technical Manager, the TPO Quality Assurance (QA) Program Manager, and TPO Planning and Support Staff. This Quality Assurance Program Description (QAPD) defines the QA policies and controls that will be implemented by these TPO personnel in their management of D and T activities. This QAPD is consistent with and responsive to the Department of Energy Fissile Materials Disposition Program Quality Assurance Requirements Document (FMDP QARD). As the Project and upper level requirement's documents evolve, this QAPD will be updated as necessary to accurately define and describe the QA Program and Management of the PIP. The TPO has a policy that all development and testing activities be planned, performed and assessed in accordance with its customer's requirements, needs and expectations, and with a commitment to excellence and continuous improvement. The TPO QAPD describes implementation requirements which, when completed, will ensure that the project development and testing activities conform to the appropriate QA requirements. For the program to be effective, the TPO QA Program Manager will ensure that each site participating in D and T activities has developed a QAPD, which meets the customer's requirements, and has a designated quality leader in place. These customer

  5. Energy, electricity and nuclear power: Developments and projections - 25 years past and future

    International Nuclear Information System (INIS)

    2007-12-01

    This report is based on the annual IAEA publication, Energy, Electricity and Nuclear Power Estimates for the Period up to 2030, Reference Data Series No. 1 (RDS-1). The IAEA has been publishing RDS-1 since 1981. It reports on the current status and estimates of energy use, electricity generation and nuclear power generation in various regions of the world for the medium to long term. The estimates are prepared in close collaboration and consultation with several international, regional and national organizations dealing with energy related statistics, such as the United Nations Department of Economic Affairs, the International Energy Agency (IEA), the OECD Nuclear Energy Agency (OECD/NEA), the World Bank, the World Nuclear Agency (WNA), the US Department of Energy (DOE) and the French Atomic Energy Commission (CEA), as well as several international energy experts. The latest issue is the 27th edition, reporting estimates for the next 24 years using 2006 as the base year. During its 26 years of regular publication, several adjustments were made to the definitions and methodology for compiling the energy data, in order to improve the quality of the data. These adjustments were in line with the overall efforts at the international level to harmonize energy statistics. For example, the United Nations Statistical Commission has been making efforts to synchronize its data series under various programmes. For RDS-1, one such adjustment was made in 2005 when the average thermal efficiency method was adopted to convert electricity produced by nuclear power plants from kilowatt-hours to joules. This had a significant impact on the values of total energy use. At this stage, the entire historical data series was also adjusted. This report provides these harmonized data series on energy use, electricity generation and nuclear power generation for the 25 year period (1980-2005). The report also compares the nuclear power projections made in the past with the projections made in

  6. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 20. Installation of Demonstration Units at the Indonesian Universities

    Energy Technology Data Exchange (ETDEWEB)

    Wijnker, M. [Eindhoven University of Technology TUE, Eindhoven (Netherlands)

    2011-08-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. Each of the five Indonesian partner universities has managed to choose, purchase and install demonstration equipment within the timeline of the Casindo project. This equipment will be presented to students, visitors, lecturers, government personnel and staff of other organizations. Next to this, researchers made research proposals in which use of the demonstration equipment is presented according to the research agenda of the university. The procedure of purchasing and installing equipment has been delayed in several ways, but all universities have managed to finalise the procedure and install the equipment. First research results have been presented and more results will follow in the next months.

  7. Development of training courses in the field of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Young; Soe, In Seok; Lee, Ui Jin; Park, Jae Chang; Kim, Ik Hyeon; Won, Jong Yeol; Nam, Jae Yeol

    1993-12-01

    The nuclear training center provides various training courses in such areas of nuclear energy as nuclear power technology, radioisotope applications technology, non-destructive technology, nuclear safety, etc. The center also provides in-house staff training courses in project management, computer applications, and other research areas. The objective of the project is to develop new specialized training courses not only nuclear energy areas but also in management, so that localization of nuclear project can be accomplished as early as possible. The scope and contents of the project envision the following aims; 1. to develop specialized nuclear training programs; 2. to develop project management training courses for KAERI staff; 3. to collect and analyze foreign training programs and materials; 4. to develop foreign-assisted training courses; and 5. to develop international training courses for developing country trainese

  8. Energy development and CO2 emissions in China

    International Nuclear Information System (INIS)

    Xiaolin Xi

    1993-03-01

    The objective of this research is to provide a better understanding of future Chinese energy development and CO 2 emissions from burning fossil fuels. This study examines the current Chinese energy system, estimates CO 2 emissions from burning fossil fuels and projects future energy use and resulting CO 2 emissions up to the year of 2050. Based on the results of the study, development strategies are proposed and policy implications are explored. This study first develops a Base scenario projection of the Chinese energy development based upon a sectoral analysis. The Base scenario represents a likely situation of future development, but many alternatives are possible. To explore this range of alternatives, a systematic uncertainty analysis is performed. The Base scenario also represents an extrapolation of current policies and social and economic trends. As such, it is not necessarily the economically optimal future course for Chinese energy development. To explore this issue, an optimization analysis is performed. For further understanding of developing Chinese energy system and reducing CO 2 emissions, a Chinese energy system model with 84 supply and demand technologies has been constructed in MARKAL, a computer LP optimization program for energy systems. Using this model, various technological options and economic aspects of energy development and CO 2 emissions reduction in China during the 1985-2020 period are examined

  9. Framework for Identifying Key Environmental Concerns in Marine Renewable Energy Projects- Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Sharon; Previsic, Mirko; Nelson, Peter; Woo, Sheri

    2010-06-17

    Marine wave and tidal energy technology could interact with marine resources in ways that are not well understood. As wave and tidal energy conversion projects are planned, tested, and deployed, a wide range of stakeholders will be engaged; these include developers, state and federal regulatory agencies, environmental groups, tribal governments, recreational and commercial fishermen, and local communities. Identifying stakeholders’ environmental concerns in the early stages of the industry’s development will help developers address and minimize potential environmental effects. Identifying important concerns will also assist with streamlining siting and associated permitting processes, which are considered key hurdles by the industry in the U.S. today. In September 2008, RE Vision consulting, LLC was selected by the Department of Energy (DoE) to conduct a scenario-based evaluation of emerging hydrokinetic technologies. The purpose of this evaluation is to identify and characterize environmental impacts that are likely to occur, demonstrate a process for analyzing these impacts, identify the “key” environmental concerns for each scenario, identify areas of uncertainty, and describe studies that could address that uncertainty. This process is intended to provide an objective and transparent tool to assist in decision-making for siting and selection of technology for wave and tidal energy development. RE Vision worked with H. T. Harvey & Associates, to develop a framework for identifying key environmental concerns with marine renewable technology. This report describes the results of this study. This framework was applied to varying wave and tidal power conversion technologies, scales, and locations. The following wave and tidal energy scenarios were considered: 4 wave energy generation technologies 3 tidal energy generation technologies 3 sites: Humboldt coast, California (wave); Makapu’u Point, Oahu, Hawaii (wave); and the Tacoma Narrows, Washington (tidal

  10. Waste-to-energy technologies and project implementation

    CERN Document Server

    Rogoff, Marc J

    2011-01-01

    This book covers in detail programs and technologies for converting traditionally landfilled solid wastes into energy through waste-to-energy projects. Modern Waste-to-Energy plants are being built around the world to reduce the levels of solid waste going into landfill sites and contribute to renewable energy and carbon reduction targets. The latest technologies have also reduced the pollution levels seen from early waste incineration plants by over 99 per cent. With case studies from around the world, Rogoff and Screve provide an insight into the different approaches taken to the planning and implementation of WTE. The second edition includes coverage of the latest technologies and practical engineering challenges as well as an exploration of the economic and regulatory context for the development of WTE.

  11. Project to design and develop an energy-related program: For public housing residents and renters: Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This demonstration project was undertaken as a result of an unsolicited proposal submitted by THE ASSIGNMENT GROUP (TAG) to the Office of Minority Economic Impact, Department of Energy (DOE). The problem to which the proposal responded was how to minimize the costs associated with public housing tenants in standard public housing as well as under homeownership transfers. A related problem was how to graduate the tenants to another level of responsibility and self-sufficiency through resident business developments and training in energy-related fields. The size and gravity of the problem necessitated a purpose or aim that had nationwide application, yet lent itself to a microscopic look. Consequently, the goal that emanated was the design and development of an energy-related demonstration program that educates public housing residents, facilitates indigenous business development where appropriate, and trains residents to provide needed services.

  12. Financing small scale wind energy projects in the UK

    International Nuclear Information System (INIS)

    Mitchell, Catherine

    1993-01-01

    This paper shows how wind energy projects in the UK have obtained finance. It attempts to list the financing options open to small scale developments and to note any likely problems which may occur. (UK)

  13. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed

  14. Present state and future of new energy technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, N

    1976-08-01

    The Sunshine Project was begun in 1973 by the Japanese Ministry of Industry to investigate all alternative energy sources other than nuclear. The project is subdivided into four separate areas, those being solar energy, geothermal energy, liquefaction and gasification of coal, and hydrogen fuel. This article describes the present state of these technologies and their probable future development. Although hydrogen fuel and coal liquefaction/gasification are still in the basic research stage solar and geothermal technologies are already well developed.

  15. Geothermal energy in Idaho: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.W.

    1979-07-01

    Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are presented. To assess the potential for geothermal resource development in Idaho, several kinds of data were obtained. These include information regarding institutional procedures for geothermal development, logistical procedures for utilization, energy needs and forecasted demands, and resource data. Area reports, data sheets, and scenarios were prepared that described possible geothermal development at individual sites. In preparing development projections, the objective was to base them on actual market potential, forecasted growth, and known or inferred resource conditions. To the extent possible, power-on-line dates and energy utilization estimates are realistic projections of the first events. Commercialization projections were based on the assumption that an aggressive development program will prove sufficient known and inferred resources to accomplish the projected event. This report is an estimate of probable energy developable under an aggressive exploration program and is considered extremely conservative. (MHR)

  16. Bolivia renewable energy development

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1997-12-01

    The author summarizes changes which have occurred in Bolivia in the past year which have had an impact on renewable energy source development. Political changes have included the privatization of power generation and power distribution, and resulted in a new role for state level government and participation by the individual. A National Rural Electrification Plan was adopted in 1996, which stresses the use of GIS analysis and emphasizes factors such as off grid, economic index, population density, maintenance risk, and local organizational structure. The USAID program has chosen to stress economic development, environmental programs, and health over village power programs. The national renewables program has adopted a new development direction, with state projects, geothermal projects, and private sector involvement stressed.

  17. An analysis of the demonstration projects for renewable energy application buildings in China

    International Nuclear Information System (INIS)

    Liu, Xingmin; Ren, Hong; Wu, Yong; Kong, Deping

    2013-01-01

    During the 2006–2008 period, there were 386 demonstration projects for renewable energy application buildings (REAB) organised by Chinese government, with a total area of approximately 40,420,000 m 2 . By the end of 2011, the vast majority of these projects had been completed and had passed the final acceptance. This paper analyses the measures taken by the Chinese government, including economic incentive mechanisms, organising agencies, application and evaluation systems, online monitoring platforms, acceptance inspections, assessment systems, standard criteria and so forth. This paper then evaluates the policy effects. The paper shows that there has been a satisfactory effect in the development of the REAB market, mobilising the enthusiasm of the government, equipment manufacturers and scientific research institutions, and promoting energy conservation. In addition, this paper analyses the suitability of different technological types in different climatic zones, which provides further guidance for the development of the REAB. Finally, based on the analyses of the problems met in the implementation of the demonstration projects, this paper proposes some policy suggestions concerning standard criteria, technological development, project management, incentive mechanisms and so on, to promote the development of the REAB more effectively in the future in China. - Highlights: • The policy measures to promote the development of renewable energy application buildings in China. • Evaluation of the demonstration policy effects in the market development and other aspects. • Analyses of the regional applicability for renewable energy application buildings in China. • Analyses of problems met in the implementation of the demonstration projects. • Put forward some policy suggestions on standard, technology, management, etc

  18. Licensing and Environmental Issues of Wave Energy Projects

    DEFF Research Database (Denmark)

    Neumann, Frank; Tedd, James; Prado, Miguel

    2006-01-01

    a special standing or facilitated access to operating licenses due to their experimental character, the move of wave energy projects towards commercial applications implies complex procedures for obtaining licenses both with respect to the construction and deployment and operation phases, as well......The major non-technical barrier for large-scale wave energy implementation is the wide range of licensing issues and potential environmental concerns, in addition to significant National/regional differences in licensing procedures and permit requirements. Whereas some pilot plants have had...... as concerning ocean space use and environmental concerns. Despite recent efforts to streamline European EIA (Environmental Impact Assessment) in general, potential project developers are far from having a clear view of present and future requirements concerning these barriers on a trans-national level...

  19. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 7. Report on the selection of SMKs for the project's target provinces and working agreements between SMKs and the project

    Energy Technology Data Exchange (ETDEWEB)

    Kamphuis, E. [ETC Nederland, Leusden (Netherlands); Permana, I. [Technical Education Development Centre TEDC, Bandung (Indonesia)

    2010-05-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report explains the stepwise approach taken in the selection of SMKs (Sekolah Menengah Kejuruan of the Ministry of Education; SMKs are Vocational and Technical Schools) for CASINDO's target provinces. For this, data of the Indonesian Ministry of Education were used, site visits were made and interviews were conducted. The exercise resulted in ranking the 11 best SMKs observed. Terms for working agreements between the SMKs and CASINDO have been formulated as well as a work planning.

  20. Renewable Energy Feasibility Study Leading to Development of the Native Spirit Solar Energy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Carolyn Stewart; Tracey LeBeau

    2008-01-31

    DOE-funded renewable energy feasibility study conducted by Red Mountain Tribal Energy on behalf of the Southwest Tribal Energy Consortium (SWTEC). During the course of the study, SWTEC members considered multiple options for the organization structure, selected a proposed organization structure, and drafted a Memorandum of Understanding for the SWTEC organization. High-level resource assessments for SWTEC members were completed; surveys were developed and completed to determine each member’s interest in multiple participation options, including on-reservation projects. With the survey inputs in mind, multiple energy project options were identified and evaluated on a high-level basis. That process led to a narrowing of the field of technology options to solar generation, specifically, utility-scale Concentrating Solar-Powered Generation projects, with a specific, tentative project location identified at the Fort Mojave Indian Reservation -- the Native Spirit Solar Energy Facility.

  1. The HESP (High Energy Solar Physics) project

    Science.gov (United States)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  2. The energy transition by everyone and for everyone: what potential is there for hybridization in renewable energy projects?

    International Nuclear Information System (INIS)

    Ruedinger, Andreas

    2016-03-01

    Based on an analysis of the energy transition as a collective governance issue, the notion of citizen and local buy-in has emerged as an important marker, with a view to enhance the participation of all actors in different forms. In France, this goal has been enshrined in the slogan 'the energy transition by everyone and for everyone'. In this context, the direct participation of local actors - citizens and local authorities - in the implementation of energy projects within their territories has received a great deal of attention from policy-makers. This attention is further strengthened by the more recent appetite for citizen renewable energy projects in France and lessons learned from international experiments such as in Denmark and Germany. Citizen and collaborative renewable energy models are seeing growing interest from political and industrial stakeholders, driven by an effort to promote public acceptance of these projects and redirect local savings towards transition projects. While the energy transition law explicitly calls for the promotion of innovative models, it is nevertheless necessary to have a more detailed breakdown of the numerous existing approaches. By establishing a classification based on the levels of participation in the financing and the governance of these projects, this study aims to reflect on the respective advantages and drawbacks of these models with regard to their capacity to meet the goals set out by project developers Three main types of models can be defined: projects with a conventional approach, which focus on direct financial profitability, do not include financial participation by local actors, and for which implication in the governance is limited to consultation; 'citizen' projects, which are developed around collective governance and financing managed by local actors (citizens and/or local authorities); and a variety of 'collaborative' projects, which are the outcome of different kinds of hybridization between these two

  3. US heat pump research and development projects, 1976-1986

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, K.H.

    1987-04-01

    This document, which is an updated version of US Heat Pump Research and Development Projects, published in August 1982 by the US Department of Energy, is a compilation of one-page summaries and publication and patent information for 233 individual research and development projects on heat pumps covering the years 1976 through 1986. The majority of the projects refer to heat pumps in space-conditioning applications. The document is intended to include information on all projects in the United States for which results are publicly available. Ten different indexes are included to aid the reader in locating specific projects.

  4. Decommissioning wind energy projects: An economic and political analysis

    International Nuclear Information System (INIS)

    Ferrell, Shannon L.; DeVuyst, Eric A.

    2013-01-01

    Wind energy is the fastest-growing segment of new electrical power capacity in the United States, with the potential for significant growth in the future. To facilitate such growth, a number of concerns between developers and landowners must be resolved, including assurance of wind turbine decommissioning at the end of their useful lives. Oklahoma legislators enlisted the authors to develop an economically-sound proposal to ensure developers complete their decommissioning obligations. Economic analysis of turbine decommissioning is complicated by a lack of operational experience, as few U.S. projects have been decommissioned. This leads to a lack of data regarding decommissioning costs. Politically, the negotiation leading to the finally-enacted solution juxtaposed economic theory against political pragmatism, leading to a different but hopefully sound solution. This article will provide background for the decommissioning issue, chronicle the development of the decommissioning component of the Oklahoma Wind Energy Act, and frame issues that remain for policymakers in regulating wind power development. - Highlights: ► Wind energy is the fastest-growing component of U.S. power generation. ► Decommissioning wind projects is policy concern for wind development. ► Little public information on wind turbine decommissioning costs exists. ► Oklahoma’s solution attempts to account for both costs and risks. ► Additional research is needed to create a more precise policy solution.

  5. Risk identification for PPP waste-to-energy incineration projects in China

    International Nuclear Information System (INIS)

    Song, Jinbo; Song, Danrong; Zhang, Xueqing; Sun, Yan

    2013-01-01

    Municipal solid waste (MSW) is regarded as a renewable energy source. In China, the sharp increase of MSW has precipitated the rapid growth of waste-to-energy (WTE) incineration plants. Private capital has been getting into the WTE incineration industry through the public–private partnership (PPP) arrangement. Due to the large construction cost and the long concession period commonly associated with this arrangement, a number of failures have emerged in PPP WTE incineration projects. The aim of this paper is to investigate the key risks of PPP WTE incineration projects in China and study the strategies for managing these risks by drawing experience and learning lessons from these projects. First, we analyzed the MSW management practices, relevant legislations and policies, and the development of PPP WTE incineration projects in China. Second, we identified ten key risks through interviews, surveys and visits to some selected projects, and provided detailed analysis of these risks. Lastly, we developed response strategies for these risks from the perspectives of both public and private sectors. - Highlights: • We analyze MSW management practices, relevant legislations and policies in China. • Through case study on PPP WTE incineration projects, ten key risks are identified. • Response strategies for key risks are developed

  6. Smart border initiative: a Franco-German cross-border energy optimisation project

    International Nuclear Information System (INIS)

    2017-01-01

    Integrated and optimised local energy systems will play a key role in achieving the energy transition objectives set by France and Germany, in line with the Energy Union's goals, and contribute to ensuring a secure, affordable and climate-friendly energy supply in the EU. In order to capitalise on the French and German expertise and experiences in developing such systems and to continue strengthening the cross-border cooperation towards a fully integrated European energy market, both Governments have decided to launch a common initiative to identify and structure a cross-border energy optimisation project. Tilia and Dena have undertaken this mission to jointly develop the Smart Border Initiative (SBI). The SBI will, on the one hand, connect policies designed by France and Germany in order to support their cities and territories in their energy transition strategies and European market integration. It is currently a paradox that, though more balanced and resilient energy systems build up, bottom-up, at the local level, borders remain an obstacle to this local integration, in spite of the numerous complementarities observed in cross-border regions, and of their specific needs, in terms of smart mobility for example. The SBI project aims at enabling European neighbouring regions separated by a border to jointly build up optimised local energy systems, and jointly develop their local economies following an integrated, sustainable and low-carbon model. On the other hand, this showcase project will initiate a new stage in the EU electricity market integration, by completing high voltage interconnections with local, low voltage integration at DSO level, opening new optimisation possibilities in managing the electricity balance, and enabling DSOs to jointly overcome some of the current challenges, notably the increased share of renewable energy (RE) and ensuring Europe's security of supply

  7. Introduction to the Asian Energy Security project: Project organization and methodologies

    International Nuclear Information System (INIS)

    Hippel, David von; Savage, Timothy; Hayes, Peter

    2011-01-01

    The spectacular recent economic growth in the Asia-Pacific region in general, and in many of the economies of Northeast Asia in particular, has spurred a vast expansion in the need for energy services, and an expansion in the demand for the fuels that help to supply these services. Future projections suggest that the growth of fossil fuel use in Northeast Asia, especially in China, will have major consequences for financial and fuel markets and pollution both regionally and globally. Before the project described in this paper was initiated, there was no ongoing forum for energy experts from all of the countries of the region to meet, informally and in an unofficial capacity, to discuss openly and in a targeted fashion the energy situations in their countries, and to work together to evaluate the energy efficiency costs and benefits of different ways of meeting regional demand. The Asian Energy Security (AES) project provides such a forum, and as such constitutes a unique resource in the engagement of the countries of Northeast Asia on the topic of energy security.

  8. Advanced energy projects: FY 1987 research summaries

    International Nuclear Information System (INIS)

    1987-09-01

    This report contains brief summaries of all projects active in the Division of Advanced Energy Projects during Fiscal Year 1987 (October 1, 1986-September 30, 1987). The intent of this compilation is to provide a convenient means for quickly acquainting an interested reader with the program in Advanced Energy Projects. More detailed information on research activities in a particular project may be obtained by contacting directly the principal investigator. Some projects will have reached the end of their contract periods by the time this book appears, and will, therefore, no longer be active. Those cases in which work was completed in FY '87 are indicated by the footnote: Project completed. The annual funding level of each project is shown

  9. Wind energy developments in the Americas

    International Nuclear Information System (INIS)

    Swisher, R.; Ancona, D.F.

    1990-01-01

    This paper will highlight the key wind energy activities and programs of American countries. In South and Central America, wind technology awareness and opportunity is spreading. Countries have projects in the beginning stages of development and many sites with excellent wind resources are believed to exist. Argentina, Costa Rica, Colombia, Mexico, and several Caribbean countries are among those active in wind energy development. In Canada, after a decade of research and systems development, the Department of Energy Mines and Resources is conducting a review of all renewable energy technologies, including wind, to develop a strategic plan for future activities. Canadian industry continues development of various vertical axis projects and the Province of Alberta has begun a program to assess wind potential in that region. In the United States, commercial application of wind energy is continuing to expand. During 1989, over 140 MW of new wind turbine capacity was installed in wind power plants, bringing the total operating in the U.S. to 14600 turbines and 1,400 MW. During 1989, these machines produced over 2.1 billion kWh, enough to supply the residential needs of Washington D.C. or San Francisco. This is an increase of 15% over the 1988 total, even though installed operating capacity dropped by about 10% as smaller, out-dated turbines were phased out or replaced. The U.S. government is in the process of formulating a new National Energy Strategy. It seems clear that renewable energy and energy efficiency will play an increasingly important role in this strategy. The U.S. wind program continues to emphasize broad-based technology development, but has also initiated conceptual design studies for an advanced wind turbine for power generation in the late 1990s. (Author)

  10. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 24. Regional Energy Efficiency Planning 2011 [for Yogyakarta

    Energy Technology Data Exchange (ETDEWEB)

    Prahara, Pamungkas Jutta; Hariadi, T.K. [Universitas Muhammadiyah PUSPER-UMY, Yogyakarta (Indonesia)

    2012-06-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. Increasing energy demand and decreasing energy supply has to be faced by strategic measures. Daerah Istimewa Yogyakarta (DIY) faces the same problem with more burdens since DIY depends on energy supply from other region. One strategic measure is to reduce energy consumption across sectors. There are, in total, 805.468 electricity consumers in Yogyakarta in the household, social and industrial sector. Through direct measures electricity consumption can be reduced and financial resources can be saved. One of the measures is energy conservation campaign to all sectors in the region which expected to reduce the energy spent, for example to switch off electronic devices totally instead of to put them in standby mode. Survey in the region indicated there are various use of electronic devices in household dominated by refrigeration, television, and AC's. In industries and social, AC and motors are dominating the sector. By applying inverter technology and refrigerant retrofitting to air conditioner can reduce significantly the energy consumption. Changing from old refrigerator with new energy saver refrigerator would also reduce energy consumption. Strategic energy policy and tools has to be identified to push the community to apply the recommended measure. Energy labeling, tax reduction program and energy price increase would make the energy conservation program more feasible and create an environment where inventing in energy efficiency is more attractive. Furthermore a financial resource policy has to be prepared for community education through promotion

  11. Bioenergy Project Development and Biomass Supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Modern biomass, and the resulting useful forms of bioenergy produced from it, are anticipated by many advocates to provide a significant contribution to the global primary energy supply of many IEA member countries during the coming decades. For non-member countries, particularly those wishing to achieve economic growth as well as meet the goals for sustainable development, the deployment of modern bioenergy projects and the growing international trade in biomass-based energy carriers offer potential opportunities.

  12. Regenesys utility scale energy storage. Project summary

    International Nuclear Information System (INIS)

    2004-01-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed

  13. Regenesys utility scale energy storage. Project summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed.

  14. Development of the Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    The development of the wave energy converter Wave Dragon (WD) is presented. The WD is based on the overtopping principle. Initially a description of the WD is given. Then the development over time in terms of the various research and development projects working with the concept is described. Thi...

  15. ASEAN-USAID buildings energy conservation project. Volume 1, Energy standards: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levine, M.D.; Busch, J.F. [eds.][Lawrence Berkeley Lab., CA (United States); Deringer, J.J. [Deringer Group, Riva, MD (United States)

    1992-06-01

    Mandatory or voluntary energy-efficiency standards for new or existing buildings can play an important role in a national program aimed at promoting energy conservation. Building codes and standards can provide a degree of control over design and building practices throughout the construction process, and encourage awareness of energy-conscious design. Studies in developed countries indicate that efficiency standards can produce energy reductions on the order of 20 to 40% or more. Within ASEAN, analyses of the savings potential from the proposed standards suggest that if implemented, these standards would produce savings over current new design practice of 19% to 24%. In this volume we provide an overview of the ASEAN-USAID project aimed at promulgating standards for energy efficiency in commercial buildings. The process of developing and implementing energy-efficiency standards for buildings can be subdivided into two key components: policy development; and technical and economic analysis. Each of these involves a number of steps and processes, as outlined in Figure 1-1. This volume describes the technical and economic analyses used to develop the proposed energy efficiency standards for four countries (Malaysia, Thailand, the Philippines, and Indonesia), and to refine an energy standard existing in Singapore since 1979. Though oriented toward the ASEAN region, the analysis methods described here are applicable in a range of settings, provided appropriate modifications are made for local building construction, climatic, economic, and political conditions. Implementation issues are not specifically addressed here; rather this volume is oriented towards the analytical work needed to establish or revise an energy standard for buildings.

  16. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 38. Pro-poor Energy Strategy In North Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Soeharwinto [University of Sumatra Utara, Medan (Indonesia)

    2011-12-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. A key component of the recent political reforms undertaken in Indonesia is the decentralization and regional autonomy that were implemented in 2001. This process has devolved almost all powers and responsibilities from the central government to the local government, including responsibilities for energy sector development. This means that regional governments are now responsible for formulating their energy policy and, consequently, must reform their institutional structure and strengthen their human capacity to be able to carry out this new responsibility. In Indonesia, people living in urban areas generally have access to efficient and modern energy supplies. However, the rural communities are generally less fortunate and continue to rely on traditional fuels of firewood, because the energy and electricity production system available to them are costly and inefficient. The aim of CASINDO's Technical Working Group V (TWG V) on Identification of Energy Needs and Assessment for Poor Communities was to establish energy-related needs and priorities of poor communities in selected locations in the Province of Central Java. The target location for Casindo TWG V activities was the village of Sruni, in the Boyolali district, because it is a district which produces a great amount of milk from dairy cows (greatest amount in Central Java); and secondly, because it does not receive any funds from other development programs, as well as from other institutions, while other subdistricts do. In order to identify actual energy needs successfully, the Participatory

  17. Old Wine in New Bottles? Does Climate Policy Determine Bilateral Development Aid for Renewable Energy and Energy Efficiency?

    OpenAIRE

    Axel Michaelowa; Katharina Michaelowa

    2011-01-01

    Published by Palgrave Macmillan Since the UN Conference on Environment and Development in Rio de Janeiro in 1992 bilateral and multilateral donors have stressed that development assistance has increasingly been oriented towards climate-friendly interventions. With respect to energy aid, this should lead to a substantial increase in projects related to renewable energy and energy efficiency. Given a new database of hundreds of thousands of bilateral development assistance projects, we can asse...

  18. Balancing development, energy and climate priorities in China. Current status and the way ahead

    International Nuclear Information System (INIS)

    Kejun Jiang; Xiulian Hu; Xianli Zhu; Garg, A.; Halsnaes, K.; Qiang Liu

    2007-09-01

    This report is the China Country Report of the project: Projecting future energy demand: Balancing development, energy and climate priorities in large developing economies. Under this project four country studies have been carried out, on China, India, Brazil, and South Africa respectively. The focus of this report is on the energy sector policies that mainstream climate interests within development choices. The report gives a short introduction to the project and its approach, followed by analyses of Chinese energy, development and climate change and an assessment of cross-country results that gives a range of key indicators of the relationship between economic growth, energy, and local and global pollutants. (BA)

  19. European project Educa-RUE: An example of energy efficiency paths in educational buildings

    International Nuclear Information System (INIS)

    Desideri, Umberto; Leonardi, Daniela; Arcioni, Livia; Sdringola, Paolo

    2012-01-01

    Highlights: ► European project aimed at improving energy performance in educational buildings. ► Development and updating of technical competence through training courses. ► Development of “Educa-RUE method”, a model of energy management for public buildings. ► Local Energy Plans, based on environmentally friendly criteria. ► Results obtained by testing and proving Educa-RUE method in different regional areas. -- Abstract: The aim of Educa-RUE project is to improve energy performance in building sector at local level and with particular attention to educational buildings, by promoting the ability of local players to guide and orient initiatives, designed to encourage energy saving by means of specific measures and integrated tools. The project is therefore focused to speed up the implementation of European Directive on Energy Performance in Buildings, EPBD (2002/91/EC), in Member States at local government level and to ensure its operability, within the various national legislations of reference. Educa-RUE lasted 30 months, from January 2008 to June 2010, and involved the following eight partners: for Italy, Provinces of Potenza (project leader), Perugia, Rieti and Palermo; for other Countries, Climate Energy Ltd. Essex and Energy Solutions North West London (UK), Associación Aragonesa de Entidades Locales ASAEL (Spain), Municipality of Prenzlau (Germany). A number of closely interconnected actions were carried on in eight Work Packages (WPs) to face the energy efficiency aspects identified as primary problems by the partners. The project developed a model process, known as “Educa-RUE method”, to assess possible policies of intervention on educational buildings, owned or managed by each Partner. In particular the Province of Perugia, leader of WP 2 and 5, provided guide lines and tools in order to: identify the state of the art of EPBD implementation and the main non-technological barriers, which are preventing its application at local level

  20. Smart Grid Communications Security Project, U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Frank [Univ. of Colorado, Boulder, CO (United States)

    2012-09-01

    There were four groups that worked on this project in different areas related to Smart Girds and Security. They included faculty and students from electric computer and energy engineering, law, business and sociology. The results of the work are summarized in a verity of reports, papers and thesis. A major report to the Governor of Colorado’s energy office with contributions from all the groups working on this project is given bellow. Smart Grid Deployment in Colorado: Challenges and Opportunities, Report to Colorado Governor’s Energy Office and Colorado Smart Grid Task Force(2010) (Kevin Doran, Frank Barnes, and Puneet Pasrich, eds.) This report includes information on the state of the grid cyber security, privacy, energy storage and grid stability, workforce development, consumer behavior with respect to the smart grid and safety issues.

  1. Wind energy projects: Some reservations

    International Nuclear Information System (INIS)

    Veldkamp, H.F.; Goezinne, F.

    1991-01-01

    Among people directly involved in wind energy great optimism about the use of windpumps is not uncommon. Projects show that often this is not justified. Why do windpump projects fail? Errors seen by the authors are: 1. Windpumps are installed only because policy makers or researchers want it and not because there is a need felt for them by the users; 2. There is too much attention for the technical side and not for other, more important problems; 3. Experimental (and hence unreliable) windpumps are used in projects; and 4. Too much weight is attached to small, long term economic advantages, which do not count in reality. Although the windmill has its place, it should be recognized that in many cases wind energy is not a good option. 15 refs

  2. Key Success Factors of Renewable Energy Projects Implementation in Rural Areas of Indonesia

    Directory of Open Access Journals (Sweden)

    Wati Hermawati

    2017-12-01

    Full Text Available This paper is an exploratory study on renewable energy implementation in the rural areas of Indonesia. The study aim was to investigate the factors contributing to the sustainability of renewable energy projects in the rural areas. It mostly uses a qualitative approach. Primary data was mainly obtained from in-depth interviews conducted in site areas with the project owners, project managers, a key person in each local government, industry representatives, and the local community, including local leaders and users of renewable energy. Secondary data in the form of various official project reports was also used. The results indicated that the success of energy project implementation lay not only in good technology performance and long-term maintenance, but was also highly dependent on six key factors, namely: (1 project planning and development; (2 community participation; (3 active communication and beneficiaries; (4 availability of maintenance program, workshop and technician; (5 project management and institutionalization; (6 local government support and networks. The findings from this study provide useful insights to all stakeholders involved in the implementation of renewable energy technology for the rural areas in Indonesia.

  3. Community energy case studies: Alderney 5 energy project, Dartmouth, NS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-05-15

    In 2007, the Halifax Regional Municipality (HRM) approved the Alderney 5 energy project, an energy-efficiency retrofit of five municipal buildings on the Dartmouth, Nova Scotia, waterfront. The buildings concerned are: the Alderney landing complex, the Alderney gate office, the library, the Dartmouth ferry terminal and the old Dartmouth city hall building. The project has five major components: a mini-district-energy system of heating and cooling pipes that will connect all buildings to one central energy centre in Alderney gate; new gas conversion and high-efficiency boilers; new lighting; new seawater cooling; and an advanced coaxial energy storage system, saving $350,000 per year in energy costs. Construction, started in 2008, was funded through an innovative public private partnership between the Halifax Regional Municipality (HRM: $1 million), the federal government's technology early action measures program, and a company called High Performance Energy Systems.

  4. The energy and electric development in Viet Nam

    International Nuclear Information System (INIS)

    Nguyen Khac, Nhan

    2015-11-01

    After a description of the Vietnamese geography and economy, this report presents the Vietnamese energy system, comments the status and origin of electricity production in this country (shares of hydraulic, gas turbine, coal production, and imports). Then, the author presents the various aspects defined within the electric energy development plan for 2011-2020 with a projection until 2030: development principles, objectives, instructions for production plants and for grids, and investments. He proposes a focus on hydroelectricity (meteorological data regarding precipitations, status and power of existing dams, situation and negotiation about the Mekong, problems associated with the development of hydroelectricity in Vietnam), and a focus on the relationship between nuclear energy and climate change (safety issues due to climate change, nuclear plant projects are postponed, the only strategic choice is a massive exploitation of renewable energies). In the last part, the author discusses predictions regarding energy demand, and the associated planning and programming to face this increasing demand

  5. The global sustainability project and the LLNL China energy systems model

    International Nuclear Information System (INIS)

    Harris, N; Lamont, A; Stewart, J; Woodrow, C.

    1999-01-01

    The sustainability of our modern way of life is becoming a major concern of both our domestic and international policy. The Rio conference on the environment and the recent Kyoto conference on global climate change are two indications of the importance of solving global environmental problem. Energy is a key component in global sustainability since obtaining and using it has major environmental effects. If our energy systems are to be sustainable in the long run, they must be structured using technologies that have a minimal impact on our environment and resources. At the same time, they must meet practical economic requirements: they must be reasonably economical, they must meet the needs of society and they must be tailored to the resources that are available in a particular region or country. Because economic considerations and government policies both determine the development of the energy system, economic and systems modeling can help us better understand ways that new technologies and policies can be used to obtain a more sustainable system. The Global Sustainability Project has developed both economic modeling software and models to help us better understand these issues and has applied them to the analysis of energy and environmental problems in China. In the past year, the models and data developed by the project have been used to support other projects investigating the interaction of technologies and the environment. The project this year has focused on software development to improve our modeling tools and on the refinement and application of the China Energy System model. The major thrust of the software development has been improvements in the METANet economic software system. We have modified its solution algorithm to improve speed and accuracy of the solutions and to make it compatible with the SuperCode modeling system. It is planned to eventually merge the two systems to take advantage of the faster, more flexible solution algorithms of Super

  6. Wind energy development in China (WED) — The Danish-Chinese collaboration project

    DEFF Research Database (Denmark)

    Xu, Zhao; Rosenberg, H.; Sørensen, Poul Ejnar

    2009-01-01

    This paper reports the large scale bilateral development program- the Danish-Chinese wind energy development program (WED). The paper starts with overview of electric energy production and consumption in the two counties with special focus on wind energy status. Next, the detailed objectives...

  7. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  8. MEET : project action plan for AUMA energy management program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-22

    The Municipal Energy Efficiency Trust (MEET) action plan offers a framework to help municipalities in Alberta demonstrate leadership in reducing energy consumption. It sets out targets for energy reductions and the associated capital investment. As more information is compiled from energy audits, the targets will be refined. AUMA and Enmax Energy Corp have partnered to provide energy audits designed to allow all municipalities to undertake energy savings projects. The program is divided into 8 basic categories for energy savings projects including: water and sewage collection, treatment and distribution; recreation centres such as pools and skating rinks; streetlights; office buildings; garages, shops and parking lots; other and innovative projects; municipal audit evaluation support; and, direct grants applied to each project. The estimates for energy savings within each category are provided. The maximum allowable payback period for the project is assumed to be 15 years. Total municipal energy use in Alberta is estimated at 1,100,000 MWh per year. A province wide program will enable AUMA to provide centralized services such as project management and procurement services to address municipal resource constraints and provide some economies of scale for smaller municipalities. AUMA will act as the fund administrator and will set criteria for acceptable projects. The action plan focuses on the energy audit program, municipal facility data collection, municipal staff education, and the establishment of a funding pool. The target for 2002/2003 will be to identify projects with energy savings of at least 15,000 MWh for water treatment and distribution recreation centres for a total capital cost of $13,500,000. 1 tab., 3 figs.

  9. PUEBLO OF ZIA RENEWABLE ENERGY DEVELOPMENT FEASIBILITY STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Peter M. [Tribal Administrator (Ret.), Pueblo of Zia; Lakshman, Jai [Project Manager (NDA) for Pueblo of Zia; Toole, G. Loren [Principal Investigator, Los Alamos National Laboratory - Energy Analysis Team/ CCS-3, D-4; Hand, Dan [P.E., Sustainable Enginerring; Witcher, James; Emerson, Michael A. [Senior V.P., ARES Corporation; Turner, Jeremy [Executive Director, NM Renewable Energy Transmission Authority; Sandidge, Wendy [Director of Operations, NM Community Capital

    2014-06-30

    The Pueblo of Zia will conduct a comprehensive feasibility study for best-use application(s) for development of renewable energy resources on its tribally held TRUST lands (i.e., Trust Lands of Zia Indian Reservation). The feasibility study is essential for determining the technical and economic viability of a future renewable project(s) on Zia tribal lands, including the potential economic and environmental benefits for the Tribe. Project Objectives: The feasibility study is essential for determining the technical and economic viability of future renewable project(s) on Zia tribal lands, including the potential economic and environmental benefits for the Tribe to: 1. Provide a balanced local renewable power supply for Zia Pueblo, its members, tribal offices, schools and buildings, and businesses on tribal lands 2. Provide a firm power supply for export and commercial market distribution 3. Provide economic development for the Tribe and its members, including job training and creation, each in accordance with the goals and objectives as conveyed by the Pueblo of Zia Tribal Council, Tribal Administration, and outlined in The Pueblo of Zia Comprehensive Plan and Pueblo of Zia — Zia Enterprise Zone Master Plan. A key goal of the study is to analyze the integrated development of solar, geothermal, and wind renewable energy resources at Zia Pueblo, with added potential to combine gas-fired generation to accomplish energy firming. Geothermal offers a base load source of energy, providing power continuously for end users. Wind and solar offer intermediate and peaking sources of energy, which can be harvested throughout the day, with periods of variable but predicable output. Variability will be managed in an integrated manner, using Zia Pueblo's combined renewable resources to generate high-quality power. Tasks are intended to collect, catalog, map, and analyze existing data on Zia Pueblo's renewable energy resource base and then match resource attributes with

  10. Design and development of hybrid energy generator (photovoltaics) with solar tracker

    Science.gov (United States)

    Mohiuddin, A. K. M.; Sabarudin, Mohamad Syabil Bin; Khan, Ahsan Ali; Izan Ihsan, Sany

    2017-03-01

    This paper is the outcome of a small scale hybrid energy generator (hydro and photovoltaic) project. It contains the photovoltaics part of the project. The demand of energy resources is increasing day by day. That is why people nowadays tend to move on and changes their energy usage from using fossil fuels to a cleaner and green energy like hydro energy, solar energy etc. Nevertheless, energy is hard to come by for people who live in remote areas and also campsites in the remote areas which need continuous energy sources to power the facilities. Thus, the purpose of this project is to design and develop a small scale hybrid energy generator to help people that are in need of power. This main objective of this project is to develop and analyze the effectiveness of solar trackers in order to increase the electricity generation from solar energy. Software like Solidworks and Arduino is used to sketch and construct the design and also to program the microcontroller respectively. Experimental results show the effectiveness of the designed solar tracker sytem.

  11. Development of a major hydroelectric project in the Pacific Rim

    International Nuclear Information System (INIS)

    Afshar, Y.; Kwiatkowski, R.W.

    1990-01-01

    Developing a major international energy project requires the assembly and close coordination of various factors. Some of the specific factors include identification of the client, specific project identification, establishing the need for the project, identifying the pros and cons of the project, technical and financial feasibility of the project, identifying sources of financing, identifying the competitions, studying possible teaming arrangements, involvement of local firms and representatives, and developing a strategy that will lead to the successful negotiation of the contract. This paper briefly addresses each of the factors

  12. The Agri-Territorial Energy System: Energy from Biomass as a Tool in Local Development

    International Nuclear Information System (INIS)

    Tritz, Yvan

    2012-01-01

    Biomass is a high-potential energy source whose development has been one of the primary objectives of the debate over the environment in France. Among the projects emerging today, we highlight two types of logics: large-scale projects such as electrical power or biofuel production plants, and smaller, local initiatives launched in rural areas. This paper lays down and illustrates the bases for the Agri-Territorial Energy System (ATES). This was inspired by Local Productive Systems and Localized Agri-food Systems, and the concept was set up on the basis of analyses of local projects involving biomass energy production. The ATES option offers strong local rooting and an organizational innovation process linking multi-stake holders. The concept is illustrated by two case studies: the Miscanthus project in Ammerzwiller (Alsace), and the Bois Bocage energy project in Orne (Basse-Normandie). These examples bring up an important point, namely the multifunctional dimension of the ATES concept

  13. Associations - Communities - Residents. Building together a citizen-based project of renewable energies - Methodological guide

    International Nuclear Information System (INIS)

    Ramard, Dominique; Fleury, Laurianne; Peyret, Albert; Ghesquiere, Christine; Kauber, Markus; Jourdain, Pierre

    2012-11-01

    This guide first outlines the challenges and stakes of citizen-based renewable energies: example of a necessary energy transition in Brittany, interest of a local production of renewable energies, examples in other European countries, and emergence of a citizen-based energy movement in France. The second part presents the four main phases of such a project (diagnosis, development, construction, and exploitation), the main issues to be addressed, and the main steps of a citizen-based renewable energy project (technical, legal and financial, and citizen-related aspects during the different phases). The third part describes how to elaborate a citizen-based project: by addressing the project dimensions, by defining a legal specification, by performing a provisional business model, by choosing an appropriate legal structure, by creating a project company, and by mobilizing local actors). The last part addresses how to finance the project: by building up own funds, by asking banks for support, and by citizen participation to investment

  14. Renewable energy finance and project ownership. The impact of alternative development structures on the cost of wind power

    International Nuclear Information System (INIS)

    Wiser, R.H.

    1997-01-01

    This paper uses traditional financial cash flow techniques to examine the impact of different ownership and financing structures on the cost of renewable energy, specifically wind power. Most large, non-hydroelectric, renewable energy projects are developed, owned and financed by private non-utility generators. Recently, however, US utilities have begun to consider owning and financing their own wind power facilities rather than purchasing power from independent renewable energy suppliers. Utilities in other countries have also expressed interest in direct renewable energy investments. A primary justification for utility ownership of wind turbine power plants is that utility self-financing and ownership is cheaper than purchasing wind energy from non-utility renewable energy suppliers. The results presented in this paper support that justification, although some of the estimated cost savings associated with utility ownership are a result of suboptimal utility analysis procedures and implicit risk shifting. Financing terms and variables are shown to significantly impact wind power costs. (author)

  15. Enabling optimal energy options under the Clean Development Mechanism

    International Nuclear Information System (INIS)

    Gilau, Asmerom M.; Van Buskirk, Robert; Small, Mitchell J.

    2007-01-01

    This paper addresses the cost effectiveness of renewable energy technologies in achieving low abatement costs and promoting sustainable developments under the Clean Development Mechanism (CDM). According to the results of our optimal energy option's analysis, at project scale, compared with a diesel-only energy option, photovoltaic (PV)-diesel (PVDB), wind-diesel (WDB) and PV-wind-diesel (PVWDB) hybrids are very cost-effective energy options. Moreover, energy options with high levels of renewable energy, including 100% renewables, have the lowest net present cost and they are already cost effective without CDM. On the other hand, while the removal of about 87% carbon dioxide emissions could be achieved at negative cost, initial investment could increase by a factor of 40, which is one of the primary barriers hindering wider renewable energy applications in developing countries, among others. Thus, in order to increase developing countries' participation in the carbon market, CDM policy should shift from a purely market-oriented approach to investigating how to facilitate renewable energy projects through barrier removal. Thus, we recommend that further research should focus on how to efficiently remove renewable energy implementation barriers as a means to improve developing countries' participation in meaningful emission reduction while at the same time meeting the needs of sustainable economic development

  16. Renewable energy and sustainable development. An impact assessment of micro and mini hydel projects in Gilgit-Baltistan, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Voehringer, Max

    2010-07-01

    The provision of electricity by means of renewable energy is expected both to contribute to the mitigation of climate change and to have positive development effects in regions that are under-supplied with electric power, or not electrified at all. The Clean Development Mechanism (CDM) - a policy instrument of the global climate regime of the Kyoto protocol - takes this into account and supports renewable energy projects in developing countries. The CDM pursues two objectives: To reduce GHG emissions and to foster Sustainable Development. An area of concern for critics of the instrument, however, is that CDM projects often do not contribute to Sustainable Development and fail to reduce socio-economic disparities by neglecting to address the poor. Against this background, three CDM-financed micro and mini hydel projects in Gilgit-Baltistan, Pakistan, were examined with regard to their contribution to Sustainable Development. Ecological, social, and economic processes relating to the use of energy, and the impact of the hydel projects on them, were analysed. To include the question of equity, a special focus was given to possible differences between relatively better-off and poorer households. The processes and impacts examined can only be fully understood in the regional context of the hydel projects. The area is characterised by a high mountain environment. A welladapted system of mixed mountain agriculture, in which water and biomass resources play decisive roles, forms the economic basis of the people's livelihoods. Socially and economically, the area is subject to profound transition processes, and non-agrarian employment and income opportunities are gaining more and more importance. The empirical results of this study show that in this context the hydel projects have altogether positive Sustainable Development impacts. However, a broad range of effects can be observed of which some - especially in the social and economic dimension - are relevant for all

  17. Annual Energy Outlook 2016 With Projections to 2040

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-08-01

    The Annual Energy Outlook 2016 (AEO2016), prepared by the U.S. Energy Information Administration (EIA), presents long-term projections of energy supply, demand, and prices through 2040. The projections, focused on U.S. energy markets, are based on results from EIA’s National Energy Modeling System (NEMS). NEMS enables EIA to make projections under alternative, internallyconsistent sets of assumptions. The analysis in AEO2016 focuses on the Reference case and 17 alternative cases. EIA published an Early Release version of the AEO2016 Reference case (including U.S. Environmental Protection Agency’s (EPA) Clean Power Plan (CPP)) and a No CPP case (excluding the CPP) in May 2016.

  18. Implementing a Zero Energy Ready Home Multifamily Project

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); German, Alea [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-17

    Building cost-effective, high-performance homes that provide superior comfort, health, and durability is the goal of the U.S. Department of Energy’s (DOE’s) Zero Energy Ready Home (ZERH) program. Building America research and other innovative programs throughout the country have addressed many of the technical challenges of building to the ZERH standard. The cost-effectiveness of measure packages that result in 30% source energy savings compared to a code-compliant home have been demonstrated. However, additional challenges remain, particularly with respect to convincing production builders of the strong business case for ZERH. The Alliance for Residential Building Innovation (ARBI) team believes that the keys to successfully engaging builders and developers in the California market are to help them leverage development agreement requirements, code compliance requirements, incentives, and competitive market advantages of ZERH certification, and navigate through this process. A primary objective of this project was to gain a highly visible foothold for residential buildings that are built to the DOE ZERH specification that can be used to encourage participation by other California builders. This report briefly describes two single-family homes that were ZERH certified and focuses on the experience of working with developer Mutual Housing on a 62-unit multifamily community at the Spring Lake subdivision in Woodland, California. The Spring Lake project is expected to be the first ZERH-certified multifamily project in the country. This report discusses the challenges encountered, lessons learned, and how obstacles were overcome.

  19. Energy policy. Developing strategies for energy policies in the 1990s

    International Nuclear Information System (INIS)

    England-Joseph, Judy A.; Fowler, James A.; Kime, Barry R.; McLaughlin, Brian T.; Price, Margaret W.; Adams, Charles M.; Grace, Paul O.; Kruslicky, Mary Ann; McGee, William F.

    1990-06-01

    Securing sufficient and reliable future energy supplies to meet the increased U.S. energy demand projected for the 1990s is a major issue facing the nation. Since 1983, U.S. energy consumption has increased by about 16 percent, and an upward trend is expected to continue through the year 2000. Petroleum is used more than any other energy source in the United States, supplying about 41 percent of the nation's total energy needs. With the increase in total energy consumption, two potentially disturbing energy supply trends are emerging: The U.S. is becoming increasingly dependent on imported oil, particularly from the strategically sensitive Persian Gulf, to meet its petroleum energy needs. This trend increases the nation's vulnerability to potential oil supply disruptions and increased oil prices. Questions are being raised as to whether there will be adequate generating capacity to meet the nation's future electricity needs. While electricity consumption has been steadily increasing in recent years and is projected to continue through the year 2000, much of the additional generating capacity projected to come on line is in the early stages of construction and may not be completed in time to meet the nation's future electricity needs during the 1990s. It is also increasingly being recognized that energy consumption creates potentially serious environmental, health, and safety consequences, whose possible solutions can be costly to address. As indicated by our previous work, a number of options are available to improve the nation's ability to cope with the trend toward increased dependence on imported oil and to ensure adequate supplies of future electric generating capacity. These options also recognize the importance of protecting the environment. As directed by the President, DOE is developing a much needed national energy strategy that it expects will integrate and balance concerns for energy choices against other national concerns, such as environmental

  20. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 8. Report on general competency trainings (basic level) by TEDC for SMK teachers from the five CASINDO regions

    Energy Technology Data Exchange (ETDEWEB)

    Kamphuis, E. [ETC Nederland, Leusden (Netherlands); Permana, I. [Technical Education Development Centre TEDC, Bandung (Indonesia)

    2011-03-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report presents an overview of the training activities on general renewable energy technologies competencies conducted by TEDC Bandung (Technical Education Development Centre), for the teachers of the 11 SMKs (Sekolah Menengah Kejuruan of the Ministry of Education; SMKs are Vocational and Technical Schools) involved in the CASINDO project. The report also contains a description of the Training of Trainers activities conducted by the CASINDO consortium for TEDC staff in the renewable energy technologies micro hydro power, solar photovoltaic, wind energy, biomass , biogas and energy efficiency.

  1. FY2011 Annual Report for NREL Energy Storage Projects

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Lee, K. J.; Long, D.; Neubauer, J.; Santhangopalan, S.; Smith, K.

    2012-04-01

    This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.

  2. The Renewable Energy In Vietnam Potential Development Orientation

    OpenAIRE

    Van Vang Le; Danh Chan Nguyen; Van Huong Dong

    2017-01-01

    Up to 2014 the development of renewable energy in Vietnam has undergone a process of nearly three decades with many ups and downs. This change depends on the concern of the state Ministries in research development project implementation and financial support for renewable energy development. It is easy to see that only when the development of renewable energy has the attention and direction of the state through a policy system a unified program the proper funding of the budget and Internation...

  3. Cost Assessment Methodology and Economic Viability of Tidal Energy Projects

    Directory of Open Access Journals (Sweden)

    Eva Segura

    2017-11-01

    Full Text Available The exploitation of technologies with which to harness the energy from ocean currents will have considerable possibilities in the future thanks to their enormous potential for electricity production and their high predictability. In this respect, the development of methodologies for the economic viability of these technologies is fundamental to the attainment of a consistent quantification of their costs and the discovery of their economic viability, while simultaneously attracting investment in these technologies. This paper presents a methodology with which to determine the economic viability of tidal energy projects, which includes a technical study of the life-cycle costs into which the development of a tidal farm can be decomposed: concept and definition, design and development, manufacturing, installation, operation and maintenance and dismantling. These cost structures are additionally subdivided by considering their sub-costs and bearing in mind the main components of the tidal farm: the nacelle, the supporting tidal energy converter structure and the export power system. Furthermore, a technical study is developed in order to obtain an estimation of the annual energy produced (and, consequently, the incomes generated if the electric tariff is known by considering its principal attributes: the characteristics of the current, the ability of the device to capture energy and its ability to convert and export the energy. The methodology has been applied (together with a sensibility analysis to the particular case of a farm composed of first generation tidal energy converters in one of the Channel Island Races, the Alderney Race, in the U.K., and the results have been attained by means of the computation of engineering indexes, such as the net present value, the internal rate of return, the discounted payback period and the levelized cost of energy, which indicate that the proposed project is economically viable for all the case studies.

  4. The renewable energy development framework - I. The challenge of renewable energy development. Territorial challenges

    International Nuclear Information System (INIS)

    Fournier, Mauricette; Grison, Jean-Baptiste; Rieutort, Laurent

    2012-01-01

    The authors comment the evolutions of renewable energy production in the world during the last thirty years and notice how the geography of this production and of the associated consumption has changed while still displaying contrasts. They also notice the diversification of actors (big companies as well as small and medium sized companies and local communities). Then, they highlight the challenges of renewable energies at the local level: these energies can be tools for local development and competitiveness, but are also matters of either cooperation or conflict (they comment factors related to social acceptance or non-acceptance of wind farm projects in France)

  5. Project of setting to contribution of renewable energies for an pre-electrification to support rural development

    International Nuclear Information System (INIS)

    1999-01-01

    The document is a project of the Government of Burkina Faso. The project aim is to increase the energy utilization renewable by the populations living in the rural areas. It aims moreover the improvement of the standard living in the rural areas, the access of rural population to basic elements to fight against poverty and rural depopulation. It is a question of popularizing in rural area, the use of the renewable energy equipment consumers, in particular the photovoltaic one. This equipment will make it possible to satisfy the requirements in lighting with the Community systems, in leisure by providing a minimum of equipment in the community centres of leisure, in drugs conservation installation in the health centres and in using energy to pump drinking water. The use of this energy source will make it possible to mitigate the non access of the rural areas to the energy produced by the National Company of Electricity of Burkina [fr

  6. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 14. Fast-track program at UNDIP and UNCEN

    Energy Technology Data Exchange (ETDEWEB)

    Wijnker, M. (ed.) [Eindhoven University of Technology TUE, Eindhoven (Netherlands)

    2011-01-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. The relationship between UNDIP (Diponegoro University in Semarang, Java, Indonesia) and TU/e (Eindhoven University of Technology) has improved because of organising two additional activities together. The chosen topics of the two workshops offered a good opportunity to get to know each other. The level of knowledge in sustainable energy and energy efficiency at UNDIP is already on a high level. The relationship between UNCEN (Cenderawasih University, Jayapura, Papua, Indonesia) and TU/e has also improved much through the organisation of two additional activities. Staff of UNCEN took the opportunity to organise two workshops improving their knowledge in the field of sustainable energy and energy efficiency.

  7. Blowing in the wind: evaluating wind energy projects on the national forests

    Science.gov (United States)

    Kerry Schlichting; Evan Mercer

    2011-01-01

    The 650 million ac of federal lands are facing increased scrutiny for wind energy development. As a result, the US Forest Service has been directed to develop policies and procedures for siting wind energy projects. We incorporate geospatial site suitability analysis with applicable policy and management principles to illustrate the use of a Spatial Decision Support...

  8. SWOT analyses of the national energy sector for sustainable energy development

    International Nuclear Information System (INIS)

    Markovska, N.; Taseska, V.; Pop-Jordanov, J.

    2009-01-01

    A holistic perspective of various energy stakeholders regarding the Strengths, Weaknesses, Opportunities and Threats (SWOTs) of the energy sector in Macedonia is utilized as baseline to diagnose the current state and to sketch future action lines towards sustainable energy development. The resulting SWOT analyses pointed to the progressive adoption of European Union (EU) standards in energy policy and regulation as the most important achievement in the energy sector. The most important problems the national energy sector faces are scarce domestic resources and unfavorable energy mix, low electricity prices, a high degree of inefficiency in energy production and use, as well as insufficient institutional and human capacities. The formulated portfolio of actions towards enabling sustainable energy development urges the adoption of a comprehensive energy strategy built upon sustainability principles, intensified utilization of the natural gas, economic prices of electricity, structural changes in industry, promotion of energy efficiency and renewables, including Clean Development Mechanism (CDM) projects, enforcement of EU environmental standards and meeting the environmental requirements, as well as institutional and human capacity building.

  9. Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand

    International Nuclear Information System (INIS)

    Parnphumeesup, Piya; Kerr, Sandy A.

    2011-01-01

    This research applies both quantitative and qualitative methods to investigate stakeholder preferences towards sustainable development (SD) priorities in Clean Development Mechanism (CDM) projects. The CDM's contribution to SD is explored in the context of a biomass (rice husk) case study conducted in Thailand. Quantitative analysis ranks increasing the usage of renewable energy as the highest priority, followed by employment and technology transfer. Air pollution (dust) is ranked as the most important problem. Preference weights expressed by experts and local resident are statistically different in the cases of: employment generation; emission reductions; dust; waste disposal; and noise. Qualitative results, suggest that rice husk CDM projects contribute significantly to SD in terms of employment generation, an increase in usage of renewable energy, and transfer of knowledge. However, rice husk biomass projects create a potential negative impact on air quality. In order to ensure the environmental sustainability of CDM projects, stakeholders suggest that Thailand should cancel an Environmental Impact Assessment (EIA) exemption for CDM projects with an installed capacity below 10 MW and apply it to all CDM projects. - Highlights: → Stakeholders rank increasing the usage of renewable energy as the highest priority. → Biomass (rice husk) CDM projects create a potential negative impact on air quality. → Rice husk CDM projects cannot give an extra income to farmers. → Preference weights expressed by experts and local residents are statistically different.

  10. Financing of wind energy projects

    International Nuclear Information System (INIS)

    Harland, S.

    1991-01-01

    This paper looks at what banks need to know to enable them to consider a wind energy project. The major experiences of banks in financing wind energy have been in the US where governmentally inspired long term sales contracts (PURPA Contracts) have given a security to sponsors and banks not available elsewhere. (Author)

  11. Strategies for financing energy projects in East Central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Fortino, S.E. [Texaco Inc., White Plains, NY (United States)

    1995-12-01

    This paper discusses financing options available for energy (power/steam) projects in East Central Europe. It is intended to be an overview and practical guide to such options in today`s environment. A survey is made of the principal multilateral and other financial institutions providing funding and/or credit support in the region. These include the European Bank for Reconstruction and Development, the World Bank, the International Finance Corporation, the export credit agencies, and the commercial banks. Specific guarantee and other support mechanisms which some of these institutions provide are covered, including the latest developments. In addition to loan financing, potential sources of equity financing are discussed. Next, a description of the credit rating process by such institutions as Standard and Poor`s, and an example of a successful rating effort in the Czech Republic, lead into a discussion of accessing foreign and domestic bond markets to finance energy projects in the region.

  12. USU Alternative and Unconventional Energy Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Behunin, Robert [Utah State Univ., Logan, UT (United States); Wood, Byard [Utah State Univ., Logan, UT (United States); Heaslip, Kevin [Utah State Univ., Logan, UT (United States); Zane, Regan [Utah State Univ., Logan, UT (United States); Lyman, Seth [Utah State Univ., Logan, UT (United States); Simmons, Randy [Utah State Univ., Logan, UT (United States); Christensen, David [Utah State Univ., Logan, UT (United States)

    2014-01-29

    The purpose and rationale of this project has been to develop enduring research capabilities at Utah State University (USU) and the Utah State University Research Foundation (USURF) in a number of energy efficient and renewable energy areas including primarily a) algae energy systems, b) solar lighting, c) intuitive buildings, d) electric transportation, 3) unconventional energy environmental monitoring and beneficial reuse technologies (water and CO2), f) wind energy profiling, and g) land use impacts. The long-term goal of this initiative has been to create high-wage jobs in Utah and a platform for sustained faculty and student engagement in energy research. The program’s objective has been to provide a balanced portfolio of R&D conducted by faculty, students, and permanent staff. This objective has been met. While some of the project’s tasks met with more success than others, as with any research project of this scope, overall the research has contributed valuable technical insight and broader understanding in key energy related areas. The algae energy systems research resulted in a highly productive workforce development enterprise as it graduated a large number of well prepared students entering alternative energy development fields and scholarship. Moreover, research in this area has demonstrated both the technological and economic limitations and tremendous potential of algae feedstock-based energy and co-products. Research conducted in electric transportation, specifically in both stationary and dynamic wireless inductive coupling charging technologies, has resulted in impactful advances. The project initiated the annual Conference on Electric Roads and Vehicles (http://www.cervconference.org/), which is growing and attracts more than 100 industry experts and scholars. As a direct result of the research, the USU/USURF spin-out startup, WAVE (Wireless Advanced Vehicle Electrification), continues work in wirelessly charged bus transit systems

  13. Framework for projecting employment and population changes accompanying energy development

    Energy Technology Data Exchange (ETDEWEB)

    Stenehjem, E.J.; Metzger, J.E.

    1980-05-01

    This report provides a framework which energy planners can use to readily estimate the size and timing of the population and employment changes associated with energy development. The direct employment requirements for eight different technologies are listed. This direct employment requirement can be combined with the set of employment multipliers and other information provided to obtain practical estimates of the employment and population impacts of new energy development. Some explanation is given for the variation of the multipliers among counties in the same region. A description is presented of a demographic model for deriving the annual population changes that can be expected as a result of in-migrating workers and their families. Several hypothetical examples of the procedure for making the calculations are discussed as practical exercises in using the multipliers. The necessary data are provided for obtaining estimates of population and employment changes in any county in the US.

  14. A Path to Successful Energy Retrofits: Early Collaboration through Integrated Project Delivery Teams

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, Kristen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-10-01

    This document guides you through a process for the early design phases of retrofit projects to help you mitigate frustrations commonly experienced by building owners and designers. It outlines the value of forming an integrated project delivery team and developing a communication and information-sharing infrastructure that fosters collaboration. This guide does not present a complete process for designing an energy retrofit for a building. Instead, it focuses on the early design phase tasks related to developing and selecting energy efficiency measures (EEMs) that benefit from collaboration, and highlights the resulting advantages.

  15. Supporting Current Energy Conversion Projects through Numerical Modeling

    Science.gov (United States)

    James, S. C.; Roberts, J.

    2016-02-01

    The primary goals of current energy conversion (CEC) technology being developed today are to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the environment surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. These alterations pose potential stressors to numerous environmental receptors. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array so that these potential impacts can be evaluated. Moreover, this software can be used to optimize array layouts that yield the least changes to the environmental (i.e., hydrodynamics, sediment dynamics, and water quality). Through model calibration exercises, simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains. The Delft3D modeling tool facilitates siting of CEC projects through optimization of array layouts and evaluation of potential environmental effect all while provide a common "language" for academics, industry, and regulators to be able to discuss the implications of marine renewable energy projects. Given the enormity of any full-scale marine renewable energy project, it necessarily falls to modeling to evaluate how array operations must be addressed in an environmental impact statement in a way that engenders confidence in the assessment of the CEC array to minimize environmental effects.

  16. Sustainable development, energy and climate. Exploring synergies and tradeoffs

    International Nuclear Information System (INIS)

    Halsnaes, K.; Garg, A.

    2006-11-01

    This report summarizes the results of the Development, Energy and Climate Project that has been managed by the UNEP Risoe Centre on behalf of UNEP DTIE. The project is a partnership between the UNEP Risoe Centre and centers of excellence in Bangladesh, Brazil, China, India, Senegal and South Africa. The focus of this report is on the energy sector mitigation assessments that have been carried out in the countries. In addition to this work, the project has also included adaptation focused case studies that explore climate change impacts on the energy sector and infrastructure. The report includes a short introduction to the project and its approach and summaries of the six country studies. This is followed by an assessment of cross country results that gives a range of key indicators of the relationship between economic growth, energy, and local and global pollutants. Furthermore, energy access and affordability for households are considered as major social aspects of energy provision. The country study results that are included in this report are a short summary of some of the main findings and do not provide all details of the work that has been undertaken. Some of the countries in particular those with fast growing economies and energy sectors such as Brazil, China, India and South Africa have conducted general scenario analysis of the energy sector and explored some policies in more depth, while the country studies for Bangladesh and Senegal where the energy sector is less developed have focused more on specific issues related to energy access and the electricity sector. (au)

  17. Sustainable development, energy and climate. Exploring synergies and tradeoffs

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K; Garg, A [eds.

    2006-11-15

    This report summarizes the results of the Development, Energy and Climate Project that has been managed by the UNEP Risoe Centre on behalf of UNEP DTIE. The project is a partnership between the UNEP Risoe Centre and centers of excellence in Bangladesh, Brazil, China, India, Senegal and South Africa. The focus of this report is on the energy sector mitigation assessments that have been carried out in the countries. In addition to this work, the project has also included adaptation focused case studies that explore climate change impacts on the energy sector and infrastructure. The report includes a short introduction to the project and its approach and summaries of the six country studies. This is followed by an assessment of cross country results that gives a range of key indicators of the relationship between economic growth, energy, and local and global pollutants. Furthermore, energy access and affordability for households are considered as major social aspects of energy provision. The country study results that are included in this report are a short summary of some of the main findings and do not provide all details of the work that has been undertaken. Some of the countries in particular those with fast growing economies and energy sectors such as Brazil, China, India and South Africa have conducted general scenario analysis of the energy sector and explored some policies in more depth, while the country studies for Bangladesh and Senegal where the energy sector is less developed have focused more on specific issues related to energy access and the electricity sector. (au)

  18. The low energy booster project status

    International Nuclear Information System (INIS)

    Tuttle, G.W.

    1993-05-01

    In order to achieve the required injection momentum, the Superconducting Super Collider (SSC) has an accelerator chain comprised of a Linear Accelerator and three synchrotrons. The Low Energy Booster (LEB) is the first synchrotron in this chain. The LEB project has made significant progress in the development of major subsystems and conventional construction. This paper briefly reviews the performance requirements of the LEB and describes significant achievements in each of the major subsystem areas. Highlighted among these achievements are the LEB foreign collaborations with the Budker Institute of Nuclear Physics (BINP) located in Novosibirsk, Russia

  19. Analyzing the impact of theft and vandalism in relation to the sustainability of renewable energy development projects in Sub-Saharan Africa

    NARCIS (Netherlands)

    Ikejemba, Eugene C.X.; Schuur, Peter C.

    2018-01-01

    Theft and vandalism impede the sustainability of renewable energy (RE) development projects in Sub-Saharan Africa. Therefore, it is essential to explore where these crimes originate from, how they propagate and how they can be counteracted. In our study, we analyze the impact of these disturbances

  20. Fossil Energy Research and Development Program of the U. S. Department of Energy, FY 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-03-01

    The U.S. Department of Energy (DOE) focuses energy Research and Development efforts on new and promising ways to provide for our future energy needs. This document focuses on DOE's programs and projects related to the nation's Fossil Energy resources: coal, oil, natural gas and oil shale. Fossil Energy programs have grown rapidly from about $58 million in FY 1973 to the $802 million requested for FY 1979. As those programs have matured, there have been significant shifts in emphasis. For example, by FY 1979, gasification technologies will have matured sufficiently to enter the demonstration phase. Then we will have to make critical decisions as to which candidate processes to pursue and to encourage industry's active participation as early as possible. We will present the rationale for those changes and others at the beginning of each section describing a particular grouping of similar projects, e.g., coal liquefaction. We will then discuss each project and present its current status along with past and future milestones. Emphasis is on projects with early payoff potential, particularly the direct utilization of coal. However, this near-term emphasis will not overshadow the need for a stong technological base for development of longer-term promising technologies and the need for a strong environmental concern.

  1. Fiscal 1997 research report. Basic research project on improving energy consumption efficiency in developing countries (Database construction); 1998 nendo hatten tojokoku energy shohi koritsuka kiso chosa jigyo hokokusho. Database kochiku jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The New Energy and Industrial Technology Development Organization (NEDO) in fiscal 1993 started a database construction project, which involves energy conservation related primary information on the 11 countries concerned, for encouraging 11 Asian countries, namely, Japan, China, Indonesia, the Philippines, Thailand, Malaysia, Taiwan, Korea, Vietnam, Myanmar, and Pakistan, to promote their energy conservation endeavors. As part of the database construction effort under this research project, the so-far accomplished collection of and analysis into energy related information about the countries, surveys of the utilization and popularization of databases, and development of database systems are taken into consideration. On the basis of these efforts to improve on the database systems for enhanced operability, a program is formulated for database diffusion under which data are collected and updated for storage in databases. Also exerted under the program are endeavors to make use of the above-said database systems and to disseminate the constructed databases into the 11 countries for effective utilization. In the future, it is desired that the NEDO database will win popularity in the 11 countries and be utilized in their formulation of domestic energy conservation policies. (NEDO)

  2. GRI baseline projection of U.S. Energy supply and demand to 2010. 1991 edition

    International Nuclear Information System (INIS)

    Holtberg, P.D.; Woods, T.J.; Lihn, M.L.; McCabe, N.C.

    1991-04-01

    The report summarizes the 1991 Edition of the GRI Baseline Projection of U.S. Energy Supply and Demand and presents a series of summary tables, sectoral breakdowns of energy demand, and the natural gas supply and price trends. Appendixes include a discussion of the methodology and assumptions used to prepare the 1991 projection, a brief discussion of the potential for higher levels of gas demand, a description of industrial and commercial cogeneration, a description of the independent power producer (IPP) methodology and projection, a comparison of the 1991 edition with previous projections, and a discussion of additional data used in developing the projection

  3. Cloud County Community College Wind Energy Technology Project and Renewable Energy Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Bruce [Cloud County Community College, Concordia, KS (United States)

    2016-02-26

    Cloud County Community College's (CCCC) Wind Energy Technology (WET) program is a leader in the renewable energy movement across Kansas and the USA. The field of renewable energy is a growing industry which continues to experience high demand for career opportunities. This CCCC/DOE project entailed two phases: 1) the installation of two Northwind 100 wind turbines, and 2) the continued development of the WET program curriculum, including enhancement of the CCCC Blade Repair Certificate program. This report provides a technical account of the total work performed, and is a comprehensive description of the results achieved.

  4. EDIN-USVI Clean Energy Quarterly: Volume 1, Issue 2, March 2011, Energy Development in Island Nations, U.S. Virgin Islands (Newsletter)

    Energy Technology Data Exchange (ETDEWEB)

    2011-03-01

    This quarterly newsletter provides timely news and information about the plans and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project, including significant events and milestones, work undertaken by each of the five working groups, and project-related renewable energy and energy efficiency projects.

  5. Energy in developing countries: prospects and problems

    International Nuclear Information System (INIS)

    Baum, V.

    1977-01-01

    This paper analyses requirements for primary energy and electric power in the developing countries in the light of projections of population and economic growth. It evaluates the availability of indigenous energy resources and focuses on input requirements (capital, technology, trained personnel) for accelerated energy development; it reviews possible supplies for such inputs from domestic sources, transnational corporations, multilateral institutions, and through co-operation among the developing countries themselves and between the developing and the developed countries. The paper analyses the findings of the United Nations study ''The Future of the World Economy. A Study on the Impact of the Prospective Economic Issues and Policies on the International Development Strategy'' as far as they relate to energy and the developing countries in the light of the objectives of the Declaration on the Establishment of a New International Economic Order

  6. Perspectives of China's wind energy development

    Institute of Scientific and Technical Information of China (English)

    He Dexin; Wang Zhongying

    2009-01-01

    Wind energy is a kind of clean renewable energy, which is also relatively mature in technology, with large-scale development conditions and prospect for the commercialization. The development of wind energy is a systematic project, involving policy, law, technology, economy, society, environment, education and other aspects. The relation-ship among all the aspects should be well treated and coordinated. This paper has discussed the following relationships which should be well coordinated: relationship between wind resources and wind energy development, relationship be-tween the wind turbine generator system and the components, relationship between wind energy technology and wind en-ergy industry, relationship between off-grid wind power and grid-connected wind power, relationship between wind farm and the power grid, relationship between onshore wind power and offshore wind power, relationship between wind energy and other energies, relationship between technology introduction and self-innovation, relationship among foreign-funded, joint ventured and domestic-funded enterprises and relationship between the government guidance and the market regula-tion, as well as giving out some suggestions.

  7. Selection of projects in the regional energy planning

    International Nuclear Information System (INIS)

    Ramirez P, R.; Navas M, F.

    1993-01-01

    The processes of regional energy planning have changed vastly in the last years and it will continue changing in the future for the new norm of the State. This work tries to show the use of systematic tools in the selection of regional energy projects. It discusses a methodology of selection of projects based on a multivariate technical. It is applied in the Southwestern region of Colombia and both selection and priority results are obtained. The designed methodology allows to make the selection of projects in an automatic way with a software designed for such an end. In the case of Southwestern it arrives to a briefcase of projects for an energy plan and made for other races

  8. Achieving Smart Energy Planning Objectives. The Approach of the Transform Project

    Directory of Open Access Journals (Sweden)

    Ilaria Delponte

    2014-05-01

    Full Text Available Cities play a dual role in the field of energy and integrated planning. They function as institutional planning and decision making bodies and interfere as actors, e.g. as project developers or launching customers. In the first case their attempts at integrated plans are often unsuccessful in integrating vision, goals and instruments of all stakeholders so that waste, water, energy cycles, urban planning and budgets proceed with no connection to each other.  TRANSFORM Project “Transformation Agenda for Low Carbon Cities” (FP7 tries to improve the integrated energy policy and decision making process of cities, both at a strategic and operational level, by providing the cities with a framework based on overall planning experiences and on-the-field projects and qualitative and quantitative analysis support models. The project intends also to make a step further in the quality of research, by providing a replicable and tested framework for the production of a strategic Transformation Agenda for the city as a whole, combined with district Implementation Plans.

  9. Comparison of selected approaches to finance renewable energy projects in European countries

    International Nuclear Information System (INIS)

    Langniss, O.

    1999-01-01

    A large number of proven technical solutions exists for the use of renewable energies. However, their dissemination is still too slow to meet the political goal of substituting for 8-15% of the primary energy demand in the European Union by the year 2010. Even renewable energy systems (RES) with an economic potential are only partly exploited. The FIRE research project financed partly in the JOULE program analyses and compares the means of financing RES in Austria, Denmark, Germany, the Netherlands, Spain, Sweden and the United Kingdom to put forward best practice recommendations so that renewable energy depolyments will occur at a faster rate. FIRE addresses to politicians, to potential investors and to project-developers. (orig./RHM)

  10. Global energy / CO2 projections

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1990-09-01

    Section headings are: (1) Social and economic problems of the 21 st century and the role of energy supply systems (2) Energy-environment interactions as a central point of energy research activities (3) New ways of technological progress and its impacts on energy demand and supply (4) Long-term global energy projections (5) Comparative analysis of global long-term energy / CO 2 studies (6) Conclusions. The author shows that, in order to alleviate the negative impacts of energy systems on the climate, it will be necessary to undertake tremendous efforts to improve the energy use efficiency, to drastically change the primary energy mix, and, at the same time, to take action to reduce greenhouse emissions from other sources and increase the CO 2 sink through enhanced reforestation. (Quittner)

  11. Slow pyrolysis for rural small biomass energy by joint project developments of Brazil and Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Kampegowda, Rajesh; Chandayot, Pongchan [Asian University, Chonburi (Thailand)], email: rkempegowda@asianust.ac.th; Pannirselvam, Pagandai V.; Humberto, Maricy; Santos, Joao Matias [Universidade Federal do Rio Grande do Norte (DEQ/UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica. Grupo de Pesquisa em Engenharia de Custos], email: pannirbr@gmail.com

    2008-07-01

    The efficiency for carbonization by slow pyrolysis is still low in the current method studied using rice straw in Thailand and cashewnut shell in Brazil, however direct heating process yields better char yield of 17% as compared to indirect heating with 15% process using horizontal metal drum kiln.where as vertical kiln were mainly used in Brazil. Higher yield is made possible from Brasilian cashew nut shell to make oil and char. Carbon and energy balance was also carried out and the results were compared for the direct and indirect process. Burning by indirect draft gives better results like more char, faster process. Direct draft gives less char, but higher quality (higher C and H2). Also a lot of straw is left unburnt in the direct draft kiln, because of bad temperature distribution and flow inside. The kiln design is found to be more suitable for indirect draft rather than direct draft. Both methods still give rice straw charcoal that has low calorific value with an output char LHV of 4337 kcal/kg as compared to fresh rice straw of 3412 kcal/kg. In the direct heating method output char is enriched to 45% with a still unburnt rice straw left out as compared to indirect heating method with carbon enrichment of 39%. There is a loss of 13% of carbon through the ash in the both the methods. The carbon content in the condensate is in the order of 18.5% for the indirect process as compared to 13.9% in the direct process due to less exhaust and carbon enrichment inside the kiln. There is a loss of 43% of carbon in the exhaust from indirect heating process as compared to direct heating process which is reduced to 26%. The energy balance predicts a heat loss of 14% in exhaust gases. A practical small scale slow pyrolysis project was developed to meet rural energy and heat requirements. to make the clean energy from waste resources possible by the joint project. (author)

  12. The role of hydropower in environment ally sustainable energy development

    International Nuclear Information System (INIS)

    Gabriel, H.F.

    2005-01-01

    Hydropower has historically been the renewable energy leader, and from a technical-cost perspective, is very likely to remain the only viable renewable energy source for many countries. In recent years, hydropower has been much maligned, especially by NGOs, for not being a sustainable source of energy. Though hydropower is clearly a renewable source of energy, but the question arises whether it can also be sustainable. Hydropower can play an increasingly important role in enabling communities around the world to meet sustainability objectives. To become more accepted as a key contributor to sustainable energy systems, new and existing hydropower projects need to be built and operated in an environmentally, socially and economically sustainable manner. This paper highlights the sustain ability aspects of hydropower and discusses the criteria for selection of environmentally friendly hydropower project sites so that that hydropower can be developed in a sustainable manner and once again be considered favorably in the planning of generation mix for new energy development. Sustainability of hydropower projects involves treating both the social and environmental sustainability of the project at an early stage and including the interests of all stakeholders of the project. As a case study, the Ghazi- Barotha Hydropower Project (GBHP) in Pakistan has been selected, as it is the best example in managing the social issues and gaining public acceptance because of proper planning and addressing environmental and social issues at an early stage. (author)

  13. Alternative projection of the world energy consumption-in comparison with the 2010 international energy outlook

    International Nuclear Information System (INIS)

    Chang, Yusang; Lee, Jinsoo; Yoon, Hyerim

    2012-01-01

    A projection of future energy consumption is a vital input to many analyses of economic, energy, and environmental policies. We provide a benchmark projection which can be used to evaluate any other projection. Specifically, we base our projection of future energy consumption on its historical trend, which can be identified by an experience model. We compare our projection with forecasts by the U.S. Energy Information Administration (EIA) for eight countries—U.S., China, India, Brazil, Japan, South Korea, Canada, and Mexico. We find that the EIA's projections are lower than ours in the case of China, the U.S., India, Japan, and Mexico. This indicates that for these five countries, the EIA uses assumptions which cannot be rationalized by historical data.

  14. Social impact assessment in energy projects

    International Nuclear Information System (INIS)

    Koivujaervi, S.; Kantola, I.; Maekinen, P.

    1998-01-01

    The research report is based on literature and interviews on the social impact assessment (SIA) in energy projects in Finland, both before and after the EIA Act has been in force in Finland. The concept and content of SIA, the requirements set by the legislation, its relation with other environmental impacts, the assessment process and the used methods have been studied on the basis of the literature analysis. A total of 26 persons representing the coordination authorities, persons issuing statements, researchers, civil servants, consultants and project developers were interviewed for the research. The interviews were made by the University of Turku in the form of theme interviews, investigating the present status, practices and expectations of the SIA. The unestablished status was seen to be the problem in the SIA, which was reflected in the interviewers' varying views about the content of the SIA. Among the operators, the general character of the SIA criticism in the statements concerning the assessment programmes or reports was seen as a problem as well; the assessment of social impact has been considered to be insufficient, however, without any identification of the effects or how the effects should have been assessed. For the time preceding the EIA Act, the assessment of the social impact of hydraulic work, power plant and transmission line projects and the project of the fifth nuclear power plant have been studied. As to the power plant and transmission line projects after the validity of the EIA Act, all the 20 projects were gone through which had progressed during the spring 1998 at least to the assessment report stage. Of these projects, the assessment of the social impact of one transmission line and one power plant project was studied in detail. The report also studies the assessment of the social impact of the repository for nuclear waste on the basis of the experience gained in Finland and in other countries. On the basis of the literature study

  15. Energy and nuclear power planning in developing countries

    International Nuclear Information System (INIS)

    1985-01-01

    In this publication of the IAEA, after the introduction, four substantive parts follow. Part I, Energy demand and rational energy supply, deals with the needs for energy, primary energy resources and reserves, energy transport, storage, distribution and conservation, including the environmental effects on energy development. Part II, Economic aspects of energy development, presents an integrated view of the basic concepts of energy economics, evaluation of alternative energy projects with an in-depth comparison of electricity generation costs of nuclear and fossil-fuelled power plants. Part III, World energy development status and trends, begins with an overview of the world energy status and trends and continues with a presentation of the energy situation in industrialized countries and in developing countries. Part IV, Energy planning, deals with the optimization techniques, energy planning concepts and computerized models. The launching conditions and implementation of a nuclear power programme are described in detail. 582 references are given in the text and a bibliographical list of 356 titles has been added

  16. The IAEA international project on innovative nuclear reactors and fuel cycles (INPRO): study on opportunities and challenges of large-scale nuclear energy development

    International Nuclear Information System (INIS)

    Khoroshev, M.; Subbotin, S.

    2006-01-01

    Existing scenarios for global energy use project that demand will at least double over the next 50 years. Electricity demand is projected to grow even faster. These scenarios suggest that the use of all available generating options, including nuclear energy, will inevitably be required to meet those demands. If nuclear energy is to play a meaningful role in the global energy supply in the foreseeable future, innovative approaches will be required to address concerns about economic competitiveness, environment, safety, waste management, potential proliferation risks and necessary infrastructure. In the event of a renaissance of nuclear energy, adequate infrastructure development will become crucial for Member States considering the future use of nuclear power. The IAEA should be ready to provide assistance in this area. A special resolution was adopted by the General Conference in September 2005 on 'Strengthening the Agency's Activities Related to Nuclear Science, Technology and Applications: Approaches to Supporting Nuclear Power Infrastructure Development'. Previously, in 2000, taking into account future energy scenarios and the needs of Member States, the IAEA General Conference had adopted a resolution initiating the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Based on scenarios for the next fifty years, INPRO identified requirements for different aspects of future nuclear energy systems, such as economics, environment, safety, waste management, proliferation resistance and infrastructure and developed a methodology to assess innovative nuclear systems and fuel cycles. Using this assessment tool, the need for innovations in nuclear technology can be defined, which can be achieved through research, development and demonstration (RD and D). INPRO developed these requirements during its first stage, Phase 1A, which lasted from 2001 to mid-2003. In the second stage, Phase 1B (first part), INPRO organized 14 case studies (8 by

  17. Annual Energy Outlook 2013 with Projections to 2040

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    The Annual Energy Outlook 2013 (AEO2013), prepared by the U.S. Energy Information Administration (EIA), presents long-term projections of energy supply, demand, and prices through 2040, based on results from EIA’s National Energy Modeling System. The report begins with an “Executive summary” that highlights key aspects of the projections. It is followed by a “Legislation and regulations” section that discusses evolving legislative and regulatory issues, including a summary of recently enacted legislation and regulations, such as: Updated handling of the U.S. Environmental Protection Agency’s (EPA) National Emissions Standards for Hazardous Air Pollutants for industrial boilers and process heaters; New light-duty vehicle (LDV) greenhouse gas (GHG) and corporate average fuel economy (CAFE) standards for model years 2017 to 2025; Reinstatement of the Clean Air Interstate Rule (CAIR) after the court’s announcement of intent to vacate the Cross-State Air Pollution Rule (CSAPR); and Modeling of California’s Assembly Bill 32, the Global Warming Solutions Act (AB 32), which allows for representation of a cap-and-trade program developed as part of California’s GHG reduction goals for 2020. The “Issues in focus” section contains discussions of selected energy topics, including a discussion of the results in two cases that adopt different assumptions about the future course of existing policies, with one case assuming the elimination of sunset provisions in existing policies and the other case assuming the elimination of the sunset provisions and the extension of a selected group of existing public policies—CAFE standards, appliance standards, and production tax credits. Other discussions include: oil price and production trends in AEO2013; U.S. reliance on imported liquids under a range of cases; competition between coal and natural gas in electric power generation; high and low nuclear scenarios through 2040; and the impact of growth in natural gas

  18. Research and development project reports for FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The paper reported NEDO`s research and development project in fiscal 1995. As for the development of solar energy utilization technology, conducted were R and D of solar cells and development of the photovoltaic power generation. As to the solar heat utilization technology, R and D were carried out on the chemical energy conversion technology and high efficient solar heat space heating and cooling technology. About the geothermal energy utilization technology, developments were made of exploration techniques for fracture-type geothermal reservoirs and the binary cycle geothermal power generation technology. Concerning the coal energy utilization technology, conducted were R and D of coal liquefaction and coal gasification. Relating to the NEDOL process, a 150t/d pilot plant is under construction. As to environmental issues on coal utilization, made was a research on the basic technology of clean coal. In addition, technical developments on the following were done: efficient power generation using fuel cells, hydrogen, alcohol, biomass, wind power generation, etc. 73 figs., 56 tabs.

  19. Smart grid development and households in experimental projects

    DEFF Research Database (Denmark)

    Hansen, Meiken

    to the electricity grids and call for the development of smart grids. The Danish Smart Grid Strategy states that ‘flexible electricity consumption’ is the main purpose of smart grids in Denmark, envisioning that future consumers will have flexible consumption of electricity. Thus, they are expected to respond...... to the supply side and consume energy when it is available. The goal of this thesis is to investigate how household consumers are integrated in smart grid development activities. More specifically, it focuses on household consumers, as they are represented in experimental projects in the smart grid area...... been little research on the area in Danish smart grid experimental projects. Overall, the consumers are expected, to some extent, to provide flexibility by changing their energy-consuming practices because of economic incentives by means of manual or automated control of devices. Moreover, the Danish...

  20. The Nabucco Project and Communicating about Energy Security

    Directory of Open Access Journals (Sweden)

    Victor Negrescu

    2013-07-01

    Full Text Available Energy Security was considered by many of the Eastern European countries a priority in their fight for breaking the ties with the former Soviet Union. The dependence of the Eastern European countries to the Russian gas and petroleum generated for most of the local governments a feeling of inferiority that they were willing to replace if the opportunity will be offered. One of the main alternative projects to the Russian gas is the Nabucco Project designed to enable the access to Caspian gas for all the European countries. Knowing that a decision on the realization of the pipeline should be made by the end of June 2013, our article will try to illustrate the importance of the Nabucco Project for the regional and European energy security by studying the history of the project, the competing projects and the recent political evolutions of the project. This will enable researchers, decision makers and policy makers in the energy sector to better evaluate the Nabucco project and better act into promoting it.

  1. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 10. Report on the in-house trainings by TEDC. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Kamphuis, E. [ETC Nederland, Leusden (Netherlands); Permana, I. [Technical Education Development Centre TEDC, Bandung (Indonesia)

    2011-11-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report describes the in-house trainings given by TEDC (Technical Education Development Centre) to 4 SMK (Sekolah Menengah Kejuruan of the Ministry of Education; SMKs are Vocational and Technical Schools) that are currently involved in CASINDO regarding the background of, the approach to and the steps taken for the development of operational curricula at SMK level. The report also explains the results of the in-house trainings.

  2. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 11. Report on the in-house trainings by TEDC. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Kamphuis, E. [ETC Nederland, Leusden (Netherlands); Permana, I. [Technical Education Development Centre TEDC, Bandung (Indonesia)

    2012-02-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report describes the in-house trainings given by TEDC (Technical Education Development Centre) to 7 SMK (Sekolah Menengah Kejuruan of the Ministry of Education; SMKs are Vocational and Technical Schools) that are currently involved in CASINDO regarding the background of, the approach to and the steps taken for the development of operational curricula at SMK level. The report also explains the results of the in-house trainings.

  3. The Water Demand of Energy: Implications for Sustainable Energy Policy Development

    Directory of Open Access Journals (Sweden)

    Kaveh Madani

    2013-11-01

    Full Text Available With energy security, climate change mitigation, and sustainable development as three main motives, global energy policies have evolved, now asking for higher shares of renewable energies, shale oil and gas resources in the global energy supply portfolios. Yet, concerns have recently been raised about the environmental impacts of the renewable energy development, supported by many governments around the world. For example, governmental ethanol subsidies and mandates in the U.S. are aimed to increase the biofuel supply while the water footprint of this type of energy might be 70–400 times higher than the water footprint of conventional fossil energy sources. Hydrofracking, as another example, has been recognized as a high water-intensive procedure that impacts the surface and ground water in both quality and quantity. Hence, monitoring the water footprint of the energy mix is significantly important and could have implications for energy policy development. This paper estimates the water footprint of current and projected global energy policies, based on the energy production and consumption scenarios, developed by the International Energy Outlook of the U.S. Energy Information Administration. The outcomes reveal the amount of water required for total energy production in the world will increase by 37%–66% during the next two decades, requiring extensive improvements in water use efficiency of the existing energy production technologies, especially renewables.

  4. Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, M.; Anderson, K.; Booth, S.; Katz, J.; Tetreault, T.

    2011-09-01

    Report highlights the increase in resources, project speed, and scale that is required to achieve the U.S. Department of Defense (DoD) energy efficiency and renewable energy goals and summarizes the net zero energy installation assessment (NZEI) process and the lessons learned from NZEI assessments and large-scale renewable energy projects implementations at DoD installations.

  5. Assessing the role of energy in development and climate policies in large developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A.; Halsnaes, K. [UNEP Risoe Centre (Denmark)

    2007-05-15

    The paper discusses a number of key conceptual issues related to the role of energy in development and its potential synergies and tradeoffs with climate change. The relationship between economic development and energy over time is discussed and illustrated by data from Brazil, China, India and South Africa. It is concluded that energy plays an important role as a productivity enhancing factor in economic development and in human well being and several policy goals related to sustainable development (SD), energy and climate can be integrated. However, meeting all these policy goals requires a special effort and can imply costs. An analytical approach that can be used to assess development, energy and climate policies is introduced and empirical indicators of Sustainable development trends for the period 2000-2030 are presented. In a pragmatic way, it is proposed to use indicators of economic, social, and environmental SD dimensions such as costs, employment generation, energy access, local and global emissions, income distribution, and local participation in the evaluation of specific policies. The approach is developed and tested as part of the Development, Energy, and Climate project which is international project cooperation between the UNEP Risoe Centre and teams in Brazil, China, India and South Africa. The results demonstrate that there is a huge potential for energy efficiency improvements in the energy systems in these countries and thereby cost savings and reduced emissions intensity. However, the implied greenhouse gas emissions depend on fuel and technology compositions and reduction will imply that specific policies are put in place. (au)

  6. Assessing the role of energy in development and climate policies in large developing countries

    International Nuclear Information System (INIS)

    Garg, A.; Halsnaes, K.

    2007-01-01

    The paper discusses a number of key conceptual issues related to the role of energy in development and its potential synergies and tradeoffs with climate change. The relationship between economic development and energy over time is discussed and illustrated by data from Brazil, China, India and South Africa. It is concluded that energy plays an important role as a productivity enhancing factor in economic development and in human well being and several policy goals related to sustainable development (SD), energy and climate can be integrated. However, meeting all these policy goals requires a special effort and can imply costs. An analytical approach that can be used to assess development, energy and climate policies is introduced and empirical indicators of Sustainable development trends for the period 2000-2030 are presented. In a pragmatic way, it is proposed to use indicators of economic, social, and environmental SD dimensions such as costs, employment generation, energy access, local and global emissions, income distribution, and local participation in the evaluation of specific policies. The approach is developed and tested as part of the Development, Energy, and Climate project which is international project cooperation between the UNEP Risoe Centre and teams in Brazil, China, India and South Africa. The results demonstrate that there is a huge potential for energy efficiency improvements in the energy systems in these countries and thereby cost savings and reduced emissions intensity. However, the implied greenhouse gas emissions depend on fuel and technology compositions and reduction will imply that specific policies are put in place. (au)

  7. Energy development and CO2 emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xiaolin [Carnegie-Mellon Univ., Pittsburgh, PA (United States)

    1993-03-01

    The objective of this research is to provide a better understanding of future Chinese energy development and CO2 emissions from burning fossil fuels. This study examines the current Chinese energy system, estimates CO2 emissions from burning fossil fuels and projects future energy use and resulting CO2 emissions up to the year of 2050. Based on the results of the study, development strategies are proposed and policy implications are explored. This study first develops a Base scenario projection of the Chinese energy development based upon a sectoral analysis. The Base scenario represents a likely situation of future development, but many alternatives are possible. To explore this range of alternatives, a systematic uncertainty analysis is performed. The Base scenario also represents an extrapolation of current policies and social and economic trends. As such, it is not necessarily the economically optimal future course for Chinese energy development. To explore this issue, an optimization analysis is performed. For further understanding of developing Chinese energy system and reducing CO2 emissions, a Chinese energy system model with 84 supply and demand technologies has been constructed in MARKAL, a computer LP optimization program for energy systems. Using this model, various technological options and economic aspects of energy development and CO2 emissions reduction in China during the 1985-2020 period are examined.

  8. Public-Private Partnership for Regional Development of Renewable Energy

    Directory of Open Access Journals (Sweden)

    Andreea ZAMFIR

    2011-11-01

    Full Text Available This study investigates the public-private partnership as a possible solution for regional development of renewable energy. Firstly, the study reveals the strong connection between renewable energy and sustainable regional development, and secondly, the study discloses some reasons for developing renewable energy through public-private partnerships in Romania’s regions. The findings of this study reveal that there is a strong need for a renewable energy partnership between public authorities, business community and civil society in order to achieve the regional development of renewable energy. The results of this study may be used for upcoming research in the area of implementing renewable energy projects through public-private partnerships in order to achieve sustainable regional development.

  9. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 12. Report on the approach to roll-out to other SMK

    Energy Technology Data Exchange (ETDEWEB)

    Kamphuis, E. [ETC Nederland, Leusden (Netherlands); Permana, I. [Technical Education Development Centre TEDC, Bandung (Indonesia)

    2011-11-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report describes the different strategic options for rolling-out the integration of the renewable energy technologies to other SMK (Sekolah Menengah Kejuruan of the Ministry of Education; SMKs are Vocational and Technical Schools) than those that are currently involved in CASINDO. The report also contains the justification for one strategic option and of the first actions taken to make this strategy work.

  10. The regional (Europe) project on study of energy options using the IAEA planning methodologies

    International Nuclear Information System (INIS)

    Molina, P.

    1997-01-01

    As a means to assist developing IAEA Member States in the Europe region in the broad area of energy, electricity and nuclear power planning, a new project has been implemented as part of the IAEA Technical Cooperation Programme. This paper describes the major objectives of this regional TC project and the activities to be organized in order to provide the required assistance. Focus is made on the present workshop and the current activities sponsored by the IAEA for further developments of the IAEA planning tools for energy, electricity and nuclear power planning with emphasis on the Energy and Power Evaluation Program (ENPEP) and the Wien Automatic System Planning (WASP) packages. (author)

  11. The regional (Europe) project on study of energy options using the IAEA planning methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Molina, P [Division of Nuclear Power, International Atomic Energy Agency, Vienna (Austria)

    1997-09-01

    As a means to assist developing IAEA Member States in the Europe region in the broad area of energy, electricity and nuclear power planning, a new project has been implemented as part of the IAEA Technical Cooperation Programme. This paper describes the major objectives of this regional TC project and the activities to be organized in order to provide the required assistance. Focus is made on the present workshop and the current activities sponsored by the IAEA for further developments of the IAEA planning tools for energy, electricity and nuclear power planning with emphasis on the Energy and Power Evaluation Program (ENPEP) and the Wien Automatic System Planning (WASP) packages. (author).

  12. Storage exploratory project. Energy program. Final report; Projet exploratoire Stockage. Programme Energie. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Y. [Laboratoire d' Electrotechnique de Grenoble, UMR 5529 INPG/UJF - CNRS, ENSIEG, 38 - Saint-Martin-d' Heres (France); Ozil, P. [Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces (LEPMI), ENSEEG, 38 - Saint Martin d' Heres (France); Cheron, Y. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, CNRS, 31 - Toulouse (France); Multon, B. [Laboratoire des Sciences de l' Information et des Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE), 94 - Cachan (France); Carillo, S. [Centre Interuniversitaire de recherche et d' Ingenierie sur les Materiaux (CIRIMAT), 31 - Toulouse (France)

    2004-07-01

    The aim of this exploratory project was the analysis of the most efficient possibilities of electric power storage. It was limited to the electrochemical storage, the lead batteries which behavior is not completely characterized, the flywheel energy storage and the development of simulation. This report presents the results of the works. (A.L.B.)

  13. Energy saving and emission reduction: A project of coal-resource integration in Shanxi Province, China

    International Nuclear Information System (INIS)

    Zhang Jianjun; Fu Meichen; Geng Yuhuan; Tao Jin

    2011-01-01

    The small or middle coal mines with illegal operations in developing countries or regions can cause bad energy waste and environmental disruption. The project of coal-resource integration in Shanxi Province of China gives a new idea or an approach to energy saving and emission reduction. It is a social- and economic-ecological project. The paper shows the targets of energy saving and emission reduction in Shanxi Province, and analyses the aims, significance, design process and implementation of the integration project. Based on that, the paper discusses the challenges and opportunities the project brings. The analysis shows that the project of coal-resource integration in developing countries or regions can effectively improve mining technologies, collect capital and impel international cooperation and exchange. Finally, the paper analyses the concerns about the future, including the possible problems of implementation period, industrial updating, environmental impact and re-employment. However, the successful integration of coal resources can mitigate energy crisis and climate crisis and promote cleaner production effectively. - Highlights: → Coal-resource integration gives a new idea or an approach to energy saving and emission reduction. → Coal-resource integration mitigates climate crisis and promotes cleaner production. → Coal-resource integration brings challenges and opportunities to traditional mining industries.

  14. Developments on the wind energy scene

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The recently published report of the British Wind Energy Association (BWEA), entitled ''Power for a Sustainable Future'', is summarised. It calls on the government to: set a target of 10% of United Kingdom electricity from wind by 2025; encourage green energy trading by not charging value added tax on electricity from renewable sources; establish a fair market price for wind power; adopt a new development policy for renewable energies based on a rolling programme of equitable fixed contracts to encourage long-term investment; broaden the basis of the final Non Fossil Fuel Option, introducing new development bands and increasing the number of projects in Scotland which has half of Britain's wind resource; continue support for research and development into wind energy technologies and manufacturing methods; implement foreign aid programmes to benefit the British wind industry as well as aid recipients; continue to develop international standards for turbine design and construction to facilitate trade for manufacturers throughout the European Union. (UK)

  15. Understanding errors in EIA projections of energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Carolyn; Herrnstadt, Evan; Morgenstern, Richard [Resources for the Future, 1616 P St. NW, Washington, DC 20036 (United States)

    2009-08-15

    This paper investigates the potential for systematic errors in the Energy Information Administration's (EIA) widely used Annual Energy Outlook, focusing on the near- to mid-term projections of energy demand. Based on analysis of the EIA's 22-year projection record, we find a fairly modest but persistent tendency to underestimate total energy demand by an average of 2 percent per year after controlling for projection errors in gross domestic product, oil prices, and heating/cooling degree days. For 14 individual fuels/consuming sectors routinely reported by the EIA, we observe a great deal of directional consistency in the errors over time, ranging up to 7 percent per year. Electric utility renewables, electric utility natural gas, transportation distillate, and residential electricity show significant biases on average. Projections for certain other sectors have significant unexplained errors for selected time horizons. Such independent evaluation can be useful for validating analytic efforts and for prioritizing future model revisions. (author)

  16. Energy problems of developing countries and the development co-operation

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K; Sahrman, K

    1984-12-15

    The technology, economy and problems of energy sector in developing countries are presented as well as the possibilities of solving energy problems, with special emphasis on how to adapt Finnish energy know-how to the conditions existing in the developing countries. The population in the developing countries has grown explosively. The worst energy problem due to this growth is the shortage of firewood. The fact that wood is used for burning is one reason for the formation of deserts. Today already about one hundred million people in developing countries suffer from shortage of energy. In the following 20-30 years it will threaten already about one billion people. Poverty in the developing countries prevents the use of fossil fuels like oil. It is likely that the developing countries already in the coming decades will have to start to use new and renewable sources of energy, like these are solar and wind energy as well as hydroelectric power. The efficiency of burning fire wood should rapidly be improved. On the other hand reforestration should be increased. Also fossil fuels are needed before new sources of energy can be used. All over the world there has been interest in the energy problems of the developing countries. The World Bank and other financing bodies are increasing their financial aid for different kinds of energy projects. The Finnish development aid is primarily bilateral and concentrated in certain countries. In the 1980's the energy sector will be one of the main fields in our development aid, at the same time as the portion of our development aid from gross national income is increasing.

  17. 1989 basic plan for atomic energy development and utilization

    International Nuclear Information System (INIS)

    1989-01-01

    A Basic Plan for Atomic Energy Development and Utilization has been established each year based on the guidelines set up by the Atomic Energy Commission of Japan, with the aim of promoting the development and utilization of atomic energy schematically and efficiently. The Basic Plan shows specific projects to achieve the objectives specified in the Long-Range Plan for Atomic Energy Development and Utilization. The Basic Plan specifies efforts to be made for overall strengthening of safety measures (safety policies, safety research, disaster prevention, etc.), promotion of nuclear power generation, establishment of the nuclear fuel cycle (securing of uranium, technology for uranium enrichment, reprocessing, etc.), development of new types of power reactors (fast breeder reactor, new types of converter reactors, plutonium fuel processing technology), promotion of leading projects (nuclear fusion, utilization of radiations, atomic powered ships, high-temperature engineering tests), promotion of basic technology development (basic research, training of scientists and engineers), voluntary and active international activities (international cooperation), and acquisition of understanding and cooperation of the general public. (N,K.)

  18. Save-Odyssee project on EEI - final report - Part 2: energy efficiency in EU

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The European Odyssee project on energy efficiency indicators (EEI) was initiated in 1990. It benefits from the combined support of the SAVE programme of the European Commission, of Ademe and of 15 national Efficiency Agencies within the European network of energy efficiency agencies. The objective of the project is to develop and maintain indicators that enable to review progress in energy efficiency and CO{sub 2} emissions abatement, by sector, end-use, etc.. for each country and the EU as a whole. This report presents the status of the implementation of energy efficiency policies in European Union countries: institutional changes/context, measures and programmes, budget, pricing, subsidies and taxes. (J.S.)

  19. Examining the impacts of Feed-in-Tariff and the Clean Development Mechanism on Korea's renewable energy projects through comparative investment analysis

    International Nuclear Information System (INIS)

    Koo, Bonsang

    2017-01-01

    Renewable energy projects in Korea have two avenues that provide subsidies to increase their financial viability. Feed-in-Tariffs (FITs) offer cost based prices for renewable electricity to compete with conventional energy producers. The Clean Development Mechanism (CDM) issues certified emission reduction (CER) credits that generate additional revenues, enhancing renewable projects’ return on investment. This study investigated how these subsidies impact the financial returns on Korea's CDM projects. An investment analysis was performed on four cases including solar, hydropower, wind and landfill gas projects. Revenues from electricity sales, FITs and CERs were compared using financial indicators to measure their relative contributions on profitability. Results indicate that CDM is partial towards large scale projects with high emission reductions. Moreover, conflicts with FIT schemes can deter small scale, capital intensive projects from pursuing registration. The analysis highlights CDM's bias for particular project types, which is in part due to its impartiality towards carbon credit prices. It also reveals that Korea, a key benefactor of CDM, is susceptible to such biases, as demonstrated by the disproportionate distribution of issued CERs. Improving incentives for bundled, small scale projects, CER price differentiation, and excluding domestic subsidies during additionality testing are proposed as possible reforms. - Highlights: • Korea constitute 8.2% of total CERs issued, third largest in the world after China and India. • CDM favors commercially competitive projects of large scale and high emissions. • 91% of issued CERs from GWP gas; of renewables, 88% from landfill gas and wind. • CER revenues marginal for small scale, commercially less attractive projects. • Conflicts with FIT potentially deters small scale projects from registration.

  20. Energy Efficiency Measures to Incorporate into Remodeling Projects

    Energy Technology Data Exchange (ETDEWEB)

    Liaukus, C. [Building America Research Alliance, Kent, WA (United States)

    2014-12-01

    Energy improvements in a home are often approached as one concerted effort, beginning with a simple walk-through assessment or more in-depth energy audit and followed by the installation of recommended energy measures. While this approach allows for systems thinking to guide the efforts, comprehensive energy improvements of this nature are undertaken by a relatively small number of U.S. households compared to piecemeal remodeling efforts. In this report, the U.S Department of Energy Building America Retrofit Alliance research team examines the improvement of a home’s energy performance in an opportunistic way by examining what can be done to incorporate energy efficiency measures into general remodeling work and home repair projects. This allows for energy efficiency upgrades to occur at the same time as remodeling proejcts. There are challenges to this approach, not the least of which being that the work will take place over time in potentially many separate projects. The opportunity to improve a home’s energy efficiency at one time expands or contracts with the scope of the remodel. As such, guidance on how to do each piece thoughtfully and with consideration for potential future projects, is critical.

  1. Financing of Renewable Energy Projects

    International Nuclear Information System (INIS)

    Santizo, Rodolfo; Berganza, Jose

    2000-01-01

    The paper describes the role of the Banco Centroamericano de Integracion Economica in financing renewable energy projects in Central America. Also decribes the different financing modes to the goverment and private sectors

  2. Recent Developments of Wave Energy Utilization in Denmark

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Kramer, Morten

    2006-01-01

    by a more thorough description of three ongoing projects. These are Wave Dragon, Wave Star and Seawave Slot-cone Generator. Common for these projects are that they are being, or will soon be, tested in real sea and have benefited from the Danish Wave Energy Program. The work by the department......This paper aims at giving an overview of the developments researchers at the Department of Civil Engineering, Aalborg University, Denmark (DCE), have been involved in within the field of wave energy utilization in Denmark over the past decade. At first a general introduction is given followed...... on these projects involves substantial laboratory testing, numerical simulations and real sea prototype testing....

  3. National energy projections and plans of the USA

    International Nuclear Information System (INIS)

    1977-01-01

    Within the context of dwindling United States and world oil and gas resources, the development and evolution of the Energy Research and Development Administration's National Plan for Energy Research, Development and Demonstration is reviewed and basic goals and strategies are discussed. U.S. energy projections to the end of this century are estimated and ways of meeting them assessed. Options are then considered for the introduction of new technologies designed to lessen the nation's 75-per cent dependence on oil and gas fuels while simultaneously creating alternative energy choices for the future. The Plan singles out energy efficiency technologies for increased attention; identifies the major near and mid-term supply technologies; outlines initial program steps to overcome technological barriers to the large-scale implementation of these technologies, and reviews longer-range energy programs and prospects. To provide the basis for setting technology development priorities and for establishing implementation strategies, eight national energy technology goals are presented. Then, the strategies for attaining these goals are outlined for the near term (to 1985 and beyond), the mid term (1985-2000 and beyond), and the long term (21st century). Preliminary analyses have shown that only by introducing a number of these technologies in a combination of approaches can adequate solutions be found to pressing national energy problems. It is demonstrated that light water reactor power generation is crucial to the future U.S. energy supply. A number of nuclear areas requiring increased emphasis are then considered, including continued improvements in LWR technology; better definition of recoverable domestic uranium resources; expansion of U.S. capacity to meet future domestic and foreign demand for uranium enrichment services; development of a commercial fuel reprocessing and recycling capacity; demonstration of safe and environmentally acceptable waste treatment, storage

  4. Hydropower in Hawaii: Developing the Wailuku River project

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1993-01-01

    When the 10-MW Wailuku River Hydroelectric Project begins operating this summer, the island of Hawaii will reduce its dependence on oil. The project is illustrative of what must be done to add to the electricity supply and, at the same time, to protect the environment. The Wailuku project is the first hydro plant to be developed in Hawaii in more than 50 years and is the largest hydro facility ever built in the state. The project is being developed by Wailuku River Hydroelectric Power Co., a wholly owned subsidiary of Synergics, Inc. Hawaii Electric Light Company Inc. (HELCO) will buy the electricity generated at the project for 30 years on an as-delivered basis at its avoided cost rate, now approximately 6.71 cents per kilowatt-hour, the floor rate in the contract. The Wailuku endeavor receives rave reviews form the mayor of Hilo, the president of the utility, and local residents. The project demanded a high degree of sensitivity to environmental issues and the uniqueness of the Hawaiian culture and island setting, according to Wayne Rogers, president of Wailuku River Hydro. From the conception of this project, we have worked closely with state and local interests and have been committed to following Hawaii's plans for land use and environmentally responsible energy development

  5. Development of a biogas planning tool for project owners

    DEFF Research Database (Denmark)

    Fredenslund, Anders Michael; Kjær, Tyge

    are considered: Combined heat and power and natural gas grid injection. The main input to the model is the amount and types of substrates available for anaerobic digestion. By substituting the models’ default values with more project specific information, the model can be used in a biogas projects later phases......A spreadsheet model was developed, which can be used as a tool in the initial phases of planning a centralized biogas plant in Denmark. The model assesses energy production, total plant costs, operational costs and revenues and effect on greenhouse gas emissions. Two energy utilization alternatives...

  6. Cowichan Valley energy mapping and modelling. Report 5 - Energy density mapping projections. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. Task 5 focused on energy projection mapping to estimate and visualise the energy consumption density and GHG emissions under different scenarios. The scenarios from task 4 were built around the energy consumption density of the residential sector under future land use patterns and rely on different energy source combinations (the suite of pathways). In task 5 the energy usage under the different scenarios were fed back into GIS, thereby giving a visual representation of forecasted residential energy consumption per unit area. The methodology is identical to that used in task 2 where current usage was mapped, whereas the mapping in this task is for future forecasts. These results are documented in this report. In addition, GHG mapping under the various scenarios was also undertaken. (LN)

  7. Current trend of atomic energy development in Japan - 2

    International Nuclear Information System (INIS)

    Cho, M.; Yang, M. H.; Yun, S. W.

    1999-01-01

    The atomic energy power generation is recognized to be important to solve the problems of the competitive relations among the Asian developing countries due to the increasing dependency on the crude oil produced in the Middle East and the insecurity of transport route of the oil. The reorganization and inauguration of JNC(former PNC) has been carried out for the development of liquid metal reactor and related fuel cycle technology as the national development project to prevent the global green house effect and to continue the economic development. The construction of light water reactor, the utilization of plutonium in light water reactor and the enrichment and reprocessing of spent fuel of light water reactor are classified as proven technologies which will be covered by the industry. The government will lead to the environment favorable for introduction of the atomic energy and will monitor the situation. The specifics of atomic energy development project and the development system for the 21th century will be contained in the long term atomic energy development plan which will be completed by 2000 and the reorganization operation has been initiated. (author). 41 refs., 5 tabs., 30 figs

  8. Bottom-up comparisons of CO2 storage and costs in forestry and biomass energy projects

    International Nuclear Information System (INIS)

    Swisher, J.N.

    1993-01-01

    In order to include forestry and biomass energy projects in a possible CO 2 emission reduction regime, and to compare the costs of individual projects or national programs, it is necessary to determine the rate of equivalency between carbon in fossil fuel emissions and carbon stored in different types of forestry, biomass and renewable energy projects. This paper presents a comprehensive and consistent methodology to account for the costs and carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO 2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction

  9. Derivatives in energy project finance

    International Nuclear Information System (INIS)

    Spencer, Lloyd

    1999-01-01

    This chapter focuses on risk management of merchant power generation projects and describes project finance as balancing risk and reward over time. The historical background to risk management is traced, and the case for derivatives in energy project finance is put forward with the hedging of forward output, and forwards and power purchase agreements discussed. Current and prospective usage, and the implementation issues of market liquidity, margin calls, letters of credit, derivative counterparty credit risk, and accounting policy are considered. A detailed example of a gas-fired plant in the US is presented with details given of the distribution of project earnings before tax. Oil field operating cashflows are examined, with reserved flow models, leverage effects, and price hedging addressed

  10. Middle East Economics and Development, Spring 2008 - Project 08-02

    Science.gov (United States)

    2008-05-01

    Japanese Fund for Poverty Reduction ADB Asian Development Bank JHQ Joint Headquarters AEOI Atomic Energy Organization of Iran JRTC Joint Readiness...agenda of weapons development. Iran’s nuclear program, as run by the Atomic Energy Organization of Iran ( AEOI ) is publically framed as part of a wider...attention in this regard are the IRGC, which manages Iranian special weapons projects, and the AEOI . The

  11. Financial Energy Conservation Projects at Independent Colleges and Universities.

    Science.gov (United States)

    Morrell, L. R.

    1981-01-01

    Factors affecting financial decisions for energy conservation projects at independent colleges and universities and methods that may be used when making a financial investment decision are examined, along with sources of funding for the projects. Projects that result in the conservation of energy resources might, in a time of extreme shortages,…

  12. Project appraisal for small and medium size wind energy installation: The Italian wind energy policy effects

    International Nuclear Information System (INIS)

    Fera, M.; Iannone, R.; Macchiaroli, R.; Miranda, S.; Schiraldi, M.M.

    2014-01-01

    In the last few years, the distributed energy production from small wind turbines (i.e.<200 kWp) has developed into a relevant business opportunity for different investors in Italy. The market, especially in Italy, has rapidly grown, achieving 9 MWp only in 2011, with an increase from 1.5 MW in 2009 to 13.3 MW at the end of 2011. This paper reports the results of a case study on the installation of several small wind turbines. It aims to provide an analysis of the conditions in Italy that make it possible to install these machines and offer a reliable reference for designing, planning, and controlling small wind turbine projects while focusing on the strategic variables of time, cost, and quality used by typical enterprises in the investment projects. The results are relevant to investors as well as engineering, procurement, and construction companies involved in this new sector, which must understand Italy’s renewable energy policy and its effects in practice. Moreover, certain national energy policy conclusions are reported and discussed in this paper. To properly study the sector, the data on time, cost and quality are analysed using typical project management tools. - Highlights: • Focus on the Italian wind energy sector. • Analysis of Italian policy effects. • Focus on small/medium size wind energy machines

  13. Linking renewable energy CDM projects and TGC schemes: An analysis of different options

    International Nuclear Information System (INIS)

    Del Rio, Pablo

    2006-01-01

    Renewable energy CDM (RE-CDM) projects encourage cost-effective GHG mitigation and enhanced sustainable development opportunities for the host countries. CERs from CDM projects include the value of the former benefits (i.e., 'climate change benefits'), whereas the second can be given value through the issuing and trading of tradable green certificates (TGCs). Countries could agree to trade these TGCs, leading to additional revenues for the investors in renewable energy projects and, therefore, further encouraging the deployment of CDM projects, currently facing significant barriers. However, the design of a combination of CDM projects and TGC schemes raises several conflicting issues and leads to trade-offs. This paper analyses these issues, identifies the alternatives that may exist to link TGC schemes with RE-CDM projects and analyses the impacts of those options on different variables and actors

  14. Linking renewable energy CDM projects and TGC schemes: An analysis of different options

    Energy Technology Data Exchange (ETDEWEB)

    Del Rio, Pablo [Department of Economics and Business, Facultad de Ciencias Juridicas y Sociales, Universidad de Castilla-La Mancha, C/ Cobertizo de S. Pedro Martir s/n., Toledo-45071 (Spain)]. E-mail: pablo.rio@uclm.es

    2006-11-15

    Renewable energy CDM (RE-CDM) projects encourage cost-effective GHG mitigation and enhanced sustainable development opportunities for the host countries. CERs from CDM projects include the value of the former benefits (i.e., 'climate change benefits'), whereas the second can be given value through the issuing and trading of tradable green certificates (TGCs). Countries could agree to trade these TGCs, leading to additional revenues for the investors in renewable energy projects and, therefore, further encouraging the deployment of CDM projects, currently facing significant barriers. However, the design of a combination of CDM projects and TGC schemes raises several conflicting issues and leads to trade-offs. This paper analyses these issues, identifies the alternatives that may exist to link TGC schemes with RE-CDM projects and analyses the impacts of those options on different variables and actors.

  15. Achievement report on research and development in the Sunshine Project in fiscal 1978. Surveys and studies on patents and information (Surveys on information about new energy technology development); 1978 nendo tokkyo joho chosa kenkyu seika hokokusho. Shin energy gijutsu kaihatsu joho chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    This paper describes the surveys on information about new energy technology development in fiscal 1978 in the Sunshine Project. The present fiscal year performed the surveys on the United States and France as the main subjects. For the solar energy development in the United States, surveys were made on power generation using solar heat, solar cells, difference in ocean temperatures, satellites, biomass, and solar energy air conditioning systems. Geothermal energy development was also surveyed. For coal energy, surveys were done on coal liquefaction, gasification, high-temperature gas turbines and MHD power generation. The U.S. energy policy has various kinds of cards. For the solar energy development in France, heat conversion and photo-cell conversion systems were surveyed, while the authorities take development promotion measures on solar heat conversion system under the judgement that this is the only contributor to the new energy development. Surveys were performed on trends in biomass as the biological energy conversion means of the solar energy. Geothermal energy is being advanced of development following that for the solar energy. Surveys were made also on power generation systems using wind power, wave power and difference in ocean temperatures. This paper dwells also on waste heat utilization, cogeneration, and heat pumps as examples for energy conservation means. (NEDO)

  16. Optimized design of total energy systems: The RETE project

    Science.gov (United States)

    Alia, P.; Dallavalle, F.; Denard, C.; Sanson, F.; Veneziani, S.; Spagni, G.

    1980-05-01

    The RETE (Reggio Emilia Total Energy) project is discussed. The total energy system (TES) was developed to achieve the maximum quality matching on the thermal energy side between plant and user and perform an open scheme on the electrical energy side by connection with the Italian electrical network. The most significant qualitative considerations at the basis of the plant economic energy optimization and the selection of the operating criterion most fitting the user consumption characteristics and the external system constraints are reported. The design methodology described results in a TES that: in energy terms achieves a total efficiency evaluated on a yearly basis to be equal to about 78 percent and a fuel saving of about 28 percent and in economic terms allows a recovery of the investment required as to conventional solutions, in about seven years.

  17. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    Energy Technology Data Exchange (ETDEWEB)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  18. Global energy futures and human development: a framework for analysis

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    2001-01-01

    This paper explores the relationship between measures of human well-being and consumption of energy and electricity. A correlation is shown between the United Nations Human Development Index (HDI) and annual per- capita electricity consumption for 60 populous countries comprising 90% of the world population. In this correlation, HDI reaches a maximum value when electricity consumption is about 4,000 kWh per person per year, well below consumption levels for most developed countries but also well above the level for developing countries. The correlation with electricity use is better than with total primary energy use. Global electricity consumption associated with a ''Human Development Scenario'' is estimated by adding to U.S. Department of Energy projections for the year 2020 increments of additional electricity consumption sufficient to reach 4,000 kWh per capita on a country-by-country basis. A roughly constant ratio of primary energy consumption to electric energy consumption is observed for countries with high levels of electricity use, and this ratio is used to estimate global primary energy consumption in the Human Development Scenario. The Human Development Scenario implies significantly greater global consumption of electricity and primary energy than do projections for 2020 by the DOE and others. (author)

  19. Global energy futures and human development: a framework for analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, A.D. [Lawrence Livermore National Lab., CA (United States)

    2001-07-01

    This paper explores the relationship between measures of human well-being and consumption of energy and electricity. A correlation is shown between the United Nations Human Development Index (HDI) and annual per- capita electricity consumption for 60 populous countries comprising 90% of the world population. In this correlation, HDI reaches a maximum value when electricity consumption is about 4,000 kWh per person per year, well below consumption levels for most developed countries but also well above the level for developing countries. The correlation with electricity use is better than with total primary energy use. Global electricity consumption associated with a ''Human Development Scenario'' is estimated by adding to U.S. Department of Energy projections for the year 2020 increments of additional electricity consumption sufficient to reach 4,000 kWh per capita on a country-by-country basis. A roughly constant ratio of primary energy consumption to electric energy consumption is observed for countries with high levels of electricity use, and this ratio is used to estimate global primary energy consumption in the Human Development Scenario. The Human Development Scenario implies significantly greater global consumption of electricity and primary energy than do projections for 2020 by the DOE and others. (author)

  20. Scoping study on SADC energy sector carbon market potential; SADC = Southern African Development Community

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-22

    This study shows that, while there is a certain degree of institutional and project development capacity in the region and significant Clean Development Mechanism (CDM) potential, very little of this potential is currently being tapped. National institutional structures are mostly very new, understaffed, and working in isolation from each other. There are ongoing national CDM capacity building programmes in several SADC countries that will address barriers and develop projects at a national level, but there are also regional opportunities that these programmes will not address. For some of large scale project opportunities such as landfill gas, industrial energy use, fugitive emission and transport, a national approach is required because these projects depend on local industrial base, regulatory environment, and are also large enough that the carbon revenue can cover the transaction costs. There are a few key areas that should be addressed, however, at a regional level: Energy trade and power development: any low carbon power projects that are developed to serve regional energy needs and displace coal fired power can only receive carbon credits if the baseline is a regional power grid rather than just a national grid. This is also true for large scale energy efficiency projects in countries that have only hydropower - these would not receive any carbon credits unless there is justification for a regional grid definition that includes fossil fuel fired power stations.Small scale projects: While the total potential for small scale renewables may not be large in terms of tonnes of CO{sub 2} mitigated, the local development impacts of distributed renewable energy and energy efficiency projects are very large. For these projects to be implemented at a large enough scale to recoup the transaction costs of project development, a regional approach is critical. The CDM 'Programme of Activities' (PoA) approach is ideally suited for such regional small scale energy

  1. Solar energy and rural development in Vietnam

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Photovoltaic systems have already been present in Vietnam for numerous years. Since 1994 the projects intensified with the launch of the Energy-Solidarity-Vietnam program which has just been concluded in 1999. This paper deals with the different stages of this project: choice of photovoltaic power, the partners engagement, obstacles overcome and the help of the electricity for the economic development. (A.L.B.)

  2. Key aspects to perform a project on energy management

    International Nuclear Information System (INIS)

    Bachini, R.

    1993-01-01

    A general overview on elements and organisms playing a key role to launch a new industrial project is given, taking as base case an energy management project. Likewise the problematic of training personnel involved in the project is analyzed. Energy management becomes crucial in industries where energy costs represent a big portion of the whole production cost. Main aspects to be analyzed are: - Adequate production procedures to be competitive - Environment protection regarding waste management - Maximization of safety at production installations. (Author)

  3. Technical assistance for Meharry Medical College Energy Efficiency Project. Final project status and technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-08

    This report presents the results of a program to provide technical assistance to Meharry Medical College. The purpose of the program is to facilitate Meharry`s effort to finance a campus-wide facility retrofit. The US Department of Energy (USDOE) funded the program through a grant to the Tennessee Department of Economic and Community Development (TECD). The University of Memphis-Technology and Energy Services (UM-TES), under contract to TECD, performed program services. The report has three sections: (1) introduction; (2) project definition, financing, and participants; and (3) opportunities for federal participation.

  4. Recovery Act. Development of a Model Energy Conservation Training Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-07-05

    The overall objective of this project was to develop an updated model Energy Conservation training program for stationary engineers. This revision to the IUOE National Training Fund’s existing Energy Conservation training curriculum is designed to enable stationary engineers to incorporate essential energy management into routine building operation and maintenance tasks. The curriculum uses a blended learning approach that includes classroom, hands-on, computer simulation and web-based training in addition to a portfolio requirement for a workplace-based learning application. The Energy Conservation training program goal is development of a workforce that can maintain new and existing commercial buildings at optimum energy performance levels. The grant start date was July 6, 2010 and the project continued through September 30, 2012, including a three month non-funded extension.

  5. ENEA e-Learn Platform for Development and Sustainability with International Renewable Energies Network

    Directory of Open Access Journals (Sweden)

    Anna Moreno

    2007-03-01

    Full Text Available The UNESCO office in Venice (the Regional Bureau for Science and Culture in Europe has promoted, in collaboration with the Italian Agency for New Technologies, Energy, and the Environment (ENEA, an e-learning project on renewable energy: the DESIRE-net project (Development and Sustainability with International Renewable Energies network. The project's aim is to share the best available knowledge on renewable energies among all the countries that have joined the project and exploit this knowledge at every level. Currently the project involves 30 Eastern European and Southern Mediterranean countries as well as Australia, Indonesia, and China.

  6. Is development of geothermal energy resource in Macedonia justified or not?

    International Nuclear Information System (INIS)

    Popovski, Kiril; Popovska Vasilevska, Sanja

    2007-01-01

    During the 80-ies of last century, Macedonia has been one of the world leaders in development of direct application of geothermal energy. During a period of only 6-7 years a participation of 0,7% in the State energy balance has been reached. However, situation has been changed during the last 20 years and the development of this energy resource has been not only stopped but some of the existing projects have been abandoned leading to regression. This situation is illogical, due the fact that it practically proved of being technically feasible and absolutely economically justified. A summary of the present situation with geothermal projects in Macedonia is made in the paper, and possibilities for their improvement and possibilities and justifications for development of new resources foreseen. Final conclusion is that the development of direct application of geothermal energy in Macedonia offer (in comparison with other renewable energy resources) the best energy and economic effects. (Author)

  7. Future energy options for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Zaric, Z P

    1982-05-01

    An educated guess is made of the energy demand in developing countries well into the next century in order to estimate the possible role of new and renewable sources in meeting this demand. The world is roughly divided into industrialized (IND) and developing (LDC) countries. A plot of energy demand in both parts shows a possible structure of mixed energy to meet LDC demand, but there is a gap between demand and supply from conventional sources in LDCs that has to be met by new and renewable sources. When the demand for specific energy forms is projected, as much as two thirds of the final energy needed from new sources should be based on centralized-electricity and liquid-fuels technologies. Solar and geothermal energy must compete with nuclear and thermonuclear breeders, while solar prospects for chemical fuel supply in LDCs lacking adequate coal reserves seems promising. There is a large gap in research and development (R and D) spending on new energy between the two parts, which means that LDCs will have inappropriate technology at a high price. An increase in R and D spending on a regional basis should target funds to appropriate options. 6 references, 7 figures.

  8. Penn West Energy Trust CO{sub 2} EOR storage monitoring project

    Energy Technology Data Exchange (ETDEWEB)

    Chalaturnyk, R. [Alberta Univ., Edmonton, AB (Canada)

    2007-07-01

    This presentation described Penn West Energy Trust's carbon dioxide (CO{sub 2}) enhanced oil recovery (EOR) storage monitoring project. The project formed part of a royalty credit program that offered a royalty reduction to energy companies as part of a plan to encourage the development of a CO{sub 2} storage industry in Alberta. The multi-agency project is expected to provide a better understanding of the fate of CO{sub 2} injected into petroleum reservoirs and the role that CO{sub 2} storage will play in reducing greenhouse gas (GHG) emissions. The project is located in a reservoir that had previously been waterflooded. High purity CO{sub 2} is injected through 2 directional wells. Data acquired from the field is used to provide information on baseline geology and hydrogeology, as well as to provide details of baseline leakages. Rock properties are investigated in order identify issues affecting rock strength. Geophysical monitoring is conducted to interpret baseline seismic profile datasets as well as to integrate active and passive survey analyses with geochemical characterization studies and reservoir models. The project is currently in the stage of developing a simulation model based on a comprehensive understanding of CO{sub 2} injection mechanisms. The model will be used to predict CO{sub 2} storage capacity and movement. refs., tabs., figs.

  9. Energy development and prospects of the province Guantanamo

    International Nuclear Information System (INIS)

    Fernandez Salva, Gustavo; Sotolongo Perez, Jose A; Correa Alvarez, Alfredo; Soto, Aguero; Lopez Martinez, Rafael Raul

    2007-01-01

    In this paper are exposed developed in the field renewable and conventional energy to achieve the sustainability of the most oriental of the Cuban counties. In the work they are exposed the paper of the institutions in as much as to Renewable Energy and sustainable Development refers, is concerned will stand out the topic of administration, environmental and Educational impact. It will also be deepened in the potential, generation, consumption and uses of the energy taken place by renewable sources, compared with energy data taken place by conventional energy. Also you it will expose the experience in hydroelectric, eolic projects, fotovoltaics, of biomass sugar, of coffee and others

  10. Energy tariff project - Latvia. Summary report

    International Nuclear Information System (INIS)

    Harne, N.J.

    1996-05-01

    Latvia has only a few indigenous energy resources that are concentrated on hydro-power, wood and peat. The country is therefore strongly dependant on imports of natural gas, oil, coal and electricity. After independence the supply of natural gas, oil and electricity were organised by three state owned joint-stock companies, Latvijas Gaze, Latvijas Nafta and Latvenergo. Partial privatisation of the gas and oil companies has been decided by the Latvian government but so far not implemented. Two types of models have been used within the Energy Tariff Project: The EFOM model that was developed and implemented for Latvia as a part of the EURIO project has been adapted to describe the long term reactions for the electricity and district heating sectors; A system of Customer Calculation Sheets for the analysis of consumer expenditure and utility revenue. The optimization model for the electricity and CHP system is also used to analyze the impact of gas tariffs for the electricity and district heating sector within geographical or institutional limits. In this report the following regions are specified: City of Riga; Other district heating areas; Rest of Latvia. The Danish tariff structure for natural gas was reviewed. The present structure is presently market orientated with direct links to the price movements of alternative fuels for all customer groups. (EG) 50 refs

  11. GRI baseline projection of U.S. energy supply and demand to 2010. 1992 edition

    International Nuclear Information System (INIS)

    Holtberg, P.D.; Woods, T.J.; Lihn, M.L.; Koklauner, A.B.

    1992-04-01

    The annual GRI baseline projection is the result of a complex modeling effort that seeks to achieve an internally consistent energy supply and demand outlook across all energy sources and end-use demand sectors. The year's projection includes the adoption of a new petroleum refinery methodology, the incorporation of a new approach to determining electric utility generating capacity heat rates, the extensive update of both the residential and commercial databases and methodologies, and the continued update of the GRI Hydrocarbon Model. The report presents a series of summary tables, sectoral breakdowns of energy demand, and the natural gas supply and price trends. The appendices include a discussion of the methodology and assumptions used to prepare the 1992 edition of the projection, an analysis of the potential for higher levels of gas demand, a description of industrial and commercial cogeneration, a description of the independent power producer projection, a comparison of the 1992 edition of the projection with previous GRI projections, and a discussion of additional data used in developing the projection

  12. Sustainable energy developments in Europe and North America

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Europe and North America account for 70% of world energy consumption; 61% of which is fossil fuels. Energy trends and patterns in this region, if pursued, would have a large impact on region- and world-wide energy and ecosystems. This report addresses the issues of whether projected trends and supply structures would be 'sustainable' i.e. meet the needs of the present without compromising the ability of future generations to meet their own needs; what adaptations are warranted; and what role could and should be played by regional energy and environmental co-operation: including through the United Nations Economic Commission for Europe. The report is divided into three parts. Part 1 studies the interrelationships between environmental and energy policies in Europe and North America until 2010 and beyond. Part II contains research notes on CO{sub 2} concentration and energy scenarios; investment requirements of the energy supply industries in the ERE region for 1980-2000; energy technologies for the first decades of the 21st century. Scope and conditions for enhancing energy efficiency in the ERE region; CO{sub 2} and climate variation and its impact on energy policy in the USSR and European CMEA countries; the role of new and renewable sources of energy; projected energy developments in the ERE region until 2010, and pollution: synopsis of various international studies on the sustainability of energy developments. Part III describes the energy program of the UN-ECE.

  13. Measurement and verification of a energy optimization project; Medicao e verificacao de um projeto de otimizacao energetica

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Jamil; Yamachita, Roberto Akira; Guardia, Eduardo Crestana [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica; Cruz, Paulo de Tarso de Alexandria; Porto, Laura Cristina da Fonseca; Leonelli, Paulo Augusto [Ministerio de Minas e Energia (MME), Brasilia, DF (Brazil)

    2008-07-01

    This article presents the results obtained with the execution of a service of energy diagnosis, project and execution of energy modernization of the Municipal Market. During the execution of this project measurements were accomplished before and after the end of the works, this measurement process had as objective the verification of the energy earnings. This project had its beginning in January of 2007 and the end in February of 2008. With the implementation of this project it was obtained a reduction in the electric power consumption, and also, it provided larger safety to the electric operation and the public visitor of the market. This project was accomplished in partnership with the Ministry of Mines and Energy - MME, and it was the first action of practical stamp of the Center of Excellency in Energy Efficiency - EXCEN, of the Federal University of Itajuba - UNIFEI, inaugurated in December of 2006, which has as objective disseminates information on the theme energy efficiency through training, development of researches, projects and methodologies. (author)

  14. Development of an Integrated Global Energy Model

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1999-01-01

    The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E 3 ) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term (approximately2,100) context. The E 3 model so developed was applied to create a Los Alamos presence in this E 3 area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E 3 model have been presented at a variety of national and international conferences and workshops. Through use of the E 3 model Los Alamos was afforded the opportunity to participate in a multi-national E 3 study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E 3 model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project

  15. Identifying and prioritizing barriers to implementation of smart energy city projects in Europe: An empirical approach

    International Nuclear Information System (INIS)

    Mosannenzadeh, Farnaz; Di Nucci, Maria Rosaria; Vettorato, Daniele

    2017-01-01

    Successful implementation of smart energy city projects in Europe is crucial for a sustainable transition of urban energy systems and the improvement of quality of life for citizens. We aim to develop a systematic classification and analysis of the barriers hindering successful implementation of smart energy city projects. Through an empirical approach, we investigated 43 communities implementing smart and sustainable energy city projects under the Sixth and Seventh Framework Programmes of the European Union. Validated through literature review, we identified 35 barriers categorized in policy, administrative, legal, financial, market, environmental, technical, social, and information-and-awareness dimensions. We prioritized these barriers, using a novel multi-dimensional methodology that simultaneously analyses barriers based on frequency, level of impact, causal relationship among barriers, origin, and scale. The results indicate that the key barriers are lacking or fragmented political support on the long term at the policy level, and lack of good cooperation and acceptance among project partners, insufficient external financial support, lack of skilled and trained personnel, and fragmented ownership at the project level. The outcome of the research should aid policy-makers to better understand and prioritize implementation barriers to develop effective action and policy interventions towards more successful implementation of smart energy city projects. - Highlights: • A solid empirical study on the implementation of European smart energy city projects. • We found 35 barriers in nine dimensions; e.g. policy, legal, financial, and social. • We suggested a new multi-dimensional methodology to prioritize barriers. • Lacking or fragmented political support on the long term is a key barrier. • We provided insights for action for project coordinators and policy makers.

  16. Wind Energy for Sustainable Development

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2009-01-01

    The growing demand in energy and concern about depleting natural resources and global warming has led states worldwide to consider alternatives to the use of fossil fuel for energy production. Several countries especially in Europe have already increased their renewable energy share 6-10%, expected to increase to 20% by the year 2020. For Egypt excellent resources of wind and solar energy exist. The article discusses perspectives of wind energy in Egypt with projections to generate ∼ 3.5 GWe by 2022, representing ∼ 9% of the total installed power at that time (40.2 GW). Total renewable (hydro + wind + solar) are expected to provide ∼ 7.4 GWe by 2022 representing ∼ 19% of the total installed power. Such a share would reduce dependence on depleting oil and gas resources, and hence improve country's sustainable development

  17. Energy strategy in the national strategy of economy development

    International Nuclear Information System (INIS)

    Pop-Jordanov, Jordan; Boshevski, Tome; Hadzi-Mishev, Dimitar

    1997-01-01

    This paper is based on the sectorial study on energy, prepared by authors within the project 'National Strategy of Economic Development of Republic of Macedonia', carried out by the Macedonian Academy of Sciences and Arts. The aim is to define the basic lines for the development of energy sector in Macedonia until 2020. The main topics discussed comprise: fuel resources, thermal energy, electric power, price policy, forms of ownership and the environmental impacts. (author)

  18. Development of the Decommissioning Project Management System, DECOMMIS

    International Nuclear Information System (INIS)

    Chung, U. S.; Park, J. H.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B.

    2007-03-01

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The management of the projects can be defined as 'the decision of the changes of the decommissioning methodologies for the more efficient achievement of the project at an adequate time and to an improved method'. The correct decision comes from the experiences on the decommissioning project and the systematic experiences can be obtained from the good management of the decommissioning information. For this, a project management tool, DECOMMIS, was developed in the D and D Technology Division, which has the charge of the decommissioning projects at the KAERI, and its purpose was extended to following fields; generation of reports on the dismantling waste for WACID, record keeping for the next decommissioning projects of nuclear facilities, provision of fundamental data for the R and D of the decommissioning technologies

  19. US/ECRE and renewable energy market development: An institutional perspective

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, J.M.

    1997-12-01

    The author presents a summary of the structure and program of the US Export Council for Renewable Energy (US/ECRE). This organization was founded in 1982 as a consortium of US renewable energy trade associations, and is the non-profit/industry counterpart of CORECT. It serves to accelerate the diffusion of sustainable renewable energy services worldwide, and to enhance US industry`s position in this expanded marketplace. The projected energy growth in the next 20 years is expected to favor developing countries. Barriers in the way of renewable energy development include technology awareness, financing and risk reception, policy decisions, and institutional barriers. The industrial team hopes to address this problem through several different programs: strategic alliances; end-user outreach; industry market development; policy/project development; financing and facilitation. The program involves several phases: first, market conditioning; second, regional conferences and exhibitions; third, follow-up and implementation. There are currently four major focus areas for US effort: Latin America and the Caribbean; southern Africa; Asia; Russia and the FSU. The status of programs addressed toward these markets is described in more detail.

  20. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel cell research and development projects through in-situ fuel cell testing. Photo of a researcher running

  1. Project development and commercialisation of on-line analysis systems

    International Nuclear Information System (INIS)

    Watt, J.S.

    2000-01-01

    A project team first in the Australian Atomic Energy Commission (AAEC) and since 1982 in CSIRO has developed many on-line analysis systems for the mineral and energy industries. The development of these projects, usually lasting 7-10 years, has followed a common pattern of laboratory R and D, field trials, commercialisation and technology transfer. This successful pattern is illustrated using examples of the development of systems for the on-line analysis of mineral slurries, for determination of the ash content of coal on conveyors, and for determination of the flow rates of oil, water and gas in pipelines. The first two systems, licensed to Australian companies, are used world-wide. They are now the market leaders for radioisotope gauges in their application field. The third, the multiphase flow meter, was licensed in 1997 to an international company. This meter has even greater potential than the other two systems for economic benefit from its use and for numbers of installations. (author)

  2. SIHTI - The research and development program of energy and environmental technology

    International Nuclear Information System (INIS)

    Pietilae, S.

    1991-01-01

    The SIHTI programme consists of the environmental part of the energy research programmes in Finland funded by the Ministry of Trade and Industry. Also industry participates in the funding of the projects especially the development projects. The main subject areas of the SIHTI programme are: Monitoring of international energy and environmental technology and national solution models, emissions from energy production, traffic emissions and emissions and discharges from fuel chains

  3. Do we Need a Sociology of Energy Development?

    Science.gov (United States)

    Papatheodorou, Photini; Spathopoulos, Fivos

    2016-04-01

    The presentation discusses the need of developing a new area of scientific study, namely the "Sociology of Energy Development". It presents our knowledge gaps, regarding the reaction of societies towards energy projects. The presentation proposes that the first steps will be to study the "ethnography" of the energy companies and acquire a clear understanding of their specific cultures. In particular, the presentation argues for a need to raise meaningful questions about the values and attitudes of energy companies in areas such as environmental awareness; gender; cultural differences and other issues of conflict. It will also propose that a new conceptual framework is developed for the specific analysis of the relationship between society and energy companies, in the fields of public perception and trust. Finally, the presentation will conclude with an exploration of key principles, which may guide the development of new ethical practices in the field of energy.

  4. CALLA ENERGY BIOMASS COFIRING PROJECT

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1

  5. Renewable energy projects to electrify rural communities in Cape Verde

    International Nuclear Information System (INIS)

    Ranaboldo, Matteo; Lega, Bruno Domenech; Ferrenbach, David Vilar; Ferrer-Martí, Laia; Moreno, Rafael Pastor; García-Villoria, Alberto

    2014-01-01

    Highlights: • The design of 2 off-grid electrification projects in Cape Verde is developed. • Configurations with hybrid renewable energy systems and micro-grids are considered. • A detailed micro-scale wind resource assessment is carried out. • An optimization model is used in order to support the design. • The proposed system is economically beneficial in comparison with diesel generation. - Abstract: Even though Cape Verde has high wind and solar energy resources, the conventional strategy for increasing access to electricity in isolated rural areas is by centralized microgrids with diesel generators. In this study, the design of 2 off-grid electrification projects based on hybrid wind–photovoltaic systems in Cape Verde is developed and analyzed. The design considers some significant novelty features in comparison with previous studies. First a detailed wind resource assessment is carried out combining meso-scale wind climate data and a specialized micro-scale wind flow model. Then a mathematical model is used for the design of off-grid projects considering a combination of individual systems and microgrids. In this study, locations far from the demand points are also considered as possible generation points. Various design configurations are analyzed and compared. The proposed configurations exploit the highest wind potential areas and are economically beneficial in comparison with diesel generator systems

  6. Methodology and evaluation of priorities for energy and environmental research projects

    International Nuclear Information System (INIS)

    Kagazyo, T.; Kaneko, K.; Akai, M.

    1997-01-01

    To evaluate and prioritize energy-related projects, not only technological issues but also resource and social aspects must be included. We use an analytic hierarchy process (AHP) for incorporating these two features. Technological issues are divided into three categories; resource and social aspects are divided into five categories. Each category is further subdivided, forming a tree-like hierarchy. Nineteen energy-related characteristics and seven environmental characteristics are used to describe a proposed research project. By utilizing the estimated relative importance of each selected characteristic, seven different planning perspectives have been identified: short-, intermediate-, and long-range strategies for Japan, short- and intermediate-range strategies for less developed countries (LDCs), and intermediate- and long-range global strategies. (author)

  7. Solar-energy an American India (SAI) partnership: The Ramakrishna Mission PV Project

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H.S.; Stone, J.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-01

    This paper describes a cooperative program which was established in 1993 by the Minister of the Indian Ministry of Non-Conventional Energy Sources (MNES) and the Secretary of the U.S. Department of Energy (USDOE). Eventually it fielded one project, funded 50-50 for a total of 500k dollars. The project selected was a sustainable rural economic development initiative with Ramakrishna Mission in West Bengal, India, as the nongovernment organization (NGO). The objectives of the program were to establish the economic viability of photovoltaic power in the Sundarbans region of West Bengal. To have the project self-sustaining with minimal subsidies to the beneficiaries. To establish the infrastructure for financing, training, installation and maintenance with the NGO taking the lead. To work with the NGO to expand utilization of photovoltaics in the region. To perform a before and after social, economic, and environmental impact study with the Tata Energy Research Institute.

  8. Estonian energy forest project

    International Nuclear Information System (INIS)

    Koppel, A.; Kirt, E.; Kull, K.; Lasn, R.; Noormets, A.; Roostalu, H.; Ross, J.; Ross, V.; Sulev, M.

    1994-04-01

    In February 1993 an agreement of Swedish-Estonian scientific co-operation on energy forest was signed. In may five energy forest plantations (altogether 2 ha) were established in Estonia with Swedish selected clones of Salix viminalis and Salix dasyclados. The research within this project is carried out within three main directions. The studies of basic ecophysiological processes and radiation regime of willow canopy will be carried out in Toravere. The production ecology studies, comparison of the productivity of multiple clones on different soil types is based on the plantations as vegetation filter for wastewater purification is studied on the basis of plantations in Vaeike-Maarja and Valga (author)

  9. The energy sector in Northeast Asia : new projects, delivery systems and prospects for co-operation

    International Nuclear Information System (INIS)

    Ivanov, V.I.

    2000-01-01

    This study examines the needs and opportunities for energy co-operation in Northeast Asia, with particular reference to development of resources in eastern Russia, Siberia and the Far East to supply energy to consumers in Northeast Asia. Given the high projected demand for energy resources, Japan, South Korea and China are compelled to consider diversifying their energy supplies and developing new links with eastern Russia. The environmental degradation caused by coal burning in China is another incentive for looking for sources of natural gas in Eurasia. Russia and Japan are concentrating on the Sakhalin oil and gas projects. China and Russia have agreed to work closely in the energy sector, focusing on a pipeline from the natural gas field near Irkutsk. The challenges lies in developing a co-ordinated approach to energy resource development and use, by modifying energy policies and long-term supply outlooks. Another challenge lies in the fact that private investors and intergovernmental co-operation are required to build an expensive cross-border infrastructure to transport natural gas, electricity and oil. Co-operation is also required to improve energy efficiency, modernize existing facilities and promote cleaner sources of energy, energy conservation and environmental protection. This report examined forecasted energy demand and imports in Northeast Asia and identified opportunities for co-operation. refs., tabs

  10. Wind energy planning in England, Wales and Denmark: Factors influencing project success

    International Nuclear Information System (INIS)

    McLaren Loring, Joyce

    2007-01-01

    Land-use planning poses a significant barrier to the further development of on-shore wind energy in many countries. There has been increasing discussion regarding the use of public participation in the planning process in order to address concerns of local residents and ease conflicts. This research explores the dynamics of the planning process for wind energy in England, Wales and Denmark in order to better understand the factors influencing project success. Through 18 in-depth case studies, it investigates the degree of local community participation in the planning process and the stability of the network of individuals and organisations involved in the project to determine their relationship to the public's acceptance of the project and the planning outcome. The study draws on the frameworks of public participation in planning and actor-network theories in order to develop indicators of the level of community involvement and network formation for each case. The analysis discusses predictions made by the theoretical approaches as to the importance of these variables to the success of new projects. The results indicate that projects with high levels of participatory planning are more likely to be publicly accepted and successful. In addition, stable supporting networks are more likely to form. The presence of a stable network of supporters is not found to be related to project acceptance and success; however, the absence of a stable network of opponents is found to be necessary for project acceptance and success in receiving planning permission

  11. Nuclear propulsion technology development - A joint NASA/Department of Energy project

    Science.gov (United States)

    Clark, John S.

    1992-01-01

    NASA-Lewis has undertaken the conceptual development of spacecraft nuclear propulsion systems with DOE support, in order to establish the bases for Space Exploration Initiative lunar and Mars missions. This conceptual evolution project encompasses nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems. A technology base exists for NTP in the NERVA program files; more fundamental development efforts are entailed in the case of NEP, but this option is noted to offer greater advantages in the long term.

  12. Proposal for the further development of the 'Ribeira Grande' agricultural geothermal project

    International Nuclear Information System (INIS)

    Popovski, Kiril; De Medeiros, Jorge Rosa; Rodrigues, Ana Catarina Tavares

    2000-01-01

    Geothermal project Ribeira Grande has been the first trial to introduce the possibilities of direct application of geothermal energy at Azores. As all the first experiences, it's development has been escorted with a list of difficulties and problems, resulting with non proper completion of some systems and installations. However, even not complete, the reached results justified both technically and economically the indigenous resource door for further activities and development. Presented proposal for the second phase of project development consists two very important advantages: 1) Enables development of new demonstration and productive projects, without engaging new import of fuels or other energents; 2) Enables development based on the already existing economy sectors at the islands and makes them more profitable and accommodated to the requests of the national and international market. However, influencing national and international preconditions for the realization of the proposed activities are not very convenient and are requesting a concentrate engagement of the Institute for Innovative Technologies of Azores INOVA during the period of next 5 years. The final success of this engagement shall open very wide possibilities for direct application of geothermal energy development in this isolated EC community, presently mainly orientated towards import both of energy and food. (Authors)

  13. Mapping Project on Energy and the Social Sciences. Progress report, October 1, 1978-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Walker, C.A.; Doob, L.W.; Gould, L.C.

    1979-01-01

    This is a progress report of activities in the fourth year of the Yale Institution for Social and Policy Studies Mapping Project on Energy and the Social Sciences. The Mapping Project evaluates past and present social and behavioral science energy studies, assesses the potential for social and behavioral science contributions to a resolution of the energy problems in the future, and diffuses social and behavioral science information and perspectives to policymakers and others concerned with US or world energy developments. Activities in FY 1979 included meetings, workshops, collecting bibliographic material, publications, evaluating DOE programs in buildings and transportation, performing a special study of potential social impacts of 4 coal technologies, and developing plans for 10 specific research studies on energy.

  14. All projects related to | Page 174 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2013-03-01

    Project. Worldwide, economic growth models currently rely on carbon-based energies and the intensive use of natural resources. Start Date: March 1, 2013. End Date: June 1, 2015. Topic: Natural Resources, DEVELOPING COUNTRIES, ECONOMIC GROWTH, ENVIRONMENTAL POLICY, SURVEYS, INTERVIEWS, CASE ...

  15. 17th Business Report Meeting of New Energy Industrial Technology Development Organization (NEDO). Section Meeting on International Cooperation Projects; Dai 17 kai jigyo hokokukai. Kokusai kyoryoku jigyo bunkakai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    In this section meeting, reports were made on the following themes: 1) pregrinder model project; 2) power recovery model project; 3) energy conservation model project and the importance of the spread. In 1), this model project aims to demonstrate that the electric power unit requirement for cement production can be reduced by installing a pregrinder at the front step of ball mill as the finish process at a cement factory in Indonesia, increasing capacity of ball mill grinding, and reducing operational loads of the ball mill which is large in power consumption. In 2), this project aims to supply China a technology to recover power from high temperature/high pressure exhaust gas via gas expander as electric power of 5.8MW after separating FCC catalyst associated with from the exhaust gas from the generative tower of fluid catalytic cracking equipment for oil refining. To come up to expectations for Japan from neighboring countries in Asia, NEDO Information Center carried out the energy conservation model project, etc. as the international cooperation related project in the energy/environment field. The center is now developing 10 projects. (NEDO)

  16. Cosmic Visions Dark Energy: Small Projects Portfolio

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Kyle; Frieman, Josh; Heitmann, Katrin; Jain, Bhuvnesh; Kahn, Steve; Mandelbaum, Rachel; Perlmutter, Saul; Slosar, Anže

    2018-02-20

    Understanding cosmic acceleration is one of the key science drivers for astrophysics and high-energy physics in the coming decade (2014 P5 Report). With the Large Synoptic Survey Telescope (LSST) and the Dark Energy Spectroscopic Instrument (DESI) and other new facilities beginning operations soon, we are entering an exciting phase during which we expect an order of magnitude improvement in constraints on dark energy and the physics of the accelerating Universe. This is a key moment for a matching Small Projects portfolio that can (1) greatly enhance the science reach of these flagship projects, (2) have immediate scientific impact, and (3) lay the groundwork for the next stages of the Cosmic Frontier Dark Energy program. In this White Paper, we outline a balanced portfolio that can accomplish these goals through a combination of observational, experimental, and theory and simulation efforts.

  17. Wind energy developments in the 20th century

    Science.gov (United States)

    Vargo, D. J.

    1974-01-01

    Wind turbine systems for generating electrical power have been tested in many countries. Representative examples of turbines which have produced from 100 to 1250 kW are described. The advantages of wind energy consist of its being a nondepleting, nonpolluting, and free fuel source. Its disadvantages relate to the variability of wind and the high installation cost per kilowatt of capacity of wind turbines when compared to other methods of electric-power generation. High fuel costs and potential resource scarcity have led to a five-year joint NASA-NSF program to study wind energy. The program will study wind energy conversion and storage systems with respect to cost effectiveness, and will attempt to estimate national wind-energy potential and develop techniques for generator site selection. The studies concern a small-systems (50-250 kW) project, a megawatt-systems (500-3000 kW) project, supporting research and technology, and energy storage. Preliminary economic analyses indicate that wind-energy conversion can be competitive in high-average-wind areas.

  18. Landfill Gas Energy Project Data and Landfill Technical Data

    Science.gov (United States)

    This page provides data from the LMOP Database for U.S. landfills and LFG energy projects in Excel files, a map of project and candidate landfill counts by state, project profiles for a select group of projects, and information about Project Expo sites.

  19. Developing business in emerging biomass energy markets

    International Nuclear Information System (INIS)

    Kadyszewski, J.

    2005-01-01

    Global market trends for forest products were reviewed in this PowerPoint presentation. The status of biomass energy products in relation to climate change and renewable energy portfolio standards was also examined. It was noted that China has increased investment in processing capacity and has increased imports of raw logs. India has doubled its imports of raw logs. Details of major tropical log producers and consumers were presented. Details of the biomass industry in the United States were presented, as well as data on fuel use at biomass energy plants and biomass energy capacity. An overview of biomass energy in the Russian far east and Siberia was presented, as well as details of activities and opportunities in Brazil and Indonesia. An economic analysis for small dry kilns was presented. Issues concerning boiler capacity in Russian companies for 2001-2005 were discussed. A case study of a biomass project from Congo was presented. It was noted that projects that replace fossil fuels can obtain revenues from the sale of carbon benefits, and that biomass energy offers the most attractive current option for the removal of carbon dioxide (CO 2 ) from the atmosphere. Details of a district heating project in Siberia were presented, and it was noted that in remote regions, costs for heat and power from biomass can be lower than costs from diesel and coal. It was concluded that there will be significant growth for biomass energy systems in the developing world, and that climate change will be an increasingly important element in advancing biomass energy. tabs., figs

  20. Development of the Decommissioning Project Management System, DECOMMIS

    Energy Technology Data Exchange (ETDEWEB)

    Chung, U. S.; Park, J. H.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B

    2007-03-15

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The management of the projects can be defined as 'the decision of the changes of the decommissioning methodologies for the more efficient achievement of the project at an adequate time and to an improved method'. The correct decision comes from the experiences on the decommissioning project and the systematic experiences can be obtained from the good management of the decommissioning information. For this, a project management tool, DECOMMIS, was developed in the D and D Technology Division, which has the charge of the decommissioning projects at the KAERI, and its purpose was extended to following fields; generation of reports on the dismantling waste for WACID, record keeping for the next decommissioning projects of nuclear facilities, provision of fundamental data for the R and D of the decommissioning technologies.

  1. Stakeholder-driven multi-attribute analysis for energy project selection under uncertainty

    International Nuclear Information System (INIS)

    Read, Laura; Madani, Kaveh; Mokhtari, Soroush; Hanks, Catherine

    2017-01-01

    In practice, selecting an energy project for development requires balancing criteria and competing stakeholder priorities to identify the best alternative. Energy source selection can be modeled as multi-criteria decision-maker problems to provide quantitative support to reconcile technical, economic, environmental, social, and political factors with respect to the stakeholders' interests. Decision making among these complex interactions should also account for the uncertainty present in the input data. In response, this work develops a stochastic decision analysis framework to evaluate alternatives by involving stakeholders to identify both quantitative and qualitative selection criteria and performance metrics which carry uncertainties. The developed framework is illustrated using a case study from Fairbanks, Alaska, where decision makers and residents must decide on a new source of energy for heating and electricity. We approach this problem in a five step methodology: (1) engaging experts (role players) to develop criteria of project performance; (2) collecting a range of quantitative and qualitative input information to determine the performance of each proposed solution according to the selected criteria; (3) performing a Monte-Carlo analysis to capture uncertainties given in the inputs; (4) applying multi-criteria decision-making, social choice (voting), and fallback bargaining methods to account for three different levels of cooperation among the stakeholders; and (5) computing an aggregate performance index (API) score for each alternative based on its performance across criteria and cooperation levels. API scores communicate relative performance between alternatives. In this way, our methodology maps uncertainty from the input data to reflect risk in the decision and incorporates varying degrees of cooperation into the analysis to identify an optimal and practical alternative. - Highlights: • We develop an applicable stakeholder-driven framework for

  2. Waste-to-Energy Cogeneration Project, Centennial Park

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

    2014-04-29

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

  3. Annual Energy Outlook 2011 with Projections to 2035

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-04-01

    The projections in the Energy Information Administration's (EIA) Annual Energy Outlook 2011 (AEO2011) focus on the factors that shape the U.S. energy system over the long term. Under the assumption that current laws and regulations remain unchanged throughout the projections, the AEO2011 Reference case provides the basis for examination and discussion of energy production, consumption, technology, and market trends and the direction they may take in the future. It also serves as a starting point for analysis of potential changes in energy policies. But AEO2011 is not limited to the Reference case. It also includes 57 sensitivity cases (see Appendix E, Table E1), which explore important areas of uncertainty for markets, technologies, and policies in the U.S. energy economy. Key results highlighted in AEO2011 include strong growth in shale gas production, growing use of natural gas and renewables in electric power generation, declining reliance on imported liquid fuels, and projected slow growth in energy-related carbon dioxide (CO2) emissions even in the absence of new policies designed to mitigate greenhouse gas (GHG) emissions. AEO2011 also includes in-depth discussions on topics of special interest that may affect the energy outlook. They include: impacts of the continuing renewal and updating of Federal and State laws and regulations; discussion of world oil supply and price trends shaped by changes in demand from countries outside the Organization for Economic Cooperation and Development or in supply available from the Organization of the Petroleum Exporting Countries; an examination of the potential impacts of proposed revisions to Corporate Average Fuel Economy standards for light-duty vehicles and proposed new standards for heavy-duty vehicles; the impact of a series of updates to appliance standard alone or in combination with revised building codes; the potential impact on natural gas and crude oil production of an expanded offshore resource base

  4. Solar cells for Bolivia. Two project supported by the Dutch Ministry of Development Assistance

    International Nuclear Information System (INIS)

    Hassing, P.; Rijssenbeek, W.; De Winter, J.

    1998-01-01

    Since 1992 the Netherlands Development Assistance (NEDA) supports the energy sector in Bolivia, South-America. Next to support on the policy level demonstration projects in the field of renewable energy are financed successfully. Two solar energy projects form the start of a broad introduction of Solar Home Systems in rural areas of Bolivia. The main obstacle is the financing of the plans. 3 refs

  5. Lattice QCD Application Development within the US DOE Exascale Computing Project

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Richard [Boston U.; Christ, Norman [Columbia U.; DeTar, Carleton [Utah U.; Edwards, Robert [Jefferson Lab; Mackenzie, Paul [Fermilab

    2017-10-30

    In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020's. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.

  6. Lattice QCD Application Development within the US DOE Exascale Computing Project

    Science.gov (United States)

    Brower, Richard; Christ, Norman; DeTar, Carleton; Edwards, Robert; Mackenzie, Paul

    2018-03-01

    In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020's. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.

  7. Lattice QCD Application Development within the US DOE Exascale Computing Project

    Directory of Open Access Journals (Sweden)

    Brower Richard

    2018-01-01

    Full Text Available In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020’s. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.

  8. Psychological strategies to reduce energy consumption: project summary report

    Energy Technology Data Exchange (ETDEWEB)

    Becker, L J; Seligman, C; Darley, J M

    1979-06-30

    This report reviews the research conducted in connection with a project to apply psychological theory and procedures to the problems of encouraging residential energy conservation. A major part of the project involved surveys of residents' energy-related attitudes. The best (and only consistent) attitudinal predictor of residents' actual energy consumption was their attitude about thermal comfort. A number of other attitudes that could conceivably have been related to consumption, such as attitudes about the reality of the crisis, were not found to be related to consumption. Another major focus of the project was on the effectiveness of feedback (that is, giving residents information about their energy use) as an aid to residents' conservation efforts. A series of experiments demonstrated that frequent, credible energy-consumption feedback, coupled with encouragement to adopt a reasonable but difficult energy-conservation goal, could facilitate conservation. However, these studies also demonstrated that residents could not be given just any kind of information about their energy use as feedback and that even proper feedback would not lead to conservation in all households. Conditions that are crucial for the success of feedback as a conservation aid are discussed. Other studies conducted by the project looked at the effect on energy consumption of (1) a device to reduce air-conditioning waste by signalling when it is cool outside, (2) an automatic multi-setback thermostat, and (3) utility companies' average payment plans. A survey of residents' knowledge of their energy use also was conducted. 23 references.

  9. 78 FR 77161 - Grant Program To Build Tribal Energy Development Capacity

    Science.gov (United States)

    2013-12-20

    ... Feasibility studies and energy resource assessments; Purchase of resource assessment data; Research and... used to eliminate capacity gaps or obtain the development of energy resource development capacity... eliminate any identified capacity gaps; (f) Objectives of the proposal describing how the proposed project...

  10. Overview of new energy projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Developing new energy is one of the main pillars of Japan`s energy policy. NEDO is pressing ahead with the further development of new energy sources and the introduction and diffusion of new energy technologies as a core. NEDO is carrying out the following development. For the utilization of clean and abundant solar energy, the photovoltaic power generation, and the practical application of solar thermal systems are promoted. Japan, located in the Pacific Rim volcanic zone, is blessed with massive reserves of geothermal energy resources, and work is being conducted to develop technologies for promoting geothermal energy utilization. As its resources are widely dispersed and abundant, coal is an attractive energy source. However, coal needs to be made more environmentally friendly. NEDO is conducting the development of coal conversion technologies, i.e., liquefaction and gasification technologies. Fuel cell is one of the energy storage technologies. Hydrogen and alcohol are themes as clean alternative energy sources. Furthermore, biomass and wind energy conversion system are also being investigated. To promote the development of geothermal resources, NEDO is carrying out geothermal development promotion surveys. To secure stable supplies of coal for Japan, NEDO is conducting geological surveys in countries where it is difficult for private companies to conduct business. Promotion of international cooperation is also presented.

  11. Annual Energy Outlook 1992 with projections to 2010

    International Nuclear Information System (INIS)

    1992-01-01

    Dramatic events over the past year show how international developments can affect domestic energy markets. Market reactions to events in the Persian Gulf and in what used to be called the Soviet Union reinforced the perception of global interdependence in regard to both energy supply and energy demand. The interdependence was reflected most visibly and promptly in world oil prices. With US reliance on foreign oil expected to continue trending upward, any price changes tend to ''feed back'' throughout this Nation's economy. Despite short-term fluctuations, the longer-range US energy outlook has remained relatively constant since last year. Assuming that current laws and policies remain in force, this document addresses uncertainties by discussing four alternative scenarios in addition to a ''reference'' case. Two cases vary the assumption about the rate at which the US national economy will grow, while the other two estimate effects if world oil prices should go lower or higher. This report gives projections to 2010 for energy end uses, oil, gas, electricity, coal, and comparative analyses

  12. Energy Efficiency Measures to Incorporate into Remodeling Projects

    Energy Technology Data Exchange (ETDEWEB)

    Liaukus, C.

    2014-12-01

    Energy improvements in a home are often approached as one concerted effort, beginning with a simple walk-through assessment or more in-depth energy audit and followed by the installation of recommended energy measures. While this approach allows for systems thinking to guide the efforts, comprehensive energy improvements of this nature are undertaken by a relatively small number of the households in our nation compared to more piecemeal remodeling efforts. Even when programs like the Weatherization Assistance Program and Home Performance with ENERGY STAR are considered, homes that have had a comprehensive energy makeover still represent a small fraction of the 111.1 million households. In this report, the U.S Department of Energy Building America Retrofit Alliance research team looks at the improvement of a home's energy performance in an opportunistic way: it examines what can be done to incorporate energy efficiency measures into general remodeling work and home repair projects. This allows for the possibility for people who would not normally pursue energy efficiency but will remodel their kitchen or re-side their home to improve their home's performance at the same time. There are challenges to this approach, not the least of which being that the work will take place over time in potentially many separate projects. The opportunity to improve a home's energy efficiency at one time expands or contracts with the scope of the remodel. As such, guidance on how to do each piece thoughtfully and with consideration for potential future projects, is critical.

  13. Effects of recent energy system changes on CO2 projections for the United States.

    Science.gov (United States)

    Lenox, Carol S; Loughlin, Daniel H

    2017-09-21

    Recent projections of future United States carbon dioxide (CO 2 ) emissions are considerably lower than projections made just a decade ago. A myriad of factors have contributed to lower forecasts, including reductions in end-use energy service demands, improvements in energy efficiency, and technological innovations. Policies that have encouraged these changes include renewable portfolio standards, corporate vehicle efficiency standards, smart growth initiatives, revisions to building codes, and air and climate regulations. Understanding the effects of these and other factors can be advantageous as society evaluates opportunities for achieving additional CO 2 reductions. Energy system models provide a means to develop such insights. In this analysis, the MARKet ALlocation (MARKAL) model was applied to estimate the relative effects of various energy system changes that have happened since the year 2005 on CO 2 projections for the year 2025. The results indicate that transformations in the transportation and buildings sectors have played major roles in lowering projections. Particularly influential changes include improved vehicle efficiencies, reductions in projected travel demand, reductions in miscellaneous commercial electricity loads, and higher efficiency lighting. Electric sector changes have also contributed significantly to the lowered forecasts, driven by demand reductions, renewable portfolio standards, and air quality regulations.

  14. Annual energy outlook 1993 with projections to 2010

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Information Administration's (EIA's) Annual Energy Outlook 1993 (AEO93) presents forecasts for energy prices, supply, demand, and imports over the period 1990 to 2010. These projections take into account existing legislation, including the Energy Policy Act of 1992. Even though the world oil market remains relatively tight, the long-term outlook for oil prices has been revised downward since the Annual Energy Outlook 1992 as expectations for both the Organization of Petroleum Exporting Countries (OPEC) and non-OPEC production potential have been revised upward. Domestic natural gas prices are also expected to be lower than projected last year, in part because of a more optimistic outlook for drilling technology. Finally, lower growth in the demand for electricity is expected because of the Energy Policy Act of 1992, which mandates efficiency standards for new energy-using equipment. These are the most striking differences between last year's EIA evaluation of long-term energy market trends and this year's evaluation

  15. Model Diagnostics for the Department of Energy's Accelerated Climate Modeling for Energy (ACME) Project

    Science.gov (United States)

    Smith, B.

    2015-12-01

    In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs

  16. FY 2000 report on the survey of policies on cooperation in new energy/energy conservation for developing countries by developed countries/international organizations. Survey of collection/analysis of information on effective energy utilization, etc.; 2000 nendo senshinkoku kokusai kikan no tai tojokoku shin energy sho energy kyoryoku seisaku ni kakawaru chosa hokokusho. Energy yuko riyo nado joho shushu bunseki chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Looking for measures for cooperation in effective energy conservation for developing countries, the paper arranged characteristics of the policies, systems and organizations in relation to energy conservation/new energy policies in developed countries and international organizations excluding Japan. Concretely, survey was made of the following 5 fields: 1) new energy cooperation (project) for developing countries by developed countries and international organizations excluding Japan; 2) outline of activities by aid giving organizations; 3) energy conservation policies of developing countries and cooperation of developed countries and international organizations; 4) policies of new energy introduction in developed countries; 5) study to reinforce cooperation for helping developing countries by Japan and developed countries/international organizations excluding Japan. In 1), survey is composed of case study of the main project and study of the outline of activities by aid giving organizations. The activities by the following aid giving organizations were surveyed: the World Bank group, International Finance Corporation (IFC), United Nations Development Program (UNDP), the European Committee and the Asian Development Bank (ADB). (NEDO)

  17. Oil substitution and energy saving - A research and development strategy of the International Energy Agency /IEA/

    Science.gov (United States)

    Rath-Nagel, S.

    1981-03-01

    Systems analyses were carried out by the International Energy Agency for the participating 15 countries in order to work out strategies and scenarios for lessening the dependence on imported oil and for developing new energy technologies. MARKAL model computations show the technology and energy mixes necessary for achieving a reduction of oil imports by two thirds over the next 40 years. The scenario 'high social security' examines the projected rise in energy consumption, the development of oil substitutes, the increase in alternative heating sources, the development of markets for liquid energy products, the demand for gas, and the relative usage of various energy generation methods. The recommended strategy involves as the most important points an increase in coal consumption, greater nuclear energy reliance and development of alternative technologies.

  18. Renewable energy development and prospects in Australia

    International Nuclear Information System (INIS)

    Ahmad Zahedi

    2000-01-01

    Development of renewable energies in Australia is still in its infancy and will require active support by government, utilities and financing institutions to ensure a steady growth. Much has been done to increase the utilisation of renewable energies in the energy supply, but much still remains to be done, especially in the areas of promotion, demonstration, training and technology transfer. This process will lead to meeting the energy needs of the population in rural areas and to contributing to a suitable development of the region during the next century. Australia is endowed with a wealth of renewable energy resources that hold great promise for addressing a host of important environmental, employment and socioeconomic issues. Australia has a set of climate, geographic and other factors that provide favourable conditions for many specific renewable energy applications. The objectives of this paper is to look at the current situation of renewable energies in Australia, opportunities, constraints, current projects, available potential and future prospects. (Author)

  19. SIHTI 2. Energy and environmental technology. Yearbook 1994 of the research programme. Project reports

    International Nuclear Information System (INIS)

    Korhonen, M.; Saviharju, K.

    1995-01-01

    The SIHTI 2 research programme on energy and environmental technology is concentrating on areas of environmental technology that are vital to Finland or in which Finns can engage in pioneering research. The promotion of product development within the environmental technology industry produces solutions for reducing the emissions of the energy sector. It is also a way of boosting Finland's share of the world market for such technology. The objectives of the programme are to cut down harmful emissions, recycle raw materials, reduce the amount of byproducts and wastes and achieve a greater utilisation of wastes. In additions, an objective is to create basic information about the effects of environmental protection technology for the other national research programmes. The development of internationally comparable research, monitoring and measurement methods creates a basis for wide-ranging international cooperation. The area of research also covers environmental problems connected with energy in the forest and base metal industries as well as the systematic development of life-cycle analyses. The programme will be carried out in 1993 - 1998. As of 1 January 1995 the Technology development Centre TEKES took over the responsibility for energy technology research and development activities, which were previously administered by the Energy Department of the Ministry of Trade and Industry. This yearbook 1994 contains project reports of the research and joint development projects and information about the participating institutions. (orig.)

  20. Achievement report on research and development in the Sunshine Project in fiscal 1977. Hydrogen energy; 1977 nendo seika hokokusho gaiyoshu. Suiso energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-04-01

    This paper summarizes achievements in the Sunshine Project related to hydrogen energy in fiscal 1977. In the electrolytic process in hydrogen manufacturing technologies, new composite materials are developed in relation with membranes and electrodes as the high temperature and pressure water decomposition method. A bench-scale water decomposition tank using organic polymer ion exchange membranes is fabricated on a trial basis and tested for studying solid electrolyte decomposition method. In hydrogen manufacturing technologies using thermo-chemical process, discussions are being given on cycles of iron systems, iodine systems and hybrid systems (mixture of thermo and photo chemistry and electrochemistry). For hydrogen transporting and storing technologies, metal hydrides most suitable for hydrogen storage are developed, and storage systems are studied. In hydrogen combustion, elucidation is made on fundamental conditions for mixed and single combustion technologies suitable for prevention of reverse ignition and suppression of NOx generation. Studies are also being made on fuel cells using aqueous solution and solid electrolytes. Studies on hydrogen fueled engines are also described. In hydrogen safety assuring technologies, discussions are being given on prevention of explosion disasters, prevention of embrittlement of materials due to hydrogen and criteria for safety assuring technologies. Descriptions are given also on studies on total hydrogen energy systems and hydrogen fueled automobiles. (NEDO)

  1. Eleven Tribes Jump START Clean Energy Projects, Summer 2012 (Newsletter)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    This newsletter describes key activities of the DOE Office of Indian Energy Policy and Programs for Summer 2012. The U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) has selected 11 Tribes - five in Alaska and six in the contiguous United States - to receive on-the-ground technical support for community-based energy efficiency and renewable energy projects as part of DOE-IE's Strategic Technical Assistance Response Team (START) Program. START finalists were selected based on the clarity of their requests for technical assistance and the ability of START to successfully work with their projects or community. Technical experts from DOE and its National Renewable Energy Laboratory (NREL) will work directly with community-based project teams to analyze local energy issues and assist the Tribes in moving their projects forward. In Alaska, the effort will be bolstered by DOE-IE's partnership with the Denali Commission, which will provide additional assistance and expertise, as well as funding to fuel the Alaska START initiative.

  2. Energy, economy and development (EED) triangle: Concerns for India

    International Nuclear Information System (INIS)

    Chaturvedi, A.; Samdarshi, S.K.

    2011-01-01

    In this paper we discuss issues involving energy security with economic growth and development that brings out (i) the dimension of physical security alternative, (ii) framework for a pan South East Asian platform to support energy security and (iii) requirement of promoting regional energy cooperation and specific energy peace initiatives. Sustaining projected economic growth rate coupled with energy security in future is a concern for all developing countries like India. The energy security of these nations is threatened by the disruption of energy supplies by ongoing energy terrorism and geopolitical conflicts in the region. India's geo-strategic position and increasing energy dependence raises concerns for its energy security. We discuss energy security, examine factors and approaches to attempt the energy security in the light of economic growth and development. - Highlights: → India's perspective on evolving energy security concepts and risks analysed. → Model in the form of EED triangle proposed. → New potential energy security alternatives proposed in the light of the model.

  3. Energy, economy and development (EED) triangle: Concerns for India

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, A. [Department of Energy, Tezpur University, Tezpur 784028, Assam (India); Samdarshi, S.K., E-mail: drsksamdarshi@rediffmail.com [Department of Energy, Tezpur University, Tezpur 784028, Assam (India)

    2011-08-15

    In this paper we discuss issues involving energy security with economic growth and development that brings out (i) the dimension of physical security alternative, (ii) framework for a pan South East Asian platform to support energy security and (iii) requirement of promoting regional energy cooperation and specific energy peace initiatives. Sustaining projected economic growth rate coupled with energy security in future is a concern for all developing countries like India. The energy security of these nations is threatened by the disruption of energy supplies by ongoing energy terrorism and geopolitical conflicts in the region. India's geo-strategic position and increasing energy dependence raises concerns for its energy security. We discuss energy security, examine factors and approaches to attempt the energy security in the light of economic growth and development. - Highlights: > India's perspective on evolving energy security concepts and risks analysed. > Model in the form of EED triangle proposed. > New potential energy security alternatives proposed in the light of the model.

  4. Department of Energy Small-Scale Hydropower Program: Feasibility assessment and technology development summary report

    International Nuclear Information System (INIS)

    Rinehart, B.N.

    1991-06-01

    This report summarizes two subprograms under the US Department of Energy's Small-Scale Hydroelectric Power Program. These subprograms were part of the financial assistance activities and included the Program Research and Development Announcement (PRDA) feasibility assessments and the technology development projects. The other major subprograms included engineering research and development, legal and institutional aspects, and technology transfer. These other subprograms are covered in their respective summary reports. The problems of energy availability and increasing costs of energy led to a national effort to develop economical and environmental attractive alternative energy resources. One such alternative involved the utilization of existing dams with hydraulic heads of <65 ft and the capacity to generate hydroelectric power of 15 MW or less. Thus, the PRDA program was initiated along with the Technology Development program. The purpose of the PRDA feasibility studies was to encourage development of renewable hydroelectric resources by providing engineering, economic, environmental, safety, and institutional information. Fifty-five feasibility studies were completed under the PRDA. This report briefly summarizes each of those projects. Many of the PRDA projects went on to become technology development projects. 56 refs., 1 fig., 2 tabs

  5. Department of Energy Small-Scale Hydropower Program: Feasibility assessment and technology development summary report

    Energy Technology Data Exchange (ETDEWEB)

    Rinehart, B.N.

    1991-06-01

    This report summarizes two subprograms under the US Department of Energy's Small-Scale Hydroelectric Power Program. These subprograms were part of the financial assistance activities and included the Program Research and Development Announcement (PRDA) feasibility assessments and the technology development projects. The other major subprograms included engineering research and development, legal and institutional aspects, and technology transfer. These other subprograms are covered in their respective summary reports. The problems of energy availability and increasing costs of energy led to a national effort to develop economical and environmental attractive alternative energy resources. One such alternative involved the utilization of existing dams with hydraulic heads of <65 ft and the capacity to generate hydroelectric power of 15 MW or less. Thus, the PRDA program was initiated along with the Technology Development program. The purpose of the PRDA feasibility studies was to encourage development of renewable hydroelectric resources by providing engineering, economic, environmental, safety, and institutional information. Fifty-five feasibility studies were completed under the PRDA. This report briefly summarizes each of those projects. Many of the PRDA projects went on to become technology development projects. 56 refs., 1 fig., 2 tabs.

  6. The 2006 activities and the workshop of the human resources development project in FNCA (Contract research)

    International Nuclear Information System (INIS)

    2007-09-01

    In 1999, the Project for Human Resources Development (HRD Project) was initiated as defined in the framework of the Forum for Nuclear Cooperation in Asia (FNCA), organized by the Atomic Energy Commission of Japan. The objective of the HRD Project is to solidify the foundation of technologies for nuclear development and utilization in Asia by promoting human resources development in Asia countries. In the Project there are two kinds of activity; In-workshop activity and Outside-workshop activity. The FNCA 2006 Workshop on HRD Project was held on July 31 - August 4, 2006, in Shenzhen, China. The Workshop was sponsored by the China Atomic Energy Authority (CAEA) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. The China Atomic Energy Authority (CAEA) and the Japan Atomic Energy Agency (JAEA) acted as the hosts. Participating countries were China, Indonesia, Republic of Korea, Japan, Malaysia, the Philippines, Thailand, and Vietnam. The activities of HRD Project was presented in the Eighth Coordinators Meeting of FNCA held on February 7th - 9th, 2007, in Tokyo, Japan. This report consists of presentation papers and materials at the FNCA 2006 Workshop, a review document of HRD Project for the Coordinators Meeting of FNCA as Outside-Workshop Activity. (author)

  7. Current status of development on superconducting magnetic energy storage systems and magnetic refrigeration

    International Nuclear Information System (INIS)

    Hirano, Naoki

    2010-01-01

    Superconducting magnetic energy storage (SMES) systems have excellent characteristics as energy-storage equipment in power systems such as high efficiency, quick response, and no deterioration in repetitive operations. There are many projects to develop SMES throughout the world. Since 1991, a national project by the Agency for Natural Resources and Energy Japan has been working to develop an SMES system to control power in power systems. Moreover, SMES has been developed to compensate for momentary voltage dips since 2003. To reduce energy consumption due to prolonged operating times, we developed energy-conserving electrical equipment incorporating refrigerating aggregates such as air conditioners. We conduced R and D to convert magnetic refrigeration and highly-efficient, energy-conserving/environmentally friendly technologies, to practical applications. The current status in the development of SMES to control power systems, bridging to deal with instantaneous voltage dips, and magnetic refrigeration technology will be explained in this paper. (author)

  8. 78 FR 28842 - Searchlight Wind Energy Project Record of Decision (DOE/EIS-0413)

    Science.gov (United States)

    2013-05-16

    ... DEPARTMENT OF ENERGY Western Area Power Administration Searchlight Wind Energy Project Record of...), received a request from Searchlight Wind Energy, LLC (Searchlight) to interconnect its proposed Searchlight Wind Energy Project (Project) to Western's Davis-Mead 230- kilovolt (kV) transmission line. The Project...

  9. Energy policy fundamentals research programme - Activities and projects in 2002

    International Nuclear Information System (INIS)

    Meier, R.; Previdoli, P.

    2003-01-01

    This annual report for the Swiss Federal Office of Energy reviews the activities and projects carried out within the Swiss Confederation's Energy Policy Fundamentals Research programme during 2002. The programme's main centres of activity are described, including projects involving the acquisition of data on indicators of selected cantonal energy saving measures, the possibility of reducing carbon dioxide emissions by influencing fuel prices, new construction instead of refurbishment of buildings, internalisation of risks involved with nuclear power and the marginal costs of intensified energy-efficiency measures. In the technology monitoring area, the results of studies concerning combined heat and power systems, heat pumps and fuel cells are reviewed. Further projects are described in the building and fuel supply areas and the influence of wind power on European peak power requirements is examined. Marketing aspects concerning the thermal use of solar energy and low energy consumption housing are discussed, as is the promotion of energy efficiency in housing and industry. Also local and regional efforts being made in the energy policy area are described. The report is rounded off with a list of the various projects mentioned in the report and appropriate contact information

  10. Rigorous project for existing houses. Energy conservation requires evolution; Rigoureus project voor bestaande woningen. Evolutie voor energiebesparing nodig

    Energy Technology Data Exchange (ETDEWEB)

    Clocquet, R. [DHV, Amersfoort (Netherlands); Koene, F. [ECN Efficiency and Infrastructure, Petten (Netherlands)

    2010-05-15

    How can existing terraced houses be renovated in such a way that their energy use decreases with 75 percent? The Rigorous project of the Energy research Centre of the Netherlands (ECN), TNO, Delft University of Technology and DHV, developed innovative renovation concepts that make such savings feasible by combining constructional measures with installation concepts. On top of that it is also essential that consumer behavior is addressed. [Dutch] Hoe kunnen bestaande rijtjeswoningen zo worden gerenoveerd dat het totale energiegebruik met 75 procent afneemt? In het Rigoureus-project hebben ECN, TNO, TU Delft en DHV innovatieve renovatieconcepten ontwikkeld die dat, door een combinatie van bouwkundige maatregelen en uitgeldende installatieconcepten, mogelijk maken. Daarbij blijkt het van essentieel belang ook het gebruikersgedrag aan te pakken.

  11. FY 1997 basic survey project (database construction project) for enhancing energy consumption efficiency in developing countries; 1997 nendo hatten tojokoku energy shohi koritsuka kiso chosa jigyo. Database kochiku jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    NEDO is promoting a database construction project to collect and supply various technical/systematical information on energy related data and energy effective utilization. In FY 1997, about the Philippines, Indonesia and China, the data collected in a year were renewed, and seminar/workshop were held as a part of the promotion activities. About Thailand, Malaysia, Korea, Taiwan and Japan, Japan has independently been collecting the data. Also in FY 1997, Japan arranged the existing data and arranged/collected the data. About Vietnam, India, Myanmer and Pakistan, which became the objects for the project newly in FY 1996, the state of data arrangement was confirmed and the data were collected. Moreover, functional improvement of the system was made so that each country can use the database more easily and maintain the data independently. (NEDO)

  12. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    Science.gov (United States)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  13. Final Report - Development of a Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Maracas, Kate; Hooks, Todd

    2006-11-30

    The Agua Caliente Band of Cahuilla Indians was awarded a grant under the U.S. Department of Energy’s (“DOE”) Tribal Energy Program to develop a comprehensive Tribal energy plan. The grant, awarded under DOE’s First Steps program, supported the development of a strategic energy plan that integrates with the Tribe’s overall planning and economic development goals, and aligns with Tribal cultural, social, political, and spiritual values. The Tribe set out to incorporate its energy plan into (i) a broader economic development strategy developed by investigators at the University of California at Riverside, and (ii) the overarching goals for job-creation and wealth-creation that are held by both the Tribe and the surrounding Coachella Valley. With these wide-ranging objectives in mind, the Tribe and its consultant, Red Mountain Energy Partners, engaged in a phased approach to creating the strategic energy plan. As illustrated in Figure 1 below, the proposed approach involved both “serial” and “parallel” activities. The capacity-building component of this approach occurred throughout the duration of the project period.

  14. submitter Projects for ultra-high-energy circular colliders at CERN

    CERN Document Server

    Bogomyagkov, A V; Levichev, E B; Piminov, P A; Sinyatkin, S V; Shatilov, D N; Benedict, M; Oide, K; Zimmermann, F

    2016-01-01

    Within the Future Circular Collider (FCC) design study launched at CERN in 2014, it is envisaged to construct hadron (FCC-hh) and lepton (FCC-ee) ultra-high-energy machines aimed to replace the LHC upon the conclusion of its research program. The Budker Institute of Nuclear Physics is actively involved in the development of the FCC-ee electron–positron collider. The Crab Waist (CR) scheme of the collision region that has been proposed by INP and will be implemented at FCC-ee is expected to provide high luminosity over a broad energy range. The status and development of the FCC project are described, and its parameters and limitations are discussed for the lepton collider in particular.

  15. Old Wine in New Bottles? Does Climate Policy Determine Bilateral Development Aid for Renewable Energy and Energy Efficiency?

    Directory of Open Access Journals (Sweden)

    Axel Michaelowa

    2011-05-01

    Full Text Available Published by Palgrave MacmillanSince the UN Conference on Environment and Development in Rio de Janeiro in 1992 bilateral and multilateral donors have stressed that development assistance has increasingly been oriented towards climate-friendly interventions. With respect to energy aid, this should lead to a substantial increase in projects related to renewable energy and energy efficiency. Given a new database of hundreds of thousands of bilateral development assistance projects, we can assess whether such a reorientation has indeed taken place. We find that, contrary to expectations, the share of bilaterally-funded renewable energy and energy efficiency projects did not increase over the period from 1980 to 2008. This share fluctuated greatly, following the price of oil, peaking with the second oil crisis of the early 1980s. The impacts of global climate policy treaties are minor or inexistent. ‘Traditional’ renewable energies such as hydro and geothermal declined, while “new” renewables showed two peaks in the early 1980s and late 1990s. Differences between donor countries are huge. Several countries, including climate sceptics such as the US and Australia, but also the UK and Switzerland, saw a consistent decline. The self-proclaimed climate pioneers such as Germany, the Netherlands, Norway and Sweden show peaks related to both the oil crises and international climate policy. Only in Austria, Denmark, Finland and Spain can ‘new’ climate mitigation development assistance be found.

  16. Balancing energy and the environment: the case of geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Ellickson, P.L.; Brewer, S.

    1978-06-01

    The results of part of a Rand study on the federal role in resolving environmental issues arising out of the implementation of energy projects are reported. The projects discussed are two geothermal programs in California: the steam resource development at The Geysers (Lake and Sonoma counties) in northern California, and the wet brine development in the Imperial Valley in southern California.

  17. Guidelines for Home Energy Professionals Project (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    The Guidelines for Home Energy Professionals is a collaboration between the U.S. Department of Energy (DOE) and a wide range of home energy performance industry professionals. The Guidelines project, managed by the National Renewable Energy Laboratory (NREL) for DOE, addresses the need for a highly-skilled weatherization workforce equipped to complete consistent, high-quality home energy upgrades for single-family homes, multifamily homes, and manufactured housing. In doing so, it helps increase energy efficiency in housing, which can mitigate climate change, one of the major challenges of the 21st century.

  18. The 2001 activities and the 3rd workshop of the human resources development project in FNCA

    International Nuclear Information System (INIS)

    2002-07-01

    In 1999, the Project for Human Resources Development (HRD) was initiated as defined in the framework of the Forum for Nuclear Cooperation in Asia (FNCA), organized by the Atomic Energy Commission of Japan. The objective of the HRD Project is to solidify the foundation of technologies for nuclear development and utilization in Asia by promoting human resources development in Asian countries. In the Project are two kinds of activity; In-workshop activity and Outside-of-workshop activity. The 3rd Workshop on Human Resources Development in the Nuclear Field was held on October 29 to November 1, at the Nuclear Training Center of KAERI. Participating countries were China, Indonesia, Republic of Korea, Japan, Malaysia, the Philippines, Thailand, and Vietnam. The secretariat for the Human Resources Development Project is provided by the Nuclear Training Center of the Korea Atomic Energy Research Institute and the Nuclear Technology and Education Center of the Japan Atomic Energy Research Institute. This report consists of presentation papers and materials at the Workshop as In-Workshop Activity, a document of project review on Human Resources Development for the fourth Coordinators Meeting of FNCA at Tokyo on March, 2002, a letter of proposal from the Project Leader of Japan to the project leaders of the participating countries, and training materials of participating countries as Outside-Workshop Activity. (author)

  19. KrF laser development for fusion energy

    International Nuclear Information System (INIS)

    Wolford, Matthew F.; Sethian, John D.; Myers, Matthew C.; Giuliani, John L.; Obenschain, Stephen P.; Hegeler, Frank

    2013-01-01

    The United States Naval Research Laboratory is developing an electron beam pumped krypton fluoride laser technology for a direct drive inertial fusion energy power plant. The repetitively pulsed krypton fluoride laser technology being developed meets the fusion energy requirements for laser beam quality, wavelength, and repetition rate. The krypton fluoride laser technology is projected, based on experiments, to meet the requirements for wall plug efficiency and durability. The projected wall plug efficiency based on experiments is greater than 7 percent. The Electra laser using laser triggered gas switches has conducted continuous operation for 90,000 shots at 2.5 Hertz operation (ten hours). The Electra laser has achieved greater than 700 Joules per pulse at 1 and 2.5 Hertz repetition rate. The comparison of krypton fluoride laser performance with krypton fluoride kinetics code shows good agreement for pulse shape and laser yield. Development and operation of a durable pulse power system with solid state switches has achieved a continuous run of 11 million pulses into a resistive load at 10 Hz. (author)

  20. Floating attenuator wave energy device: Wavegen HYDRA project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report describes research funded by the Department of Trade and Industry (DTI) into the feasibility of developing and constructing a floating attenuator wave energy device known as HYDRA following initial studies by Wavegen. HYDRA is a floating externally tensioned articulated raft wave energy generator based on work by Professor FJM Farley and colleagues during the 1980s. The project's first four work tasks confirmed the theoretical potential of the device but also highlighted significant practical problems in translating that potential into a viable design. It was therefore decided not to proceed further, i.e. not to construct and test a prototype device. The report provides a general description of the device and describes the results of the initial analysis and the first series of model tests. It then discusses device design and component testing and explains the methodology for determining device performance at a particular site and mathematical modelling of a one-third scale device. To help future research and development programmes, the report emphasises the generic problems associated with the development of wave devices.

  1. Annual Energy Outlook 2009 with Projections to 2030

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    The Annual Energy Outlook 2009 (AEO2009), prepared by the Energy Information Administration (EIA), presents long-term projections of energy supply, demand, and prices through 2030, based on results from EIA’s National Energy Modeling System (NEMS). EIA published an “early release” version of the AEO2009 reference case in December 2008.

  2. Renewable energy projects in small island countries funded under the United Nation trust found for new and renewable source of energy (NRSE)

    International Nuclear Information System (INIS)

    Gururaja, J.

    1999-01-01

    The NRSE trust fund established with financial support from the Italian Government has succeeded in catalyzing a number of energy projects in small island developing countries. These projects have elicited a great deal of interest by local communities and opened up prospects for further utilization of locally available energy resources. The projects have created a positive impact on the quality of life of people in dispersed locations in small island developing countries by focusing on provision of renewable energy based electricity services such as solar PV lighting for homes, schools, and hospitals; radio, TV, VCR as well as medicine refrigerators. Thus it has become evident that renewable energy technologies such as solar and wind systems can have an important role to play in improving the quality of life of people in these small island countries. Market potential for these technologies is indeed substantial. However constraints and barriers still exist. One of the principal barriers is still the high initial cost of solar devices. Innovative financing including microcredit facilities needs to be explored. Efforts are also needed to strengthen local capacity to undertake assembly of components and systems, and also in the installation, maintenance, and service of renewable energy devices. Entrepreneurial activities need to be fostered through further strengthening of skills in this area. (EHS)

  3. Renewable energy projects in small island countries funded under the United Nation trust found for new and renewable source of energy (NRSE)

    Energy Technology Data Exchange (ETDEWEB)

    Gururaja, J. [Energy and Transport Branch, Division for Sustainabel Development, Department of Economic and Social Affairs, United Nations, NY (United States)

    1999-11-01

    The NRSE trust fund established with financial support from the Italian Government has succeeded in catalyzing a number of energy projects in small island developing countries. These projects have elicited a great deal of interest by local communities and opened up prospects for further utilization of locally available energy resources. The projects have created a positive impact on the quality of life of people in dispersed locations in small island developing countries by focusing on provision of renewable energy based electricity services such as solar PV lighting for homes, schools, and hospitals; radio, TV, VCR as well as medicine refrigerators. Thus it has become evident that renewable energy technologies such as solar and wind systems can have an important role to play in improving the quality of life of people in these small island countries. Market potential for these technologies is indeed substantial. However constraints and barriers still exist. One of the principal barriers is still the high initial cost of solar devices. Innovative financing including microcredit facilities needs to be explored. Efforts are also needed to strengthen local capacity to undertake assembly of components and systems, and also in the installation, maintenance, and service of renewable energy devices. Entrepreneurial activities need to be fostered through further strengthening of skills in this area. (EHS)

  4. Project of energy orientation law modified in second lecture by the house of commons

    International Nuclear Information System (INIS)

    2005-01-01

    This project of law follows the French national debate on energies which took place in 2003. The French energy orientation policy has to solve 3 main problems: moderating the increase and optimizing the use of energy, developing the renewable energy sources, and renewing of the nuclear power generation tool or substitution by another power generation source. The French energy policy is built around 4 main objectives: saving energy and developing renewable energy sources, protecting human health and the environment, keeping energy prices competitive, and contributing to the social and territorial cohesion by warranting an access to energy for anyone. This document details, first, the above objectives, and then details for each article the changes made with respect to previous energy and environmental legislative texts. (J.S.)

  5. Intelum project: tackling the calorimetry challenge for future high-energy colliders

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    Intelum is one of the CERN-coordinated projects funded under H2020. It aims to develop low-cost, radiation-hard scintillating and Cherenkov crystal and glass fibres for the next generation of calorimeter detectors for future high-energy experiments. This new technology could also have important applications in the medical imaging field.     Intelum project partners at the kick-off meeting held on 11 March at CERN.   Intelum is an H2020 Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE) project coordinated by CERN. This project was initiated by the Crystal Clear Collaboration (CERN’s RD18 experiment), which has been developing inorganic scintillation materials for novel ionising-radiation detectors for 25 years. Intelum is an international consortium including fifteen institutes and companies from across western and eastern Europe, Japan and the USA, all of which are experts in crystal growth, scintillating mechanisms, radiation damage and dete...

  6. Technical Note: Insertion of digital lesions in the projection domain for dual-source, dual-energy CT.

    Science.gov (United States)

    Ferrero, Andrea; Chen, Baiyu; Li, Zhoubo; Yu, Lifeng; McCollough, Cynthia

    2017-05-01

    To compare algorithms performing material decomposition and classification in dual-energy CT, it is desirable to know the ground truth of the lesion to be analyzed in real patient data. In this work, we developed and validated a framework to insert digital lesions of arbitrary chemical composition into patient projection data acquired on a dual-source, dual-energy CT system. A model that takes into account beam-hardening effects was developed to predict the CT number of objects with known chemical composition. The model utilizes information about the x-ray energy spectra, the patient/phantom attenuation, and the x-ray detector energy response. The beam-hardening model was validated on samples of iodine (I) and calcium (Ca) for a second-generation dual-source, dual-energy CT scanner for all tube potentials available and a wide range of patient sizes. The seven most prevalent mineral components of renal stones were modeled and digital stones were created with CT numbers computed for each patient/phantom size and x-ray energy spectra using the developed beam-hardening model. Each digital stone was inserted in the dual-energy projection data of a water phantom scanned on a dual-source scanner and reconstructed with the routine algorithms in use in our practice. The geometry of the forward projection for dual-energy data was validated by comparing CT number accuracy and high-contrast resolution of simulated dual-energy CT data of the ACR phantom with experimentally acquired data. The beam-hardening model and forward projection method accurately predicted the CT number of I and Ca over a wide range of tube potentials and phantom sizes. The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner, and the CT number ratios for different kidney stone types were consistent with data in the literature. A sample application of the proposed tool was also demonstrated. A framework was developed and validated

  7. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage

  8. Commercialization of biomass energy projects: Outline for maximizing use of valuable tax credits and incentives

    International Nuclear Information System (INIS)

    Sanderson, G.A.

    1994-01-01

    The Federal Government offers a number of incentives designed specifically to promote biomass energy. These incentives include various tax credits, deductions and exemptions, as well as direct subsidy payments and grants. Additionally, equipment manufacturers and project developers may find several other tax provisions useful, including tax incentives for exporting U.S. good and engineering services, as well as incentives for the development of new technologies. This paper outlines the available incentives, and also addresses ways to coordinate the use of tax breaks with government grants and tax-free bond financing in order to maximize benefits for biomass energy projects

  9. Territorial authorities, stakeholders of participative and citizen projects of renewable energy. From support to management: how to do it?

    International Nuclear Information System (INIS)

    Peullemeulle, Justine; Duval, Joakim; Boumard, Erwan; Leclercq, Michel; Paraiso, Jean-Eric; Foulon, Arno; Parrouffe, Jean-Michel; Guillerminet, Marie-Laure; Mouhamad, Sakina; Leclercq, Michel; Poize, Noemie; Duffes, Thomas; Billard, Marianne; Leyendecker, Manon; Jourdain, Pierre

    2017-09-01

    This publication aims at being a guide for public actors in the implementation and management of participative and citizen projects of renewable energy. It first outlines context and stakes for territorial authorities and citizen, both considered as actors of a democracy of energy. In the next chapter, and by referring to actual examples, it describes the approach to a citizen-based project, and more precisely how a local authority can support the emergence of projects, as well as citizen initiatives, how it is involved in the development phase, and in the building phase. The next chapter highlights lessons which can be learned from a set of current experiments and situations: how can citizen make authorities participate to a project they initiated, how can authorities can make citizen participate to a project they initiated, which actions to implement when a developer wants to intervene on a territory, case of local authorities supporting the local policy of development of citizen renewable energies

  10. Application of the modified Tobin's q to an uncertain energy-saving project with the real options concept

    International Nuclear Information System (INIS)

    Lin, Tyrone T.; Huang, Shio-Ling

    2011-01-01

    This paper is to develop a modified Tobin's q evaluation method which successfully combines the evaluation criteria of the traditional Tobin's q and the real options. This study provides flexible thinking for decision making criteria. That is, it clearly provides decision-makers with a reference in choosing enter or exit strategies, such as quantitative indicators references. The proposed model introduces two variables stochastic process in continuous time and explores the impact of the occurrence of unexpected events on the project value, so that, it can more authentically response to the project value. The studied issue deals with the firms that have not established energy-saving equipment yet. It attempts to figure out the optimal timing to adopt an energy-saving investment project when it is beneficial and the optimal timing to terminate it when the continuous operation of that business is unprofitable. The future discounted benefit-cost ratio, Q, follows the geometric Brownian motion with the Poisson jump process and the replacement of investment equipment. Except for the evaluation of energy-saving equipment investment project, the proposed model can be applied to other related project evaluation issues, such as energy-saving, CO 2 emission reduction, or general investment projects. - Research highlights: → Develops an approach which combines the traditional Tobin's q and the real options. → Applies to general energy-saving project or other investment projects. → Can more authentically response to the project value with strategic entry and exit. → Provides flexible thinking for decision making criteria via modified Tobin's q model. → Reduces the model complexity and increases the flexibility in practice application.

  11. Tracking Water-Use in Colorado's Energy Exploration and Development

    Science.gov (United States)

    Halamka, T. A.; Ge, S.

    2017-12-01

    By the year 2050 Colorado's population is projected to nearly double, posing many important questions about the stresses that Colorado's water resources will experience. Growing in tandem with Colorado's population is the state's energy exploration and development industry. As water demands increase across the state, the energy exploration and development industry must adapt to and prepare for future difficulties surrounding the legal acquisition of water. The goal of this study is to map out the potential sources of water within the state of Colorado that are being purchased, or will be eligible for purchase, for unconventional subsurface energy extraction. The background of this study includes an overview of the intertwined relationship between water, the energy industry, and the Colorado economy. The project also aims to determine the original purpose of legally appropriated water that is used in Colorado's energy exploration and development. Is the water primarily being purchased or leased from the agricultural sector? Is the water mostly surface water or groundwater? In order to answer these questions, we accessed data from numerous water reporting agencies and examined legal methods of acquisition of water for use in the energy industry. Using these data, we assess the future water quantity available to the energy industry. Knowledge and foresight on the origins of the water used by the energy industry will allow for better and strategic planning of water resources and how the industry will respond to statewide water-related stresses.

  12. Short-term energy outlook, quarterly projections, second quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections. The details of these projections, as well as monthly updates, are available on the Internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The paper discusses outlook assumptions; US energy prices; world oil supply and the oil production cutback agreement of March 1998; international oil demand and supply; world oil stocks, capacity, and net trade; US oil demand and supply; US natural gas demand and supply; US coal demand and supply; US electricity demand and supply; US renewable energy demand; and US energy demand and supply sensitivities. 29 figs., 19 tabs.

  13. Caribbean alternative energy programme project proposals

    International Nuclear Information System (INIS)

    1978-03-01

    This is the third report to follow the Project Group Meeting on ALTERNATIVE ENERGY RESOURCES, Barbados, September, 1977. It consists of summaries of projects proposals identified at the Meeting. The first two reports have been previously circulated. The first CSC(77)AER-1 covers the background, proceedings and recommendations resulting from the meeting as well as containing a brief outline of the project proposals. The country papers and technical papers that were presented at the meeting or served as background material, form the second report, CSC(77)AER-2. Copies of the first two reports can be obtained on request to the Commonwealth Science Council. Projects with potential for making significant progress in the short term have been marked with an asterisk

  14. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    To accurately represent how conservation and efficiency policies affect energy demand, both direct and indirect impacts need to be included in the accounting. The indirect impacts are defined here as the resource savings that accrue over the fuel production chain, which when added to the energy consumed at the point of use, constitute the full-fuel- cycle (FFC) energy. This paper uses the accounting framework developed in (Coughlin 2012) to calculate FFC energy metrics as time series for the period 2010-2040. The approach is extended to define FFC metrics for the emissions of greenhouse gases (GHGs) and other air-borne pollutants. The primary focus is the types of energy used in buildings and industrial processes, mainly natural gas and electricity. The analysis includes a discussion of the fuel production chain for coal, which is used extensively for electric power generation, and for diesel and fuel oil, which are used in mining, oil and gas operations, and fuel distribution. Estimates of the energy intensity parameters make use of data and projections from the Energy Information Agency’s National Energy Modeling System, with calculations based on information from the Annual Energy Outlook 2012.

  15. Application study of the project management on the nuclear power projects in China Institute of Atomic Energy

    International Nuclear Information System (INIS)

    Ji Cunxing

    2012-01-01

    The article introduced the actions of foreign and domestic nuclear power technical services in China Institute of Atomic Energy, the project management theory is applied to the organization, implementation and control of the nuclear power projects. It is analyzed the quality, schedule , investment etc of nuclear power projects, the improving measures and suggestions are bring forward on the project management organization, quality assurance, reduce cost etc. It will raise its nuclear power project management level in China Institute of Atomic Energy. (author)

  16. Basic survey project of advanced efficiency of energy consumption in developing countries. Engineer invitation project from developing countries such as Vietnam, Philippines, China and Thailand; Hatten tojokoku energy shohi koritsuka kiso chosa nado jigyo. Hatten tojokoku gijutsusha shohei jigyo (Betonamu, Philippine, Chugoku, Tai)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For contributing to the promotion of energy saving and environmental conservation, eighteen officers and engineers were invited to Japan during the period between January 14th and 23rd in 1997, from Vietnam, Philippines, China and Thailand. This report summarizes the invitation project for training conducted under a theme `Energy saving and environmental conservation.` Lectures were given concerning activities of global environmental conservation by NEDO, history and measures of overcoming the Yokkaichi pollution, outline of new energy, outline of energy saving, outline of basic environment law, outline of final industrial waste treatment facilities, and global environmental issues. Site training was conducted at Hekinan Thermal Power Station of Chubu Electric Power Co., Inc., Fujiwara Works of Onoda-Chichibu Cement Co., Ltd., and Yokkaichi Works of Kyowa Petroleum and Chemistry Co., Ltd. Questions and answers were exchanged. The new energy and energy saving were impressive, and were new concept for the trainees. This project was considered to be continued. The inspection of works was also well received, which was considered to be continued

  17. Review of areas of search for renewable energy developments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This report addresses planning policy issues related to the development of wind energy, small scale hydro power, energy from waste, landfill gas, and biomass fuels with the aim of improving planning policies in the development plans so that the benefits from renewable energy are recognised in the individual planning applications. The background to the project is traced, and renewable energy technologies and current renewable energy policies are reviewed. The relevance of 'Area of Search' and criteria-based policies, and the renewable energy policies are examined, and key findings relating to the ongoing reviews of planning policies, the national policy guidance, and required targets for renewable energy, the appropriateness of areas of search policies, community benefits and perceptions, local energy strategies, and consistency of renewable energy policies are discussed. (UK)

  18. The development of today's mineable oil sands projects, the key factors influencing economics

    International Nuclear Information System (INIS)

    Lynn, J.R.

    1991-01-01

    Many factors influence the perception of economic performance for developing projects. Some of these factors can be controlled by the developer, while some are outside the developer's sphere of influence. Technology selection, management systems, stakeholder involvement, environmental responsiveness and risk management are areas that may be influenced, however interest rates, product prices and currency exchange all have a measurable effect on project economics and are beyond a developer's control. Economic considerations for evaluating mineable oil sand development projects are outlined, focussing on the key factors unique to such developments in general and to the OSLO project in particular. The OSLO project is a proposed $5 billion energy development that entails constructing an open pit oil sands mine and a bitumen extraction facility north of Fort McMurray, Alberta, coupled with a bitumen upgrader in the Redwater area. 7 figs

  19. E-Energy: The future of energy supply. Model project for an 'Internet of Energy'; E-Energy: Die Zukunft der Energieversorgung. Modellprojekte fuer das 'Internet der Energie'

    Energy Technology Data Exchange (ETDEWEB)

    Wedler, Michael [Baum Consult GmbH, Muenchen (Germany)

    2009-07-13

    Through 2012, the Federal Ministry of Economics will provide funds for six model projects aimed at the development of an ''Internet of Energy'': Power supply is to be reliable, economically efficient, and environment-friendly. The current problems of global climate change, increasing energy demand and depletion of fossil fuels present great challenges which in the long run can be met only by a massive increase in renewables-based energy supply. This is a problem as the current supply structure was not designed for this. (orig.)

  20. DELSY project: status and development Dubna Electron Synchrotron

    CERN Document Server

    Balalykin, N; Bykovsky, V

    2003-01-01

    The DELSY (Dubna Electron Synchrotron) project is under development at the Joint Institute for Nuclear Research. It is based on an acceleration facility donated to the Joint Institute for Nuclear Research by the Institute for Nuclear and High Energy Physics (NIKHEF, Amsterdam). The NIKHEF accelerator facility consists of the linear electron accelerator MEA, which has an electron energy of 700 MeV, and the electron storage ring AmPS, with a maximum energy of 900 MeV and a beam current of 200 mA. There are three phases to the construction of the DELSY facility. Phase I will be accomplished with the construction of a complex of free-electron lasers covering continuously the spectrum from the far infrared down to the ultraviolet (approx 150 nm). Phase II will be accomplished with the commissioning of the storage ring DELSY. Complete commissioning of the DELSY project will take place after finishing Phase III, the construction of an X-ray free-electron laser. This phase is considered as the ultimate goal of the pr...