WorldWideScience

Sample records for energy product options

  1. Energy options

    International Nuclear Information System (INIS)

    Hampton, Michael

    1999-01-01

    This chapter focuses on energy options as a means of managing exposure to energy prices. An intuitive approach to energy options is presented, and traditional definitions of call and put options are given. The relationship between options and swaps, option value and option exercises, commodity options, and option pricing are described. An end-user's guide to energy option strategy is outlined, and straight options, collars, participating swaps and collars, bull and bear spreads, and swaption are examined. Panels explaining the defining of basis risk, and discussing option pricing and the Greeks, delta hedging, managing oil options using the Black-Scholes model, caps, floors and collars, and guidelines on hedging versus speculation with options are included in the paper

  2. Solar Energy - An Option for Future Energy Production

    Science.gov (United States)

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  3. Photobiological production of hydrogen: a solar energy conversion option

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.; Lien, S.; Seibert, M.

    1979-01-01

    This literature survey of photobiological hydrogen production covers the period from its discovery in relatively pure cultures during the early 1930s to the present. The focus is hydrogen production by phototrophic organisms (and their components) which occurs at the expense of light energy and electron-donating substrates. The survey covers the major contributions in the area; however, in many cases, space has limited the degree of detail provided. Among the topics included is a brief historical overview of hydrogen metabolism in photosynthetic bacteria, eucaryotic algae, and cyanobacteria (blue--green algae). The primary enzyme systems, including hydrogenase and nitrogenase, are discussed along with the manner in which they are coupled to electron transport and the primary photochemistry of photosynthesis. A number of in vivo and in vitro photobiological hydrogen evolving schemes including photosynthetic bacterial, green algal, cyanobacterial, two-stage, and cell-free systems are examined in some detail. The remainder of the review discusses specific technical problem areas that currently limit the yield and duration of many of the systems and research that might lead to progress in these specific areas. The final section outlines, in broadest terms, future research directions necessary to develop practical photobiological hydrogen-producing systems. Both whole cell (near- to mid-term) and cell-free (long-term) systems should be emphasized. Photosynthetic bacteria currently show the most promise for near-term applied systems.

  4. Africa's technology options for renewable energy production and distribution

    CSIR Research Space (South Africa)

    Amigun, B

    2011-12-01

    Full Text Available This chapter presents a critical appraisal of Africa's modern energy technologies for renewable energy. It highlights issues of scale and location-specific attributes. A critical review of different renewable energies is presented, the state...

  5. Energy exotic options

    International Nuclear Information System (INIS)

    Kaminski, V.; Gibner, S.; Pinnamaneni, K.

    1999-01-01

    This chapter with 88 references focuses on the use of exotic options to control exposure to energy prices. Exotic options are defined, and the conversion of a standard option into an exotic option and pricing models are examined. Pricing and hedging exotic options, path-dependent options, multi-commodity options, options on the minimum-or-maximum of two commodities, compound options, digital options, hybrid and complex structures, and natural gas daily options are described. Formulas for option pricing for vanilla, barrier, compound, options on minimum or maximum of two assets, and look back options are given in an appendix

  6. Energy options?; Energie opties?

    Energy Technology Data Exchange (ETDEWEB)

    Van Sark, W. (ed.)

    2006-05-15

    March 2006 the so-called Options Document was published by the Energy research Centre of the Netherlands (ECN) and the Netherlands Environmental Assessment Agency (MNP). The document is an overview of technical options to reduce energy consumption and emission of greenhouse gases up to 2020. Next to a brief summary of the document a few reactions and comments on the contents of the document are given. [Dutch] Maart 2006 publiceerde het Energieonderzoek Centrum Nederland (ECN) en het Milieu- en Natuurplanbureau (MNP) het zogenaamde Optiedocument energie en emissies 2010-2020. Daarin wordt een overzicht gegeven van de technische mogelijkheden voor vermindering van het energieverbruik en de uitstoot van broeikasgassen en luchtverontreinigende stoffen tot 2020. Naast een korte samenvatting van het document worden enkele reacties gegeven op de inhoud.

  7. Distributed Energy Implementation Options

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Chandralata N [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-13

    This presentation covers the options for implementing distributed energy projects. It distinguishes between options available for distributed energy that is government owned versus privately owned, with a focus on the privately owned options including Energy Savings Performance Contract Energy Sales Agreements (ESPC ESAs). The presentation covers the new ESPC ESA Toolkit and other Federal Energy Management Program resources.

  8. Incorporating externalities in the assessment of different energy options for electricity production

    International Nuclear Information System (INIS)

    Jacomino, Vanusa Maria Feliciano; Souza, Jair Albo Marques de; Grynberg, Suely Epsztein; Aronne, Ivan Dionysio

    2002-01-01

    The production of electricity considering its full chain cycle arises major local, regional and global environmental impacts. This fact and the need of several countries to establish energy plans for the next decades and also the recognition that environmental issues are playing important role in the decision-making process justify the interest in appropriate and comprehensive methodologies and tools to deal with this matter, to be applied mainly in the power sector. The main aim of the present investigation was the implementation and application of a simplified methodology based on the impact pathway (or damage function) approach which is being proposed by International Atomic Energy Agency (IAEA) for the estimation of externalities arising from the full chain cycle of different energy sources for electricity production in its Member States. The externalities arising from different options, including coal, oil, gas and nuclear, were estimated. A computer model based on the optimization of non-linear functions was used as a support tool for decision-making in the power sector. Taking into consideration the externalities from the air emissions of different options, nuclear power is the best solution even taking into consideration the effects of high consequence/low probability accidents. It should be noted that this investigation is not only being used to implement an environmental database, but also in enhancing the Brazilian capability in evaluating the different energy options for electricity production in the framework of sustainable development. (author)

  9. Alternative energy options

    International Nuclear Information System (INIS)

    Bennett, K.F.

    1983-01-01

    It is accepted that coal will continue to play the major role in the supply of energy to the country for the remainder of the century. In this paper, however, emphasis has been directed to those options which could supplement coal in an economic and technically sound manner. The general conclusion is that certain forms of solar energy hold the most promise and it is in this direction that research, development and implementation programmes should be directed. Tidal energy, fusion energy, geothermal energy, hydrogen energy and fuel cells are also discussed as alternative energy options

  10. Idaho's Energy Options

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Neilson

    2006-03-01

    This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

  11. Shungnak Energy Configuration Options.

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Power systems in rural Alaska villages face a unique combination of challenges that can increase the cost of energy and lowers energy supply reliability. In the case of the remote village of Shungnak, diesel and heating fuel is either shipped in by barge or flown in by aircraft. This report presents a technical analysis of several energy infrastructure upgrade and modification options to reduce the amount of fuel consumed by the community of Shungnak. Reducing fuel usage saves money and makes the village more resilient to disruptions in fuel supply. The analysis considers demand side options, such as energy efficiency, alongside the installation of wind and solar power generation options. Some novel approaches are also considered including battery energy storage and the use of electrical home heating stoves powered by renewable generation that would otherwise be spilled and wasted. This report concludes with specific recommendations for Shungnak based on economic factors, and fuel price sensitivity. General conclusions are also included to support future work analyzing similar energy challenges in remote arctic regions.

  12. Renewable energy from biomass: a sustainable option? - Hydrogen production from alcohols

    Science.gov (United States)

    Balla, Zoltán; Kith, Károly; Tamás, András; Nagy, Orsolya

    2015-04-01

    Sustainable development requires us to find new energy sources instead of fossil fuels. One possibility is the hydrogen fuel cell, which uses significantly more efficient than the current combustion engines. The task of the hydrogen is clean, carbon-free renewable energy sources to choose in the future by growing degree. Hungary can play a role in the renewable energy sources of biomass as a renewable biomass annually mass of about 350 to 360 million tons. The biomass is only a very small proportion of fossil turn carbonaceous materials substitution, while we may utilize alternative energy sources as well. To the hydrogen production from biomass, the first step of the chemical transformations of chemical bonds are broken, which is always activation energy investment needs. The methanol and ethanol by fermentation from different agricultural products is relatively easy to produce, so these can be regarded as renewable energy carriers of. The ethanol can be used directly, and used in several places in the world are mixed with the petrol additive. This method is the disadvantage that the anhydrous alcohol is to be used in the combustion process in the engine more undesired by-products may be formed, and the fuel efficiency of the engine is significantly lower than the efficiency of the fuel cells. More useful to produce hydrogen from the alcohol and is used in a fuel cell electric power generation. Particularly attractive option for the so-called on-board reforming of alcohols, that happens immediately when the vehicle hydrogen production. It does not need a large tank of hydrogen, because the hydrogen produced would be directly to the fuel cell. The H2 tank limit use of its high cost, the significant loss evaporation, the rare-station network, production capacity and service background and lack of opportunity to refuel problems. These can be overcome, if the hydrogen in the vehicle is prepared. As volume even 700 bar only about half the H2 pressure gas can be stored

  13. Contemplating future energy options

    International Nuclear Information System (INIS)

    Pooley, D.

    2005-01-01

    All political parties in the UK accept that we should move away from our reliance on fossil fuels towards a much greater use of alternative energy technologies. Nuclear power is one of these but finds minimal support in the political spectrum. The article reviews the European Commission's Advisory Group on Energy submission to the EC's report entitled 'Key Tasks for European Energy R and D'. The 'strength and weaknesses' of the various 'alternative energy' systems (including nuclear power) are summarised and then the key R and D tasks which, if they are carried out successfully, should make the eight selected technologies significantly more attractive. However, the message here is clear enough: there are no easy options, only a range of very imperfect possibilities, despite what enthusiastic proponents of each may say. Nuclear fission is certainly one of the most attractive options available, but the industry needs to continue to strive to eliminate the possibility of significant off-site releases, whether caused by plant failure or by human error or intention, and to prove beyond reasonable doubt the safety of high-level radioactive waste disposal. (author)

  14. Energy consumption in the food chain - Comparing alternative options in food production and consumption

    NARCIS (Netherlands)

    Dutilh, CE; Kramer, KJ

    Energy consumption in the various stages of the food chain, provides a reasonable indicator for the environmental impact in the production of food. This paper provides specific information on the energy requirement for the main alternatives in each production stage, which should allow the

  15. Energy options in France

    International Nuclear Information System (INIS)

    Carle, R.

    1980-01-01

    The rapid rise of oil price and the future shortage of oil are the problems, to which those in charge of energy must face. The method of maintaining and increasing energy consumption without destroying financial balance must be found. As the common points in Japan and France, domestic energy resources are scarce, coal reserves are small and the cost is high, the room for expanding water power generation hardly remains, and the atomic energy projects of large scale seem to be the only solution, but actually, they encountered many difficulties. In France, Energy Conservation Agency was established in 1974. The energy consumption per man was 4500 kWh in 1979, and it is not high level, accordingly it is difficult to reduce the present consumption further. The growth of electricity consumption in 1979 slowed down remarkably. The present crisis is oil crisis instead of energy crisis. Therefore electric power is the most suitable medium to get rid of the bondage of oil. The breakdown of heat production is as follows: coal 41%, oil 32%, gas 4%, and uranium 23%. Since 1976, 15 power plants of 3.5 million kW were converted to coal burning, but more staffs are required for the operation and maintenance. Water power generation is valuable to supplement nuclear power generation which lacks flexibility. As the nucleus of energy projects in France, PWR development project is in progress. Six 900 MW PWR plants are in operation. (Kako, I.)

  16. Energy options for Africa

    Energy Technology Data Exchange (ETDEWEB)

    Karekezi, S. (ed.) (Botswana Univ., Gaborone (Botswana). African Energy Policy Research Network Foundation for Woodstove Dissemination, Nairobi (Kenya)); Mackenzie, G.A. (ed.) (United Nations Environment Programme, Roskilde (Denmark). Collaborating Centre on Energy and Environment)

    1993-01-01

    While unsustainable energy generation and consumption have always been considered to be key causes of the degradation of the earth's environment, it was often assumed that in the case of Africa, its very low consumption of modern fuels would result in limited energy-related ecological problems. As demonstrated by the country cases contained in this volume, although energy-related environmental problems that afflict the continent are different from those faced in more developed parts of the world, their negative impact on the African populace is equally worrisome. The biomass sector in Africa presents a bewildering array of challenges, opportunities and constraints to the African energy policy maker. The continent is endowed with a rich source of biomass energy in the form of forests, woodlands, grasslands, agricultural residues and urban waste. Most of this abundant biomass energy resource base is either unexploited or utilized in an inefficient manner. (Author)

  17. Option valuation for energy issues

    International Nuclear Information System (INIS)

    Ostertag, K.; Llerena, P.; Richard, A.

    2004-01-01

    In many industrial and economic situations, decision processes, both individual and collective, have to simultaneously face uncertainty and irreversibility of some kind. This is particularly valid for energy choices if they are linked to technological alternatives. The purpose of this book is to highlight specific aspects of these situations. This is done from the particular perspective of option valuation. The contributions to this book grew out of an international workshop on ''Option valuation in energy and environmental issues'' held at the Fraunhofer ISI in February 2003. This workshop brought together reseachers from energy economics, but also researchers working on option valuation in other empirical fields or with a more theoretical perspective. This is reflected in the organisation of the book, which starts with some theory-oriented contributions and subsequently presents more applied contributions in the field of energy economics with an extension to water infrastructure in the annex. (orig.)

  18. Pawnee Nation Energy Option Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-31

    In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Based on the request of Pawnee Nation’s Energy Task Force the research team, consisting Tribal personnel and Summit Blue Consulting, focused on a review of renewable energy resource development potential, funding sources and utility organizational along with energy savings options. Elements of the energy demand forecasting and characterization and demand side options review remained in the scope of work, but were only addressed at a high level. Description of Activities Performed Renewable Energy Resource Development Potential The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Energy Efficiency Options While this was not a major focus of the project, the research team highlighted common strategies for reducing energy use in buildings. The team also discussed the benefits of adopting a building energy code and

  19. Pawnee Nation Energy Option Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-21

    Pawnee Nation of Oklahoma Energy Option Analyses In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Description of Activities Performed The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor

  20. Fusion as an energy option

    International Nuclear Information System (INIS)

    Steiner, D.

    1976-01-01

    The environmental issues, alternative fusion fuels, the economic potential, and the time scale of fusion power are assessed. It is common for the advocate of a long-term energy source to claim his source (fission, fusion, solar, etc.) as the ultimate solution to man's energy needs. The author does not believe that such a stance will lead to a rational energy policy. Dr. Steiner encourages a long-term energy policy that has as its goal the development of fission breeders, fusion, and solar energy--not be totally reliant on a single source. He does advocate vigorous funding for fusion, not because it is a guarantee for ''clean, limitless, and cheap power,'' but because it may provide an important energy option for the next century

  1. Ulster Carpets - Cleaner Production option report

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Mercer, David

    A survey on options for saving water and energy was conducted at Ulster Carpets on 14th November 2002 by Henrik Wenzel from the Institute for Product Development in Denmark, and David Mercer from Enviros, South Africa. This report details observations made during this site visit and makes...

  2. Comparing energy storage options for renewable energy integration

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    -inclusive 100% renewable energy scenario developed for the Danish city Aalborg based on wind power, bio-resources and low-temperature geothermal heat. The paper investigates the system impact of different types of energy storage systems including district heating storage, biogas storage and electricity storage......Increasing penetrations of fluctuating energy sources for electricity generation, heating, cooling and transportation increase the need for flexibility of the energy system to accommodate the fluctuations of these energy sources. Controlling production, controlling demand and utilizing storage...... options are the three general categories of measures that may be applied for ensuring balance between production and demand, however with fluctuating energy sources, options are limited, and flexible demand has also demonstrated limited perspective. This paper takes its point of departure in an all...

  3. Analysis of Options Contract, Option Pricing in Agricultural Products

    Directory of Open Access Journals (Sweden)

    H. Tamidy

    2016-03-01

    Full Text Available Introduction: Risk is an essential component in the production and sale of agricultural products. Due to the nature of agricultural products, the people who act in this area including farmers and businesspersons encounter unpredictable fluctuations of prices. On the other hand, the firms that process agricultural products also face fluctuation of price of agricultural inputs. Given that the Canola is considered as one of the inputs of product processing factories, control of unpredictable fluctuations of the price of this product would increase the possibility of correct decision making for farmers and managers of food processing industries. The best available tool for control and management of the price risk is the use of future markets and options. It is evident that the pricing is the main pillar in every trade. Therefore, offering a fair price for the options will be very important. In fact, options trading in the options market create cost insurance stopped. In this way, which can reduce the risks of deflation created in the future, if the person entitled to the benefits of the price increase occurs in the future. Unlike the futures, market where the seller had to deliver the product on time, in the options market, there is no such compulsion. In addition, this is one of the strengths of this option contract, because if there is not enough product for delivery to the futures market as result of chilling, in due course, the farmers suffer, but in the options market there will be a loss. In this study, the setup options of rape, as a product, as well as inputs has been paid for industry. Materials and Methods: In this section. The selection criteria of the disposal of asset base for valuation of European put options and call option is been introduced. That for obtain this purpose, some characteristics of the goods must considered: 1-Unpredictable fluctuations price of underlying asset 2 -large underlying asset cash market 3- The possibility

  4. Study of Agricultural Product Options Pricing

    Science.gov (United States)

    HONG, Qiu

    2017-09-01

    China is a large agricultural country, and the healthy development of agriculture is related to the stability of the whole society. The agricultural production and management of agricultural products are confronted with many risks, especially the market risks. Option contract is the object of option market transaction, so it is very important to study the option contract of agricultural products. Option trading separates the risk and profit, so that the trader can avoid the risk while retaining the opportunity to obtain income. The option has the characteristics of low transaction cost, simple and efficient, so it is suitable for small and medium investors.

  5. Energy options for residential buildings assessment

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Dincer, Ibrahim; Esmailzadeh, Ebrahim

    2013-01-01

    Highlights: ► Studying various building energy options. ► Assessing these options from various points. ► Comparing these options for better environment and sustainability. ► Proposing renewable energy options as potential solutions. - Abstract: The building sector, as one of the major energy consumers, demands most of the energy research to assess different energy options from various aspects. In this paper, two similar residential buildings, with either low or high energy consumption patterns, are chosen as case studies. For these case studies, three different renewable energy technology and three different hybrid systems are designed for a specified size. Then, the environmental impact indices, renewable energy indices, and the renewable exergy indices have been estimated for every energy options. Results obtained show that the hybrid systems (without considering the economics factors) are superior and having top indices. The importance of the energy consumption patterns in buildings are proven by the indices. By cutting the energy consumption to about 40% the environment index would increase by more than twice (2.1). Utilization of the non-fossil fuels is one part of the solution to environmental problems while energy conservation being the other. It has been shown that the re-design of the energy consumption model is less complex but more achievable for buildings.

  6. Energy options for the United Kingdom

    International Nuclear Information System (INIS)

    Warner, P.C.

    1979-03-01

    The purpose of this paper is to put together a picture of the energy policy options of the United Kingdom, drawn mainly from official documents but supplemented by comments and conclusions from the author. For some people the current energy debate is simplified down to nuclear power for and against. Much of this thinking seems to arise from misunderstanding, and the more the technical and social facts behind policy can be sorted out by discussions, the more sensible eventual policy will be. One extreme view, for instance, is that opinion is divided between those who are 'pro-industry, pro-production, and pro-nuclear' and those who are 'interested in ecology and therefore anti-nuclear.' Associations like those are high on the list of myths that need to be dispelled. It is therefore a further purpose of this paper to contribute to the general background of facts for those who are interested in this country's energy policies and who may not have time or the opportunity to work through original sources. Although the theme throughout is energy in the United Kingdom, it will be realised that extension to the world scale simply enhances shortages and problems. The paper is in sections, entitled: overall UK energy consumption; coal; oil; gas; the energy gap; alternative energy sources; the balance of primary resource need; electricity; the nuclear power programme; timing of power plant orders; conclusions. (U.K.)

  7. Comparative Assessment of Energy Supply Options

    International Nuclear Information System (INIS)

    Rogner, H.-H.; Vladu, I. F.

    2000-01-01

    The complexity facing today's energy planners and decision-makers, particularly in electricity sector, has increased. They must take into account many elements in selecting technologies and strategies that will impact near term energy development and applications in their countries. While costs remain a key factor, tradeoffs between the demands of environmental protection and economic development will have to be made. This fact, together with the needs of many countries to define their energy and electricity programmes in a sustainable manner, has resulted in a growing interest in the application of improved data, tools and techniques for comparative assessment of different electricity generation options, particularly from an environmental and human health viewpoint. Although global emissions of greenhouse gases and other pollutants, e.g. SO 2 , NO x and particulate, must be reduced, the reality today is that these emissions are increasing and are expected to continue increasing. In examining the air pollutants, as well as water effluents and solid waste generated by electricity production, it is necessary to assess the full energy chain from fuel extraction to waste disposal, including the production of construction and auxiliary materials. The paper describes this concept and illustrates its implementation for assessing and comparing electricity generation costs, emissions, wastes and other environmental burdens from different energy sources. (author)

  8. Pakistan energy consumption scenario and some alternate energy option

    International Nuclear Information System (INIS)

    Maher, M.J.

    1997-01-01

    Pakistan with its energy-deficient resources is highly dependent on import-oriented energy affected the economy because of repeated energy price hike on international horizon. The energy consumption pattern in Pakistan comprises about two-third in commercial energy and one-third in non-commercial forms. Most of the country's energy requirements are met by oil, gas hydro power, coal, nuclear energy and thermal power. Pakistan meets it's commercial energy requirements indigenously up to 64%. The balance of deficit of 35-40% is met through import. The consumption of various agro-residues and wood as fuel also plays a vital role. The analysis shows that emphasis needs to be placed on new and renewable resources of energy besides adopting technologies for energy conservation. Renewable energy depends on energy income and constitutes the development process. The are several renewable energy options such as biogas technology, micro-hydro power generation, direct solar energy and biomass energy conservation etc. By improving the conservation techniques as designs of solar converters, pre treating the biomass fuel, increasing the effectiveness of carbonization and pyrolysis increases the energy production. (A.B.)

  9. Nuclear energy: a necessary option

    International Nuclear Information System (INIS)

    Robles N, A. G.; Ramirez S, J. R.; Esquivel E, J.

    2017-09-01

    With the decree of the Energy Reform and with the creation of the Electricity Industry and Energy Transition Laws; nuclear energy is incorporated into these as a source of clean energy. Currently, the share of electricity generation using conventional technologies is 80% and clean technologies of 20% of which hydroelectric plants represent 50% of these. While the operation of hydroelectric, wind, solar plants, etc. have contributed to reduce greenhouse gas emissions (GGE), the global effort to mitigate climate change has not observed the expected results, according to the meeting of COP 21 in Paris, where 196 countries agreed, unanimously, to limit the increase of the temperature at 2 degrees Celsius or less for before the year 2100. In Paris, Mexico voluntarily submitted its national mitigation and adaptation contribution to climate change by issuing 162 M ton of CO 2eq as a goal to 2030, that is a ΔGGE of -22%. This means that the electricity sector should contribute to the reduction of 139 M ton of CO 2eq and a ΔGGE of -31%. According to some experts, the goal of reducing gases for the sector could be achieved during the period defined in the Agreement, provided that the share of clean energies is added as established in the Energy Reform and the Development Program of the National Electric System 2016-2030, which establishes the addition of 35,532 MW (62%) of installed capacity in clean technologies, where nuclear energy participates with 4,191 MW (7%) that is, 2,651 MW more. Thus, this article aims to show the importance of the use of nuclear energy in the electricity sector to reduce GGE, achieve international commitments and combat climate change. (Author)

  10. DMRC studies geothermal energy options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-01

    The Deep Mining Research Consortium (DMRC) is an industry-led research consortium that includes Vale Inco, Xstrata, Rio Tinto, Goldcorp, Agnico-Eagle, Barrick Gold, CANMET and the City of Sudbury. This article reported on the application of geothermal energy technologies to cool deep mine workings and use the heat from underground to produce energy to heat surface buildings. Researchers at the University of British Columbia's Centre for Environmental Research in Minerals, Metals and Materials have proposed the use of heat pumps and water-to-air heat exchangers at depth to chill mine workings. The heat pumps would act as refrigerators, taking heat from one area and moving it elsewhere. The purpose would be to extract heat from naturally occurring ground water and pass the chilled water through a heat exchanger to cool the air. The heated water would then be pumped to surface and used to heat surface facilities. The technology is well suited for using geothermal energy from decommissioned mines for district heating. The technology has been successfully used in Spring Hill, Nova Scotia, where geothermal energy from a decommissioned coal mine is used to heat an industrial park. A feasibility study is also underway for the city of Yellowknife in the Northwest Territories to produce up to 10 megawatts of heat from the Con Gold Mine, enough energy to heat half of Yellowknife. Geothermal energy can also be used to generate electricity, particularly in the Pacific Rim where underground temperatures are higher and closer to surface. In Sudbury Ontario, the enhanced geothermal systems technology would require two holes drilled to a depth of four kilometers. The ground between the two holes should be fractured to create an underground geothermal circuit. Geothermal energy does not produce any greenhouse gases or chemical wastes. 1 fig.

  11. Berg River Textiles - Cleaner Production Option Report

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Schneider, Zsig

    schematics on the various wet treatment operations in the dyehouse, and water and energy balances were made to the extent data allowed. A number of options for saving water, energy and chemicals were identified. The potentials monetary savings and necessary investments were estimated, and a list of priority...... projects including milestone plans for their implementation was made. A saving potential of around 3 mill. R was identified with a pay-back period of around 0.2 years as average of the identified options. The company implemented a large number of the options right away....

  12. Some wind-energy storage options

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, F R; Ljungstroem, O [ed.

    1976-01-01

    Systems capable of storing energy generated from the wind can be categorized in terms of electrochemical energy storage systems, thermal energy storage systems, kinetic energy systems, and potential energy systems. Recent surveys of energy storage systems have evaluated some of these available storage technologies in terms of the minimum economic sizes for utility applications, estimated capital costs of these units, expected life, dispersed storage capabilities, and estimated turn-around efficiencies of the units. These are summarized for various types of energy storage options.

  13. Energy options. Preparing for an uncertain future

    International Nuclear Information System (INIS)

    Andrews, H.R.; Harvey, M.

    1988-02-01

    We must begin now to plan to replace fossil fuels as a major energy source. Few energy sources are capable of supplying the vast amount of energy required. The only options that can play a major role are coal, hydro-electricity, and nuclear. The soft energy options are not reliable: we cannot control the blowing of the wind or the shining of the sun; biomass is susceptible to disease. If we were to become too dependent on these we would be surrendering our energy system to the vagaries of nature. A strong electrical system is a cornerstone of energy security. Surplus capacity is often criticized, but a shortfall in supply will cause industrial chaos. Nuclear power is based on a sustainable resource supply, uses a proven technology, is economically competitive, and causes minimal harm to human populations and the environment

  14. Sustainable uranium energy - an optional future

    International Nuclear Information System (INIS)

    Meneley, D.

    2015-01-01

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more reasonable to expect

  15. Sustainable uranium energy - an optional future

    Energy Technology Data Exchange (ETDEWEB)

    Meneley, D. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)

    2015-06-15

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more

  16. Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options

    NARCIS (Netherlands)

    Rulkens, W.H.

    2008-01-01

    Treatment of municipal wastewater results worldwide in the production of large amounts of sewage sludge. The major part of the dry matter content of this sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary (microbiological) sludge. The sludge also

  17. Union Spinning Mills - Cleaner Production option report

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Schneider, Zsig

    operations in the dyehouse, and water and energy balances were made to the extent data allowed. A number of options for saving water, energy and chemicals were identified. The potentials monetary savings and necessary investments were estimated, and a list of priority projects including milestone plans...

  18. NANA Strategic Energy Plan & Energy Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson; Brian Yanity

    2008-12-31

    NANA Strategic Energy Plan summary NRC, as an Alaska Native Corporation, has committed to addressing the energy needs for its shareholders. The project framework calls for implicit involvement of the IRA Councils in the Steering Committee. Tribal Members, from the NRC to individual communities, will be involved in development of the NANA Energy Plan. NRC, as the lead tribal entity, will serve as the project director of the proposed effort. The NRC team has communicated with various governmental and policy stakeholders via meetings and discussions, including Denali Commission, Alaska Energy Authority, and other governmental stakeholders. Work sessions have been initiated with the Alaska Village Electric Cooperative, the NW Arctic Borough, and Kotzebue Electric Association. The NRC Strategic Energy Plan (SEP) Steering committee met monthly through April and May and weekly starting in June 2008 in preparation of the energy summit that was held from July 29-31, 2008. During preparations for the energy summit and afterwards, there was follow through and development of project concepts for consideration. The NANA regional energy summit was held from July 29-31, 2008, and brought together people from all communities of the Northwest Arctic Borough. The effort was planned in conjunction with the Alaska Energy Authority’s state-wide energy planning efforts. Over $80,000 in cash contributions was collected from various donors to assist with travel from communities and to develop the summit project. Available funding resources have been identified and requirements reviewed, including the Denali Commission, U.S. Dept. of Agriculture, and the Alaska Energy Authority. A component of the overall plan will be a discussion of energy funding and financing. There are current project concepts submitted, or are ready for submittal, in the region for the following areas: • Wind-diesel in Deering, Buckland, Noorik, and Kiana areas; potential development around Red Dog mine.

  19. Evaluation of different fuel cycle options in accordance with nuclear energy production planning in Turkey. Final report for the period 15 December 1995 - 1 July 1998

    International Nuclear Information System (INIS)

    Uzmen, R.

    1998-08-01

    For two decades, Turkey has been considering the implementation of a nuclear power program in order to ensure a secure and ecologically non-pollutant electricity supply, and a site was selected at Akkuyu on the Mediterranean coaast. The energy gap predicted in recent projections could be partly filled by nuclear power. The present plan of the Ministry of Energy schedules the commissioning of at least 2,000 MWe nuclear capacity by 2010. In this report, firstly reference reactors were selected and then requirements of fuel material and services for these reactors were discussed according to Turkey's energy generation scenarios. For this study the reactor selection criteria are: 1) Provenness by operation, 2) Plant power rating, 3) Generic safety, and 4) Licensability. In this study, two types of reactors (PWR and PHWR) that meet the safety and selection criteria were taken into consideration. For Turkey's case, fuel demand and options were discussed according to these reactor types. Status and trends in the world in nuclear electricity generation, nuclear power projection, uranium production, uranium supply and demand relationships, future trends in supply and demand and supply projection were investigated. World uranium market, uranium prices analysis, refining and conversion, enrichment, fuel fabrication, fuel burnup and back-end options were thoroughly discussed. The economics of the nuclear fuel cycle was investigated, fuel costs for PWR and PHWR were calculated. As a result of the obtained reference data a table was prepared for fuel material and services requirements according to reactor type and size. The need for nuclear power in Turkey was discussed in detail, focussing on primary resources in Turkey, demand predictions, usage ratios of domestic and imported resources. Electricity generation scenarios for Turkey were discussed and final conclusions were drawn for Turkey's case. Comparisons of the domestic and imported resources in accordance with the

  20. Net energy analysis - powerful tool for selecting elective power options

    Energy Technology Data Exchange (ETDEWEB)

    Baron, S. [Brookhaven National Laboratory, Upton, NY (United States)

    1995-12-01

    A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.

  1. Wind energy: A renewable energy option

    Science.gov (United States)

    Zimmerman, J. S.

    1977-01-01

    Wind turbine generator research programs administered by the Energy Research and Development Administration are examined. The design and operation of turbine demonstration models are described. Wind assessments were made to determine the feasibility of using wind generated power for various parts of the country.

  2. Alcoholic fermentation: an option for renewable energy production from agricultural residues; Fermentacion alcoholica: una opcion para la produccion de energia renovable a partir de desechos agricolas

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, H. J [Universidad Autonoma Metropolitana (Mexico)]. E-mail: hjv@correo.azc.uam.mx; Dacosta, O [Oficina de Consejo, Desarrollo y Transferencia Tecnologica, Dijon (Francia)]. E-mail: statfor@yahoo.com

    2007-10-15

    Biotechnology offers several options for generating renewable energy. One of these technologies consists on producing bioethanol by fermentation. Bioethanol is mainly used to prepare fuel for motor vehicles. This paper presents a proposal to produce such as fuels with a hundred liters experimental fermentation pilot unit. Results derived from essays are similar, in terms of yield and productivity, to those presented by other systems, if we take into account that our unit works under non sterile conditions, which represents significant energy savings. This technology does not require specialized knowledge for its construction and it would accessible to groups of Mexican farmers. [Spanish] La biotecnologia ofrece diversas opciones para la generacion de energias renovables. Una de ellas es la produccion de bioetanol, el cual se obtiene mediante fermentacion. El bioetanol se usa en la preparacion de carburantes para vehiculos automotores. En este articulo se presenta una propuesta para la obtencion de este combustible mediante una unidad de fermentacion piloto experimental de 100 litros. Los resultados de nuestros ensayos, en rendimiento y productividad, son similares a los de otros laboratorios si se considera que esta unidad piloto funciona en condiciones no esteriles, lo que representa como ventaja un ahorro de energia no despreciable. Ademas, la tecnologia no requiere conocimientos especializados para su realizacion y estaria al alcance de grupos campesinos mexicanos.

  3. Options for new Swiss energy supply strategies

    International Nuclear Information System (INIS)

    Gantner, U.; Hirschberg, S.; Jakob, M.

    1999-01-01

    Ecologically neutral, cost efficient, without supply shortages, independent from foreign countries, risk- and waste-free - that is the image of an ideal future energy supply. But even if considerable ecological and economical improvements of various energy supply options can be achieved, the next generation of heat and power plants with the associated up- and down-stream parts of energy chains, will not comply with all such idealistic requirements. As research in the framework of the GaBE Project on 'Comprehensive Assessment of Energy Systems' has shown, among the reasons for this are the limited medium term potential of renewable energy sources, and the necessity to employ primarily non-renewable energy carriers for the emerging more efficient energy conversion processes. (author)

  4. National energy planning with nuclear option

    International Nuclear Information System (INIS)

    Soetrisnanto, Arnold Y.; Hastowo, Hudi; Soentono, Soedyartomo

    2002-01-01

    National energy planning with nuclear option. Energy planning development is a part of the sustainable development that supports the attainment of national development goals. The objective of the study is to support the national planning and decision-making process in the energy and electric sector in Indonesia with nuclear option for period of 1998-2027. This study performs the provision of detailed economic sector and regional energy demand projection by MAED simulation model based on the economic and population scenarios. The optimization of the future energy supply such as electricity supply taking all known Indonesian energy sources and all relevant technologies into consideration by MARKAL Model. The results shows that Indonesia's need for final energy is forecasted to increase two times, from 4028,4 PJ at the beginning of study become 8145,6 PJ at the end of study. Performing the sensitivity study, it is predicted that nuclear energy could be introduced in the Java-Bali electricity grid about year 2016

  5. Energy and the environment: 'the nuclear option'

    International Nuclear Information System (INIS)

    Hawley, Robert

    1997-01-01

    The world's consumption of primary energy continues to rise rapidly, mainly because of the developing countries who cannot yet provide the services essential to improving the quality of life. Increasing energy consumption, the effect it will have on the world's finite resources and, more importantly, on the environment, leave the world's population facing serious challenges. This paper will briefly consider the power generation technology options that offer sustainable development including the role that nuclear power plays today, and will need to play in the next century, to preserve and improve the quality of life worldwide. (author)

  6. Soviet energy: current problems and future options

    Energy Technology Data Exchange (ETDEWEB)

    Stein, J B

    1981-12-01

    The connection between Soviet oil and energy resources, their efficient and timely utilization, and politico-military opportunities in the Persian Gulf region offer an inescapable link for analysis. Worsening trends in economic growth, factor productivity, social unrest, and energy production/distribution offset optimistic trends in Soviet military procurement and deployment. A conjunction of geologic, geographic, and systemic factors all point to a mid-1980s energy imbalance which in turn will pose hard questions for the Moscow leadership. 28 references.

  7. Energy and sustainable development: issues and options

    International Nuclear Information System (INIS)

    Appert, O.

    2001-01-01

    Future development needs to be sustainable in all of its dimensions if it is to continue to fully contribute to human welfare. In the achievement of this objective, the manner in which energy is produced and consumed is of crucial importance. In the wake of these insights, first attempts begin to provide concrete options for steps towards sustainability in the energy sector. Two criteria can be identified for developing sustainable development policies. First, such policies need to strike a balance between the three dimensions of sustainable development - economic, environmental and social - acknowledging that all three are intrinsically linked. Second, policies in the energy sector need to reduce exposure to large-scale risks and improve the resilience of the energy system through active risk management and diversification. (authors)

  8. Social risks and the energy option

    Energy Technology Data Exchange (ETDEWEB)

    Orr, D

    1977-04-01

    A minimax strategy is proposed to deal with the possibility of large-scale disaster while pursuing energy options, none of which is without risks and uncertainties. Readjustments of energy-consumption levels can lower capital demands enough to avoid irreversible commitments to high-risk technologies. The four requirements of a society using the minimax strategy are: (1) commitment to conservation, (2) re-structuring to promote efficiency, (3) new social values and standards, and (4) a gradual replacement of conventional with renewable energy technology. Some proposals, such as that of beaming microwaves to earth from satellites, are not only capital-intensive but introduce new risk potential. A better approach is seen to be a small-scale, decentralized society that minimizes the impact of accidents while maximizing the resilience and democracy of human development. A society operating under sustainable energy offers, by including citizen involvement in public policy, opportunities for creativity in individuals and institutions. (15 references) (DCK)

  9. A photoneutron production option for MCNP4A

    International Nuclear Information System (INIS)

    Gallmeier, F.X.

    1996-01-01

    A photoneutron production option was implemented in the MCNP4A code, mainly to supply a tool for reactor shielding calculations in beryllium and heavy water environments of complicated three dimensional geometries. Subroutines were developed to calculate the probability of the photoneutron production at the photon collision sites and the energy and flight direction of the created photoneutrons with the help of user supplied data. These subroutines are accessed through subroutine colidp which processes the photon collisions

  10. Future energy options for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Zaric, Z P

    1982-05-01

    An educated guess is made of the energy demand in developing countries well into the next century in order to estimate the possible role of new and renewable sources in meeting this demand. The world is roughly divided into industrialized (IND) and developing (LDC) countries. A plot of energy demand in both parts shows a possible structure of mixed energy to meet LDC demand, but there is a gap between demand and supply from conventional sources in LDCs that has to be met by new and renewable sources. When the demand for specific energy forms is projected, as much as two thirds of the final energy needed from new sources should be based on centralized-electricity and liquid-fuels technologies. Solar and geothermal energy must compete with nuclear and thermonuclear breeders, while solar prospects for chemical fuel supply in LDCs lacking adequate coal reserves seems promising. There is a large gap in research and development (R and D) spending on new energy between the two parts, which means that LDCs will have inappropriate technology at a high price. An increase in R and D spending on a regional basis should target funds to appropriate options. 6 references, 7 figures.

  11. Wind energy options in the Netherlands

    International Nuclear Information System (INIS)

    Arkesteijn, L.A.G.; Havinga, R.J.

    1992-07-01

    Next to a study of the title subject attention is paid to the quantification of the wind energy potential and the conditions under which such potentials can be realized. The options are influenced by technical-economical, planning and socio-political factors, which are summarized in appendix 1 and discussed in chapter three. Results of interviews with experts in the field of wind energy can be found in appendix 2. Based on the impacts on the wind energy potential four wind energy development scenarios are compared in chapter four. The reference scenario is based on the present wind energy policy in the Netherlands. The other three scenarios are the Price-scenario (higher societal appreciation of electricity generated by wind power), the Site-scenario (matters of site selection and planning), and a Combined-scenario (combination of the Price- and the Site-scenario). For each scenario potential estimations were made for the years 2000, 2010, 2015, and restricted estimations for the year 2025. It is concluded that within 25 years 2,500 MW wind power can be realized on land and 6,000 MW on water. The main problems for the location on land and inland waterways are the planning restrictions, and for sea locations the limiting factor is the high cost price. Recommendations to the Dutch government to realize the potentials concern the facts that social advantages of wind energy should be part of the price of the energy, more sites should be made available for the application of wind energy, more research has to be carried out on the possibility of locating wind power generating systems at sea, and the social basis for wind energy should be maintained and even increased. 18 figs., 5 app., 47 refs

  12. Photovoltaic power - An important new energy option

    Science.gov (United States)

    Ferber, R. R.

    1983-01-01

    A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.

  13. An environmental perspective on Lithuania's energy options

    International Nuclear Information System (INIS)

    Banks, A.; Todd, J.

    1995-01-01

    The views of experts on Lithuania's energy options are reviewed. On the one hand, nuclear energy is seen as an island of stability in the power industry in the conditions of economic crisis, and some decision-makers believe that Lithuania cannot survive without nuclear. On the other hand, the Ignalina NPP is the largest Chernobyl-type RBMK plant within the former Soviet Union, posing a dangerous environmental hazard to the Baltic Sea region, and no upgrading seems to be capable of bringing the reactors up to the safety standards of today's Western reactors. Many experts believe that the only solution is to shut the reactors down as soon as possible. (P.A.) 33 refs

  14. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  15. Impact of single versus multiple policy options on the economic feasibility of biogas energy production: Swine and dairy operations in Nova Scotia

    International Nuclear Information System (INIS)

    Brown, Bettina B.; Yiridoe, Emmanuel K.; Gordon, Robert

    2007-01-01

    The economic feasibility of on-farm biogas energy production was investigated for swine and dairy operations under Nova Scotia, Canada farming conditions, using net present value (NPV), internal rate of return (IRR), and payback period (PP) economic decision criteria. In addition, the effects of selected environmental and 'green' energy policy schemes on co-generation of on-farm biogas energy production and other co-benefits from anaerobic digestion of livestock manure were investigated. Cost-efficiencies arising from economies of scale for on-farm anaerobic biogas production were found for swine farms, and less so for dairy production systems. Without incentive schemes, on-farm biogas energy production was not economically feasible across the farm size ranges studied, except for 600- and 800-sow operations. Among single policy schemes investigated, green energy credit policy schemes generated the highest financial returns, compared to cost-share and low-interest loan schemes. Combinations of multiple policies that included cost-share and green energy credit incentive schemes generated the most improvement in financial feasibility of on-farm biogas energy production, for both swine and dairy operations

  16. Solar energy options: Technical economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Visentin, R

    1982-01-01

    A general system approach on the earth suggests the conversion and distribution of solar energy as electricity, gas, solid and liquid fuels; the historical trend in energy management techniques is in favour of this hard technical proposal, because experience there exists on methods of transmission or transportation of previous kinds of energy vectors mentioned, and small changes in lifestyles toward energy conservation have to be considered in the final uses of the energy. Less hard system technologies will permit direct heat and electricity production close to the channels of energy consumptions; these systems will function as energy savers and their full exploitation implies greater impacts on energy use and lifestyles. As a general trend for government policies as well as for public decision impact on the social decision process, the proliferation of solar systems would permit to produce energy for the 'flowing energetic consumptions' (civil, transportation, agriculture, telecommunications, lighting, etc.) while the not renewable fuels could be properly invested in the production of strategic or durable materials; in this scheme the role of renewable resources is well defined to stabilize the whole civil system in which we are at present organized.

  17. Assessment of CO2 free energy options

    International Nuclear Information System (INIS)

    Cavlina, N.; Raseta, D.; Matutinovic, I.

    2014-01-01

    One of the European Union climate and energy targets is to significantly reduce CO 2 emissions, at least 20% by 2020, compared to 1990. In the power industry, most popular solution is use of solar and wind power. Since their production varies significantly during the day, for the purpose of base-load production they can be paired with gas-fired power plant. Other possible CO 2 -free solution is nuclear power plant. This article compared predicted cost of energy production for newly built nuclear power plant and newly built combination of wind or solar and gas-fired power plant. Comparison was done using Levelized Unit of Energy Cost (LUEC). Calculations were performed using the Monte Carlo method. For input parameters that have biggest uncertainty (gas cost, CO 2 emission fee) those uncertainties were addressed not only through probability distribution around predicted value, but also through different scenarios. Power plants were compared based on their economic lifetime. (authors)

  18. Nuclear Energy: A Competitive and Safe Option, The EDF Experience

    International Nuclear Information System (INIS)

    Colas, F.

    1998-01-01

    Today, nuclear energy seems challenged by fossil energies, especially gas. However, the 1997's French government survey over energy options still places nuclear energy at the top of the list. The reasons why and how safe nuclear energy is still competitive are detailed in this paper. Most recent data from EDF's reactor will be discussed in terms of environmental and electricity production issues. The methods and management used to attain these results are explained for the different phases: design, construction, operation, and maintenance. The beneficial aspects over industrial development and local employment will be underlined. The influence of nuclear energy on EDF's financial results are shown, from past programme to today's operation. As most of french reactors are designed to adapt their output to the changes of load in the national grid, results are, as a conclusion, discussed in a small and medium electrical grid perspective. (author)

  19. Energy Options in an HJM Framework

    DEFF Research Database (Denmark)

    Lyse Hansen, Thomas; Astrup Jensen, Bjarne

    2004-01-01

    It is a delicate matter to trade spot products and financial derivatives in energy markets. Op-posite to bond and stock markets, the underlying assets are real products and a significant partof the demand for them represents a real need for the products, which can only be substitutedaway with some...... difficulties or, in some cases, only in a prohibitively costly manner. This isparticularly true in the spot market, where the demand is almost always met, but where thespot price processes can be quite different from the spot price processes conventionally used inthe pricing of derivatives. This pattern...

  20. World Energy Outlook - 2050: Policy Options

    Energy Technology Data Exchange (ETDEWEB)

    Ghouri, Salman Saif

    2007-07-01

    The paper analyzes the historical trends, resource distribution and forecasts the regional total primary energy consumption (TPEC) to 2050. The purpose is to provide a most probable path so that appropriate policies can be made to enhance/slowdown the energy consumption without hampering economic growth. Global TPEC is most likely to reach 763-1259 Quadrillion Btu (QBtu) to 2050 with reference case trending between and stood at 978 QBtu. By 2050 the equation of TPEC is expected to be tilted in favor of developing countries when their share is increased from 47 percent in 2003 to 59 percent. Asia developing region becomes the largest consumer of TPEC; however on per capita basis it remains the lowest after Africa. The forecast gives some guidance to policy makers. Which policy measures should be taken to ensure availability of predicted level of energy resources? How should we mobilize sizeable investment to increase the expected production/capacity/logistic both in the producing and consuming countries? Simultaneously, what strategic measures should be taken: to improve energy efficiency/conservation, development/promotion of renewable sources of energies and check population growth to downward shift the probable TPEC path without compromising economic growth, productivity and quality of life? (auth)

  1. Nuclear energy - an option for Croatian sustainable development

    International Nuclear Information System (INIS)

    Mikulicic, V.; Skanata, D.; Simic, Z.

    1996-01-01

    The uncertainties of growth in Croatian future energy, particularly electricity demand, together with growing environmental considerations and protection constraints, are such that Croatia needs to have flexibility to respond by having the option of expanding the nuclear sector. The paper deals with nuclear energy as an option for croatian sustainable economic development. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia because most certainly nuclear energy can provide energy necessary to sustain progress. (author)

  2. Energy options and the role of coal: an integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Institute, Edmonton, AB (Canada)

    2006-07-01

    Considers energy goals and options with particular regard to providing affordable energy to Canada. Gasification of coal and carbon to provide a reliable source of clean power and heat to the oil sand industry and for feedstocks for the production of fertilizer, methanol, petrochemicals, and ultra-clean fuels is examined. The layout for integrated gasification polygeneration with carbon feed and plans for Canada's first commercial gasification plant (the Nexen Long Lake Project) are shown in diagrams. Progress in coal gasification at a clean coal Luscar/Sherritt pilot plant is outlined. Clean coal technology is part of a strategy to provide integration across energy systems, generate value for all hydrocarbon resources, and minimize emissions. 15 figs., 2 tabs.

  3. Resource and energy recovery options for fermentation industry residuals

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, S C [Santa Clara Univ., CA (USA); Manning, Jr, J F [Alabama Univ., Birmingham, AL (USA)

    1989-01-01

    Over the last 40 years, the fermentation industry has provided facility planners, plant operators and environmental engineers with a wide range of residuals management challenges and resource/energy recovery opportunities. In response, the industry has helped pioneer the use of a number of innovative resource and energy recovery technologies. Production of animal feed supplements, composts, fertilizers, soil amendments, commercial baking additives and microbial protein materials have all been detailed in the literature. In many such cases, recovery of by-products significantly reduces the need for treatment and disposal facilities. Stable, reliable anaerobic biological treatment processes have also been developed to recover significant amounts of energy in the form of methane gas. Alternatively, dewatered or condensed organic fermentation industry residuals have been used as fuels for incineration-based energy recovery systems. The sale or use of recovered by-products and/or energy can be used to offset required processing costs and provide a technically and environmentally viable alternative to traditional treatment and disposal strategies. This review examines resource recovery options currently used or proposed for fermentation industry residuals and the conditions necessary for their successful application. (author).

  4. The energy requirement of holidays and household reduction options

    International Nuclear Information System (INIS)

    Van den Berg, M.; Vringer, K.

    1999-12-01

    Like all consumer products and services, holidays require energy. The aim of this study is to give insight to the energy consumption for holidays of Dutch households and to suggest options to reduce this energy demand. To examine the energy consumption for holidays, nine holiday packages are composed, each representing a large group of Dutch vacationers. The packages describe the destination, means of transport, duration, accommodation and number of vacationers. The average energy requirement for the accommodation and transport for long summer holidays is 12.5 GJ per Dutch household, excluding the energy requirement for food and activities. About 10% of the Dutch households, the ones that travel by plane to their holiday destination, consume 70% of the total amount of energy all households require for holiday purposes. This is mainly due to the distance travelled, rather than to the chosen means of transport. If the travelled distances will be reduced by 50% and all nights are spent in a tent, the average household energy requirement would be 6.1 GJ, a reduction of more than 50%. 36 refs

  5. Retrofit options to enable biomass firing at Irish peat plants: Background report 4.2 for the EU Joule 2+ project: Energy from biomass: An assessment of two promising systems for energy production

    International Nuclear Information System (INIS)

    Van den Broek, R.; Faaij, A.; Blaney, G.

    1995-05-01

    An overview is given of the most promising options for retrofitting existing Irish peat plants to accept biomass fuel. It is expected that with low investment costs the existing peat stations can be adapted to enable them to fire biomass. It will also be possible to co-fire peat and biomass, this option will become a way of using biomass in power generation with relatively low risk, both on the field of initial investments and supply security. The objectives of this report are: assessing the different technical options for retrofitting the plants to enable biomass firing; provide investment costs, efficiencies, emissions and expected lifetimes for the different retrofit options. The results from this study are used in the final integration phase of the EU-Joule project 'Energy from biomass'. Chapter 2 deals with methodological considerations which have been made in estimation of the investment costs. In chapter 3 the present situation is described. Both peat harvesting and power plant operation of both sod and milled peat plants are explained. Also some past experiences with wood chips firing in Irish peat stations are discussed. Chapter 4 gives a general view on retrofitting peat plants to enable biomass firing. Some starting points like biomass fuel feeding and emission standards that have to be met are highlighted. The rationale behind four main choices are given. Finally, a technical description is presented of the two boiler adaptations that will be considered among the different retrofit options, namely conversion of milled peat units into bubbling fluidized bed and into a whole tree energy unit. Six retrofit options are described in more detail in chapter 5. Information is given on the present status of the plants, the technical considerations of the retrofit, expected performance and an estimation of a range in which the investment costs can be expected. 4 figs., 10 tabs., 5 appendices

  6. Management options to reduce the carbon footprint of livestock products

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Kristensen, Troels

    2011-01-01

    Livestock products carry a large carbon footprint compared with other foods, and thus there is a need to focus on how to reduce it. The major contributing factors are emissions related to feed use and manure handling as well as the nature of the land required to produce the feed in question. We can....... Basically, it is important to make sure that all beneficial interactions in the livestock system are optimized instead of focusing only on animal productivity. There is an urgent need to arrive at a sound framework for considering the interaction between land use and carbon footprints of foods....... conclude that the most important mitigation options include - better feed conversion at the system level, - use of feeds that increase soil carbon sequestration versus carbon emission, - ensure that the manure produced substitutes for synthetic fertilizer, and - use manure for bio-energy production...

  7. Energy priorities and options for the European Community

    International Nuclear Information System (INIS)

    Audland, C.J.

    1984-01-01

    The paper discusses the energy priorities and options for the European Community. Reasons for the recent improvement in the efficiency of energy use are briefly discussed, as well as the outlook for 1990, priorities for the future, solid fuels. natural gas, electricity and nuclear energy. Energy policy considerations in the United Kingdom are also mentioned. (U.K.)

  8. Nuclear energy - option for the future. Proceedings

    International Nuclear Information System (INIS)

    1996-01-01

    The goal of this conference was to analyse the future national and international problems arising with energy supplies with regard to the large mass flows and CO 2 flows involved in the use of nuclear energy. The following topics are dealt with: - nuclear energy, world-wide energy management and developments in Europe and Asia - disposal and ultimate waste disposal, plutonium management, an assessment of the Chernobyl accident 10 years on - new reactor developments in the energy mix - the costs arising with nuclear energy in the energy mix. In view of the demand made by climate researchers, to reduce CO 2 , and the additional construction work planned in the eastern and Asian areas, it will remain necessary for the Federal Republic of Germany,too, to maintain the know-how and technology for nuclear energy generation. (orig./DG)

  9. Carbon and energy balances for a range of biofuels options

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, M.A.; Matthews, R.; Mortimer, N.D.

    2003-03-01

    This is the final report of a project to produce a set of baseline energy and carbon balances for a range of electricity, heat and transport fuel production systems based on biomass feedstocks. A list of 18 important biofuel technologies in the UK was selected for study of their energy and carbon balances in a consistent approach. Existing studies on these biofuel options were reviewed and their main features identified in terms of energy input, greenhouse gas emissions (carbon dioxide, methane, nitrous oxide and total), transparency and relevance. Flow charts were produced to represent the key stages of the production of biomass and its conversion to biofuels. Outputs from the study included primary energy input per delivered energy output, carbon dioxide outputs per delivered energy output, methane output per delivered energy output, nitrous oxide output per delivered energy output and total greenhouse gas requirements. The net calorific value of the biofuel is given where relevant. Biofuels studied included: biodiesel from oilseed rape and recycled vegetable oil; combined heat and power (CHP) by combustion of wood chip from forestry residues; CHP by gasification of wood chip from short rotation coppice; electricity from the combustion of miscanthus, straw, wood chip from forestry residues and wood chip from short rotation coppice; electricity from gasification of wood chip from forestry residues and wood chip from short rotation coppice; electricity by pyrolysis of wood chip from forestry residues and wood chip from short rotation coppice; ethanol from lignocellulosics, sugar beet and wheat; heat (small scale) from combustion of wood chip from forestry residues and wood chip from short rotation coppice; and rapeseed oil from oilseed rape.

  10. Options to improve energy efficiency for educational building

    Science.gov (United States)

    Jahan, Mafruha

    The cost of energy is a major factor that must be considered for educational facility budget planning purpose. The analysis of energy related issues and options can be complex and requires significant time and detailed effort. One way to facilitate the inclusion of energy option planning in facility planning efforts is to utilize a tool that allows for quick appraisal of the facility energy profile. Once such an appraisal is accomplished, it is then possible to rank energy improvement options consistently with other facility needs and requirements. After an energy efficiency option has been determined to have meaningful value in comparison with other facility planning options, it is then possible to utilize the initial appraisal as the basis for an expanded consideration of additional facility and energy use detail using the same analytic system used for the initial appraisal. This thesis has developed a methodology and an associated analytic model to assist in these tasks and thereby improve the energy efficiency of educational facilities. A detailed energy efficiency and analysis tool is described that utilizes specific university building characteristics such as size, architecture, envelop, lighting, occupancy, thermal design which allows reducing the annual energy consumption. Improving the energy efficiency of various aspects of an educational building's energy performance can be complex and can require significant time and experience to make decisions. The approach developed in this thesis initially assesses the energy design for a university building. This initial appraisal is intended to assist administrators in assessing the potential value of energy efficiency options for their particular facility. Subsequently this scoping design can then be extended as another stage of the model by local facility or planning personnel to add more details and engineering aspects to the initial screening model. This approach can assist university planning efforts to

  11. Energy policy options for Illinois. Proceedings. [26 papers

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Twenty-six papers presented at the Fifth Annual Oil Illinois Energy Conference are categorized into five sections, namely: An overview of U.S. and Illinois Energy Policy; Energy Policy; Conservation--Solar--Biomass and Solid Wastes; Energy Policy; Petroleum and Natural Gas; Energy Policy; Coal and Electric Utilities; and Economic and Consumer Concerns. One paper, A Perspective on Long-Range Nuclear Energy Options, by William O. Harms has previously appeared in EAPA 4: 1364. (MCW)

  12. Applying real options analysis to assess cleaner energy development strategies

    International Nuclear Information System (INIS)

    Cheng, Ching-Tsung; Lo, Shang-Lien; Lin, Tyrone T.

    2011-01-01

    The energy industry, accounts for the largest portion of CO 2 emissions, is facing the issue of compliance with the national clean energy policy. The methodology for evaluating the energy mix policy is crucial because of the characteristics of lead time embedded with the power generation facilities investment and the uncertainty of future electricity demand. In this paper, a modified binomial model based on sequential compound options, which may account for the lead time and uncertainty as a whole is established, and a numerical example on evaluating the optional strategies and the strategic value of the cleaner energy policy is also presented. It is found that the optimal decision at some nodes in the binomial tree is path dependent, which is different from the standard sequential compound option model with lead time or time lag concept. The proposed modified binomial sequential compound real options model can be generalized and extensively applied to solve the general decision problems that deal with the long lead time of many government policies as well as capital intensive investments. - Highlights: → Introducing a flexible strategic management approach for government policy making. → Developing a modified binomial real options model based on sequential compound options. → Proposing an innovative model for managing the long term policy with lead time. → Applying to evaluate the options of various scenarios of cleaner energy strategies.

  13. Pricing and Hedging Quanto Options in Energy Markets

    DEFF Research Database (Denmark)

    Benth, Fred Espen; Lange, Nina; Myklebust, Tor Åge

    2015-01-01

    –Jarrow–Morton approach, we derive a closed-form option pricing formula for energy quanto options under the assumption that the underlying assets are lognormally distributed. Our approach encompasses several interesting cases, such as geometric Brownian motions and multifactor spot models. We also derive Delta and Gamma......In energy markets, the use of quanto options has increased significantly in recent years. The payoff from such options are typically written on an underlying energy index and a measure of temperature. They are suited to managing the joint price and volume risk in energy markets. Using a Heath...... expressions for hedging. Further, we illustrate the use of our model by an empirical pricing exercise using NewYork Mercantile Exchange-traded natural gas futures and Chicago Mercantile Exchange-traded heating degree days futures for NewYork....

  14. Pricing and Hedging Quanto Options in Energy Markets

    DEFF Research Database (Denmark)

    Benth, Fred Espen; Lange, Nina; Myklebust, Tor Åge

    approach we derive a closed form option pricing formula for energy quanto options, under the assumption that the underlying assets are log-normally distributed. Our approach encompasses several interesting cases, such as geometric Brownian motions and multifactor spot models. We also derive delta and gamma......In energy markets, the use of quanto options have increased significantly in the recent years. The payoff from such options are typically written on an underlying energy index and a measure of temperature and are suited for managing the joint price and volume risk in energy markets. Using an HJM...... expressions for hedging. Furthermore, we illustrate the use of our model by an empirical pricing exercise using NYMEX traded natural gas futures and CME traded Heating Degree Days futures for New York....

  15. Energy options in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S C [ed.

    1975-01-01

    The United Kingdom faces two issues: how can it survive the present massive increases in oil prices and the probability of even more expensive supplies in the future or how can it adjust to the eventual exhaustion of both fossil and nuclear fuels. The theme of the symposium concerned a search for a practical alternative source of energy to fossil and nuclear fuels and which ones would work in the United Kingdom. Papers were presented entitled: Geothermal Energy; Solar Energy in Britain; and Wind and Water Sources of Energy in the United Kingdom. A final paper, High- and Low-Growth Scenarios, examined these two types for the future. Many questions, answeres and comments about energy sources are contained in a final presentation. (MCW)

  16. Energy-saving options for the mitigation of greenhouse gas emissions from the Mongolian energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Dorjpurev, J.; Purevjal, O.; Erdenechimeg, Ch. [and others

    1996-12-31

    The Energy sector is the largest contributor to GHG emission in Mongolia. The Energy sector emits 54 percent of CO2 and 4 percent of methane. All emissions of other greenhouse gases are accounted from energy related activities. The activities in this sector include coal production, fuel combustion, and biomass combustion at the thermal power stations and in private houses (stoves) for heating purposes. This paper presents some important Demand-side options considered for mitigation of CO2 emissions from energy sector such as Energy Conservation in Industrial Sector and in Buildings. Changes in energy policies and programmes in the Mongolian situation that promote more efficient and sustainable practices are presented in the paper. These energy saving measures will not only help reduce greenhouse gas emissions, but will also promote economic development and alleviate other environmental problems.

  17. Free energy option and its relevance to improve domestic energy demands in southern Nigeria

    Directory of Open Access Journals (Sweden)

    Moses Eterigho Emetere

    2016-11-01

    Full Text Available The aim of this paper is to seek an energy option that would benefit the growing energy demands. Domestic energy demands in southern Nigeria had increased greatly due to failing power programs and seasonal migrations. The fossil fuel option is gradually fading away due to environmental pollution and recent dynamic cost. The renewable energy option had been celebrated with little success in the coastal area of southern Nigeria. At the moment, the renewable energy option is very expensive with little guarantee on its efficiency with time. The data set used for this study was obtained from the Davis weather installation in Covenant University. The free energy option was considered. The cost and its environmental implication for domestic use were comparatively discussed alongside other energy options — using the Life cycle cost analysis. It was found out that free energy option is more affordable and efficient for domestic use.

  18. Energy options and the global environment

    International Nuclear Information System (INIS)

    Colombo, U.

    1986-01-01

    First, a brief historical sketch of the progress of industrialized society and the change in the quantity and quality of energy system accompanying it is made. It is likely to see a very unstable oil market in future, and it is irresponsible to continue the use of oil simply by burning it to obtain heat and electricity. This time is the opportunity to complete a new energy transition, preserving oil for more effective utilization. There is no single energy source which is as versatile, easy to transport and to use, and cheap as oil, therefore, the relative merits and demerits of various available resources must be carefully assessed. Natural gas, the green-house effect caused by burning fossil fuel, hydroelectric power, nuclear fission power, solar, biomass, wind and geothermal energies are discussed. The important alternatives for the future are nuclear fission power, biomass, and by the middle of the next century, nuclear fusion energy. A pluralistic system is the best suitable to the complex society of the next century, having about 8 billion population. A scenario representing the contribution of nuclear energy in 2050 is illustrated, but the clouds on the nuclear horizon must be dispelled. (Kako, I.)

  19. Kalaeloa Energy System Redevelopment Options Including Advanced Microgrids.

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, Marion Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Baca, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); VanderMey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    In June 2016, the Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) in collaboration with the Renewable Energy Branch for the Hawaii State Energy Office (HSEO), the Hawaii Community Development Authority (HCDA), the United States Navy (Navy), and Sandia National Laboratories (Sandia) established a project to 1) assess the current functionality of the energy infrastructure at the Kalaeloa Community Development District, and 2) evaluate options to use both existing and new distributed and renewable energy generation and storage resources within advanced microgrid frameworks to cost-effectively enhance energy security and reliability for critical stakeholder needs during both short-term and extended electric power outages. This report discusses the results of a stakeholder workshop and associated site visits conducted by Sandia in October 2016 to identify major Kalaeloa stakeholder and tenant energy issues, concerns, and priorities. The report also documents information on the performance and cost benefits of a range of possible energy system improvement options including traditional electric grid upgrade approaches, advanced microgrid upgrades, and combined grid/microgrid improvements. The costs and benefits of the different improvement options are presented, comparing options to see how well they address the energy system reliability, sustainability, and resiliency priorities identified by the Kalaeloa stakeholders.

  20. The Study on Policy Options for Siting Hazardous Energy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Oh [Korea Energy Economics Institute, Euiwang (Korea)

    2000-10-01

    The problem of site allocation on locally unwanted land uses related to energy utilities that extended most recently is becoming a new energy policy issue due to the improvement of national standard of living and livelihood quality. Residents do not generally agree on establishing the construction of public energy utilities in their village due to NIMBY syndrome while they basically agree to have them. These circumstances made a big problem against mass production of industry society and the improvement of the national welfare. Locally unwanted land use related to energy utilities includes waste incineration system, nuclear power plant, coal fired power plant, oil and Gas storage tank, briquette manufacturing plant and etc. Opportunity for SOC projects carried out by central and local government is lost because of the regional egoism. The site dispute between government and residents obstructs optimal energy supply to be necessary for industry growth and the national welfare. The main objective of this study is to propose the policy option for finding a solution after surveying theory and background of site troubles and dispute factors. Final results of this study propose a solution on structural and institutional dispute. The former introduces three kinds of approaches such as tradition, compensation and negotiation. The transition of an environmentally sound energy consumption pattern and the improvement of energy efficiency could be carried out by traditional approaches. To claim the damage and offer the accommodation facilities could be settled by compensational approaches. The establishment of regional decentralization on NIMBY facilities could be settled by negotiatory approaches through fair share criteria. The latter proposes 1) 'polluter pays principle', 2) internalization of social cost and benefit on air or water pollution, 3) the behind - the - scene negotiation in a bid to settle a site dispute, 4) and supporting system for peripheral areas

  1. Enabling optimal energy options under the Clean Development Mechanism

    International Nuclear Information System (INIS)

    Gilau, Asmerom M.; Van Buskirk, Robert; Small, Mitchell J.

    2007-01-01

    This paper addresses the cost effectiveness of renewable energy technologies in achieving low abatement costs and promoting sustainable developments under the Clean Development Mechanism (CDM). According to the results of our optimal energy option's analysis, at project scale, compared with a diesel-only energy option, photovoltaic (PV)-diesel (PVDB), wind-diesel (WDB) and PV-wind-diesel (PVWDB) hybrids are very cost-effective energy options. Moreover, energy options with high levels of renewable energy, including 100% renewables, have the lowest net present cost and they are already cost effective without CDM. On the other hand, while the removal of about 87% carbon dioxide emissions could be achieved at negative cost, initial investment could increase by a factor of 40, which is one of the primary barriers hindering wider renewable energy applications in developing countries, among others. Thus, in order to increase developing countries' participation in the carbon market, CDM policy should shift from a purely market-oriented approach to investigating how to facilitate renewable energy projects through barrier removal. Thus, we recommend that further research should focus on how to efficiently remove renewable energy implementation barriers as a means to improve developing countries' participation in meaningful emission reduction while at the same time meeting the needs of sustainable economic development

  2. Risk benefits of climate-friendly energy supply options

    International Nuclear Information System (INIS)

    Hirschberg, S.; Burgherr, P.

    2003-01-01

    One of the central goals of sustainable development is the reduction of Greenhouse Gas (GHG) emissions. This is needed in order to prevent the anticipated climate change, and the potentially serious consequences for human beings and the environment. Energy supply systems constitute the dominant contributors to GHG emissions. This paper examines three illustrative emission scenarios for world-wide energy supply in the 21 st Century. These scenarios, including the associated GHG and major pollutant emissions, were chosen from a set established by the Intergovernmental Panel on Climate Change (IPCC). Using the emissions as a starting point, and based on recent findings concerning the impact on the environment and the financial costs resulting from global climate change on the one hand, and regional air pollution on the other hand, the present work provides estimates of the scenario-dependent, world-wide cumulative damage. The fossil-intensive reference scenario leads to overall damages which correspond to very substantial losses in Gross Domestic Product (GDP), and which widely exceed the damages caused by the scenarios reflecting climate-friendly policies. Generally, the somewhat speculative estimates of the GHG-specific damages are much less significant than damages to human health and the environment caused by the major air pollutants. This means that the secondary benefits of climate-friendly, energy-supply options, i.e. those which avoid the impacts due to air pollution, alone justify strategies protecting the climate. (author)

  3. An Evaluation of Energy Storage Options for Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dufek, Eric J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    Energy supply, distribution, and demand are continuing to evolve as new generation sources come online and new appliances are installed. A larger percentage of the United States (U.S.) energy mix is provided by variable energy sources such as wind and solar each year, and distributed generation is becoming more common. In parallel, an evolution in consumer products such as electrical vehicles, information technology devices for residential and industrial applications, and appliances is changing how energy is consumed. As a result of these trends, nuclear power plants (NPPs) are being called upon to operate more flexibly than ever before. Furthermore, advanced nuclear power plants (A-NPPs) might operate as part of an electricity system that looks very different than when the current NPP fleet was constructed. A-NPPs face the possibility that they will need to operate in an environment where flexibility (e.g., fast ramping) is more highly valued than stability (e.g., baseload generation for conventional demand curves). The current fleet of NPPs is struggling to remain economical in competitive markets in an era of historically low natural gas prices and renewable sources with very low marginal costs. These factors, overlaid with an ambiguous national policy related to nuclear energy and a decision-making context that struggles with multi-decade capital investments, raise key questions and present significant challenges to the economics of nuclear power in the evolving grid. Multiple factors could improve the economics of A-NPPs, including: (1) minimizing the need for active safety systems, (2) minimizing adoption of one-off reactor designs, (3) establishing policies that credit low carbon emitting technologies, and (4) integrating energy storage technologies that increase revenue and reduce costs through a combination of ancillary services, market hedging, and reduced costs via stable operation. This report focuses on Item (4), containing an overview, synthesis, and

  4. An Evaluation of Energy Storage Options for Nuclear Power

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bragg-Sitton, Shannon M.; Dufek, Eric J.

    2017-01-01

    Energy supply, distribution, and demand are continuing to evolve as new generation sources come online and new appliances are installed. A larger percentage of the United States (U.S.) energy mix is provided by variable energy sources such as wind and solar each year, and distributed generation is becoming more common. In parallel, an evolution in consumer products such as electrical vehicles, information technology devices for residential and industrial applications, and appliances is changing how energy is consumed. As a result of these trends, nuclear power plants (NPPs) are being called upon to operate more flexibly than ever before. Furthermore, advanced nuclear power plants (A-NPPs) might operate as part of an electricity system that looks very different than when the current NPP fleet was constructed. A-NPPs face the possibility that they will need to operate in an environment where flexibility (e.g., fast ramping) is more highly valued than stability (e.g., baseload generation for conventional demand curves). The current fleet of NPPs is struggling to remain economical in competitive markets in an era of historically low natural gas prices and renewable sources with very low marginal costs. These factors, overlaid with an ambiguous national policy related to nuclear energy and a decision-making context that struggles with multi-decade capital investments, raise key questions and present significant challenges to the economics of nuclear power in the evolving grid. Multiple factors could improve the economics of A-NPPs, including: (1) minimizing the need for active safety systems, (2) minimizing adoption of one-off reactor designs, (3) establishing policies that credit low carbon emitting technologies, and (4) integrating energy storage technologies that increase revenue and reduce costs through a combination of ancillary services, market hedging, and reduced costs via stable operation. This report focuses on Item (4), containing an overview, synthesis, and

  5. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Dixon, B.W.; Piet, S.J.

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected

  6. Real options valuation of fusion energy R and D programme

    International Nuclear Information System (INIS)

    Bednyagin, Denis; Gnansounou, Edgard

    2011-01-01

    This paper aims to perform a real options valuation of fusion energy R and D programme. Strategic value of thermonuclear fusion technology is estimated here based on the expected cash flows from construction and operation of fusion power plants and the real options value arising due to managerial flexibility and the underlying uncertainty. First, a basic investment option model of Black-Scholes type is being considered. Then, a fuzzy compound real R and D option model is elaborated, which reflects in a better way the multi-stage nature of the programme and takes into account the imprecision of information as one of the components of the overall programme uncertainty. Two different strategies are compared: 'Baseline' corresponding to a relatively moderate pace of fusion research, development, demonstration and deployment activities vs. 'Accelerated' strategy, which assumes a rapid demonstration and massive deployment of fusion. The conclusions are drawn from the model calculations regarding the strategic value of fusion energy R and D and the advantages of accelerated development path. - Research highlights: → Real options analysis of fusion R and D, demonstration and deployment (RDDD) programme. → ENPV of fusion RDDD programme is calculated using stochastic probabilistic simulation. → Fusion RDDD programme exhibits substantial positive real options value: Euro 245 billion. → Fuzzy compound real option valuation method provides more robust results.

  7. Return handling options and order quantities for single period products

    NARCIS (Netherlands)

    D. Vlachos (Dimitrios); R. Dekker (Rommert)

    2000-01-01

    textabstractProducts which are sold through E-commerce or mail sales catalogues tend to have a much higher return rate than traditional products. The returns are especially problematic for seasonal products. To support decision making in these situations we study various options, which may be

  8. Options for Energy Upgrade of the Hall B Tagger

    International Nuclear Information System (INIS)

    H. Crannell; D. Sober

    1998-01-01

    Four options for an energy upgrade of the present Hall-B Tagger have been considered. These are: (1) Boost the magnetic field in the present Tagger; (2) Replace the Tagger with a new Tagger system; (3) Install a pre-Tagger magnetic chacain, and (4) Use the present Tagger as part of the beam dump. In this document each of these options is described briefly, the advantages and disadvantages of each are presented, and a very rough cost of implementation is suggested

  9. Carbon finance options in renewable energy

    International Nuclear Information System (INIS)

    Nahar, P.

    2010-01-01

    The Kyoto Protocol splits the world into two categories, notably Annex 1 with binding targets; and non-Annex 1 without any binding targets. This presentation discussed the Kyoto Protocol, with particular reference to the flexibility mechanisms which allow countries to achieve their emission targets in a cost effective way through emission trading, joint implementation, or clean development mechanisms (CDM). The CDM was outlined in detail in terms of how it works. The CDM key concepts include baseline use, additionality, and monitoring. Reasons for risk and CDM renewable energy projects were also outlined. Other topics that were presented included the impact of carbon finance; United States federal climate policy; European Union policy; EVO structured carbon; portfolio management; and EVO structured carbon. tabs., figs.

  10. Effectiveness of technological options for minimising production ...

    African Journals Online (AJOL)

    Farmer perceptions of technology effectiveness, to some extent, agreed with econometric evidence from this study. Study results have two implications: firstly, the need to develop and disseminate location specific adaptation technologies to reduce production risks, instead of blanket recommendations of similar adaptation ...

  11. Energy conservation options for cooking with biomass in Ghana

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Næraa, Rikke; Karlsson, Kenneth

    1996-01-01

    Cooking is the main energy consuming activity in Ghana. This is mainly due to a generally low material standard of living, but also because the cooking process itself is energy inefficient. The fuel for cooking in Ghana is mainly biomass either in the form of wood, agricultural residues or charcoal....... An energy chain for the cooking process is established and the possible conservation options are surveyed in kitchen performance tests in Abodom in the tropical zone of Ghana. The energy consumption for the food preparation has been measured and energy saving options have been determined for some parts...... point has been reached. Most cooks tend to continue using a high heat supply even though it is not necessary. This process is often carried out without lid on the pot even though the use of lid will reduce the energy loss considerably. It is also concluded that the average fuelwood consumption in Abodom...

  12. Towards more financing options for energy efficient buildings and houses

    International Nuclear Information System (INIS)

    Vethman, P.; Menkveld, M.

    2012-02-01

    This article offers an impression of the problems related to the limited financial options for energy efficient buildings and dwellings and possible solutions. It is based on a recent ECN study (RE-BIZZ) and several interviews about this topic with financers. There is a need for a more business appreciation of market parties such as financers for energy efficiency in buildings to increase financing options. The market needs the help of the government, which can help to remove barriers and hence make financing more appealing. [nl

  13. Nuclear power- the inevitable option for future energy needs

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    1995-01-01

    In the ensuring era development and deployment of electrical power sources will be governed by environmental changes, energy security and economical competitiveness. In the energy-mix scenario nuclear power has the potential and will make significant contributions in the coming decades. It is certain that nuclear power will continue to play a vital role in bridging the widening gap of demand and availability of energy in the years to come. In sum and substance, with the limited energy options available with India, nuclear power must assume greater share to meet the rapidly growing energy demands. Fortunately, country has a sound base for achieving the goal. 14 tabs., 3 figs

  14. effectiveness of technological options for minimising production risks

    African Journals Online (AJOL)

    ACSS

    preferred technologies in reducing production risk related to climate variability in Eastern Uganda. Data for this study were ..... Set of technological options employed by farmers to reduce climate-induced production risk. Dummy = 1 if farmer. 0.71. 0.46 ..... cation exchange capacity for holding nutrients against leaching loss.

  15. DPRK energy sector development priorities: Options and preferences

    International Nuclear Information System (INIS)

    Hippel, David von; Hayes, Peter

    2011-01-01

    The goal of international negotiations with the Democratic People's Republic of Korea (DPRK), when they begin again, will be to convince the DPRK to give up its nuclear weapons and the capabilities to produce them. The DPRK's energy sector is a key to resolution of the issue. Thus offering a well-considered, well-structured package of energy sector assistance options will be key to the sustainable success of the negotiations. This article briefly reviews some of the key options for DPRK energy assistance ranging from human capacity-building in fields like energy efficiency, renewable energy, and energy markets, to assistance with rebuilding key electricity and coal mining infrastructure, to integrated pilot energy/electricity grid/economic development projects on the county level, to light-water nuclear reactors. It then reviews preferences for DPRK assistance options as offered by North Koreans, and a summary of the likely points of view of the key DPRK actors that will be involved in negotiations.

  16. Impact of gas on utilities - competitive energy options

    International Nuclear Information System (INIS)

    Coolican, M.

    1997-01-01

    The initiatives taken by Nova Scotia Power to have natural gas as a generating fuel was discussed. Nova Scotia Power customers have indicated to the Utility that along with reduced energy costs, they want choices, better services and innovative products. It was noted that coal is currently Nova Scotia Power's principal fuel, but the utility is working with the Cape Breton Development Corporation, their supplier, to bring the cost of coal down. The utility is also exploring the potential of coal bed methane in Pictou and Cumberland counties of Nova Scotia. However, the most promising competitive energy option for their customers is Sable Offshore natural gas. To bring natural gas as the generating fuel for electricity, the Utility is taking steps to convert its Tufts Cove Thermal Generating Station to natural gas and to pipe natural gas to the Trenton Generating Station by November 1999. Bringing natural gas to these two stations would establish a critical base level of demand for natural gas in the Halifax and New Glasgow-Trenton area. One of the important ingredients of this plan is the cost of piping the gas to market. It was suggested that the 'postage stamp' tolling system (i.e. one price for the gas delivered anywhere along the pipeline) favored by some, would not give Nova Scotians the economic advantages that they deserve. For this reason, Nova Scotia Power favours the 'point to point' tolling system, a system that is considered fair and efficient, and the one that has a better chance of producing competitive energy prices

  17. Utilizing waste heat. Energy recovery options for trade and industry

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, W

    1988-08-01

    The article shows options for efficient and low-cost thermal energy recovery. Heat recovery involves a number of problems, e.g. the type of waste heat, the uses of the energy recovered, and the best way of utilizing it. There is no generally applicable way of solving these problems. Some practical examples are presented. Economically efficient solutions require detailed technical knowledge as well as a good portion of creativity and imagination. (BR).

  18. Energy supply options for climate change mitigation and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Dobran, Flavio

    2010-09-15

    Modern society is dependent on fossil fuels for its energy needs, but their combustion is producing emissions of greenhouse gases that cause global warming. If these emissions remain unconstrained they risk of producing significant impacts on humanity and ecosystems. Replacement of fossil fuels with alternative energy sources can stabilize anthropogenic global warming and thus reduce the climate change impacts. The deployment of alternative energy supply technologies should be based on objectives that are consistent with sustainability indicators and incorporate quantitative risk assessment multiattribute utility decision methodologies capable of ascertaining effective future energy supply options.

  19. Wavestar Energy Production Outlook

    DEFF Research Database (Denmark)

    Frigaard, Peter Bak; Andersen, Thomas Lykke; Kofoed, Jens Peter

    It is of paramount importance to decrease the Cost of Energy (CoE) from Wavestar wave energy con-verters (WECs) in order to make the WECs competitive to other sources of renewable energy. The CoE can be decreased by reducing the cost of the machines (CAPEX and OPEX) and by increasing the in......-come. The income can most obviously be enlarged by increasing the energy production. The focus of the present note is solely on expectations to the yearly energy production from future Wavestar WECs....

  20. Risoe energy report 6. Future options for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L [eds.

    2007-11-15

    Fossil fuels provide about 80% of the global energy demand, and this will continue to be the situation for decades to come. In the European Community we are facing two major energy challenges. The first is sustainability, and the second is security of supply, since Europe is becoming more dependent on imported fuels. These challenges are the starting point for the present Risoe Energy Report 6. It gives an overview of the energy scene together with trends and emerging energy technologies. The report presents status and trends for energy technologies seen from a Danish and European perspective from three points of view: security of supply, climate change and industrial perspectives. The report addresses energy supply technologies, efficiency improvements and transport. The report is volume 6 in a series of reports covering energy issues at global, regional and national levels. The individual chapters of the report have been written by staff members from the Technical University of Denmark and Risoe National Laboratory together with leading Danish and international experts. The report is based on the latest research results from Risoe National Laboratory, Technical University of Denmark, together with available internationally recognized scientific material, and is fully referenced and refereed by renowned experts. Information on current developments is taken from the most up-to-date and authoritative sources available. Our target groups are colleagues, collaborating partners, customers, funding organizations, the Danish government and international organizations including the European Union, the International Energy Agency and the United Nations. (au)

  1. International energy options: an agenda for the 1980s

    Energy Technology Data Exchange (ETDEWEB)

    Tempest, P [ed.

    1981-01-01

    Selected papers from the conference are presented under section headings on: global dilemma; government response to the energy crisis; world power politics; capital constraints and opportunities; productivity and employment; energy demand; energy supply; risks and the need for contingency planning; and international energy policies.

  2. Assessment of Combustion and Potash Production as Options for ...

    African Journals Online (AJOL)

    This study assessed combustion and potash production as options for management of wood waste. The percentage reduction in volume by combustion and potash generation potential of wood waste from nine different common species of wood obtained from a wood factory in Ibadan were evaluated. Potash from the ashes ...

  3. Considering environmental health risks of energy options. Hydraulic fracturing and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    MacDonell, Margaret; Raymond, Michelle; Burganowski, Rachael; Vetrone, Andrea; Alonzo, Sydney [Argonne National Laboratory, Argonne, IL (United States). Environmental Science Div.

    2014-07-01

    Growing public concerns about climate change and environmental health impacts related to energy production have led to increased consideration of alternate sources. Nuclear power and unconventional oil and shale gas development are among the options least favored by the public, with pollutant releases resulting from routine operations as well as accidents being among the key concerns. Advances in ICT approaches and the increasingly widespread accessibility of information resources and tools have facilitated community-based initiatives and broader data sharing that can directly contribute to more informed evaluations of energy options, toward more sustainable programs from the local to the global scale.

  4. U.S. energy policy: The nuclear energy option

    International Nuclear Information System (INIS)

    Erb, K.

    1992-01-01

    Thank you for the opportunity to talk about the role of nuclear energy in the President's National Energy Strategy, particularly as it affects your discussions at this International Aging Research Information Conference. Dr. D. Allan Bromley, the President's Science Advisor, asked me to convey to you his interest in your work - he has had a long association with your field - and to express his determination to work to help assure that nuclear energy realizes its potential as a safe, clean source of a substantial portion of our electricity. Dr. Bromley also asked me to read a message to the Conferees assembled here today, and I will do so at the conclusion of my remarks. The National Energy Strategy, or NES, is now just over one year old, and it is rapidly being translated into action. For example, the President's budget request proposes investing over $1.1 billion in FY 1993 toward implementation of the NES, an increase of 39% over our expenditures in 1991, the year the NES was formulated. This budget will support a broad range of activities, including results-oriented R ampersand D on a broad range of energy technologies. The Senate has passed an energy bill containing many of the elements of the NES, and the House is expected to pass a similar bill. But the aspect of the strategy that I want to discuss today is its conclusion that nuclear energy will become an increasingly important component of our energy supply portfolio. The NES reflects the realization that nuclear power provides an attractive means of generating the electricity that will be needed to support our economic growth and consequent improvements in quality of life as we move into the next century

  5. How high are option values in energy-efficiency investments?

    International Nuclear Information System (INIS)

    Sanstad, A.H.; Blumstein, C.; Stoft, S.E.; California Univ., Berkeley, CA,

    1995-01-01

    High implicit discount rates in consumers' energy-efficiency investments have long been a source of controversy. In several recent papers, Hassett and Metcalf argue that the uncertainty and irreversibility attendant to such investments, and the resulting option value, account for this anomalously high implicit discounting. Using their model and data, we show that, to the contrary, their analysis falls well short of providing an explanation of this pattern. (author)

  6. Energy scenario - environmental concerns and some options for the future

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Saradhi, I.V.

    2002-01-01

    There is a strong link between energy consumption, particularly in the form of electricity, and economic well being. The substantial increase in energy consumption in the coming decades is expected to be driven principally by the developing world. However it is also well recognized that care should be taken to ensure that the increased energy consumption should not be at the cost of the environment. Of particular concern is the Green House Gas emissions. Reduction of GHGs will call for careful planning and appropriate choice of the energy mix. The expected Global/Indian energy scenario in the coming decades, the associated GHG emissions and some possible options to limit them are presented and discussed in the paper. (author)

  7. DESIGN CONSIDERATIONS UPON PRODUCT END-OF-LIFE OPTIONS

    Directory of Open Access Journals (Sweden)

    BARSAN Lucian

    2016-11-01

    Full Text Available The paper presents some considerations about the necessity of evaluating the environmental impact of a product during its entire life. The present situation (economic, social and ecologic imposes solutions to reduce this impact as a result of an analysis performed during all stages of the life cycle. This paper focuses on design solutions with consequences in the last stage, the end-of-life. Reusing products, with, or without remanufacturing and recycling the materials from products that cannot be reused represent some options analysed in this paper. The end-of-life options should be known even from the beginning of the design process and should be included as design objectives or, at least as constrictions. Considering them as human needs would naturally include them in the requirements list.

  8. Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, H. [Rocky Mountain Inst., Snowmass, CO (United States)

    1995-12-31

    Energy efficient building and office design offers the possibility of significantly increased worker productivity. By improving lighting, heating and cooling, workers can be made more comfortable and productive. An increase of 1 percent in productivity can provide savings to a company that exceed its entire energy bill. Efficient design practices are cost effective just from their energy savings. The resulting productivity gains make them indispensable. This paper documents eight cases in which efficient lighting, heating, and cooling have measurably increased worker productivity, decreased absenteeism, and/or improved the quality of work performed. They also show that efficient lighting can measurably increase work quality by removing errors and manufacturing defects. The case studies presented include retrofit of existing buildings and the design of new facilities, and cover a variety of commercial and industrial settings. Each case study identifies the design changes that were most responsible for increased productivity. As the eight case studies illustrate, energy efficient design may be one of the least expensive ways for a business to improve the productivity of its workers and the quality of its product. (author). 15 refs.

  9. Investments in electricity generation in Croatian liberalized market: energy option

    International Nuclear Information System (INIS)

    Androcec, I.; Viskovic, A.; Slipac, G.

    2004-01-01

    The Republic of Croatia should have enough capacities built on its own territory to cover system's peak load at any time for ensuring a long-term reliability of its operation. According to annual increasing of electricity consumption and progressive shutdown of the oldest generating plants, the security of future electricity supply depends on new investments. The market, i.e. a competitive generation, is the driving force in the construction of new power plants. The main stimulus for the construction is the possibility of definite return of invested capital and enabling potential investors to realize the expected revenues (profit). The construction of generating capacities is subject of authorisation procedure or tendering procedure, by approval of the Energy Regulatory Council. The electricity market opening in Croatia is parallel process with establishment of regional energy market in South East Europe where the decision of investment in new power plant will be defined by regional investment priorities, all in the aspect of European Union enlargement. In those liberalisation conditions it is necessary to realize all possible energy options according to the Strategy of Energy Development of Republic of Croatia and to the regional energy market requirements or European Union Directives. New power plant will be realized, because of objective circumstances, through construction of gas power plant or coal power plant and possible nuclear power plant, and in much smaller size through construction of hydro power plants or power plants on renewable energy sources. The possibility of any energy option will be considered in view of: investment cost, operation and maintenance cost, fuel price, external costs, public influence, and through investor's risk. This paper is aiming to analyse the possibility of nuclear power plant construction in Croatia as well as in other small and medium electricity grids. Nuclear option will be comprehensively considered in technical

  10. Analysis on one type of swing option in the energy market

    International Nuclear Information System (INIS)

    Mistry, Hetal A.

    2005-01-01

    In the Nordic electricity market most of the trading takes place in derivates and options. To describe these products theoretically one needs to have knowledge from stochastic analysis. This thesis will derive a price model for one type of swing option in energy market. The main aim of writing this thesis is to introduce coal power plant and how to approach the problem if such power plant is built in Norway. This thesis uses the approach where I start out with a model for the spot price of electricity and coal, and then derive theoretical option prices. I use a Schwartz process for model and Ornstein Uhlenbeck processes to model the spot prices for electricity and coal. This model also incorporates mean-reversion, which is an important aspect of energy prices. Historical data for the spot prices is used to estimate my variables in the Schwartz model. The main objectives of this thesis were to find the price for a tolling contract in energy market and production volume that is producers control function. The first chapters gives an over view about the agreement and the formula used to derive the price. The second chapter provided me with the material I needed to derive these price and production volume such as dynamics for the spot prices for electricity and coal and their solution. Third chapter gives a statistical look on these stochastic processes. In the last chapter I tested the price model for stochastic control problem and found that the swing option can be bound in two ways: 1. Swing option limited as Margrabes solution. 2. Swing option limited as spread option. The use of the model is discussed. (Author)

  11. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  12. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  13. Integrating energy and environmental goals. Investment needs and technology options

    International Nuclear Information System (INIS)

    2004-04-01

    , since their shares of global energy demand and emissions are expected to grow rapidly. Over the next thirty years, developing countries are expected to account for 70% of the growth in global energy demand and for two-thirds of the growth in global emissions. Section six looks at some of the challenges regarding investment and energy access. Security of energy supply is an important component in the planning of future technology options, because long-term security calls for a balance between energy sources and technologies. Governments have a role to play in tipping this balance, and this role is examined in section seven. A final section examines the uncertainties and costs of various policy initiatives over the long term

  14. Solar Cell Production in Nigeria: Prospects, Options and Problems

    International Nuclear Information System (INIS)

    Fasasi, A. Y.; Siyanbola, W.O.; Ibitoye, F. I.; Pelemo, D. A.

    2002-01-01

    The prospects and problems facing solar cell production in Nigeria are discussed. The paper reviews many proven solar cell materials in terms of their current efficiencies and production costs. Silicon solar cell production appears to be the best technology option for Nigeria because of the abundant quartz sand and waste products from our phosphate fertiliser company that can be employed as starting materials to produce solar grade silicon. Factors affecting solar cell efficiency, choice of solar cell as well as financial and material problems limiting the progress on silicon solar cell production are also discussed. Finally, the paper recommends the simultaneous production of solar grade silicon and coordinated development of the balance of system components as first steps towards actualizing this objective

  15. The experience curve, option value, and the energy paradox

    International Nuclear Information System (INIS)

    Ansar, Jasmin; Sparks, Roger

    2009-01-01

    This paper develops a model to explain the 'energy paradox,' the inclination of households and firms to require very high internal rates of return in order to make energy-saving investments. The model abstracts from many features of such investments to focus on their irreversibility, the uncertainty of their future payoff streams, and the investor's anticipation of future technological advance. In this setting, the decision to invest in energy-saving technology can be delayed, providing option value. In addition, delay allows the potential investor to cash in on future experience-curve effects: With the passage of time, firms gain practical knowledge in producing and installing the energy-saving technology, enabling them to reduce the technology's up-front cost per unit of energy saved. We incorporate these fundamentals into a stochastic model where the investment's discounted benefits follow geometric Brownian motion. To demonstrate the model's capabilities, we generate simulation results for photovoltaic systems that highlight the experience-curve effect as a fundamental reason why households and firms delay making energy-saving investments until internal rates of return exceed values of 50% and higher, consistent with observations in the economics literature. We also explore altruistic motivations for energy conservation and the model's implications for both 'additionality' and the design of energy-conservation policy

  16. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Verfondern, K.

    2007-01-01

    In the long term, H 2 production technologies will be strongly focusing on CO 2 -neutral or CO 2 -free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H 2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO 2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the

  17. The nuclear energy option an alternative for the 90s

    CERN Document Server

    Cohen, Bernard L

    1990-01-01

    University of Pittsburgh physicist Cohen provides accessible, scientifically sound risk analyses of the energy options that he believes must be exercised in the next 10 years. This update of his work on public energy policy stands opposed to the stack of recent greenhouse effect-oriented titles by proposing more nuclear power plants (including fuel reprocessing plants) as statistically the safest, most environmentally sound solution. Cohen advances the debate on energy policy for all sides by first quantifying the human health costs of coal- and oil-generated electricity, and by debunking solar technology's deus ex machina role. In this context, Cohen looks at issues surrounding nuclear power since Three Mile Island, such as the "unsolved problem" of nuclear waste disposal and the "China Syndrome." Media people especially are urged to re-examine "nuclear hysteria" (no one ever writes about " deadly natural gas," Cohen notes), and even anti-nuclear activists will find the study's appendices and notes a sourceb...

  18. Material and energy productivity.

    Science.gov (United States)

    Steinberger, Julia K; Krausmann, Fridolin

    2011-02-15

    Resource productivity, measured as GDP output per resource input, is a widespread sustainability indicator combining economic and environmental information. Resource productivity is ubiquitous, from the IPAT identity to the analysis of dematerialization trends and policy goals. High resource productivity is interpreted as the sign of a resource-efficient, and hence more sustainable, economy. Its inverse, resource intensity (resource per GDP) has the reverse behavior, with higher values indicating environmentally inefficient economies. In this study, we investigate the global systematic relationship between material, energy and carbon productivities, and economic activity. We demonstrate that different types of materials and energy exhibit fundamentally different behaviors, depending on their international income elasticities of consumption. Biomass is completely inelastic, whereas fossil fuels tend to scale proportionally with income. Total materials or energy, as aggregates, have intermediate behavior, depending on the share of fossil fuels and other elastic resources. We show that a small inelastic share is sufficient for the total resource productivity to be significantly correlated with income. Our analysis calls into question the interpretation of resource productivity as a sustainability indicator. We conclude with suggestions for potential alternatives.

  19. Power options: the Massachusetts nonprofit energy purchasers consortium

    International Nuclear Information System (INIS)

    Hayes, J.

    1999-01-01

    A series of overhead viewgraphs described some of the topics that were discussed at this workshop. A corporate review of the Massachusetts Health and Educational Facilities Authority (HEFA) was presented. HEFA was formed in 1968 to provide cost savings in electric bills to health, education, cultural and other non profit organizations. The methods that HEFA uses to achieve this goal is to provide energy services with either fixed prices or with two-year or five-year options. Since their creation HEFA has a total of 100 signed natural gas contracts and 300 signed electricity contracts

  20. Globalization of the energy sector: Environmental challenges and options for future actions

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, Pablo

    1998-12-01

    This publication relates to environmental challenges of the energy sector and options for future action. Following themes are discussed: Globalisation of the energy sector; environmental challenges; the challenge of climate change; options for future action

  1. Nuclear Option for a Secure and Sustainable Energy Supply

    International Nuclear Information System (INIS)

    Kolundzija, V.; Mesarovic, M.

    2002-01-01

    Present energy policy is required to ensure a balance between security of supply, competitiveness and environmental requirements. Recent changes involved by deregulation and liberalization of electricity and natural gas markets even strengthen such a policy. However, dependency on external energy sources carries risks that have to be managed since a large proportion of both oil and gas reserves are found in politically unstable regions. Electrical energy is a fundamental prerequisite for a civilized life and an essential commodity, but it cannot be stored and this restricts the extent to which there can be a real free market for electricity. Therefore, relying on imports of electricity to a large extent may prove unsecure because this requires a true, completely open market in which the opportunities for cross-border trade are effective and balanced and transport connections are adequate. This is equally applied to the countries in the South-Eastern Europe, despite very good prospects for development of the regional electricity market there. In this regard, the use of nuclear energy has not any risk associated with external dependency because there are abundant quantities of uranium available world-wide from many diverse sources. The inherent mitigation of supply risk associated with the use of uranium should act as an incentive to the further use of nuclear energy. In addition, already very large stocks of fuel assemblies and fuel-making materials available, especially when these are measured in terms of power generating capacity per year at current production rates. It is, therefore, very important for any country to recognize such strategic aspect of nuclear energy when addressing the issue of security of power supply. Nuclear option is in a unique position to restore its original role of the main source of energy with an increased attention paid to the security of electricity supply as well as regulatory changes affecting fossil fuels, particularly with due

  2. Renewable energy policy options for Abu Dhabi: Drivers and barriers

    International Nuclear Information System (INIS)

    Mezher, Toufic; Dawelbait, Gihan; Abbas, Zeina

    2012-01-01

    Climate change and fossil fuel depletion are the main drivers for the recent focus on Renewable Energy (RE) resources. However, since the high cost of RE technologies is the main obstacle facing the diffusion of RE power generation, economic and political intervention is inevitable. In the United Arab Emirates (UAE) population and economic growth are the main causes of a sharp increase of energy demand. Two key related factors highlight the need to establish a RE sector: first the UAE has one of the highest carbon footprint in the world and second, the rate of depletion of its main energy generation resource – fossil fuel. In this study, we present a review of overall policies in sixty-one countries, focusing on their efforts to adopt RE resources in the power sector, and on their implementation of fundamental policies implemented. Furthermore, we investigate the applicability to Abu Dhabi UAE of the main RE policies implemented worldwide. As a result of our analysis, we recommend the implementation of a mixed policy of Feed-in-Tariff (FIT) and the Quota system for RE electricity generation in order for the UAE to meet its 7% target by 2020. - Highlights: ► Comprehensive review of renewable energy policy mechanisms. ► Summarizes the renewable energy policy adoptions, targets, and installed capacity in many countries. ► Gives recommendations on renewable energy policy options for Abu Dhabi, an oil rich country.

  3. The need and possible options for the use of renewable energy in Estonia

    International Nuclear Information System (INIS)

    Merdikes, M.; Kivistik, J.

    2002-01-01

    The decrease in fossil fuel and the environmental problems arising from their burning force the mankind to change the structure of energy production. In the Estonian primary energy balance of renewable natural resources wood and peat are on the first place with the percentage of ca 11%. Wind, water and solar energy have not up till now been widely used in Estonia. The foundation of a wind plant and the construction of bioenergy boiler plants are promising from the financial point of view. For the feedstock of bioenergy production, waste from logging and timber industry, energy fast-growing trees and grasses, bulrush and biogas produced by fermentation of organic matter, could be used. One of the options is to produce energy field crops - rape and turnip rape. The authors hope that this paper will emphasise the importance of conducting more extensive research of renewable energy resources and the introduction of such projects. (author)

  4. Options for electricity production, the actual opportunities and regulatory framework

    International Nuclear Information System (INIS)

    Raphals, P.

    2006-01-01

    Thermal power and nuclear power represent the traditional methods of generating electricity. This paper presented opportunities for alternative centralized power production methods that include wind energy, biomass and solar energy. It also discussed decentralized alternatives for power generation, such as geothermal energy and cogeneration, including microturbines. The primary focus was on aspects of competitive market design for residential and small commercial applications as well as commercial and industrial applications. Law 116 of Quebec's Energy Board was reviewed in terms of energy policy and utility regulation. In particular, the framework agreement between Hydro-Quebec Production (HQP) and Hydro-Quebec Distribution (HQD) was discussed with reference to balancing electricity produced from renewable energy sources and energy security. The presentation also addressed issues regarding the role of competition, regulation and environmental implications of electricity trade. refs., tabs., figs

  5. Non-OPEC Oil Supply: Economics and Energy Policy Options

    Energy Technology Data Exchange (ETDEWEB)

    Mourik, Maarten van [Paris (France); Shepherd, Richard K. [Perpignan (France)

    2003-07-01

    shift in investment strategy than the lure of better profits. However strong the evidence of an imminent peaking of offshore and perhaps total non-OPEC oil supply, the reality is that governments will not readily recognise a 'bad news' scenario that will inevitably tarnish their own political image. It follows that a global and permanent threat to their economies and energy security from a shortfall in oil supply outside the Persian Gulf and central Asia will only become a policy assumption if viable and attractive energy policy options are available. If there is single focus to any energy supply threat, then it is the market for transportation fuels, the strongest growing segment of the energy market and the only segment of the energy market where there are no significant alternatives already on offer. The second half of this paper suggests that there are industrial or financial obstacles to the large-scale introduction of fuels other than current specification gasoline and diesel. Almost all the current initiatives to explore and encourage alternative fuels address a long-term future in which fuel cells or hydrogen or 'California-clean' liquids replace the current fuels at the pump. Further, most research concentrates on the environmental aspects of the alternatives rather than their large-scale industrial availability. Yet the hard reality is that any solution to the global oil supply dilemma must be large scale (at least 10% of the total market for transportation fuels) and soon, which means within a decade. The technical facts are that fuels such as ethanol and methanol can be produced in very large volumes and delivered to the consumer without any significant change to the huge infrastructure constituted by the global internal combustion engine manufacturing industry and by the existing fuel distribution networks. This large, immediate and obvious opportunity has not been grasped so far for the excellent reason that the status quo is profitable

  6. Risk of energy production

    International Nuclear Information System (INIS)

    Inhaber, Herbert.

    1978-03-01

    Every human activity involves risk of accident or disease. Generation of energy is no exception. Although such risk has been considered for conventional systems (coal, oil and nuclear), a similar analysis for the so-called alternative or non-conventional systems (solar, wind, ocean thermal and methanol) has been lacking. This paper presents an evaluation of the risk, both occupational and to the public, of non-conventional energy systems. They are considered both in absolute terms and in relation to conventional systems. The risk of most non-conventional systems, per unit of energy output, is comparable to, and in some cases much higher than, the risk from coal and oil. This conclusion holds whether we consider deaths or injuries. Nuclear power and natural gas had the lowest overall risk of the ten technologies considered. Ocean thermal energy ranked third. The surprising result is that the other seven technologies considered were found to be up to 100 times less safe. The total risk is calculated by considering six components: material acquisition and construction, emissions caused by material production, operation and maintenance, energy back-up, energy storage, and transportation. In this way the risk of widely different systems can be fairly assessed. This methodology of 'risk accounting' will not tell us which energy technology to use. However, it can be employed to inform society of the risk inherent in competing energy systems. (author)

  7. Long term energy system analysis of Japan based on 'options for energy and environment' by the energy and environmental council

    International Nuclear Information System (INIS)

    Hagiwara, Naoto; Kurosawa, Atsushi

    2013-01-01

    Implications to Japanese energy system are discussed especially in terms of primary energy supply and power generation portfolio, using sensitivity analysis results by an optimization type energy model based on TIMES modeling framework. We updated energy service demand, efficiency in energy conversion and consumption, and power generation costs based on the recent energy policy document called 'Options for Energy and Environment'. The time horizon of the model is 2050. The sensitivity analysis results are presented for 'Three scenarios for 2030' including nuclear phase out scenarios with/without CO 2 emission constraint. The results are compared with 'Options for Energy and Environment'. (author)

  8. Nuclear fusion as new energy option in a global single-regional energy system model

    International Nuclear Information System (INIS)

    Eherer, C.; Baumann, M.; Dueweke, J.; Hamacher, T.

    2005-01-01

    Is there a window of opportunity for fusion on the electricity market under 'business as usual' conditions, and if not, how do the boundary conditions have to look like to open such a window? This question is addressed within a subtask of the Socio-Economic Research on Fusion (SERF) programme of the European Commission. The most advanced energy-modelling framework, the TIMES model generator developed by the Energy Technology System Analysis Project group of the IEA (ETSAP) has been used to implement a global single-regional partial equilibrium energy model. Within the current activities the potential role of fusion power in various future energy scenarios is studied. The final energy demand projections of the baseline of the investigations are based on IIASA-WEC Scenario B. Under the quite conservative baseline assumptions fusion only enters the model solution with 35 GW in 2100 and it can be observed that coal technologies dominate electricity production in 2100. Scenario variations show that the role of fusion power is strongly affected by the availability of GEN IV fission breeding technologies as energy option and by CO 2 emission caps. The former appear to be a major competitor of fusion power while the latter open a window of opportunity for fusion power on the electricity market. An interesting outcome is furthermore that the possible share of fusion electricity is more sensitive to the potential of primary resources like coal, gas and uranium, than to the share of solar and wind power in the system. This indicates that both kinds of technologies, renewables and fusion power, can coexist in future energy systems in case of CO 2 emission policies and/or resource scarcity scenarios. It is shown that Endogenous Technological Learning (ETL), a more consistent description of technological progress than mere time series, has an impact on the model results. (author)

  9. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  10. Real options and asset valuation in competitive energy markets

    Science.gov (United States)

    Oduntan, Adekunle Richard

    The focus of this work is to develop a robust valuation framework for physical power assets operating in competitive markets such as peaking or mid-merit thermal power plants and baseload power plants. The goal is to develop a modeling framework that can be adapted to different energy assets with different types of operating flexibilities and technical constraints and which can be employed for various purposes such as capital budgeting, business planning, risk management and strategic bidding planning among others. The valuation framework must also be able to capture the reality of power market rules and opportunities, as well as technical constraints of different assets. The modeling framework developed conceptualizes operating flexibilities of power assets as "switching options' whereby the asset operator decides at every decision point whether to switch from one operating mode to another mutually exclusive mode, within the limits of the equipment constraints of the asset. As a current decision to switch operating modes may affect future operating flexibilities of the asset and hence cash flows, a dynamic optimization framework is employed. The developed framework accounts for the uncertain nature of key value drivers by representing them with appropriate stochastic processes. Specifically, the framework developed conceptualizes the operation of a power asset as a multi-stage decision making problem where the operator has to make a decision at every stage to alter operating mode given currently available information about key value drivers. The problem is then solved dynamically by decomposing it into a series of two-stage sub-problems according to Bellman's optimality principle. The solution algorithm employed is the Least Squares Monte Carlo (LSM) method. The developed valuation framework was adapted for a gas-fired thermal power plant, a peaking hydroelectric power plant and a baseload power plant. This work built on previously published real options valuation

  11. Meeting world energy needs. The economic and environmental aspects of the nuclear option

    International Nuclear Information System (INIS)

    Ward, D.P.; Chalpin, D.M.

    1994-01-01

    Tabulated capital, operating, and overall production costs for nuclear, coal, and gas-fuelled power show that nuclear power is a viable option for meeting the world's energy needs. The advantage of nuclear, otherwise limited to certain markets, is seen to be much greater when credit is taken for environmental factors, namely emissions of carbon dioxide and acidic gases by fossil-fuelled plants. 5 figs

  12. Effects of bioenergy production on European nature conservation options

    Science.gov (United States)

    Schleupner, C.; Schneider, U. A.

    2009-04-01

    To increase security of energy supply and reduce greenhouse gas (GHG) emissions the European Commission set out a long-term strategy for renewable energy in the European Union (EU). Bioenergy from forestry and agriculture plays a key role for both. Since the last decade a significant increase of biomass energy plantations has been observed in Europe. Concurrently, the EU agreed to halt the loss of biodiversity within its member states. One measure is the Natura2000 network of important nature sites that actually covers about 20% of the EU land surface. However, to fulfil the biodiversity target more nature conservation and restoration sites need to be designated. There are arising concerns that an increased cultivation of bioenergy crops will decrease the land available for nature reserves and for "traditional" agriculture and forestry. In the following the economic and ecological impacts of structural land use changes are demonstrated by two examples. First, a case study of land use changes on the Eiderstedt peninsula in Schleswig-Holstein/Germany evaluates the impacts of grassland conversion into bioenergy plantations under consideration of selected meadow birds. Scenarios indicate not only a quantitative loss of habitats but also a reduction of habitat quality. The second study assesses the role of bioenergy production in light of possible negative impacts on potential wetland conservation sites in Europe. By coupling the spatial wetland distribution model "SWEDI" (cf. SCHLEUPNER 2007) to the European Forest and Agricultural Sector Optimization Model (EUFASOM; cf. SCHNEIDER ET AL. 2008) economic and environmental aspects of land use are evaluated simultaneously. This way the costs and benefits of the appropriate measures and its consequences for agriculture and forestry are investigated. One aim is to find the socially optimal balance between alternative wetland uses by integrating biological benefits - in this case wetlands - and economic opportunities - here

  13. Sustainable energy provision: a comparative assessment of the various electricity supply options

    International Nuclear Information System (INIS)

    Voss, A.

    2000-01-01

    The provision of electricity is of central importance for economic growth and societal development. While numerous societal and economic benefits arise from the use of electricity, the production of electricity can also have negative impacts on the environment and the climate system. The commitment to sustainable development calls for the evaluation of the extent to which the different electricity supply options fulfill the sustainability criteria. The conceptual framework of Life Cycle Assessment (LCA) can provide a solid basis for a comparative assessment of different electricity supply options with regard to their environmental impacts, raw material requirements as well as their resulting external costs. Results of a comprehensive comparative assessment of nuclear energy and other electricity options are presented. (author)

  14. Production of 177Lu for targeted radionuclide therapy: Available options

    International Nuclear Information System (INIS)

    Dah, Ashutosh; Pillai, Maroor Raghavan Ambikalmajan; Knapp, Furn F. Jr.

    2015-01-01

    This review provides a comprehensive summary of the production of 177 Lu to meet expected future research and clinical demands. Availability of options represents the cornerstone for sustainable growth for the routine production of adequate activity levels of 177 Lu having the required quality for preparation of a variety of 177 Lu-labeled radiopharmaceuticals. The tremendous prospects associated with production of 177 Lu for use in targeted radionuclide therapy (TRT) dictate that a holistic consideration should evaluate all governing factors that determine its success. While both “direct” and “indirect” reactor production routes offer the possibility for sustainable 177 Lu availability, there are several issues and challenges that must be considered to realize the full potential of these production strategies. This article presents a mini review on the latest developments, current status, key challenges and possibilities for the near future. A broad understanding and discussion of the issues associated with 177 Lu production and processing approaches would not only ensure sustained growth and future expansion for the availability and use of 177 Lu-labeled radiopharmaceuticals, but also help future developments

  15. Climate Change: Seed Production and Options for Adaptation

    Directory of Open Access Journals (Sweden)

    John G. Hampton

    2016-07-01

    Full Text Available Food security depends on seed security and the international seed industry must be able to continue to deliver the quantities of quality seed required for this purpose. Abiotic stress resulting from climate change, particularly elevated temperature and water stress, will reduce seed yield and quality. Options for the seed industry to adapt to climate change include moving sites for seed production, changing sowing date, and the development of cultivars with traits which allow them to adapt to climate change conditions. However, the ability of seed growers to make these changes is directly linked to the seed system. In the formal seed system operating in developed countries, implementation will be reasonably straight forward. In the informal system operating in developing countries, the current seed production challenges including supply failing to meet demand and poor seed quality will increase with changing climates.

  16. Outline of sustainable energy technology for flower bulb businesses. An economic analysis of decentralized energy production options; Verkenning duurzame energietechnieken toepasbaar op bloembollenbedrijven. Een economische analyse van decentrale opwekkingsmogelijkheden

    Energy Technology Data Exchange (ETDEWEB)

    Van der Putten, K. [Praktijkonderzoek Plant en Omgeving PPO, Bloembollen, Boomkwekerij en Fruit, Lisse (Netherlands)

    2011-05-15

    An overview is offered of the available sustainable energy sources and techniques that are available for decentralized energy generation in the flower bulb sector. By comparing the expected increase of gas and electricity prices to the expected price decrease of new, sustainable technologies, an estimate was made regarding the year in which these techniques will become financially appealing for flower bulb businesses. This comparison takes into account the various growth scenarios and the allocation of subsidies [Dutch] Een overzicht wordt gegeven van beschikbare duurzame energiebronnen en technieken waarmee decentraal energie kan worden opgewekt in de bloembollensector. Door de verwachte stijging van de gas en elektriciteitsprijzen uit te zetten tegen de verwachte prijsdaling van de nieuwe, duurzame technologieen, is een schatting gemaakt van het jaar waarin deze technieken financieel aantrekkelijk worden voor bloembollenbedrijven. Hierbij is rekening gehouden met verschillende groeiscenario's en het wel of niet verkrijgen van subsidie.

  17. Evaluation of cleaner production options in dyeing and printing industry: Using combination weighting method

    Science.gov (United States)

    Kang, Hong; Zhang, Yun; Hou, Haochen; Sun, Xiaoyang; Qin, Chenglu

    2018-03-01

    The textile industry has a high environmental impact so that implementing cleaner production audit is an effective way to achieve energy conservation and emissions reduction. But the evaluation method in current cleaner production audit divided the evaluation of CPOs into two parts: environment and economy. The evaluation index system was constructed from three criteria of environment benefits, economy benefits and product performance; weights of five indicators were determined by combination weights of entropy method and factor weight sorting method. Then efficiencies were evaluated comprehensively. The results showed that the best alkali recovery option was the nanofiltration membrane method (S=0.80).

  18. Financing options in Mexico's energy industry

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, J.J. (PricewaterhouseCoopers Securities, Houston, TX (United States))

    1999-01-01

    A series of brief notes accompanied this presentation which was divided into seven sections entitled: (1) capital markets update, (2) Mexican financial market update, (3) financing options in the energy industry, (4) the Venezuelan experience at La Apertura, (5) private and strategic equity alternatives, (6) Pricewaterhouse Coopers Securities, and (7) Mexico energy 2005 prediction. The paper focused on how the financial crisis and merger activity in Latin America will impact electricity reform in Mexico. It was noted that under Mexico's Policy Proposal for Electricity Reform of the Mexican Electricity Industry, the financial community will seek to back companies in power generation, transportation and distribution. The difficulty of financing government businesses undergoing privatization was also discussed with particular emphasis on the challenge of accepting political and regulatory risks. The Latin private equity market and Canadian investment in Mexico was also reviewed. Since NAFTA (North American Free Trade Agreement) went into affect in 1994, Canadian investment in Mexico has more than tripled. Canadian companies have invested more than C$1.7 billion in Mexico since NAFTA. Pricewaterhouse Coopers Securities is a global investment bank which sees large opportunities in the Mexican energy market. They predict that in five years, Mexico will experience a gradual liberalization of the oil and gas sector, and a full liberalization of the gas pipeline and distribution business and the power generation, transmission and distribution business. 3 figs.

  19. Financing options in Mexico`s energy industry

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, J.J. [PricewaterhouseCoopers Securities, Houston, TX (United States)

    1999-10-01

    A series of brief notes accompanied this presentation which was divided into seven sections entitled: (1) capital markets update, (2) Mexican financial market update, (3) financing options in the energy industry, (4) the Venezuelan experience at La Apertura, (5) private and strategic equity alternatives, (6) Pricewaterhouse Coopers Securities, and (7) Mexico energy 2005 prediction. The paper focused on how the financial crisis and merger activity in Latin America will impact electricity reform in Mexico. It was noted that under Mexico`s Policy Proposal for Electricity Reform of the Mexican Electricity Industry, the financial community will seek to back companies in power generation, transportation and distribution. The difficulty of financing government businesses undergoing privatization was also discussed with particular emphasis on the challenge of accepting political and regulatory risks. The Latin private equity market and Canadian investment in Mexico was also reviewed. Since NAFTA (North American Free Trade Agreement) went into affect in 1994, Canadian investment in Mexico has more than tripled. Canadian companies have invested more than C$1.7 billion in Mexico since NAFTA. Pricewaterhouse Coopers Securities is a global investment bank which sees large opportunities in the Mexican energy market. They predict that in five years, Mexico will experience a gradual liberalization of the oil and gas sector, and a full liberalization of the gas pipeline and distribution business and the power generation, transmission and distribution business. 3 figs.

  20. Marketing energy conservation options to Northwest manufactured home buyers

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, P.L.; Mohler, B.L.; Taylor, Z.T.; Lee, A.D.; Onisko, S.A.

    1985-06-01

    This study relies on extensive, existing survey data and new analyses to develop information that would help design a marketing plan to achieve energy conservation in new manufactured homes. Existing surveys present comprehensive information about regional manufactured home occupants and their homes that are relevant to a potential conservation marketing plan. An independent analysis of the cost-effectiveness of various efficiency improvements provides background information for designing a marketing plan. This analysis focuses on the economic impacts of alternative energy conservation options as perceived by the home owner. Identifying impediments to conservation investments is also very important in designing a marketing plan. A recent report suggests that financial constraints and the need for better information and knowledge about conservation pose the major conservation investment barriers. Since loan interest rates for new manufactured homes typically exceed site-built rates by a considerable amount and the buyers tend to have lower incomes, the economics of manufactured home conservation investments are likely to significantly influence their viability. Conservation information and its presentation directly influences the manufactured home buyer's decision. A marketing plan should address these impediments and their implications very clearly. Dealers express a belief that consumer satisfaction is the major advantage to selling energy efficient manufactured homes. This suggests that targeting dealers in a marketing plan and providing them direct information on consumers' indicated attitudes may be important. 74 refs.

  1. Renewable energy off-grid power systems: options for energy suppliers

    International Nuclear Information System (INIS)

    Trouchet, K.

    1992-01-01

    SURVIVOR ENERGY SYSTEMS package a range of wind-based renewable energy systems for the supply of 24-hour power to off-grid homesteads and communities. This paper presents a leasing package for these power users and illustrates their cost effectiveness in comparison with stand-alone diesel and comparative hybrid power options. This offer is seen as a alternative for energy planners and supply agencies for their off-grid clients. 6 refs., 3 tabs., 3 figs

  2. DTU international energy report 2013. Energy storage options for future sustainable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hvidtfeldt Larsen, H.; Soenderberg Petersen, L. (eds.)

    2013-11-01

    One of the great challenges in the transition to a non-fossil energy system with a high share of fluctuating renewable energy sources such as solar and wind is to align consumption and production in an economically satisfactory manner. Energy storage could provide the necessary balancing power to make this possible. This energy report addresses energy storage from a broad perspective: It analyses smaller stores that can be used locally in for example heat storage in the individual home or vehicle, such as electric cars or hydrogen cars. The report also addresses decentralized storage as flywheels and batteries linked to decentralized energy systems. In addition it addresses large central storages as pumped hydro storage and compressed air energy storage and analyse this in connection with international transmission and trading over long distances. The report addresses electrical storage, thermal storage and other forms of energy storage, for example conversion of biomass to liquid fuel and conversion of solar energy directly into hydrogen, as well as storage in transmission, grid storage etc. Finally, the report covers research, innovation and the future prospects and addresses the societal challenges and benefits of the use of energy storage. (Author)

  3. Energy and emission scenarios for China in the 21st century. Exploration of baseline development and mitigation options

    NARCIS (Netherlands)

    Vuuren DP van; Fengqi Zhou; Vries HJM de; Kejun Jiang; Graveland C; Yun Li; Energy Research Institute,; MNV

    2001-01-01

    The purpose of the study reported here was to explore possible baseline developments and available options for mitigating emissions in China. The first part of the report deals with an analysis and overview of available data on historic energy production and consumption trends and current energy

  4. Assesment of Energy Options for CO2 Emission Reduction

    International Nuclear Information System (INIS)

    Cavlina, Nikola

    2014-01-01

    Since the 1992 Earth Summit in Rio de Janeiro, global anthropogenic CO 2 emissions grew by 52% which caused an increase in 10.8% in the CO 2 concentration in the atmosphere, and it tipped the 400 ppm mark in May 2013. The Fifth Assessment Report on climate impacts from the Intergovernmental Panel on Climate Change (IPCC) confirmed earlier warnings that climate change is already stressing human communities, agriculture, and natural ecosystems, and the effects are likely to increase in the future. While European Union has long been committed to lowering carbon emissions, this places additional pressure on current EU goals for energy sector that includes significant reduction of CO 2 emissions. Current EU commitment has been formalized in so-called '20-20-20' plan, reducing carbon emissions, increasing energy efficiency and increasing energy production from renewables by 20% by 2020. Some EU member states are even more ambitious, like United Kingdom, planning to reduce carbon emissions by 80% by 2050. Bulk of carbon reduction will have to be achived in energy sector. In the power industry, most popular solution is use of solar and wind power. Since their production varies significantly during the day, for the purpose of base-load production they can be paired with gas-fired power plant. Other possible CO 2 -free solution is nuclear power plant. In this invited lecture, predicted cost of energy production for newly bulit nuclear power plant and newly built combination of wind or solar and gas-fired power plant are compared. Comparison was done using Levelized Unit of Energy Cost (LUEC). Calculations were performed using the Monte Carlo method. For input parameters that have biggest uncertainty (gas cost, CO 2 emission fee) those uncertainties were addressed not only through probability distribution around predicted value, but also through different scenarious. (author)

  5. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Brent W. Dixon; Steven J. Piet

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ∼100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation - Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in

  6. Economic Evaluation for Energy Business Using Real Options Pricing Method

    Energy Technology Data Exchange (ETDEWEB)

    Yun, W.C. [Korea Energy Economics Institute, Euiwang (Korea)

    2001-11-01

    Recently, facing the new era of restructuring, privatization, and liberalization the energy industry in the world is changing rapidly, and thus the uncertain factors tend to increase. This would imply that energy-related business is now confronted with new market risks as well as the simple price risks. The traditional investment valuation method using the concept of net present value (NPV) or internal rate of revenue (IRR) might not incorporate the managerial alternatives which enable managers to respond flexibly to the changes in business environment. This study pointed out the problems of the traditional discounted cash flow (DCF) method when evaluating a certain capital investment in energy industry. As an alternative, the real option pricing method (ROPM) was proposed, which is widely adopted in the field of profit projection for the venture business. In addition, when applying to energy sector the feasibility of ROPM was discussed, and the frameworks and major results of previous related studies were described. For those using the ROPM in real business, I explained the detailed procedures and solutions of ROPM, and introduced the log-transformed binomial model which provides a more efficient solution. In order to verify the usefulness of the ROPM, this study performed an empirical analysis for a virtual construction and operation project of power plant. And, the results from the ROPM was compared to those from the traditional DCF method. Based on the empirical results, the values of various investment opportunities were shown to be high. Therefore, the project not justified in terms of traditional DCF would turn into the project with a positive gross project value, properly reflecting managerial flexibilities inherent in the original project. (author). 58 refs., 32 figs., 33 tabs.

  7. Energy intensities of food products. Energie-intensiteiten van voedingsmiddelen

    Energy Technology Data Exchange (ETDEWEB)

    Kok, R.; Biesiot, W.; Wilting, H.C.

    1993-08-01

    The energy intensity of a product is the amount of primary energy used per Dutch guilder spent on consumer goods. The energy intensity can differ for each spending and varies from household to household. The aim of this study is to calculate the energy intensities and to provide an overview of the total package of consumer goods, including sociological categories and lifestyles, and the related use of primary energy to produce these goods. Use is made of the Energy Analysis Program (EAP) to calculate the energy intensities. EAP is based on the hybrid method: both the process analysis and the input-output analysis are applied in the model. The data input of the model consists of data from the Budget Survey 1990 of the Dutch Central Bureau of Statistics, which holds data of consumptions from 2767 households. In the chapters 4 to 10 energy intensities are given of the categories bread, pastry and groceries (chapter four), potatoes, vegetables and fruits (chapter five), sugary products and beverages (chapter six), oils and fats (chapter seven), meat, meat products and fish (chapter eight), dairy products (chapter nine), and other food products (chapter ten). The highest energy intensity is found for oils and fats (13.5 MJ per Dutch guilder). The energy intensities for the other products vary from 4.0 to 6.6 MJ/gld. It appears that most of the energy intensive products are products which do not use a large part of the primary energy, mainly because the consumption of these products is low. On the other hand many of the products that consume much of the primary energy (i.e. are consumed much themselves) are relatively energy extensive. The products that show a high consumption rate have relatively low energy intensities. Some of the options to shift towards a more energy extensive food package are the use of fresh products and outside grown products instead of treated products or greenhouse products and a more balanced diet. 5 figs., 18 tabs., 2 appendices, 52 refs.

  8. EU policy options for climate and energy beyond 2020

    Energy Technology Data Exchange (ETDEWEB)

    Koelemeijer, R.; Ros, J.; Notenboom, J.; Boot, P. [Netherlands Environmental Assessment Agency PBL, Den Haag (Netherlands); Groenenberg, H.; Winkel, T. [Ecofys, Utrecht (Netherlands)

    2013-05-15

    In 2009, the EU climate and energy package with targets for 2020 (the so-called 20-20-20 targets) were formulated. For the period after 2020, however, there are no legally binding targets at the EU level, except for a decreasing ETS cap which will not be sufficient in light of the ambition for 2050. This leads to uncertainty for market players, as project lead times are long and high upfront investments need to deliver returns well beyond 2020. In its Green Paper on a 2030 framework for climate and energy policies, the European Commission recognised the need for clarity regarding the post-2020 policy framework. Currently under discussion is whether the approach for 2020 should be continued towards 2030 in the form of three more stringent targets or that other approaches would be more appropriate. Within this context, the Dutch Government asked PBL Netherlands Environmental Assessment Agency and Ecofys for advice. PBL and Ecofys have subsequently analysed possible options for an EU policy framework for 2030 that will steer towards a low-carbon economy by 2050 in a cost-effective way.

  9. Nuclear energy for seawater desalination - options in future

    International Nuclear Information System (INIS)

    Yadav, M.K.; Murugan, V.; Balasubramaniyan, C.; Nagaraj, R.; Dangore, Y.

    2010-01-01

    Full text: With ever increasing water scarcity, many alternatives are being tried to supplement the existing water resources. There are regions where water is scarce and population is growing and is at the mercy of inadequate supplies. Seawater constitutes a practically unlimited source of saline water. When desalted, it can augment the existing potable water resources for the people in nearby area and also meet the increasing demand. BARC has been engaged in the field of desalination and developed expertise in both thermal and membrane technologies. It has setup 6300 M 3 /D Nuclear Desalination Demonstration Project (NDDP) at Kalpakkam, where both membrane and thermal technologies have been used for sea water desalination. Desalination process needs energy and nuclear energy is strong option in view of limited fossil fuels and environmental concerns. Multi Stage Flash (MSF) plant based on thermal technology has been coupled to MAPS Reactors and Sea Water Reverse Osmosis (SWRO) plant is based on membrane technology. This paper discusses various aspects of coupling of desalination plant with nuclear reactors and also discusses salient features of hybridization of thermal and membrane technologies

  10. Biomass energy development and carbon dioxide mitigation options

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.I.

    1995-01-01

    Studies on climate change and energy production increasingly recognize the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO 2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some of the key issues which arise. Halting deforestation is of paramount importance, but there is also great potential for reforestation of degraded lands, agroforestry and improved forest management. We conclude that biomass energy plantations and other types of energy cropping could be a more effective strategy for carbon mitigation than simply growing trees as a carbon store. Using the biomass for production of modern energy carriers such as electricity, and liquid and gaseous fuels also has a wide range of other environmental, social and economic benefits. In order for biomass projects to succeed, it is necessary to ensure that these benefits are felt locally as well as nationally, furthermore, environmental sustainability of bioenergy projects is an essential requirement. The constraints to achieving environmentally-acceptable biomass production are not insurmountable. Rather they should be seen as scientific and entrepreneurial opportunities which will yield numerous advantages at local, national and international levels in the long term. (au) 76 refs

  11. The research for flexible product family manufacturing based on real options

    Directory of Open Access Journals (Sweden)

    Maozhu Jin

    2015-01-01

    Full Text Available Purpose: The goal of this paper is to find the best production strategy for product mix, which means the largest value of the options. And finally, give a case and find the solution of the optimal production strategy for product mix. Design/methodology/approach: This article, based on the production with characteristics of a call option and 0-1 integer programming model, build new-products mix strategy, and through case demonstrate that traditional method underestimates the value of the products mix. Finding: According to market being volatility and uncertainty and the production can being delayed, firms can flexibly arrange the best time for products to manufacture. Use real options theory to analyze product decision and the best production timing decision. Find the total options value is higher than the traditional methods. Research limitations/implications: We are not applied to real option pricing theory in modular flexible production system. We just applied real option pricing theory to the product platform. The basic model needs to improve. While the thinking of this paper provides some research ideas for flexible production systems based on real option in further research. Practical Implications: The introduction of the real option make the company can achieve dynamic planning and flexible management for production of products mix and get the better benefit. Originality/value: The central contribution of this paper is to introduce the option mechanism in the production timing for the product mix.

  12. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J.; Lekov, A.; Chan, P.; Dunham Whitehead, C.; Meyers, S.; McMahon, J. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Environmental Energy Technologies Div.

    2006-03-01

    In 2001, the US Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered. (author)

  13. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    International Nuclear Information System (INIS)

    Lutz, James; Lekov, Alex; Chan, Peter; Whitehead, Camilla Dunham; Meyers, Steve; McMahon, James

    2006-01-01

    In 2001, the US Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered

  14. WELMM approach to energy strategies and options. [Water, energy, land, materials, and manpower

    Energy Technology Data Exchange (ETDEWEB)

    Grenon, M; Lapillonne, B

    1976-12-01

    The development of energy resources requires more and more natural or human resources--on the one hand because of the difficulty of ''harvesting'' primary energy resources, and on the other because of the complexity of the sequence of processes necessary to convert these primary resources into useful resources for an economy (final energy). In this context the WELMM approach has been designed to evaluate the resource requirements for the development of energy resources. WELMM focuses mainly on five limited resources: water, energy, land, materials, and manpower. The WELMM evaluation is implemented at the level of the major facilities concerned in the harvesting and conversion of primary energy resources into final resources. All the WELMM data are stored in three different data bases (Resource Data Base, Component Data Base, and Facility Data Base). They are meant to be used to enlarge and complete the traditional economic comparison of energy processes, energy strategies, or energy options.

  15. Nuclear hydrogen production: re-examining the fusion option

    International Nuclear Information System (INIS)

    Baindur, S.

    2007-01-01

    This paper describes a scheme for nuclear hydrogen production by fusion. The basic idea is to use nuclear energy of the fuel (hydrogen plasma) to produce molecular hydrogen fro carbon-free hydrogen compounds. The hydrogen is then stored and utilized electrochemically in fuel cells or chemically as molecular hydrogen in internal combustion engines

  16. Energy Supply Options for Modernizing Army Heating Systems

    Science.gov (United States)

    1999-01-01

    analysis. 26 USACERL TR 99/23 HEATMAP uses the AutoLISP program in AutoCAD to take the graphical input to populate a Microsoft® Access database in...density. 22 4 HEATMAP AutoCAD interface 23 5 HEATMAP cunsumers interface 24 6 HEATMAP production plant interface 25 7 HEATMAP flow analysis 25 8...Contractor Costs, Mission Requirements Real Property Data, AutoCAD map. Boiler Logs, Energy Bills Boiler and Pipe Inspections Installation Future

  17. Valuing of research project in energy field with real options

    International Nuclear Information System (INIS)

    De Blasio, N.; Marzo, G.; Turatto, R.

    2008-01-01

    This article presents an application of real options theory for valuing a research project in the field of stranded gas valorisation. After a presentation of the theory, the analysis addresses the use of real options evaluation for generating alternative pathways in order to add new value to the R D projects. It also shows how real option approach may be important for selecting among competitive projects, but also for providing a system for valorisation of decision-maker flexibility [it

  18. Wood pellets offer a competitive energy option in Sweden

    International Nuclear Information System (INIS)

    2001-01-01

    The market for wood pellets in Sweden grew rapidly during the 1990s and production now stands at around 550,000 tonnes/year. More efficient combustion technology, pellet transportation, pellet storage and pellet delivery have also been developed. The pellets, which are produced by some 25 plants, are used in family houses, large-scale district heating plants, and combined heat and power (CHP) plants. Most of the pellets are made from biomass resources such as forest residues and sawdust and shavings from wood mills. Pellet production, the energy content of saw mill by-products, the current market and its potential for future expansion, the way in which the pellets are used in different combustion systems, the theoretical market potential for wood pellet heating installations in small houses and the Swedish P-certificate system for the certification of pellet stoves and burners are described

  19. Proceedings of the Workshop on Program Options in Intermediate-Energy Physics. Keynote address: New directions in intermediate-energy nuclear physics

    International Nuclear Information System (INIS)

    Brown, G.E.

    1980-05-01

    This report presents the keynote address given by G.E. Brown at a LASL colloquium on August 21, 1979, for the Workshop on Program Options in Intermediate-Energy Physics. Professor Brown reviewed major topics of interest in intermediate-energy nuclear physics and suggested experimental approaches that might be most productive in the near future. 22 figures

  20. Real options valuation and optimization of energy assets

    Science.gov (United States)

    Thompson, Matthew

    In this thesis we present algorithms for the valuation and optimal operation of natural gas storage facilities, hydro-electric power plants and thermal power generators in competitive markets. Real options theory is used to derive nonlinear partial-integro-differential equations (PIDEs) for the valuation and optimal operating strategies of all types of facilities. The equations are designed to incorporate a wide class of spot price models that can exhibit the same time-dependent, mean-reverting dynamics and price spikes as those observed in most energy markets. Particular attention is paid to the operational characteristics of real energy assets. For natural gas storage facilities these characteristics include: working gas capacities, variable deliverability and injection rates and cycling limitations. For thermal power plants relevant operational characteristics include variable start-up times and costs, control response time lags, minimum generating levels, nonlinear output functions, structural limitations on ramp rates, and minimum up/down time restrictions. For hydro-electric units, head effects and environmental constraints are addressed. We illustrate the models with numerical examples of a gas storage facility, a hydro-electric pump storage facility and a thermal power plant. This PIDE framework is the first in the literature to achieve second order accuracy in characterizing the operating states of hydro-electric and hydro-thermal power plants. The continuous state space representation derived in this thesis can therefore achieve far greater realism in terms of operating state specification than any other method in the literature to date. This thesis is also the first and only to allow for any continuous time jump diffusion processes in order to account for price spikes.

  1. Energy security for India: Biofuels, energy efficiency and food productivity

    International Nuclear Information System (INIS)

    Gunatilake, Herath; Roland-Holst, David; Sugiyarto, Guntur

    2014-01-01

    The emergence of biofuel as a renewable energy source offers opportunities for significant climate change mitigation and greater energy independence to many countries. At the same time, biofuel represents the possibility of substitution between energy and food. For developing countries like India, which imports over 75% of its crude oil, fossil fuels pose two risks—global warming pollution and long-term risk that oil prices will undermine real living standards. This paper examines India's options for managing energy price risk in three ways: biofuel development, energy efficiency promotion, and food productivity improvements. Our salient results suggest that biodiesel shows promise as a transport fuel substitute that can be produced in ways that fully utilize marginal agricultural resources and hence promote rural livelihoods. First-generation bioethanol, by contrast, appears to have a limited ability to offset the impacts of oil price hikes. Combining the biodiesel expansion policy with energy efficiency improvements and food productivity increases proved to be a more effective strategy to enhance both energy and food security, help mitigate climate change, and cushion the economy against oil price shocks. - Highlights: • We investigate the role of biofuels in India applying a CGE model. • Biodiesel enhances energy security and improve rural livelihoods. • Sugarcane ethanol does not show positive impact on the economy. • Biodiesel and energy efficiency improvements together provide better results. • Food productivity further enhances biodiesel, and energy efficiency impacts

  2. Energy efficiency business options for industrial end users in Latin American competitive energy markets: The case of Colombia

    Science.gov (United States)

    Botero, Sergio

    2002-01-01

    Energy markets today in Latin America and worldwide are being restructured from monopolies, either state-owned or privately-owned, to be more openly competitive and incorporate more participation from the private sector. Thus, the schemes that were formerly developed to foster end use energy efficiency are no longer applicable because they were based on mandatory regulations made with political decisions, without sufficiently considering economic feasibility. A consensus exists that the only way energy efficiency could survive in this new paradigm is by being market oriented, giving better services, and additional options to users. However; there is very little information on what end users prefer, and which options would most satisfy customers. Using Colombia as a case study, this research determines and categorizes the energy efficiency business options for large energy end users that can freely participate in the competitive energy market. The energy efficiency market is understood as a market of services aiming to increase efficiency in energy use. These services can be grouped into seven business options. A survey, following the descriptive method, was sent to energy end users in order to determine their preferences for specific energy efficiency business options, as well as the decision-making criteria taken into account for such options. This data was categorized in ten industry groups. As a conclusion, energy efficiency providers should adapt not only to the economic activity or processes of each customer, but also to the potential business options. It was also found that not all industries consider performance contracting as their most preferred option, as a matter of fact, some industries show much higher preference for conventional business options. Among end users, the divergence in option preferences contrasted with the convergence in decision-making criteria. The decision-making criteria "cost-benefit ratio" overwhelmed all other criterion. End users

  3. Geothermal Energy as source or energy production

    International Nuclear Information System (INIS)

    Lozano, E.

    1998-01-01

    This article shows the use and utilization of geothermal energy. This calorific energy can be used, through the wells perforation, in generation of electricity and many other tasks. In Colombia is possible the utilization of this energy in the electrical production due to the volcanic presence in the Western and Central mountain chains

  4. Options for Kentucky's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  5. Energy development and water options in the Yellowstone River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  6. Towards Design of Sustainable Energy Systems in Developing Countries: Centralized and Localized Options

    Science.gov (United States)

    Kursun, Berrin

    Energy use in developing countries is projected to equal and exceed the demand in developed countries in the next five years. Growing concern about environmental problems, depletion and price fluctuation of fossil fuels pushes the efforts for meeting energy demand in an environmentally friendly and sustainable way. Hence, it is essential to design energy systems consisting of centralized and localized options that generate the optimum energy mix to meet this increasing energy demand in a sustainable manner. In this study, we try to answer the question, "How can the energy demand in Rampura village be met sustainably?" via two centralized clean coal (CCC) technology and three localized energy technology options analyzed. We perform the analysis of these energy technologies through joint use of donor-side analysis technique emergy analysis (EA) and user-side analysis technique life cycle assessment (LCA). Sustainability of such an energy combination depends on its reliance on renewable inputs rather than nonrenewable or purchased inputs. CCC technologies are unsustainable energy systems dependent on purchased external inputs almost 100%. However, increased efficiency and significantly lower environmental impacts of CCC technologies can lead to more environmentally benign utilization of coal as an energy source. CCC technologies supply electricity at a lower price compared to the localized energy options investigated. Localized energy options analyzed include multi-crystalline solar PV, floating drum biogas digester and downdraft biomass gasifier. Solar PV has the lowest water and land use, however, solar electricity has the highest price with a high global warming potential (GWP). Contrary to general opinion, solar electricity is highly non-renewable. Although solar energy is a 100% renewable natural resource, materials utilized in the production of solar panels are mostly non-renewable purchased inputs causing the low renewability of solar electricity. Best

  7. Is it still an energy option in the US

    International Nuclear Information System (INIS)

    Weaver, L.E.

    1984-01-01

    Questions regarding nuclear power as a viable energy source in the future of the US are discussed. Successful, economical production of electricity in the past is contrasted with dramatic cost overruns, delays, and quality assurance problems of today. Long term issues include: reactor licensing and regulations, nuclear waste management, economics, public opinion, and demand. Problems that would be faced if nuclear power were to fade away temporarily and then be needed in the 21st century, lack of technical expertise and educational facilities, etc., are discussed

  8. The long term challenges of energy management: keeping all options open

    International Nuclear Information System (INIS)

    Moisan, F.

    2003-01-01

    Before the end of the 21. century, the global energy sector will need to face up to two challenges: climate warming due to greenhouse gas emissions and the increasing scarcity of traditional hydrocarbons. The likely scenarios expected by 2030 demonstrate that we are in the process of witnessing strong growth in the consumption of energy and in CO 2 emissions while at the same time climate experts warn us that we need to achieve a 75 % reduction of emissions in the industrialized nations by 2050. Several technological options may be envisaged in order to meet these challenges including a view generation nuclear power, renewable energy, the storage of carbon dioxide or managing energy consumption, and we need to keep all options open because none of these alone can solve all the problems. The time required for technologies to emerge following research and their penetration into the marketplace can often be several decades. The 2050 deadline is therefore not so at away and we need to stem and reverse the growth in demand from today onwards, something we should da without any misgivings when we consider the considerable uncertainties surrounding supply-side technologies. This profound transformation of our production and consumption methods also involves a change in our lifestyle and our behaviour: our efforts in the field of technological development must be accompanied by a commitment by all citizens to creating a more rational society where energy is concerned. (author)

  9. Sensible use of primary energy in organic greenhouse production

    NARCIS (Netherlands)

    Stanghellini, C.; Baptista, F.; Eriksson, Evert; Gilli, Celine; Giuffrida, F.; Kempkes, F.L.K.; Munoz, P.; Stepowska, Agnieszka; Montero, J.I.

    2016-01-01

    Review of the major sources for energy consumption in organic greenhouse horticulture and analyse of the options available to reduce energy consumption or, at least, increase the energy use efficiency of organic production in greenhouses. At the moment, the best way to match demand and availability

  10. Nuclear energy-an essential option for sustainable development of global economy

    International Nuclear Information System (INIS)

    Tokio Kanoh

    2005-01-01

    Increased use of nuclear energy is an essential option for us to take the sustainable development of the global economy. The reasons are as follows: 1. Energy demand, especially in oil demand; 2. Environmental impact, especially greenhouse effect and carbon dioxide emissions, CO 2 emissions to be reduced 40% by increased use of nuclear power; 3. In the era of hydrogen, nuclear power can contribute in two ways. One is hydrogen production by electrolysis of water in conventional light water reactors powered by less costly late night electricity and the other by paralysis using high temperature gas produced in a high temperature testing reactor, Electric power consumption will increase 50% from 1990 to 2050. What is striking about his projection is types of fuels in use for power generation at that time which will consist of 60% nuclear, 10% hydro and 10% of other renewable energies. In other words, nearly 80% of fuels will be non-fossil sources

  11. 19 CFR 151.47 - Optional entry of net quantity of petroleum or petroleum products.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Optional entry of net quantity of petroleum or petroleum products. 151.47 Section 151.47 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... Petroleum and Petroleum Products § 151.47 Optional entry of net quantity of petroleum or petroleum products...

  12. Energy production in stars

    International Nuclear Information System (INIS)

    Bethe, Hans.

    1977-01-01

    Energy in stars is released partly by gravitation, partly by nuclear reactions. For ordinary stars like our sun, nuclear reactions predominate. However, at the end of the life of a star very large amounts of energy are released by gravitational collapse; this can amount to as much as 10 times the total energy released nuclear reactions. The rotational energy of pulsars is a small remnant of the energy of gravitation. The end stage of small stars is generally a white dwarf, of heavy stars a neutron star of possibly a black hole

  13. ENERGY STAR Certified Roof Products

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Roof Products that are effective as of July 1,...

  14. Pricing the (European) option to switch between two energy sources: An application to crude oil and natural gas

    International Nuclear Information System (INIS)

    Gatfaoui, Hayette

    2015-01-01

    We consider a firm, which can choose between crude oil and natural gas to run its business. The firm selects the energy source, which minimizes its energy or production costs at a given time horizon. Assuming the energy strategy to be established over a fixed time window, the energy choice decision will be made at a given future date T. In this light, the firm's energy cost can be considered as a long position in a risk-free bond by an amount of the terminal oil price, and a short position in a European put option to switch from oil to gas by an amount of the terminal oil price too. As a result, the option to switch from crude oil to natural gas allows for establishing a hedging strategy with respect to energy costs. Modeling stochastically the underlying asset of the European put, we propose a valuation formula of the option to switch and calibrate the pricing formula to empirical data on a daily basis. Hence, our innovative framework handles widely the hedge against the price increase of any given energy source versus the price of another competing energy source (i.e. minimizing energy costs). Moreover, we provide a price for the cost-reducing effect of the capability to switch from one energy source to another one (i.e. hedging energy price risk). - Highlights: • We consider a firm, which chooses either crude oil or natural gas as an energy source. • The capability to switch offers the firm a hedge against energy commodity price risk. • A European put option prices the ability to switch from crude oil to natural gas. • The capability to switch between two energy sources reduces the firm's energy costs. • The discount illustrates the efficiency of the energy management policy (e.g. timing).

  15. Chapter 7: Renewable Energy Options and Considerations for Net Zero Installations

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Samuel

    2017-03-15

    This chapter focuses on renewable energy options for military installations. It discusses typical renewable technologies, project development, and gives examples. Renewable energy can be combined with conventional energy sources to provide part or all of the energy demand at an installation. The appropriate technology mix for an installation will depend on site-specific factors such as renewable resources, energy costs, local energy policies and incentives, available land, mission compatibility, and other factors. The objective of this chapter is to provide basic background information and resources on renewable energy options for NATO leaders and energy personnel.

  16. Efficiency in energy production and consumption

    Science.gov (United States)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  17. Perspective on long-range nuclear energy options

    International Nuclear Information System (INIS)

    Harms, W.O.

    1977-01-01

    The study group whose effort is presented here concluded that the United States urgently needs to have a breeder option available for possible deployment before the year 2000 primarily because of uncertainties in the availability of fossil fuels and uranium supplies. It was recommended that the U/Pu LMFBR program proceed as planned, including prompt construction of the CRBRP and its associated fuel cycle facilities. Alternative cycle studies should be pursued, but without significantly delaying the current program. There are technological choices which, in suitable political contexts, may somewhat reduce proliferation risks; of these, only those that employ breeders preserve the breeder option (and the nuclear option in the long term. These alternatives must be coupled with political agreements to have any significant effect on proliferation potential internationally. These same political agreements should suffice to control the U/Pu breeder cycle; there is only a difference in degree between the U/Pu and the denatured Th/U-233 cycles

  18. Keeping options open. Energy, technology and sustainable development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger; Langlois, Lucille; McDonald, Alan

    2001-01-01

    The Ninth Session of the the Commission for Sustainable Development (CSD-9) in April 2001 provided an excellent opportunity for a full debate on the role of nuclear power in sustainable development, as part of its over-all discussion of energy, transport and the atmospheric change issues. On nuclear power, there were two important conclusions. First, countries agreed to disagree on the role of nuclear power in sustainable development. CSD-9's final text recognizes that some countries view nuclear power as incompatible with sustainable development while others believe it is an important contributor to sustainable development. For each case, the reasoning is presented in the text. The second conclusion, on which there was consensus agreement, is that 'the choice of nuclear energy rests with countries'. The arguments in favor of an important role for nuclear power role in sustainable development are that it broadens the resource base by putting uranium to productive use; it reduces harmful emissions; it expands electricity supplies and it increases the world's stock of technological and human capital. It is ahead of other energy technologies in internalizing all externalities, from safety to waste disposal to decommissioning - the costs of all of these are already included in the price of nuclear electricity in most countries. The complete nuclear power chain, from resource extraction to waste disposal including reactor and facility construction, emits only two to kilowatt-hour -- about the same as wind and solar power and two orders of magnitude below coal, oil, and even natural gas. In addition, nuclear power avoids the emission of many other air pollutants, such as SO 2 , NO x and particulates

  19. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative (HCEI)

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Doris, E.; Braccio, R.; Lippert, D.; Finch, P.; O' Toole, D.; Fetter, J.

    2010-04-01

    This report provides detailed analyses of 21 clean energy policy options considered by the Hawaii Clean Energy Initiative working groups for recommendation to the 2010 Hawaii State Legislature. The report considers the impact each policy may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits. The analyses provide insight into the possible impacts, both qualitative and quantitative, that these policies may have in Hawaii based on the experience with these policies elsewhere. As much as possible, the analyses incorporate Hawaii-specific context to reflect the many unique aspects of energy use in the State of Hawaii.

  20. Assessment of energy efficiency options in the building sector of Lebanon

    International Nuclear Information System (INIS)

    Chedid, R.B.; Ghajar, R.F.

    2004-01-01

    This paper examines the merits of implementing energy efficiency policies in the building sector in Lebanon following the approach normally adopted in Climate Change studies. The paper first examines the impact of the energy sector on the Lebanese economy, and then assesses the feasibility of implementing suitable energy efficiency options in the building sector. For this purpose, a detailed analysis of the building sector in Lebanon is presented with emphasis on the thermal characteristics of building envelopes and the energy consuming equipment. The long-term benefits of applying energy efficiency options in the building sector are then assessed using a scenario-type analysis that compares these benefits against those of a baseline scenario that assumes no significant implementation of energy efficiency policies. Finally, feasible options are highlighted and recommendations to remove the major barriers hindering the penetration of energy efficiency options in the Lebanese market are provided

  1. Balancing Fiscal, Energy, and Environmental Concerns: Analyzing the Policy Options for California’s Energy and Economic Future

    Directory of Open Access Journals (Sweden)

    Edward Manderson

    2013-03-01

    Full Text Available This study estimates the fiscal, energy, and environmental tradeoffs involved in supplying California’s future energy needs. An integrated framework is developed whereby an econometric forecasting system of California energy demand is coupled with engineering-economic models of energy supply, and economic impacts are estimated using input-output models of the California economy. A baseline scenario in which California relies on imported electricity to meet future demand is then compared against various energy supply development scenarios over the forecast horizon (2012–2035. The results indicate that if California implements its renewable portfolio standard (RPS, there will be a substantial net cost in terms of value added, employment, and state tax revenues because the economic benefits of building capacity are outweighed by higher energy prices. Although carbon emissions fall, the cost per ton of avoided emissions is well above market prices. Building out natural gas fired generation capacity also leads to losses compared to the baseline, although the impacts are relatively minor. Meanwhile, a strategy of replacing imported crude oil and natural gas with domestic production using indigenous resources increases gross state product, employment, and tax revenues, with minimal impact on carbon emissions. This option could, therefore, help mitigate the costs of California meeting its RPS commitment.

  2. Renewable energy policy in South Africa: policy options for renewable electricity

    International Nuclear Information System (INIS)

    Winkler, H.

    2005-01-01

    Investment in renewable energy and energy efficiency is important to reduce the negative economic, social and environmental impacts of energy production and consumption in South Africa. Currently, renewable energy contributes relatively little to primary energy and even less to the consumption of commercial energy. This article examines policy options for promoting renewable electricity. Feed-in tariffs guarantee prices for developers, but lack certainty on the amount of renewable electricity such laws would deliver under local conditions. Portfolio standards set a fixed quantity, which would guarantee diversity of supply. The question is whether the incremental upfront cost to be paid by society may be unacceptably high, compared to future health and environmental benefits. A renewables obligation combines the setting of a target with a tendering process, but may be bureaucratic to administer. Neither setting targets or regulating prices alone, however, will be sufficient. Power purchase agreements, access to the grid and creating markets for green electricity are some supporting activities that should be considered. Given that renewable electricity technologies have to compete with relatively low electricity tariffs, funding will be needed. Possible sources, both locally and internationally, are identified. The extent to which these are utilised will determine the future mix of renewable energy in South Africa. (author)

  3. Renewable energy policy in South Africa: policy options for renewable electricity

    International Nuclear Information System (INIS)

    Winkler, Harald

    2005-01-01

    Investment in renewable energy and energy efficiency is important to reduce the negative economic, social and environmental impacts of energy production and consumption in South Africa. Currently, renewable energy contributes relatively little to primary energy and even less to the consumption of commercial energy. This article examines policy options for promoting renewable electricity. Feed-in tariffs guarantee prices for developers, but lack certainty on the amount of renewable electricity such laws would deliver under local conditions. Portfolio standards set a fixed quantity, which would guarantee diversity of supply. The question is whether the incremental upfront cost to be paid by society may be unacceptably high, compared to future health and environmental benefits. A renewables obligation combines the setting of a target with a tendering process, but may be bureaucratic to administer. Neither setting targets or regulating prices alone, however, will be sufficient. Power purchase agreements, access to the grid and creating markets for green electricity are some supporting activities that should be considered. Given that renewable electricity technologies have to compete with relatively low electricity tariffs, funding will be needed. Possible sources, both locally and internationally, are identified. The extent to which these are utilised will determine the future mix of renewable energy in South Africa

  4. Warranty of Misinforming as an Option in Product Utilization Process

    Directory of Open Access Journals (Sweden)

    Dimitar Grozdanov Christozov

    2016-05-01

    Full Text Available The following definition of “option” is given in Wikipedia - “In finance, an option is a contract, which gives the buyer (the owner or holder the right, but not the obligation, to buy or sell an underlying asset or instrument at a specified strike price on or before a specified date, depending on the form of the option” (“Option,” n.d.. Option as a risk management (mitigation tool is broadly used in finance and trade. At the same time, it introduces asymmetry in the sense that, probabilistically, it limits the level of losses (e.g., the price of the option and allows for unlimited gains. In the market of sophisticated devices (as smart phones, tablets, etc., where technologies are rapidly advancing, customers usually do not have the experience to use all features of the device at the time of the purchase. Due to the lack of appropriate expertise, the risk of misinforming, leading to not purchasing the “right” device is high, but given enough time to learn the capabilities of the device and map these to the needs and tasks that device will be used for, could provide the client with substantial long term benefits. Warranty of misinforming is a mechanism that provides the client with the opportunity to explore the device and master its features under limited risk of financial losses. Thus, the warranty of misinforming could be considered as an option - the custom-ers buy it (at a fixed cost and may gain (theoretically unlimited benefit by realizing (within the terms of the warranty that the device can be used to solve a variety of problems not envisaged at the time of purchase. In this study we present the idea of treating the warranty of misinforming as an option in finances and provide examples to illustrate our viewpoint.

  5. Renewable energy: the secure and sustainable option for Pakistan

    International Nuclear Information System (INIS)

    Asif, M.

    2005-01-01

    Pakistan is an energy deficient country that heavily relies on imports of fossil fuels to meet its energy requirements. Pakistan is facing severe energy challenges -indigenous oil and gas reserves are running out, energy demand is rapidly increasing, gap between demand and supply is growing, concerns about secure supply of energy are increasing and fuel cost is rising at an unprecedented rate. For sustainable development, it is crucial to ensure supply of adequate, consistent and secure supply of energy. Renewable energy resources that are sustainable are abundantly available in Pakistan in various forms such as hydel power, solar energy, wind power and biomass. To address the growing energy challenges, it has become inevitable for the country to diversify its energy market through harnessing renewable energy resources. It has been found that hydel power is one of the most significant renewable energy sources that can help Pakistan address the present as well as future energy challenges. It has been identified that solar water heating is another ready to adopt renewable energy technology that alone has the potential to meet as much as 12-15% of the country's entire energy requirements. (author)

  6. Wind energy technology: an option for a renewable clean environment energy. Low impact renewable energy: options for a clean environment and healthy Canadian economy

    International Nuclear Information System (INIS)

    Salmon, J.

    1999-01-01

    As Canada debates ways to address climate change, the country's low-impact renewable energy industries want to ensure that Canadians are provided with all of the options available to them. Accordingly, they have come together to create Options for a Clean Environment and Healthy Canadian Economy. Recognizing there is no 'silver bullet' solution to climate change, this document identifies an important suite of measures that, along with others, will allow Canada to achieve its long-term economic and environmental goals. The measures described in this document represent an investment in Canada's future. If implemented, they will reduce annual greenhouse gas (GHG) emissions by more than 12 million tonnes (Mt) by the year 2010 (roughly 8% of Canada's reduction target), create thousands of new jobs, and reduce health-care costs by millions of dollars each year. The most significant dividends from these measures, however, will occur after 2010 as a result of having set in motion fundamental changes in the attitudes of Canadians and the nature of the Canadian energy market. By 2020, the spin-off actions prompted by these measures will likely have resulted in GHG reductions twice as great as those achieved in 2010. This document highlights the opportunities associated specifically with Canada's low-impact renewable energy resources. These are non-fossil-fuel resources that are replenished through the earth's natural cycles and have a minimal impact on the environment and human health. They include wind, solar, earth energy, run-of-river hydro and sustainable biomass fuels. These resources can replace fossil fuels in a variety of areas, including electricity and space and water heating. Fuel cells, although not a renewable resource in themselves, are a promising technology that in combination with renewables have the potential to deliver versatile low-impact electricity. The document also identifies opportunities associated with the increased use of passive renewable energy

  7. Modelling the water energy nexus: should variability in water supply impact on decision making for future energy supply options?

    Directory of Open Access Journals (Sweden)

    J. D. S. Cullis

    2018-02-01

    Full Text Available Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing

  8. Modelling the water energy nexus: should variability in water supply impact on decision making for future energy supply options?

    Science.gov (United States)

    Cullis, James D. S.; Walker, Nicholas J.; Ahjum, Fadiel; Juan Rodriguez, Diego

    2018-02-01

    Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing additional water

  9. Multifactor valuation models of energy futures and options on futures

    Science.gov (United States)

    Bertus, Mark J.

    The intent of this dissertation is to investigate continuous time pricing models for commodity derivative contracts that consider mean reversion. The motivation for pricing commodity futures and option on futures contracts leads to improved practical risk management techniques in markets where uncertainty is increasing. In the dissertation closed-form solutions to mean reverting one-factor, two-factor, three-factor Brownian motions are developed for futures contracts. These solutions are obtained through risk neutral pricing methods that yield tractable expressions for futures prices, which are linear in the state variables, hence making them attractive for estimation. These functions, however, are expressed in terms of latent variables (i.e. spot prices, convenience yield) which complicate the estimation of the futures pricing equation. To address this complication a discussion on Dynamic factor analysis is given. This procedure documents latent variables using a Kalman filter and illustrations show how this technique may be used for the analysis. In addition, to the futures contracts closed form solutions for two option models are obtained. Solutions to the one- and two-factor models are tailored solutions of the Black-Scholes pricing model. Furthermore, since these contracts are written on the futures contracts, they too are influenced by the same underlying parameters of the state variables used to price the futures contracts. To conclude, the analysis finishes with an investigation of commodity futures options that incorporate random discrete jumps.

  10. Determining Mean Annual Energy Production

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Folley, Matt

    2016-01-01

    This robust book presents all the information required for numerical modelling of a wave energy converter, together with a comparative review of the different available techniques. The calculation of the mean annual energy production (MAEP) is critical to the assessment of the levelized cost...... of energy for a wave energy converter or wave farm. Fundamentally, the MAEP is equal to the sum of the product of the power capture of a set of sea-states and their average annual occurrence. In general, it is necessary in the calculation of the MAEP to achieve a balance between computational demand...

  11. Energy options open to mankind beyond the turn of the century

    International Nuclear Information System (INIS)

    Haefele, W.

    1977-01-01

    Nuclear power is described as having the potential to provide mankind with almost unlimited energy beyond the year 2000. In terms of engineering and economics, the scale of the nuclear fuel cycle is in hundreds of GW, as compared to the GW dimension of present electricity supply units. Energy demand is considered the yardstick for measuring long-term options. Major parameters of this global approach are economic growth of industrialized nations, development of less developed countries, and population growth. Also, long-term trends away from labour-intensive economies (mostly oriented towards agriculture) towards energy-intensive and/or capital-intensive economies must be analysed. Different schemes of world economic orders must also be accounted for, such as the International Development Strategies for the 1970s and the New Economic Order. The 50-TW mark of future global energy demand used in this paper as a guideline is based on them, as well as on a medium population growth estimate of about 12 thousand million. Soft renewable energy sources have regional significance. They, as well as energy conservation, can provide up to a few TW at best. Solar power, if harvested on a global scale, would become a hard technology with large-scale storage and extensive transport and land use. Future large-scale applications of nuclear power would have to go beyond electricity generation. Breeding would allow the use of thin uranium resources, including those of the seas. Power production from either fission or fusion (D-T) breeders could be concentrated in regional energy parks up to 1TW with complete fuel cycles, using liquid or gaseous secondary energy carriers for long-range transport. Coal, which has the largest potential of all fossil resources, can serve as an option for the transition period. Used as a secondary energy carrier and combined with process heat, it could service, e.g., the transport sector for two centuries. Concluding, the author advises that this rather

  12. Energy in the world: The present situation and future options

    International Nuclear Information System (INIS)

    Rogner, H.H.

    1989-01-01

    It is reported that the most notable changes on the world energy scene since 1973 concerned the shift in OPEC's role from a base to a swing producer, the disruption of the fast market penetration of nuclear power and the impacts caused by the technical advances at essentially all stages of the energy system. Further, several parts of the world witnessed a strong environmental movement which attracted public attention to the conduct of the energy industry and its social implications and environmental consequences. The lecture illuminates these events in some detail and evaluate their impacts on present and future energy demand, supply and trade patterns. The future energy outlook includes two fundamentally different scenarios. Each scenario in itself appears internally consistent. The diverging projections of future energy demand and supply mixes underlying these scenarios are the result of the inclusion/omission of technical change or dynamics of technology into the analyses. 19 refs, 22 figs

  13. Integrated economic assessment of energy and forestry mitigation options using MARKAL

    International Nuclear Information System (INIS)

    1998-01-01

    There have been a number of economic assessment of GHG mitigation studies carried out in Indonesia. Several alternative mitigation options for energy and non-energy sectors have been described and the economic assessment of the options has been done for each sectors. However, most of the economic assessment particularly for non-energy sector, was not to find a least cost option but the lowest cost options. A program called MARKAL developed by a consortium of energy specialists from more than a dozen countries in the early 1980s, is a program that can be used for optimization, so that the least cost options could be selected. Indonesia has used this program intensively for energy system analysis. Attempt to use this program for other sector has not been developed as this program was designed for energy sector. Therefore, using MARKAL for other sector, all activities of the other sectors should be treated as energy activities. This study is aimed to use MARKAL for analysing both energy and forestry sector together. This paper described briefly the methodology of using MARKAL for both energy and forestry sectors. As the activities in energy sector have unique characteristics, thus only forest activities are described in more detail. (au)

  14. Valuation of Wind Energy Projects: A Real Options Approach

    Directory of Open Access Journals (Sweden)

    Luis M. Abadie

    2014-05-01

    Full Text Available We address the valuation of an operating wind farm and the finite-lived option to invest in it under different reward/support schemes: a constant feed-in tariff, a premium on top of the electricity market price (either a fixed premium or a variable subsidy such as a renewable obligation certificate or ROC, and a transitory subsidy, among others. Futures contracts on electricity with ever longer maturities enable market-based valuations to be undertaken. The model considers up to three sources of uncertainty: the electricity price, the level of wind generation, and the certificate (ROC price where appropriate. When analytical solutions are lacking, we resort to a trinomial lattice combined with Monte Carlo simulation; we also use a two-dimensional binomial lattice when uncertainty in the ROC price is considered. Our data set refers to the UK. The numerical results show the impact of several factors involved in the decision to invest: the subsidy per MWh generated, the initial lump-sum subsidy, the maturity of the investment option, and electricity price volatility. Different combinations of variables can help bring forward investments in wind generation. One-off policies, e.g., a transitory initial subsidy, seem to have a stronger effect than a fixed premium per MWh produced.

  15. Energy options and implications for the Nigerian environment

    International Nuclear Information System (INIS)

    Salau, A. M.

    1999-01-01

    The paper presents the significance and importance of energy in national life, energy conversion factors and an overview of the various energy resources in Nigeria. It also presents the impacts of fuels in terms of emissions resulting from the exploitation of fuels and their environmental impacts. A number of concepts are put forward in order to evolve a new paradigm for mitigating global effects of environmental pollution

  16. Energy-Efficiency Options for Insurance Loss Prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Knoepfel, I. [Swiss Reinsurance Co., Zurich (Switzerland)

    1997-06-09

    Energy-efficiency improvements offer the insurance industry two areas of opportunity: reducing ordinary claims and avoiding greenhouse gas emissions that could precipitate natural disaster losses resulting from global climate change. We present three vehicles for taking advantage of this opportunity, including research and development, in- house energy management, and provision of key information to insurance customers and risk managers. The complementary role for renewable energy systems is also introduced.

  17. Hydrogen as a clean energy option; Option Wasserstoff als sauberer Energietraeger

    Energy Technology Data Exchange (ETDEWEB)

    Newi, G. [Consulectra Unternehmensberatung GmbH, Hamburg (Germany)

    1998-06-01

    Many visionary action programmes are based on the conviction that hydrogen produced from renewable, environmentally sustainable resources is the chemical energy carrier of the future. In Hamburg there have been various pilot projects over the past ten years which deal explicitly with problems of infrastructure relating to the integration of renewable energy sources in the existing energy supply. One such example is the fuel cell block heating station in Hamburg Behrenfeld which has been supplying residential buildings for some time now. Another is a practice-oriented pilot project involving a hydrogen-fuelled PAFC with 220 kW thermal and 200 kW electrical power output. The hydrogen is supplied by a 60 m-3 LH{sub 2} tank, the first of its kind to be approved by the authorities and accepted by the public. [Deutsch] Viele visionaere Aktionsprogramme sehen aus dauerhaft umweltvertraeglichen Quellen erzeugten Wasserstoff als chemischen Energietraeger der Zukunft. In Hamburg gibt es seit rd. 10 Jahren verschiedene Pilotprojekte, die sich insbesondere mit Fragen der Infrastruktur zur Integration erneuerbarer Energiequellen in die bestehende Energieversorgung befassen. Ein Beispiel ist das in Hamburg-Behrenfeld seit einiger Zeit betriebene Brennstoffzellen-Blockheizkraftwerk zur Versorgung von Wohngebaeuden. Als praxisbezogenes Pilotprojekt wird u.a. eine H{sub 2}-versorgte PAFC mit 220 kW thermischer und 200 kW elektrischer Leistung betrieben. Die Wasserstoffversorgung aus einem oberirdischen 60 m{sup 3} LH{sub 2}-Tank wurde erstmals in dieser Anwendungsform behoerdlich genehmigt und von der Oeffentlichkeit akzeptiert. (orig./MSK)

  18. Energy and the environment: Technology assessment and policy options

    International Nuclear Information System (INIS)

    Silveira, M.P.W.

    1990-01-01

    While the energy crisis of the 1970s stimulated technological innovation in developed countries, it often had the opposite effect in the third world. However, developing countries can be considered to have two types of energy systems: ''connected'' and ''disconnected''. The connected system is affected by changes in the price of commercial energy, but the disconnected system is usually rural and remote. Commercial forms of energy may be needed in the disconnected system, but they are largely unavailable. In some of the developing countries, new energy technologies have therefore been developed which adapt traditional technologies still existing in the disconnected sector. In this article some of the work of the United National Centre for Science and Technology for Development is described. Through its ATAS (Advance Technology Alert System) programme, international and regional workshops are held to discuss policy questions arising in regard to new technologies and developments. Workshops have been held in Moscow on new energy technologies in the industry subsystem (connected), in Guatemala City on new energy technologies and the disconnected system, and in Ottawa on new energy technologies, transportation and development. Initial assessments made by or through these workshops are outlined here. A fourth workshop will be held in June 1990 in Saarbrucken on energy technologies and climate change. (author). 3 figs

  19. ENERGY STAR Certified Products - Lighting

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set contains a simplified list of all currently certified ENERGY STAR Lighting models with basic model information collected across all product categories...

  20. Innovative Energy Planning and Nuclear Option Using CANDLE Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, H; Nagata, A; Mingyu, Y [Tokyo Institute of Technology, Tokyo (Japan)

    2008-07-01

    A new reactor burn-up strategy CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move upward (or downward) along its core axis. This burn-up strategy can derive many merits. The change of excess reactivity along burn-up is theoretically zero for ideal equilibrium condition, and shim rods will not be required for this reactor. The reactor becomes free from accidents induced by unexpected control rods withdrawal. The core characteristics, such as power feedback coefficients and power peaking factor, are not changed during life of operation. Therefore, the operation of the reactor becomes much easier than the conventional reactors. The infinite-medium neutron multiplication factor of replacing fuel is less than unity. Therefore, the transportation and storage of replacing fuels becomes easy and safe, since they are free from criticality accidents. Small long life fast reactor with CANDLE burn-up concept has investigated with depleted uranium as a replacing fuel. Both core diameter and height are chosen to be 2.0 m, and the thermal power is 200 MW. Lead-bismuth is used as a coolant, and nitride (enriched N-15) fuel are employed. The velocity of burning region along burn-up is less than 1.0 cm/year that enables a long life design easily. The core averaged discharged fuel burn-up is about 40 percent. It is about ten times of light water reactor burn-up. The spent fuel volume becomes one-tenth of light water reactor spent fuel. If a light water reactor with a certain power output has been operated for 40 years, the CANDLE reactor can be operated for 2000 years with the same power output and with only depleted uranium left after fuel production for the light water reactor. The system does not need any reprocessing or enrichment. Therefore, the reactor operation becomes very safe, the waste

  1. Innovative Energy Planning and Nuclear Option Using CANDLE Reactors

    International Nuclear Information System (INIS)

    Sekimoto, H.; Nagata, A.; Mingyu, Y.

    2008-01-01

    A new reactor burn-up strategy CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move upward (or downward) along its core axis. This burn-up strategy can derive many merits. The change of excess reactivity along burn-up is theoretically zero for ideal equilibrium condition, and shim rods will not be required for this reactor. The reactor becomes free from accidents induced by unexpected control rods withdrawal. The core characteristics, such as power feedback coefficients and power peaking factor, are not changed during life of operation. Therefore, the operation of the reactor becomes much easier than the conventional reactors. The infinite-medium neutron multiplication factor of replacing fuel is less than unity. Therefore, the transportation and storage of replacing fuels becomes easy and safe, since they are free from criticality accidents. Small long life fast reactor with CANDLE burn-up concept has investigated with depleted uranium as a replacing fuel. Both core diameter and height are chosen to be 2.0 m, and the thermal power is 200 MW. Lead-bismuth is used as a coolant, and nitride (enriched N-15) fuel are employed. The velocity of burning region along burn-up is less than 1.0 cm/year that enables a long life design easily. The core averaged discharged fuel burn-up is about 40 percent. It is about ten times of light water reactor burn-up. The spent fuel volume becomes one-tenth of light water reactor spent fuel. If a light water reactor with a certain power output has been operated for 40 years, the CANDLE reactor can be operated for 2000 years with the same power output and with only depleted uranium left after fuel production for the light water reactor. The system does not need any reprocessing or enrichment. Therefore, the reactor operation becomes very safe, the waste

  2. Green Energy Options for Consumer-Owned Business

    Energy Technology Data Exchange (ETDEWEB)

    Co-opPlus of Western Massachusetts

    2006-05-01

    The goal of this project was to define, test, and prototype a replicable business model for consumer-owned cooperatives. The result is a replicable consumer-owned cooperative business model for the generation, interconnection, and distribution of renewable energy that incorporates energy conservation and efficiency improvements.

  3. Options for Energy Conservation and Emission Reductions in Transportation Means for Goods Distribution

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1996-01-01

    The report contains an analysis of the technological options and potentials for development of transportation means with low energy consumption and emissions. The main focus is on transportation means utilised in the distribution of groceries.......The report contains an analysis of the technological options and potentials for development of transportation means with low energy consumption and emissions. The main focus is on transportation means utilised in the distribution of groceries....

  4. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  5. Proceedings of solar energy storage options. Volume I. An intensive workshop on thermal energy storage for solar heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Separate abstracts were prepared for the 28 papers presented. Panel chairmen's summaries are included; the complete panel reports will be published in Volume II of the Solar Energy Storage Options Workshop proceedings. (WHK)

  6. Evaluating the impacts of energy supply technology options

    International Nuclear Information System (INIS)

    Peachey, B.R.

    2009-01-01

    The newly formed Chemical Institute of Canada (CIC)/Canadian Society for Chemical Engineering (CSChE) Energy Subject Division is working to develop a methodology for assessing and communicating to governments, regulators and the public the relative merits of different technologies for meeting energy demand requirements or reducing energy consumption. The focus is on developing a process that considers a broader range of issues than basic economics, or greenhouse gas (GHG) emissions. The 12 assessment criteria proposed would address five major areas of concerns including: a) how well assumptions have been tested against the scientific method over the life cycle of an energy development, b) impacts on the availability of the basic requirements for life, c) maintaining the quality of human life, d) maintaining the quality of the local environment (air, land and water), in the area where a specific technology is used, and e) considers the potential global impacts of GHG emissions. (author)

  7. Production of bio-energies

    International Nuclear Information System (INIS)

    Gurtler, J.L.; Femenias, A.; Blondy, J.

    2009-01-01

    After having indicated the various possible origins of biomass, this paper considers the issue of bio-energies, i.e., energies produced with biomass related to forest or agriculture production. Some indicators are defined (share of renewable energies, share of biomass in the energy production and consumption, number of production units). Stake holders are identified. Then, major and emerging trends are identified and discussed. The major trends are: development and diversification of renewable energies, development of bio-fuels with the support of incentive policies, prevalence of the wood-energy sector on the whole renewable energies, increase of surfaces dedicated to bio-fuels since the end of the 1990's, a French biogas sector which is late with respect to other countries. The emerging trends are: the important role of oil price in the development of bio-fuels, a necessary public support for the development of biogas, mobilization of research and development of competitiveness poles for bio-industries. Some prospective issues are also discussed in terms of uncertainties (soil availabilities, environmental performance of bio-fuels, available biomass resource, need of a technological advance, and evolution of energy needs on a medium term, tax and public policy). Three hypotheses of bio-energy evolutions are discussed

  8. Wind energy development: Danish experiences and international options

    International Nuclear Information System (INIS)

    Frandsen, S.; Hasted, F.; Josephsen, L.; Nielson, J.H.

    1989-01-01

    In Denmark, wind energy makes a visible contribution to energy planning. Since 1976, over 1,800 wind turbine units have been installed in Denmark, representing a capacity of ca 140 MW out of a grid capacity of 8,000 MW. These units are all grid-connected and the unit sizes range from 55 kW to 400 kW. The installed wind energy capacity represents a substantial development of technologies for wind energy utilization during the last 15 years, involving participation from research institutes, electric utilities, private industry, and the national energy administration. A considerable improvement of the technical and economic performance of wind turbines, along with increased reliability and durability, has been strongly supported by comprehensive government programs. In 1985, another large construction program was initiated which will add 100 MW wind power capacity by the end of 1990. Parallel with commercial development, Danish utilities have developed and constructed a number of megawatt-size wind turbines on a pilot basis. In general terms the wind energy resources in Denmark are rather good, and many suitable sites exist, but installed wind energy capacity is limited by the high population density. Consequently, research is being conducted on the feasibility of offshore wind turbines. In other countries, wind energy developments similar to those in Denmark are taking place. In communities with no connection to the national grid, special attention should be paid to hybrid systems such as wind-diesel and hydro-wind systems. A substantial transfer of technology is required for facilitating significant development of hybrid systems in developing countries. 11 refs., 7 figs., 2 tabs

  9. Nuclear energy: a necessary option; Energia nuclear: una opcion necesaria

    Energy Technology Data Exchange (ETDEWEB)

    Robles N, A. G. [Comision Federal de Electricidad, Periferico Sur No. 4156, Col. Jardines del Pedregal, 01900 Ciudad de Mexico (Mexico); Ramirez S, J. R.; Esquivel E, J., E-mail: ambar.robles@cfe.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    With the decree of the Energy Reform and with the creation of the Electricity Industry and Energy Transition Laws; nuclear energy is incorporated into these as a source of clean energy. Currently, the share of electricity generation using conventional technologies is 80% and clean technologies of 20% of which hydroelectric plants represent 50% of these. While the operation of hydroelectric, wind, solar plants, etc. have contributed to reduce greenhouse gas emissions (GGE), the global effort to mitigate climate change has not observed the expected results, according to the meeting of COP 21 in Paris, where 196 countries agreed, unanimously, to limit the increase of the temperature at 2 degrees Celsius or less for before the year 2100. In Paris, Mexico voluntarily submitted its national mitigation and adaptation contribution to climate change by issuing 162 M ton of CO{sub 2eq} as a goal to 2030, that is a ΔGGE of -22%. This means that the electricity sector should contribute to the reduction of 139 M ton of CO{sub 2eq} and a ΔGGE of -31%. According to some experts, the goal of reducing gases for the sector could be achieved during the period defined in the Agreement, provided that the share of clean energies is added as established in the Energy Reform and the Development Program of the National Electric System 2016-2030, which establishes the addition of 35,532 MW (62%) of installed capacity in clean technologies, where nuclear energy participates with 4,191 MW (7%) that is, 2,651 MW more. Thus, this article aims to show the importance of the use of nuclear energy in the electricity sector to reduce GGE, achieve international commitments and combat climate change. (Author)

  10. Incentive Policy Options for Product Remanufacturing: Subsidizing Donations or Resales?

    Science.gov (United States)

    Zhu, Xiaodong; Wang, Yue; Li, Bangyi

    2017-01-01

    Remanufactured products offer better environmental benefits, and governments encourage manufacturers to remanufacture through various subsidy policies. This practice has shown that, in addition to product sales, remanufactured product can also achieve its value through social donation. Based on the remanufactured product value realization approaches, governments provide two kinds of incentive policies, which are remanufactured product sales subsidies and remanufactured product donation subsidies. This paper constructs a two-stage Stackelberg game model including a government and a manufacturer under two different policies, which can be solved by backward induction. By comparing the optimal decision of the two policies, our results show that, compared with the remanufacturing sales subsidy, donation subsidy weakens the cannibalization of remanufactured products for new products and increases the quantity of new products. It reduces the sales quantity of remanufactured products, but increases their total quantity. Under certain conditions of low subsidy, the manufacturer adopting sales subsidy provides better economic and environmental benefits. Under certain conditions of high subsidy, the manufacturer adopting donation subsidy offers better economic and environmental benefits. When untreated product environmental impact is large enough, donation subsidy policy has a better social welfare. Otherwise, the choice of social welfare of these two different policies depends on the social impact of remanufactured product donated. PMID:29194411

  11. Incentive Policy Options for Product Remanufacturing: Subsidizing Donations or Resales?

    Science.gov (United States)

    Zhu, Xiaodong; Wang, Zhe; Wang, Yue; Li, Bangyi

    2017-12-01

    Remanufactured products offer better environmental benefits, and governments encourage manufacturers to remanufacture through various subsidy policies. This practice has shown that, in addition to product sales, remanufactured product can also achieve its value through social donation. Based on the remanufactured product value realization approaches, governments provide two kinds of incentive policies, which are remanufactured product sales subsidies and remanufactured product donation subsidies. This paper constructs a two-stage Stackelberg game model including a government and a manufacturer under two different policies, which can be solved by backward induction. By comparing the optimal decision of the two policies, our results show that, compared with the remanufacturing sales subsidy, donation subsidy weakens the cannibalization of remanufactured products for new products and increases the quantity of new products. It reduces the sales quantity of remanufactured products, but increases their total quantity. Under certain conditions of low subsidy, the manufacturer adopting sales subsidy provides better economic and environmental benefits. Under certain conditions of high subsidy, the manufacturer adopting donation subsidy offers better economic and environmental benefits. When untreated product environmental impact is large enough, donation subsidy policy has a better social welfare. Otherwise, the choice of social welfare of these two different policies depends on the social impact of remanufactured product donated.

  12. Energy Recovery from Scrap Tires: A Sustainable Option for Small Islands like Puerto Rico

    Directory of Open Access Journals (Sweden)

    Eddie N. Laboy-Nieves

    2014-05-01

    Full Text Available Puerto Rico generates and disposes nearly five million/year scrap tires (ST, of which 4.2% is recycled and 80% is exported. The Island has one of the world highest electrical service tariff ($0.28 kWh, because of its dependency on fossil fuels for power generation. The Government has not considered ST for electricity production, despite more than 13,000 ST are generated daily, and paradoxically exported for that purpose. Theoretically, if ST recycling increases to 10% and assuming that the caloric value of ST be 33 MJ/kg, it was estimated that scrap tires processed with pyrolysis can supply annually about 379 MWh, a potential value that shall not be unnoticed. This paper is a literature review to describe the legal, technical, and economic framework for the viability of ST for power generation in Puerto Rico using pyrolysis, the most recommended process for ST energy recovery. Data of ST from Puerto Rico was used to model the potential of ST for pyrolytic energy conversion. The herein article is intended to invite other insular countries and territories, to join efforts with the academic and scientific community, and with the energy generation sector, to validate ST as a sustainable option for energy generation.

  13. Consumer energy conservation options - professional and consumer perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, B.J.R.; Claxton, J.D.; McDougall, G.H.G.

    1980-01-01

    The objectives of this study were to: identify government policies for reducing Canadian consumption of home heating fuel, electricity, and gasoline; assess probable effectiveness of different policy alternatives as a means of reducing consumer energy consumption; and measure the acceptability to Canadian consumers of the different policy alternatives. Interviews were conducted with energy conservation professionals to identify and evaluate existing energy conservation programs, and interviews were conducted with consumers who had evaluated selected programs previously reviewed by the professionals. Information was also gathered on energy conservation activities of consumers surveyed. A directory of 34 energy conservation programs was also compiled. Some of the conclusions reached in this report are as follows. There is a need for an information system to gather data on existing conservation programs in order to increase the knowledge of relevant parties as to the outcomes of operating programs. This would help evaluation and improvement of current programs and suggest new program possibilities. The professionals rated six of the 34 programs highly, including the Energuide and the Canadian Home Insulation Program (CHIP). Retrofitting programs for houses are recommended for continuation and expansion, with some consideration given to linking these kinds of programs with home audit programs. In the private transport sector, any new conservation programs should be thoroughly tested on a small scale before widespread implementation, as evidence indicates that certain programs favorably evaluated by professionals may not be received favorably by consumers. 3 refs., 24 tabs.

  14. Carbon footprint and energy use of food waste management options for fresh fruit and vegetables from supermarkets.

    Science.gov (United States)

    Eriksson, Mattias; Spångberg, Johanna

    2017-02-01

    Food waste is a problem with economic, environmental and social implications, making it both important and complex. Previous studies have addressed food waste management options at the less prioritised end of the waste hierarchy, but information on more prioritised levels is also needed when selecting the best available waste management options. Investigating the global warming potential and primary energy use of different waste management options offers a limited perspective, but is still important for validating impacts from the waste hierarchy in a local context. This study compared the effect on greenhouse gas emissions and primary energy use of different food waste management scenarios in the city of Växjö, Sweden. A life cycle assessment was performed for four waste management scenarios (incineration, anaerobic digestion, conversion and donation), using five food products (bananas, tomatoes, apples, oranges and sweet peppers) from the fresh fruit and vegetables department in two supermarkets as examples when treated as individual waste streams. For all five waste streams, the established waste hierarchy was a useful tool for prioritising the various options, since the re-use options (conversion and donation) reduced the greenhouse gas emissions and the primary energy use to a significantly higher degree than the energy recovery options (incineration and anaerobic digestion). The substitution of other products and services had a major impact on the results in all scenarios. Re-use scenarios where food was replaced therefore had much higher potential to reduce environmental impact than the energy recovery scenarios where fossil fuel was replaced. This is due to the high level of resources needed to produce food compared with production of fossil fuels, but also to fresh fruit and vegetables having a high water content, making them inefficient as energy carriers. Waste valorisation measures should therefore focus on directing each type of food to the waste

  15. On-Site or Off-Site Renewable Energy Supply Options?

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    The concept of a Net Zero Energy Building (Net ZEB) encompasses two options of supplying renewable energy, which can offset energy use of a building, in particular on-site or off-site renewable energy supply. Currently, the on-site options are much more popular than the off-site; however, taking...... into consideration the limited area of roof and/or façade, primarily in the dense city areas, the Danish weather conditions, the growing interest and number of wind turbine co-ops, the off-site renewable energy supply options could become a meaningful solution for reaching ‘zero’ energy goal in the Danish context...... five technologies, i.e., two on-site options: (1) photovoltaic, (2) micro combined heat and power, and three off-site options: (1) off-site windmill, (2) share of a windmill farm and (3) purchase of green energy from the 100% renewable utility grid. The results indicate that in case of the on...

  16. Decisioneering in Nuclear Energy Systems : A Real Option View

    NARCIS (Netherlands)

    Lauferts, U.

    2012-01-01

    Financial- and Energy markets have one predominant characteristic in common: A large degree of uncertainty that drives the value of an investment in them. The thesis criticises the poor decision making support for investments into new generation capacity on base of pure cost comparison and NPV

  17. New window design options for CEBAF energy upgrade

    International Nuclear Information System (INIS)

    Phillips, L.; Mammosser, J.; Nguyen, V.

    1997-01-01

    As the Jefferson Laboratory upgrades the existing CEBAF electron accelerator to operate at higher energies, the fundamental power coupler windows will be required to operate with lower RF dissipation and increased immunity to radiation from cavity field emission. New designs and modifications to existing designs which can achieve these goals are described

  18. Energy, chemicals and carbon: future options for the Eucalyptus ...

    African Journals Online (AJOL)

    This paper examines the current Eucalyptus value chain and the possible drivers that may impact upon it. The potential consequences of climate change on the growth and yield of Eucalyptus are discussed and the impact of the security of oil reserves and increased costs of fossil-fuel-derived energy and raw materials upon ...

  19. Energy analysis of ethanol production from sweet sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Worley, J.W. (Georgia Univ., Athens, GA (United States). Dept. of Agricultural Engineering); Vaughan, D.H.; Cundiff, J.S. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Agricultural Engineering)

    1992-01-01

    The Piedmont System is a collection of equipment for efficiently removing the juice from sweet sorghum stalks for the production of ethanol. The concept is to separate the whole stalks into pith and rind-leaf fractions, pass only the pith fraction through a screw press, and thus achieve an improvement in juice-expression efficiency and press capacity. An energy analysis was done for two options of this proposed harvesting/processing system: (Option 1) The juice is evaporated to syrup and used throughout the year to produce ethanol, and the by-products are used as cattle feed. (Option 2) The juice is fermented as it is harvested, and the by-products (along with other cellulosic materials) are used as feedstock for the remainder of the year. Energy ratios (energy output/energy input) of 0.9, 1.1 and 0.8 were found for sweet sorghum Option 1, sweet sorghum Option 2, and corn, respectively, as feedstocks for ethanol. If only liquid fuels are considered, the ratios are increased to 3.5, 7.9 and 4.5. (author).

  20. Large scale scenario analysis of future low carbon energy options

    International Nuclear Information System (INIS)

    Olaleye, Olaitan; Baker, Erin

    2015-01-01

    In this study, we use a multi-model framework to examine a set of possible future energy scenarios resulting from R&D investments in Solar, Nuclear, Carbon Capture and Storage (CCS), Bio-fuels, Bio-electricity, and Batteries for Electric Transportation. Based on a global scenario analysis, we examine the impact on the economy of advancement in energy technologies, considering both individual technologies and the interactions between pairs of technologies, with a focus on the role of uncertainty. Nuclear and CCS have the most impact on abatement costs, with CCS mostly important at high levels of abatement. We show that CCS and Bio-electricity are complements, while most of the other energy technology pairs are substitutes. We also examine for stochastic dominance between R&D portfolios: given the uncertainty in R&D outcomes, we examine which portfolios would be preferred by all decision-makers, regardless of their attitude toward risk. We observe that portfolios with CCS tend to stochastically dominate those without CCS; and portfolios lacking CCS and Nuclear tend to be stochastically dominated by others. We find that the dominance of CCS becomes even stronger as uncertainty in climate damages increases. Finally, we show that there is significant value in carefully choosing a portfolio, as relatively small portfolios can dominate large portfolios. - Highlights: • We examine future energy scenarios in the face of R&D and climate uncertainty. • We examine the impact of advancement in energy technologies and pairs of technologies. • CCS complements Bio-electricity while most technology pairs are substitutes. • R&D portfolios without CCS are stochastically dominated by portfolios with CCS. • Higher damage uncertainty favors R&D development of CCS and Bio-electricity

  1. Multiperiod Production and Ordering Policies for a Retailer-Led Supply Chain through Option Contracts

    Directory of Open Access Journals (Sweden)

    Nana Wan

    2018-01-01

    Full Text Available This paper formulates two groups of multiperiod production and ordering models with call and bidirectional option contracts for a two-party supply chain consisting of one followed supplier and one dominant retailer, respectively. Based on dynamic programming theory, we characterize the optimal policy structures for two partners in each period. We also provide an approximation for the corresponding policy parameters evaluation in two cases. Then, we investigate the impacts of different option contracts and the demand risk on the decisions and performances of two members. Our results suggest that, whether concerning call or bidirectional option contracts, the optimal policies for two members always follow a base stock type. When the price parameters are the same for different option contracts, the service levels of both the system and the retailer are higher with call option contracts than with bidirectional ones, whereas the retailer’s inventory risk is lower with bidirectional option contracts than with call ones. Under the same conditions stated above, call option contracts can always benefit the supplier, but not the retailer. Owing to the retailer’s dominant position, call option contracts are better choice for the supply chain if the option (exercise price is low (high, while bidirectional option contracts are more suitable choice for the supply chain if the option (exercise price is high (low. In addition, an increase in the demand risk would prompt the supplier to increase his production quantity and the retailer to reduce the initial firm order quantity, either with call or bidirectional option contracts.

  2. Natural Gas Based Electricity Production and Low Carbon Technology Options

    Science.gov (United States)

    Concerns regarding air quality, global climate change, and the national energy security impacts of the intensive use of fossil fuels and their environmental impacts in the power generation sector have raised interest in alternative low carbon electricity generation technology and...

  3. Wood pellets : is it a reliable, sustainable, green energy option?

    International Nuclear Information System (INIS)

    Swaan, J.

    2006-01-01

    The Wood Pellet Association of Canada was formerly called the BC Pellet Fuel Manufacturers Association, and was renamed and re-organized in January 2006. The association serves as an advocate for the wood pellet industry in addition to conducting research projects. This power point presentation presented an overview of the wood pellet industry in North America and Europe. Canada's 23 pellet plants currently produce just over 1,000,000 tons of wood pellets annually. Pellet producers in the United States produce approximately 800,000 tons annually for the residential bagged market. There are currently 240 pellet plants in Europe, and district heating is the largest growth market for wood pellets in Europe. British Columbia (BC) pellet producers will ship 450,000 tons to European power plants in 2005. Wood pellet specifications were presented, with details of calorific values, moisture and ash contents. An outline of wood pellet production processes was provided. New pellet plants currently under construction were reviewed. Domestic, North American and overseas exports were discussed, along with production estimates for BC for the next 5 years. A chart of world production and consumption of wood pellets between 2000 to 2010 was presented. North American wood pellet technologies were described. The impact of the pine beetle infestation in BC on the wood pellet industry was evaluated, and a worldwide wood pellet production growth forecast was presented. Issues concerning off-gassing, emissions, and torrifracation were also discussed. tabs., figs

  4. Valuation of exploration and production assets. An overview of real options models

    International Nuclear Information System (INIS)

    Dias, Marco Antonio Guimaraes

    2004-01-01

    This paper presents a set of selected real options models to evaluate investments in petroleum exploration and production (E and P) under market and technical uncertainties. First are presented some simple examples to develop the intuition about concepts like option value and optimal option exercise, comparing them with the concepts from the traditional net present value (NPV) criteria. Next, the classical model of Paddock, Siegel and Smith is presented, including a discussion on the practical values for the input parameters. The modeling of oil price uncertainty is presented by comparing some alternative stochastic processes. Other E and P applications discussed here are the selection of mutually exclusive alternatives under uncertainty, the wildcat drilling decision, the appraisal investment decisions, and the analysis of option to expand the production through optional wells

  5. Pioneering renewable energy options: Thailand takes up the challenge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    Thailand’s support policies for renewable energy (RE) in the power sector have allowed individual small projects to add up to something substantial, attracting more investment and leading to faster growth in the sector than in most other Asian nations. Thai energy policy is complex, and the development of RE has not been without controversy. While this paper provides some elements of the context, it cannot cover all aspects of Thai energy policy. Instead it focuses on identifying factors that can explain the relative success of Thai policies and highlights some lessons for future development. Key messages include: Thailand was among the first countries in Asia to introduce incentive policies for the generation of electricity from renewable energy (RE) sources, leading to rapid growth, particularly in solar power; programmes for small and very small power producers created predictable conditions for RE investors to sell electricity to the grid. The 'Adder', a feed-in premium, guarantees higher rates for RE, making the investments profitable. Thailand also regularly updates technical regulations, provides preferential financing, and invests in research and training; civil society involvement strengthened and improved RE policies. In Thailand, outside expertise and links to international networks brought in by civil society experts were crucial for the design and approval of the incentive measures; and, the Thai Government is now adapting its policies to take account of recent technological progress and market growth. It is considering a sophisticated feed-in tariff to better control costs, while continuing to offer an enabling environment for RE investments.

  6. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  7. Direct fission fragment energy converter - Magnetic collimator option

    International Nuclear Information System (INIS)

    Tsvetkov, P. V.; Hart, R. R.

    2006-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. In addition to the extensive computational effort, the scaled prototype experimental proof-of-principle program was conducted to validate basic physics of the concept. The program was focused on electromagnetic components and experimental demonstration of performance. This paper summarizes the final results of the 6-years research program including both computational and experimental efforts. Potential future research and development and anticipated applications are discussed. (authors)

  8. Republic of the Marshall Islands. Energy Project Development Options and Technical Assessment (2013)

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Misty Dawn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Olis, Dan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ness, J. Erik [National Renewable Energy Lab. (NREL), Golden, CO (United States); Esterly, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    The advancement of renewable energy and energy efficient technologies continues to be fluid. There are many technical opportunities and strategies that can be utilized to guide communities to deploy cost-effective commercial alternative energy options; however, to achieve aggressive economic, environmental, and security goals, it requires a comprehensive, integrated approach. This document reports on the initial findings of an energy assessment that was conducted for the Republic of the Marshall Islands.

  9. Management options for food production systems affected by a nuclear accident. Task 2 options for minimising the production of contaminated milk

    CERN Document Server

    Smith, J G; Mercer, J A; Nisbet, A F; Wilkins, B T

    2002-01-01

    This report describes an evaluation of three possible means by which the production of waste milk could be reduced following a nuclear accident. The three options studied are the reduction of contaminated pasture in the diet, the drying off of lactating dairy cattle and the slaughter of dairy cattle. The practicability of each of these is considered using criteria such as technical feasibility, capacity, cost, impact and acceptability, where appropriate. In theory reductions in waste milk arisings can be achieved with each option, however, there are a number of limitations associated with their practical application.

  10. Management options for food production systems affected by a nuclear accident. Task 2: options for minimising the production of contaminated milk

    International Nuclear Information System (INIS)

    Smith, J.G.; Nisbet, A.F.; Mercer, J.A.; Brown, J.; Wilkins, B.T.

    2002-01-01

    This report describes an evaluation of three possible means by which the production of waste milk could be reduced following a nuclear accident. The three options studied are the reduction of contaminated pasture in the diet, the drying off of lactating dairy cattle and the slaughter of dairy cattle. The practicability of each of these is considered using criteria such as technical feasibility, capacity, cost, impact and acceptability, where appropriate. In theory reductions in waste milk arisings can be achieved with each option, however, there are a number of limitations associated with their practical application. (author)

  11. Options for Water, Energy and Chemical Savings for Finitex, Cape Town

    DEFF Research Database (Denmark)

    Schneider, Zsig; Wenzel, Henrik

    An analysis of the options identified for saving of water, energy and chemicals was conducted at Finitex, Cape Town on the 18th October 2002. Cost savings were calculated from an estimation of the reduction in cost of water, energy and chemical usage associated with various interventions. Capital...

  12. REAL OPTIONS ANALYSIS – ASSESSMENT METHOD OF INVESTMENT PROJECTS IN GREEN ENERGY

    Directory of Open Access Journals (Sweden)

    MAFTEI DANIEL

    2014-10-01

    Full Text Available This article highlights the importance of real options as a evaluation method of investment in green energy. Article consider several theoretical and practical approaches, the analysis based on real options by many authors who have theorized and used this method. Each approach provides a operationalisation through a steps series of specific evaluation. This paper highlights the different views: academics, financiers, managers and facilitates the access to an accurate evaluation decisions of projects.

  13. Double row spacing and drip irrigation as technical options in energy sorghum management

    Directory of Open Access Journals (Sweden)

    Neri Roncucci

    2014-02-01

    Full Text Available The effect of two row spacing configurations and four water supply levels was investigated on sweet and fibre sorghum in Central Italy for two consecutive years. Results highlighted the influence of both irrigation and row spatial configuration on crop productivity. Indeed, several studies have pointed out the positive response of sorghum to irrigation in Mediterranean climate, as in this environment water stress represents one of the main limiting factors on crop productivity. On the other hand, few attempts have been made to explore the role of row spacing on energy sorghum productivity. Results outlined an average increase in sorghum dry biomass yield ranging from +23% to +79% at variable rates of water supply as compared to rainfed control. The positive effect of irrigation was also observed on leaf area index and radiation use efficiency. Moreover, we observed a crop yield increase, from 9% to 20%, under double row spacing compared to the standard planting pattern (i.e. single row spacing. Finally, it was confirmed the efficient use of water by sorghum and the great ability of sorghum to increase its biomass yield in response to increasing volumes of water supplied. Therefore, this work suggests how row spacing configuration and drip irrigation could be feasible technical options to increase sorghum biomass yields in Mediterranean environments. These techniques should be experienced by farmers towards a sustainable intensification of current cropping systems.

  14. Strategies for implementation of CO2-mitigation options in Nigeria's energy sector

    International Nuclear Information System (INIS)

    Ibitoye, F.I.; Akinbami, J.-F.K.

    1999-01-01

    Recent studies indicate that Nigeria's CO 2 budget was about 164 million tonnes (MTons) in 1990, of which the energy sector contributed close to 55%. It is expected that CO 2 emissions emanating from the energy sector will increase from 90 MTons in 1990 to about 3 times this value in another 30 years, assuming a least-cost moderate development scenario. A number of viable CO 2 -mitigation options have already been identified in the energy sector, some of them the so-called 'win-win' options. As attractive as some of these options might appear, their implementation will depend on the removal of certain barriers. These barriers include a lack of legislative framework, a lack of awareness, a lack of access to appropriate technology, as well as inappropriate energy-pricing policies, among others. The paper presents an overview of Nigeria's energy-sector, the CO 2 mitigation-options, the factors militating against implementation of the options, and some policy recommendations for removal of the barriers. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Low Carbon Technology Options for the Natural Gas Electricity Production

    Science.gov (United States)

    The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the...

  16. Designing foods: animal product options in the marketplace

    National Research Council Canada - National Science Library

    1988-01-01

    ... of Animal Products Board on Agriculture National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1988 i Copyrighttrue Please breaks inserted. are Page files. accidentally typesetting been have may original from the errors not typographic original retained, and from the created cannot be files XML from however, formatting, recomposed typesetti...

  17. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  18. Pricing of Traffic Light Options and other Hybrid Products

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    2009-01-01

    companies stay solvent in the traffic light stress test system introduced by the Danish Financial Supervisory Authorities in 2001. Similar systems are now being implemented in several other European countries. A pricing approach for general payoffs is presented and illustrated with simulation via...... the pricing of a hybrid derivative known as the EUR Sage Note. The approach can be used to price many existing structured products....

  19. Assessment of the mitigation options in the energy system in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Christov, C.; Vassilev, C.; Simenova, K. [and others

    1996-12-31

    Bulgaria signed the Framework Convention on Climate Change at the UNCEP in Rio in June 1992. The parliament ratified the Convention in March 1995. In compliance with the commitments arising under the Convention, Bulgaria elaborates climate change polity. The underlying principles in this policy are Bulgaria to joint the international efforts towards solving climate change problems to the extent that is adequate to both the possibilities of national economy and the options to attract foreign investments. All policies and measures implemented should be as cost-effective as possible. The Bulgarian GHG emission profile reveals the energy sector as the most significant emission source and also as an area where the great potential for GHG emissions reduction exists. This potential could be achieved in many cases by relatively low cost or even no-cost options. Mitigation analysis incorporates options in energy demand and energy supply within the period 1992-2020.

  20. Assessment of the energy requirements and selected options facing major consumers within the Egyptian industrial and agricultural sectors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-31

    The objectives of the energy assessment study of Egypt are to develop an understanding of the current status of the principal energy users in Egypt's industrial and agricultural sectors; to estimate the energy demand and efficiency for each selected subsector within these major sectors; to identify opportunities for fuel type changes, technology switches, or production pattern changes which might increase the efficiency with which Egypt's energy is used both now and in the future: and based on options identified, to forecast energy efficiencies for selected Egyptian subsectors for the years 1985 and 2000. Study results are presented for the iron and steel, aluminium, fertilizer, chemical, petrochemical, cement, and textile industries and automotive manufacturers. Study results for drainage, irrigation, and mechanization procedures in the agricultural sector and food processing sector are also presented. (MCW)

  1. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  2. Assessing alternative production options for eco-efficient food supply chains using multi-objective optimization

    NARCIS (Netherlands)

    Banasik, Aleksander; Kanellopoulos, Argyris; Claassen, G.D.H.; Bloemhof-Ruwaard, Jacqueline M.; Vorst, van der Jack G.A.J.

    2017-01-01

    Due to tremendous losses of resources in modern food supply chains, higher priority should be given to reducing food waste and environmental impacts of food production. In practice, multiple production options are available, but must be quantitatively assessed with respect to economic and

  3. Comparing the Life Cycle Energy Consumption, Global Warming and Eutrophication Potentials of Several Water and Waste Service Options

    Directory of Open Access Journals (Sweden)

    Xiaobo Xue

    2016-04-01

    Full Text Available Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energy- and carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability and sensitivity were evaluated, the carbon intensity of the local electricity grid and the efficiency of electricity production by the co-digestion with the energy recovery process were the most important for determining the relative global warming potential results.

  4. Integrating experimental and numerical methods for a scenario-based quantitative assessment of subsurface energy storage options

    Science.gov (United States)

    Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian

    2016-04-01

    Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a

  5. Biomass in Switzerland. Energy production

    International Nuclear Information System (INIS)

    Guggisberg, B.

    2006-01-01

    In the long term, biomass could be used for energy production in a three times more intensive way, compared to current figures. A major contribution would be delivered to Switzerland's energy supply. Numerous biomass conversion technologies do exist, for the production of heat, power or vehicle fuel. However, the implementation of such a large-scale utilisation of biomass requires a couple of strategic decisions in order to improve the framework conditions for biomass development and precisely target the supporting measures applicable to both research and pilot plants. In short, a clear and efficient strategy is necessary in what regards biomass, that will be used for the definition of a future catalogue of measures. (author)

  6. Synergies between renewable energy and fresh water production. Scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Geurts, F.; Noothout, P.; Schaap, A. [Ecofys Netherlands, Utrecht (Netherlands)

    2011-02-15

    The IEA Implementing Agreement for Renewable Energy Technology Deployment (IEA-RETD) investigated the opportunities for coupling renewable energy systems with fresh water supply systems. The four main conclusions of the scoping study, carried out by Ecofys, are: (1) Fresh water production based on desalination technologies provide most options for synergies with renewable energy production; (2) Linking desalination to renewable sources is currently not economically viable; (3) There is a large potential for small scale (decentralised) desalination plants; (4) Current commercially-sized desalination technologies are in need of a constant operation point. Reverse osmosis and thermal membrane technologies might give future synergies as deferrable load.

  7. A review on technological options of waste to energy for effective management of municipal solid waste.

    Science.gov (United States)

    Kumar, Atul; Samadder, S R

    2017-11-01

    Approximately one-fourth population across the world rely on traditional fuels (kerosene, natural gas, biomass residue, firewood, coal, animal dung, etc.) for domestic use despite significant socioeconomic and technological development. Fossil fuel reserves are being exploited at a very fast rate to meet the increasing energy demands, so there is a need to find alternative sources of energy before all the fossil fuel reserves are depleted. Waste to energy (WTE) can be considered as a potential alternative source of energy, which is economically viable and environmentally sustainable. The present study reviewed the current global scenario of WTE technological options (incineration, pyrolysis, gasification, anaerobic digestion, and landfilling with gas recovery) for effective energy recovery and the challenges faced by developed and developing countries. This review will provide a framework for evaluating WTE technological options based on case studies of developed and developing countries. Unsanitary landfilling is the most commonly practiced waste disposal option in the developing countries. However, developed countries have realised the potential of WTE technologies for effective municipal solid waste management (MSWM). This review will help the policy makers and the implementing authorities involved in MSWM to understand the current status, challenges and barriers for effective management of municipal solid waste. This review concluded WTE as a potential renewable source of energy, which will partly meet the energy demand and ensure effective MSWM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A scenario analysis of future energy systems based on an energy flow model represented as functionals of technology options

    International Nuclear Information System (INIS)

    Kikuchi, Yasunori; Kimura, Seiichiro; Okamoto, Yoshitaka; Koyama, Michihisa

    2014-01-01

    Highlights: • Energy flow model was represented as the functionals of technology options. • Relationships among available technologies can be visualized by developed model. • Technology roadmapping can be incorporated into the model as technical scenario. • Combination of technologies can increase their contribution to the environment. - Abstract: The design of energy systems has become an issue all over the world. A single optimal system cannot be suggested because the availability of infrastructure and resources and the acceptability of the system should be discussed locally, involving all related stakeholders in the energy system. In particular, researchers and engineers of technologies related to energy systems should be able to perform the forecasting and roadmapping of future energy systems and indicate quantitative results of scenario analyses. We report an energy flow model developed for analysing scenarios of future Japanese energy systems implementing a variety of feasible technology options. The model was modularized and represented as functionals of appropriate technology options, which enables the aggregation and disaggregation of energy systems by defining functionals for single technologies, packages integrating multi-technologies, and mini-systems such as regions implementing industrial symbiosis. Based on the model, the combinations of technologies on both energy supply and demand sides can be addressed considering not only the societal scenarios such as resource prices, economic growth and population change but also the technical scenarios including the development and penetration of energy-related technologies such as distributed solid oxide fuel cells in residential sectors and new-generation vehicles, and the replacement and shift of current technologies such as heat pumps for air conditioning and centralized power generation. The developed model consists of two main modules; namely, a power generation dispatching module for the

  9. Renewable and low-carbon energies as mitigation options of climate change for China

    NARCIS (Netherlands)

    Urban, F.; Benders, R. M. J.; Moll, H. C.

    This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China's power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries' power sector and its emissions. We first adjusted the model to

  10. Energy conversion options for ARIES-III - A conceptual D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Santarius, J.F.; Blanchard, J.P.; Emmert, G.A.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Ghoneim, N.M.; Hasan, M.Z.; Mau, T.K.; Greenspan, E.; Herring, J.S.; Kernbichler, W.; Klein, A.C.; Miley, G.H.; Miller, R.L.; Peng, Y.K.M.

    1989-01-01

    The potential for highly efficient conversion of fusion power to electricity provides one motivation for investigating D- 3 He fusion reactors. This stems from: (1) the large fraction of D- 3 He power produced in the forms of charged particles and synchrotron radiation which are amenable to direct conversion, and (2) the low neutron fluence and lack of tritium breeding constraints, which increase design flexibility. The design team for a conceptual D- 3 He tokamak reactor, ARIES-III, has investigated numerous energy conversion options at a scoping level in attempting to realize high efficiency. The energy conversion systems have been studied in the context of their use on one or more of three versions of a D- 3 He tokamak: a first stability regime device, a second stability regime device, and a spherical torus. The set of energy conversion options investigated includes bootstrap current conversion, compression-expansion cycles, direct electrodynamic conversion, electrostatic direct conversion, internal electric generator, liquid metal heat engine blanket, liquid metal MHD, plasma MHD, radiation boiler, scrape-off layer thermoelectric, synchrotron radiation conversion by rectennas, synchrotron radiation conversion by thermal cycles, thermionic/AMTEC/thermal systems, and traveling wave conversion. The original set of options is briefly discussed, and those selected for further study are described in more detail. The four selected are liquid metal MHD, plasma MHD, rectenna conversion, and direct electrodynamic conversion. Thermionic energy conversion is being considered, and some options may require a thermal cycle in parallel or series. 17 refs., 3 figs., 1 tab

  11. 10 CFR 420.17 - Optional elements of State Energy Program plans.

    Science.gov (United States)

    2010-01-01

    ... businesses, in order to improve energy technology product development and independent quality control testing... following: (1) Program activities of public education to promote energy efficiency, renewable energy, and... peak demands for energy and improve the efficiency of energy supply systems, including electricity...

  12. Inertial fusion and energy production

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1982-01-01

    Inertial-confinement fusion (ICF) is a technology for releasing nuclear energy from the fusion of light nuclei. For energy production, the most reactive hydrogen isotopes (deuterium (D) and tritium (T)) are commonly considered. The energy aplication requires the compression of a few milligrams of a DT mixture to great density, approximately 1000 times its liquid-state density, and to a high temperature, nearly 100 million 0 K. Under these conditions, efficient nuclear-fusion reactions occur, which can result in over 30% burn-up of the fusion fuel. The high density and temperature can be achieved by focusing very powerful laser or ion beams onto the target. The resultant ablation of the outer layers of the target compresses the fuel in the target, DT ignition occurs, and burn-up of the fuel results as the thermonuclear burn wave propagates outward. The DT-fuel burn-up occurs in about 199 picoseconds. On this short time scale, inertial forces are sufficiently strong to prevent target disassembly before fuel burn-up occurs. The energy released by the DT fusion is projected to be several hundred times greater than the energy delivered by the driver. The present statuds of ICF technology is described

  13. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    world. In recent years, the scope of the IAEA's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. The OECD Nuclear Energy Agency, Euratom and the Generation IV International Forum have also shown interest in the non-electric applications of nuclear power based on future generation advanced and innovative nuclear reactors. This report was developed under an IAEA project with the objective of providing updated, balanced and objective information on the current status of hydrogen production processes using nuclear energy. It documents the state of the art of the development of hydrogen as an energy carrier in many Member States, as well as its corresponding production through the use of nuclear power. The report includes an introduction to the technology of nuclear process heat reactors as a means of producing hydrogen or other upgraded fuels, with a focus on high temperature reactor technology to achieve simultaneous generation of electricity and high temperature process heat and steam. Special emphasis is placed on the safety aspects of nuclear hydrogen production systems.

  14. Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications

    International Nuclear Information System (INIS)

    Holmgren, Kristina M.; Berntsson, Thore S.; Andersson, Eva; Rydberg, Tomas

    2016-01-01

    The impact of different integration options for gasification-based biofuel production systems producing synthetic natural gas, methanol and FT (Fischer-Tropsch) fuels on the NAP (net annual profit), FPC (fuel production cost) and the GHG (greenhouse gas) emission reduction potential are analysed. The considered integration options are heat deliveries to DH (district heating) systems or to nearby industries and integration with infrastructure for CO_2 storage. The comparison is made to stand-alone configurations in which the excess heat is used for power production. The analysis considers future energy market scenarios and case studies in southwestern Sweden. The results show that integration with DH systems has small impacts on the NAP and the FPC and diverging (positive or negative) impacts on the GHG emissions. Integration with industries has positive effects on the economic and GHG performances in all scenarios. The FPCs are reduced by 7–8% in the methanol case and by 12–13% in the FT production case. The GHG emission reductions are strongly dependent on the reference power production. The storage of separated CO_2 shows an increase in the GHG emission reduction potential of 70–100% for all systems, whereas the impacts on the economic performances are strongly dependent on the CO_2_e-charge. - Highlights: • Three gasification-based biofuel production systems at case study sites are analysed. • Greenhouse gas emissions reduction potential and economic performance are evaluated. • Impact of integration with adjacent industry or district heating systems is analysed. • The assessment comprises future energy market scenarios including CCS infrastructure. • Utilisation options for excess heat significantly impact the evaluated parameters.

  15. Energy supply options for Lithuania: A detailed multi-sector integrated energy demand, supply and environmental analysis

    International Nuclear Information System (INIS)

    2004-09-01

    The Technical Co-operation (TC) project Energy Supply Options for Lithuania: A Detailed Multi-Sector Integrated Energy Demand, Supply and Environmental Analysis (LIT/0/004) was implemented 2001-2002 by a national team with support from the International Atomic Energy Agency (IAEA). The principal objective of the project was to conduct a comprehensive assessment of Lithuania's future energy supply options taking into consideration the early closure of the Ignalina nuclear power plant (Ignalina NPP). Lithuania, a country in transition to full membership of the European Union, has to comply with the energy acquis (Chapter 14). The 'acquis communautaire' (the body of common rights and obligations which bind all the Member States together) must be adopted by all applicant countries. Implementing the acquis requires not only adequate legislation, well functioning institutions (e.g. a regulatory body as required in the electricity and gas directives) or schedules for restructuring the energy sector but also measures to enhance energy supply security, improvement of energy networks, efficiency improvements throughout the energy system and compliance with European environmental standards. Within the overall context of the transition to EU membership, this study focuses on the future development of the electricity sector and the impacts on energy supply security and environmental performance of a closure of Ignalina NPP by 2009, a pre-condition for accession stipulated by the European Union. The project coincided with the preparation of the new National Energy Strategy for Lithuania and therefore was set up to support the strategy formulation process

  16. Particle production at collider energies

    International Nuclear Information System (INIS)

    Geich-Gimbel, C.

    1987-11-01

    Key features of the SPS panti p Collider and the detectors of the UA-experiments involved are dealt with in chapter 2, which includes and accord to the ramping mode of the Collider, which allowed to raise the c.m. energy to 900 GeV in the UA5/2 experiment. The following chapters concentrate on physics results. Starting with a discussion of cross sections and diffraction dissociation in chapter 3 we then continue with a presentation of basic features of particle production such as rapidity and multiplicity distributions in chapter 4. There one of the unexpected findings at Collider energies, the breakdown of the so-called KNO-scaling, and new regularities potentially governing multiplicity distributions, are discussed. The findings about correlations among the final state particles, which may tell about the underlying dynamics of multi-particle production and be relevant to models thereof, are described in due detail in chapter 5. Transverse spectra and their trends with energy are shown in chapter 6. Results on identified particles are collected in a separate chapter in order to stress that this piece of information was an important outcome of the UA5 experiment. (orig./HSI)

  17. Evaluation of design options for improving the energy efficiency of an environmentally safe domestic refrigerator-freezer

    Energy Technology Data Exchange (ETDEWEB)

    Vineyard, E.A.; Sand, J.R. [Oak Ridge National Lab., TN (United States); Bohman, R.H.

    1995-03-01

    In order to reduce greenhouse emissions from power plants and respond to regulatory actions arising from the National Appliance Energy Conservation Act (NAECA), several design options were investigated for improving the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such as improved cabinet insulation and high-efficiency compressor and fans, were incorporated into a prototype refrigerator-freezer cabinet and refrigeration system to produce a unit that is superior from an environmental viewpoint due to its lower energy consumption and the use of refrigerant HFC-134a as a replacement for CFC-12. Baseline energy performance of the original 1993 production refrigerator-freezer, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. A detailed refrigerator system computer model was used to evaluate the energy savings for several design modifications that, collectively, could achieve a targeted energy consumption of 1.00 kWh/d for a 20 ft{sup 3} (570 l) top-mount, automatic-defrost, refrigerator-freezer. The energy consumption goal represents a 50% reduction in the 1993 NAECA standard for units of this size. Following the modeling simulation, laboratory prototypes were fabricated and tested to experimentally verify the analytical results and aid in improving the model in those areas where discrepancies occurred. While the 1.00 kWh/d goal was not achieved with the modifications, a substantial energy efficiency improvement of 22% (1.41 kWh/d) was demonstrated using near-term technologies. It is noted that each improvement exacts a penalty in terms of increased cost or system complexity/reliability. Further work on this project will analyze cost-effectiveness of the design changes and investigate alternative, more-elaborate, refrigeration system changes to further reduce energy consumption.

  18. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Larry R.; O' Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism.

  19. Potential and limitations of bio-energy options for low carbon transitions

    International Nuclear Information System (INIS)

    Bibas, Ruben; Mejean, Aurelie

    2012-01-01

    Sustaining low CO 2 emission pathways to 2100 may rely on electricity production from biomass. We analyze the effect of the availability of biomass resources and technologies with and without carbon capture and storage within a general equilibrium framework. Biomass technologies are introduced into the electricity module of the hybrid general equilibrium model Imaclim-R. We assess the robustness of this technology, with and without carbon capture and storage, as a way of reaching the RCP 3.7 stabilization target. The impact of a uniform CO 2 tax on energy prices, investments and the structure of the electricity mix is examined. World GDP growth is affected by the absence of the CCS or biomass options, and biomass is shown to be a possible technological answer to the absence of CCS. As the use of biomass on a large scale might prove unsustainable, we illustrate early action as a strategy to reduce the need for biomass and enhance economic growth in the long term. (authors)

  20. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    International Nuclear Information System (INIS)

    Penner, Larry R.; O'Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism

  1. Emergy-based sustainability assessment of different energy options for green buildings

    International Nuclear Information System (INIS)

    Luo, Zhiwen; Zhao, Jianing; Yao, Runming; Shu, Zhan

    2015-01-01

    Highlights: • We apply Emergy to assess environmental impact of different energy options. • We develop a new index to assess the anthropogenic heat emission. • The way of electricity produced is crucial to the total environmental load. • The direct-fired lithium-bromide absorption type shows highest environmental load. - Abstract: It is necessary to minimize the environmental impact and utilize natural resources in a sustainable and efficient manner in the early design stage of developing an environmentally-conscious design for a heating, ventilating and air-conditioning system. Energy supply options play a significant role in the total environmental load of heating, ventilating and air-conditioning systems. To assess the environmental impact of different energy options, a new method based on Emergy Analysis is proposed. Emergy Accounting, was first developed and widely used in the area of ecological engineering, but this is the first time it has been used in building service engineering. The environmental impacts due to the energy options are divided into four categories under the Emergy Framework: the depletion of natural resources, the greenhouse effect (carbon dioxide equivalents), the chemical rain effect (sulfur dioxide equivalents), and anthropogenic heat release. The depletion of non-renewable natural resources is indicated by the Environmental Load Ratio, and the environmental carrying capacity is developed to represent the environmental service to dilute the pollutants and anthropogenic heat released. This Emergy evaluation method provides a new way to integrate different environmental impacts under the same framework and thus facilitates better system choices. A case study of six different kinds of energy options consisting of renewable and non-renewable energy was performed by using Emergy Theory, and thus their relative environmental impacts were compared. The results show that the method of electricity generation in energy sources, especially

  2. Input by insight. Implementation of renewable energy in 2050 taking into account macro-economical aspects and fitting-in options in sectors

    International Nuclear Information System (INIS)

    Van de Reepe, D.

    2001-11-01

    In the determination of the potential of renewable energy two factors are important: (1) macro-economical consequences for the Netherlands because of the use of renewable energy sources, and (2) the possibilities of renewable energy to fulfil the energy demands of the several sectors. The main question to be answered in this report is: What is the maximum quantity of renewable energy that can be realized in 2050? The answer will be expressed in the percentage of renewable energy in relation to the total secondary energy demand (excluding non-energetic use of energy carriers). The aim is, that 50% of the energy supply is produced by renewable energy sources. The quantity is eventually determined by the influence of these renewable energy options on the macro-economical position of the Netherlands and the extent to which renewable energy supply meets the energy demands of the several sectors. The macro-economical consequences are determined on the basis of the cost and sensitivities of the several renewable energy options in 2050. Subquestions to answer the main question concern energy demand, renewable energy options, multi-criteria analysis and contemplation. The energy demand in 2050 and the energy profiles of the sectoral energy demand of secondary energy carriers are determined. The renewable energy options, wind energy (onshore and offshore), bioenergy, photovoltaic energy and thermal solar energy, heat pumps and import of green electricity and biomass, are investigated on several factors: Maximal realizable potential; Cost (Cost reduction until 2050, Investment cost, O and M-cost and fuel cost, Total cost, Out of pocket cost); Need for energy storage and cost for fitting in the energy grid; Integration with other renewable energy sources; Availability in sectors; Sensitivity analysis. These data are used in a multi-criteria analysis with four quantitative criteria. The results of this multi-criteria analysis are combined with qualitative criteria with regard

  3. Sustainablility of nuclear and non-nuclear energy supply options in Europe

    International Nuclear Information System (INIS)

    Kirchsteiger, C.

    2007-01-01

    In the course of the current discussion on promoting the economical competitiveness of sustainable energy systems, especially renewable and non-CO 2 -intensive ones, interest in nuclear energy has re-awakened in Europe (''nuclear renaissance''). This paper starts with presenting the concept of energy sustainability and its main elements. Next, an overview of the main results of sustainability assessments for different energy supply options (nuclear, fossil, renewables) covering full energy chains is given. Nuclear energy's typical strong and weak points are identified from a sustainability point of view. On the basis of these results, it is argued that more emphasis on nuclear energy's (very good) total cost performance, i.e. incl. externalities, rather than on its (very good) contribution to combating climate change would stronger benefit its ''renaissance''. Finally, the development of an overall EU-wide framework is proposed in order to assess the sustainability performance of alternative energy supply options, incl. nuclear, across their lifecycle and thus support decision making on developing sustainable energy mixes. (orig.)

  4. Requirements of Integrated Design Teams While Evaluating Advanced Energy Retrofit Design Options in Immersive Virtual Environments

    Directory of Open Access Journals (Sweden)

    Xue Yang

    2015-12-01

    Full Text Available One of the significant ways to save energy use in buildings is to implement advanced energy retrofits in existing buildings. Improving energy performance of buildings through advanced energy retrofitting requires a clear understanding of the cost and energy implications of design alternatives from various engineering disciplines when different retrofit options are considered. The communication of retrofit design alternatives and their energy implications is essential in the decision-making process, as it affects the final retrofit selections and hence the energy efficiency of the retrofitted buildings. The objective of the research presented here was to identify a generic list of information requirements that are needed to be shared and collectively analyzed by integrated design teams during advanced energy retrofit design review meetings held in immersive settings. While identifying such requirements, the authors used an immersive environment based iterative requirements elicitation approach. The technology was used as a means to better identify the information requirements of integrated design teams to be analyzed as a group. This paper provides findings on information requirements of integrated design teams when evaluating retrofit options in immersive virtual environments. The information requirements were identified through interactions with sixteen experts in design and energy modeling domain, and validated with another group of participants consisting of six design experts who were experienced in integrated design processes. Industry practitioners can use the findings in deciding on what information to share with integrated design team members during design review meetings that utilize immersive virtual environments.

  5. Use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Axente, Damian

    2006-01-01

    Full text: The potentials of three hydrogen production processes under development for the industrial production of hydrogen using nuclear energy, namely the advanced electrolysis the steam reforming, the sulfur-iodine water splitting cycle, are compared and evaluated in this paper. Water electrolysis and steam reforming of methane are proven and used extensively today for the production of hydrogen. The overall thermal efficiency of the electrolysis includes the efficiency of the electrical power generation and of the electrolysis itself. The electrolysis process efficiency is about 75 % and of electrical power generation is only about 30 %, the overall thermal efficiency for H 2 generation being about 25 %. Steam reforming process consists of reacting methane (or natural gas) and steam in a chemical reactor at 800-900 deg. C, with a thermal efficiency of about 70 %. In a reforming process, with heat supplied by nuclear reactor, the heat must be supplied by a secondary loop from the nuclear side and be transferred to the methane/steam mixture, via a heat exchanger type reactor. The sulfur-iodine cycle, a thermochemical water splitting, is of particular interest because it produces hydrogen efficiently with no CO 2 as byproduct. If heated with a nuclear source it could prove to be an ideal environmental solution to hydrogen production. Steam reforming remains the cheapest hydrogen production method based on the latest estimates, even when implemented with nuclear reactor. The S-I cycle offers a close second solution and the electrolysis is the most expensive of the options for industrial H 2 production. The nuclear plant could power electrolysis operations right away; steam reforming with nuclear power is a little bit further off into the future, the first operation with nuclear facility is expected to have place in Japan in 2008. The S-I cycle implementation is still over the horizon, it will be more than 10 years until we will see that cycle in full scale

  6. REAL OPTIONS ANALYSIS OF RENEWABLE ENERGY INVESTMENT SCENARIOS IN THE PHILIPPINES

    Directory of Open Access Journals (Sweden)

    Casper Agaton

    2017-12-01

    Full Text Available Abstract - With the continuously rising energy demand and much dependence on imported fossil fuels, the Philippines is developing more sustainable sources of energy. Renewable energy seems to be a better alternative solution to meet the country’s energy supply and security concerns. Despite its huge potential, investment in renewable energy sources is challenged with competitive prices of fossil fuels, high start-up cost and lower feed-in tariff rates for renewables. To address these problems, this study aims to analyze energy investment scenarios in the Philippines using real options approach. This compares the attractiveness of investing in renewable energy over continuing to use coal for electricity generation under uncertainties in coal prices, investments cost, electricity prices, growth of investment in renewables, and imposing carbon tax for using fossil fuels.

  7. Environmental impact of energy production

    International Nuclear Information System (INIS)

    Lidgate, David

    1992-01-01

    Care of the environment is set to be one of the growth industries of the 1990s. Unfortunately, information as to the effect current life styles are having on the environment and, therefore, what remedial action is necessary, varies from the full to the non-existent and, worst of all, from the misleading to the incorrect. For various reasons, some aspects of technology have received greater attention from the media and environmental pressure groups than others. Energy production and conversion technologies, of course, are very much in this category. Indeed, the problem in these areas is not lack of information but a positive surfeit. (author)

  8. Comparative studies of energy supply options in Poland for 1997-2020

    International Nuclear Information System (INIS)

    2002-08-01

    Poland depends heavily on coal to satisfy national demands for electricity. Currently, over 90% of electricity generation is produced by coal fired power plants. Because of the large dependence on coal and environmental impacts of large-scale coal combustion the country looks for a more diversified energy mix. As ways of diversification, Poland is considering the expanded role of natural gas and, potentially, nuclear power in the future energy mix. This publication describes the analysis of several diversification options for the Polish energy sector conducted by a national team in the framework of an IAEA Technical Cooperation project implemented in 1999-2000. The project provided a set of proven IAEA methodologies and tools that was utilized for a comprehensive analysis and comparison of the options including their economic competitiveness and environmental impacts. The publication is intended primarily for senior experts and technical staff in governmental organizations, research institutes, industries and utilities, who are in charge of technical analysis or decision making related to long term energy and power supply options. The report was prepared in 2001 by the staff of the Energy Market Agency (EMA, Warsaw, Poland) that was the leading Polish organization in carrying out the study

  9. Energy scenarios for hydrogen production in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J. L.

    2009-10-01

    The hydrogen is a clean and very efficient fuel, its combustion does not produce gases of greenhouse effect, ozone precursors and residual acids. Also the hydrogen produced by friendly energy sources with the environment like nuclear energy could help to solve the global problems that it confronts the energy at present time. Presently work fuel cycles of hydrogen production technologies in Mexico are judged, by means of a structured methodology in the concept of sustainable development in its social, economic and environmental dimensions. The methodology is divided in three scenarios: base, Outlook 2030 and capture of CO 2 . The first scenario makes reference to cycles analysis in a current context for Mexico, the second taking in account the demand projections reported by the IAEA in its report Outlook and the third scenario, capture of CO 2 , the technologies are analyzed supposing a reduction in capture costs of 75%. Each scenario also has four cases (base, social, environmental and economic) by means of which the cycles are analyzed in the dimensions of sustainable development. For scenarios base and capture, results show that combination nuclear energy- reformed of gas it is the best alternative for cases base and economic. For social case, the evaluated better technology is the hydraulics, and for environmental case, the best option is represented by the regenerative thermochemistry cycles. The scenario Outlook 2030 show a favorable tendency of growth of renewable sources, being the aeolian energy the best technology evaluated in the cases base and environmental, the hydraulics technology in the social case and in the economic case the reformed of natural gas that uses nuclear heat. (Author)

  10. Real Options Valuation of U.S. Federal Renewable Energy Research,Development, Demonstration, and Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Afzal S.; Marnay, Chris; Wiser, Ryan H.

    2005-03-01

    Benefits analysis of US Federal government funded research, development, demonstration, and deployment (RD3) programs for renewable energy (RE) technology improvement typically employs a deterministic forecast of the cost and performance of renewable and nonrenewable fuels. The benefits estimate for a program derives from the difference between two forecasts, with and without the RD3 in place. The deficiencies of the current approach are threefold: (1) it does not consider uncertainty in the cost of non-renewable energy (NRE), and the option or insurance value of deploying RE if and when NRE costs rise; (2) it does not consider the ability of the RD3 manager to adjust the RD3 effort to suit the evolving state of the world, and the option value of this flexibility; and (3) it does not consider the underlying technical risk associated with RD3, and the impact of that risk on the programs optimal level of RD3 effort. In this paper, a rudimentary approach to determining the option value of publicly funded RE RD3 is developed. The approach seeks to tackle the first deficiency noted above by providing an estimate of the options benefit of an RE RD3 program in a future with uncertain NRE costs.While limited by severe assumptions, a computable lattice of options values reveals the economic intuition underlying the decision-making process. An illustrative example indicates how options expose both the insurance and timing values inherent in a simplified RE RD3 program that coarsely approximates the aggregation of current Federal RE RD3.This paper also discusses the severe limitations of this initial approach, and identifies needed model improvements before the approach can adequately respond to the RE RD3 analysis challenge.

  11. Technological options for management of hazardous wastes from US Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

  12. Technological options for management of hazardous wastes from US Department of Energy facilities

    International Nuclear Information System (INIS)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables

  13. Policy options when giving negative externalities market value. Clean energy policymaking and restructuring the Western Australian energy sector

    International Nuclear Information System (INIS)

    McHenry, Mark

    2009-01-01

    Uncertainty surrounds the choice of instruments that internalise fossil-fuel pollution at the local, regional and global level. This work outlines the considerable growth in the Western Australian (WA) energy sector and explores the available options and potential hazards of using specific instruments to internalise externalities. These core options are discussed with respect to liberalising energy markets, providing private investment certainty, and imparting commentary on the developments and consequences of reform in the WA context. As a large energy exporter, providing certainty for the WA energy sector investment and the community is necessary to maintain the current prosperity. Remarkably, in the decades of market reform progress, the absence of one essential element is evident: economic externalities. Policymakers are under increasing pressure to understand economic reform, new energy markets and the multifaceted repercussions they entail. With modern energy reform sitting squarely within the milieu of more efficient governments and climate policy, there are clear economic advantages to internalising negative and positive externalities and other market distortions during energy market developments. Ignoring market failures when commercialising government-owned energy utilities in de-regulated and competitive markets invites continued ad-hoc government interference that generates investment uncertainty in addition to a perplexed electorate. (author)

  14. Risk management with substitution options: Valuing flexibility in small-scale energy systems

    Science.gov (United States)

    Knapp, Karl Eric

    Several features of small-scale energy systems make them more easily adapted to a changing operating environment than large centralized designs. This flexibility is often manifested as the ability to substitute inputs. This research explores the value of this substitution flexibility and the marginal value of becoming a "little more flexible" in the context of real project investment in developing countries. The elasticity of substitution is proposed as a stylized measure of flexibility and a choice variable. A flexible alternative (elasticity > 0) can be thought of as holding a fixed-proportions "nflexible" asset plus a sequence of exchange options---the option to move to another feasible "recipe" each period. Substitutability derives value from following a contour of anticipated variations and from responding to new information. Substitutability value, a "cost savings option", increases with elasticity and price risk. However, the required premium to incrementally increase flexibility can in some cases decrease with an increase in risk. Variance is not always a measure of risk. Tools from stochastic dominance are newly applied to real options with convex payoffs to correct some misperceptions and clarify many common modeling situations that meet the criteria for increased variance to imply increased risk. The behavior of the cost savings option is explored subject to a stochastic input price process. At the point where costs are identical for all alternatives, the stochastic process for cost savings becomes deterministic, with savings directly proportional to elasticity of substitution and price variance. The option is also formulated as a derivative security via dynamic programming. The partial differential equation is solved for the special case of Cobb-Douglas (elasticity = 1) (also shown are linear (infinite elasticity), Leontief (elasticity = 0)). Risk aversion is insufficient to prefer a more flexible alternative with the same expected value. Intertemporal

  15. Economic, energy and greenhouse emissions impacts of some consumer choice, technology and government outlay options

    International Nuclear Information System (INIS)

    Lenzen, Manfred; Dey, Christopher J.

    2002-01-01

    The impacts of selected spending options in the Australian economy are determined in terms of energy consumption, greenhouse gas emissions and a range of economic parameters. Six case studies of one current-practice and one alternative, environmentally motivated spending option are carried out, describing consumer choices, technologies and government outlays. The assessment method is based on input-output theory and, as such, enables both the direct and indirect effects of spending to be quantified. In general, the results indicate that pro-environmental objectives, such as reductions in energy consumption and greenhouse gas emissions, are compatible with broad socio-economic benefits, such as increases in employment and income, and reductions in imports

  16. The Utilization of Solar Energy by Way of Hydrogen Production

    International Nuclear Information System (INIS)

    Broda, E.

    1977-01-01

    It is suggested to produce hydrogen gas by photolytic splitting of water, and to feed it into a hydrogen economy. One approach to obtain good yields in photolysis consist in the application of asymmetric membranes that release the different, reactive, primary products of the photochemical reaction on opposite sides of the membranes so that a back reaction is prevented. Through this solar-chemical option a very large part of the energy needs of mankind could be covered in the long run. (author)

  17. Options for shallow geothermal energy for horticulture; Kansen voor Ondiepe Geothermie voor de glastuinbouw

    Energy Technology Data Exchange (ETDEWEB)

    Hellebrand, K. [IF-Technology, Arnhem (Netherlands); Post, R.J. [DLV glas en energie, Naaldwijk (Netherlands); In ' t Groen, B. [KEMA, Arnhem (Netherlands)

    2012-06-15

    Geothermal energy is too expensive to serve as energy supply for most horticultural entrepreneurs. Therefore, research has been carried out into options to use heat from more shallow layers (shallow geothermal energy). Unlike shallow geothermal energy deep geothermal energy can be applied on a smaller scale, possibly also for individual growers. It can be applied in combination with an existing heating system, but with a more sustainable outcome. Because drilling is done in shallow layers, drilling costs and financial risks are lower [Dutch] Geothermie is voor de meeste tuinbouwondernemers teduur om als energievoorziening te dienen. Daarom is onderzoek gedaan naar mogelijkheden om warmte te gebruiken uit ondiepere lagen (ondiepe geothermie). In tegenstelling tot diepe geothermie is ondiepe geothermie op kleinere schaal toepasbaar, mogelijk ook voor individuele kwekers. Het kan in combinatie met de bestaande verwarmingsinstallatie worden ingezet maar met een duurzamer resultaat. Omdat ondieper wordt geboord zijn de boorkosten en de financiele risico's lager.

  18. U. K. surface passenger transport sector. Energy consumption and policy options for conservation

    Energy Technology Data Exchange (ETDEWEB)

    Maltby, D; Monteath, I G; Lawler, K A

    1978-12-01

    Forecasts of U.K. energy consumption in this sector for four future scenarios based on different economic growth rates, energy prices, and energy conservation policies, show that by the year 2000, private transport will probably account for 76-94% of total energy consumption in surface passenger transport. A 33% increase in the average miles-per-gallon fuel consumption through technological improvements in private vehicles, conversion of private vehicles to diesel oil, additional fuel taxation equivalent to 25 or 50% fuel price increase, a 10% reduction in average car engine size (encouraged by taxation), and changes in public transport technology offer energy savings of about 20, 5-10, 6.3 or 12.5, 2-4, and 2%, respectively. There is considerable uncertainty about the outcome of these options.

  19. The value of product flexibility in nuclear hydrogen technologies: A real options analysis

    International Nuclear Information System (INIS)

    Botterud, Audun; Yildiz, Bilge; Conzelmann, Guenter; Petri, Mark C.

    2009-01-01

    Previous economic studies of nuclear hydrogen technologies focused on levelized costs without accounting for risks and uncertainties faced by potential investors. To address some of these risks and uncertainties, we used real options theory to assess the profitability of three nuclear hydrogen production technologies in evolving electricity and hydrogen markets. Monte-Carlo simulations are used to represent the uncertainty in hydrogen and electricity prices. The model computes both the expected value and the distribution of discounted profits from the production plant. It also quantifies the value of the option to switch between hydrogen and electricity production. Under these assumptions, we conclude that investors will find significant value in the capability to switch plant output between electricity and hydrogen. (author)

  20. National Options for a Sustainable Nuclear Energy System: MCDM Evaluation Using an Improved Integrated Weighting Approach

    Directory of Open Access Journals (Sweden)

    Ruxing Gao

    2017-12-01

    Full Text Available While the prospects look bright for nuclear energy development in China, no consensus about an optimum transitional path towards sustainability of the nuclear fuel cycle has been achieved. Herein, we present a preliminary study of decision making for China’s future nuclear energy systems, combined with a dynamic analysis model. In terms of sustainability assessment based on environmental, economic, and social considerations, we compared and ranked the four candidate options of nuclear fuel cycles combined with an integrated evaluation analysis using the Multi-Criteria Decision Making (MCDM method. An improved integrated weighting method was first applied in the nuclear fuel cycle evaluation study. This method synthesizes diverse subjective/objective weighting methods to evaluate conflicting criteria among the competing decision makers at different levels of expertise and experience. The results suggest that the fuel cycle option of direct recycling of spent fuel through fast reactors is the most competitive candidate, while the fuel cycle option of direct disposal of all spent fuel without recycling is the least attractive for China, from a sustainability perspective. In summary, this study provided a well-informed decision-making tool to support the development of national nuclear energy strategies.

  1. Plywood production wastes to energy

    Science.gov (United States)

    Lyubov, V. K.; Popov, A. N.

    2017-11-01

    Wood and by-products of its processing are a renewable energy source with carbon neutral and may be used in solving energy problems. ZAO «Arkhangelsk plywood factory» installed and put into operation the boiler with capacity of 22 MW (saturated steam of 1.2 MPa) to reduce the cost of thermal energy, the impact of environmental factors on stability of the company’s development and for reduction of harmful emissions into the environment. Fuel for boiler is the mixture consists of chip plywood, birch bark, wood sanding dust (WSD) and sawdust of the plywood processing. The components of the fuel mixture significantly differ in thermotechnical characteristics and technological parameters but especially in size composition. Particle dimensions in the fuel mixture differ by more than a thousand times which makes it «unique» and very difficult to ensure the effective and non-explosive use. WSD and sawdust from line of cutting of plywood are small fraction material and relate to IV group of explosion. Criterion of explosive for them has great values (КfWSD=10.85 Кfsaw=9.66). Boiler’s furnace equipped with reciprocating grate where implemented a three-stage scheme of combustion. For a comprehensive survey of the effectiveness of installed equipment was analyzed the design features of the boiler, defined the components of thermal balance, studied nitrogen oxide emissions, carbon and particulate matter with the determination of soot emissions. Amount of solid particles depending on their shape and size was analyzed.

  2. Report revision master: an energy analysis of consumer products packaging

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This report serves as a foundation for quantifying the potential for energy conservation in the Canadian consumer products packaging sector. Investigation was made of energy consumption, waste management, and energy conservation potential in the various stages of the packaging and consumption process: raw material acquisition, material and packaging manufacture, package filling and distribution, consumer use, post-consumption options (energy recovery, disposal, recycling), and cleaning and transportation (if applicable) between each stage. The food and beverage industry was singled out as the most important sector because of its large consumption of packaging. Significant opportunities for energy conservation were found, although any savings accomplished through packaging changes appear to be difficult to implement. Packaging energy savings seem to be able to be achieved only through a product-by-product, industry-by-industry initiative by means of product and package standardization. An efficient example of this is the milk distribution system, where refillable plastic jugs require only 1.4 MBtu per 3000 quarts delivered (as compared with, for example, 68.9 MBtu for disposable aluminium soft drink cans). Other conclusions are made concerning the optimization of packaging energy, with respect to types of packaging, energy requirements related to use of packaged products, impact of government policies and of retailing techiques, consumer lifestyles, and the like. 95 refs., 3 figs., 54 tabs.

  3. New options for developing of nuclear energy using an accelerator-driven reactor

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1997-01-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor. Thus, the necessity of early introduction of the fast reactor can be moderated. High reliability of the proton accelerator, which is essential to implementing an accelerator-driven reactor in the nuclear energy field can be achieved by a slight extension of the accelerator's length, with only a small economical penalty. Subcritical operation provides flexible nuclear energy options including high neutron economy producing the fuel, transmuting high-level wastes, such as minor actinides, and of converting efficiently the excess Pu and military Pu into proliferation-resistant fuel

  4. Energy ratios in Finnish agricultural production

    Directory of Open Access Journals (Sweden)

    H. J. MIKKOLA

    2008-12-01

    Full Text Available The objective of this study was to assess energy ratios and net energy in plant production and energy ratios in animal production in Finland. Energy ratios and net energy were determined on the basis of plant- and animal-specific energy analyses. In plant production, energy ratios and net energy were assessed as a function of nitrogen fertilization, because indirect energy input in the form of agrochemicals was 54—73% from the total energy input and nitrogen was responsible for the major part of this. The highest energy ratio was 18.6 for reed canary grass. As a whole reed canary grass was superior to the other crops, which were barley, spring wheat, spring turnip rape, ley for silage, potato and sugar beet. Reed canary grass and sugar beet gained the highest net energy yields of 111–115 GJ ha-1. The optimum energy ratio was gained in general with less nitrogen fertilization intensity than farmers use. The energy ratios in pork production varied between 0.14–1.28 depending on what was included or excluded in the analysis and for milk production between 0.15–1.85. Ratios of 1.28 in pork production and 1.85 in milk production are unrealistic as they do not give any shelter to the animals, although they can be approached in very low-input production systems. If the ratio is calculated with feed energy content then the ratio is low, 0.14–0.22 for pork and 0.15 for milk. This shows that animals can convert 14–22 percent of the input energy to usable products. In pork production, the largest portion of the energy input was the ventilation of the building. In milk production milking and cooling consumes a lot of energy and for this reason the electricity consumption is high.;

  5. A Methodology for Comparative Assessment of Energy Options: The Case of Mexico

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Francois, Juan-Luis

    2008-01-01

    This paper presents the development of a methodology to measure the sustainability of alternatives for electricity generation. It is based on the evaluation of indicators in three dimensions of sustainability. No single technology exhibited superior performance on the basis of all indicators and it was necessary the application of a method to make the aggregation of all the indicators, taking into account the relative importance in the decision. In this study, a fuzzy logic inference system was developed to build a decision function that depends on all the indicators. The purpose is to rank the energy options in terms of economic, environmental and social sustainability. All the decision elements are combined and integrated in an inference logic system that takes into account weights of different indicators. The methodology was applied to evaluate the sustainability of nuclear, wind, natural gas, coal, hydro and oil technologies under Mexican conditions. When only the economic dimension is considered nuclear is the best option, if the environmental dimension is also considered the nuclear option is the best alternative too. When the social dimension is also taken into account the nuclear option is the worst. These results are obtained using the same weight to each dimension to accomplish with the equilibrium principle of the sustainability. (authors)

  6. Making Homes Part of the Climate Solution: Policy Options To Promote Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Dr. Marilyn Ann [Georgia Institute of Technology; Chandler, Jess [Georgia Institute of Technology; Lapsa, Melissa Voss [ORNL; Ally, Moonis [Oak Ridge National Laboratory (ORNL)

    2009-06-01

    In the area of energy efficiency, advanced technologies combined with best practices appear to afford not only large, but also cost-effective options to conserve energy and reduce greenhouse gas emissions (McKinsey & Company, 2007). In practice, however, the realization of this potential has often proven difficult. Progress appears to require large numbers of individuals to act knowledgeably, and each individual must often act with enabling assistance from others. Even when consumer education is effective and social norms are supportive, the actions of individuals and businesses can be impeded by a broad range of barriers, many of which are non-technical in nature. Title XVI of the Energy Policy Act of 2005 included a mandate to examine barriers to progress and make recommendations in this regard. A detailed report on barriers as well as the National strategy for overcoming barriers met this requirement (Brown et al, 2008; CCCSTI, 2009). Following up on this mandate, the U.S. Climate Change Technology Program (CCTP) chose to focus next on the development of policy options to improve energy efficiency in residential buildings, with supporting analysis of pros and cons, informed in part by behavioral research. While this work is sponsored by CCTP, it has been undertaken in coordination with DOE's Building Technologies Program and Office of Electricity Delivery and Energy Reliability.

  7. Energy production from renewable energy sources

    International Nuclear Information System (INIS)

    2001-04-01

    This table summarizes the electricity and heat produced in France and in overseas departments from renewable energy sources for 1998 (revised), 1999 (temporary) and 2000 (estimated): hydraulic, wind, solar photovoltaic and thermal, geothermal, solid municipal wastes, wood and wood wastes, biogas, ethanol and ester bio-fuels. (J.S.)

  8. Energy saving in energy market reform—The feed-in tariffs option

    International Nuclear Information System (INIS)

    Eyre, Nick

    2013-01-01

    The use of feed-in tariffs (FITs) is now widespread for renewable energy and under discussion for other low carbon electricity generation, but not for energy efficiency. There is a small literature on FITs for electricity demand reduction, but not energy efficiency more generally. This paper considers the general application of FITs on the demand side and sets out the economic arguments in the context of changing energy markets. It then discusses the implications of some practical issues, including the definitional problems arising from the difference between energy efficiency and demand reduction. Using experience from historical energy efficiency programmes, it considers the public benefits, payment methods and policy scope that need to be considered and how these might affect policy design. It makes some provisional estimates of economically justified payments in the context of the proposed UK energy market reform. It concludes that FITs for energy saving might be a powerful tool for incentivising energy efficiency. - Highlights: ► The concept of an energy saving feed-in tariff (ESFIT) is introduced and analysed. ► ESFITs are potentially an alternative to supplier energy efficiency obligations. ► To maximise effectiveness, ESFITs should be paid as capital grants. ► ESFITs are justifiable if there are premium prices for low carbon generation. ► Higher rates of ESFIT may be justified to overcome barriers to energy efficiency.

  9. An assessment of energy options for a remote first nation community. Paper no. IGEC-1-055

    International Nuclear Information System (INIS)

    Ianniciello, C.; Wild, P.; Pitt, L.; Artz, S.

    2005-01-01

    Development of renewable energy systems for remote communities is gaining interest among government, utilities, NGOs and the communities themselves as a means of improving lifestyles of community members and showcasing renewable energy systems. The Huu-ay-aht First Nation, whose traditional territory is located on the west side of Vancouver Island in British Columbia, is a community which has energy related problems and energy related opportunities. The objective of this study is to assess possible energy options for the Huu-ay-aht First Nation traditional territory. Current and future energy services within the territory were used as the starting point for developing energy system options. Extensive consultation with community members was instrumental in clearly defining the objectives of the study and understanding the territory's energy demand. The energy demand assessment included an estimation of the electric, heating and transportation loads in the community, an assessment of efficiency and demand side management (DSM) options, and an estimation of potential future demand scenarios. Energy resources were assessed, with viable ones retained for consideration in potential energy system options. The information from the community consultations, demand estimates and resource assessments are being used in the development and analysis of energy system options to support the Huu-ay-aht's energy needs and community goals. (author)

  10. Policy options for non-grain bioethanol in China: Insights from an economy-energy-environment CGE model

    International Nuclear Information System (INIS)

    Ge, Jianping; Lei, Yalin

    2017-01-01

    The Chinese government has been issuing numerous incentive policies to promote non-grain bioethanol development to address the problem of excessive energy consumption and environmental pollution. In this study, we divide the incentive policies into five categories: subsidies on bioethanol production, non-grain feedstocks planting, marginal land reclamation and utilization, bioethanol consumption in more cities, and consumption tax on gasoline use. The objective of the paper is to evaluate and compare the economic, energy, and environmental effects of the incentive policies to help the government choose the optimal policies to promote bioethanol in China. The results show that subsidies on bioethanol production and consumption can boost GDP, and simultaneously, decrease crude oil and gasoline consumption, and reduce CO_2 emissions. However, the increase in bioethanol consumption is combined with the rise in coal and electricity consumption. Subsidies on bioethanol production can promote GDP and reduce energy consumption and CO_2 emission but have less effect on bioethanol development than that under the scenario of subsides on bioethanol consumption. On the contrary, although subsidies on non-grain feedstocks planting and marginal land reclamation and utilization can improve macro-economy but have a negative effect on energy saving and CO_2 emission reduction. Therefore, appropriate subsidies on bioethanol production and consumption can promote bioethanol consumption with economic, energy and environmental benefits. The Chinese government should further pay more attention to the coordination of different policy options by policy tools and intensities. - Highlights: • Non-grain bioethanol incentive policy is divided into supply and demand perspectives. • China's bioethanol CGE model is constructed. • Demand incentives have largest positive effects on GDP. • Demand incentives have better effects on energy saving and emission reduction. • Subsidies on

  11. Real options valuation of US federal renewable energy research, development, demonstration, and deployment

    International Nuclear Information System (INIS)

    Siddiqui, Afzal S.; Marnay, Chris; Wiser, Ryan H.

    2007-01-01

    Benefits analysis of US Federal government research, development, demonstration, and deployment (RD 3 ) programmes for renewable energy (RE) technology improvement typically employs a deterministic forecast of the cost and performance of renewable and non-renewable fuels. The benefits estimate for the programme derives from the difference between two forecasts, with and without the RD 3 programme in place. Three deficiencies of this approach are that it ignores: (1) uncertainty in the cost of non-renewable energy (NRE); (2) the possibility of adjustment to the RD 3 effort commensurate with the evolving state of the world; and (3) the underlying technical risk associated with RD 3 . In this paper, an intuitive approach to determining the option value of RE RD 3 is developed. This approach seeks to tackle the first two deficiencies noted above by providing an estimate via a compound real option of an RE RD 3 programme in a future with uncertain NRE costs. A binomial lattice reveals the economic intuition underlying the decision-making process, while a numerical example illustrates the option components embedded in a simplified representation of current US Federal RE RD 3

  12. Evaluating options for sustainable energy mixes in South Korea using scenario analysis

    International Nuclear Information System (INIS)

    Hong, Sanghyun; Bradshaw, Corey J.A.; Brook, Barry W.

    2013-01-01

    To mitigate greenhouse gas emissions, coal-fired electricity infrastructure needs to be replaced by low-carbon electricity generation options. Here we examine a range of possible alternative scenarios for sustainable electricity generation in South Korea, considering both physical and economic limits of current technologies. The results show that South Korea cannot achieve a 100% renewable energy mix and requires at least 55 GW of backup capacity. Given that constraint, we modelled seven scenarios: (i) the present condition, (ii) the First National Electricity Plan configuration, (iii) renewable energy (including 5 GW photovoltaic) with fuel cells or (iv) natural gas backup, (v) maximum renewable energy (including 75 GW photovoltaic) with natural gas, (vi) maximum nuclear power, and (vii) nuclear power with natural gas. We then quantify levelised cost of electricity, energy security, greenhouse gas emissions, fresh water consumption, heated water discharge, land transformation, air pollutant emissions, radioactive waste disposal, solid waste disposal and safety issues for each modelled mix. Our analysis shows that the maximum nuclear power scenario yields the fewest overall negative impacts, and the maximum renewable energy scenario with fuel cells would have the highest negative impacts. - Highlights: ► Due to physical limits of renewable sources, renewable energy cannot provide total electricity consumption in South Korea. ► A massive expansion of solar power will act to save only a small amount of backup fuel at greatly increased costs. ► A huge supply of natural gas capacity is essential, due to the absence of feasible large-scale energy storage. ► A pathway to maximize renewable energy causes more environmental and economic disadvantages than the status quo. ► Maximizing nuclear power is the most sustainable option for South Korea

  13. Waste Not, Want Not: Analyzing the Economic and Environmental Viability of Waste-to-Energy (WTE) Technology for Site-Specific Optimization of Renewable Energy Options

    Energy Technology Data Exchange (ETDEWEB)

    Funk, K.; Milford, J.; Simpkins, T.

    2013-02-01

    Waste-to-energy (WTE) technology burns municipal solid waste (MSW) in an environmentally safe combustion system to generate electricity, provide district heat, and reduce the need for landfill disposal. While this technology has gained acceptance in Europe, it has yet to be commonly recognized as an option in the United States. Section 1 of this report provides an overview of WTE as a renewable energy technology and describes a high-level model developed to assess the feasibility of WTE at a site. Section 2 reviews results from previous life cycle assessment (LCA) studies of WTE, and then uses an LCA inventory tool to perform a screening-level analysis of cost, net energy production, greenhouse gas (GHG) emissions, and conventional air pollution impacts of WTE for residual MSW in Boulder, Colorado. Section 3 of this report describes the federal regulations that govern the permitting, monitoring, and operating practices of MSW combustors and provides emissions limits for WTE projects.

  14. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  15. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H; Morris, M; Rensfelt, E [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1998-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  16. Is Solar Power The Best Energy Option To Meet Our Future Demands

    Directory of Open Access Journals (Sweden)

    Samyak Shami

    2015-08-01

    Full Text Available Abstract Currently about 65 of global electricity generation now is fossil fuel-based spewing 13 giga tonnes of CO2 . With mass production and innovations in technology the prices of renewable energy sources have plummeted to such levels where have become a welcoming option even without the subsidies.China has installed nearly 100 gigawatts GW of wind power and plans to double it within the next five years while Britain is also in offshore wind power in a big way. However oil continues to be the most valued fuel source as almost all of it is consumed in internal combustion IC engines mostly for transport and some for captive power plants. Biofuels and hydrogen fuel cells may be used as alternatives to petrol but biofuels which include ethanol hamper the performance of a vehicle.The production cost of solar power panels has come down so much that they are competing with the coal-based power even without the subsidy. The solar powered lanterns made up of a few light-emitting diodes are bringing light and enhancing the quality of life in the worlds poorest regions which are also located in the equatorial region. The US Department of Energys target is to produce 27 of Americas electricity using solar power by 2050 up from less than 1 today. In Australia solar power panels most of them on rooftops cater to almost 10 of the demand. About 25 households of South Australia have solar power followed by Queensland 22 and Western Australia 18.Modern innovations in solar cells show enormous capabilities for them to be used extensively on windows buildings even cell phones or any device that has a clear surface. Similar strides have been made in concentrated solar power. The Solar power however has limitations too. It can not generate power during night or when sky is overcast. Excessive power generated by solar panels has led to a crisis in Germany and elsewhere to the extent that generating companies in addition to selling were also paying back the managers

  17. Energy efficiency in developing countries: policy options and the poverty dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Pachauri, R K [Tata Energy Research Institute, New Delhi (India)

    1990-10-01

    Much of the rural population of the developing countries is poor and depends on agriculture for its living. One means of improving the standard of living of such poor peoples is through the introduction of modern, more intensive and therefore more productive agricultural methods. Such methods will require energy intensification. The resulting increase in energy demand, particularly electrical energy, will be very large, specially because the rural areas are least able to benefit from energy saving technologies. 7 figs., 7 refs., 2 tabs.

  18. Nuclear energy option for energy security and sustainable development in India

    International Nuclear Information System (INIS)

    Mallah, Subhash

    2011-01-01

    India is facing great challenges in its economic development due to the impact on climate change. Energy is the important driver of economy. At present Indian energy sector is dominated by fossil fuel. Due to international pressure for green house gas reduction in atmosphere there is a need of clean energy supply for energy security and sustainable development. The nuclear energy is a sustainable solution in this context to overcome the environmental problem due to fossil fuel electricity generation. This paper examines the implications of penetration of nuclear energy in Indian power sector. Four scenarios, including base case scenario, have been developed using MARKAL energy modeling software for Indian power sector. The least-cost solution of energy mix has been measured. The result shows that more than 50% of the electricity market will be captured by nuclear energy in the year 2045. This ambitious goal can be expected to be achieved due to Indo-US nuclear deal. The advanced nuclear energy with conservation potential scenario shows that huge amounts of CO 2 can be reduced in the year 2045 with respect to the business as usual scenario.

  19. Energy in transition: a report on energy policy and future options

    Energy Technology Data Exchange (ETDEWEB)

    Loennroth, M; Steen, P; Johansson, T B

    1977-01-01

    This publication sums up reports published to create a conceptual background for analyzing Swedish long-term energy policy. Swedish energy policy--today, yesterday, tomorrow--is discussed in Chapter 1. Oil being supplemented now and replaced later is discussed in Chapter 2. Chapter 3 identifies the main alternatives: breeder reactors, coal, and renewable energy sources, i.e., solar energy. The alternatives possess varying characteristics and the supply of energy from these sources must fit into the pattern of energy use. Because of long lead times for development, Chapter 4 discusses the risks of getting rigidly committed and the chances of maintaining and creating freedom of action, so that none of the alternatives disappears unintentionally. Freedom of action has its limits, which mainly lie on three levels: the interaction of energy policy with other political goals; technical properties of the energy system; and characteristics of the economic and social system of rules in which the energy issues are to be found. Some conceivable conflicts over political goals are discussed in chapter 5, which takes up the relations between energy consumption on the one hand and, on the other hand, economic growth, environmental protection, geographic structure, foreign policy, etc. Technical limits to freedom of action are the subject of Chapter 6, which is chiefly concerned with the importance of energy quality and the energy carriers. Organizational and institutional limits to freedom of action are discussed in Chapter 7, taking as example the development of the electric sector in Sweden. The main conclusions are given in Chapter 8. (MCW)

  20. Exergy recovery during LNG regasification: Electric energy production - Part two

    International Nuclear Information System (INIS)

    Dispenza, Celidonio; Dispenza, Giorgio; Rocca, Vincenzo La; Panno, Giuseppe

    2009-01-01

    In liquefied natural gas (LNG) regasification facilities, for exergy recovery during regasification, an option could be the production of electric energy recovering the energy available as cold. In a previous paper, the authors propose an innovative process which uses a cryogenic stream of LNG during regasification as a cold source in an improved combined heat and power (CHP) plant. Considering the LNG regasification projects in progress all over the World, an appropriate design option could be based on a modular unit having a mean regasification capacity of 2 x 10 9 standard cubic meters/year. This paper deals with the results of feasibility studies, developed by the authors at DREAM in the context of a research program, on ventures based on thermodynamic and economic analysis of improved CHP cycles and related innovative technology which demonstrate the suitability of the proposal

  1. Uruguay Energy Supply Options Study: a Detailed Multi-Sector Integrated Energy Supply and Demand Analysis

    International Nuclear Information System (INIS)

    Conzelmann, G.; Veselka, T.

    1997-01-01

    Uruguay is in the middle of making critical decisions affecting the design of its future energy supply system.Momentum for change is expected to come from several directions including recent and foreseeable upgrades and modifications to energy conversion facilities, the importation of natural gas from Argentina, the possibility for a stronger interconnection of regional electricity systems, the country s membership in MERCOSUR, and the potential for energy sector reforms by the Government of Uruguay.The objective of this study is to analyze the effects of several fuel diversification strategies on Uruguay s energy supply system.The analysis pays special attention to fuel substitution trends due to potential imports of natural gas via a gas pipeline from Argentina and increasing electricity ties with neighboring countries.The Government of Uruguay contracted Argonne National Laboratory (ANL) to study several energy development scenario ns with the support of several Uruguayan Institutions.Specifically, ANL was asked to conduct a detailed energy supply and demand analysis, develop energy demand projections based on an analysis of past energy demand patterns with support from local institutions, evaluate the effects of potential natural gas imports and electricity exchanges, and determine the market penetration of natural gas under various scenarios

  2. Energy balance of the lavender oil production

    Directory of Open Access Journals (Sweden)

    Osman GÖKDOĞAN

    2016-06-01

    Full Text Available This research was carried out to determine the energy input-output analysis of lavender oil production. Data from agricultural farms in Isparta province was used. Energy input was calculated as 1993.89 MJ and energy output was calculated as 2925.51 MJ. Wood energy, fresh stalked lavender flower energy, equipment energy, human labour energy, electricity energy, and water energy inputs were 54.22 %, 41.86 %, 3.40 %, 0.23 %, 0.18 %, and 0.10 % of energy inputs, respectively. In this production, it is noteworthy that wood was used as fuel in the lavender oil production distillation process as the highest input. In the energy outputs, an average of 3.10 kg lavender oil and 130 kg lavender water were extracted by processing 234 kg fresh stalked lavender flower. Energy use efficiency, specific energy, energy productivity, and net energy for lavender oil production were calculated as 1.47, 643.19 MJ kg-1, 0.002 kg MJ-1 and 931.62 MJ, respectively.

  3. Options for helium circulation in a hydrogen production plant VHTR-Si: thermal-economic comparative

    International Nuclear Information System (INIS)

    Mendoza A, A.; Francois L, J. L.; Anaya D, A.

    2011-11-01

    The technologies that take advantage of the heat of nuclear reactors of IV generation are of great interest, due to their high energy efficiencies and to their strong economic potential. An example of these technologies is the sulfur-iodine process coupled to a nuclear reactor of high temperature cooled by helium. In this process heat is transferred from the nuclear reactor to the chemical plant by means of two cycles of helium interconnected by an intermediate heat exchanger. The first, denominated primary cycle of cooling, removes the heat of the nuclear reactor, transferring to the secondary cycle to be distributed to equipment s in the chemical plant. The pass of the helium gas through the equipment s that compose each one of the cycles, implies pressure losses that should be compensated necessarily by re-compression to maintain a stable state in the system, causing the energy consumption, usually rejected in the energy analyses. When to this energy is added the energy required in the hydrogen plant: energy required by the pumping systems, will decrease the efficiency of the nucleus-chemical complex, increasing the even cost of the hydrogen. In this work, three options to supply the compression energy and pumping (CEP) to the system are proposed, and these are analyzed thermodynamic and economically. The results indicate that to consider the CEP in the economic analysis increases between 1.5 and 3% the even cost of the hydrogen, and that the option with more energy efficiency is not necessarily the best for the nucleus-chemical complex. (Author)

  4. The meaning of results. Understanding comparative risk assessments of energy options

    International Nuclear Information System (INIS)

    Wilson, R.; Holland, M.; Rabl, A.; Dreicer, M.

    1999-01-01

    Results of comparative risk assessments can be used for a range of potential applications: choice and balance of technologies for strategic energy planning; choice of a new power plant; optimal dispatching of existing plants; optimization of regulations (emission limits, environmental quality objectives such as air quality limits, tradable permits, pollution taxes); accounting for climate change. When reporting the results of comparative risk assessment, a number of factors should be clear: precise nature of the energy system being assessed; what has been excluded from the analysis; sources of data used in assessment; assumptions that have been made; and what the analysts and other experts have regarded as the key sensitivities in the analysis. If all factors are addressed, the results of comparative risk assessment will prove to be an essential resource for making the best decisions about energy options and policies

  5. Renewable energy investments under different support schemes: A real options approach

    DEFF Research Database (Denmark)

    Boomsma, Trine Krogh; Meade, Nigel; Fleten, Stein-Erik

    2012-01-01

    -in tariff encourages earlier investment. Nevertheless, as investment has been undertaken, renewable energy certificate trading creates incentives for larger projects. In our baseline scenario and taking the fixed feed-in tariff as a base, the revenue required to trigger investments is 61% higher......This paper adopts a real options approach to analyze investment timing and capacity choice for renewable energy projects under different support schemes. The main purpose is to examine investment behavior under the most extensively employed support schemes, namely, feed-in tariffs and renewable...... energy certificate trading. We consider both multiple sources of uncertainty under each support scheme and uncertainty with respect to any change of support scheme, and we obtain both analytical (when possible) and numerical solutions. In a Nordic case study based on wind power, we find that the feed...

  6. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  7. Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option

    International Nuclear Information System (INIS)

    Tabar, Vahid Sohrabi; Jirdehi, Mehdi Ahmadi; Hemmati, Reza

    2017-01-01

    Renewable energy resources are often known as cost-effective and lucrative resources and have been widely developed due to environmental-economic issues. Renewable energy utilization even in small scale (e.g., microgrid networks) has attracted significant attention. Energy management in microgrid can be carried out based on the generating side management or demand side management. In this paper, portable renewable energy resource are modeled and included in microgrid energy management as a demand response option. Utilizing such resources could supply the load when microgrid cannot serve the demand. This paper addresses energy management and scheduling in microgrid including thermal and electrical loads, renewable energy sources (solar and wind), CHP, conventional energy sources (boiler and micro turbine), energy storage systems (thermal and electrical ones), and portable renewable energy resource (PRER). Operational cost of microgrid and air pollution are considered as objective functions. Uncertainties related to the parameters are incorporated to make a stochastic programming. The proposed problem is expressed as a constrained, multi-objective, linear, and mixed-integer programing. Augmented Epsilon-constraint method is used to solve the problem. Final results and calculations are achieved using GAMS24.1.3/CPLEX12.5.1. Simulation results demonstrate the viability and effectiveness of the proposed method in microgrid energy management. - Highlights: • Introducing portable renewable energy resource (PRER) and considering effect of them. • Considering reserve margin and sensitivity analysis for validate robustness. • Multi objective and stochastic management with considering various loads and sources. • Using augmented Epsilon-constraint method to solve multi objective program. • Highly decreasing total cost and pollution with PRER in stochastic state.

  8. The electricity supply options in Cuba and the potential role of nuclear energy

    International Nuclear Information System (INIS)

    Perez Martin, D.; Lopez Lopez, I.

    2000-01-01

    Cuba is poor in primary energy resources. After an economic crisis initiated in 1990, a recuperation process began in 1994, but in the electric sector we could not reach the 1989 generation level. A comparative assessment of different options to cover electricity demand until 2015 performed using DECADES tools shows that the most important options are: hydro, nuclear, biomass, combined cycle and combustion turbines. The nuclear power option in the evaluated electric system expansion cases can play an important economic and environment role. The introduction of one nuclear power plant will save 330 million dollars in the expansion of the national electricity system. Environment emissions calculations during the study period, taking into consideration only the generation step, show that only the introduction of one NPP until 2015 will produce significant environment benefits. With the assumption that in generation step hydro, nuclear and biomass plants do not produce emissions, if the amount of electricity generated by these plants during study period would be generated in conventional Oil Steam Boilers with typical emission factors for Cuban conditions, the CO 2 emissions would increase in 26 millions tonnes, 576 thousand tonnes of SO x and 102 thousand tonnes of NO x . The NPP cover 80% of these reductions. (author)

  9. Renewable energy policy evaluation using real option model. The case of Taiwan

    International Nuclear Information System (INIS)

    Lee, Shun-Chung; Shih, Li-Hsing

    2010-01-01

    This study presents a policy benefit evaluation model that integrates cost efficiency curve information on renewable power generation technologies into real options analysis (ROA) methods. The proposed model evaluates quantitatively the policy value provided by developing renewable energy (RE) in the face of uncertain fossil fuel prices and RE policy-related factors. The economic intuition underlying the policy-making process is elucidated, while empirical analysis illustrates the option value embedded in the current development policy in Taiwan for wind power. In addition to revealing the benefits that RE development provides when considering real options, analytical results indicate that ROA is a highly effective means of quantifying how policy planning uncertainty including managerial flexibility influences RE development. In addition to assessing the policy value of current RE development policy, this study also compares policy values in terms of internalized external costs and varying feed-in tariff (FIT). Simulation results demonstrate that the RE development policy with internalized CO 2 emission costs is appropriate policy planning from sustainability point of view. Furthermore, relationship between varying FIT and policy values can be shown quantitatively and appropriate FIT level could be determined accordingly. (author)

  10. Integrating the flexibility of the average Serbian consumer as a virtual storage option into the planning of energy systems

    Directory of Open Access Journals (Sweden)

    Batas-Bjelić Ilija R.

    2014-01-01

    Full Text Available With the integration of more variable renewable energy, the need for storage is growing. Rather than utility scale storage, smart grid technology (not restricted, but mainly involving bidirectional communication between the supply and demand side and dynamic pricing enables flexible consumption to be a virtual storage alternative for moderation of the production of variable renewable energy sources on the micro grid level. A study, motivated with energy loss allocation, electric demand and the legal framework that is characteristic for the average Serbian household, was performed using the HOMER software tool. The decision to shift or build deferrable load rather than sell on site generated energy from variable renewable energy sources to the grid was based on the consumer's net present cost minimization. Based on decreasing the grid sales hours of the micro grid system to the transmission grid from 3,498 to 2,009, it was shown that the demand response could be included in long-term planning of the virtual storage option. Demand responsive actions that could be interpreted as storage investment costs were quantified to 1€2 per year in this article. [Projekat Ministarstva nauke Republike Srbije, br. 42009: Smart grid

  11. Remediation options and the significance of water treatment at former uranium production sites in Eastern Germany

    International Nuclear Information System (INIS)

    Gatzweiler, R.; Jakubick, A.T.; Kiessig, G.

    2000-01-01

    The WISMUT remediation project in the States of Saxony and Thuringia, Germany, comprises several mine and mill sites including large volumes of production residues. Due to the climate, the intensive land use and the regulatory conditions, the water path is most important in evaluating remediation options. Water treatment is an integral part of mine flooding, mine dump and tailings remediation, and treatment costs represent a major portion of the overall costs of the project. Uncertainties in the estimations of quantities of mine and seepage waters, variations in quality from site to site, and changing conditions in time demand a strategic approach to the selection and optimization of water treatment methods. The paper describes options considered and experience gained including efforts to limit long-term treatment costs by developing and applying passive treatment systems and negotiating acceptable discharge limits. (author)

  12. Transverse energy production at RHIC

    International Nuclear Information System (INIS)

    Sahoo, Raghunath

    2006-01-01

    The quest for understanding of the possible formation and existence of the quark-gluon plasma (Qp), the deconfined phase of quarks and gluons, has been a major area of research in high energy nuclear physics. High energy nuclear collisions at the Relativistic Heavy Ion Collider (RHIC) has opened a new domain for the exploration of strongly interacting matter at very high energy density and temperature

  13. Energy crisis in Nigeria: The nuclear option and the necessary regulatory framework for its success

    International Nuclear Information System (INIS)

    Faru, T.A.; Abubakar, M.B.; Sulaiman, S.

    2007-01-01

    Limited access or inappropriate planning and utilization of modern energy remain one of the major constrains to socio-economic development of Nigeria. The total installed electricity generation including that from all other sources based on PHCN estimates is about 6,603 MW and total exploitable hydro potential is currently at 12,220 MW. The electricity demand projection for a 10% annual growth of the GDP was given as 16,000 MW, 30,000 MW and 192,000 MW for the years 2010, 2015 and 2030 respectively. The electricity as currently generated is therefore grossly inadequate to meet our Domestic Demands, National Economic Empowerment and Development Strategy (NEEDS) and the Millennium Development Goals. This work is the study in the energy requirements for sustainable development. The study has also looked at the potential contributions of various energy resources for meeting this demand. It has identified the limitations of these sources in satisfying the National Energy Requirement and has highlighted the suitability of Nuclear Energy the option in meeting the projected energy demand and the necessary framework for its success

  14. Options for shallow geothermal energy for horticulture. Annexes; Kansen voor Ondiepe Geothermie voor de glastuinbouw. Bijlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hellebrand, K. [IF-Technology, Arnhem (Netherlands); Post, R.J. [DLV glas en energie, Naaldwijk (Netherlands); In ' t Groen, B. [KEMA, Arnhem (Netherlands)

    2012-06-15

    Geothermal energy is too expensive to serve as energy supply for most horticultural entrepreneurs. Therefore, research has been carried out into options to use heat from more shallow layers (shallow geothermal energy). Unlike shallow geothermal energy deep geothermal energy can be applied on a smaller scale, possibly also for individual growers. It can be applied in combination with an existing heating system, but with a more sustainable outcome. Because drilling is done in shallow layers, drilling costs and financial risks are lower. This report comprises the annexes (A) Geologic Framework, and (B) Maps of the Netherlands (depth, thickness of sand layers, temperature and shallow geothermal energy potential [Dutch] Geothermie is voor de meeste tuinbouwondernemers teduur om als energievoorziening te dienen. Daarom is onderzoek gedaan naar mogelijkheden om warmte te gebruiken uit ondiepere lagen (ondiepe geothermie). In tegenstelling tot diepe geothermie is ondiepe geothermie op kleinere schaal toepasbaar, mogelijk ook voor individuele kwekers. Het kan in combinatie met de bestaande verwarmingsinstallatie worden ingezet maar met een duurzamer resultaat. Omdat ondieper wordt geboord zijn de boorkosten en de financiele risico's lager. Dit rapport bevat de bijlagen: (A) Geologisch kader, en (B) B Kaarten Nederland (diepte, zandlaagdikte, temperatuur en ondiepe geothermie (OGT) potentie.

  15. The nuclear energy like an option in Mexico before the climatic change

    International Nuclear Information System (INIS)

    Hernandez M, B.; Puente E, F.; Ortiz O, H. B.; Avila P, P.; Flores C, J.

    2014-10-01

    The current energy poverty, the future necessities of energy and the climatic change caused by the global warming, are factors that associates each, manifest with more clarity the unsustainable production way and energy consumption that demands the society in the current life. This work analyzes the nuclear energy generation like an alternative from the environmental view point that ties with the sustainable development and the formulation of energy use models that require the countries at global level. With this purpose were collected and reviewed documented data of the energy resources, current and future energy consumption and the international commitments of Mexico regarding to greenhouse gases reduction. For Mexico two implementation scenarios of nuclear reactors type BWR and A BWR were analyzed, in compliance with the goals and policy development established in the National Strategy of Climatic Change and the National Strategy of Energy; the scenarios were analyzed through the emissions to the air of CO 2 , (main gas of greenhouse effect) which avoids when the energy production is obtained by nuclear reactors instead of consumptions of traditional fuels, such as coal, diesel, natural gas and fuel oil. The obtained results reflect that the avoided emissions contribute from 4.2% until 40% to the national goal that Mexico has committed to the international community through the Convention Marco of the United Nations against the Climatic Change (CMNUCC). These results recommends to the nuclear energy like a sustainable energy solution on specific and current conditions for Mexico. (Author)

  16. Promoting greater Federal energy productivity [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Mark; Dudich, Luther

    2003-03-05

    This document is a close-out report describing the work done under this DOE grant to improve Federal Energy Productivity. Over the four years covered in this document, the Alliance To Save Energy conducted liaison with the private sector through our Federal Energy Productivity Task Force. In this time, the Alliance held several successful workshops on the uses of metering in Federal facilities and other meetings. We also conducted significant research on energy efficiency, financing, facilitated studies of potential energy savings in energy intensive agencies, and undertook other tasks outlined in this report.

  17. Energy options and regional cooperation on nuclear energy in the Asia-Pacific region

    International Nuclear Information System (INIS)

    Shin, Jae In

    1986-10-01

    This paper reviews the extensive forms of Asia-Pacific regional cooperation in nuclear power to develop and provide economical and reliable energy supply for sound economical growths of developing countries in this region, which has seen rapid growth of energy consumption more than anywhere else in recent years. Nuclear power has received keen attention from DCs because it can provide a self-reliable energy supply and promote development of high technology in the associated engineering and manufacturing industries locally. However, due to the particular characteristics in nuclear power technology, a close cooperation is required between the seller(industrialized) and buyer(developing) countries. The Asia-Pacific regional cooperation in nuclear power is a step toward providing mutual benefits to the countries involved in this region, and this paper explores potential ways in formulating basic and systematic approaches and areas of full scope cooperation. (author)

  18. Energy production and reactor efficiency

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Doubts have been raised in relation to the economic and energetic efficiency of nuclear reactors. Some economists are questioning whether, when all the capital and material inputs to fission technology are considered, nuclear reactors yield sufficiently large amounts of energy to show a nett gain of energy. (author)

  19. Cost, energy, global warming, eutrophication and local human health impacts of community water and sanitation service options.

    Science.gov (United States)

    Schoen, Mary E; Xue, Xiaobo; Wood, Alison; Hawkins, Troy R; Garland, Jay; Ashbolt, Nicholas J

    2017-02-01

    We compared water and sanitation system options for a coastal community across selected sustainability metrics, including environmental impact (i.e., life cycle eutrophication potential, energy consumption, and global warming potential), equivalent annual cost, and local human health impact. We computed normalized metric scores, which we used to discuss the options' strengths and weaknesses, and conducted sensitivity analysis of the scores to changes in variable and uncertain input parameters. The alternative systems, which combined centralized drinking water with sanitation services based on the concepts of energy and nutrient recovery as well as on-site water reuse, had reduced environmental and local human health impacts and costs than the conventional, centralized option. Of the selected sustainability metrics, the greatest advantages of the alternative community water systems (compared to the conventional system) were in terms of local human health impact and eutrophication potential, despite large, outstanding uncertainties. Of the alternative options, the systems with on-site water reuse and energy recovery technologies had the least local human health impact; however, the cost of these options was highly variable and the energy consumption was comparable to on-site alternatives without water reuse or energy recovery, due to on-site reuse treatment. Future work should aim to reduce the uncertainty in the energy recovery process and explore the health risks associated with less costly, on-site water treatment options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Lifestyles and domestic energy consumption : strategic options for encouraging sustainable energy consumption

    NARCIS (Netherlands)

    Breemhaar, B.; Gool, van W.A.C.; Ester, P.; Midden, C.J.H.

    1996-01-01

    The National Research Programme for Global Air Pollution and Climate Change commissioned us to investigate whether the different ways in which households use energy for their domestic activities can be divided into patterns that could be regarded as lifestyles. At the same time we investigated

  1. Energy saving measures in the Netherlands. Options to save 2% energy per year

    International Nuclear Information System (INIS)

    Daniels, B.W.; Van Dril, A.W.N.; Boerakker, Y.H.A.; Godfroij, P.; Van der Hilst, F.; Kroon, P.; Menkveld, M.; Seebregts, A.J.; Tigchelaar, C.; De Wilde, H.P.J.

    2006-12-01

    This study was commissioned by the Dutch Ministry of Economic Affairs in order to address the will of the parliament to investigate policies and measures in order to improve energy efficiency. The analysis is targeted at increasing the annual energy efficiency improvement in the Netherlands from 1% to 2%. It shows that the following policies and measures are necessary to achieve 2%. Regulation has been defined for improving energy efficiency in dwellings and commercial buildings, to be implemented when ownership changes. EU regulation is required for appliances, office equipment and cars, delivery vans and efficient tires. Financial incentives are added for the purchase of efficient cars, the reduction of mileage and for intra-European air transport. Taxation is suggested for industry, the energy sector and horticulture, where less efficient plants have to pay and efficient ones benefit. Total costs for the Dutch economy amount to 3.5 billion euros annually. Implementing the proposed policy packages will require a considerable effort of governments, citizens and companies to overcome societal barriers. In many cases, introduction of the necessary policies and measures depends on European legislation [nl

  2. Transformation towards a Renewable Energy System in Brazil and Mexico—Technological and Structural Options for Latin America

    OpenAIRE

    Sonja Simon; Tobias Naegler; Hans Christian Gils

    2018-01-01

    Newly industrialized countries face major challenges to comply with the Paris Treaty targets as economic growth and prosperity lead to increasing energy demand. Our paper analyses technological and structural options in terms of energy efficiency and renewable energies for a massive reduction of energy-related CO2 emissions in Latin America. Brazil and Mexico share similar growth prospects but differ significantly with respect to renewable energy potentials. We identify, how this leads to dif...

  3. Linking renewable energy CDM projects and TGC schemes: An analysis of different options

    Energy Technology Data Exchange (ETDEWEB)

    Del Rio, Pablo [Department of Economics and Business, Facultad de Ciencias Juridicas y Sociales, Universidad de Castilla-La Mancha, C/ Cobertizo de S. Pedro Martir s/n., Toledo-45071 (Spain)]. E-mail: pablo.rio@uclm.es

    2006-11-15

    Renewable energy CDM (RE-CDM) projects encourage cost-effective GHG mitigation and enhanced sustainable development opportunities for the host countries. CERs from CDM projects include the value of the former benefits (i.e., 'climate change benefits'), whereas the second can be given value through the issuing and trading of tradable green certificates (TGCs). Countries could agree to trade these TGCs, leading to additional revenues for the investors in renewable energy projects and, therefore, further encouraging the deployment of CDM projects, currently facing significant barriers. However, the design of a combination of CDM projects and TGC schemes raises several conflicting issues and leads to trade-offs. This paper analyses these issues, identifies the alternatives that may exist to link TGC schemes with RE-CDM projects and analyses the impacts of those options on different variables and actors.

  4. Linking renewable energy CDM projects and TGC schemes: An analysis of different options

    International Nuclear Information System (INIS)

    Del Rio, Pablo

    2006-01-01

    Renewable energy CDM (RE-CDM) projects encourage cost-effective GHG mitigation and enhanced sustainable development opportunities for the host countries. CERs from CDM projects include the value of the former benefits (i.e., 'climate change benefits'), whereas the second can be given value through the issuing and trading of tradable green certificates (TGCs). Countries could agree to trade these TGCs, leading to additional revenues for the investors in renewable energy projects and, therefore, further encouraging the deployment of CDM projects, currently facing significant barriers. However, the design of a combination of CDM projects and TGC schemes raises several conflicting issues and leads to trade-offs. This paper analyses these issues, identifies the alternatives that may exist to link TGC schemes with RE-CDM projects and analyses the impacts of those options on different variables and actors

  5. National Option of China's Nuclear Energy Systems for Spent Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R.X. [University of Science and Technology, Daejeon (Korea, Republic of); Ko, W. I.; Lee, S. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Along with safety concerns, these long standing environmental challenges are the major factors influencing the public acceptance of nuclear power. Although nuclear power plays an important role in reducing carbon emissions from energy generation, this could not fully prove it as a sustainable energy source unless we find a consensus approach to treat the nuclear wastes. There are currently no countries that have completed a whole nuclear fuel cycle, and the relative comparison of the reprocessing spent fuel options versus direct disposal option is always a controversial issue. Without exception, nowadays, China is implementing many R and D projects on spent fuel management to find a long-term solution for nuclear fuel cycle system transition, such as deep geological repositories for High Level Waste (HLW), Pu Reduction by Solvent Extraction (PUREX) technology, and fast reactor recycling Mixed U-Pu Oxide (MOX) fuels, etc. This paper integrates the current nation's projects of back-end fuel cycle, analyzes the consequences of potential successes, failures and delays in the project development to future nuclear fuel cycle transition up to 2100. We compared the dynamic results of four scenarios and then assessed relative impact on spent fuel management. The result revealed that the fuel cycle transition of reprocessing and recycling of spent fuel would bring advantages to overall nuclear systems by reducing high level waste inventory, saving natural uranium resources, and reducing plutonium management risk.

  6. Sustainability of energy production and use in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Karbassi, A.R.; Abduli, M.A.; Mahin Abdollahzadeh, E. [Graduate Faculty of Environment, University of Tehran, P.O. Box 14155-6135, Teheran (Iran)

    2007-10-15

    The issue of oil and gas policies in Iran is rather complex. In the present investigation, it is aimed to formulate plans for increasing the capacity of the country's energy production. Analysis of energy consumption pattern over last decades is indicative of inefficient usage. The low energy prices in Iran do not reflect economic costs. Further distortions exist in the tariff structures of most energy sources and in their relative prices. It is recognized that price reform is a key policy element for promotion of energy conservation and fuel substitution with renewable energies. Mitigation policies in the energy sector are crucial to Iran's overall policies. Emission of greenhouse gases can be reduced from 752,156 to 560,791 Gg CO{sub 2} equivalents in 2010 by implementing the policies proposed for the energy sub-sectors. Enhancing energy efficiency, including combined cycle power generation, has proved to be the most economic option for greenhouse gases reduction in energy sector. Iran's energy consumption pattern is unsustainable and consumption oriented. (author)

  7. Sustainability of energy production and use in Iran

    International Nuclear Information System (INIS)

    Karbassi, A.R.; Abduli, M.A.; Mahin Abdollahzadeh, E.

    2007-01-01

    The issue of oil and gas policies in Iran is rather complex. In the present investigation, it is aimed to formulate plans for increasing the capacity of the country's energy production. Analysis of energy consumption pattern over last decades is indicative of inefficient usage. The low energy prices in Iran do not reflect economic costs. Further distortions exist in the tariff structures of most energy sources and in their relative prices. It is recognized that price reform is a key policy element for promotion of energy conservation and fuel substitution with renewable energies. Mitigation policies in the energy sector are crucial to Iran's overall policies. Emission of greenhouse gases can be reduced from 752,156 to 560,791 Gg CO 2 equivalents in 2010 by implementing the policies proposed for the energy sub-sectors. Enhancing energy efficiency, including combined cycle power generation, has proved to be the most economic option for greenhouse gases reduction in energy sector. Iran's energy consumption pattern is unsustainable and consumption oriented

  8. A new option for exploitage of future nuclear energy. Accelerator driven radioactive clean nuclear power system

    International Nuclear Information System (INIS)

    Ding Dazhao

    2000-01-01

    Nuclear energy is an effective, clean and safe energy resource. But some shortages of the nuclear energy system presently commercial available obstruct further development of the nuclear energy by heavy nuclear fission. Those are final disposal of the high level radioactive waste, inefficient use of the uranium resource and safety issue of the system. Innovative technical option is seeking for by the nuclear scientific community in recent ten years in aiming to overcome these obstacles, namely, accelerator driven sub-critical system (ADS). This hybrid system may bridge over the gap between presently commercial available nuclear power system and the full exploitation of the fusion energy. The basic principle of ADS is described and its capability in waste transmutation, conversion of the nuclear fuel are demonstrated by two examples--AD-fast reactor and AD-heavy water thermal reactor. The feasibility of ADS and some projects in US, Japan, etc are briefly discussed. The rationale in promoting the R and D of ADS in China is emphasized as China is at the beginning stage of its ambitious project in construction of the nuclear power

  9. Policy options for sustainable energy use in a general model of the UK economy

    International Nuclear Information System (INIS)

    Barker, T.; Ekins, P.; Johnstone, N.

    1996-01-01

    A quantitative general economic model has been developed for options available in greenhouse gas abatement policy concerning energy use. It has been applied in three exercises to explore the effects of energy taxes on the United Kingdom economy. One of these examined the effect of the proposed European Commission carbon/energy tax; the second attempts to set out a policy framework which would enable the UK to reach the IPCC target of 60% reduction in CO 2 emissions by 2040 and explores the economic implications; the third compares the proposal of the UK government to levy VAT on domestic fuel with the EC carbon/energy tax. Additionally, estimates have been made of the secondary benefits of reducing CO 2 emissions. The results present a striking contrast to much of the literature. They include the conclusions that: the EC carbon/energy tax would have negligible macroeconomic effects on the UK economy providing revenues were recycled in such a way as to neutralise inflation; reduction of UK CO 2 emissions by 60% would not necessarily cause great economic disruption; the secondary benefits of reducing CO 2 emissions are of sufficient size to alter radically the benefit cost profile of carbon abatement; equity and efficiency should be regarded as complementary, not competing, objectives in the abatement of CO 2 emissions from the domestic sector. (UK)

  10. Expected energy production evaluation for photovoltaic systems

    DEFF Research Database (Denmark)

    Ding, Yi; Østergaard, Jacob; Peng, Wang

    2011-01-01

    A photovoltaic (PV) system consists of many solar panels, which are connected in series, parallel or a combination of both. Energy production for the PV system with various configurations is different. In this paper, a methodology is developed to evaluate and analyze the expected energy production...

  11. Options for achieving the target of 45 MTOE from energy cropping in the EU in 2010. Danish version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    Among the renewable, biomass is considered an attractive option for energy production for a number of fundamental agricultural, industrial and rural development reasons. During the last decade several types of goals and associated incentives have been set across Europe in order to enhance both the RandD of the technologies and the implementation of bioenergy schemes. In Denmark, Austria and Finland the bioenergy schemes have been proved successful, while in other EU regions, bioenergy schemes are now either beginning to be implemented or are slowly developed at small scale and pilot level. The main reasons for this slow progress are: Lack in security of supply; Non-uniform and bulky material in the form of residues and wastes; Inadequate interrelation between the agricultural and energy policies; Inefficient way of approaching the main target groups involved in the bioenergy business. Scientists and policy makers remain sceptical whether the favourable technical potential of these crops will actually serve as feedstock in already operating or newly planned bioenergy schemes. Due to the role of energy in almost all walks of life, EU policies in this area have to be considered within a wider context extending to climate change, waste disposal, agriculture, air and water policy. The report states the following recommendations: Define niche markets for energy crops per type of fuel produced; Link current residue exploitation to mainstream biomass developments; Transfer of knowledge on growing energy crops to the 10 new countries; Define the role that energy crops trade could play. The absence of any policy to encourage energy crops represents one of the main limits to their dissemination. Energy crops incentive policies are actually constrained by CAP requirements and thus heavily affected by the limits of EU agricultural policy and partly by its rural policy which is biased in favour of restricting arable land characterized by production surpluses. The promotion of

  12. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  13. Some Thoughts after the Inaugural Meeting of the International Forum on Sustainable Options in Uranium Production

    International Nuclear Information System (INIS)

    Tano, M.L.

    2009-01-01

    This paper examines the discussions at the inaugural meeting International Forum on Sustainable Options in Uranium Production and suggests that to be successful, IFSOUP should be organized as a network of disparate entities whose activities are related to a broad range of effects, including not only the actual mining, processing and regulation of uranium, but also social, cultural, economic, political, informational, educational, and other factors. The endeavor called IFSOUP is made up of those entities that are cooperating (consciously or deliberately) in some particular context and those whose behavior is expected to aid those actors who have chosen to cooperate. (authors)

  14. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  15. Energy and environmental implications of copper production

    Energy Technology Data Exchange (ETDEWEB)

    Alvardo, Sergio [Chile Univ., Dept. of Mechanical Engineering, Santiago (Chile); Maldonado, Pedro; Jaques, Ivan [Chile Univ., Energy Research Program, Santiago (Chile)

    1999-04-01

    Primary copper production is a major activity in the mining sector. It is highly energy-intensive, ranking third in specific energy consumption (SEC) among the five major basic metals (aluminum, copper, iron, lead and zinc) and poses important environmental hazards. We examine the large discrepancy between theoretical (from thermodynamics) and actual (from empirical data) SECs and then describe relevant environmental issues, focusing on the most significant energy-related environmental impacts of primary copper production with emphasis on greenhouse-gas (GHG) emissions. An example of GHG energy-related abatement that concurrently improves energy use is presented. (Author)

  16. Milk: the new white gold? Milk production options for smallholder farmers in Southern Mali.

    Science.gov (United States)

    de Ridder, N; Sanogo, O M; Rufino, M C; van Keulen, H; Giller, K E

    2015-07-01

    Until the turn of the century, farmers in West Africa considered cotton to be the 'white gold' for their livelihoods. Large fluctuations in cotton prices have led farmers to innovate into other business including dairy. Yet the productivity of cows fed traditional diets is very poor, especially during the long dry season. This study combines earlier published results of farmer participatory experiments with simulation modelling to evaluate the lifetime productivity of cows under varying feeding strategies and the resulting economic performance at farm level. We compared the profitability of cotton production to the innovation of dairy. The results show that milk production of the West African Méré breed could be expanded if cows are supplemented and kept stall-fed during the dry season. This option seems to be profitable for better-off farmers, but whether dairy will replace (some of) the role of cotton as the white gold for these smallholder farmers will depend on the cross price elasticity of cotton and milk. Farmers may (partly) replace cotton production for fodder production to produce milk if the price of cotton remains poor (below US$0.35/kg) and the milk price relatively strong (higher than US$0.38/kg). Price ratios need to remain stable over several seasons given the investments required for a change in production strategy. Furthermore, farmers will only seize the opportunity to engage in dairy if marketing infrastructure and milk markets are further developed.

  17. Environmental considerations in energy crop production

    International Nuclear Information System (INIS)

    Ranney, J.W.; Mann, L.K.

    1994-01-01

    This paper is a preliminary attempt to provide information on the probable environmental effects of energy crop production relative to other potential uses of the land. While dedicated energy crop production is anticipated to occur primarily on land currently in agricultural production, some pastureland and forestland with a high potential for conversion to agricultural production may be utilized. Experimental results suggest that chemical use on energy crops will be lower than on most row crops and that land producing energy crops should experience less erosion than land producing row crops. Long-term site productivity should not be a major issue if macro-and micro-fertilizers are added as needed and nutrient-conserving production techniques are used. (Author)

  18. Energy Production from Biogas: Competitiveness and Support Instruments in Latvia

    Science.gov (United States)

    Klāvs, G.; Kundziņa, A.; Kudrenickis, I.

    2016-10-01

    Use of renewable energy sources (RES) might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 - the investment support (IS) and the feed-in tariff (FIT) - on the economic viability of small scale (up to 2MWel) biogas unit. The results indicate that the electricity production cost in biogas utility roughly corresponds to the historical FIT regarding electricity production using RES. However, if in addition to the FIT the IS is provided, the analysis shows that the practice of combining both the above-mentioned instruments is not optimal because too high total support (overcompensation) is provided for a biogas utility developer. In a long-term perspective, the latter gives wrong signals for investments in new technologies and also creates unequal competition in the RES electricity market. To provide optimal biogas utilisation, it is necessary to consider several options. Both on-site production of electricity and upgrading to biomethane for use in a low pressure gas distribution network are simulated by the cost estimation model. The authors' estimates show that upgrading for use in a gas distribution network should be particularly considered taking into account the already existing infrastructure and technologies. This option requires lower support compared to support for electricity production in small-scale biogas utilities.

  19. Energy Production from Biogas: Competitiveness and Support Instruments in Latvia

    Directory of Open Access Journals (Sweden)

    Klāvs G.

    2016-10-01

    Full Text Available Use of renewable energy sources (RES might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 – the investment support (IS and the feed-in tariff (FIT – on the economic viability of small scale (up to 2MWel biogas unit. The results indicate that the electricity production cost in biogas utility roughly corresponds to the historical FIT regarding electricity production using RES. However, if in addition to the FIT the IS is provided, the analysis shows that the practice of combining both the above-mentioned instruments is not optimal because too high total support (overcompensation is provided for a biogas utility developer. In a long-term perspective, the latter gives wrong signals for investments in new technologies and also creates unequal competition in the RES electricity market. To provide optimal biogas utilisation, it is necessary to consider several options. Both on-site production of electricity and upgrading to biomethane for use in a low pressure gas distribution network are simulated by the cost estimation model. The authors’ estimates show that upgrading for use in a gas distribution network should be particularly considered taking into account the already existing infrastructure and technologies. This option requires lower support compared to support for electricity production in small-scale biogas utilities.

  20. Long term energy-related environmental issues of copper production

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, S. [University of Chile, Santiago (Chile). Dept. of Mechanical Engineering; Maldonado, P.; Barrios, A.; Jaques, I. [University of Chile, Santiago (Chile). Energy Research Program

    2002-02-01

    Primary copper production is a major activity in the mining sector of several countries. However, it is highly energy-intensive and poses important environmental hazards. In the case of Chile, the world's largest copper producer (40% of world total), we examine its energy consumption and energy-related environmental implications over a time horizon of 25 years. Concerning the latter, we focus on greenhouse-gas (GHG) emissions, one of the most debated environmental issues. This paper follows up our previous report in which the current situation was analyzed and a particular technical option for improving the energy efficiency and concurrently reducing GHG emissions was discussed. Estimated reference or base (BS) and mitigation (MS) scenarios are developed for the period ending in 2020. The former assesses the energy demand projected in accordance with production forecasts and specific energy consumption patterns (assuming that energy efficiency measures are adopted 'spontaneously') with their resultant GHG emissions, while the latter assumes induced actions intended to reduce emissions by adopting an aggressive policy of efficient energy use. For the year 2020, the main results are: (i) BS, 1214 t of CO{sub 2}/ton of refined copper content (49% lower than in 1994); (ii) MS, 1037 t of CO{sub 2}/t of refined copper content (56% lower than in 1994). CO{sub 2} emissions have been estimated considering both fuel and electricity process requirements. (author)

  1. Long term energy-related environmental issues of copper production

    International Nuclear Information System (INIS)

    Alvarado, S.; Maldonado, P.; Barrios, A.; Jaques, I.

    2002-01-01

    Primary copper production is a major activity in the mining sector of several countries. However, it is highly energy-intensive and poses important environmental hazards. In the case of Chile, the world's largest copper producer (40% of world total), we examine its energy consumption and energy-related environmental implications over a time horizon of 25 years. Concerning the latter, we focus on greenhouse-gas (GHG) emissions, one of the most debated environmental issues. This paper follows up our previous report in which the current situation was analyzed and a particular technical option for improving the energy efficiency and concurrently reducing GHG emissions was discussed. Estimated reference or base (BS) and mitigation (MS) scenarios are developed for the period ending in 2020. The former assesses the energy demand projected in accordance with production forecasts and specific energy consumption patterns (assuming that energy efficiency measures are adopted 'spontaneously') with their resultant GHG emissions, while the latter assumes induced actions intended to reduce emissions by adopting an aggressive policy of efficient energy use. For the year 2020, the main results are: (i) BS, 1214 t of CO 2 /ton of refined copper content (49% lower than in 1994); (ii) MS, 1037 t of CO 2 /t of refined copper content (56% lower than in 1994). CO 2 emissions have been estimated considering both fuel and electricity process requirements. (author)

  2. Energy policy options--from the perspective of public attitudes and risk perceptions

    International Nuclear Information System (INIS)

    Viklund, Mattias

    2004-01-01

    In the present study a representative sample (N=797) of the Swedish population was surveyed, with regard to attitudes related to energy policy issues (e.g., environmental attitudes, risk perceptions, and attitudes towards different energy production systems), and self-reported electricity saving behavior. These factors were considered relevant in a Swedish energy policy context, due to the planned phase-out of nuclear power. Citizens' attitudes have traditionally been important factors in energy policy-making, especially nuclear policy. One of the conditions for a successful phase-out is decreased levels of electricity consumption among households and in industry, in order to compensate for the loss in energy production. Respondents reported positive attitudes to the environment in general and to electricity saving, while the attitudes to nuclear power as an energy production system in Sweden were relatively negative. Perceived risk was an important predictor of these attitudes and it was concluded that it is important to investigate factors behind this variable. The relationship between attitudes towards electricity saving and electricity saving behavior was weak. It is suggested that a contribution of psychological knowledge in energy conservation campaigns could be to elaborate on people's willingness to be public-spirited citizens in combination with their pro-environmental attitudes. Viklund (1999, Electricity saving: Attitudes and behavior of Swedish households. Center for Risk Research, Stockholm.) presented more data from the survey referred to here

  3. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  4. Between research and energy production

    International Nuclear Information System (INIS)

    Kirbus, F.B.

    1977-01-01

    When on March 20th, 1974, the nuclear power plant in Atucha, 100 km to the north-west of Argentine's capital Buenos Aires, built by Siemens, was taken into operation, it seemed as if South America had resolutely stepped into the atomic age. In the meantime, Brazil makes preparations for fortified construction of nuclear power plants and its own nuclear industry, and Mexico is accelerating its investigations in order to replace its dwindlung hydroelectric reserves as soon as possible with nuclear energy. The effect of the oil crisis was that Latin American countries, too, take a different look at the peaceful uses of atomic energy. (orig.) [de

  5. Energy production and human health

    International Nuclear Information System (INIS)

    Benson, J.R.; Brown, C.D.; Dixon-Davis, D.K.; Grahn, D.; Ludy, R.T.

    1977-01-01

    Progress is reported on the following research projects: development and evaluation of socioeconomic and demographic factors; and quantitative aspects of the impacts of energy-related effluents on human health. Environmental effects of electric power generation by gas, oil, coal, nuclear energy, and water were studied at 15 sites. A system of general demographic models was developed for projecting number of deaths and population size by sex, age, and cause of death through time for any defined initial population and set of vital rates

  6. Energy efficiency and cleaner production

    International Nuclear Information System (INIS)

    Konstantinoff, M.; Grozeva, Iv.

    1999-01-01

    Energy is the fundamental driver of the economic growth in the todays society. It is an absolute prerequisite for the industrial development in the developed countries as well as for improving the quality of life and reducing the poverty in the developing world. It is expected that the energy demand in the developing countries will increase rapidly in the next decades, and will even exceed the level of consumption in the rich countries due to rising population and incomes. The burning of fossil fuel, however, inevitably leads to negative environmental impact, which no longer can be neglected

  7. Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use

    Energy Technology Data Exchange (ETDEWEB)

    Breazeale, K. [ed.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

    1993-12-01

    This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

  8. Marketing energy conservation options to Northwest manufactured home buyers. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, P.L.; Mohler, B.L.; Taylor, Z.T.; Lee, A.D.; Onisko, S.A.

    1985-10-01

    Manufactured, or HUD-Code, homes comprise a growing share of the housing stock in the Northwest, as well as nationally. Their relatively low cost has made them especially attractive to lower income families, first-time home-buyers, and retired persons. The characteristics of manufactured home (MH) buyers, the unique energy consumption characteristics of the homes, and their increasing market share make this market an especially critical one for energy consumption and conservation planning in the Northwest. This study relies on extensive, existing survey data and new analyses to develop information that can potentially assist the design of a marketing plan to achieve energy conservation in new manufactured homes. This study has the objective of assisting BPA in the development of a regional approach in which numerous organizations and parties would participate to achieve conservation in new manufactured homes. A previous survey and information collected for this study from regional dealers and manufacturers provide an indication of the energy conservation options being sold to manufactured home buyers in the PNW. Manufacturers in the Northwest appear to sell homes that usually exceed the HUD thermal requirements. Manufacturers typically offer efficiency improvements in packages that include fixed improvements in insulation levels, glazing, and infiltration control. Wholesale costs of these packages range from about $100 to $1500. Typical packages include significant upgrades in floor insulation values with modest upgrades in ceilings and walls. This study identifies trends and impacts that a marketing plan should consider to adequately address the financial concerns of manufactured home buyers.

  9. A real options approach to analyse wind energy investments under different support schemes

    International Nuclear Information System (INIS)

    Kitzing, Lena; Juul, Nina; Drud, Michael; Boomsma, Trine Krogh

    2017-01-01

    Highlights: • Real options model for wind projects considering investment timing and sizing. • Introducing a capacity constraint in the optimisation. • Addressing several uncertainty factors while still providing analytical solution. • Comparative policy analysis of investment incentives from different support schemes. • Improved quantification of trade-off between fast deployment and large projects. - Abstract: A real options model is developed to evaluate wind energy investments in a realistic and easily applicable way. Considering optimal investment timing and sizing (capacity choice), the model introduces a capacity constraint as part of the optimisation. Several correlated uncertainty factors are combined into a single stochastic process, which allows for analytical (closed-form) solutions. The approach is well suited for quantitative policy analysis, such as the comparison of different support schemes. A case study for offshore wind in the Baltic Sea quantifies differences in investment incentives under feed-in tariffs, feed-in premiums and tradable green certificates. Investors can under certificate schemes require up to 3% higher profit margins than under tariffs due to higher variance in profits. Feed-in tariffs may lead to 15% smaller project sizes. This trade-off between faster deployment of smaller projects and slower deployment of larger projects is neglected using traditional net present value approaches. In the analysis of such trade-off, previous real options studies did not consider a capacity constraint, which is here shown to decrease the significance of the effect. The impact on investment incentives also depends on correlations between the underlying stochastic factors. The results may help investors to make informed investment decisions and policy makers to strategically design renewable support and develop tailor-made incentive schemes.

  10. Energy production, conversion, storage, conservation, and coupling

    CERN Document Server

    Demirel, Yaşar

    2012-01-01

    Understanding the sustainable use of energy in various processes is an integral part of engineering and scientific studies, which rely on a sound knowledge of energy systems. Whilst many institutions now offer degrees in energy-related programs, a comprehensive textbook, which introduces and explains sustainable energy systems and can be used across engineering and scientific fields, has been lacking. Energy: Production, Conversion, Storage, Conservation, and Coupling provides the reader with a practical understanding of these five main topic areas of energy including 130 examples and over 600 practice problems. Each chapter contains a range of supporting figures, tables, thermodynamic diagrams and charts, while the Appendix supplies the reader with all the necessary data including the steam tables. This new textbook presents a clear introduction of basic vocabulary, properties, forms, sources, and balances of energy before advancing to the main topic areas of: • Energy production and conversion in importa...

  11. Current and future groundwater withdrawals: Effects, management and energy policy options for a semi-arid Indian watershed

    Science.gov (United States)

    Sishodia, Rajendra P.; Shukla, Sanjay; Graham, Wendy D.; Wani, Suhas P.; Jones, James W.; Heaney, James

    2017-12-01

    Effects of future expansion/intensification of irrigated agriculture on groundwater and surface water levels and availability in a semi-arid watershed were evaluated using an integrated hydrologic model (MIKE SHE/MIKE 11) in conjunction with biophysical measurements. Improved water use efficiency, water storage, and energy policy options were evaluated for their ability to sustain the future (2035) increased groundwater withdrawals. Three future withdrawal scenarios (low = 20, medium = 30, high = 50 wells/100 km2/year) based on the historical rate of growth of irrigation wells were formulated. While well drying from falling groundwater levels was limited to drought and consecutive below average rainfall years, under the current (2015) withdrawals, significant increases in frequency and duration (17-97 days/year) of well drying along with 13-26% (19-37 mm) reductions in surface flows were predicted under the future withdrawals. Higher (27-108%) energy demands of existing irrigation pumps due to declining groundwater levels and reduced hydroelectric generation due to decreased surface flows would create a vicious water-food-energy nexus in the future. Crop failure, one of the main causes of farmers' emotional distress and death in the region, is predicted to exacerbate under the future withdrawal scenarios. Shift to negative net recharge (-63 mm) and early and prolonged drying of wells under the high scenario will reduce the groundwater availability and negatively affect crop production in more than 60% and 90% of cropped areas in the Rabi (November-February) and summer (March-May) seasons, respectively during a drought year. Individual and combined demand (drip irrigation and reduced farm electricity subsidy) and supply (water storage) management options improved groundwater levels and reduced well drying by 55-97 days/year compared to business-as-usual management under the high scenario. The combined management (50% drip conversion, 50% reduction in subsidy, and

  12. Coordinating Demand-Side Efficiency Evaluation, Measurement and Verification Among Western States: Options for Documenting Energy and Non-Energy Impacts for the Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-06-22

    Demand-side energy efficiency (efficiency) represents a low-cost opportunity to reduce electricity consumption and demand and provide a wide range of non-energy benefits, including avoiding air pollution. Efficiency-related energy and non-energy impacts are determined and documented by implementing evaluation, measurement and verification (EM&V) systems. This technical brief describes efficiency EM&V coordination strategies that Western states can consider taking on together, outlines EM&V-related products that might be appropriate for multistate coordination, and identifies some implications of coordination. Coordinating efficiency EM&V activities can save both time and costs for state agencies and stakeholders engaged in efficiency activities and can be particularly beneficial for multiple states served by the same utility. First, the brief summarizes basic information on efficiency, its myriad potential benefits and EM&V for assessing those benefits. Second, the brief introduces the concept of multistate EM&V coordination in the context of assessing such benefits, including achievement of state and federal goals to reduce air pollutants.1 Next, the brief presents three coordination strategy options for efficiency EM&V: information clearinghouse/exchange, EM&V product development, and a regional energy efficiency tracking system platform. The brief then describes five regional EM&V products that could be developed on a multistate basis: EM&V reporting formats, database of consistent deemed electricity savings values, glossary of definitions and concepts, efficiency EM&V methodologies, and EM&V professional standards or accreditation processes. Finally, the brief discusses options for next steps that Western states can take to consider multistate coordination on efficiency EM&V. Appendices provide background information on efficiency and EM&V, as well as definitions and suggested resources on the covered topics. This brief is intended to inform state public

  13. Production of {sup 177}Lu for targeted radionuclide therapy: Available options

    Energy Technology Data Exchange (ETDEWEB)

    Dah, Ashutosh [Isotope Production and Applications Division, Bhabha Atomic Research Centre (BARC), Mumbai (India); Pillai, Maroor Raghavan Ambikalmajan [Molecular Group of Companies. Kerala (India); Knapp, Furn F. Jr. [Medical Isotopes Program, Isotope Dept. Group, Oak Ridge National Laboratory (ORNL), Oak Ridge (United States)

    2015-06-15

    This review provides a comprehensive summary of the production of {sup 177}Lu to meet expected future research and clinical demands. Availability of options represents the cornerstone for sustainable growth for the routine production of adequate activity levels of {sup 177}Lu having the required quality for preparation of a variety of {sup 177}Lu-labeled radiopharmaceuticals. The tremendous prospects associated with production of {sup 177}Lu for use in targeted radionuclide therapy (TRT) dictate that a holistic consideration should evaluate all governing factors that determine its success. While both “direct” and “indirect” reactor production routes offer the possibility for sustainable {sup 177}Lu availability, there are several issues and challenges that must be considered to realize the full potential of these production strategies. This article presents a mini review on the latest developments, current status, key challenges and possibilities for the near future. A broad understanding and discussion of the issues associated with {sup 177}Lu production and processing approaches would not only ensure sustained growth and future expansion for the availability and use of {sup 177}Lu-labeled radiopharmaceuticals, but also help future developments.

  14. Biochemical and photosynthetic aspects of energy production

    Energy Technology Data Exchange (ETDEWEB)

    San Pietro, A [ed.

    1980-01-01

    Photosynthesis is the only method of solar energy conversion presently practiced on a large scale, supplying all food energy as well as fiber and wood. This book is an attempt to describe and evaluate biological processes that may serve in the future to provide alternative energy resources. Areas covered include marine biomass production, algal-bacterial systems, agricultural residues, energy farming and biological nitrogen fixation with an emphasis on the legumes.

  15. Report on HVAC option selections for a relocatable classroom energy and indoor environmental quality field study

    OpenAIRE

    Apte, Michael G.; Delp, Woody W.; Diamond, Richard C.; Hodgson, Alfred T.; Kumar, Satish; Rainer, Leo I.; Shendell, Derek G.; Sullivan, Doug P.; Fisk, William J.

    2001-01-01

    It is commonly assumed that efforts to simultaneously develop energy efficient building technologies and to improve indoor environmental quality (IEQ) are unfeasible. The primary reason for this is that IEQ improvements often require additional ventilation that is costly from an energy standpoint. It is currently thought that health and productivity in work and learning environments requires adequate, if not superior, IEQ. Despite common assumptions, opportunities do exist to design bui...

  16. Design options for cooperation mechanisms under the new European renewable energy directive

    International Nuclear Information System (INIS)

    Klessmann, Corinna; Lamers, Patrick; Ragwitz, Mario; Resch, Gustav

    2010-01-01

    In June 2009, a new EU directive on the promotion of renewable energy sources (RES) entered into effect. The directive 2009/28/EC, provides for three cooperation mechanisms that will allow member states to achieve their national RES target in cooperation with other member states: statistical transfer, joint projects, and joint support schemes. This article analyses the pros and cons of the three mechanisms and explores design options for their implementation through strategic and economic questions: How to counterbalance the major drawbacks of each mechanism? How to reflect a balance of costs and benefits between the involved member states? The analysis identifies a number of design options that respond to these questions, e.g. long term contracts to ensure sufficient flexibility for statistical transfers, a coordinated, standardised joint project approach to increase transparency in the European market, and a stepwise harmonisation of joint support schemes that is based on a cost-effective accounting approach. One conclusion is that the three cooperation mechanisms are closely interlinked. One can consider their relation to be a gradual transition from member state cooperation under fully closed national support systems in case of statistical transfers, to cooperation under fully open national support systems in a joint support scheme.

  17. Optimization of operating conditions of distillation columns: an energy saving option in refinery industry

    Directory of Open Access Journals (Sweden)

    Alireza Fazlali

    2010-01-01

    Full Text Available While energy prices continue to climb, it conservation remains the prime concern for process industries. The daily growth of energy consumption throughout the world and the real necessity of providing it, shows that optimization of energy generation and consumption units is an economical and sometimes vital case. Hence, the optimization of a petroleum refinery is aimed towards great production and an increase in quality. In this research, the atmospheric distillation unit of the Iran-Arak-Shazand petroleum refinery was subject to optimization efforts. It was performed by the means of using a simulator with the aim to earn more overhead products. In the next step the optimization results from the simulators were carried out in the real world, at the above mentioned unit. Results demonstrate that the changes in the real operating conditions increase the overhead products with desirable quality. Finally, a net economical balance between the increments of the overhead products and the energy consumption shows an energy saving in this refinery.

  18. Toxicological aspects of energy production

    International Nuclear Information System (INIS)

    Sanders, C.L.

    1986-01-01

    Part I reviews the principles of toxicology, describes the biological fate of chemicals in the body, discusses basic pathobiology, and reviews short-term toxicity tests. Part II describes the toxicology and pathology of pollutants in several important organ systems. The greatest emphasis is placed on the respiratory tract because of its high probability as a route of exposure to pollutants from energy technologies and its high sensitivity to pollutant related tissue damage. Part III describes the toxicological aspects of specific chemical classes associated with fossil fuels; these include polycyclic hydrocarbons, gases and metals. Part IV describes the biomedical effects associated with each energy technology, including coal and oil, fossil fuel and biomass conversions, solar and geothermal and radiological health aspects associated with uranium mining, nuclear fission and fusion, and with nonionising radiations and electromagnetic fields

  19. Integrated weed management for sustainable rice production: concepts, perspectives and options

    International Nuclear Information System (INIS)

    Amartalingam Rajan

    2002-01-01

    Weed management has always been in some way integrated with cultural and biological methods, probably occurring more fortuitously than purposefully. Experience has shown that repeated use of any weed control technique especially in monocultures production systems results in rapid emergence of weeds more adapted to the new practice. In intensive high input farming systems, heavy selection pressure for herbicide tolerant weeds and the environmental impacts of these inputs are important tissues that require a good understanding of agroecosystem for successful integration of available options. Rice culture, in particular flooded rice culture has always employed integration through an evolution of management practices over the generations. However, a vast majority office farmers in Asia have yet to achieve the high returns realised by farmers elsewhere, where a near optimum combination of high inputs are being effectively integrated for maximum productivity. In addition to technological and management limitations, farmers in developing countries are faced with social, economic and policy constraints. On the other hand, farmers who had achieved considerable increases in productivity through labour replacing technologies, in particular direct seeding with the aid of herbicides, are now faced with issues related to environmental concerns due to high levels of these inputs. The issues facing weed scientists and farmers alike in managing weeds effectively and in a manner to ensure sustainability have become more challenging than ever before. In the last two decades, no issue has been discussed so. intensively as Sustainable Farming, Sustainable Agriculture or Alternative Agriculture within the broader global concept of Sustainable Development. To address these challenges a clear perspective of sustainable farming is essential. This paper addresses these concepts, perspectives and options for choices in weed management for sustainable rice production. (Author)

  20. Automatic control algorithm effects on energy production

    Science.gov (United States)

    Mcnerney, G. M.

    1981-01-01

    A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.

  1. Recycling and transmutation of spent fuel as a sustainable option for the nuclear energy development

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Moreira, Joao M.L.

    2013-01-01

    The objective of this paper is to discuss the option of recycling and transmutation of radioactive waste against Once-through Fuel Cycle (OTC) based on uranium feed under the perspective of sustainability. We use a qualitative analysis to compare OTC with closed fuel cycles based on studies already performed such as the Red Impact Project and the comparative study on accelerator driven systems and fast reactors for advanced fuel cycles performed by the Nuclear Energy Agency. The results show that recycling and transmutation fuel cycles are more attractive than the OTC from the point of view of sustainability. The main conclusion is that the decision about the construction of a deep geological repository for spent fuel disposal must be reevaluated. (author)

  2. Particle production at AGS energies

    International Nuclear Information System (INIS)

    Steadman, S.G.; Rothschild, P.J.; Sung, T.W.; Zachary, D.

    1995-01-01

    The authors discuss particle production from 14.6 A·GeV/c Si and 11.6 A·GeV/c Au projectiles on Al and Au targets. The second-level trigger utilized by E859 allows high precision measurements of K - , bar p, Λ and bar Λ. The bar Λ yield is larger than expected, and a surprisingly large fraction of the bar p's are observed to arise from the decay of bar Λ

  3. Assessing policy options for increasing the use of renewable energy for sustainable development: Modelling energy scenarios for Sichuan, China. A UN-ENERGY demonstration study

    International Nuclear Information System (INIS)

    2007-01-01

    UN-Energy was created in 2004 as the United Nations' principal interagency mechanism in the field of energy. Its creation responds to a request in the Johannesburg Plan of Implementation, adopted by the 2002 World Summit on Sustainable Development, for a new collaborative mechanism between UN agencies, programmes and institutions. UN-Energy has published several reports. The first was prepared for the September 2005 World Summit, 'The Energy Challenge for Achieving the Millennium Development Goals', showing the key role energy access plays for countries to achieve the MDGs. A second report was presented at the May 2006 session of the UN Commission on Sustainable Development (CSD-14), 'Energy in the United Nations: An Overview of UN-Energy Activities'. For the May 2007 CSD-15 UN-Energy brought forward 'Sustainable Bio-Energy: A Framework for Decision-Makers' to help inform dialogue in one critical area of future energy policy choice. Another critical energy policy issue is how renewable energy can be promoted as countries plan for sustainable development. UN-Energy therefore decided to look at how the tools for energy modelling could be evolved. In May 2006, for CSD-14, UN-Energy presented 'Assessing Policy Options for Increasing the Use of Renewable Energy for Sustainable Development: Modelling Energy Scenarios for Ghana'. The Ghana study was carried out by five UN organizations and the Energy Commission of Ghana. It was led by the International Atomic Energy Agency (IAEA) and included the Department of Economic and Social Affairs (DESA) in the UN Secretariat, the Food and Agriculture Organization (FAO), the UN Environment Programme (UNEP) and the UN Industrial Development Organization (UNIDO). UN-Energy now presents a similar study for Sichuan, China. Together these two reports are the first UN-Energy reports to present analytic results from interagency cooperation that, without UN-Energy, would not have happened. This report analyzes alternative provincial

  4. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  5. Effects of SO2 emission regulations and fuel prices on levellized energy costs for industrial steam generation options

    International Nuclear Information System (INIS)

    Ozdogan, Sibel; Arikol, Mahir

    1992-01-01

    We discuss the impacts of SO 2 emission regulations and fuel prices on levellized energy costs of industrial steam generation options. A computer model called INDUSTEAM has been utilized. The steam-supply options comprise conventional grate-firing, bubbling and circulating fluidized beds, fuel-oil, and natural-gas-fired systems. Fuels of different SO 2 pollution potential have been evaluated assuming six environmental scenarios and varying fuel prices. A capacity range of 10-90 MW th is covered. (author)

  6. Assessment of industrial energy options based on coal and nuclear systems

    International Nuclear Information System (INIS)

    Anderson, T.D.; Bowers, H.I.; Bryan, R.H.; Delene, J.G.; Hise, E.C.; Jones, J.E. Jr.; Klepper, O.H.; Reed, S.A.; Spiewak, I.

    1975-07-01

    Industry consumes about 40 percent of the total primary energy used in the United States. Natural gas and oil, the major industrial fuels, are becoming scarce and expensive; therefore, there is a critical national need to develop alternative sources of industrial energy based on the more plentiful domestic fuels--coal and nuclear. This report gives the results of a comparative assessment of nuclear- and coal-based industrial energy systems which includes technical, environmental, economic, and resource aspects of industrial energy supply. The nuclear options examined were large commercial nuclear power plants (light-water reactors or high-temperature gas-cooled reactors) and a small [approximately 300-MW(t)] special-purpose pressurized-water reactor for industrial applications. Coal-based systems selected for study were those that appear capable of meeting environmental standards, especially with respect to sulfur dioxide; these are (1) conventional firing using either low- or high-sulfur coal with stack-gas scrubbing equipment, (2) fluidized-bed combustion using high-sulfur coal, (3) low- and intermediate-Btu gas, (4) high-Btu pipeline-quality gas, (5) solvent-refined coal, (6) liquid boiler fuels, and (7) methanol from coal. Results of the study indicated that both nuclear and coal fuel can alleviate the industrial energy deficit resulting from the decline in availability of natural gas and oil. However, because of its broader range of application and relative ease of implementation, coal is expected to be the more important substitute industrial fuel over the next 15 years. In the longer term, nuclear fuels could assume a major role for supplying industrial steam. (U.S.)

  7. Sectoral Energy, and Labour, Productivity Convergence

    International Nuclear Information System (INIS)

    Mulder, P.; De Groot, H.L.F.

    2007-01-01

    This paper empirically investigates the development of cross-country differences in energy- and labour productivity. The analysis is performed at a detailed sectoral level for 14 OECD countries, covering the period 1970-1997. A ρ-convergence analysis reveals that the development over time of the cross-country variation in productivity performance differs across sectors as well as across different levels of aggregation. Both patterns of convergence as well as divergence are found. Cross-country variation of productivity levels is typically larger for energy than for labour. A β-convergence analysis provides support for the hypothesis that in most sectors lagging countries tend to catch up with technological leaders, in particular in terms of energy productivity. Moreover, the results show that convergence is conditional, meaning that productivity levels converge to country-specific steady states. Energy prices and wages are shown to positively affect energy- and labour-productivity growth, respectively. We also find evidence for the importance of economies of scale, whereas the investment share, openness and specialization play only a modest role in explaining cross-country variation in energy- and labour-productivity growth

  8. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste.

    Science.gov (United States)

    Garg, A; Smith, R; Hill, D; Longhurst, P J; Pollard, S J T; Simms, N J

    2009-08-01

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ( approximately 2500 g CO(2) eqvt./kg DS SRF in co-fired cement kilns and approximately 1500 g CO(2) eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( 95 pounds/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

  9. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste

    International Nuclear Information System (INIS)

    Garg, A.; Smith, R.; Hill, D.; Longhurst, P.J.; Pollard, S.J.T.; Simms, N.J.

    2009-01-01

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly (∼2500 g CO 2 eqvt./kg DS SRF in co-fired cement kilns and ∼1500 g CO 2 eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

  10. Biomass. A promising option for renewable energy in the built environment

    International Nuclear Information System (INIS)

    Koppejan, J.

    1999-01-01

    A brief overview is given of activities of local governments (municipalities and provinces) in the Netherlands with respect to the use of biomass for the production of energy in urban areas. Special attention is paid to a project in Apeldoorn, Netherlands, where biomass gasification at a waste recycling plant ('Veluwse Afvalrecycling' or VAR) is used for district heating purposes. 1 ref

  11. Conjugated Polymers for Energy Production

    DEFF Research Database (Denmark)

    Livi, Francesco

    This dissertation is aimed at developing materials for flexible, large area, ITO-free polymer solar cells (PSCs) fully printed under ambient conditions. A large screening of conjugated polymers, both novel and well-known materials, has been carried out in order to find suitable candidates...... polymerization method for industrial production of polymers. Several DArP protocols have been employed for the synthesis of PPDTBT leading to polymers with high structural regularity and photovoltaic performances comparable with the same materials synthesized via Stille cross-coupling polymerization...

  12. Risoe energy report 1. New and emerging technologies - options for the future

    International Nuclear Information System (INIS)

    Larsen, H.; Soenderberg Petersen, L.

    2002-10-01

    All over the world, increasing energy consumption, liberalisation of energy markets and the need to take action on climate change are producing new challenges for the energy sector. At the same time there is increasing pressure for research, new technology and industrial products to be socially acceptable and to generate prosperity. The result is a complex and dynamic set of conditions affecting decisions on investment in research and new energy technology. To meet these challenges in the decades ahead, industrialists and policymakers need appropriate analyse energy systems, plus knowledge of trends for existing technologies and prospects for emerging technologies. This is the background for this first Risoe Energy Report, which sets out the global, European and Danish energy scene together with trends in development and emerging technologies. The report is the first in a new series from Risoe National Laboratory. The global energy developments are presented based on the latest available information from authoritative sources like IEA, WEC, World Energy Assessment etc. Some of the major challenges are presented in terms of the changing energy markets in all regions, the focus on environmental concerns in the industrialised countries, and energy for development and access to energy for the poor in developing countries. The report presents the status of R and D in progress for supply technologies. The various technologies are assessed with respect to status, trends and perspectives for the technology, and international R and D plans. For the technologies where Risoe is undertaking R and D this is highlighted in a separate section. Recent studies of emerging energy technologies from international organisations and leading research organisations are reviewed. There are reviews of national research activities on new energy technologies in a number of countries as well as in Risoe National Laboratory. Conclusions for Danish energy supply, Danish industry, and Danish

  13. Wood for energy production. Technology - environment - economy

    International Nuclear Information System (INIS)

    Serup, H.; Falster, H.; Gamborg, C.

    1999-01-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  14. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  15. Energy aspects of microalgal biodiesel production

    Directory of Open Access Journals (Sweden)

    Edith Martinez-Guerra

    2016-03-01

    Full Text Available Algal biodiesel production will play a significant role in sustaining future transportation fuel supplies. A large number of researchers around the world are investigating into making this process sustainable by increasing the energy gains and by optimizing resource-utilization efficiencies. Although, research is being pursued aggressively in all aspects of algal biodiesel production from microalgal cell cultivation, cell harvesting, and extraction and transesterification steps to the final product separation and purification, there is a large disparity in the data presented in recent reports making it difficult to assess the real potential of microalgae as a future energy source. This article discusses some of the key issues in energy consumption in the process of algal biodiesel production and identifies the areas for improvement to make this process energy-positive and sustainable.

  16. Inclusive production at LHC energies

    International Nuclear Information System (INIS)

    Merino, C.; Pajares, C.; Shabelski, Yu.M.

    2011-01-01

    We consider the first LHC data for pp collisions in the framework of Regge theory. The integral cross sections and inclusive densities of secondaries are determined by the Pomeron exchange, and we present the corresponding predictions for them. The first measurements of inclusive densities in the midrapidity region are in agreement with these predictions. The contribution of the baryon-number transfer due to String Junction diffusion in the rapidity space is at the origin of the differences in the inclusive spectra of particle and antiparticle in the central region, and this effect could be significant at LHC energies. We discuss the first data of ALICE and LHCb collaborations on the baryon/antibaryon asymmetry at LHC. (orig.)

  17. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  18. Environmental costs of fossil fuel energy production

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1997-01-01

    The costs of environmental impacts caused by fossil fuel energy production are external to the energy economy and normally they are not reflected in energy prices. To determine the environmental costs associated with an energy source a detailed analysis of all environmental impacts of the complete energy cycle is required. The economic evaluation of environmental damages is presented caused by atmospheric emissions produced by fossil fuel combustion for different uses. Considering the emission factors of sulphur oxides, nitrogen oxides, dust and carbon dioxide and the economic evaluation of their environmental damages reported in literature, a range of environmental costs associated with different fossil fuels and technologies is presented. A comparison of environmental costs resulting from atmospheric emissions produced by fossil-fuel combustion for energy production shows that natural gas has a significantly higher environmental value than other fossil fuels. (R.P.)

  19. Wind energy status in renewable electrical energy production in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined. (author)

  20. Gen-III/III+ reactors. Solving the future energy supply shortfall. The SWR-1000 option

    International Nuclear Information System (INIS)

    Stosic, Z.V.

    2006-01-01

    Deficiency of non-renewable energy sources, growing demand for electricity and primary energy, increase in population, raised concentration of greenhouse gases in the atmosphere and global warming are the facts which make nuclear energy currently the most realistic option to replace fossil fuels and satisfy global demand. The nuclear power industry has been developing and improving reactor technology for almost five decades and is now ready for the next generation of reactors which should solve the future energy supply shortfall. The advanced Gen-III/III+ (Generation III and/or III+) reactor designs incorporate passive or inherent safety features which require no active controls or operational intervention to manage accidents in the event of system malfunction. The passive safety equipment functions according to basic laws of physics such as gravity and natural convection and is automatically initiated. By combining these passive systems with proven active safety systems, the advanced reactors can be considered to be amongst the safest equipment ever made. Since the beginning of the 90's AREVA NP has been intensively engaged in the design of two advanced Gen-III+ reactors: (i) PWR (Pressurized Water Reactor) EPR (Evolutionary Power Reactor) and (ii) BWR (Boiling Water Reactor) SWR-1000. The SWR-1000 reactor design marks a new era in the successful tradition of BWR technology. It meets the highest safety standards, including control of a core melt accident. This is achieved by supplementing active safety systems with passive safety equipment of diverse design for accident detection and control and by simplifying systems needed for normal plant operation. A short construction period, flexible fuel cycle lengths and a high fuel discharge burn-up contribute towards meeting economic goals. The SWR-1000 completely fulfils international nuclear regulatory requirements. (author)

  1. ENERGY USE IN CITRUS PRODUCTION OF MAZANDARAN ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    The aim of this study was to evaluate energy use in citrus production in the Mazandaran Province in Iran. Data used in this study were obtained from 155 farmers using a face-to-face interview method. The total energy .... control mainly were mechanised and a few of them ... fertilisers was manual; while manure application.

  2. All energy production involves danger

    International Nuclear Information System (INIS)

    Pleym, H.

    1976-01-01

    s pointed out that while the protective ozone layer in the upper atmosphere is threatened by supersonic air traffic and releases of freon, there is an increase in the concentration of ozone in the biosphere. The biological effect of ozone in forming free radicals is similar to the biological effect of ionising rad radiation, and the normal atmospheric concentration of ozone produces 3600 times the number of free radicals per person per year as does a background radiation of 100 mrem per year. It is also pointed out that the limits for sulphur oxides and nitrogen oxides in the atmosphere are 100 and 5 times the background levels respectively, while the limit for radioactive release is 1/100 th of the background level. The transmission of solar energy from space stations by microwave is also thought to be dubious due to possible biological effects of such radiation. In conclusion a balanced view on the biological and environmental hazards of power generation from all sources, and not only nuclear, is called for. (JIW)

  3. The US department of energy programme on hydrogen production

    International Nuclear Information System (INIS)

    Paster, M.D.

    2004-01-01

    Clean forms of energy are needed to support sustainable global economic growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision for moving toward a hydrogen economy - a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. In February 2003, President George W. Bush announced a new Hydrogen Fuel Initiative to achieve this vision. To realize this vision, the U.S. must develop and demonstrate advanced technologies for hydrogen production, delivery, storage, conversion, and applications. Toward this end, the DOE has worked with public and private organizations to develop a National Hydrogen Energy Technology Road-map. The Road-map identifies the technological research, development, and demonstration steps required to make a successful transition to a hydrogen economy. One of the advantages of hydrogen is that it can utilize a variety of feedstocks and a variety of production technologies. Feedstock options include fossil resources such as coal, natural gas, and oil, and non-fossil resources such as biomass and water. Production technologies include thermochemical, biological, electrolytic and photolytic processes. Energy needed for these processes can be supplied through fossil, renewable, or nuclear sources. Hydrogen can be produced in large central facilities and distributed to its point of use or it can be produced in a distributed manner in small volumes at the point of use such as a refueling station or stationary power facility. In the shorter term, distributed production will play an important role in initiating the use of hydrogen due to its lower capital investment. In the longer term, it is likely that centralized

  4. Quantification of variables that determine the carbon footprint and energy embodied of structural clay products (cradle to gate with options); Cuantificacion de las variables que determinan la huella de carbono y energia embebida de los distintos productos de ceramica estructural (cuna a puerta con opciones)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rubio, R.; Rio Merino, M. del

    2014-07-01

    The production and transport of structural ceramic products involves an important energy consumption, which leads to the emission of greenhouse gases into the atmosphere. The aim of the research is to demonstrate the existence of significant differences in the value of the environmental impact of structural ceramic products manufactured in Spain. To achieve this objective, is developed a method of identifying and quantifying of variables that determine the Carbon Footprint and Embodied Energy of ceramic products, depending on the type of product. The necessary information is obtained mainly with a data collection in factories. It is established six variables with a global influence in the environmental impact, 44 primary and 39 secondary variables, establishing calculation formula from these variables. The results determined that, for same manufacturing conditions, the differences between ceramic products reach 27 % for carbon footprint and 35 % for Embodied Energy. The relevance that reaches the impact of transport can reach 40 % of the total. It is considered that the research and its results can contribute to reduce the environmental impact of the buildings. (Author)

  5. An entry and exit model on the energy-saving investment strategy with real options

    International Nuclear Information System (INIS)

    Lin, Tyrone T.; Huang, S.-L.

    2010-01-01

    This paper presents an improved decision model based on the real options approach presented by for the firms that have not yet established energy-saving equipment under the entry and exit strategies. Furthermore, the proposed model takes account of the inevitable equipment renewal and the occurrence of unexpected events under the Poisson jump process. The timing for terminating an investment when continuous operations of that business are unprofitable is also explored to realize the optimal timing of implementing the energy-saving strategy. The future discounted benefit B follows the geometric Brownian motion with the Poisson jump process and the replacement of investment equipment. A numerical analysis is followed by a sensitivity study of various parameters to better realize their impacts on the entry and exit thresholds. The results show that for the jump case, the higher probability of occurrence of unfavorable events will result in a higher entry threshold and lower exit threshold. Investors are forced to request higher benefit thresholds to cover the higher probability of losses brought by unfavorable events.

  6. Natural Products as New Treatment Options for Trichomoniasis: A Molecular Docking Investigation

    Directory of Open Access Journals (Sweden)

    Mary Snow Setzer

    2017-01-01

    Full Text Available Trichomoniasis, caused by the parasitic protozoan Trichomonas vaginalis, is the most common non-viral sexually-transmitted disease, and there can be severe complications from trichomoniasis. Antibiotic resistance in T. vaginalis is increasing, but there are currently no alternatives treatment options. There is a need to discover and develop new chemotherapeutic alternatives. Plant-derived natural products have long served as sources for new medicinal agents, as well as new leads for drug discovery and development. In this work, we have carried out an in silico screening of 952 antiprotozoal phytochemicals with specific protein drug targets of T. vaginalis. A total of 42 compounds showed remarkable docking properties to T. vaginalis methionine gamma-lyase (TvMGL and to T. vaginalis purine nucleoside phosphorylase (TvPNP. The most promising ligands were polyphenolic compounds, and several of these showed docking properties superior to either co-crystallized ligands or synthetic enzyme inhibitors.

  7. Integrated analysis of transportation demand pathway options for hydrogen production, storage, and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.S. [Directed Technologies Inc., Arlington, VA (United States)

    1996-10-01

    Directed Technologies, Inc. has begun the development of a computer model with the goal of providing guidance to the Hydrogen Program Office regarding the most cost effective use of limited resources to meet national energy security and environmental goals through the use of hydrogen as a major energy carrier. The underlying assumption of this programmatic pathway model is that government and industry must work together to bring clean hydrogen energy devices into the marketplace. Industry cannot provide the long term resources necessary to overcome technological, regulatory, institutional, and perceptual barriers to the use of hydrogen as an energy carrier, and government cannot provide the substantial investments required to develop hydrogen energy products and increased hydrogen production capacity. The computer model recognizes this necessary government/industry partnership by determining the early investments required by government to bring hydrogen energy end uses within the time horizon and profitability criteria of industry, and by estimating the subsequent investments required by industry. The model then predicts the cost/benefit ratio for government, based on contributions of each hydrogen project to meeting societal goals, and it predicts the return on investment for industry. Sensitivity analyses with respect to various government investments such as hydrogen research and development and demonstration projects will then provide guidance as to the most cost effective mix of government actions. The initial model considers the hydrogen transportation market, but this programmatic pathway methodology will be extended to other market segments in the future.

  8. Self-energy production applied to buildings

    Energy Technology Data Exchange (ETDEWEB)

    Carlo, Fabricio Ramos del; Balestieri, Jose Antonio Perrella [Sao Paulo State University Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil)], E-mail: perrella@feg.unesp.br; Holanda, Marcelo Rodrigues de [Sao Paulo Univ. (EEL/USP), Lorena, SP (Brazil). Engineering School], E-mail: marcelo@debas.eel.usp.br

    2010-07-01

    The decentralization of energy production in order to obtain better environmental conditions, reducing greenhouse gas emissions and the cost reduction of electricity and thermal energy consumed in residential buildings has been proposed in the literature. This paper proposes to demonstrate what are the chances of having a microcogeneration system toward the residential application. In this study, we contemplate the technologies involved and their possible inputs that are arranged in a superstructure to be studied. As a first step we obtain the cost of the products generated by the configuration that consists basically of two sources of power generation, and through optimization calculations intended to obtain the best configuration, taking into consideration the selection between four fuels, two equipment generators (Fuel Cell and Internal Combustion Engine)and three levels of energy production for each one. An economic analysis is also presented to evaluate the opportunity of selling the energy generated considering the fluctuations of the residential building consumption needs. (author)

  9. Grasses for energy production: hydrological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.L.

    2003-07-01

    This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising grasses for energy production. The aim of the report is to help interested parties decide if a location is suitable for planting energy grasses by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of energy grasses compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of energy grasses and notes that, in some situations, there will be considerable uncertainty in predictions of water use and the magnitude of the associated hydrological impacts.

  10. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  11. Sustainable biomass production for energy in Sri Lanka

    International Nuclear Information System (INIS)

    Perera, K.K.C.K.; Rathnasiri, P.G.; Sugathapala, A.G.T.

    2003-01-01

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-1, 1BD-2, SBD-1, SBD-2, FBD-1 and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 mx1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mt yr -1 for Scenario 1 and 6.7 Mt yr -1 for Scenario 2. Under SBD Scenario, the

  12. Eco-Efficiency Assessment of Bioplastics Production Systems and End-of-Life Options

    Directory of Open Access Journals (Sweden)

    Kunnika Changwichan

    2018-03-01

    Full Text Available Bioplastics demand has been increased globally due to concerns regarding environmentally friendly consumption and production. Polylactic acid (PLA, polyhydroxyalkanoates (PHAs, and polybutylene succinate (PBS are promising bioplastics with bio-based feedstocks and property of biodegradability. They are produced by bacterial fermentation of sugars from carbohydrate sources. With flexibility in their properties, PLA, PHAs, and PBS can potentially substitute conventional plastics such as polypropylene (PP, polyethylene terephthalate (PET, and polystyrene (PS. This study aims at evaluating the environmental and economic sustainability of bioplastics production together with end-of-life (EOL options. The combination of environmental and economic indicators, eco-efficiency (E/E, was selected to investigate the performance of PLA, PHAs, and PBS from sugarcane and cassava in comparison with PP. The environmental impacts were determined using life cycle assessment. The product cost was used to represent the economic value. The E/E results showed that the environmental and economic sustainability could be enhanced with 100% mechanical recycling of all kinds of studied plastics. It is also important to highlight that mechanical recycling showed a better performance in terms of E/E than composting of bioplastics.

  13. USP university students social representations and views on nuclear power as energy option

    International Nuclear Information System (INIS)

    Farias, Luciana A.; Favaro, Deborah I.T.

    2011-01-01

    The Nuclear Energy Research Institute (IPEN) is located on the campus of the University of Sao Paulo and has long been publishing nuclear science projects in order to improve public opinion and disseminate nuclear energy issues. However, few studies have investigated the perception of university students concerning nuclear energy. This study questioned whether the location of a nuclear research facility, as well as promotion of scientific projects, can positively influence student opinion when the nuclear research reactor is on campus and used purely for research purposes. This study further investigated the students' understanding of the terms 'nuclear energy' as well as their perception of the social issues involved. Free evocations of words were produced and collected starting from the stimulative inductor 'Nuclear Energy'. In this test, the interviewees are asked to associate five words and answer a questionnaire. A total of 124 students were interviewed for this study: 62 from the Chemistry, Pharmacy, Environmental Chemistry, Chemical Engineering and Nutrition Departments, 29 from the Oceanography Department and 33 from the Economics, Business Administration and Accounting Department. A total of 78% of the interviewed students answered that they had basic or average knowledge of nuclear energy, 46% claimed to have no knowledge of IPEN and the remainder students have answered that IPEN's activities were aimed at research in energy and production of radiopharmaceuticals, which shows little knowledge of the activities of the Institute. However, these students indicated Nuclear Energy as a strong for the diversification of energy sources. It should be noted that this study was undertaken before the nuclear accident caused by the 2011 Japan tsunami and earthquake. (author)

  14. Evaluation of small wind turbines in distributed arrangement as sustainable wind energy option for Barbados

    International Nuclear Information System (INIS)

    Bishop, Justin D.K.; Amaratunga, Gehan A.J.

    2008-01-01

    The island of Barbados is 99% dependent on fossil fuel imports to satisfy its energy needs, which is unsustainable. This study proposes a 10 MW distributed wind energy scheme using micro wind turbines (WT) of horizontal (HAWT) and vertical axis (VAWT) configurations. These units are rated less than 500 W, and the scheme is hereafter referred to as mWT10. mWT10 is compared to the proposed 10 MW medium WT farm by the Barbados Light and Power Company (BL and P). The economic bottom line is the levelized cost of electricity (LCOE). The results highlight the BL and P proposal as the best economic option at BDS$0.19 per kWh, while that of both mWT10 configurations exceeds the conventional cost of BDS$0.25 by two to nine times. This is attributed to significantly higher relative installation and operational costs. However, the financial gap between mWT10 LCOE and the retail price of electricity is much smaller due to a large fuel surcharge passed on to each customer. Annual additional benefits of using wind energy include: greenhouse gas emissions savings of 6-23 kt of carbon dioxide; and anavoided fuel costs of BDS$1.5-5.3 million. The distributed mWT10 using HAWTs competes directly with the BL and P farm, however, it provides these benefits without the visual or ecological impacts of the larger machines. Conversely, VAWTs have features that favour a visually discrete and widely repeatable scheme but suffer relatively high costs. Therefore, this study illustrates the great potential of small wind turbines to be competitive with conventional wind farms, thus challenging the small wind industry to meet its potential by producing reliable and robust machines at lower cost

  15. Nuclear Power Remains Important Energy Option for Many Countries, IAEA Ministerial Conference Concludes

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: Nuclear power remains an important option for many countries to improve energy security, provide energy for development and fight climate change, the International Ministerial Conference on Nuclear Power in the 21st Century concluded today. Participants also emphasised the importance of nuclear safety in the future growth of nuclear power, noting that nuclear safety has been strengthened worldwide following the March 2011 accident at TEPCO's Fukushima Daiichi Nuclear Power Station. The Conference was organised by the International Atomic Energy Agency (IAEA) in cooperation with the Nuclear Energy Agency (NEA) of the Organisation for Economic Co-operation and Development (OECD), and hosted by the Government of the Russian Federation through the State Atomic Energy Corporation ROSATOM. Sergei Kirienko, Director General of the State Atomic Energy Corporation ROSATOM, said: ''The Conference has achieved its main goal: to confirm that nuclear energy is an important part of the world's energy-mix. The innovative character of this type of energy provides us with sustainable development in the future. The closed nuclear fuel cycle and fusion may open for humanity absolutely new horizons. The Conference underlined the leading role of the IAEA in promoting the peaceful use of nuclear power and provision of the non-proliferation regime. Russia as a co-founder of the IAEA will always support its efforts to develop and expand safety and security standards all over the world.'' ''I believe we can look ahead with confidence and optimism to the future of nuclear power in the 21st century,'' said IAEA Director General Yukiya Amano. After the accident at the Fukushima Daiichi Nuclear Power Plant in Japan in March 2011, ''effective steps have been taken to make nuclear power plants safer everywhere,'' he stressed. ''Nuclear power will make a significant and growing contribution to sustainable development in the coming decades. The IAEA is committed to ensuring that the

  16. Environmental consequences of energy production: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    The Seventeenth Annual Illinois Energy conference entitled Environmental consequences of Energy Production was held in Chicago, Illinois on October 19-20, 1989. The purpose of the meeting was to provide a forum for exchange of information on the technical, economic and institutional issues surrounding energy production and related environmental problems. The conference program was developed by a planning committee which included Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. The conference included presentations on four major topic areas. The issue areas were: urban pollution: where are we now and what needs to be done in the future; the acid rain problem: implications of proposed federal legislation on the Midwest; global warming: an update on the scientific debate; and strategies to minimize environmental damage. Separate abstracts have been prepared for the individual presentations. (FL)

  17. Oil sand synfuel production using nuclear energy

    International Nuclear Information System (INIS)

    Barnert, H.

    1984-10-01

    The importance of oil sand as a primary energy carrier is illustrated. The oil sand mining project 'synfuel' in Fort McMurray, Alberta, Canada, is described. On the basis of a layout of an In-situ-process different possibilities of introducing nuclear energy to the process are described. This leads to an increase of the product yield, leading finally to a doubling of the energy output compared to the reference layout. The introduction of nuclear energy contributes to the reduction of emissions, in particular to the emission of carbon dioxide in the conversion process. (orig.)

  18. Evaluating games console electricity use : technologies and policy options to improve energy efficiency.

    OpenAIRE

    Webb, Amanda E.

    2016-01-01

    Energy efficiency regulations and standards are increasingly being used as an approach to reduce the impact of appliances on climate change. Each new generation of games consoles is significantly different to the last and their cumulative electricity use has risen due to improved performance and functionality and increasing sales. As a result, consoles have been identified in the EU, US and Australia as a product group with the potential for significant electricity savings. However, there is ...

  19. Asia least-cost greenhouse gas abatement strategy identification and assessment of mitigation options for the energy sector

    International Nuclear Information System (INIS)

    Gupta, Sujata; Bhandari, Preety

    1998-01-01

    The focus of the presentation was on greenhouse gas mitigation options for the energy sector for India. Results from the Asia Least-cost Greenhouse gas Abatement Strategies (ALGAS) project were presented. The presentation comprised of a review of the sources of greenhouse gases, the optimisation model, ie the Markal model, used for determining the least-cost options, discussion of the results from the baseline and the abatement scenarios. The second half of the presentation focussed on a multi-criteria assessment of the abatement options using the Analytical Hierarchical Process (AHP) model. The emissions of all greenhouse gases, for India, are estimated to be 986.3 Tg of carbon dioxide equivalent for 1990. The energy sector accounted for 58 percent of the total emissions and over 90 percent of the CO2 emissions. Net emissions form land use change and forestry were zero. (au)

  20. A Real Option Analysis applied to the production of Arabica and Robusta Coffee in Ecuador

    Energy Technology Data Exchange (ETDEWEB)

    Jácome, A.R.; Garrido, A.

    2017-09-01

    The coffee market is distinguished for being volatile and uncertain in terms of domestic and international prices. Arabica and Robusta coffee are produced in 23 provinces of Ecuador. A decade-long decline of coffee production prompted the Ecuadorian government to launch a public program for replanting coffee trees towards the end of 2011. A grower’s decision to enter, remain in or exit the coffee sector is based on fluctuating profits from each year’s harvest sale. We analyzed the hypothesis whereby the coffee grower’s decision to leave the sector is explained by volatile and uncertain prices. This paper aimed to evaluate the coffee sector with an application of Real Option Analysis for the period 2002-2012. We also defined entry (H) and exit (L) prices for Arabica and Robusta coffee for the analyzed period. Our findings revealed high H and L prices encourage growers to leave the sector for the most part of the analyzed period. High H and L prices resulted from high variable cost due to increasing wages for farm workers. The Ecuadorian government is developing a policy to help growers make production more efficient, encouraging them to remain in the sector in the long run.

  1. A Real Option Analysis applied to the production of Arabica and Robusta Coffee in Ecuador

    Directory of Open Access Journals (Sweden)

    Andres R. Jácome

    2017-04-01

    Full Text Available The coffee market is distinguished for being volatile and uncertain in terms of domestic and international prices. Arabica and Robusta coffee are produced in 23 provinces of Ecuador. A decade-long decline of coffee production prompted the Ecuadorian government to launch a public program for replanting coffee trees towards the end of 2011. A grower’s decision to enter, remain in or exit the coffee sector is based on fluctuating profits from each year’s harvest sale. We analyzed the hypothesis whereby the coffee grower’s decision to leave the sector is explained by volatile and uncertain prices. This paper aimed to evaluate the coffee sector with an application of Real Option Analysis for the period 2002-2012. We also defined entry (H and exit (L prices for Arabica and Robusta coffee for the analyzed period. Our findings revealed high H and L prices encourage growers to leave the sector for the most part of the analyzed period. High H and L prices resulted from high variable cost due to increasing wages for farm workers. The Ecuadorian government is developing a policy to help growers make production more efficient, encouraging them to remain in the sector in the long run.

  2. A short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks

    Directory of Open Access Journals (Sweden)

    Bertilsson Magnus

    2008-05-01

    Full Text Available Abstract Simultaneous saccharification and fermentation (SSF is one process option for production of ethanol from lignocellulose. The principal benefits of performing the enzymatic hydrolysis together with the fermentation, instead of in a separate step after the hydrolysis, are the reduced end-product inhibition of the enzymatic hydrolysis, and the reduced investment costs. The principal drawbacks, on the other hand, are the need to find favorable conditions (e.g. temperature and pH for both the enzymatic hydrolysis and the fermentation and the difficulty to recycle the fermenting organism and the enzymes. To satisfy the first requirement, the temperature is normally kept below 37°C, whereas the difficulty to recycle the yeast makes it beneficial to operate with a low yeast concentration and at a high solid loading. In this review, we make a brief overview of recent experimental work and development of SSF using lignocellulosic feedstocks. Significant progress has been made with respect to increasing the substrate loading, decreasing the yeast concentration and co-fermentation of both hexoses and pentoses during SSF. Presently, an SSF process for e.g. wheat straw hydrolyzate can be expected to give final ethanol concentrations close to 40 g L-1 with a yield based on total hexoses and pentoses higher than 70%.

  3. A Real Option Analysis applied to the production of Arabica and Robusta Coffee in Ecuador

    International Nuclear Information System (INIS)

    Jácome, A.R.; Garrido, A.

    2017-01-01

    The coffee market is distinguished for being volatile and uncertain in terms of domestic and international prices. Arabica and Robusta coffee are produced in 23 provinces of Ecuador. A decade-long decline of coffee production prompted the Ecuadorian government to launch a public program for replanting coffee trees towards the end of 2011. A grower’s decision to enter, remain in or exit the coffee sector is based on fluctuating profits from each year’s harvest sale. We analyzed the hypothesis whereby the coffee grower’s decision to leave the sector is explained by volatile and uncertain prices. This paper aimed to evaluate the coffee sector with an application of Real Option Analysis for the period 2002-2012. We also defined entry (H) and exit (L) prices for Arabica and Robusta coffee for the analyzed period. Our findings revealed high H and L prices encourage growers to leave the sector for the most part of the analyzed period. High H and L prices resulted from high variable cost due to increasing wages for farm workers. The Ecuadorian government is developing a policy to help growers make production more efficient, encouraging them to remain in the sector in the long run.

  4. Determination of Energy Use Efficiency of Sesame Production

    OpenAIRE

    BARAN, Mehmet Firat

    2018-01-01

    In this research it was aimed to determine an energy use efficiency of sesame production in Şanlıurfa province, during the production season of 2015. In order to determine the energy use efficiency of sesame production, trials and measurement were performed in sesame farm in the Bozova district of Şanlıurfa province. As energy inputs, human labour energy, machinery energy, chemical fertilizers energy, irrigation water energy, chemicals energy, diesel fuel energy and seed energy as were calcul...

  5. Production processes at extremely high energies

    CERN Document Server

    Gastmans, R; Wu, Tai Tsun

    2013-01-01

    The production processes are identified that contribute to the rise of the total cross section in proton-proton scattering at extremely high energies, s->~. At such energies, the scattering can be described by a black disk (completely absorptive) with a radius expanding logarithmically with energy surrounded by a gray fringe (partially absorptive). For the leading term of (lns)^2 in the increasing total cross section, the gray fringe is neglected, and geometrical optics is generalized to production processes. It is known that half of the rise in the total cross section is due to elastic scattering. The other half is found to originate from the production of jets with relatively small momenta in the center-of-mass system.

  6. Straw for energy production. Technology - Environment - Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  7. Biomass production for direct generation of energy

    International Nuclear Information System (INIS)

    1992-01-01

    In continuing its activities for the formation of public opinion the Deutsche Farming Association) held a colloquium in 1991 on the issue of biomass production and combustion. Its aim was to gather all current knowledge on this issue and, for the first time, to make a comprehensive appraisal of it. The following aspects were dealt with: Abatement of atmospheric pollution, ecologically oriented production, nature conservation, organisation of decentralized power plant operating corporations, state of the art in combustion technology, operational calculations and, not least, agrarin-political framework conditions. The meeting yielded important statements on remarkable innovations in the area of ecological biomass production and for its utilization as an energy source together with the conventional energy sources of oil, gas, coal and nuclear energy. (orig.) [de

  8. The resurgence of nuclear energy. An option for the climatic change and for the emergent countries?

    International Nuclear Information System (INIS)

    Campos A, L.; Nieva G, R.; Mulas, P.; Velez, C.; Ortiz M, J. R.; Thomas, S.; Finon, D.; Woodman, B.; Mez, L.

    2009-01-01

    The modern society is organized in mistaken form. A tremendous inability of the juridical, political, social and cultural system exists to interrelate the ecosystem (the resources that allow the life and the human activity) with the economic way of production, that is to say with the manner like the human beings appropriate of the nature and they transform it to satisfy the reproduction necessities of the capital and the population. Today we are already paying the consequences of this error. Of continuing with this tendency the next six years, a global increase of five centigrade grades is expected in the temperature, with effects like the increase of the sea level, floods, droughts, among other global problems, for what the gases of greenhouse effect are and they will continue being the main environmental challenge of the X XI century because they not represent alone a threat for the development but also for the humanity survival. The world conscience has wakened up, and in most of the countries where is stopped the construction of new nuclear power plants the plans are reconsidered to return the use of this source, being the two main reasons for reconsideration: the concern for the climatic change and the new world perception about the limits of fossil fuel reserves. The world return of the interest for the nuclear energy, it force to take in consideration the energy politics of Mexico whose structure is too much dependent of hydrocarbons and the import of liquefied natural gas and other energies, subject to the prices volatility and in a frame that lacks long term vision. Here the whole problem of the nuclear industry is exposed, the experiences, the risks, the costs, the future of the energy production for the populations that every time has a bigger consumption, the reader will have, this way, a wide panorama of diverse topics and interests that affect to generation of nuclear energy. (Author)

  9. Electrorheology for energy production and conservation

    Science.gov (United States)

    Huang, Ke

    Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national

  10. Energy condensed packaged systems. Composition, production, properties

    Directory of Open Access Journals (Sweden)

    Igor L. Kovalenko

    2015-03-01

    Full Text Available In this paper it is presented the substantiation of choice of fuel phase composition and optimal technology of emulsion production on the basis of binary solution of ammonium and calcium nitrates, which provide the obtaining of energy condensed packaged systems with specified properties. The thermal decomposition of energy condensed systems on the basis of ammonium nitrate is investigated. It is shown that the fuel phase of emulsion systems should be based on esters of polyunsaturated acids or on combinations thereof with petroleum products. And ceresin or petroleum wax can be used as the structuring additive. The influence of the technology of energy condensed systems production on the physicochemical and detonation parameters of emulsion explosives is considered. It is shown the possibility of obtaining of emulsion systems with dispersion of 1.3...1.8 microns and viscosity higher than 103 Pa∙s in the apparatus of original design. The sensitizing effect of chlorinated paraffin CP-470 on the thermolysis of energy condensed emulsion system is shown. The composition and production technology of energy condensed packaged emulsion systems of mark Ukrainit-P for underground mining in mines not dangerous on gas and dust are developed.

  11. Energy production and social marginalisation in China

    Energy Technology Data Exchange (ETDEWEB)

    Philip Andrews-Speed; Xin Ma

    2008-05-15

    The exploitation and production of primary energy resources and the supply of this energy is critical for China's economic development. Despite the obvious economic benefit to the nation, this energy production has had significant negative socio-economic impacts on certain groups of people at local and national scales. This paper documents three cases of energy production in China and demonstrates that, in each case, marginalisation of social groups has either been created or has been enhanced. These cases are the Three Gorges Dam, the Yumen oilfield, and township and village coal mines. The causes of this marginalisation have their roots in the structures, processes and approaches taken in the making and implementation of national policy in China, and are compounded by poor regulation and monitoring, poor civil rights, and the tension between central and local governments. The government which came to power in 2003 recognised the extent and importance of these social challenges relating to energy production, and has started to take steps to address them.

  12. High energy photons production in nuclear reactions

    International Nuclear Information System (INIS)

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  13. Rare earth magnets with high energy products

    International Nuclear Information System (INIS)

    Hirosawa, S.; Kaneko, Y.

    1998-01-01

    High energy-products exceeding 430 kj/m 3 (54 MGOe) have been realized on anisotropic permanent magnets based on the Nd 2 Fe 14 B phase, recently. To produce extremely high-energy-product permanent magnets, special processes have been designed in order to realize the minimum oxygen content, the maximum volume fraction of the hard magnetic Nd 2 Fe 14 B phase, the highest orientation of the easy axis of magnetization, and small and homogeneous crystalline grain sizes in the finished magnets. For the powder metallurgical process, special techniques such as low-oxygen fine powder processing and magnetic alignment using pulsed magnetic fields have been developed. It has been shown that a good control of both homogeneity of distribution of constituent phases and the narrowness of the size distribution in the starting powder have great influences on the magnetic energy products. It is emphasized that the recently developed techniques are applicable in a large-scale production, meaning that extremely high-energy-product magnets are available on commercial basis. (orig.)

  14. Potential and cost of clean development mechanism options in the energy sector. Inventory of options in non-Annex I countries to reduce GHG-emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, J.C.; Van der Linden, N.H.; Martens, J.W.; Ormel, F.; Van Rooijen, S.N.M. [ECN Policy Studies, Petten (Netherlands); Heaps, C.; Kartha, S.; Lazarus, M.; Ruth, M. [Stockholm Environment Institute SEI, Boston (United States); Lee, R.; Mendis, M. [Alternative Energy Development, Inc., Silver Spring (United States)

    1999-12-01

    An assessment is presented of the potential and cost of the Clean Development Mechanism as an instrument to partially meet the Greenhouse Gases emission limitation commitments of the Netherlands for the first budget period, 2008-2012. Information about the cost and emission reduction potential in the energy sector has been collected from national mitigation studies. In total, some 300 GHG emission reduction options in 24 non-Annex I countries have been collected Together, these countries account for two-thirds of current non-Annex I GHG emissions. The mitigation potential in non-Annex I countries is significant when compared with Annex I reduction requirements. The inventory of mitigation options suggests that an annual mitigation potential in the first budget period at costs up to 1990 USD 10/ton CO2 is approximately 1.7 Gt CO2 equivalents. However, this estimate should be viewed with caution, as the mitigation studies on which this estimate is based have been carried out as capacity-building exercises and they should not be viewed as definitive, technically rigorous, exhaustive, analysis of national GHG mitigation potential. 15 refs.

  15. Assessment of Greenhouse Gas Control Technology Options within the Energy, Water and Food Nexus

    Science.gov (United States)

    Al-Ansari, Tareq; Korre, Anna; Nie, Zhenggang; Shah, Nilay

    2015-04-01

    The utilisation of Energy, Water and Food (EWF) resources can be described as a nexus of complex linkages embodied in industrial and natural processes. Food production is one such example of a system that mobilises EWF resources to deliver a product which is highly influenced by the efficiency of the industrial processes contributing to it and the conditions of the surrounding natural environment. Aggregating the utilisation of EWF resources into interconnected sub-systems is necessary for the accurate representation of the system's dynamics in terms of its material flow and resource consumption. The methodology used in this study is an extension of previous work developed regarding nexus analysis (Al-Ansari et al. 2014a, Al-Ansari et al. 2014b). Life cycle assessment (LCA) is used to prepare detailed models of the sub-system components, determine the linkages between the different nexus constituents and evaluate impacts on the natural environment. The nexus system is comprised of water sub-systems represented by a reverse osmosis (RO) desalination process. Energy sub-systems for power generation include models for a combined cycle gas turbine (CCGT) and solar Photovoltaics (PV) energy generation, as well as an amine based CO2 capture process enabling the utilisation of CO2 for the artificial fertilization of crops. The agricultural sub-systems include the production and application of fertilizers and the raising of livestock. A biomass integrated gasification combined cycle (BIGCC) for power generation using waste manure from the livestock sub-system is also included. The objective of this study is to consider a conventional food system in Qatar and enhance its environmental performance by using a nexus approach to examine different scenarios and operating modes. For the Qatar case study, three scenarios and four modes of operation were developed as part of the analysis. The baseline scenario uses fossil fuel to power the entire EWF nexus system using CCGT, the

  16. An experimental evaluation of energy economics of biogas production at mesophilic and thermophilic temperatures

    International Nuclear Information System (INIS)

    Ezeonu, F. C.

    1997-01-01

    Process economy, with regard to and energy content predicts the potentialities of biogas production options. Experimental study reveal from the kinetic data of daily biogas production that biomethanation reaction is faster in thermophilic digestion, with a higher yield of gas per reactor volume per day. Energy calculations show that it will take 3.55*10 5 kWh to produce 1 m 3 of methane from our feedstock with biogas energy equivalent of 1.25 kWh. The cost implication of this is enormous amounting to US $2,641.95 for the production of 1 m 3 of methane using brewers spent grins

  17. Decisions on Energy Demand Response Option Contracts in Smart Grids Based on Activity-Based Costing and Stochastic Programming

    Directory of Open Access Journals (Sweden)

    Alfred J. Hildreth

    2013-01-01

    Full Text Available Smart grids enable a two-way energy demand response capability through which a utility company offers its industrial customers various call options for energy load curtailment. If a customer has the capability to accurately determine whether to accept an offer or not, then in the case of accepting an offer, the customer can earn both an option premium to participate, and a strike price for load curtailments if requested. However, today most manufacturing companies lack the capability to make the correct contract decisions for given offers. This paper proposes a novel decision model based on activity-based costing (ABC and stochastic programming, developed to accurately evaluate the impact of load curtailments and determine as to whether or not to accept an energy load curtailment offer. The proposed model specifically targets state-transition flexible and Quality-of-Service (QoS flexible energy use activities to reduce the peak energy demand rate. An illustrative example with the proposed decision model under a call-option based energy demand response scenario is presented. As shown from the example results, the proposed decision model can be used with emerging smart grid opportunities to provide a competitive advantage to the manufacturing industry.

  18. Bio energy: Bio fuel - Properties and Production

    International Nuclear Information System (INIS)

    Wilhelmsen, Gunnar; Martinsen, Arnold Kyrre; Sandberg, Eiliv; Fladset, Per Olav; Kjerschow, Einar; Teslo, Einar

    2001-01-01

    This is Chapter 3 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Definitions and properties, (2) Bio fuel from the forest, (3) Processed bio fuel - briquettes, pellets and powder, (4) Bio fuel from agriculture, (5) Bio fuel from agro industry, (6) Bio fuel from lakes and sea, (7) Bio fuel from aquaculture, (8) Bio fuel from wastes and (9) Hydrogen as a fuel. The exposition largely describes the conditions in Norway. The chapter on energy from the forest includes products from the timber and sawmill industry, the pulp and paper industry, furniture factories etc. Among agricultural sources are straw, energy forests, vegetable oil, bio ethanol, manure

  19. Transforming Global Markets for Clean Energy Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper looks at three clean energy product categories: equipment energy efficiency; low-carbon transport, including high-efficiency vehicles and electric/plug-in hybrid electric vehicles (EV/PHEVs); and solar photovoltaic (PV) power. Each section identifies ways to enhance global co-operation among major economies through case studies and examples, and ends with specific suggestions for greater international collaboration on market transformation efforts. An annex with more detailed case studies on energy-efficient electric motors, televisions, external power supplies and compact fluorescent lights is included in the paper.

  20. Water for energy and fuel production

    CERN Document Server

    Shah, Yatish T

    2014-01-01

    Water, in all its forms, may be the key to an environmentally friendly energy economy. Water is free, there is plenty of it, plus it carries what is generally believed to be the best long-term source of green energy-hydrogen. Water for Energy and Fuel Production explores the many roles of water in the energy and fuel industry. The text not only discusses water's use as a direct source of energy and fuel-such as hydrogen from water dissociation, methane from water-based clathrate molecules, hydroelectric dams, and hydrokinetic energy from tidal waves, off-shore undercurrents, and inland waterways-but also: Describes water's benign application in the production of oil, gas, coal, uranium, biomass, and other raw fuels, and as an energy carrier in the form of hot water and steam Examines water's role as a reactant, reaction medium, and catalyst-as well as steam's role as a reactant-for the conversion of raw fuels to synthetic fuels Explains how supercritical water can be used to convert fossil- and bio-based feed...

  1. CEBAF at higher energies: Working group report on hadron spectroscopy and production

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T. [Oak Ridge National Laboratory, TN (United States)]| [Univ. of Tennessee, Knoxville (United States); Napolitano, J. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-04-01

    This report summarizes topics in hadron spectroscopy and production which could be addressed at CEBAF with an energy upgrade to E{sub {gamma}} = 8 GeV and beyond. The topics discussed include conventional meson and baryon spectrocopy, spectroscopy of exotica (especially molecules and hybrids), CP and CPT tests using {phi} mesons, and new detector and accelerator options.

  2. Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, M. D.; Hunsberger, R.; Ness, J. E.; Harris, T.; Raibley, T.; Ursillo, P.

    2014-08-01

    This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

  3. What is required to make hydrogen a real energy carrier option?

    Energy Technology Data Exchange (ETDEWEB)

    Braeuninger, S.; Schindler, G.; Schwab, E.; Weck, A. [BASF SE, Ludwigshafen (Germany)

    2010-12-30

    The driver for the introduction of hydrogen as mobile energy-carrier is regulatory measures to avoid the CO{sub 2} emissions which are related to the current fossil carbon based situation. H{sub 2} is a large volume chemical product with an annual production of about 45 million tons, most of which currently is also derived from fossil sources. The German transport sector consumes 2,6.10{sup 12} MJ/a which in terms of energy is equivalent to nearly 50% of the current world hydrogen production. There is the proposal to start the ''hydrogen economy'' with ''excess H{sub 2}'' which is believed to be available as inadvertently occurring byproduct of chemical processes. A potential {proportional_to}2 million tons is estimated for this ''excess H{sub 2}'' in Europe; the proposal however does not take into account, that current uses of this H{sub 2} would have to be substituted. Therefore, an overall gain for the environment cannot be expected. Therefore, a sustainable hydrogen based energy scenario has to rely on new sources. Besides Biomass gasification which in terms of technology would resemble the conventional fossil based hydrogen production, the only other viable carbon-free hydrogen source is water, which has to be split into its constituting elements. The current paper is restricted to the latter path, the feasibility of the biomass approach needs to be discussed elsewhere. If hypothetically the above mentioned energy for the German transport sector would be provided by H{sub 2} from water electrolysis an electricity input of 4.10{sup 12} MJ would be needed. This number exceeds the currently installed German wind turbine capacity by a factor of 6 and even by a factor of 36, if the weather-based {proportional_to}16% year-round on-stream factor for onshore plants is taken into account. (orig.)

  4. Solar energy; Product information. Zonne-energie; Produktinformatie

    Energy Technology Data Exchange (ETDEWEB)

    Kruisheer, N

    1992-03-20

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills.

  5. Biotechnology for energy production. Biotechnologie zur Energieerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J.; Hall, D.O.; Chartier, P.

    1985-01-01

    Starting from the mechanisms of photosynthesis in plants and the environmental parameters influencing growth generally the book deals with the various possibilities for improving productivity in growing biomass. In particular, the modern methods of biotechnology are considered. The investigation submitted was carried through with a view to future energy farms in Europe.

  6. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  7. Comparative analysis for energy production processes (EPPs): Sustainable energy futures for Turkey

    International Nuclear Information System (INIS)

    Talinli, Ilhan; Topuz, Emel; Uygar Akbay, Mehmet

    2010-01-01

    This study presents a comparative analysis of three different energy production process (EPP) scenarios for Turkey. Main goal is to incorporate the prioritization criteria for the assessment of various energy policies for power alternatives, and evaluating these policies against these criteria. The three types of EPPs reviewed in this study are: electricity production from wind farms in the future, existing coal-based thermal power plants and planned nuclear power plants. The analytical hierarchy process (AHP) is utilized to assess the main and sub-factors of EPPs. Main factors such as economic, technical, social and environmental are assigned in first level of the AHP. The importance weights of factors are produced and priority values with realistic numbers are obtained using Fuzzy-AHP Chang's Model. Priority value for wind energy was determined as two times higher than the others when making the ultimate decision. On aggregate, importance weights of environmental (0.68) and social (0.69) factors make wind power leader. Sub-factors such as public acceptance, waste-emission and environmental impacts cause both nuclear and thermal power to have the lowest priority numbers. Additionally, the CO 2 emissions trade was determined to be a very important criterion associated with both economic and environmental factors according to Kyoto Protocol. This study concludes that Turkey's existing thermal power stations should gradually be substituted by renewable energy options according to a schedule of Turkish energy policies in future.

  8. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  9. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.

    1994-01-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  10. Innovative energy production in fusion reactors

    Science.gov (United States)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are: (1) traveling wave direct energy conversion of 14.7 MeV protons; (2) cusp type direct energy conversion of charged particles; (3) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas; and (4) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising.

  11. Innovative energy production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author).

  12. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated.

  13. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    International Nuclear Information System (INIS)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated

  14. Impact of end of lease contracts’ option on joint pricing and inventory decisions of remanufacturable leased products

    Directory of Open Access Journals (Sweden)

    M. Rabbani

    2016-04-01

    Full Text Available Leasing currently plays an important role for the global economy. The equipment leasing earning acquired through leasing rather than cash or credit, has reached a dominant level. With this regards, this paper represents a basic mixed-integer non-linear programming model. The study deliberates a firm that leases new products and remanufactured leased merchandises. The proposed study considers the end of lease contract, which contains several options: Return the leased product, return the used product and purchase other remanufactured product and buying the leased product. The primary objective is to maximize the discrepancy between the revenue and the costs of a firm, which leases new products as well as selling remanufactured ones. The product deteriorates with time and the difference between a new and used good is obvious. The product must undergo a remanufacturing procedure before being sold as a remanufactured product.

  15. Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India.

    Science.gov (United States)

    Kumar, Virender; Jat, Hanuman S; Sharma, Parbodh C; Balwinder-Singh; Gathala, Mahesh K; Malik, Ram K; Kamboj, Baldev R; Yadav, Arvind K; Ladha, Jagdish K; Raman, Anitha; Sharma, D K; McDonald, Andrew

    2018-01-15

    In the most productive area of the Indo-Gangetic Plains in Northwest India where high yields of rice and wheat are commonplace, a medium-term cropping system trial was conducted in Haryana State. The goal of the study was to identify integrated management options for further improving productivity and profitability while rationalizing resource use and reducing environmental externalities (i.e., "sustainable intensification", SI) by drawing on the principles of diversification, precision management, and conservation agriculture. Four scenarios were evaluated: Scenario 1 - "business-as-usual" [conventional puddled transplanted rice (PTR) followed by ( fb ) conventional-till wheat]; Scenario 2 - reduced tillage with opportunistic diversification and precision resource management [PTR fb zero-till (ZT) wheat fb ZT mungbean]; Scenario 3 - ZT for all crops with opportunistic diversification and precision resource management [ZT direct-seeded rice (ZT-DSR) fb ZT wheat fb ZT mungbean]; and Scenario 4 - ZT for all crops with strategic diversification and precision resource management [ZT maize fb ZT wheat fb ZT mungbean]. Results of this five-year study strongly suggest that, compared with business-as-usual practices, SI strategies that incorporate multi-objective yield, economic, and environmental criteria can be more productive when used in these production environments. For Scenarios 2, 3, and 4, system-level increases in productivity (10-17%) and profitability (24-50%) were observed while using less irrigation water (15-71% reduction) and energy (17-47% reduction), leading to 15-30% lower global warming potential (GWP), with the ranges reflecting the implications of specific innovations. Scenario 3, where early wheat sowing was combined with ZT along with no puddling during the rice phase, resulted in a 13% gain in wheat yield compared with Scenario 2. A similar gain in wheat yield was observed in Scenario 4 vis-à-vis Scenario 2. Compared to Scenario 1, wheat yields in

  16. French perspectives for production of hydrogen using nuclear energy

    International Nuclear Information System (INIS)

    Vitart, Xavier; Yvon, Pascal; Carles, Philippe; Naour, Francois Le

    2009-01-01

    The demand for hydrogen, driven by classical applications such as fertilizers or oil refining a well as new applications (synthetic fuels, fuel cells ... ) is growing significantly. Presently, most of the hydrogen produced in the world uses methane or another fossil feedstock, which is not a sustainable option, given the limited fossil resources and need to reduce CO 2 emissions. This stimulates the need to develop alternative processes of production which do not suffer from these drawbacks. Water decomposition combined with nuclear energy appears to be an attractive option. Low temperature electrolysis, even if it is used currently for limited amounts is a mature technology which can be generalized in the near future. However, this technology, which requires about 4 kWh of electricity per Nm 3 of hydrogen produced, is energy intensive and presents a low efficiency. Therefore the French Atomic Energy Commission (CEA) launched an extensive research and development program in 2001 in order to investigate advanced processes which could use directly the nuclear heat and present better economic potential. In the frame of this program, high temperature steam electrolysis along with several thermochemical cycles has been extensively studied. HTSE offers the advantage of reducing the electrical energy needed by substituting thermal energy, which promises to be cheaper. The need for electricity is also greatly reduced for the leading thermochemical cycles, the iodine-sulfur and the hybrid sulfur cycles, but they require high temperatures and hence coupling to a gas cooled reactor. Therefore interest is also paid to other processes such as the copper-chlorine cycle which operates at lower temperatures and could be coupled to other generation IV nuclear systems. The technical development of these processes involved acquisition of basic thermodynamic data, optimization of flowsheets, design and test of components and lab scale experiments in the kW range. This will demonstrate

  17. Power production and energy consumption in Norway

    International Nuclear Information System (INIS)

    2001-03-01

    The main electrical resource of Norway comes from its rivers: 99% of the electric power is produced by hydroelectric power plants. Other sources, like wind and natural gas, are envisaged for the enhancement of Norway's energy production capacity. In this document, the part devoted to power production presents the different electricity production sources and their impact on the Norwegian economy. The energy consumption is detailed in the third part with an historical review of its evolution and a description of the main sectors involved in this consumption. The forth part describes the main actors of the energy sector with their industrial structure, the research institutes and universities performing R and D in this domain, and the energy trades with surrounding countries. The fifth part stresses on the research projects, on the government promoting actions through the Norwegian Research Council, and gives some examples of todays research projects. The sixth part deals with international cooperation in the R and D domain with a particular attention given to the relations between Norway, France and Europe. (J.S.)

  18. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  19. The biological degradation as an energy option, determination of the effects of the aerobic phase on the subsequent production of biogas in a sanitary landfill; La degradacion biologica como una opcion energetica, determinacion de los efectos de la fase aerobia sobre la subsecuente produccion de biogas en un relleno sanitario

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Juarez, Oscar [Asesoria de Servicios Ambientales del Bajio (ASSB), (Mexico)

    2010-07-01

    The present work deals with the energy evaluation of biological processes as energy source and is based on works concerning laboratory, pilot and field research. The objective of the research is to integrate the effect of the aerobic phase during the process of degradation of organic residues (basically the organic fraction of domestic residues), where the last aim is the biogas production. The usefulness of the results is reflected in the suitable estimation of the filling of a sanitary landfill considering the composition of the residues deposited and the effects that this management will have on the run-up time of the same and the velocity of biogas production. Finally, integrates a reflection on the intrinsic energy implications of the process and of the biogas yielding, which is evaluated as well as energy source. [Spanish] El presente trabajo trata sobre la valoracion energetica de procesos biologicos como fuente de energia y se basa en trabajos de investigacion a nivel de laboratorio, piloto y de campo. El objetivo de la investigacion es integrar el efecto de la fase aerobia durante el proceso de degradacion de residuos organicos (basicamente la fraccion organica de residuos domesticos), donde el fin ultimo es la produccion de biogas. La utilidad de los resultados se refleja en la estimacion adecuada del llenado de un relleno sanitario considerando la composicion de los residuos ahi depositados y los efectos que tendra esta gestion sobre el tiempo de estabilizacion de los mismos y la velocidad de produccion de biogas. Finalmente, se integra una reflexion sobre las implicaciones energeticas intrinsecas al proceso y del rendimiento de biogas, el cual a su vez es valorizado como fuente de energia.

  20. Target production for inertial fusion energy

    International Nuclear Information System (INIS)

    Woodworth, J.G.; Meier, W.

    1995-03-01

    Inertial fusion energy (IFE) power plants will require the ignition and burn of 5-10 fusion fuel targets every second. The technology to economically mass produce high-quality, precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however, have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. In this paper, we describe a baseline target factory conceptual design and estimate its capital and operating costs. The result is a total production cost of ∼16 cents per target. At this level, target production represents about 6% of the estimated cost of electricity from a 1-GW e IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power level

  1. Oil and gas products and energy equipment

    International Nuclear Information System (INIS)

    1996-01-01

    The planned activities of the Canadian oil and gas products and energy equipment industry for 1996-1997, were presented. The sector is made up of approximately 1500 small and medium sized enterprises. The Canadian oil field manufacturing and servicing industry holds only a small 2.5% share of the world export market, but it is recognized internationally as one of the leading suppliers of advanced petroleum equipment. Their exports include specialized equipment for extracting oil sands, gathering and treatment facilities for sour gas, underbalanced drilling technologies, equipment for wells experiencing declining production rates, top motor drives, winter drilling rigs, and horizontal drilling technologies. They also offer petroleum industry software products. Most exploration and production equipment sold abroad by Canadian firms is manufactured in Canada, but there is an increasing trend toward manufacturing in the country of operation. 2 tabs

  2. Geothermal energy production with supercritical fluids

    Science.gov (United States)

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  3. Production of Energy Efficient Preform Structures (PEEPS)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John A. Baumann

    2012-06-08

    Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has been to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible

  4. Nuclear energy products except the electric power

    International Nuclear Information System (INIS)

    2004-01-01

    Technically the fission reactors, on service or under construction, can produce other products than the electric power. Meanwhile, these applications are known since the beginning of the reactors exploitation, they never have been developed industrially. This report examines the necessary technical characteristics for using the nuclear systems on non electric power applications with an economical efficiency. What are the markets for these products? What are the strategical challenges to favor the development of non electric power applications of the nuclear energy? (A.L.B.)

  5. Affordability for sustainable energy development products

    International Nuclear Information System (INIS)

    Riley, Paul H.

    2014-01-01

    Highlights: • Clean cookstoves that also generate electricity improve affordability. • Excel spreadsheet model to assist stakeholders to choose optimum technology. • Presents views for each stakeholder villager, village and country. • By adding certain capital costs, affordability and sustainability are improved. • Affordability is highly dependent on carbon credits and social understandings. - Abstract: Clean burning products, for example cooking stoves, can reduce household air pollution (HAP), which prematurely kills 3.5 million people each year. By careful selection of components into a product package with micro-finance used for the capital payment, barriers to large-scale uptake of products that remove HAP are reduced. Such products reduce smoke from cooking and the lighting from electricity produced, eliminates smoke from kerosene lamps. A bottom-up financial model, that is cognisant of end user social needs, has been developed to compare different products for use in rural areas of developing countries. The model is freely available for use by researchers and has the ability to assist in the analysis of changing assumptions. Business views of an individual villager, the village itself and a country view are presented. The model shows that affordability (defined as the effect on household expenses as a result of a product purchase) and recognition of end-user social needs are as important as product cost. The effects of large-scale deployment (greater that 10 million per year) are described together with level of subsidy required by the poorest people. With the assumptions given, the model shows that pico-hydro is the most cost effective, but not generally available, one thermo-acoustic technology option does not require subsidy, but it is only at technology readiness level 2 (NASA definition) therefore costs are predicted and very large investment in manufacturing capability is needed to meet the cost target. Thermo-electric is currently the only

  6. Political economy of the energy-groundwater nexus in India: exploring issues and assessing policy options

    Science.gov (United States)

    Shah, Tushaar; Giordano, Mark; Mukherji, Aditi

    2012-08-01

    Indian agriculture is trapped in a complex nexus of groundwater depletion and energy subsidies. This nexus is the product of past public policy choices that initially offered opportunities to India's small-holder-based irrigation economy but has now generated in its wake myriad economic, social, and environmental distortions. Conventional `getting-the-price-right' solutions to reduce these distortions have consistently been undermined by the invidious political economy that the nexus has created. The historical evolution of the nexus is outlined, the nature and scale of the distortions it has created are explored, and alternative approaches which Indian policy makers can use to limit, if not eliminate, the damaging impacts of the distortions, are analysed.

  7. Biomass gasification for production of 'green energy'

    International Nuclear Information System (INIS)

    Mambre, V.

    2008-01-01

    This paper presents the differences between biomass gasification and biomass methanation, two ways of using biomass for decentralized production of energy. The stakes of biomass and biomass gasification for meeting the European and national energy goals and environmental targets are summarized. The gasification principle is described and in particular the FICFB optimized process from Repotec for the production of concentrated syngas. The four different ways of syngas valorization (combined heat and power (CHP), 'green methane' (SNG), 'green hydrogen' (gas shift) and liquid biofuels of 2. generation (Fisher-Tropsch)) are recalled and compared with each other. Finally, the economical and environmental key issues of the global chain are summarized with their technological and scientific key locks. The GAYA R and D project of Gaz de France Suez group, which aims at developing gasification and methanation demonstration plants through different programs with European partners, is briefly presented. (J.S.)

  8. Water use alternatives for Navajo energy production

    International Nuclear Information System (INIS)

    Abbey, D.

    1979-01-01

    The Navajo have substantial resources of coal and uranium, and water use is certain to accompany development of these resources. A variety of supplies, however, are available--water in storage in Navajo Reservoir, water in existing uses which may be transferred, and groundwater. Furthermore, the quantity of water use varies over a wide range depending on the use of water conservation technologies such as dry coolers and wastewater treatment units. Joint management of energy and water resources requires a basic understanding of the water supply and demand alternatives available to the energy industry. Thus, the uses of water for key energy activities--coal and uranium mining, coal transportation (slurry pipelines), and coal conversion (electricity and synthetic gas production) are reviewed. For those activities for which water conservation is feasible, the technologies and estimate costs ($/af saved) are described. The range of water requirements are then compared to energy and water resource estimates. Finally, alternative (not necessarily exclusive) criteria for energy and water resource management are discussed: a) promote energy activities with the lowest minimum water requirements; b) require industry to use low-quality water resources and the most effective water conservation technology; and c) maximize the economic return on Navajo water resources

  9. Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from Catchlight Energy's sugar process (CLE Sugar).

    Science.gov (United States)

    Gao, Johnway; Anderson, Dwight; Levie, Benjamin

    2013-01-28

    Woody biomass is one of the most abundant biomass feedstocks, besides agriculture residuals in the United States. The sustainable harvest residuals and thinnings alone are estimated at about 75 million tons/year. These forest residuals and thinnings could produce the equivalent of 5 billion gallons of lignocellulosic ethanol annually. Softwood biomass is the most recalcitrant biomass in pretreatment before an enzymatic hydrolysis. To utilize the most recalcitrant lignocellulosic materials, an efficient, industrially scalable and cost effective pretreatment method is needed. Obtaining a high yield of sugar from recalcitrant biomass generally requires a high severity of pretreatment with aggressive chemistry, followed by extensive conditioning, and large doses of enzymes. Catchlight Energy's Sugar process, CLE Sugar, uses a low intensity, high throughput variation of bisulfite pulping to pretreat recalcitrant biomass, such as softwood forest residuals. By leveraging well-proven bisulfite technology and the rapid progress of enzyme suppliers, CLE Sugar can achieve a high yield of total biomass carbohydrate conversion to monomeric lignocellulosic sugars. For example, 85.8% of biomass carbohydrates are saccharified for un-debarked Loblolly pine chips (softwood), and 94.0% for debarked maple chips (hardwood). Furan compound formation was 1.29% of biomass feedstock for Loblolly pine and 1.10% for maple. At 17% solids hydrolysis of pretreated softwood, an enzyme dose of 0.075 g Sigma enzyme mixture/g dry pretreated (unwashed) biomass was needed to achieve 8.1% total sugar titer in the hydrolysate and an overall prehydrolysate liquor plus enzymatic hydrolysis conversion yield of 76.6%. At a much lower enzyme dosage of 0.044 g CTec2 enzyme product/g dry (unwashed) pretreated softwood, hydrolysis at 17% solids achieved 9.2% total sugar titer in the hydrolysate with an overall sugar yield of 85.0% in the combined prehydrolysate liquor and enzymatic hydrolysate. CLE Sugar has

  10. Energy from biomass production - photosynthesis of microalgae?

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Tilman [Universitaet Karlsruhe, Botanisches Institut, Geb. 10.40, Kaiserstr. 2, D-76131 Karlsruhe (Germany)

    2009-07-01

    The composition of our atmosphere in the past, present and future is largely determined by photosynthetic activity. Other biological processes such as respiration consume oxygen and produce, like the use of the limited fossil fuel resources, CO{sub 2} whose increasing atmospheric concentration is a major concern. There is thus a demand on the development of alternative energy sources that replace fossil fuel. The use of crop plants for the production of biofuel is one step towards this direction. Since most often the same areas are used as for the production of food, the increased production of biofuel imposes secondary problems, however. In this context, the use of microalgae for biomass production has been proposed. Not only algae in the botanical sense (lower plants, photosynthetic eukaryotes) but also cyanobacteria, which belong to the prokaryotes, are used as ''microalgae''. The conversion of light energy into biomass can reach much higher efficiencies than in crop plants, in which a great portion of photosynthesis products is used to build up non-photosynthetic tissues such as roots or stems. Microalgae can grow in open ponds or bioreactors and can live on water of varying salinity. It has been proposed to grow microalgae in sea water on desert areas. Ongoing research projects aim at optimizing growth conditions in bioreactors, the recycling of CO{sub 2} from flue gases (e.g. from coal-fired power plants), the production of hydrogen, ethanol or lipids, and the production of valuable other substances such as carotenoids.

  11. Institutional options for rural energy access: Exploring the concept of the multifunctional platform in West Africa

    International Nuclear Information System (INIS)

    Nygaard, Ivan

    2010-01-01

    The concept of the multifunctional platform for rural energy access has increasingly been supported by donors in five West African countries since 1994. While it is often referred to as a highly successful concept, recent reviews and interviews with local stakeholders in Mali and Burkina Faso indicate that the high aspirations to be found in project descriptions and early evaluations are only partly reflected in activities on the ground. This paper illustrates how the multipurpose aspects of the platform have made the concept a nexus of potential achievements that are highly valued in the dominant discourse of development, and how including concerns, such as poverty alleviation, gender equity, local democracy, decentralisation and the environment, have attracted donors outside the energy sector. The paper thus argues that, while the integration of multiple technical functions, preconceived organisational set-ups and local fuel production have in fact had limited or even adverse effects on the outcome of the multifunctional platform programme, these virtues have proved essential in presenting the concept at the policy level. This analysis of the dilemma between mobilizing funding and implementing practical programmes provides an argument for building development aid on existing structures instead of inventing new complicated concepts and approaches.

  12. Production, consumption and research on solar energy

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Lascurain-Sánchez, Maria Luisa; Serrano-Lopez, Antonio Eleazar

    2014-01-01

    An analysis of scientific publications on solar energy was conducted to determine whether public interest in the subject is mirrored by more intense research in the area. To this end, the research published by Spain and Germany, the two EU countries with the highest installed photovoltaic capacity......, was analyzed based on Web of Science data. The results show that: solar output has risen substantially; solar research has a greater impact (measured in terms of citations) than publications on other renewables such as wind power; scientific production on solar energy is high in Germany and Spain, which...... intense. The main conclusion is the divergence in Germany and Spain between solar energy demand/output growth, being exponential, and the growth of research papers on the subject, which is linear...

  13. Low Energy Nuclear Reaction Products at Surfaces

    Science.gov (United States)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  14. Management options for food production systems affected by a nuclear accident. Task 6: landspreading as a waste disposal option for contaminated milk

    International Nuclear Information System (INIS)

    Marchant, J.K.; Nisbet, A.F.

    2002-01-01

    In the event of a nuclear accident, there may be significant quantities of agricultural produce that are contaminated with radionuclides and require disposal. The disposal of milk would be of particular concern, since the quantities of milk classed as waste could be substantial and extensive environmental damage could be caused if this was not disposed of appropriately. As part of contingency planning for potential nuclear accidents, the identification of practicable options for disposal of contaminated milk is therefore important. One of the potential options is disposal by landspreading. This report sets out the current legal position of the landspreading of contaminated milk on farmland, provides information on the current extent of landspreading by farmers and assesses the practicability of landspreading contaminated milk according to the following criteria: technical feasibility, capacity, cost, environmental impact, radiological impact and acceptability. Milk contaminated with radionuclides could be defined as a radioactive waste or an agricultural waste. If it were defined as a radioactive waste it would require disposal under the Radioactive Substances Act 1993. Decisions concerning the definition of contaminated milk area matter for the relevant government departments. In this report it was assumed that the milk would be defined as an agricultural waste. The Code of Good Agricultural Practice for the Protection of Water provides farmers with practical guidance for avoiding water pollution and the Code of Good Agricultural Practice for the Protection of Air provides them with practical guidance for avoiding air pollution. Farmers should follow both of these codes when landspreading milk. According to the Animal By-products Order, 1999 milk contaminated with radionuclides above the levels specified by the European Council at which marketing would be prohibited would constitute high risk material; landspreading would not then be permitted. This, however

  15. Energy production from marine biomass (Ulva lactuca)

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L; Daugbjerg Jensen, P; Svane Bech, K [Danish Technological Institute (DTI), Taastrup (Denmark); and others

    2011-11-15

    In this project, methods for producing liquid, gaseous and solid biofuel from the marine macroalgae Ulva lactuca has been studied. To get an understanding of the growth conditions of Ulva lactuca, laboratory scale growth experiments describing N, P, and CO{sub 2} uptake and possible N{sub 2}O and CH{sub 4} production are carried out. The macroalgae have been converted to bioethanol and methane (biogas) in laboratory processes. Further the potential of using the algae as a solid combustible biofuel is studied. Harvest and conditioning procedures are described together with the potential of integrating macroalgae production at a power plant. The overall conclusions are: 1. Annual yield of Ulva lactuca is 4-5 times land-based energy crops. 2. Potential for increased growth rate when bubbling with flue gas is up to 20%. 3. Ethanol/butanol can be produced from pretreated Ulva of C6 and - for butanol - also C5 sugars. Fermentation inhibitors can possibly be removed by mechanical pressing. The ethanol production is 0,14 gram pr gram dry Ulva lactuca. The butanol production is lower. 4. Methane yields of Ulva are at a level between cow manure and energy crops. 5. Fast pyrolysis produces algae oil which contains 78 % of the energy content of the biomass. 6. Catalytic supercritical water gasification of Ulva lactuca is feasible and a methane rich gas can be obtained. 7. Thermal conversion of Ulva is possible with special equipment as low temperature gasification and grate firing. 8. Co-firing of Ulva with coal in power plants is limited due to high ash content. 9. Production of Ulva only for energy purposes at power plants is too costly. 10. N{sub 2}O emission has been observed in lab scale, but not in pilot scale production. 11. Analyses of ash from Ulva lactuca indicates it as a source for high value fertilizers. 12. Co-digestion of Ulva lactuca together with cattle manure did not alter the overall fertilization value of the digested cattle manure alone. (LN)

  16. A conceptual framework for evaluating variable speed generator options for wind energy applications

    Science.gov (United States)

    Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.

    1995-01-01

    Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.

  17. Residual biomass resources for energy production. Extended abstract

    International Nuclear Information System (INIS)

    Prevot, G.

    2010-06-01

    This report covers the whole problematic of energy production from biomass residues in France except the production of biofuels. It is made of two parts. The first one gives an overview of the availability of residual biomass resources, The concept of residue (or waste) is placed in its economic and regulatory context (the major part of the resource cannot be considered as waste without any further potential use). The conditions of availability of the resource for each market segment are identified. The second part describes the conditions for the use of 5 different conversion options of these residues into energy. The logistics constraints for the procurement of the fuel and the intermediate operations to prepare it are briefly summarised. The objective was the identification of key issues in all relevant aspects, without giving too much emphasis to one of them at the expense of another one in order to avoid duplicating the frequent cases of facilities that do not meet environmental and economic targets because the designers of the system have not paid enough attention to a parameter of the system. (author)

  18. ENERGY USE IN APPLE PRODUCTION IN THE ESFAHAN ...

    African Journals Online (AJOL)

    journal

    Apple production needs to improve the efficiency of energy consumption and to employ renewable energy. ... derived from Neyman method (Ozkan et al.,. 2004). .... management might reduce the indirect energy .... Handbook of Energy.

  19. Wave Energy Converter Annual Energy Production Uncertainty Using Simulations

    Directory of Open Access Journals (Sweden)

    Clayton E. Hiles

    2016-09-01

    Full Text Available Critical to evaluating the economic viability of a wave energy project is: (1 a robust estimate of the electricity production throughout the project lifetime and (2 an understanding of the uncertainty associated with said estimate. Standardization efforts have established mean annual energy production (MAEP as the metric for quantification of wave energy converter (WEC electricity production and the performance matrix approach as the appropriate method for calculation. General acceptance of a method for calculating the MAEP uncertainty has not yet been achieved. Several authors have proposed methods based on the standard engineering approach to error propagation, however, a lack of available WEC deployment data has restricted testing of these methods. In this work the magnitude and sensitivity of MAEP uncertainty is investigated. The analysis is driven by data from simulated deployments of 2 WECs of different operating principle at 4 different locations. A Monte Carlo simulation approach is proposed for calculating the variability of MAEP estimates and is used to explore the sensitivity of the calculation. The uncertainty of MAEP ranged from 2%–20% of the mean value. Of the contributing uncertainties studied, the variability in the wave climate was found responsible for most of the uncertainty in MAEP. Uncertainty in MAEP differs considerably between WEC types and between deployment locations and is sensitive to the length of the input data-sets. This implies that if a certain maximum level of uncertainty in MAEP is targeted, the minimum required lengths of the input data-sets will be different for every WEC-location combination.

  20. Comparative assessment of energy options and strategies in Mexico until 2025. Final report of a coordinated research project 2000-2004

    International Nuclear Information System (INIS)

    2005-10-01

    Mexico is undergoing significant changes in the energy sector, in particular in the electric power sector, such as the restructuring of power markets; increasing emphasis on socioeconomic and environmental impacts of the electric power system; and consideration of an higher role for energy technologies compatible with sustainable development. The Mexican Government has identified the need for ensuring a sustainable pattern of production, distribution and use of energy and electricity. In this context, a comparative assessment analysis is a prerequisite for planning of the future energy and electricity facilities of the country in order to make timely decisions. It requires the identification of the expected levels of energy and electricity demand and the options that are available to meet these demands, taking special note of the national energy resources and potential imported sources. Further analysis would be needed for the optimization of the supply options to meet the demand in the most efficient and economic manner with due consideration of the environmental impacts and resource requirements. In accordance with its mandate, the IAEA has developed a systematic approach along with a set of computer-based models for elaborating national energy strategies covering the analysis of all of the above aspects. Under its Technical Cooperation Programme, the IAEA provides assistance to its Member States to enhance national capabilities for elaborating sustainable energy development strategies and assessing the role of nuclear power and other energy options, by transferring the analytical tools along with training and providing expertise. The present report describes the results of the Comparative Assessment of Energy Options and Strategies until 2025 study for Mexico conducted by the Secretaria de Energia, in cooperation with several national institutions, in particular the University of Mexico. The comprehensive national analysis focuses on energy and electricity

  1. 78 FR 17648 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2013-03-22

    ... Conservation Program for Consumer Products: Representative Average Unit Costs of Energy'', dated April 26, 2012... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  2. Energy resources, CO2 production and energy conservation

    International Nuclear Information System (INIS)

    O'Callaghan, P.W.

    1993-01-01

    World fossil fuel reserves, historical and current rates of consumption are reviewed and estimates of indigeneous lives in geographical regions are made. Rates of production and accumulations of carbon dioxide and other greenhouse gases in the atmosphere are calculated and correlations made with measured global mean temperatures and concomitant sea-level rises. It is concluded that, if present rates of global fossil-fuel consumptions continue unabated, the world's fossil-fuel store will be depleted by the year 2050. This would be accompanied by a substantial rise in global mean temperature. The effects of various protocols for the reductions of emissions are examined. It is concluded that there is no alternative than to cease the production and release into the atmosphere of the more damaging man-made greenhouse gases as soon as is practicably possible and to seek a sustained reduction in the rates of combustion of fossil fuels world-wide via energy management and conservation. (author)

  3. The availability of biomass for energy production

    International Nuclear Information System (INIS)

    Zeevalkink, J.A.; Borsboom, N.W.J.; Sikkema, R.

    1997-12-01

    The Dutch energy policy aims at 75 PJ energy production from biomass in the Netherlands by the year 2020. This requires the development of a biomass market for biomass fuels so that suppliers as well as users can sell and buy biomass, respectively. The study concentrates on the contribution that information about biomass supply and demand can make to the realization of such a market for biomass fuels and stimulating its functioning. During the study, an inventory was made of public information on biomass quantities that are expected to become available for energy production in the short term. It was proposed to set up a database that contains information about the supply and suppliers of forest wood (specifically thinnings), (clean) waste wood from wood-processing industries, used timber and green wood waste from public parks. On the basis of rough estimates it can be concluded that these biomass flows account for an approximate annual quantity of 900,000 tonnes of dry biomass, or an annual 16,000 W energy production. This quantity would cover 66% of the goal set for the year 2000 and 20% of the goal set for 2020. Various database models were described and discussed during a workshop which was organized for potentially interested parties so as to find out their interest in and potential support for such an information system. Though the results of the survey conducted earlier suggested otherwise, it turned out that there was only minor interest in an information system, i.e. there was an interest in a survey of the companies involved in biomass supply and demand. In addition, most parties preferred bilateral confidential contacts to contract biomass. The opinion of many parties was that Novem's major tasks were to characterize biomass quality, and to give support to the discussions about the legal framework for using (waste) wood for energy production. It was concluded that at this moment a database must not be set up; in the future, however, there could be a

  4. Accelerator breeder: a viable option for the production of nuclear fuels

    International Nuclear Information System (INIS)

    Grand, P.

    1983-01-01

    Despite the growing pains of the US nuclear power industry, our dependence on nuclear energy for the production of electricity and possibly process heat is likely to increase dramatically over the next few deacades. This statement dismisses fusion as being entirely too speculative to be practical within that time frame. Sometime, between the years 2000 and 2050, fissile material will be in short supply whether it is to fuel existing LWR's or to provide initial fuel inventory for FBR's. The accelerator breeder could produce the fuel shortfall predicted to occur during the first half of the 21st century. The accelerator breeder offers the only practical means today of producing, or breeding, large quantities of fissile fuel from fertile materials, albeit at high cost. Studies performed over the last few years at Chalk River Laboratory and at Brookhaven National Laboratory have demonstrated that the accelerator breeder is practical, technically feasible with state-of-the-art technology, and is economically competitive with any other proposed synthetic means of fissile fuel production. This paper gives the parameters of a nearly optimized accelerator-breeder system, then discusses the development needs, and the economics and institutional problems that this breeding concept faces

  5. A continuous time inventory model for a product recovery system with multiple options

    NARCIS (Netherlands)

    Kleber, R.; Minner, S.; Kiesmüller, G.P.

    2002-01-01

    Increasing environmental consciousness, limited availability of natural resources to manufacture new products, recovery quotas to avoid disposal, manufacturers assigned to be responsible for used products, and materials value of components included in returned products are incentives for product

  6. Deep Geothermal Energy Production in Germany

    Directory of Open Access Journals (Sweden)

    Thorsten Agemar

    2014-07-01

    Full Text Available Germany uses its low enthalpy hydrothermal resources predominantly for balneological applications, space and district heating, but also for power production. The German Federal government supports the development of geothermal energy in terms of project funding, market incentives and credit offers, as well as a feed-in tariff for geothermal electricity. Although new projects for district heating take on average six years, geothermal energy utilisation is growing rapidly, especially in southern Germany. From 2003 to 2013, the annual production of geothermal district heating stations increased from 60 GWh to 530 GWh. In the same time, the annual power production increased from 0 GWh to 36 GWh. Currently, almost 200 geothermal facilities are in operation or under construction in Germany. A feasibility study including detailed geological site assessment is still essential when planning a new geothermal facility. As part of this assessment, a lot of geological data, hydraulic data, and subsurface temperatures can be retrieved from the geothermal information system GeotIS, which can be accessed online [1].

  7. Real Options Analysis of Renewable Energy Investment Scenarios in the Philippines

    OpenAIRE

    Agaton, Casper

    2017-01-01

    Abstract - With the continuously rising energy demand and much dependence on imported fossil fuels, the Philippines is developing more sustainable sources of energy. Renewable energy seems to be a better alternative solution to meet the country’s energy supply and security concerns. Despite its huge potential, investment in renewable energy sources is challenged with competitive prices of fossil fuels, high start-up cost and lower feed-in tariff rates for renewables. To address these probl...

  8. Results of a Global Survey on International Biomass Trade for Energy: Opportunities, Risks and Policy Options

    OpenAIRE

    Pelkmans, L.; Van Dael, Miet; Del Campo, I.; Sanchez, D.; Rutz, D.; Janssen, R.; Junginger, M.; Mai-Moulin, T.; Iriarte, L.; Diaz-Chavez, R.; Elbersen, B.; Nabuurs, G.J.; Elbersen, W.

    2016-01-01

    European targets set by 2020 in the Climate and Energy package and the Renewable Energy Directive (2009/28/EC) will require a serious increase in biomass demand for energy purposes. The analysis of the data reported by the Member States in their National Renewable Energy Action Plans (NREAP) shows that biomass is expected to contribute more than half of the 20% renewable objective of the gross final energy consumption. However the data provided and trade statistics have revealed that the quan...

  9. A Novel Sensor Platform Matching the Improved Version of IPMVP Option C for Measuring Energy Savings

    OpenAIRE

    Tseng, Yen-Chieh; Lee, Da-Sheng; Lin, Cheng-Fang; Chang, Ching-Yuan

    2013-01-01

    It is easy to measure energy consumption with a power meter. However, energy savings cannot be directly computed by the powers measured using existing power meter technologies, since the power consumption only reflects parts of the real energy flows. The International Performance Measurement and Verification Protocol (IPMVP) was proposed by the Efficiency Valuation Organization (EVO) to quantify energy savings using four different methodologies of A, B, C and D. Although energy savings can be...

  10. Energy and emission scenarios for China in the 21st century - exploration of baseline development and mitigation options

    International Nuclear Information System (INIS)

    Vuuren, Detlef van; Zhou Fengqi; Vries, Bert de; Jiang Kejun; Graveland, Cor; Li Yun

    2003-01-01

    In this paper, we have used the simulation model IMAGE/TIMER to develop a set of energy and emission scenarios for China between 1995 and 2100, based on the global baseline scenarios published by IPCC. The purpose of the study was to explore possible baseline developments and available options to mitigate emissions. The two main baseline scenarios of the study differ, among others, in the openness of the Chinese economy and in economic growth, but both indicate a rapid growth in carbon emissions (2.0% and 2.6% per year in the 2000-2050 period). The baseline scenario analysis also shows that an orientation on environmental sustainability can not only reduce other environmental pressures but also lower carbon emissions. In the mitigation analysis, a large number of options has been evaluated in terms of impacts on investments, user costs, fuel imports costs and emissions. It is found that a large potential exists to mitigate carbon emissions in China, among others in the form of energy efficiency improvement (with large co-benefits) and measures in the electricity sector. Combining all options considered, it appears to be possible to reduce emissions compared to the baseline scenarios by 50%

  11. Energy-dense fast food products cost less: an observational study of the energy density and energy cost of Australian fast foods.

    Science.gov (United States)

    Wellard, Lyndal; Havill, Michelle; Hughes, Clare; Watson, Wendy L; Chapman, Kathy

    2015-12-01

    To examine the association between energy cost and energy density of fast food products. Twenty Sydney outlets of the five largest fast food chains were surveyed four times. Price and kilojoule data were collected for all limited-time-only menu items (n=54) and a sample of standard items (n=67). Energy cost ($/kilojoule) and energy density (kilojoules/gram) of menu items were calculated. There was a significant inverse relationship between menu item energy density and energy cost (pFast food chains could provide a wider range of affordable, lower-energy foods, use proportional pricing of larger serve sizes, or change defaults in meals to healthier options. More research is required to determine the most effective strategy to reduce the negative impact of fast food on the population's diet. Current pricing in the fast food environment may encourage unhealthier purchases. © 2015 Public Health Association of Australia.

  12. Climate change and energy options. Decision making in the midst of uncertainty

    International Nuclear Information System (INIS)

    Steinfeld, J.I.

    2001-01-01

    Understanding the world's natural systems, and how our own activities may be affecting those systems, are crucial for the long-term well-being of our society and of all the inhabitants of this world. One of the most complex of these is the global climate system. The nature and extent of significant alterations to the global climate system due to increasing emissions of greenhouse gases (GHG), resulting from human activity such as energy production and manufacturing processes, is still the subject of considerable uncertainty and, indeed, controversy. However, the possible consequent effects on ecological systems and human society may be of such profound gravity, that continuing research into the causes and effects of climate change, and development of viable technology solutions for mitigation of these effects, are essential. Understanding the global climate system, determining how our activities may be influencing it, and taking responsible actions to protect it for future generations, may be among the greatest challenges that humanity has ever faced

  13. Mitigation of climate change via a copper-chlorine hybrid thermochemical water splitting cycle for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, M.F.; Dincer, I.; Rosen, M.A.

    2009-01-01

    Concerns regarding climate change have motivated research on clean energy resources. While many energy resources have limitations, nuclear energy has the potential to supply a significant share of energy supply without contributing to climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another option for the utilization of nuclear thermal energy. This paper describes nuclear-based hydrogen production technologies and discusses the role of the Cu-Cl cycle for thermochemical water decomposition, potentially driven in part by waste heat from a nuclear generating station, in reducing greenhouse gas emissions. (author)

  14. Renewable energies for the production of bricks

    International Nuclear Information System (INIS)

    Moedinger, F.

    2006-01-01

    The research for alternatives to the classical, mainly fossil, sources of energy sources within a high energy consumption sector as brick making can certainly be very rewarding. Within this framework the production of biogas by anaerobic digestion of locally available biomasses and the integration of such a facility in a brick yard where all fermentation wastes, both liquid and solid, can be used can be considered a strategic and profitable business goal: reduction of the dependence on fossil fuels. From an environmental point of view the substitution of fossil fuels with fuels from renewable sources is certainly desire able. Into account might also be taken the possible profitable trade of emission certificates of different type

  15. A real option-based model for promoting sustainable energy projects under the clean development mechanism

    International Nuclear Information System (INIS)

    Lee, Hyounkyu; Park, Taeil; Kim, Byungil; Kim, Kyeongseok; Kim, Hyoungkwan

    2013-01-01

    The clean development mechanism (CDM) provides a way of assisting sustainable development in developing countries for developed countries to reduce greenhouse gas (GHG) emissions. Despite its intended benefits, the primary CDM market decreased from US$5.8 billion in 2006 to US$1.5 billion in 2010. One of the primary reasons for the reduction of market size is that developed countries as investors have a high level of risks caused by the volatility of the market price for certified emission reductions (CERs). Another issue to be resolved is that developing countries as host countries cannot claim any right to the CERs produced on their own land. This paper presents a real option-based model for both parties (developed and developing countries) to have their fair share of profits and risks by controlling the uncertainty associated with the future value of CERs. A case study illustrated that the proposed model can effectively attract investors to CDM projects leading to mitigation of climate change. - Highlights: ► This study focused on the risks associated with the uncertainty of future CER value in CDM projects. ► A real option-based model was developed for both parties in CDM to have fair share of profit and risk. ► Key variables and boundary conditions were identified for application of real option to CDM. ► The model allowed both parties to own options, which have an identical value. ► Hydropower plant projects in Indonesia were used to illustrate the implementation of the model

  16. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  17. Drell-Yan production at collider energies

    International Nuclear Information System (INIS)

    Neerven, W.L. Van

    1995-01-01

    We present some results of the Drell-Yan cross sections dσ/dm and σ tot which includes the O (α s 2 ) contribution to the coefficient function. In particular we study the total cross section σ tot for vector boson production and dσ/dm for low invariant masses m of the lepton pairs at large hadron collider energies. This study includes a detailed discussion of the dependence of the cross sections on the chosen scheme (bar MS versus DIS) and the factorization scale

  18. Transformation towards a Renewable Energy System in Brazil and Mexico—Technological and Structural Options for Latin America

    Directory of Open Access Journals (Sweden)

    Sonja Simon

    2018-04-01

    Full Text Available Newly industrialized countries face major challenges to comply with the Paris Treaty targets as economic growth and prosperity lead to increasing energy demand. Our paper analyses technological and structural options in terms of energy efficiency and renewable energies for a massive reduction of energy-related CO2 emissions in Latin America. Brazil and Mexico share similar growth prospects but differ significantly with respect to renewable energy potentials. We identify, how this leads to different transformation pathways. By applying an energy system balancing model we develop normative energy system transformation scenarios across the heating, power, and mobility sectors, including their potential interactions. The normative scenarios rely on three basic strategies for both countries: (1 strong exploitation of efficiency potentials; (2 tapping the renewable energy potentials; and (3 sector coupling and electrification of heat supply and transport. Despite economic growth, significant CO2 emission reductions could be achieved in Brazil from 440 Gt/a (2.2 t/cap in 2012 to 0.4 Gt (2 kg/cap in 2050 and in Mexico from 400 Gt/a (3.3 t/cap to 80 Gt (0.5 t/cap. Our study shows the gap between existing policy and scenarios and our strategies, which provide an economically feasible way to comply with the Paris treaty targets.

  19. Security of supply, energy spillage control and peaking options within a 100% renewable electricity system for New Zealand

    International Nuclear Information System (INIS)

    Mason, I.G.; Page, S.C.; Williamson, A.G.

    2013-01-01

    In this paper, issues of security of supply, energy spillage control, and peaking options, within a fully renewable electricity system, are addressed. We show that a generation mix comprising 49% hydro, 23% wind, 13% geothermal, 14% pumped hydro energy storage peaking plant, and 1% biomass-fuelled generation on an installed capacity basis, was capable of ensuring security of supply over an historic 6-year period, which included the driest hydrological year on record in New Zealand since 1931. Hydro spillage was minimised, or eliminated, by curtailing a proportion of geothermal generation. Wind spillage was substantially reduced by utilising surplus generation for peaking purposes, resulting in up to 99.8% utilisation of wind energy. Peaking requirements were satisfied using 1550 MW of pumped hydro energy storage generation, with a capacity factor of 0.76% and an upper reservoir storage equivalent to 8% of existing hydro storage capacity. It is proposed that alternative peaking options, including biomass-fuelled gas turbines and demand-side measures, should be considered. As a transitional policy, the use of fossil-gas–fuelled gas turbines for peaking would result in a 99.8% renewable system on an energy basis. Further research into whether a market-based system is capable of delivering such a renewable electricity system is suggested. - Highlights: • A 100% renewable electricity system was modelled over a 6-year period. • Security of supply was demonstrated, including for the driest year since 1931. • Stored energy spillage was controlled by using flexible base-load generation. • Wind energy utilisation of 99.8% was obtained. • Transitional use of fossil gas for peaking resulted in a 99.8% renewable system

  20. Islands in search of energy: Development of renewables and other options on the Seychelles

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, S; Kristofersson, L

    1983-01-01

    This article describes the Seychelles energy situation in general and outlines efforts taken in implementing a reduction in the country's almost total dependence on imported oil. Energy problems are now aggravated by the present decline in tourism and exports. The main alternatives to oil are briefly discussed and a number of ongoing research and development programs are presented. The overall framework for energy development on the Seychelles is given by the Seychelles Integrated Energy Project, which was started three years ago.

  1. Indirect and direct energy requirements of city households in Sweden - Options for reduction, lessons from modeling

    NARCIS (Netherlands)

    Carlsson-Kanyama, A; Engstrom, R; Kok, R

    2005-01-01

    The objective of this article is to explore the potential for lowering household energy use given existing local support systems, in this case in the Stockholm inner city with the aid of the Dutch energy analysis program (EAP) that was adapted to Swedish conditions and that portrays total energy use

  2. Risø energy report 1. New and emerging technologies - options for the future

    DEFF Research Database (Denmark)

    Larsen, Hans Hvidtfeldt; Sønderberg Petersen, Leif

    2002-01-01

    National Laboratory. The global energy developments are presented based on the latestavailable information from authoritative sources like IEA, WEC, World Energy Assessment etc. Some of the major challenges are presented in terms of the changing energy markets in all regions, the focus on environmental...

  3. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering was determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the frame-work of the quark-proton model

  4. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references

  5. 76 FR 13168 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2011-03-10

    ... average unit costs of residential energy in a Federal Register notice entitled, ``Energy Conservation... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  6. Evaluation of selected near-term energy-conservation options for the Midwest

    Energy Technology Data Exchange (ETDEWEB)

    Evans, A.R.; Colsher, C.S.; Hamilton, R.W.; Buehring, W.A.

    1978-11-01

    This report evaluates the potential for implementation of near-term energy-conservation practices for the residential, commercial, agricultural, industrial, transportation, and utility sectors of the economy in twelve states: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin. The information used to evaluate the magnitude of achievable energy savings includes regional energy use, the regulatory/legislative climate relating to energy conservation, technical characteristics of the measures, and their feasibility of implementation. This work is intended to provide baseline information for an ongoing regional assessment of energy and environmental impacts in the Midwest. 80 references.

  7. Survey Probability and Factors affecting Farmers Participation in Future and Option Markets Case Study: Cotton product in Gonbad kavos city

    Directory of Open Access Journals (Sweden)

    F. sakhi

    2016-03-01

    Full Text Available Introduction: Farmers are facing with a variety of natural and unnatural risks in agricultural activities, and thus their income is unstable. A wide range of risks such as risks of production, price risk, financial and human risks, influence the income of agricultural products. One of the major risks that farmers faced is the risk of price volatility of agricultural products. Cotton is one of the agricultural products with high real price volatility. Numerous tools for marketing and risk management for agricultural products in the face of price risks are available. Futures and options contracts may be the most important available tools (to reduce price volatility in agricultural products. The purpose of the current study was to look at the possibility of farmers participations in the future and option markets that presented as a means to reduce the cotton prices volatility. The dependent variable for this purpose had four categories and these included: participate in both the market, participation in the future market, participation in the option market and participation in both future and option markets. Materials and Methods: data gathered with interview and completing 200 questionnaires of cotton growers using simple random sampling. Multinomial Logit Regression Model was used for data analysis. Results and Discussion: To measure content validity of the preliminary study the validity of confirmatory factor analysis were used. For calculating reliability, the pre-test done with 30 questionnaires and reliability, coefficient Cronbach alpha was 0.79. The independence of dependent variables categories was confirmed by Hausman test results. The Likelihood ratio and Wald showed these categories are not combinable. Results indicated into period 2014 -2015 and the sample under study, 35% of cotton growers unwilling to participate in future and option markets. Farmers willingness to participate in future and option market was 19% and %21

  8. Energy intensity ratios as net energy measures of United States energy production and expenditures

    International Nuclear Information System (INIS)

    King, C W

    2010-01-01

    In this letter I compare two measures of energy quality, energy return on energy invested (EROI) and energy intensity ratio (EIR) for the fossil fuel consumption and production of the United States. All other characteristics being equal, a fuel or energy system with a higher EROI or EIR is of better quality because more energy is provided to society. I define and calculate the EIR for oil, natural gas, coal, and electricity as measures of the energy intensity (units of energy divided by money) of the energy resource relative to the energy intensity of the overall economy. EIR measures based upon various unit prices for energy (e.g. $/Btu of a barrel of oil) as well as total expenditures on energy supplies (e.g. total dollars spent on petroleum) indicate net energy at different points in the supply chain of the overall energy system. The results indicate that EIR is an easily calculated and effective proxy for EROI for US oil, gas, coal, and electricity. The EIR correlates well with previous EROI calculations, but adds additional information on energy resource quality within the supply chain. Furthermore, the EIR and EROI of oil and gas as well as coal were all in decline for two time periods within the last 40 years, and both time periods preceded economic recessions.

  9. Asia-Europe cooperation on energy security an overview of options and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, F.; Godement, F.; Yakushiji, T

    2005-07-01

    Asian and European economies are major players on the international energy markets. Because of broad similarities in the energy situation in both regions, and also because of some existing major differences, there is definitely scope for joint discussions and cooperation on energy issues between the countries of the two regions, despite possible competing interests. This document aims at examining the conditions for this possible cooperation, as well as the major incentives and obstacles. After a brief reminder on the notion of energy security, a first section provides a synthesis of the energy situation and outlook in the two regions. The next section focuses more specifically on energy security issues and policies, emphasizing the diversity of strategies followed in the two regions. The last section concludes by sketching possible avenues for cooperation on energy issues between countries of the two regions.

  10. Asia-Europe cooperation on energy security an overview of options and challenges

    International Nuclear Information System (INIS)

    Nicolas, F.; Godement, F.; Yakushiji, T.

    2005-01-01

    Asian and European economies are major players on the international energy markets. Because of broad similarities in the energy situation in both regions, and also because of some existing major differences, there is definitely scope for joint discussions and cooperation on energy issues between the countries of the two regions, despite possible competing interests. This document aims at examining the conditions for this possible cooperation, as well as the major incentives and obstacles. After a brief reminder on the notion of energy security, a first section provides a synthesis of the energy situation and outlook in the two regions. The next section focuses more specifically on energy security issues and policies, emphasizing the diversity of strategies followed in the two regions. The last section concludes by sketching possible avenues for cooperation on energy issues between countries of the two regions

  11. Research on Agricultural Product Options Pricing Based on Lévy Copula

    Science.gov (United States)

    Qiu, Hong

    2017-11-01

    China is a large agricultural country, and the healthy development of agriculture is related to the stability of the whole society. With the advancement of modern agriculture and the expansion of agricultural scale, the demand for farmers to avoid market risks is increasingly urgent. Option trading has the effect of attracting farmers’ intervention, promoting order agriculture development, perfecting agricultural support policy and promoting the development of agricultural futures market. Relative to the futures, the option transaction because the margin is low, reducing the trader’s entry threshold, you can make more small and medium investors to participate. This is not only active in the futures market, but also for many small and medium investors to provide effective financial management tools.

  12. Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sambeek, Emiel van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yowargana, Ping [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuang, Liu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kejun, Jiang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-12

    This research intends to explore possible design options for a sectoral approach in the cement sector in Shandong Province and to consider its respective advantages and disadvantages for future application. An effort has been made in this research to gather and analyze data that will provide a transparent and robust basis for development of a Business-As-Usual (BAU) scenario, maximum technology potential scenario, and ultimately a sector crediting baseline. Surveys among cement companies and discussions with stakeholders were also conducted in order to better understand the industry and local needs related to the sectoral approach.