WorldWideScience

Sample records for energy nuclear reactor

  1. Nuclear energy center site survey reactor plant considerations

    International Nuclear Information System (INIS)

    1976-05-01

    The Energy Reorganization Act of 1974 required the Nuclear Regulatory Commission (NRC) to make a nuclear energy center site survey (NECSS). Background information for the NECSS report was developed in a series of tasks which include: socioeconomic inpacts; environmental impact (reactor facilities); emergency response capability (reactor facilities); aging of nuclear energy centers; and dry cooled nuclear energy centers

  2. Perspective of nuclear energy and advanced reactors

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Cobian, J.

    2007-01-01

    Future nuclear energy growth will be the result of the contributions of every single plant being constructed or projected at present as it is connected to the grid. As per IAEA, there exists presently 34 nuclear power plants under construction 81 with the necessary permits and funding and 223 proposed, which are plants seriously pursuing permits and financing. This means that in a few decades the number of nuclear power plants in operation will have doubled. This growth rate is characterised by the incorporation of new countries to the nuclear club and the gradually increasing importance of Asian countries. During this expansive phase, generation III and III+designs are or will be used. These designs incorporate the experience from operating plants, and introduce innovations on rationalization design efficiency and safety, with emphasis on passive safety features. In a posterior phase, generation IV designs, presently under development, will be employed. Generation IV consists of several types of reactors (fast reactors, very high temperature reactors, etc), which will improve further sustain ability, economy, safety and reliability concepts. The described situation seems to lead to a renaissance of the nuclear energy to levels hardly thinkable several years ago. (Author)

  3. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  4. Nuclear energy renaissance and reactor physics. Enlightenment of PHYSOR'08

    International Nuclear Information System (INIS)

    Peng Feng

    2010-01-01

    In relation to world's growing energy demands and concerns on global warming, nuclear energy as a sustainable resource is in its new period of renaissance. This is reflected in the record number of 447 papers on the International Conference on the Physics of Reactors--PHYSOR'08 held in Switzerland in 2008. The contents of these papers include the developments and frontiers in various directions of reactor physics. Featured by vast area of subjects, these emphasize the fact that the scope of the reactor physicist's R and D interests has expands considerably in recent years. The main keynote addresses and technical plenary lectures are briefly introduced. Some items concerned by the conference, such as: the status and perspective of nuclear energy's R and D, deployment and policy in main nuclear nations, the potential role of nuclear energy in mitigation global warming and slow down the GHG release, the sustainability of resource for nuclear energy utilization. Status and outlook about the needs of research and test facilities required in nuclear energy development, etc. are discussed. (authors)

  5. An energy amplifier fluidized bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Sefidvash, F.; Seifritz, W.

    2001-01-01

    The concept of a fluidized bed nuclear reactor driven by an energy amplifier system is described. The reactor has promising characteristics of inherent safety and passive cooling. The reactor can easily operate with any desired spectrum in order to be a plutonium burner or have it operate with thorium fuel cycle. (orig.) [de

  6. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science in Radiation and Dynamics Extremes

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  7. The generation IV nuclear reactor systems - Energy of future

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Jianu, Adrian

    2006-01-01

    Ten nations joined within the Generation IV International Forum (GIF), agreeing on a framework for international cooperation in research. Their goal is to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in an economically competitive way while addressing the issues of safety, proliferation, and other public perception concerns. The objective is for the Gen IV systems to be available for deployment by 2030. Using more than 100 nuclear experts from its 10 member nations, the GIF has developed a Gen IV Technology Roadmap to guide the research and development of the world's most advanced, efficient and safe nuclear power systems. The Gen IV Technology Roadmap calls for extensive research and development of six different potential future reactor systems. These include water-cooled, gas-cooled, liquid metal-cooled and nonclassical systems. One or more of these reactor systems will provide the best combination of safety, reliability, efficiency and proliferation resistance at a competitive cost. The main goals for the Gen IV Nuclear Energy Systems are: - Provide sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel use for worldwide energy production; - Minimize and manage their nuclear waste and noticeably reduce the long-term stewardship burden in the future, improving the protection of public health and the environment; - Increase the assurance that these reactors are very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased protection against acts of terrorism; - Have a clear life-cycle cost advantage over other energy sources; - Have a level of financial risk comparable to other energy projects; - Excel in safety and reliability; - Have a low likelihood and degree of reactor core damage. (authors)

  8. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  9. The prospects for using nuclear reactors to provide energy to petrochemical factories

    Energy Technology Data Exchange (ETDEWEB)

    Feygin, Ye.A.; Barashkov, R.Ya.; Chernovisov, G.N.; Deyneko, P.S.; Lemayev, N.V.; Raud, E.A.; Romanova, Ye.G.; Vernov, P.A.; Zlotnikov, L.Ye.

    1984-01-01

    The engineering level of the development of atomic rocket engineering has made it possible to consider various types of nuclear reactors as possible electricity sources to support petrochemical processes at petrochemical plants (using vapor, heat, electricity and radiation energies). The use of energy from nuclear reactors in combination with the elimination of liquid and gas fuels used in the furnaces will make it possible to improve the ecological situation in the vicinity of the plant, to accelerate petroleum processing and oil processing processes and to improve the cost effectiveness of nuclear engineering complexes to a degree related to the total capacity of the industrial complexes and the degree of comprehensive utilization of energy from the nuclear reactors.

  10. Nuclear reactor theory

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi

    2007-09-01

    This textbook is composed of two parts. Part 1 'Elements of Nuclear Reactor Theory' is composed of only elements but the main resource for the lecture of nuclear reactor theory, and should be studied as common knowledge. Much space is therefore devoted to the history of nuclear energy production and to nuclear physics, and the material focuses on the principles of energy production in nuclear reactors. However, considering the heavy workload of students, these subjects are presented concisely, allowing students to read quickly through this textbook. (J.P.N.)

  11. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    International Nuclear Information System (INIS)

    Alameri, Saeed A.; King, Jeffrey C.

    2013-01-01

    Nuclear power plants operate most economically at a constant power level, providing base load electric power. In an energy grid containing a high fraction of renewable power sources, nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling a nuclear reactor to a large thermal energy storage block will allow the reactor to better respond to variable power demands. In the system described in this paper, a Prismatic core Advanced High Temperature Reactor supplies constant power to a lithium chloride molten salt thermal energy storage block that provides thermal power as needed to a closed Brayton cycle energy conversion system. During normal operation, the thermal energy storage block stores thermal energy during the night for use in the times of peak demand during the day. In this case, the nuclear reactor stays at a constant thermal power level. After a loss of forced circulation, the reactor reaches a shut down state in less than half an hour and the average fuel, graphite and coolant temperatures remain well within the design limits over the duration of the transient, demonstrating the inherent safety of the coupled system. (author)

  12. Potential of small nuclear reactors for future clean and safe energy sources

    International Nuclear Information System (INIS)

    Sekimoto, H.

    1992-01-01

    To cope with the various kinds of energy demands expected in the 21st century, it is necessary to explore the potential of small nuclear reactors and to find a way of promoting their introduction to society. The main goal of current research activities is 'the constitution of the self-consistent nuclear energy system'. These activities can be understood by realizing that the nuclear community is facing a turning point for its survival in the 21st century. Self-consistency can be manifested by investigating and developing the potential advantages of the nuclear fission reaction and lessening the potential disadvantages. The contributions in this volume discuss concepts of small reactors, applications of small reactors, and consistency with conventional energy supply systems

  13. Advanced nuclear reactor and nuclear fusion power generation

    International Nuclear Information System (INIS)

    2000-04-01

    This book comprised of two issues. The first one is a advanced nuclear reactor which describes nuclear fuel cycle and advanced nuclear reactor like liquid-metal reactor, advanced converter, HTR and extra advanced nuclear reactors. The second one is nuclear fusion for generation energy, which explains practical conditions for nuclear fusion, principle of multiple magnetic field, current situation of research on nuclear fusion, conception for nuclear fusion reactor and economics on nuclear fusion reactor.

  14. Advanced energy system with nuclear reactors as an energy source

    International Nuclear Information System (INIS)

    Kato, Y.; Ishizuka, T.; Nikitin, K.

    2007-01-01

    recovery system is also applicable to a fast reactor (FR) with a supercritical CO 2 gas turbine that achieves higher cycle efficiency than conventional sodium cooled FRs with steam turbines. The FR will eliminate problems of conventional FRs related to safety, plant maintenance, and construction costs. The FR consumes efficiently trans-uranium elements (TRU) produced in light water reactors as fuel and reduce long-lived radioactive wastes or environmental loads of long term geological disposal. An Advanced Energy System (AES) with nuclear reactors as an energy source has been proposed which supply electricity and heat to cities. The AES has three objectives: 1. Save energy resources and reduce green house gas emissions, attaining total energy utilization efficiency higher than 85% through waste heat recovery and utilization. 2. Foster a recycling society that produces methane and methanol for fuel cells from waste products of cities and farms. 3. Consume TRU produced in LWRs as fuel for FRs, and reduce long-lived radioactive wastes or environmental loads of long term geological disposal. References 1. Y. Kato, T. Nitawaki and K. Fujima, 'Zero Waste Heat Release Nuclear Cogeneration System, 'Proc. 2003 Intl. Congress on Advanced Nuclear Power Plants (ICAPP'03), Cordoba, Spain, May 4-7, 2003, Paper 3313. 2. Y. Kato, T. Nitawaki and Y. Muto, 'Medium Temperature Carbon Dioxide Gas Turbine Reactor, 'Nucl. Eng. Design, 230, pp. 195-207 (2004). 3. H. N. Tran and Y. Kato, 'New 2 37Np Burning Strategy in a Supercritical CO 2 Cooled Fast Reactor Core Attaining Zero Burnup Reactivity Loss,' Proc. American Nuclear Society's Topical Meeting on Reactor Physics (PHYSOR 2006), Vancouver, British Columbia, Canada, September 10-14, 2006

  15. Role of Halden Reactor Project for world-wide nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M.A.; Volkov, B.

    2011-07-01

    The great interest for utilization of nuclear materials to produce energy in the middle of last century needed special investigations using first class research facilities. Common problems in the area of nuclear fuel development motivated the establishment of joint research efforts. The OECD Halden Reactor Project (HRP) is a good example of such a cooperative research effort, which has been performing for more than 50 years. During that time, the Halden Reactor evolved from a prototype heavy water reactor envisaged as a power source for different applications to a research reactor that is able to simulate in-core conditions of modern commercial power reactors. The adaptability of the Halden Reactor enables the HRP to be an important international test facility for nuclear fuels and materials development. The long-term international cooperation is based on the flexible HRP organizational structure which also provides the continued success. [1,2] This paper gives a brief history of the Halden Reactor Project and its contribution to world-wide nuclear energy development. Recent expansion of the Project to the East and Asian countries may also assist and stimulate the development of a nuclear industry within these countries. The achievements of the HRP rely on the versatility of the research carried out in the reactor with reliable testing techniques and in-pile instrumentation. Diversification of scientific activity in the areas of development of alternative energy resources and man-machine technology also provide the HRP with a stable position as one of the leaders in the world scientific community. All of these aspects are described in this paper together with current experimental works, including the investigation of ULBA (Kazakhstan) production fuel in comparison with other world fuel suppliers, as well as other future and prospective plans of the Project.(Author)

  16. Role of Halden Reactor Project for world-wide nuclear energy development

    International Nuclear Information System (INIS)

    McGrath, M.A.; Volkov, B.

    2011-01-01

    The great interest for utilization of nuclear materials to produce energy in the middle of last century needed special investigations using first class research facilities. Common problems in the area of nuclear fuel development motivated the establishment of joint research efforts. The OECD Halden Reactor Project (HRP) is a good example of such a cooperative research effort, which has been performing for more than 50 years. During that time, the Halden Reactor evolved from a prototype heavy water reactor envisaged as a power source for different applications to a research reactor that is able to simulate in-core conditions of modern commercial power reactors. The adaptability of the Halden Reactor enables the HRP to be an important international test facility for nuclear fuels and materials development. The long-term international cooperation is based on the flexible HRP organizational structure which also provides the continued success. [1,2] This paper gives a brief history of the Halden Reactor Project and its contribution to world-wide nuclear energy development. Recent expansion of the Project to the East and Asian countries may also assist and stimulate the development of a nuclear industry within these countries. The achievements of the HRP rely on the versatility of the research carried out in the reactor with reliable testing techniques and in-pile instrumentation. Diversification of scientific activity in the areas of development of alternative energy resources and man-machine technology also provide the HRP with a stable position as one of the leaders in the world scientific community. All of these aspects are described in this paper together with current experimental works, including the investigation of ULBA (Kazakhstan) production fuel in comparison with other world fuel suppliers, as well as other future and prospective plans of the Project.(Author)

  17. Contribution of recently measured nuclear data to reactor antineutrino energy spectra predictions

    Directory of Open Access Journals (Sweden)

    Fallot M.

    2013-12-01

    Full Text Available This paper attempts to summarize the actual problematic of reactor antineutrino energy spectra in the frame of fundamental and applied neutrino physics. Nuclear physics is an important ingredient of reactor antineutrino experiments. These experiments are motivated by neutrino oscillations, i.e. the measure of the θ13 mixing angle. In 2011, after a new computation of the reactor antineutrino energy spectra, based on the conversion of integral data of the beta spectra from 235U, and 239;241Pu, a deficit of reactor antineutrinos measured by short baseline experiments was pointed out. This is called the “reactor anomaly”, a new puzzle in the neutrino physics area. Since then, numerous new experimental neutrino projects have emerged. In parallel, computations of the antineutrino spectra independant from the ILL data would be desirable. One possibility is the use of the summation method, summing all the contributions of the fission product beta decay branches that can be found in nuclear databases. Studies have shown that in order to obtain reliable summation antineutrino energy spectra, new nuclear physics measurements of selected fission product beta decay properties are required. In these proceedings, we will present the computation methods of reactor antineutrino energy spectra and the impact of recent beta decay measurements on summation method spectra. The link of these nuclear physics studies with short baseline line oscillation search will be drawn and new neutrino physics projects at research reactors will be briefly presented.

  18. Linear programming optimization of nuclear energy strategy with sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Lee, Je Whan; Jeong, Yong Hoon; Chang, Yoon Il; Chang, Soon Heung

    2011-01-01

    Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. A Sodium-cooled Fast Reactor (SFR) was developed to extend uranium resource utilization under a growing nuclear energy scenario while concomitantly providing a nuclear waste management solution. Key questions in this scenario are when to introduce SFRs and how many reactors should be introduced. In this study, a methodology using Linear Programming is employed in order to quantify an optimized growth pattern of a nuclear energy system comprising light water reactors and SFRs. The optimization involves tradeoffs between SFR capital cost premiums and the total system U3O8 price premiums. Optimum nuclear growth patterns for several scenarios are presented, as well as sensitivity analyses of important input parameters

  19. Refurbish research and test reactors corresponding to global age of nuclear energy

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Oyama, Yukio; Okamoto, Koji; Yamana, Hajime; Yamaguchi, Akira

    2011-01-01

    This special article featured arguments for refurbishment of research and test reactors corresponding to global age of nuclear energy, based on the report: 'Investigation of research facilities necessary for future joint usage' issued by the special committee of Atomic Energy Society of Japan (AESJ) in September 2010. It consisted of six papers titled as 'Introduction-establishment of AESJ special committee for investigation', 'State of research and test reactors in Japan', 'State of overseas research and test reactors', 'Needs analysis for research and test reactors', 'Proposal of AESJ special committee' and 'Summary and future issues'. In order to develop human resources and promote research and development needed in global age of nuclear energy, research and test reactors would be refurbished as an Asian regional center of excellence. (T. Tanaka)

  20. Energy from nuclear reactors

    International Nuclear Information System (INIS)

    Hospe, J.

    1977-01-01

    This VDI-Nachrichten series has the target to provide a technical-objective basis for the discussion of the pros and cons of nuclear power. The first part deals with LWR-type reactors which so far have prevailed in nuclear power generation. (orig.) [de

  1. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Narabayashi, Takashi; Shimazu, Youichiro

    2008-01-01

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  2. Innovative Nuclear Reactors Implementation in the Armenian Energy Sector

    International Nuclear Information System (INIS)

    Gevorgyan, A.

    2006-01-01

    The purpose of the present paper is to demonstrate the importance of nuclear energy development in Armenia with the use of innovative nuclear reactors when considering the long-term energy planning, taking into account the specific conditions and tendencies, which are formed and developed in economy of Armenia and, in particular, in fuel-energy complex of the country. When developing the long-term program, the main factors among others considered were assumed to be the energy independence and energy security of a country, and not only the least 'cost factor', as it was usually done before. When that program was under development, such social aspects as application of the infrastructure existing within the relevant sphere, and financing of decommissioning of existing units of the Armenian NNP were also took into consideration. The studies performed have shown that implementation of innovative medium size reactors would enable the energy sector of Armenia to meet all those requirements. The issues of environmental protection were also taken into consideration when developing that program. (authors)

  3. Energy-analysis of the total nuclear energy cycle based on light water reactors

    International Nuclear Information System (INIS)

    Kistemaker, J.

    1975-01-01

    The energy economy of the total nuclear energy cycle is investigated. Attention is paid to the importance of fossil fuel saving by using nuclear energy. The energy analysis is based on the construction and operation of power plants with an electric output of 1000MWe. Light water moderated reactors with a 2.7 - 3.2% enriched uranium core are considered. Additionally, the whole fuel cycle including ore winning and refining, enrichment and fuel element manufacturing and reprocessing has been taken into account. Neither radioactive waste storage problems nor safety problems related to the nuclear energy cycle and safeguarding have been dealt with, as exhaustive treatments can be found elswhere

  4. Nuclear reactors to come

    International Nuclear Information System (INIS)

    Lung, M.

    2002-01-01

    The demand for nuclear energy will continue to grow at least till 2050 because of mainly 6 reasons: 1) the steady increase of the world population, 2) China, India and Indonesia will reach higher social standard and their energy consumption will consequently grow, 3) fossil energy resources are dwindling, 4) coal will be little by little banned because of its major contribution to the emission of green house effect gas, 5) renewable energies need important technological jumps to be really efficient and to take the lead, and 6) fusion energy is not yet ready to take over. All these reasons draw a promising future for nuclear energy. Today 450 nuclear reactors are operating throughout the world producing 17% of the total electrical power demand. In order to benefit fully of this future, nuclear industry has to improve some characteristics of reactors: 1) a more efficient use of uranium (it means higher burnups), 2) a simplification and automation of reprocessing-recycling chain of processes, 3) efficient measures against proliferation and against any misuse for terrorist purposes, and 4) an enhancement of safety for the next generation of reactors. The characteristics of fast reactors and of high-temperature reactors will likely make these kinds of reactors the best tools for energy production in the second half of this century. (A.C.)

  5. Development or Deployment of 'Grid-Appropriate' Reactors for the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Ingersoll, D. T.

    2008-01-01

    The world energy demand is expected to nearly double by 2030, largely driven by rapidly increasing demand in the developing parts of the world. Many of the countries that will experience the greatest growth in energy demand have little or no current nuclear power experience and have significant constraints on the size and type of power plant that can be accommodated. Although a few reactor vendors are beginning to address this market need, most traditional vendors continue to offer only very large nuclear power plants with capacities exceeding 1500 MWe per unit. The Global Nuclear Energy Partnership (GNEP), which was initiated in the United States and now includes a partnership of 20 countries, seeks to facilitate the large-scale global growth in nuclear power. Within the GNEP program, the 'grid-appropriate' reactors (GAR) campaign has been initiated to coordinate and facilitate the development, demonstration, and deployment of reactor designs that are better suited for those countries that need or prefer smaller power plant capacities. The GNEP/GAR program addresses the full spectrum of issues for the deployment of new reactor designs to new nuclear power countries, including: reactor technology and engineering, licensing and regulatory impacts, and infrastructure needs (physical, workforce, and institutional). Initially, the program is focused on meeting the current global demand for small or medium-sized reactors using demonstrated technologies. The program will also address the development of new reactor technologies that will further enhance the safety, security, and proliferation resistance of future designs. International collaborations are being established to: (1) develop suitable requirements and criteria for GAR designs, (2) conduct R and D for longer-term reactor technologies and innovative designs, and (3) assisting new nuclear power countries in assessing their infrastructure needs. The status of these activities will be presented and future program

  6. A vision of inexhaustible energy: The fast breeder reactor in Swedish nuclear power history 1945-80

    International Nuclear Information System (INIS)

    Fjaestad, Maja

    2010-01-01

    The fast breeder is a type of nuclear reactor that aroused much attention in the 1950s and 1960s. Its ability to produce more nuclear fuel than it consumes offered promises of cheap and reliable energy, and thereby connected it to utopian ideas about an eternal supply of energy, Furthermore. the ideas of breeder reactors were a vital part of the post-war visions about the nuclear future. This dissertation investigates the plans for breeder reactors in Sweden, connecting them to the contemporary development of nuclear power with heavy or light water and the discussions of nuclear weapons, as well as to the general visions of a prosperous technological future. The history of the Swedish breeder reactor is traced from high hopes in the beginning, via the fiasco of the Swedish heavy water program, partly focusing on the activities at the company AB Atomenergi and investigating how it planned and argued for its breeder program and how this was received by the politicians. The story continues into the intensive environmental movement in the 1970s, ending with the Swedish referendum on nuclear energy in 1980, which can be seen as the final point for the Swedish breeder. The thesis discusses how the nuclear breeder reactor was transformed from an argument for nuclear power to an argument against it. The breeder began as a part of the vision of a society with abundant energy, but was later seen as a threat against the new sustainable world. The nuclear breeder reactor is an example of a technological vision that did not meet its industrial expectations. But that does not prevent the fact that breeder was an influential technology in an age where important decisions about nuclear energy were made. The thesis argues that important decisions about the contemporary reactors were taken with the idea that they in a foreseeable future would be replaced with the efficient breeder. And the last word on the breeder reactor is not said - today, reactor engineers around the world are

  7. New options for developing of nuclear energy using an accelerator-driven reactor

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1997-01-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor. Thus, the necessity of early introduction of the fast reactor can be moderated. High reliability of the proton accelerator, which is essential to implementing an accelerator-driven reactor in the nuclear energy field can be achieved by a slight extension of the accelerator's length, with only a small economical penalty. Subcritical operation provides flexible nuclear energy options including high neutron economy producing the fuel, transmuting high-level wastes, such as minor actinides, and of converting efficiently the excess Pu and military Pu into proliferation-resistant fuel

  8. Nuclear reactor engineering: Reactor systems engineering. Fourth edition, Volume Two

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in the design and operation of nuclear power plants. Extensively updated, the fourth edition includes new materials on reactor safety and risk analysis, regulation, fuel management, waste management and operational aspects of nuclear power. This volume contains the following: the systems concept, design decisions, and information tools; energy transport; reactor fuel management and energy cost considerations; environmental effects of nuclear power and waste management; nuclear reactor safety and regulation; power reactor systems; plant operations; and advanced plants and the future

  9. Indian advanced nuclear reactors

    International Nuclear Information System (INIS)

    Saha, D.; Sinha, R.K.

    2005-01-01

    For sustainable development of nuclear energy, a number of important issues like safety, waste management, economics etc. are to be addressed. To do this, a number of advanced reactor designs as well as fuel cycle technologies are being pursued worldwide. The advanced reactors being developed in India are the AHWR and the CHTR. Both the reactors use thorium based fuel and have many passive features. This paper describes the Indian advanced reactors and gives a brief account of the international initiatives for the sustainable development of nuclear energy. (author)

  10. Replacement energy, capacity, and reliability costs for permanent nuclear reactor shutdowns

    International Nuclear Information System (INIS)

    VanKuiken, J.C., Buehring, W.A.; Hamilton, S.; Kavicky, J.A.; Cavallo, J.D.; Veselka, T.D.; Willing, D.L.

    1993-10-01

    Average replacement power costs are estimated for potential permanent shutdowns of nuclear electricity-generating units. Replacement power costs are considered to include replacement energy, capacity, and reliability cost components. These estimates were developed to assist the US Nuclear Regulatory Commission in evaluating regulatory issues that potentially affect changes in serious reactor accident frequencies. Cost estimates were derived from long-term production-cost and capacity expansion simulations of pooled utility-system operations. Factors that affect replacement power cost, such as load growth, replacement sources of generation, and capital costs for replacement capacity, were treated in the analysis. Costs are presented for a representative reactor and for selected subcategories of reactors, based on estimates for 112 individual reactors

  11. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  12. Nuclear energy

    International Nuclear Information System (INIS)

    Hesketh, Ross.

    1985-01-01

    The subject is treated under the headings: nuclear energy -what is it; fusion (principles; practice); fission (principles); reactor types and systems (fast (neutron) reactors as breeders; fast reactors; thermal reactors; graphite-moderated thermal reactors; the CANDU reactor; light water reactors - the BWR and the PWR); the nuclear fuel cycle (waste storage; fuel element manufacture; enrichment processes; uranium mining); safety and risk assessment; the nuclear power industry and the economy (regulating authorities; economics; advantages and disadvantages). (U.K.)

  13. Reactor, radioactive isotopes and nuclear energy: their avatars in Venezuela

    International Nuclear Information System (INIS)

    Roche, M.

    1981-01-01

    A brief history of nuclear affairs in Venezuela, since the decision to bring a research reactor (3MW) to Venezuela (1954) to current situation, is presented. Since the establishment of the National Council for Nuclear Affairs (CONAN) and then of the National Council for the Development of Nuclear Industry (CONADIN), steps are being taken to train nuclear engineers, since most studies thus far indicate the last few years of the Century as the time when nuclear energy will have to supplement other sources

  14. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    Seo, Du Hwan

    1987-01-01

    This book gives descriptions of explanations of terminologies concerning to nuclear energy such as analysis of financial safety of nuclear energy, radwaste disposal, fast breeder reactor, nuclear reactor and device, nuclear fuel and technique for concentration, using of nuclear energy radiation and measurement, plan for development of nuclear energy and international institution. This book includes 160 terms on nuclear energy and arranges in Korean alphabetical order.

  15. Source driven breeding fission power reactors and the nuclear energy strategy

    International Nuclear Information System (INIS)

    Greenspan, E.

    The nuclear energy economy is facing severe difficulties associated with low utilization of uranium resources, safety, non-proliferation and environmental issues. Energy policy makers face the dilemma: commercialize LMFBRs immediately with the risk of negative economical, proliferation or other consequences, or continue with R and D programs that will provide the information needed for sounder decisions, but now taking the risk of running out of economically exploitable uranium ore resources. The development of hybrid reactors can provide an assurance against the latter risk and offers many interesting new options for the nuclear energy strategy. Being based on the technology of LWRs and HWRs, Light Water Hybrid Reactors (LWHR) provide a most natural link between the fission reactor technology of the present and the fusion power technology of the future. The investment in their development in excess of that required for the development of fusion power reactors is expected to be relatively small, thus making the development of LWHRs potentially a high benefit-to-cost ratio program. It is recommended that the fission and fusion communities will cooperate in hybrids R and D programs aimed at assessing the technological and economical viability of hybrid reactors as reliably and soon as possible. (author)

  16. Bridging the energy gap through small and medium sized nuclear reactors in India

    International Nuclear Information System (INIS)

    Srivastava, R.

    1987-01-01

    India is the only country in the world which is employing small sized nuclear reactors for its nuclear power programme. It has now embarked on a programme of augmenting the contribution of the nuclear power by way of employing both medium and small sized nuclear reactors in the next 15 years. This paper discusses the Indian experience and its efforts for industrial mobilisation for rapidly constructing 235/500 MWe nuclear reactor units in a period of about 8 to 9 years. The current energy situation in India and this context the near term role of nuclear power for supplementing the existing sources of commercial energy have been evaluated. Nuclear power has reached such a stage of maturity whereby it has now become a commercially viable source of electricity and it could be utilised on large scale to bridge the energy gap. At present six reactor units of 210/235 MWe capacity are in operation and eight more are in different stages of construction. While we are continuing with the construction of 235 MWe units, a programme of being pursued to construct 550 MWe capacity reactor units from midnineties onwards. This has become possible with the strengthening of regional electricity grids and simultaneous efforts undertaken for augmentation of fuel supply, heavy water production and industrial infrastructure. For a developing country like India, implementation of a sizable nuclear power programme has posed certain special challenges as major inputs are required to be made available with indigeneous efforts. This paper discusses such challenges and presents the ways and means adopted to surmount them. Other developing countries with conditions comparable to those in India could benefit from Indian experience in this regard. This paper also proposes India's willingness to cooperate with other countries for exchange of information and assistance in terms of technical knowhow. (author)

  17. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  18. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  19. Fast reactors as a solution for future small-scale nuclear energy

    International Nuclear Information System (INIS)

    Kudryavtseva, A.; Danilenko, K.; Dorofeev, K.

    2013-01-01

    Small nuclear power plants can provide a future platform for decentralized energy supply providing better levels of accessibility, safety and environmental friendliness. The optimal solution for SMR deployment is fast reactors with inherent safety. To compete alternative solutions SMRs must exhibit some evident advantages in: safety, technology, and economic. Small modular reactors with lead-bismuth coolant (SVBR-100) under development in Russia can be a prospective solution for future small and decentralized energy

  20. Encapsulated nuclear heat source reactors for energy security

    International Nuclear Information System (INIS)

    Greenspan, E.; Susplugas, A.; Hong, S.G.; Monti, L.; Sumini, M.; Okawa, T.

    2006-01-01

    A spectrum of Encapsulated Nuclear Heat Source (ENHS) reactors have been conceptually designed over the last few years; they span a power range from 10 MWe to -200 MWe and consider a number of coolants and fuel types. Common features of all these designs include very long life cores - exceeding 20 effective full power years; nearly zero burnup reactivity swing; natural circulation; superb safety; autonomous load following capability; simplicity of operation and maintenance. ENHS reactors could be of particular interest for providing electricity, thermal energy and, possibly, desalinated water to communities that are not connected to a central electricity grid such as to many pacific islands and to remote communities in the mainland of different countries. ENHS reactors provide energy security by virtue of a couple of features: (1) Once an ENHS reactor is commissioned, the community has assured clean energy supply for at least 20 years without needing fuel supply. (2) The energy value of the fuel loaded (in the factory) in the ENHS module is preserved; what is needed for generating energy for additional 20+ years is to remove the fission products, add depleted uranium for makeup fuel, refabricate fuel rods and load into a new module. This fuel recycling is envisioned done by either the supplier country or by a regional or international fuel cycle centre. As the ENHS module is replaced at its entirety at the end of the core life - that is brought about by radiation damage, the ENHS plant life is likely to last for over 100 years. The above features also offer exceptional stability in the price of energy generated by the ENHS reactor. The reference ENHS design will be described followed by a brief description of the design options developed and a summary of their performance characteristics

  1. Overview of Nuclear Reactor Technologies Portfolio

    International Nuclear Information System (INIS)

    O’Connor, Thomas J.

    2012-01-01

    Office of Nuclear Energy Roadmap R&D Objectives: • Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; • Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; • Develop sustainable nuclear fuel cycles; • Develop capabilities to reduce the risks of nuclear proliferation and terrorism

  2. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  3. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  4. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  5. Integral Fast Reactor: A future source of nuclear energy

    International Nuclear Information System (INIS)

    Southon, R.

    1993-01-01

    Argonne National Laboratory is developing a reactor concept that would be an important part of the worlds energy future. This report discusses the Integral Fast Reactor (IFR) concept which provides significant improvements over current generation reactors in reactor safety, plant complexity, nuclear proliferation, and waste generation. Two major facilities, a reactor and a fuel cycle facility, make up the IFR concept. The reactor uses fast neutrons and metal fuel in a sodium coolant at atmospheric pressure that relies on laws of physics to keep it safe. The fuel cycle facility is a hot cell using remote handling techniques for fabricating reactor fuel. The fuel feed stock includes spent fuel from the reactor, and potentially, spent light water reactor fuel and plutonium from weapons. This paper discusses the unique features of the IFR concept and the differences the quality assurance program has from current commercial practices. The IFR concept provides an opportunity to design a quality assurance program that makes use of the best contemporary ideas on management and quality

  6. Innovative designs of nuclear reactors

    International Nuclear Information System (INIS)

    Gabaraev, B.A.; Cherepnin, Y.S.

    2010-01-01

    The world development scenarios predict at least a 2.5 time increase in the global consumption of primary energy in the first half of the twenty-first century. Much of this growth can be provided by the nuclear power which possesses important advantages over other energy technologies. However, the large deployment of nuclear sources may take place only when the new generation of reactors appears on the market and will be free of the shortcomings found in the existing nuclear power installations. The public will be more inclined to accept nuclear plants that have better economics; higher safety; more efficient management of the radioactive waste; lower risk of nuclear weapons proliferation, and provided that the focus is made on the energy option free of ∇ e 2 generation. Currently, the future of nuclear power is trusted to the technology based on fast reactors and closed fuel cycle. The latter implies reprocessing of the spent nuclear fuel of the nuclear plants and re-use of plutonium produced in power reactors

  7. GNES-R: Global nuclear energy simulator for reactors task 1: High-fidelity neutron transport

    International Nuclear Information System (INIS)

    Clarno, K.; De Almeida, V.; D'Azevedo, E.; De Oliveira, C.; Hamilton, S.

    2006-01-01

    A multi-laboratory, multi-university collaboration has formed to advance the state-of-the-art in high-fidelity, coupled-physics simulation of nuclear energy systems. We are embarking on the first-phase in the development of a new suite of simulation tools dedicated to the advancement of nuclear science and engineering technologies. We seek to develop and demonstrate a new generation of multi-physics simulation tools that will explore the scientific phenomena of tightly coupled physics parameters within nuclear systems, support the design and licensing of advanced nuclear reactors, and provide benchmark quality solutions for code validation. In this paper, we have presented the general scope of the collaborative project and discuss the specific challenges of high-fidelity neutronics for nuclear reactor simulation and the inroads we have made along this path. The high-performance computing neutronics code system utilizes the latest version of SCALE to generate accurate, problem-dependent cross sections, which are used in NEWTRNX - a new 3-D, general-geometry, discrete-ordinates solver based on the Slice-Balance Approach. The Global Nuclear Energy Simulator for Reactors (GNES-R) team is embarking on a long-term simulation development project that encompasses multiple laboratories and universities for the expansion of high-fidelity coupled-physics simulation of nuclear energy systems. (authors)

  8. Utilization of nuclear energy for generating electric power in the FRG, with special regard to LWR-type reactors

    International Nuclear Information System (INIS)

    Vollradt, J.

    1977-01-01

    Comments on interdependencies in energy industry and energy generation as seen by energy supply utilities, stating that the generation of electric power in Germany can only be based on coal and nuclear energy in the long run, are followed by the most important, fundamental, nuclear-physical, technological and in part political interdependencies prevailing in the starting situation of 1955/58 when the construction of nuclear power plant reactors began. Then the development ranging to the 28000 MW nuclear power output to be expected in 1985 is outlined, totalling in 115000 MW electric power in the FRG. Finally, using the respectively latest order, the technical set up of each of the reactor types with 1300 MWe unit power offered by German manufacturers are described: BBC/BBR PWR-type reactor Neupotz, KWU-PWR-type reactor Hamm and KWU PWR-type reactor double unit B+C Gundremmingen. (orig.) [de

  9. An independent safety assessment of Department of Energy nuclear reactor facilities: Procedures, operations and maintenance

    International Nuclear Information System (INIS)

    Toto, G.; Lindgren, A.J.

    1981-02-01

    The 1979 accident at the Three Mile Island commercial nuclear power plant has led to a number of studies of nuclear reactors, in both the public and private sectors. One of these is that of the Department of Energy's (DOE) Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee, which has outlined tasks for assessment of 13 reactors owned by DOE and operated by contractors. This report covers one of the tasks, the assessment of procedures, operations, and maintenance at the DOE reactor facilities, based on a review of actual documents used at the reactor sites

  10. Nuclear reactor engineering: Reactor design basics. Fourth edition, Volume One

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in design and operation of nuclear power plants. Extensively updated, the fourth edition includes new material on reactor safety and risk analysis, regulation, fuel management, waste management, and operational aspects of nuclear power. This volume contains the following: energy from nuclear fission; nuclear reactions and radiations; neutron transport; nuclear design basics; nuclear reactor kinetics and control; radiation protection and shielding; and reactor materials

  11. Nuclear energy: a sensible alternative

    International Nuclear Information System (INIS)

    Ott, K.O.; Spinrad, B.I.

    1985-01-01

    This book presents information on energy futures; energy demand, energy supplies; exclusive paths and difficult choices--hard, soft, and moderate energy paths; an energy-deficient society; energy shortages; economics of light-water reactors; fast breeder reactor economics; international cooperation in the nuclear field; nuclear recycling; alternative fuels, fuel cycles, and reactors; the nuclear weapons proliferation issue; paths to a world with more reliable nuclear safeguards; the homemade bomb issue; LWR risk assessment; accident analysis and risk assessment; the waste disposal risk; radon problems; risks in our society; health effects of low-level radiation; routine releases of radioactivity from the nuclear industry; low-level radioactivity and infant mortality; the myth of plutonium toxicity; myths about high-level radioactive waste; the aging reactor myth; the police state myth; insurance and nuclear power--the Price-Anderson Act; and solar and nuclear power as partners

  12. Aerosol core nuclear reactor for space-based high energy/power nuclear-pumped lasers

    International Nuclear Information System (INIS)

    Prelas, M.A.; Boody, F.P.; Zediker, M.S.

    1987-01-01

    An aerosol core reactor concept can overcome the efficiency and/or chemical activity problems of other fuel-reactant interface concepts. In the design of a laser using the nuclear energy for a photon-intermediate pumping scheme, several features of the aerosol core reactor concept are attractive. First, the photon-intermediate pumping concept coupled with photon concentration methods and the aerosol fuel can provide the high power densities required to drive high energy/power lasers efficiently (about 25 to 100 kW/cu cm). Secondly, the intermediate photons should have relatively large mean free paths in the aerosol fuel which will allow the concept to scale more favorably. Finally, the aerosol core reactor concept can use materials which should allow the system to operate at high temperatures. An excimer laser pumped by the photons created in the fluorescer driven by a self-critical aerosol core reactor would have reasonable dimensions (finite cylinder of height 245 cm and radius of 245 cm), reasonable laser energy (1 MJ in approximately a 1 millisecond pulse), and reasonable mass (21 kg uranium, 8280 kg moderator, 460 kg fluorescer, 450 kg laser medium, and 3233 kg reflector). 12 references

  13. Analysis of Russian transition scenarios to innovative nuclear energy system based on thermal and fast reactors with closed nuclear fuel cycle using INPRO methodology

    International Nuclear Information System (INIS)

    Kagramanyan, V.S.; Poplavskaya, E.V.; Korobeynikov, V.V.; Kalashnikov, A.G.; Moseev, A.L.; Korobitsyn, V.E.; Andreeva-Andrievskaya, L.N.

    2011-01-01

    This paper presents the results of the analysis of modeling of Russian nuclear energy (NE) scenarios on the basis of thermal and fast reactors with closed nuclear fuel cycle (NFC). Modeling has been carried out with use of CYCLE code (SSC RF IPPE's tool) designed for analysis of Nuclear Energy System (NES) with closed NFC taking into account plutonium and minor actinides (MA) isotopic composition change during multi-recycling of fuel in fast reactors. When considering fast reactor introduction scenarios, one of important questions is to define optimal time for their introduction and related NFC's facilities. Analysis of the results obtained has been fulfilled using the key INPRO indicators for sustainable energy development. It was shown that a delay in fast reactor introduction led to serious ecological, social and finally economic risks for providing energy security and sustainable development of Russia in long-term prospects and loss of knowledge and experience in mastering innovative technologies of fast reactors and related nuclear fuel cycle. (author)

  14. Nuclear waste management, reactor decommisioning, nuclear liability and public attitudes

    International Nuclear Information System (INIS)

    Green, R.E.

    1982-01-01

    This paper deals with several issues that are frequently raised by the public in any discussion of nuclear energy, and explores some aspects of public attitudes towards nuclear-related activities. The characteristics of the three types of waste associated with the nuclear fuel cycle, i.e. mine/mill tailings, reactor wastes and nuclear fuel wastes, are defined, and the methods currently being proposed for their safe handling and disposal are outlined. The activities associated with reactor decommissioning are also described, as well as the Canadian approach to nuclear liability. The costs associated with nuclear waste management, reactor decommissioning and nuclear liability are also discussed. Finally, the issue of public attitudes towards nuclear energy is addressed. It is concluded that a simple and comprehensive information program is needed to overcome many of the misconceptions that exist about nuclear energy and to provide the public with a more balanced information base on which to make decisions

  15. Energy production and reactor efficiency

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Doubts have been raised in relation to the economic and energetic efficiency of nuclear reactors. Some economists are questioning whether, when all the capital and material inputs to fission technology are considered, nuclear reactors yield sufficiently large amounts of energy to show a nett gain of energy. (author)

  16. 76 FR 14437 - Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of...

    Science.gov (United States)

    2011-03-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0055] Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of Final Design Approval The U.S. Nuclear Regulatory Commission has issued a final design approval (FDA) to GE Hitachi Nuclear Energy (GEH) for the economic...

  17. Pursuing nuclear energy with no nuclear contamination - from neutron flux reactor to deuteron flux reactor

    International Nuclear Information System (INIS)

    Li, X. Z.; Wei, Q. M.; Liu, B.; Zhu, X. G.; Ren, S. L.

    2007-01-01

    Pursuing nuclear energy with no nuclear contamination has been a long endeavor since the first fission reactor in 1942. Four major concepts have been the key issues: i.e. resonance, negative feed back, self-sustaining, nuclear radiation. When nuclear energy was just discovered in laboratory, the key issue was to enlarge it from the micro-scale to the macro-scale. Slowing-down the neutrons was the key issue to enhance the fission cross-section in order to build-up the neutron flux through the chain-reactions using resonance between neutron and fissile materials. Once the chain-reaction was realized, the negative feed-back was the key issue to keep the neutron flux at the allowable level. The negative reaction coefficient was introduced by the thermal expansion, and the resonant absorption in cadmium or boron was used to have a self-sustaining fission reactor with neutron flux. Then the strong neutron flux became the origin of all nuclear contamination, and a heavy shielding limits the application of the nuclear energy. The fusion approach to nuclear energy was much longer; nevertheless, it evolved with the similar issues. The resonance between deuteron and triton was resorted to enlarge the fusion cross section in order to keep a self-sustaining hot plasma. However, the 14 MeV neutron emission became the origin of all nuclear contamination again. Deuteron plus helium-3 fusion reaction was proposed to avoid neutron emission although there are two more difficulties: the helium-3 is supposed to be carried back from the moon; and much more higher temperature plasma has to be confined while 50 years needed to realized the deuteron-triton plasma already. Even if deuteron plus helium-3 fusion plasma might be realized in a much higher temperature plasma, we still have the neutron emission from the deuteron-deuteron fusion reaction in the deuteron plus helium-3 fusion plasma. Polarized deuteron-deuteron fusion reaction was proposed early in 1980's to select the neutron

  18. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  19. Design of radiation shields in nuclear reactor core

    International Nuclear Information System (INIS)

    Mousavi Shirazi, A.; Daneshvar, Sh.; Aghanajafi, C.; Jahanfarnia, Gh.; Rahgoshay, M.

    2008-01-01

    This article consists of designing radiation shields in the core of nuclear reactors to control and restrain the harmful nuclear radiations in the nuclear reactor cores. The radiation shields protect the loss of energy. caused by nuclear radiation in a nuclear reactor core and consequently, they cause to increase the efficiency of the reactor and decrease the risk of being under harmful radiations for the staff. In order to design these shields, by making advantages of the O ppenheim Electrical Network m ethod, the structure of the shields are physically simulated and by obtaining a special algorithm, the amount of optimized energy caused by nuclear radiations, is calculated

  20. Current Abstracts Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bales, J.D.; Hicks, S.C. [eds.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  1. Hybrid reactors: Nuclear breeding or energy production?

    International Nuclear Information System (INIS)

    Piera, Mireia; Lafuente, Antonio; Abanades, Alberto; Martinez-Val, J.M.

    2010-01-01

    After reviewing the long-standing tradition on hybrid research, an assessment model is presented in order to characterize the hybrid performance under different objectives. In hybrids, neutron multiplication in the subcritical blanket plays a major role, not only for energy production and nuclear breeding, but also for tritium breeding, which is fundamental requirement in fusion-fission hybrids. All three objectives are better achieved with high values of the neutron multiplication factor (k-eff) with the obvious and fundamental limitation that it cannot reach criticality under any event, particularly, in the case of a loss of coolant accident. This limitation will be very important in the selection of the coolant. Some general considerations will be proposed, as guidelines for assessing the hybrid potential in a given scenario. Those guidelines point out that hybrids can be of great interest for the future of nuclear energy in a framework of Sustainable Development, because they can contribute to the efficient exploitation of nuclear fuels, with very high safety features. Additionally, a proposal is presented on a blanket specially suited for fusion-fission hybrids, although this reactor concept is still under review, and new work is needed for identifying the most suitable blanket composition, which can vary depending on the main objective of the hybrid.

  2. Analysis of a Spanish energy scenario with Generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Ochoa, Raquel; Jimenez, Gonzalo; Perez-Martin, Sara

    2013-01-01

    Highlights: • Spanish energy scenario for the hypothetical deployment of Gen-IV SFR reactors. • Availability of national resources is assessed, considering SFR’s breeding. • An assessment of the impact of transmuting MA on the final repository. • SERPENT code with own pre- and post-processing tools were employed. • The employed SFR core design is based on the specifications of the CP-ESFR. - Abstract: The advantages of fast-spectrum reactors consist not only of an efficient use of fuel through the breeding of fissile material and the use of natural or depleted uranium, but also of the potential reduction of the amount of actinides such as americium and neptunium contained in the irradiated fuel. The first aspect means a guaranteed future nuclear fuel supply. The second fact is key for high-level radioactive waste management, because these elements are the main responsible for the radioactivity of the irradiated fuel in the long term. The present study aims to analyze the hypothetical deployment of a Gen-IV Sodium Fast Reactor (SFR) fleet in Spain. A nuclear fleet of fast reactors would enable a fuel cycle strategy different than the open cycle, currently adopted by most of the countries with nuclear power. A transition from the current Gen-II to Gen-IV fleet is envisaged through an intermediate deployment of Gen-III reactors. Fuel reprocessing from the Gen-II and Gen-III Light Water Reactors (LWR) has been considered. In the so-called advanced fuel cycle, the reprocessed fuel used to produce energy will breed new fissile fuel and transmute minor actinides at the same time. A reference case scenario has been postulated and further sensitivity studies have been performed to analyze the impact of the different parameters on the required reactor fleet. The potential capability of Spain to supply the required fleet for the reference scenario using national resources has been verified. Finally, some consequences on irradiated final fuel inventory are assessed

  3. Neutron-physical simulation of fast nuclear reactor cores. Investigation of new and emerging nuclear reactor systems

    International Nuclear Information System (INIS)

    Friess, Friederike Renate

    2017-01-01

    According to a many publications and discussions, fast reactors hold promises to improve safety, non-proliferation, economic aspects, and reduce the nuclear waste problems. Consequently, several reactor designs advocated by the Generation IV Forum are fast reactors. In reality, however, after decades of research and development and billions of dollars investment worldwide, there are only two fast breeders currently operational on a commercial basis: the Russian reactors BN-600 and BN-800. Energy generation alone is apparently not a sufficient selling point for fast breeder reactors. Therefore, other possible applications for fast nuclear reactors are advocated. Three relevant examples are investigated in this thesis. The first one is the disposition of excess weapon-grade plutonium. Unlike for high enriched uranium that can be downblended for use in light water reactors, there exists no scientifically accepted solution for the disposition of weapon-grade plutonium. One option is the use in fast reactors that are operated for energy production. In the course of burn-up, the plutonium is irradiated which intends to fulfill two objectives: the resulting isotopic composition of the plutonium is less suitable for nuclear weapons, while at the same time the build-up of fission products results in a radiation barrier. Appropriate reprocessing technology is in order to extract the plutonium from the spent fuel. The second application is the use as so-called nuclear batteries, a special type of small modular reactors (SMRs). Nuclear batteries offer very long core lifetimes and have a very small energy output of sometimes only 10 MWe. They can supposedly be placed (almost) everywhere and supply energy without the need for refueling or shuffling of fuel elements for long periods. Since their cores remain sealed for several decades, nuclear batteries are claimed to have a higher proliferation resistance. The small output and the reduced maintenance and operating requirements

  4. Neutron-physical simulation of fast nuclear reactor cores. Investigation of new and emerging nuclear reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Friess, Friederike Renate

    2017-07-12

    According to a many publications and discussions, fast reactors hold promises to improve safety, non-proliferation, economic aspects, and reduce the nuclear waste problems. Consequently, several reactor designs advocated by the Generation IV Forum are fast reactors. In reality, however, after decades of research and development and billions of dollars investment worldwide, there are only two fast breeders currently operational on a commercial basis: the Russian reactors BN-600 and BN-800. Energy generation alone is apparently not a sufficient selling point for fast breeder reactors. Therefore, other possible applications for fast nuclear reactors are advocated. Three relevant examples are investigated in this thesis. The first one is the disposition of excess weapon-grade plutonium. Unlike for high enriched uranium that can be downblended for use in light water reactors, there exists no scientifically accepted solution for the disposition of weapon-grade plutonium. One option is the use in fast reactors that are operated for energy production. In the course of burn-up, the plutonium is irradiated which intends to fulfill two objectives: the resulting isotopic composition of the plutonium is less suitable for nuclear weapons, while at the same time the build-up of fission products results in a radiation barrier. Appropriate reprocessing technology is in order to extract the plutonium from the spent fuel. The second application is the use as so-called nuclear batteries, a special type of small modular reactors (SMRs). Nuclear batteries offer very long core lifetimes and have a very small energy output of sometimes only 10 MWe. They can supposedly be placed (almost) everywhere and supply energy without the need for refueling or shuffling of fuel elements for long periods. Since their cores remain sealed for several decades, nuclear batteries are claimed to have a higher proliferation resistance. The small output and the reduced maintenance and operating requirements

  5. Energy Research Advisory Board, Civilian Nuclear Power Panel: Subpanel 1 report, Light water reactor utilization and improvement: Volume 2

    International Nuclear Information System (INIS)

    1986-10-01

    The Secretary of Energy requested that the Office of Nuclear Energy prepare a strategic national plan that outlines the Department's role in the future development of civilian nuclear power and that the Energy Research Advisory Board establish an ad hoc panel to review and comment on this plan. The Energy Research Advisory Board formed a panel for this review and three subpanels were formed. One subpanel was formed to address the institutional issues surrounding nuclear power, one on research and development for advanced nuclear power plants and a third subpanel on light water reactor utilization and improvement. The subpanel on light water reactors held two meetings at which representatives of the DOE, the NRC, EPRI, industry and academic groups made presentations. This is the report of the subpanel on light water reactor utilization and improvement. This report presents the subpanel's assessment of initiatives which the Department of Energy should undertake in the national interest, to develop and support light water reactor technologies

  6. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  7. Preservation of the first research nuclear reactor in Korea

    International Nuclear Information System (INIS)

    2008-06-01

    This book describes preservation of the first research nuclear reactor in Korea and necessity of building memorial hall, sale of the Institute of Atomic Energy Research in Seoul and dismantlement of the first and the second nuclear reactor, preservation of the first research nuclear reactor and activity about memorial hall of the atomic energy reactor, assignment and leaving the report, and the list of related data.

  8. Selection of nuclear reactor coolant materials

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong

    2012-01-01

    Nuclear material is nuclear material or materials used in nuclear industry, the general term, it is the material basis for the construction of nuclear power, but also a leader in nuclear energy development, the two interdependent and mutually reinforcing. At the same time, nuclear materials research, development and application of the depth and breadth of science and technology reflects a nation and the level of the nuclear power industry. Coolant also known as heat-carrier agent, is an important part of the heart nuclear reactor, its role is to secure as much as possible to the economic output in the form fission energy to heat the reactor to be used: the same time cooling the core, is controlled by the various structural components allowable temperature. This paper described the definition of nuclear reactor coolant and characteristics, and then addressed the requirements of the coolant material, and finally were introduced several useful properties of the coolant and chemical control. (authors)

  9. Advanced nuclear reactors and their simulators

    International Nuclear Information System (INIS)

    Chaushevski, Anton; Boshevski, Tome

    2003-01-01

    Population growth, economy development and improvement life standard impact on continually energy needs as well as electricity. Fossil fuels have limited reserves, instability market prices and destroying environmental impacts. The hydro energy capacities highly depend on geographic and climate conditions. The nuclear fission is significant factor for covering electricity needs in this century. Reasonable capital costs, low fuel and operating expenses, environmental acceptable are some of the facts that makes the nuclear energy an attractive option especially for the developing countries. The simulators for nuclear reactors are an additional software tool in order to understand, study research and analyze the processes in nuclear reactors. (Original)

  10. Soft energy vs nuclear energy

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1981-01-01

    During the early 1960s, a plentiful, inexpensive supply of petroleum enabled Japanese industry to progress rapidly; however, almost all of this petroleum was imported. Even after the first oil crisis of 1973, the recent annual energy consumption of Japan is calculated to be about 360 million tons in terms of petroleum, and actual petroleum forms 73% of total energy. It is necessary for Japan to reduce reliance on petroleum and to diversify energy resources. The use of other fossil fuels, such as coal, LNG and LPG, and hydraulic energy, is considered as an established alternative. In this presentation, the author deals with new energy, namely soft energy and nuclear energy, and discusses their characteristics and problems. The following kinds of energy are dealt with: a) Solar energy, b) Geothermal energy, c) Ocean energy (tidal, thermal, wave), d) Wind energy, e) Biomass energy, f) Hydrogen, g) Nuclear (thermal, fast, fusion). To solve the energy problem in future, assiduous efforts should be made to develop new energy systems. Among them, the most promising alternative energy is nuclear energy, and various kinds of thermal reactor systems have been developed for practical application. As a solution to the long-term future energy problem, research on and development of fast breeder reactors and fusion reactors are going on. (author)

  11. Japan: The institute for the economy of energy recommends a quick re-start of nuclear reactors

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    The Japanese Institute for the Economy of the Energy (IEEJ) considers that the sooner the nuclear reactors will re-start, the better the Japanese economy and environment will be. The 48 Japanese reactors were stopped after the Fukushima accident and their restart is linked to the implementation of new measures for reinforcing safety. Until now only 2 reactors Sendai 1 and Sendai 2 have been allowed to re-start. The procedure for the safety assessment of the reactors is slower than expected. A study shows that only 7 reactors may be allowed to re-start before march 2015 and a total of 19 units may be operating in march 2016. In this scenario 2% of the electricity will come from nuclear energy in 2014 and 15% in 2015, natural gas imports will still be necessary for the production of electricity and their global cost is estimated to reach 56 billions euros while Japan's rate of energy independence will drop by 4.6%. (A.C.)

  12. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  13. The international thermonuclear experimental reactor and the future of nuclear fusion energy

    International Nuclear Information System (INIS)

    Pan Chuanhong

    2010-01-01

    Energy shortage and environmental problems are now the two largest challenges for human beings. Magnetic confinement nuclear fusion, which has achieved great progress since the 1990's, is anticipated to be a way to realize an ideal source of energy in the future because of its abundance, environmental compatibility, and zero carbon release. Exemplified by the construction of the International Thermonuclear Experimental Reactor (ITER), the development of nuclear fusion energy is now in its engineering phase, and should be realized by the middle of this century if all objectives of the ITER project are met. (author)

  14. Reactor units for power supply to the Russian Arctic regions: Priority assessment of nuclear energy sources

    Directory of Open Access Journals (Sweden)

    Mel'nikov N. N.

    2017-03-01

    Full Text Available Under conditions of competitiveness of small nuclear power plants (SNPP and feasibility of their use to supply power to remote and inaccessible regions the competition occurs between nuclear energy sources, which is caused by a wide range of proposals for solving the problem of power supply to different consumers in the decentralized area of the Russian Arctic power complex. The paper suggests a methodological approach for expert assessment of the priority of small power reactor units based on the application of the point system. The priority types of the reactor units have been determined based on evaluation of the unit's conformity to the following criteria: the level of referentiality and readiness degree of reactor units to implementation; duration of the fuel cycle, which largely determines an autonomy level of the nuclear energy source; the possibility of creating a modular block structure of SNPP; the maximum weight of a transported single equipment for the reactor unit; service life of the main equipment. Within the proposed methodological approach the authors have performed a preliminary ranking of the reactor units according to various criteria, which allows quantitatively determining relative difference and priority of the small nuclear power plants projects aimed at energy supply to the Russian Arctic. To assess the sensitivity of the ranking results to the parameters of the point system the authors have observed the five-point and ten-point scales under variations of importance (weights of different criteria. The paper presents the results of preliminary ranking, which have allowed distinguishing the following types of the reactor units in order of their priority: ABV-6E (ABV-6M, "Uniterm" and SVBR-10 in the energy range up to 20 MW; RITM-200 (RITM-200M, KLT-40S and SVBR-100 in the energy range above 20 MW.

  15. A prehistory of nuclear energy development

    International Nuclear Information System (INIS)

    Yoshikawa, Hideo

    2007-01-01

    Evolutionary progress of the LWR plants in the last half-century was reviewed in series. As a prehistory of nuclear energy development, this first lecture presented (1) discovery of nuclear energy and development of the atomic bomb and (2) development of the reactor system using nuclear energy for making electricity and for naval propulsion. The first nuclear reactor to produce electricity was the small Experimental Breeder Reactor (EBR-1) in Idaho, in the USA, which started up in December 1951. The Pressurized Water Reactor (PWR) for naval use was developed under Hyman Rickover in the USA. The Mark I prototype naval reactor started up in March 1953 in Idaho, and the first nuclear-powered submarine, NS Nautilus, with the Mark II reactor was put into service in January 1955. (T. Tanaka)

  16. An independent safety assessment of Department of Energy nuclear reactor facilities: Safety overview and management function

    International Nuclear Information System (INIS)

    Booth, M.; Brodsky, R.S.; Frankhouser, W.L.

    1981-02-01

    The Under Secretary of Energy established the Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee in October, 1979, in the aftermath of the Three Mile Island (TMI) nuclear accident, to assess the adequacy of training of personnel at DOE nuclear facilities. Subsequently, in February, 1980, the charge to this Committee was modified to assess all implications of the Kemeny Commission report on TMI with regard to DOE nuclear reactors, excluding those in the Division of Naval Reactors. The modified charge was also limited, for the time being, to reactor facilities instead of all nuclear facilities. This report describes the portion of the revised assessment activities that was assigned to the Assessment Support Team

  17. Small Modular Reactors: Nuclear Energy Market Potential for Near-term Deployment

    International Nuclear Information System (INIS)

    Lokhov, Alexey; Sozoniuk, Vladislav; Rothwell, Geoffrey; ); Cometto, Marco; Paillere, Henri; ); Crozat, Matt; Genoa, Paul; Joon Kim, Tae; McGough, Mike; Ingersoll, Dan; Rickman, Robin; Stout, Dan; Halnon, Greg; Chenais, Jacques; Briffod, Francois-Xavier; Perrier, Sylvain; Shahrokhi, Farshid; Kaufer, Barry; Wasylyk, Andrew; Shropshire, David; ); Danrong, Song; Swinburn, Richard

    2016-01-01

    Recent interest in small modular reactors (SMRs) is being driven by a desire to reduce the total capital costs associated with nuclear power plants and to provide power to small grid systems. According to estimates available today, if all the competitive advantages of SMRs were realised, including serial production, optimised supply chains and smaller financing costs, SMRs could be expected to have lower absolute and specific (per-kWe) construction costs than large reactors. Although the economic parameters of SMRs are not yet fully determined, a potential market exists for this technology, particularly in energy mixes with large shares of renewables. This report assesses the size of the market for SMRs that are currently being developed and that have the potential to broaden the ways of deploying nuclear power in different parts of the world. The study focuses on light water SMRs that are expected to be constructed in the coming decades and that strongly rely on serial, factory-based production of reactor modules. In a high-case scenario, up to 21 GWe of SMRs could be added globally by 2035, representing approximately 3% of total installed nuclear capacity. (authors)

  18. Nuclear energy national plan. The directions for nuclear energy policy in Japan

    International Nuclear Information System (INIS)

    2006-11-01

    Nuclear energy is a key attaining an integrated solution for energy security and global warming issues. Under the Framework for Nuclear Energy Policy Japan aims to (1) maintain the 30 to 40% or more share of nuclear energy on electricity generation up to 2030 and afterwards, (2) promote the nuclear fuel cycle and (3) commercialize the fast-breeder reactors. As for policies to realize the basic targets, the 'Nuclear Energy National Plan' was compiled in August 2006 as follows: (1) Investment to construct new nuclear power plants and replace existing reactors in an era of electric power liberalization, 2) Appropriate use of existing nuclear power plants with assuring safety as a key prerequisite, (3) Steady advancement of the nuclear fuel cycle and strategic reinforcement of nuclear fuel cycle industries, (4) Strategy to secure uranium supplied, (5) Early commercialization of the fast breeder reactor cycle, (6) Achieving and developing advanced, technologies, industries and personnel, (7) Assisting the Japanese nuclear industry in promoting the international development, (8) Involved in and/or creating international frameworks to uphold both nonproliferation and expansion of nuclear power generation, (9) Fostering trust between the sates and communities where plants are located by making public hearings and public relations highly detailed and (10) Steady promotion of measures for disposal of radioactive wastes. Implementation policies were presented in details in this book with relevant data and documents. (T. Tanaka)

  19. The future of nuclear reactors

    International Nuclear Information System (INIS)

    Teller, E.

    1989-01-01

    The Atomic Energy Commission Advisory Committee on Reactor Safeguards began work in early 1948 with the firm and unanimous conviction that nuclear power could not survive a significant damaging accident. They as a committee felt that their job was to make reactors so safe that no such event would ever occur. However, ambitious reactor planners did not like all the buts and cautions that the committee was raising. They seemed to delay unduly their setting sail into the brave new world of clean, cheap, safe nuclear energy. The committee was soon nicknamed the Committee on Reactor Prevention. Reactors, of course, represented a tremendous step into the future. To an unprecedented extent, they were based on theory. But the committee did not have the luxury of putting a preliminary model into operation and waiting for difficulties to show up. In assessing new designs and developments, they had to anticipate future difficulties. Their proposals in good part were accepted, but their deep emphasis on safety did not become a part of the program. Today, forty years later, the author still believes both in the need for nuclear reactors and in the need of a thorough-going, pervasive emphasis on their safety. Real, understandable safety can be achieved, and that achievement is the key to our nuclear future. The details he gives are only examples. The need for reactors that are not only safe but obviously safe can be ignored only at our peril

  20. Guides about nuclear energy in South Korea

    International Nuclear Information System (INIS)

    2004-03-01

    This document summarizes the main information on nuclear energy in South Korea: number of reactors in operation, type, date of commissioning, nuclear facilities under construction, nuclear share in power production, companies and organizations (Korea electric power company (KEPCO), Korea atomic energy institute (KAERI), Korea institute of nuclear safety (KINS), Korea nuclear energy foundation (KNEF), Korea hydro and nuclear power (KHNP), nuclear environment technology institute (NETEC), Korea basic science institute (KBSI)), nuclear fuel fabrication, research works on waste disposal, nuclear R and D in fission and fusion, safety of nuclear facilities, strategies under study (1000 MWe Korea standard nuclear power plant (KSNP), 1400 MWe advanced power reactor (APR), small power water cooled reactors (system-integrated modular advanced reactor (SMART) research program), development of fast reactors (Kalimer research program), development of the process of direct use of PWR fuel in Candu (DUPIC), use of reprocessing uranium, transmutation of trans-uranian and wastes (KOMAC program), first dismantling experience (Triga Mark II and III research reactors). (J.S.)

  1. Process for the transport of heat energy released by a nuclear reactor

    International Nuclear Information System (INIS)

    Nuernberg, H.W.; Wolff, G.

    1978-01-01

    The heat produced in a nuclear reactor is converted into latent chemical binding energy. The heat can be released again below 400 0 C by recombination after transport by decomposition of ethane or propane into ethylene or propylene and hydrogen. (TK) [de

  2. Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Ingersoll, Daniel T.

    2007-01-01

    The Global Nuclear Energy Partnership (GNEP) seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy. Fully meeting the GNEP vision may require the deployment of thousands of reactors in scores of countries, many of which do not use nuclear energy currently. Some of these needs will be met by large-scale Generation III and III+ reactors (>1000 MWe) and Generation IV reactors when they are available. However, because many developing countries have small and immature electricity grids, the currently available Generation III(+) reactors may be unsuitable since they are too large, too expensive, and too complex. Therefore, GNEP envisions new types of reactors that must be developed for international deployment that are 'right sized' for the developing countries and that are based on technologies, designs, and policies focused on reducing proliferation risk. The first step in developing such systems is the generation of technical requirements that will ensure that the systems meet both the GNEP policy goals and the power needs of the recipient countries. Reactor systems deployed internationally within the GNEP context must meet a number of requirements similar to the safety, reliability, economics, and proliferation goals established for the DOE Generation IV program. Because of the emphasis on deployment to nonnuclear developing countries, the requirements will be weighted differently than with Generation IV, especially regarding safety and non-proliferation goals. Also, the reactors should be sized for market conditions in developing countries where energy demand per capita, institutional maturity and industrial infrastructure vary considerably, and must utilize fuel that is compatible with the fuel recycle technologies being developed by GNEP. Arrangements are already underway to establish Working Groups jointly with Japan and Russia to develop requirements for reactor systems. Additional bilateral and multilateral

  3. Fluidized bed nuclear reactor as a IV generation reactor

    International Nuclear Information System (INIS)

    Sefidvash, Farhang

    2002-01-01

    The object of this paper is to analyze the characteristics of the Fluidized Bed Nuclear Reactor (FBNR) concept under the light of the requirements set for the IV generation nuclear reactors. It is seen that FBNR generally meets the goals of providing sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel utilization for worldwide energy production; minimize and manage their nuclear waste and notably reduce the long term stewardship burden in the future, thereby improving protection for the public health and the environment; increase the assurance that it is a very unattractive and least desirable route for diversion or theft of weapons-usable materials; excel in safety and reliability; have a very low likelihood and degree of reactor core damage; eliminate the need for offsite emergency response; have a clear life-cycle cost advantage over other energy sources; have a level of financial risk comparable to other energy projects. The other advantages of the proposed design are being modular, low environmental impact, exclusion of severe accidents, short construction period, flexible adaptation to demand, excellent load following characteristics, and competitive economics. (author)

  4. Emergency planning and response: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Knuth, D.; Boyd, R.

    1981-02-01

    The Department of Energy (DOE) has formed a Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee to assess the implications of the recommendations contained in the President's Commission Report on the Three Mile Island (TMI) Accident (the Kemeny Commission report) that are applicable to DOE's nuclear reactor operations. Thirteen DOE nuclear reactors have been reviewed. The assessments of the 13 facilities are based on information provided by the individual operator organizations and/or cognizant DOE Field Offices. Additional clarifying information was supplied in some, but not all, instances. This report indicates how these 13 reactor facilities measure up in light of the Kemeny and other TMI-related studies and recommendations, particularly those that have resulted in upgraded Nuclear Regulatory Commission (NRC) requirements in the area of emergency planning and response

  5. Complete automation of nuclear reactors control

    International Nuclear Information System (INIS)

    Weill, J.

    1955-01-01

    The use of nuclear reactor for energy production induces the installation of automatic control systems which need to be safe enough and can adapt to the industrial scale of energy production. These automatic control systems have to insure the constancy of power level and adjust the power produced to the energy demand. Two functioning modes are considered: nuclear plant connected up to other electric production systems as hydraulic or thermic plants or nuclear plants functioning on an independent network. For nuclear plants connected up with other production plants, xenon poisoning and operating cost lead to keep working at maximum power the nuclear reactors. Thus, the power modulation control system will not be considered and only start-up control, safety control, and control systems will be automated. For nuclear power plants working on an independent network, the power modulation control system is needed to economize fuel. It described the automated control system for reactors functioning with constant power: a power measurement system constituted of an ionization chamber and a direct-current amplifier will control the steadfastness of the power produced. For reactors functioning with variable power, the automated power control system will allow to change the power and maintain it steady with all the necessary safety and will control that working conditions under P max and R max (maximum power and maximum reactivity). The effects of temperature and xenon poisoning will also be discussed. Safety systems will be added to stop completely the functioning of the reactor if P max is reached. (M.P.)

  6. GE's advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Berglund, R.C.

    1993-01-01

    The excess of US electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which open-quotes are designed to ensure that the nuclear power option is available to utilities.close quotes Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14-point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other open-quotes enabling conditions.close quotes GE is participating in this national effort and GE's family of advanced nuclear power plants feature two reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the US and worldwide. Both possess the features necessary to do so safety, reliably, and economically

  7. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  8. Reactors physics. Bases of nuclear physics

    International Nuclear Information System (INIS)

    Diop, Ch.M.

    2006-01-01

    The aim of nuclear reactor physics is to quantify the relevant macroscopic data for the characterization of the neutronic state of a reactor core and to evaluate the effects of radiations (neutrons and gamma radiations) on organic matter and on inorganic materials. This first article presents the bases of nuclear physics in the context of nuclear reactors: 1 - reactor physics and nuclear physics; 2 - atomic nucleus - basic definitions: nucleus constituents, dimensions and mass of the atomic nucleus, mass defect, binding energy and stability of the nucleus, strong interaction, nuclear momentums of nucleons and nucleus; 3 - nucleus stability and radioactivity: equation of evolution with time - radioactive decay law; alpha decay, stability limit of spontaneous fission, beta decay, electronic capture, gamma emission, internal conversion, radioactivity, two-body problem and notion of radioactive equilibrium. (J.S.)

  9. Meteorological evaluation of multiple reactor contamination probabilities for a Hanford Nuclear Energy Center

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Diebel, D.I.

    1978-03-01

    The conceptual Hanford energy center is composed of nuclear power plants, hence the name Hanford Nuclear Energy Center (HNEC). Previous topical reports have covered a variety of subjects related to the HNEC including: electric power transmission, fuel cycle, and heat disposal. This report discusses the probability that a radiation release from a single reactor in the HNEC would contaminate other facilities in the center. The risks, in terms of reliability of generation, of this potential contamination are examined by Clark and Dowis

  10. An innovative nuclear reactor as a solution to global warming

    International Nuclear Information System (INIS)

    Silva, Robson Silva da; Sefidvash, Farhang

    2007-01-01

    The problem of global warming is no longer a philosophical discussion, but it is a fact seriously threatening the future of humanity. In this paper a practical solution to the problem of global warming resulting from the fossil fuelled energy suppliers is presented. The energy conservation and alternative forms of energy such as solar, wind, and bio even though having important roles, do not satisfy the energy demand generated by an increasing world population that desires to increase its standard of living. The fission process in the nuclear reactors does not produce greenhouse gases that cause global warming. The new paradigm in nuclear energy is the future innovative reactors that meet the new standards set by the INPRO Program of the IAEA. One such a reactor is presented in this paper, namely the Fixed Bed Nuclear Reactor (FBNR) that is supported by the International Atomic Energy (IAEA) in its program of Small Reactors Without On-Site Refuelling (SRWOSR), being one of the four water cooled reactors in this program. The other three reactor concepts are PFPWR50 of Japan, BWRPB of Russia and AFPR-100 of USA. It is shown that the nuclear energy of the future is totally different than what is today in respect to safety, economics, environmental impact and proliferation. In this manner, the public perception of nuclear energy will change and its acceptability is promoted. (author)

  11. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1980-01-01

    The law intends under the principles of the atomic energy act to regulate the refining, processing and reprocessing businesses of nuclear raw and fuel metarials and the installation and operation of reactors for the peaceful and systematic utilization of such materials and reactors and for securing public safety by preventing disasters, as well as to control internationally regulated things for effecting the international agreements on the research, development and utilization of atomic energy. Basic terms are defined, such as atomic energy; nuclear fuel material; nuclear raw material; nuclear reactor; refining; processing; reprocessing; internationally regulated thing. Any person who is going to engage in refining businesses other than the Power Reactor and Nuclear Fuel Development Corporation shall get the special designation by the Prime Minister and the Minister of International Trade Industry. Any person who is going to engage in processing businesses shall get the particular admission of the Prime Minister. Any person who is going to establish reactors shall get the particular admission of the Prime Minister, The Minister of International Trade and Industry or the Minister of Transportation according to the kinds of specified reactors, respectively. Any person who is going to engage in reprocessing businesses other than the Power Reactor and Nuclear Fuel Development Corporation and the Japan Atomic Energy Research Institute shall get the special designation by the Prime Minister. The employment of nuclear fuel materials and internationally regulated things is defined in detail. (Okada, K.)

  12. Nuclear Reactor Physics

    Science.gov (United States)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  13. Economics of seawater desalination with innovative nuclear reactors and other energy sources: the EURODESAL project

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2004-01-01

    This paper summarises our recent investigations undertaken as part of the EURODESAL project on nuclear desalination, which were carried out by a consortium of four EU and one Canadian, Industrials and two leading EU R and D organisations. Major results of the project, in particular of its economic evaluation work package as discussed in this paper, are: 1. A coherent demonstration of the technical feasibility of nuclear desalination through the development of technical principles for the optimum cogeneration of electricity and water and by exploring the unique capabilities of the innovative nuclear reactors and desalination technologies; verification that the integrated system design does not adversely affect nuclear reactor safety. 2. The development of codes and methods for an objective assessment of the competitiveness and sustainability of proposed solutions through comparison, in European conditions, with fossil and renewable energy based solutions. The results obtained so far seem to be quite encouraging as regards the economical viability of nuclear desalination options. Thus, for example, specific desalination costs ($/m 3 of desalted water) for nuclear systems such as the AP600 and the French PWR900 (reference base case), coupled to Multiple Effect Distillation (MED) or the Reverse Osmosis (RO) processes, are 30% to 60% lower than fossil energy based systems using pulverised coal and natural gas with combined cycle, at low discount rates and recommended fuel prices. Even in the most unfavourable scenarios for nuclear energy (discount rates = 10%, low fossil fuel prices) desalination costs with the nuclear options with the nuclear reactors are 7% to 15% lower, depending upon the desalination capacities. Furthermore, with the high performance coupling schemes developed by the EURODESAL partners, the specific desalination costs of nuclear systems are reduced by another 2% to 14%, even without system and design optimisation. (author)

  14. The encapsulated nuclear heat source reactor for proliferation-resistant nuclear energy

    International Nuclear Information System (INIS)

    Brown, N.W.; Hossain, Q.; Carelli, M.D.; Conway, L.; Dzodzo, M.; Greenspan, E.; Saphier, D.

    2001-01-01

    The encapsulated nuclear heat source (ENHS) is a modular reactor that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor concept. It is a fast neutron spectrum reactor cooled by Pb-Bi using natural circulation. It is designed for passive load following, for high level of passive safety, and for 15 years without refueling. One of the unique features of the ENHS is that the fission-generated heat is transferred from the primary coolant to the secondary coolant across the reactor vessel wall by conduction-providing for an essentially sealed module that is easy to install and replace. Because the fuel is encapsulated within a heavy steel container throughout its life it provides a unique improvement to the proliferation resistance of the nuclear fuel cycle. This paper presents the innovative technology of the ENHS. (author)

  15. Nuclear reactor development in China for non-electrical applications

    International Nuclear Information System (INIS)

    Sun Yuliang; Zhong Daxin; Dong Duo; Xu Yuanhui

    1998-01-01

    In parallel to its vigorous program of nuclear power generation, China has attached great importance to the development of nuclear reactors for non-electrical applications. The Institute of Nuclear Energy Technology (INET) in Beijing has been developing technologies of the water-cooled heating reactor and the modular high temperature gas-cooled reactor. In 1989, a 5 MW water cooled test reactor was erected. Currently, an industrial demonstration nuclear heating plant is being projected. Feasibility studies are being made of sea-water desalination using the INET developed nuclear heating reactor as heat source. Also, a 10 MW high temperature gas-cooled test reactor is being constructed at INET in the framework of China's national high-tech program. The paper gives an overview of China's energy market situation. With respect to China's technology development of high temperature gas-cooled reactors and water cooled heating reactors, the paper describes some general requirements on the technical development, reviews the national programs and activities, describes briefly the design and safety features of the reactor concepts, discusses aspects of application potentials. (author)

  16. Desalination of seawater with nuclear reactors

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2003-01-01

    About 40 % of the world population is concerned with water scarcity. This article reviews the different techniques of desalination: distillation (MED and MSF), reverse osmosis (RO), and electrodialysis (ED). The use of nuclear energy rests on several arguments: 1) it is economically efficient compared to fossil energy. 2) nuclear reactors provide heat covering a broad range of temperature, which allows the implementation of all the desalination techniques. 3) the heat normally lost at the heat sink could be used for desalination. And 4) nuclear is respectful of the environment. The feedback experience concerning nuclear desalination is estimated to about 100 reactor-years, it is sufficient to allow the understanding of all the physical and technological processes involved. In Japan, 8 PWR-type reactors are coupled to MED, MSF, and RO desalination techniques, the water produced is used locally mainly for feeding steam generators. (A.C.)

  17. Desalination of seawater with nuclear reactors

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2001-01-01

    About 40 % of the world population is concerned with water scarcity. This article reviews the different techniques of desalination: distillation (MED and MSF), reverse osmosis (RO), and electrodialysis (ED). The use of nuclear energy rests on several arguments: 1) it is economically efficient compared to fossil energy; 2) nuclear reactors provide heat covering a broad range of temperature, which allows the implementation of all the desalination techniques; 3) the heat normally lost at the heat sink could be used for desalination; and 4) nuclear is respectful of the environment. The feedback experience concerning nuclear desalination is estimated to about 100 reactor-years, it is sufficient to allow the understanding of all the physical and technological processes involved. In Japan, 8 PWR-type reactors are coupled to MED, MSF, and RO desalination techniques, the water produced is used locally mainly for feeding steam generators. (A.C.)

  18. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF...

  19. Reactor use in nuclear engineering programs

    International Nuclear Information System (INIS)

    Murray, R.L.

    1975-01-01

    Nuclear reactors for dual use in training and research were established at about 50 universities in the period since 1950, with assistance by the U. S. Atomic Energy Commission and the National Science Foundation. Most of the reactors are in active use for a variety of educational functions--laboratory teaching of undergraduates and graduate students, graduate research, orientation of visitors, and nuclear power plant reactor operator training, along with service to the technical community. As expected, the higher power reactors enjoy a larger average weekly use. Among special programs are reactor sharing and high-school teachers' workshops

  20. Nuclear reactor built, being built, or planned

    International Nuclear Information System (INIS)

    1991-06-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1990. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly

  1. Gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at simplying gas-cooled nuclear reactors. For the cooling gas, the reactor is provided with a main circulation system comprising one or several energy conversion main groups such as gas turbines, and an auxiliary circulation system comprising at least one steam-generating boiler heated by the gas after its passage through the reactor core and adapted to feed a steam turbine with motive steam. The invention can be applied to reactors the main groups of which are direct-cycle gas turbines [fr

  2. Modification of the Japanese first nuclear ship reactor for a regional energy supply system

    International Nuclear Information System (INIS)

    Sato, K.; Shimazu, Y.; Narabayashi, T.; Tsuji, M.

    2008-01-01

    Nuclear Ship Mutsu was developed as the first experimental nuclear ship of Japan. It has several advantages as a prototype for regional energy supply system. Considering the attractive advantages of the Mutsu reactor, we investigated the feasibility of development of a small regional energy system by adopting the Mutsu reactor as a starting model. The system could supply with not only electricity but also heat. Heat could be used for hot-water supply, a heating system of a house, melting snow and so on, especially for those in northern part of Japan. The system should satisfy the requirements for GEN IV systems and the current regulations. From this point of view, the modification of the reactor was initiated by taking into improvements and technology of the state of arts to fulfill the requirements such as (1) Longer core life without refueling, (2) Reactivity adjustment for load change without control rods or soluble boron, (3) Simpler operations for load changes and (4) Ultimate safety with sufficient passive capability. Currently it is assumed to use basic standard 17x17 fuel assembly design for WH type PWRs. Nuclear design calculations are carried out by 'SRAC 2002 ', which has been developed in Japan Atomic Energy Agency. Several problems have not been solved yet, but we confirmed the proposed core has about 10 years life time. So the proposed core has a possibility to be used for a small regional energy system. (authors)

  3. Theory of neutron slowing down in nuclear reactors

    CERN Document Server

    Ferziger, Joel H; Dunworth, J V

    2013-01-01

    The Theory of Neutron Slowing Down in Nuclear Reactors focuses on one facet of nuclear reactor design: the slowing down (or moderation) of neutrons from the high energies with which they are born in fission to the energies at which they are ultimately absorbed. In conjunction with the study of neutron moderation, calculations of reactor criticality are presented. A mathematical description of the slowing-down process is given, with particular emphasis on the problems encountered in the design of thermal reactors. This volume is comprised of four chapters and begins by considering the problems

  4. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle; 1: l'atome. 2: la radioactivite. 3: l'homme et les rayonnements. 4: l'energie. 5: l'energie nucleaire: fusion et fission. 6: le fonctionnement d'un reacteur nucleaire. 7: le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  5. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  6. Reports and operational engineering: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Rochman, A.; Washburn, B.W.

    1981-02-01

    The Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee, established via an October 24, 1979 memorandum from the Department of Energy (DOE) Under Secretary, was instructed to review the ''Kemeny Commission'' recommendations and to identify possible implications for DOE's nuclear facilities. As a result of this review, the Committee recommended that DOE carry out assessments in seven categories. The assessments would address specific topics identified for each category as delineated in the NFPQT ''Guidelines for Assessing the Safe Operation of DOE-Owned Reactors,'' dated May 7, 1980. The Committee recognized that similar assessments had been ongoing in the DOE program and safety overview organizations since the Three Mile Island nuclear accident and it was the Committee's intent to use the results of those ongoing assessments as an input to their evaluations. This information would be supplemented by additional studies consisting of the subject-related documents used at each reactor facility studied, and an on-site review of these reactor facilities by professional personnel within the Department of Energy, its operating contractors and independent consultants. 1 tab

  7. A roadmap for nuclear energy technology

    Science.gov (United States)

    Sofu, Tanju

    2018-01-01

    The prospects for the future use of nuclear energy worldwide can best be understood within the context of global population growth, urbanization, rising energy need and associated pollution concerns. As the world continues to urbanize, sustainable development challenges are expected to be concentrated in cities of the lower-middle-income countries where the pace of urbanization is fastest. As these countries continue their trajectory of economic development, their energy need will also outpace their population growth adding to the increased demand for electricity. OECD IEA's energy system deployment pathway foresees doubling of the current global nuclear capacity by 2050 to reduce the impact of rapid urbanization. The pending "retirement cliff" of the existing U.S. nuclear fleet, representing over 60 percent of the nation's emission-free electricity, also poses a large economic and environmental challenge. To meet the challenge, the U.S. DOE has developed the vision and strategy for development and deployment of advanced reactors. As part of that vision, the U.S. government pursues programs that aim to expand the use of nuclear power by supporting sustainability of the existing nuclear fleet, deploying new water-cooled large and small modular reactors to enable nuclear energy to help meet the energy security and climate change goals, conducting R&D for advanced reactor technologies with alternative coolants, and developing sustainable nuclear fuel cycle strategies. Since the current path relying heavily on water-cooled reactors and "once-through" fuel cycle is not sustainable, next generation nuclear energy systems under consideration aim for significant advances over existing and evolutionary water-cooled reactors. Among the spectrum of advanced reactor options, closed-fuel-cycle systems using reactors with fast-neutron spectrum to meet the sustainability goals offer the most attractive alternatives. However, unless the new public-private partnership models emerge

  8. Future nuclear energy scenarios for Europe

    International Nuclear Information System (INIS)

    Roelofs, F.; Van Heek, A.

    2010-01-01

    Nuclear energy is back on the agenda worldwide. In order to prepare for the next decades and to set priorities in nuclear R and D and investment, market share scenarios are evaluated. This allows to identify the triggers which influence the market penetration of future nuclear reactor technologies. To this purpose, scenarios for a future nuclear reactor park in Europe have been analysed applying an integrated dynamic process modelling technique. Various market share scenarios for nuclear energy are derived including sub-variants with regard to the intra-nuclear options taken, e.g. introduction date of Gen-III (i.e. EPR) and Gen-IV (i.e. SCWR, HTR, FR) reactors, level of reprocessing, and so forth. The assessment was undertaken using the DANESS code which allows to provide a complete picture of mass-flow and economics of the various nuclear energy system scenarios. The analyses show that the future European nuclear park will exist of combinations of Gen-III and Gen-IV reactors. This mix will always consist of a set of reactor types each having its specific strengths. Furthermore, the analyses highlight the triggers influencing the choice between different nuclear energy deployment scenarios. In addition, a dynamic assessment is made with regard to manpower requirements for the construction of a future nuclear fleet in the different scenarios. (authors)

  9. Nuclear reactor application for high temperature power industrial processes

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Zaicho, N.D.; Alexeev, A.M.; Baturov, B.B.; Karyakin, Yu.I.; Nazarov, E.K.; Ponomarev-Stepnoj, N.N.; Protzenko, A.M.; Chernyaev, V.A.

    1977-01-01

    This report gives the results of considerations on industrial heat and technology processes (in chemistry, steelmaking, etc.) from the point of view of possible ways, technical conditions and nuclear safety requirements for the use of high temperature reactors in these processes. Possible variants of energy-technological diagrams of nuclear-steelmaking, methane steam-reforming reaction and other processes, taking into account the specific character of nuclear fuel are also given. Technical possibilities and economic conditions of the usage of different types of high temperature reactors (gas cooled reactors and reactors which have other means of transport of nuclear heat) in heat processes are examined. The report has an analysis of the problem, that arises with the application of nuclear reactors in energy-technological plants and an evaluation of solutions of this problem. There is a reason to suppose that we will benefit from the use of high temperature reactors in comparison with the production based on high quality fossil fuel [ru

  10. Nuclear energy questions

    International Nuclear Information System (INIS)

    This work pack contains illustrated booklets entitled: 'Uranium mining'; 'Reactors and radiation'; 'Nuclear waste'; 'Work book on energy'; 'Alternatives now'; 'Future energy choices'; 'Resources handbook'; and 'Tutors' guidelines': a map entitled 'Nuclear power in Britain': and two coloured pictures entitled 'Nuclear prospects' and 'Safe energy'. A cover note states that the material has been prepared for use in schools and study groups. (U.K.)

  11. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  12. Nuclear Energy and the Environment.

    Science.gov (United States)

    International Atomic Energy Agency, Vienna (Austria).

    "Nuclear Energy and the Environment" is a pocket folder of removable leaflets concerned with two major topics: Nuclear energy and Nuclear Techniques. Under Nuclear Energy, leaflets concerning the topics of "Radiation--A Fact of Life,""The Impact of a Fact: 1963 Test Ban Treaty,""Energy Needs and Nuclear Power,""Power Reactor Safety,""Transport,"…

  13. Separated type nuclear superheating reactor

    International Nuclear Information System (INIS)

    Hida, Kazuki.

    1993-01-01

    In a separated type nuclear superheating reactor, fuel assemblies used in a reactor core comprise fuel rods made of nuclear fuel materials and moderator rods made of solid moderating materials such as hydrogenated zirconium. Since the moderating rods are fixed or made detachable, high energy neutrons generated from the fuel rods are moderated by the moderating rods to promote fission reaction of the fuel rods. Saturated steams supplied from the BWR type reactor by the fission energy are converted to high temperature superheated steams while passing through a steam channel disposed between the fuel rods and the moderating rods and supplied to a turbine. Since water is not used but solid moderating materials sealed in a cladding tube are used as moderation materials, isolation between superheated steams and water as moderators is not necessary. Further, since leakage of heat is reduced to improve a heat efficiency, the structure of the reactor core is simplified and fuel exchange is facilitated. (N.H.)

  14. Sustainable and safe nuclear fission energy technology and safety of fast and thermal nuclear reactors

    CERN Document Server

    Kessler, Günter

    2012-01-01

    Unlike existing books of nuclear reactor physics, nuclear engineering and nuclear chemical engineering this book covers a complete description and evaluation of nuclear fission power generation. It covers the whole nuclear fuel cycle, from the extraction of natural uranium from ore mines, uranium conversion and enrichment up to the fabrication of fuel elements for the cores of various types of fission reactors. This is followed by the description of the different fuel cycle options and the final storage in nuclear waste repositories. In addition the release of radioactivity under normal and possible accidental conditions is given for all parts of the nuclear fuel cycle and especially for the different fission reactor types.

  15. Nuclear Energy Principles, Practices, and Prospects

    CERN Document Server

    Bodansky, David

    2008-01-01

    The world faces serious difficulties in obtaining the energy that will be needed in coming decades for a growing population, especially given the problem of climate change caused by fossil fuel use. This book presents a view of nuclear energy as an important carbon-free energy option. It discusses the nuclear fuel cycle, the types of reactors used today and proposed for the future, nuclear waste disposal, reactor accidents and reactor safety, nuclear weapon proliferation, and the cost of electric power. To provide background for these discussions, the book begins with chapters on the history of the development and use of nuclear energy, the health effects of ionizing radiation, and the basic physics principles of reactor operation. The text has been rewritten and substantially expanded for this edition, to reflect changes that have taken place in the eight years since the publication of the first edition and to provide greater coverage of key topics. These include the Yucca Mountain repository plans, designs ...

  16. The status and prospects of nuclear reactor technology development

    International Nuclear Information System (INIS)

    Juhn, P.E.

    2001-01-01

    Nuclear power is a proven technology which currently contributes about 16% to the world electricity supply and, to a much lesser extent, to heat supply in some countries. Nuclear Power is economically competitive with fossil fuels for base load electricity generation in many countries, and is one of the commercially proven energy supply options that could be extended in the future to reduce environmental burdens, especially greenhouse gas emissions, from the electricity sector. Over the past five decades, nearly ten thousand reactor-years of operating experience have been accumulated with current nuclear power plants. However, nuclear power is currently at a cross-road. There are no new nuclear power construction projects in most parts of the world, except some countries in East Asia and Eastern Europe. The main issues are economic competitiveness with cheap gas plants and public concerns on nuclear waste disposal and safety. Strong economic growth and the shrinking of existing electricity over-capacities could favour nuclear power. Since nuclear power emits no greenhouse gases to the environment, its development could be further accelerated by a breakthrough in innovative nuclear reactor technology development. Great attention also needs to be paid to the design of new nuclear reactors, which are modularized and faster to construct, thus reducing capital investment and construction period, and thereby improving their overall economics and their compatibility with the infrastructure of, in particular, developing countries, where new energy demands are expected. This paper discusses the future world energy outlook, challenges for and progresses on nuclear power; overview of new nuclear reactor technology development; and the role of the International Atomic Energy Agency (IAEA) in the development of new innovative nuclear reactors. (author)

  17. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  18. Nuclear energy. Can we live with it. Or without it. A further report by the Quaker Nuclear Energy Group

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The subject is covered in chapters, entitled: introduction; some fundamental issues; nuclear energy (the potential and limits of nuclear fission; health and safety aspects (biological effects of radiation, and the natural background; radioactive waste; reactor accidents; the safety of fast breeder reactors); a note on nuclear fusion; the link between nuclear reactors and nuclear weapons; the perception of risk; an interim summary); alternative energy sources (tidal power; wind power; wave power; solar power; the need for energy storage; hydroelectricity; geothermal power; biomass; methane in deep rocks; an interim summary); conservation and political factors (energy saving; time scale for change; third world needs; a further interim summary); conclusions.

  19. Reactor, radioactive isotopes and nuclear energy: their avatars in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Roche, M

    1981-03-01

    The decision to bring a fair sized (3MW) research reactor to Venezuela, made in 1954 by a single, ambitious and prestige seeking individual working with a dictatorial government, is a clear case of cargo cult, an implicit desire to import industralized countries' science and technology by purchasing key in hand their expensive machine. The reactor has never ceased to experience difficulties since then, not so much of a physical or mechanical, but rather of a human nature and due to the almost grotesque distance between the machine's potentialities and the quantity and quality of personnel available. Demand and motivation have been scarce, because fossil and hydro energy have been so far plentiful. Military motivation was in theory absent. Perspectives have apparently improved, not that a scientific community has been trained and an infrastructure exists. Radioactive isotopes have been widely used in Venezuela, beginning in 1953, for medical practice and biological research. At present about 2.5 million bolivars worth of radioisotopes are imported annually, mostly from the US and to a lesser extent, from UK. Steps are being taken to train nuclear engineers, since most studies thus far indicate the last few years of the century as the time when nuclear energy will begin to enter the picture, and since a period of at least ten years is needed between the decision to build an atomic power plant and the time it goes into operation. Choice of technique has not been made, but an active, although still small, uranium prospecting program has been initiated. It seems as if, by the end of the century, either nuclear energy will have to supplement other sources, or standard of living of Venezuelans - at least that relative minority who can afford to live well - will drop. 2 figures, 2 tables.

  20. Improving nuclear safety at international research reactors: The Integrated Research Reactor Safety Enhancement Program (IRRSEP)

    International Nuclear Information System (INIS)

    Huizenga, David; Newton, Douglas; Connery, Joyce

    2002-01-01

    Nuclear energy continues to play a major role in the world's energy economy. Research and test reactors are an important component of a nation's nuclear power infrastructure as they provide training, experiments and operating experience vital to developing and sustaining the industry. Indeed, nations with aspirations for nuclear power development usually begin their programs with a research reactor program. Research reactors also are vital to international science and technology development. It is important to keep them safe from both accident and sabotage, not only because of our obligation to prevent human and environmental consequence but also to prevent corresponding damage to science and industry. For example, an incident at a research reactor could cause a political and public backlash that would do irreparable harm to national nuclear programs. Following the accidents at Three Mile Island and Chernobyl, considerable efforts and resources were committed to improving the safety posture of the world's nuclear power plants. Unsafe operation of research reactors will have an amplifying effect throughout a country or region's entire nuclear programs due to political, economic and nuclear infrastructure consequences. (author)

  1. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  2. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  3. U.S. Department of Energy operational experience with shipments of foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Messick, Charles E.; Massey, Charles D.; Mustin, Tracy P.

    1998-01-01

    On May 13, 1996, the U.S. Department of Energy issued a Record of Decision on a Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. The goal of the long-term policy is to recover enriched uranium exported from the United States, while giving foreign research reactor operators sufficient time to develop their own long-term solutions for storage and disposal of spent fuel. The spent fuel accepted by the U.S. DOE under the policy must be out of the research reactors by May 12, 2006 and returned to the United States by May 12, 2009. (author)

  4. R and D programme on generation IV nuclear energy systems: the high temperatures gas-cooled reactors

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Billot, P.; Anzieu, P.; Brossard, P.

    2005-01-01

    The Generation IV Technology Roadmap selected, among others, a sequenced development of advanced high temperature gas cooled reactors as one of the main focus for R and D on future nuclear energy systems. The selection of this research objective originates both from the significance of high temperature and fast neutrons for nuclear energy to meet the needs for a sustainable development for the medium-long term (2020/2030 and beyond), and from the significant common R and D pathway that supports both medium term industrial projects and more advanced versions of gas cooled reactors. The first step of the 'Gas Technology Path' aims to support the development of a modular HTR to meet specific international market needs around 2020. The second step is a Very High Temperature Reactor - VHTR (>950 C) - to efficiently produce hydrogen through thermo-chemical or electro-chemical water splitting or to generate electricity with an efficiency above 50%, among other applications of high temperature nuclear heat. The third step of the Path is a Gas Fast Reactor - GFR - that features a fast-spectrum helium-cooled reactor and closed fuel cycle, with a direct or indirect thermodynamic cycle for electricity production and full recycle of actinides. Hydrogen production is also considered for the GFR. The paper succinctly presents the R and D program currently under definition and partially launched within the Generation IV International Forum on this consistent set of advanced gas cooled nuclear systems. (orig.)

  5. A study on future nuclear reactor technology and development strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Kim, S. H.; Sohn, D. S.; Suk, S. D.; Zee, S. K.; Yang, M. H.; Kim, H. J.; Park, W. S

    2000-12-01

    Development of nuclear reactor and fuel cycle technology for future is essential to meet the current issues such as enhancement of nuclear power reactor safety, economically competitive with gas turbine power generation, less production of radioactive waste, proliferation resistant fuel cycle, and public acceptance in consideration of lack of energy resources in the nuclear countries worldwide as well as in Korea. This report deals with as follows, 1) Review the world energy demand and supply perspective and analyse nature of energy and sustainable development to set-up nuclear policy in Korea 2) Recaptitulate the current long term nuclear R and D activities 3) Review nuclear R and D activities and programs of USA, Japan, France, Russia, international organizations such as IAEA, OECD/NEA 4) Recommend development directions of nuclear reactors and fuels.

  6. A study on future nuclear reactor technology and development strategy

    International Nuclear Information System (INIS)

    Kim, S. Y.; Kim, S. H.; Sohn, D. S.; Suk, S. D.; Zee, S. K.; Yang, M. H.; Kim, H. J.; Park, W. S.

    2000-12-01

    Development of nuclear reactor and fuel cycle technology for future is essential to meet the current issues such as enhancement of nuclear power reactor safety, economically competitive with gas turbine power generation, less production of radioactive waste, proliferation resistant fuel cycle, and public acceptance in consideration of lack of energy resources in the nuclear countries worldwide as well as in Korea. This report deals with as follows, 1) Review the world energy demand and supply perspective and analyse nature of energy and sustainable development to set-up nuclear policy in Korea 2) Recaptitulate the current long term nuclear R and D activities 3) Review nuclear R and D activities and programs of USA, Japan, France, Russia, international organizations such as IAEA, OECD/NEA 4) Recommend development directions of nuclear reactors and fuels

  7. Nuclear reactors built, being built, or planned, 1988

    International Nuclear Information System (INIS)

    1989-08-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1988. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington Headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables. Section 2 includes nuclear reactors that are operating, being built, or planned. Section 3 includes reactors that have been shut down permanently or dismantled

  8. EPR (European Pressurized water Reactor) The advanced nuclear reactor

    International Nuclear Information System (INIS)

    2004-01-01

    Nuclear energy, which provides a steady supply of electricity at low cost, has its rightful place in the energy mix of the 21. century, which puts the emphasis on sustainable development. The EPR is the only 3. generation reactor under construction today. It is an evolutionary reactor that represents a new generation of pressurized water reactors with no break in the technology used for the most recent models. The EPR was developed by Framatome and Siemens, whose nuclear activities were combined in January 2001 to form Framatome ANP, a subsidiary of AREVA and Siemens. EDF and the major German electricity companies played an active part in the project. The safety authorities of the two countries joined forces to bring their respective safety standards into line and draw up joint design rules for the new reactor. The project had three objectives: meet the requirements of European utilities, comply with the safety standards laid down by the French safety authority for future pressurized water reactors, in concert with its German counterpart, and make nuclear energy even more competitive than energy generated using fossil fuels. The EPR can guarantee a safe, inexpensive electricity supply, without adding to the greenhouse effect. It meets the requirements of the safety authorities and lives up to the expectations of electricity utilities. This document presents the main characteristics of the EPR, and in particular the additional measures to prevent the occurrence of events likely to damage the core, the leak-tight containment, the measures to reduce the exposure of operating and maintenance personnel, the solutions for an even greater protection of the environment. The foreseen development of the EPR in France and abroad (Finland, China, the United States) is summarized

  9. Non-electric applications of pool-type nuclear reactors

    International Nuclear Information System (INIS)

    Adamov, E.O.; Cherkashov, Yu.M.; Romenkov, A.A.

    1997-01-01

    This paper recommends the use of pool-type light water reactors for thermal energy production. Safety and reliability of these reactors were already demonstrated to the public by the long-term operation of swimming pool research reactors. The paper presents the design experience of two projects: Apatity Underground Nuclear Heating Plant and Nuclear Sea-Water Desalination Plant. The simplicity of pool-type reactors, the ease of their manufacturing and maintenance make this type of a heat source attractive to the countries without a developed nuclear industry. (author). 6 figs, 1 tab

  10. Passive cooling of a fixed bed nuclear reactor

    International Nuclear Information System (INIS)

    Petry, V.J.; Bortoli, A.L. de; Sefidwash, F.

    2005-01-01

    Small nuclear reactors without the need for on-site refuelling have greater simplicity, better compliance with passive safety systems, and are more adequate for countries with small electric grids and limited investment capabilities. Here the passive cooling characteristic of the fixed bed nuclear reactor (FBNR), that is being developed under the International Atomic Energy Agency (IAEA) Coordinated Research Project, is studied. A mathematical model is developed to calculate the temperature distribution in the fuel chamber of the reactor. The results demonstrate the passive cooling of this nuclear reactor concept. (authors)

  11. Prospect of realizing nuclear fusion reactors

    International Nuclear Information System (INIS)

    1989-01-01

    This Report describes the results of the research work on nuclear fusion, which CRIEPI has carried out for about ten years from the standpoint of electric power utilities, potential user of its energy. The principal points are; (a) economic analysis (calculation of costs) based on Japanese analysis procedures and database of commercial fusion reactors, including fusion-fission hybrid reactors, and (b) conceptual design of two types of hybrid reactors, that is, fission-fuel producing DMHR (Demonstration Molten-Salt Hybrid Reactor) and electric-power producing THPR (Tokamak Hybrid Power Reactor). The Report consists of the following chapters: 1. Introduction. 2. Conceptual Design of Hybrid Reactors. 3. Economic Analysis of Commercial Fusion Reactors. 4. Basic Studies Applicable Also to Nuclear Fusion Technology. 5. List of Published Reports and Papers; 6. Conclusion. Appendices. (author)

  12. Nuclear energy. The innovations of the N4 reactor

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The coupling to the electric network of the two first units of N4 type reactors, on the site of Chooz in the Ardennes, marks the third great step of the French nuclear programme of PWR type reactors, after the realization of 34 units of 900 MWe and 20 units of 1300 M We. The nuclear boiler N4, realizes a new evolution in power, in performances and in reliability. (N.C.)

  13. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  14. A nuclear reactor for district heating

    International Nuclear Information System (INIS)

    Bancroft, A.R.; Fenton, N.

    1989-07-01

    Global energy requirements are expected to double over the next 40 years. In the northern hemisphere, many countries consume in excess of 25 percent of their primary energy supply for building heating. Satisfying this need, within the constraints now being acknowledged for sustainable global development, provides an important opportunity for district heating. Fuel-use flexibility, energy and resource conservation, and reduced atmospheric pollution from acid gases and greenhouse gases, are important features offered by district heating systems. Among the major fuel options, only hydro-electricity and nuclear heat completely avoid emissions of combustion gases. To fill the need for an economical nuclear heat source, Atomic Energy of Canada Limited has designed a 10 MW plant that is suitable as a heat source within a network or as the main supply to large individual users. Producing hot water at temperatures below 100 degrees C, it incorporates a small pool-type reactor based on AECL's successful SLOWPOKE Research Reactor. A 2 MW prototype for the commercial unit is now being tested at the Whiteshell Nuclear Research Establishment in Manitoba. With capital costs of $7 million (Canadian), unit energy costs are projected to be $0.02/kWh for a 10 MW unit operating in a heating grid over a 30-year period. By keeping the reactor power low and the water temperature below 100 degrees C, much of the complexity of the large nuclear power plants can be avoided, thus allowing these small, safe nuclear heating systems to be economically viable

  15. A cost and safety superiority of fusion-fission hybrid reactor in China nuclear energy development

    International Nuclear Information System (INIS)

    Pereslavtszev, P.E.; Luan Guishi; Xia Chengang

    1994-08-01

    Considering economy and safety, an optimization model of nuclear energy developing scenarios of China was set up. An objective function to optimize was determined. Three prospective developing scenarios of China nuclear energy system including hybrid reactor were calculated and discussed. In the system which has no fissile material exchange with other system, a smooth developing model has a smooth distribution of inventory of Pu, thus the potential danger of whole nuclear energy system will be decreased. This scheme will improve investment effectiveness. Result shows that the optimization is necessary and the significant profit in cost and safety can be obtained. (5 tabs., 8 figs., 12 refs.)

  16. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  17. Terrestrial Energy bets on molten salt reactors

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    Terrestrial Energy is a Canadian enterprise, founded in 2013, for marketing the integral molten salt reactor (IMSR). A first prototype (called MSRE and with an energy output of 8 MW) was designed and operated between 1965 and 1969 by the Oak Ridge National Laboratory. IMSR is a small, modular reactor with a thermal energy output of 400 MW. According to Terrestrial Energy the technology of conventional power reactors is too complicated and too expensive. On the contrary IMSR's technology appears to be simple, easy to operate and affordable. With a staff of 30 people Terrestrial Energy appears to be a start-up in the nuclear sector. A process of pre-licensing will be launched in 2016 with the Canadian nuclear safety authority. (A.C.)

  18. Pollution by poverty: the need for nuclear energy

    International Nuclear Information System (INIS)

    Teller, E.

    1977-01-01

    It is stated that this lecture reflects a 'change of mind' on the part of the author, and reasons for this change are indicated. The author is now an advocate of nuclear reactors. One reason is the very great safety so far associated with nuclear reactors operating in the USA; not one of these has so far damaged the health of anybody as far as is known. The safety record is unparalleled by any other method for producing energy. Reference is made to a book by Beckmann entitled 'The Health Hazards of NOT Going Nuclear'. In this book it is asserted, amongst other things that solar energy is much more dangerous than nuclear energy; also that coal is at least a hundred times more dangerous than nuclear power. A second reason is the rising need for power throughout the world. The author asserts that nuclear energy, in conjunction with conservation and the use of oil, gas, coal, solar energy, geothermal energy, wave energy, etc., could overcome the energy crisis and that nuclear energy on a big scale is the most economic and the cleanest source, and would interfere least with the environment. Activities of anti-nuclear organisations in the USA are mentioned, but it is thought that the more people know about nuclear reactors the more they would favour them. Waste disposal is also discussed -also the fast breeder reactor. With regard to the latter, international collaboration is advocated, but the author does not subscribe to the contention that sooner or later such reactors will be essential if fission technology is to survive. The Candian CANDU reactor might be a useful alternative, irradiating Th. Sabotage receives attention, including the safeguarding of nuclear materials. Finally the proliferation of nuclear weapons is mentioned. (U.K.)

  19. Pollution by poverty: the need for nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Teller, E [California Univ., Berkeley (USA)

    1977-02-01

    It is stated that this lecture reflects a 'change of mind' on the part of the author, and reasons for this change are indicated. The author is now an advocate of nuclear reactors. One reason is the very great safety so far associated with nuclear reactors operating in the USA; not one of these has so far damaged the health of anybody as far as is known. The safety record is unparalleled by any other method for producing energy. Reference is made to a book by Beckmann entitled 'The Health Hazards of NOT Going Nuclear'. In this book it is asserted, amongst other things that solar energy is much more dangerous than nuclear energy; also that coal is at least a hundred times more dangerous than nuclear power. A second reason is the rising need for power throughout the world. The author asserts that nuclear energy, in conjunction with conservation and the use of oil, gas, coal, solar energy, geothermal energy, wave energy, etc., could overcome the energy crisis and that nuclear energy on a big scale is the most economic and the cleanest source, and would interfere least with the environment. Activities of anti-nuclear organisations in the USA are mentioned, but it is thought that the more people know about nuclear reactors the more they would favour them. Waste disposal is also discussed -also the fast breeder reactor. With regard to the latter, international collaboration is advocated, but the author does not subscribe to the contention that sooner or later such reactors will be essential if fission technology is to survive. The Candian CANDU reactor might be a useful alternative, irradiating thorium. Sabotage receives attention, including the safeguarding of nuclear materials. Finally the proliferation of nuclear weapons is mentioned.

  20. Spent nuclear fuel discharges from US reactors 1993

    International Nuclear Information System (INIS)

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics

  1. Advanced Nuclear Reactor Concepts for China

    International Nuclear Information System (INIS)

    Knoche, D.; Sassen, F.; Tietsch, W.; Yujie, Dong; Li, Cao

    2008-01-01

    China is one of the fastest growing economies in the world. With 1.3 billion people China also has the largest population worldwide. The growing economy, the migration of people from rural areas to cities and the augmentation in living standard will drive the energy demand of China in the coming decades. At present the installed electrical power is about 500 GW. In the years 2004 and 2005 the added electrical capacity was around 60 GW per year. Chinas primary energy demand is covered mainly by the use of coal. Coal also will remain the main energy source in the coming decades in China. Nevertheless taking into account more and more environmental aspects and the goal to reduce dependencies on energy imports a better energy mix strategy is planed to change including at an increasing level the renewable and nuclear option. Present the nuclear park is characterised by a large variety of different types of reactors. With the AP-1000, EPR and the gas-cooled High Temperature Reactor (HTR) the spectrum of different reactor types will be further enlarged. (authors)

  2. Advanced Nuclear Reactor Concepts for China

    Energy Technology Data Exchange (ETDEWEB)

    Knoche, D.; Sassen, F.; Tietsch, W. [Westinghouse Electric Germany, Postfach 10 05 63, 68140 Mannheim (Germany); Yujie, Dong; Li, Cao [INET, Tsinghua University, 100084 Beijing (China)

    2008-07-01

    China is one of the fastest growing economies in the world. With 1.3 billion people China also has the largest population worldwide. The growing economy, the migration of people from rural areas to cities and the augmentation in living standard will drive the energy demand of China in the coming decades. At present the installed electrical power is about 500 GW. In the years 2004 and 2005 the added electrical capacity was around 60 GW per year. Chinas primary energy demand is covered mainly by the use of coal. Coal also will remain the main energy source in the coming decades in China. Nevertheless taking into account more and more environmental aspects and the goal to reduce dependencies on energy imports a better energy mix strategy is planed to change including at an increasing level the renewable and nuclear option. Present the nuclear park is characterised by a large variety of different types of reactors. With the AP-1000, EPR and the gas-cooled High Temperature Reactor (HTR) the spectrum of different reactor types will be further enlarged. (authors)

  3. Nuclear energy in Japan

    International Nuclear Information System (INIS)

    Guillemard, B.

    1978-01-01

    After having described the nuclear partners in Japan, the author analyzes the main aspects of Japan's nuclear energy: nuclear power plants construction program; developping of light water reactors; fuel cycle politics [fr

  4. Deliberations about nuclear energy

    International Nuclear Information System (INIS)

    Boskma, P.; Smit, W.A.; Vries, G.H. de; Dijk, G. van; Groenewold, H.J.; Jelsma, J.; Tans, P.P.; Doorn, W. van

    1975-01-01

    This report is a discussion of points raised in three safety studies dealing with nuclear energy. It reviews the problems that must be faced in order to form a safe and practical energy policy with regard to health and the environment (potential hazards, biological effects and radiation dose norms), the proliferation of nuclear weapons, reactor accidents (including their causes, consequences and evacuation problems that arise), the fallout and contamination problems, and security (both reactor security and national security)

  5. A Roadmap of Innovative Nuclear Energy System

    Science.gov (United States)

    Sekimoto, Hiroshi

    2017-01-01

    Nuclear is a dense energy without CO2 emission. It can be used for more than 100,000 years using fast breeder reactors with uranium from the sea. However, it raises difficult problems associated with severe accidents, spent fuel waste and nuclear threats, which should be solved with acceptable costs. Some innovative reactors have attracted interest, and many designs have been proposed for small reactors. These reactors are considered much safer than conventional large reactors and have fewer technical obstructions. Breed-and-burn reactors have high potential to solve all inherent problems for peaceful use of nuclear energy. However, they have some technical problems with materials. A roadmap for innovative reactors is presented herein.

  6. Public's right to information: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Stokely, E.

    1981-02-01

    The events at TMI prompted the Under Secretary of the Department of Energy (DOE) to establish the Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee. This Committee was assigned the task of assessing the adequacy of nuclear facility personnel qualification and training at DOE-owned reactors in light of the Three Mile Island accident. The Committee was also asked to review recommendations and identify possible implications for DOE's nuclear facilities

  7. Energies and media nr 31. The EPR. Its role in the nuclear sector. Finland, Flamanville, Abu Dhabi. The reactor range

    International Nuclear Information System (INIS)

    2010-02-01

    After some comments on recent events in the nuclear sector in different countries (energy policy and projects in the USA, China, Italy, UK, Germany), this publication discusses the role of the EPR. It briefly outlines the characteristics of the third generation reactors compared with that of the first and second ones, evokes the influence of September 11 on design specifications, and evokes the international discussions about the project of fourth-generation reactors and the researches on nuclear fusion. It outlines the current context and the role of nuclear energy in the reduction of greenhouse gas emissions, briefly describes the opportunities offered by the use of thorium, and by fast neutron reactors. It comments the construction of the EPRs in Finland and in Flamanville, some characteristics of the EPR control system, and how France failed in selling the EPR to Abu Dhabi. It finally evokes the French offer in terms of nuclear reactors

  8. Dossier nuclear energy

    International Nuclear Information System (INIS)

    1993-11-01

    The present Dutch government compiled the title document to enable the future Dutch government to declare its opinion on the nuclear energy problemacy. The most important questions which occupy the Dutch society are discussed: safe application and risks of nuclear energy, radioactive wastes and other environmental aspects, and the possible danger of misusing nuclear technology. In chapter two attention is paid to the policy, as formulated by the Dutch government, with regard to risks of nuclear power plants. Next the technical safety regulations that have to be met are dealt with. A brief overview is given of the state of the art of commercially available nuclear reactors, as well as reactors under development. The nuclear waste problem is the subject of chapter three. Attention is paid to the Dutch policy that has been formulated and is executed, the OPLA-program, in which the underground storage of radioactive wastes is studied, the research on the conversion of long-lived radioactive isotopes to short-lived radioactive isotopes, and planned research programs. In chapter four, other environmental effects of the use of nuclear power are taken into consideration, focusing on the nuclear fuel cycle. International obligations and agreements to guarantee the peaceful use of nuclear energy (non-proliferation) are mentioned and discussed in chapter four. In chapter six the necessity to carry out surveys to determine public support for the use of nuclear energy is outlined. In the appendices nuclear energy reports in the period 1986-present are listed. Also the subject of uranium supplies is discussed and a brief overview of the use of nuclear energy in several other countries is given. 2 tabs., 5 annexes, 63 refs

  9. Resent studies in nuclear energy at INRNE - BAS

    International Nuclear Information System (INIS)

    Tonev, D.

    2013-01-01

    Institute for Nuclear Research and Nuclear Energy performs research of its own and actively participates in European projects for the development and validation of the new generation software for reactor simulation and safety analysis. Current results and planned activities aim to improve the performance and safety of the Kozloduy NPP. The scientific and technical support of the nuclear industry and the education of young specialists contribute to the sustainable development of nuclear power in Bulgaria. In this paper the main research activities of the Institute for Nuclear Research and Nuclear Energy in nuclear energy like: Core physics; Reactor dynamics and safety; NPP safety analysis; Spent fuel analysis; Nuclear fuel performance; Reactor dosimetry are presented

  10. On exposure of workers in nuclear reactor facilities for test and in nuclear reactor facilities in research and development stage in fiscal 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The Law for Regulation on Nuclear Reactor requires the operators of nuclear reactors that the exposure dose of workers engaged in work for nuclear reactors should not exceed the limits specified in official notices that are issued based on the Law. The present article summarizes the contents of the Report on Radiation Management in 1988 submitted by the operators of nuclear reactor facilities for test and those of nuclear reactor facilities in research and development stage based on the Law, and the Report on Management of Exposure Dose of Workers submitted by them based on administrative notices. The reports demonstrate that the exposure of workers was below the permissible exposure dose in 1988 in all nuclear reactor facilities. The article presents data on the distribution of exposure dose among workers in all facilities with a nuclear reactor for test, and data on personal exposure of employees and non-employees and overall exposure of all workers in the facilities of Japan Atomic Energy Research Institute and Power Reactor and Nuclear Fuel Development Corporation. (N.K.)

  11. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  12. Role of small lead-cooled fast reactors for international deployment in worldwide sustainable nuclear energy supply

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Wade, D.C.; Moisseytsev, A.

    2008-01-01

    Most recently, the global nuclear energy partnership (GNEP) has identified, as one of its key objectives, the development and demonstration of concepts for small and medium-sized reactors (SMRs) that can be globally deployed while assuring a high level of proliferation resistance. Lead-cooled systems offer several key advantages in meeting these goals. The small lead-cooled fast reactor concept known as the small secure transportable autonomous reactor (SSTAR) has been under ongoing development as part of the US advanced nuclear energy systems programs. Meeting future worldwide projected energy demands during this century (e.g., 1000 to 2000 GWe by 2050) in a sustainable manner while maintaining CO2 emissions at or below today's level will require massive deployments of nuclear reactors in non-fuel cycle states as well as fuel cycle states. The projected energy demands of non-fuel cycle states will not be met solely through the deployment of Light Water Reactors (LWRs) in those states without using up the world's resources of fissile material (e.g., known plus speculative virgin uranium resources = 15 million tonnes). The present U.S. policy is focused upon domestic deployment of large-scale LWRs and sodium-cooled fast spectrum Advanced Burner Reactors (ABRs) working in a symbiotic relationship that burns existing fissile material while destroying the actinides which are generated. Other major nuclear nations are carrying out the development and deployment of SFR breeders as witness the planning for SFR breeder deployments in France, Japan, China, India, and Russia. Small (less that 300 MWe) and medium (300 to 700 MWe) size reactors are better suited to the growing economies and infrastructures of many non-fuel cycle states and developing nations. For those deployments, fast reactor converters which are fissile self-sufficient by creating as much fissile material as they consume are preferred to breeders that create more fissile material than they consume. Thus

  13. Nuclear energy in the Eighties

    International Nuclear Information System (INIS)

    Franklin, N.L.

    1981-01-01

    The article gives a summarizing prognosis on possible developments in the utilization of nuclear energy during the next 10 years. The main concerns are the uranium supply, nuclear reactor industry, the breeding reactor, the fuel cycle, and the public opinion. (UA) [de

  14. Nuclear reactors built, being built, or planned: 1987

    International Nuclear Information System (INIS)

    1988-06-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1987. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually for Washington headquarters and field offices of DOE; from the US Nuclear regulatory Commission; from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The major change in this revision involves the data related to shutdown and dismantled facilities. Because this information serves substantially different purposes, it has been accumulated in a separate section, ''Reactors and Facilities Shutdown or Dismantled.'' Cancelled reactors or reactors whose progress has been terminated at some stage before operation are included in this section

  15. Study of nuclear reactions involving heavy nuclei and intermediate- and high-energy protons and an application in nuclear reactor physics (ADS)

    International Nuclear Information System (INIS)

    Matuoka, Paula Fernanda Toledo

    2016-01-01

    In the present work, intermediate- and high-energy nuclear reactions involving heavy nuclei and protons were studied with the Monte Carlo CRISP (Rio - Ilheus - Sao Paulo Collaboration) model. The most relevant nuclear processes studied were intranuclear cascade and fission-evaporation competition. Preliminary studies showed fair agreement between CRISP model calculation and experimental data of multiplicity of evaporated neutrons (E 20 MeV) were emitted mostly in the intranuclear cascade stage, while evaporation presented larger neutron multiplicity. Fission cross section of 209 mb and spallation cross section of 1788 mb were calculated { both in agreement with experimental data. The fission process resulted in a symmetric mass distribution. Another Monte Carlo code, MCNP, was used for radiation transport in order to understand the role of a spallation neutron source in a ADS (Accelerator Driven System) nuclear reactor. Initially, a PWR reactor was simulated to study the isotopic compositions in spent nuclear fuel. As a rst attempt, a spallation neutron source was adapted to an industrial size nuclear reactor. The results showed no evidence of incineration of transuranic elements and modifications were suggested. (author)

  16. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  17. Nuclear energy. An introduction to the concepts, systems, and applications of nuclear processes. 3. ed.

    International Nuclear Information System (INIS)

    Murray, R.L.

    1988-01-01

    An overview of nuclear energy and its uses is given, aimed at nuclear engineers, plant designers and radiation physicists. The three parts deal with the basic concepts, nuclear systems (including particle accelerators, radiation detectors, breeder reactors and fusion reactors) and nuclear energy and man. This latter section includes chapters on the history of nuclear energy, effects of radiation, isotopes, reactor safety, nuclear propulsion, radiation protection, radioactive waste disposal, laws and regulations economics and nuclear explosions. The final chapter looks to the future of nuclear energy. Each of the 27 chapters has a brief summary and exercises at the end. The appendices give selected references, conversion factors and atomic and nuclear data. (U.K.)

  18. Nuclear energy, energy for the present and the future

    International Nuclear Information System (INIS)

    Arredondo S, C.

    2008-01-01

    In this work we will try to show that nuclear energy can contribute to the generation energy in the present and the future, considering that its effect on the climatic change is relatively low and that the fuels that uses are available a large scale. At the moment it is had already commercial thermal fission reactors , there are also them of fast fission that allow the fuel rearing, although these last ones in much smaller number, with both types of fission nuclear reactors can be obtained a very important contribution to the generation of energy at world-wide level during the time that is necessary so that it is developed, constructs and operates the first commercial fusion reactor. The energy that is generated in the present and future must come from different sources, which require to be reliable, to have little effect on the environment, to have wide reserves of fuels and to be viable from an economic and social point of view, they must be viable and safe. Between possible alternative energies it is counted on the lot, the wind one, the geothermal one, originating of the tides and some others. An energy that must be considered so that it has arrived at his maturity and he is already able to contribute widely to cover the present needs and future it is nuclear energy, as much the originating one of the fission of a heavy centre like obtained when fusing two light centers. On base in the nuclear fuel reserves at world-wide level a simple calculation takes control of the lapse in which energy by means of the nuclear fission in rearing can be generated reactors expresses demonstrating that the time sufficient to finish to the investigation and development of fusion reactors which they generate energy in economic, safe and reliable form. Combining these two options the nuclear energy can be considered the future like for the present and the future with practically null effects in the climatic change. (Author)

  19. Energy distribution of antineutrinos originating from the decay of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Rudstam, G.; Aleklett, K.

    1979-01-01

    The energy spectrum of antineutrinos around a nuclear reactor has been derived by summing contributions from individual fission products. The resulting spectrum is weaker at energies above approx. 8 MeV than earlier published antineutrino spectra. The reason may be connected to the strong feeding of high-lying daughter states in the beta decay of fission products with high disintegration energies

  20. New reactor technology: safety improvements in nuclear power systems.

    Science.gov (United States)

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  1. Nuclear reactors built, being built, or planned 1992

    International Nuclear Information System (INIS)

    1993-07-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1992. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. Information is presented on five parts: Civilian, Production, Military, Export and Critical Assembly

  2. Fast-acting nuclear reactor control device

    International Nuclear Information System (INIS)

    Kotlyar, O.M.; West, P.B.

    1993-01-01

    A fast-acting nuclear reactor control device is described for controlling a safety control rod within the core of a nuclear reactor, the reactor controlled by a reactor control system, the device comprising: a safety control rod drive shaft and an electromagnetic clutch co-axial with the drive shaft operatively connected to the safety control rod for driving and positioning the safety control rod within or without the reactor core during reactor operation, the safety rod being oriented in a substantially vertical position to allow the rod to fall into the reactor core under the influence of gravity during shutdown of the reactor; the safety control rod drive shaft further operatively connected to a hydraulic pump such that operation of the drive shaft simultaneously drives and positions the safety control rod and operates the hydraulic pump such that a hydraulic fluid is forced into an accumulator, filling the accumulator with oil for the storage and supply of primary potential energy for safety control rod insertion such that the release of potential energy in the accumulator causes hydraulic fluid to flow through the hydraulic pump, converting the hydraulic pump to a hydraulic motor having speed and power capable of full length insertion and high speed driving of the safety control rod into the reactor core; a solenoid valve interposed between the hydraulic pump and the accumulator, said solenoid valve being a normally open valve, actuated to close when the safety control rod is out of the reactor during reactor operation; and further wherein said solenoid opens in response to a signal from the reactor control system calling for shutdown of the reactor and rapid insertion of the safety control rod into the reactor core, such that the opening of the solenoid releases the potential energy in the accumulator to place the safety control rod in a safe shutdown position

  3. Nuclear Energy Data 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants declined in 2012 as a result of operational issues at some facilities and suspended operation at all but two reactors in Japan. Nuclear safety was further strengthened in 2012 following safety reviews prompted by the Fukushima Daiichi nuclear power plant accident. Governments committed to maintaining nuclear power in the energy mix pursued initiatives to increase nuclear generating capacity. In Turkey, plans were finalised for the construction of the first four reactors for commercial electricity production. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Statlinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link [fr

  4. Innovative Energy Planning and Nuclear Option Using CANDLE Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, H; Nagata, A; Mingyu, Y [Tokyo Institute of Technology, Tokyo (Japan)

    2008-07-01

    A new reactor burn-up strategy CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move upward (or downward) along its core axis. This burn-up strategy can derive many merits. The change of excess reactivity along burn-up is theoretically zero for ideal equilibrium condition, and shim rods will not be required for this reactor. The reactor becomes free from accidents induced by unexpected control rods withdrawal. The core characteristics, such as power feedback coefficients and power peaking factor, are not changed during life of operation. Therefore, the operation of the reactor becomes much easier than the conventional reactors. The infinite-medium neutron multiplication factor of replacing fuel is less than unity. Therefore, the transportation and storage of replacing fuels becomes easy and safe, since they are free from criticality accidents. Small long life fast reactor with CANDLE burn-up concept has investigated with depleted uranium as a replacing fuel. Both core diameter and height are chosen to be 2.0 m, and the thermal power is 200 MW. Lead-bismuth is used as a coolant, and nitride (enriched N-15) fuel are employed. The velocity of burning region along burn-up is less than 1.0 cm/year that enables a long life design easily. The core averaged discharged fuel burn-up is about 40 percent. It is about ten times of light water reactor burn-up. The spent fuel volume becomes one-tenth of light water reactor spent fuel. If a light water reactor with a certain power output has been operated for 40 years, the CANDLE reactor can be operated for 2000 years with the same power output and with only depleted uranium left after fuel production for the light water reactor. The system does not need any reprocessing or enrichment. Therefore, the reactor operation becomes very safe, the waste

  5. Innovative Energy Planning and Nuclear Option Using CANDLE Reactors

    International Nuclear Information System (INIS)

    Sekimoto, H.; Nagata, A.; Mingyu, Y.

    2008-01-01

    A new reactor burn-up strategy CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move upward (or downward) along its core axis. This burn-up strategy can derive many merits. The change of excess reactivity along burn-up is theoretically zero for ideal equilibrium condition, and shim rods will not be required for this reactor. The reactor becomes free from accidents induced by unexpected control rods withdrawal. The core characteristics, such as power feedback coefficients and power peaking factor, are not changed during life of operation. Therefore, the operation of the reactor becomes much easier than the conventional reactors. The infinite-medium neutron multiplication factor of replacing fuel is less than unity. Therefore, the transportation and storage of replacing fuels becomes easy and safe, since they are free from criticality accidents. Small long life fast reactor with CANDLE burn-up concept has investigated with depleted uranium as a replacing fuel. Both core diameter and height are chosen to be 2.0 m, and the thermal power is 200 MW. Lead-bismuth is used as a coolant, and nitride (enriched N-15) fuel are employed. The velocity of burning region along burn-up is less than 1.0 cm/year that enables a long life design easily. The core averaged discharged fuel burn-up is about 40 percent. It is about ten times of light water reactor burn-up. The spent fuel volume becomes one-tenth of light water reactor spent fuel. If a light water reactor with a certain power output has been operated for 40 years, the CANDLE reactor can be operated for 2000 years with the same power output and with only depleted uranium left after fuel production for the light water reactor. The system does not need any reprocessing or enrichment. Therefore, the reactor operation becomes very safe, the waste

  6. Nuclear energy outlook 2008

    International Nuclear Information System (INIS)

    2008-01-01

    With the launch today of its first Nuclear Energy Outlook, the OECD Nuclear Energy Agency (NEA) makes an important contribution to ongoing discussions of nuclear energy's potential role in the energy mixes of its member countries. As world energy demand continues to grow unabated, many countries face serious concerns about the security of energy supplies, rising energy prices and climate change stemming from fossil fuel consumption. In his presentation, the NEA Director-General Luis Echavarri is emphasizing the role that nuclear power could play in delivering cost-competitive and stable supplies of energy, while also helping to reduce greenhouse gas emissions. In one Outlook scenario, existing nuclear power technologies could provide almost four times the current supply of nuclear-generated electricity by 2050. Under this scenario, 1400 reactors of the size commonly in use today would be in operation by 2050. But in order to accomplish such an expansion, securing political and societal support for the choice of nuclear energy is vital. An ongoing relationship between policy makers, the nuclear industry and society to develop knowledge building and public involvement will become increasingly important, the publication notes. Moreover, governments have a clear responsibility to maintain continued effective safety regulation, advance efforts to develop radioactive waste disposal solutions and uphold and reinforce the international non-proliferation regime. The authors find that the security of energy from nuclear power is more reliable than that for oil or gas. Additionally, uranium's high energy density means that transport is less vulnerable to disruption, and storing a large energy reserve is easier than for fossil fuels. One tonne of uranium produces the same energy as 10 000 to 16 000 tonnes of oil using current technology. Ongoing technological developments are likely to improve that performance even more. Until the middle of the century the dominant reactor

  7. Nuclear reactor for release of nuclear energy, without a chain reaction using the simultaneous implosion of three, or more, atomic nuclei

    International Nuclear Information System (INIS)

    Pedrick, A.P.

    1976-01-01

    A modified form of what is known as a 'streaking nuclear reactor' is described. In this type of reactor it is proposed to obtain release of nuclear energy from atomic nuclei by stripping such nuclei of their electron clouds or shells, to form a high temperature plasma, and breaking nucleons off the surface of the nuclei. In the apparatus described it is proposed to break up nuclei by causing three or more nuclei to collide with each other at very high velocity. Streams of nuclei, stripped of their electron clouds are directed into a reactor vessel to a focal point or implosion center along three or more ducts, equi-angularly spaced around the implosion center in the same plane, the arrangement being such as to permit mutual simultaneous collision of three or more of the nuclei. The importance of achieving a release of nuclear energy in this manner is that it may be able to use any chemical element that can be converted to a plasma, but it is most likely to be successful with elements of high atomic number, such as Pb or Bi. (U.K.)

  8. Nuclear reactors. Introduction

    International Nuclear Information System (INIS)

    Boiron, P.

    1997-01-01

    This paper is an introduction to the 'nuclear reactors' volume of the Engineers Techniques collection. It gives a general presentation of the different articles of the volume which deal with: the physical basis (neutron physics and ionizing radiations-matter interactions, neutron moderation and diffusion), the basic concepts and functioning of nuclear reactors (possible fuel-moderator-coolant-structure combinations, research and materials testing reactors, reactors theory and neutron characteristics, neutron calculations for reactor cores, thermo-hydraulics, fluid-structure interactions and thermomechanical behaviour of fuels in PWRs and fast breeder reactors, thermal and mechanical effects on reactors structure), the industrial reactors (light water, pressurized water, boiling water, graphite moderated, fast breeder, high temperature and heavy water reactors), and the technology of PWRs (conceiving and building rules, nuclear parks and safety, reactor components and site selection). (J.S.)

  9. Nuclear energy of hope and dream

    International Nuclear Information System (INIS)

    2009-02-01

    This book describes nuclear energy as hopeful and helpful energy for our life. It includes a lot of introductions of carbon energy, green energy, an atomic reactor for generation of electricity and research, a nuclear fuel cycle, radiation in life, radiation measurement, a radioisotope, the principle of utilization of radiation, utilization for clinical medicine, nuclear energy and economy, international cooperation of nuclear energy and control of nuclear energy.

  10. Towards sustainable nuclear energy: Putting nuclear physics to work

    International Nuclear Information System (INIS)

    Koning, A.J.; Rochman, D.

    2008-01-01

    We have developed a new method to propagate the uncertainties of fundamental nuclear physics models and parameters to the design and performance parameters of future, clean nuclear energy systems. Using Monte Carlo simulation, it is for the first time possible to couple these two fields at the extremes of nuclear science without any loss of information in between. With the help of a large database of nuclear reaction measurements, we have determined the uncertainties of theoretical nuclear reaction models such as the optical, compound nucleus, pre-equilibrium and fission models. A similar assessment is done for the parameters that describe the resolved resonance range. Integrating this into one simulation program enables us to describe all open channels in a nuclear reaction, including a complete handling of uncertainties. Moreover, in one and the same process, values and uncertainties of nuclear reactor parameters are computed. This bypasses all the intermediate steps which have been used so far in nuclear data and reactor physics. Two important results emerge from this work: (a) we are able to quantify the required quality of theoretical nuclear reaction models directly from the reactor design requirements and (b) our method leads to a deviation from the commonly assumed normal distribution for uncertainties of safety related reactor parameters, and this should be taken into account for future nuclear energy development. In particular, calculated k eff distributions show a high-value tail for fast reactor spectra

  11. Nuclear energy and environment

    International Nuclear Information System (INIS)

    Alves, R.N.

    1987-01-01

    A general view about the use of energy for brazilian development is presented. The international situation of the nuclear field and the pacific utilization of nuclear energy in Brazil are commented. The safety concepts used for reactor and nuclear facilities licensing, the environmental monitoring program and radiation protection program used in Brazil are described. (E.G.) [pt

  12. Nuclear data and reactor physics activities in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Liem, P.H. [National Atomic Energy Agency, Tangerang (Indonesia). Center for Multipurpose Reactor

    1998-03-01

    The nuclear data and reactor physics activities in Indonesia, especially, in the National Atomic Energy Agency are presented. In the nuclear data field, the Agency is now taking the position of a user of the main nuclear data libraries such as JENDL and ENDF/B. These nuclear data libraries become the main sources for producing problem dependent cross section sets that are needed by cell calculation codes or transport codes for design, analysis and safety evaluation of research reactors. In the reactor physics field, besides utilising the existing core analysis codes obtained from bilateral and international co-operation, the Agency is putting much effort to self-develop Batan`s codes for reactor physics calculations, in particular, for research reactor and high temperature reactor design, analysis and fuel management. Under the collaboration with JAERI, Monte Carlo criticality calculations on the first criticality of RSG GAS (MPR-30) first core were done using JAERI continuous energy, vectorized Monte Carlo code, MVP, with JENDL-3.1 and JENDL-3.2 nuclear data libraries. The results were then compared with the experiment data collected during the commissioning phase. Monte Carlo calculations with both JENDL-3.1 and -3.2 libraries produced k{sub eff} values with excellent agreement with experiment data, however, systematically, JENDL-3.2 library showed slightly higher k{sub eff} values than JENDL-3.1 library. (author)

  13. A sidelight on the history Korea nuclear energy

    International Nuclear Information System (INIS)

    Park, Ik Su

    1999-12-01

    It deals with a sidelight on the history of Korea nuclear energy through debate. It includes a lot of debates, which are about opinions on agreement of nuclear energy, three people's debates on agreement of nuclear energy between Korea and U.S.A development of nuclear energy and revolution of technology, introduction of reactor for generation of electricity, discuss over business of Korea nuclear power, the system of nuclear power plants, the issues on administration for nuclear power and radiation safety, the important things of Korea nuclear power business and Let's keep the first reactor; TRIGA-MARK-II and III.

  14. Nuclear Energy Data - 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants remained steady in 2013 despite the progressive shutdown of all reactors in Japan leading up to September and the permanent closure of six reactors in the OECD area. Governments committed to maintaining nuclear power in the energy mix advanced plans for increasing nuclear generating capacity, and progress was made in the development of deep geological repositories for spent nuclear fuel, with Finland expected to have the first such facility in operation in the early 2020's. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'StatLinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  15. Small reactors and the 'second nuclear era'

    International Nuclear Information System (INIS)

    Egan, J.R.

    1984-01-01

    Predictions of the nuclear industry's demise are premature and distort both history and politics. The industry is reemerging in a form commensurate with the priorities of those people and nations controlling the global forces of production. The current lull in plant orders is due primarily to the world recession and to factors related specifically to reactor size. Traditional economies of scale for nuclear plants have been greatly exaggerated. Reactor vendors and governments in Great Britain, France, West Germany, Japan, the United States, Sweden, Canada, and the Soviet Union are developing small reactors for both domestic applications and export to the Third World. The prefabricated, factory-assembled plants under 500 MWe may alleviate many of the existing socioeconomic constraints on nuclear manufacturing, construction, and operation. In the industrialized world, small reactors could furnish a qualitatively new energy option for utilities. But developing nations hold the largest potential market for small reactors due to the modest size of their electrical systems. These units could double or triple the market potential for nuclear power in this century. Small reactors will both qualitatively and quantitatively change the nature of nuclear technology transfers, offering unique advantages and problems vis-a-vis conventional arrangements. (author)

  16. Nuclear energy: salvaging the atomic age

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1979-01-01

    The history of atomic power is reviewed from the first chain reaction in Chicago in 1942 to the worst-to-date accident at the Three Mile Island power plant in March, 1979. While media coverage during the Three Mile Island incident made the public aware of some reactor hardware and radiation hazards, Weinberg suggests that an acceptable nuclear future should have six characteristics: increased physical isolation of reactors, further technical improvements, separation of generation and distribution, professionalization of the nuclear cadre, heightened security, and public education about the hazards of radiation. Weinberg feels the question of low-level radiation effects to be critical to public acceptance of nuclear energy. Since the effects (if any) are so rarely seen because exposures are so small, the issue may be beyond the ability of science to decipher. Weinberg again explains his reference to nuclear energy as a Faustian Bargain: ''...nuclear energy, that miraculous and quite unsuspected source of energy, demands an unprecedented degree of expertise, attention to detail, and social stability. In return, man has, in the breeder reactor, an inexhaustible energy source.''

  17. Nuclear reactors built, being built, or planned 1993

    International Nuclear Information System (INIS)

    1993-08-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1993. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: civilian, production, military, export, and critical assembly

  18. SCW Pressure-Channel Nuclear Reactor Some Design Features

    Science.gov (United States)

    Pioro, Igor L.; Khan, Mosin; Hopps, Victory; Jacobs, Chris; Patkunam, Ruban; Gopaul, Sandeep; Bakan, Kurtulus

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950s and 1960s in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with SuperCritical Water (SCW) became attractive again as the ultimate development path for water cooling. The main objectives of using SCW in nuclear reactors are: 1) to increase the thermal efficiency of modern Nuclear Power Plants (NPPs) from 30-35% to about 45-48%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (˜1000 US/kW or even less). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625°C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-tube or pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia for some time. Some design features of the Canadian concept related to fuel channels are discussed in this paper. The main conclusion is that the development of SCW pressure-tube nuclear reactors is feasible and significant benefits can be expected over other thermal-energy systems.

  19. Progress in high energy physics and nuclear safety : Proceedings of the NATO Advanced Research Workshop on Safe Nuclear Energy

    CERN Document Server

    Polański, Aleksander; Begun, Viktor

    2009-01-01

    The book contains recent results on the progress in high-energy physics, accelerator, detection and nuclear technologies, as well as nuclear safety in high-energy experimentation and in nuclear industry, covered by leading experts in the field. The forthcoming experiments at the Large Hadron Collider (LHC) at CERN and cosmic-ray experiments are highlighted. Most of the current high-energy experiments and their physical motivation are analyzed. Various nuclear energy safety aspects, including progress in the production of new radiation-resistant materials, new and safe nuclear reactor designs, such as the slowly-burning reactor, as well as the use of coal-nuclear symbiotic methods of energy production can be found in the book.

  20. Evaluation of nuclear energy in the context of energy security

    International Nuclear Information System (INIS)

    Irie, Kazutomo; Kanda, Keiji

    2002-01-01

    This paper analyzes the view expressed by the Japanese government on the role of nuclear energy for energy security through scrutiny of Japan's policy documents. The analysis revealed that the contribution by nuclear energy to Japan's energy security has been defined in two ways. Nuclear energy improves short-term energy security with its characteristics such as political stability in exporting countries of uranium, easiness of stockpiling of nuclear fuels, stability in power generation cost, and reproduction of plutonium and other fissile material for use by reprocessing of spent fuel. Nuclear energy also contributes to medium- and long-term energy security through its characteristics that fissile material can be reproduced (multiplied in the case of breeder reactor) from spent fuels. Further contribution can be expected by nuclear fusion. Japan's energy security can be strengthened not only by expanding the share of nuclear energy in total energy supply, but also by improving nuclear energy's characteristics which are related to energy security. Policy measures to be considered for such improvement will include (a) policy dialogue with exporting countries of uranium, (b) government assistance to development of uranium mines, (c) nuclear fuel stockpiling, (d) reprocessing and recycling of spent fuels, (e) development of fast breeder reactor, and (f) research of nuclear fusion. (author)

  1. Nuclear Energy Data - 2017

    International Nuclear Information System (INIS)

    2017-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on total electricity produced by all sources and by nuclear power, fuel cycle capacities and requirements, and projections to 2035, where available. Country reports summarise energy policies, updates of the status in nuclear energy programs and fuel cycle developments. In 2016, nuclear power continued to supply significant amounts of low-carbon baseload electricity, despite strong competition from low-cost fossil fuels and subsidised renewable energy sources. Three new units were connected to the grid in 2016, in Korea, Russia and the United States. In Japan, an additional three reactors returned to operation in 2016, bringing the total to five under the new regulatory regime. Three reactors were officially shut down in 2016 - one in Japan, one in Russia and one in the United States. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects making progress in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports

  2. Nuclear energy in view

    International Nuclear Information System (INIS)

    1982-01-01

    This leaflet advertises the availability of the following from UKAEA: film and video titles (nuclear fuel cycle; energy for all; power from the atom; using radioactivity; fast reactor; energy - the nuclear option; principles of fission; radiation); slide-tape packs (16 titles); other information services. (U.K.)

  3. Moderator for nuclear reactor

    International Nuclear Information System (INIS)

    Milgram, M.S.; Dunn, J.T.; Hart, R.S.

    1995-01-01

    This invention relates to a moderator for a nuclear reactor and more specifically, to a composite moderator. A moderator is designed to slow down, or thermalize, neutrons which are released during nuclear reactions in the reactor fuel. Pure or almost pure materials like light water, heavy water, beryllium or graphite are used singly as moderators at present. All these materials, are used widely. Graphite has a good mechanical strength at high temperatures encountered in the nuclear core and therefore is used as both the moderator and core structural material. It also exhibits a low neutron-capture cross section and high neutron scattering cross section. However, graphite is susceptible to attach by carbon dioxide and/or oxygen where applicable, and releases stress energy under certain circumstances, although under normal operating conditions these reactions can be controlled. (author). 1 tab

  4. Nuclear energy outlook: a GE perspective

    International Nuclear Information System (INIS)

    Fuller, J.

    2006-01-01

    Full text: Full text: As one of the world's leading suppliers of power generation and energy delivery technologies, GE Energy provides comprehensive solutions for coal, oil, natural gas and nuclear energy; renewable resources such as wind, solar and biogas, along with other alternative fuels. With the ever increasing demand for energy and pressures to decrease greenhouse gas emissions, global trends indicate a move towards building more base line nuclear generation capacity. As a reliable, cost-competitive option for commercial power generation, nuclear energy also addresses many of the issues the world faces when it comes to the environment. Since developing nuclear reactor technology in the 1950s, GE's Boiling Water Reactor (BWR) technology accounts for more than 90 operating plants in the world today. Building on that success, GE's ABWR design is now the first and only Generation 111 nuclear reactor in operation today. This advanced reactor technology, coupled with current construction experience and a qualified global supply chain, make ESBWR, GE's Generation III+ reactor design, an attractive option for owners considering adding nuclear generation capacity. In pursuit of new technologies, GE has teamed with Silex to develop, commercialize and license third generation laser enrichment technology. By acquiring the exclusive rights to develop and commercialize this technology, GE is positioned to support the anticipated global demands for enriched uranium. At GE, we are continuing to develop imaginative ideas and investing in products that are cost effective, increase productivity, limit greenhouse gas emissions, and improve safety and security for our customers

  5. Set of rules SOR 2 licensing of nuclear reactors

    International Nuclear Information System (INIS)

    1976-05-01

    This is the set of rules promulgated by the Israel Atomic Energy Commission pursuant to the Supervision of Supplies and Services Law 5718-1957, Order regarding Supervision of Nuclear Reactors (1974) Chapter 3: Permits, to provide for the Licensing of Nuclear Reactors. (B.G.)

  6. Nuclear reactors built, being built, or planned: 1989

    International Nuclear Information System (INIS)

    1990-06-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1989. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. Information is presented in five parts, each of which is categorized by primary function or purpose: civilian, production, military, export, and critical assembly facilities

  7. Proposal on experience learning of a nuclear reactor for children in future. A basic concept on a nuclear reactor facility for demonstration and education

    International Nuclear Information System (INIS)

    Murata, Takashi; Yoshiki, Nobuya; Kinehara, Yoshiki; Nakagawa, Haruo

    2001-01-01

    The Science Council of Japan indicates in a proposal on R and D on nuclear energy forward the 21st Century that it is important to expand the educational object on nuclear energy from colleges and gradual schools to elementary, middle high schools. And, the Committee of Japan Nuclear Energy Industries also proposed that as an effort forward security of reliability and popularization of knowledge, completeness of learning chance on energy and nuclear energy in education such as usage of general learning time, concept on establishment of educational reactor for demonstration and experience, is essential. Here was described on a concept on establishment of nuclear reactor for demonstration and experience at objectives of common national peoples, which was based on results of searches and investigations carried out by authors and aimed to supply to a field to grow up a literary adequately and widely capable of judging various information on the peoples by focusing to effectiveness of empirical learning as a method of promoting corrective understanding of common citizens on high class technical system and by establishment of the reactor aiming at general education on nuclear energy at a place easily accessible by common citizens, such as large city. (G.K.)

  8. Proposal on experience learning of a nuclear reactor for children in future. A basic concept on a nuclear reactor facility for demonstration and education

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Takashi [Kyoto Univ., Graduate School of Energy Science, Kyoto (Japan); Yoshiki, Nobuya; Kinehara, Yoshiki; Nakagawa, Haruo

    2001-12-01

    The Science Council of Japan indicates in a proposal on R and D on nuclear energy forward the 21st Century that it is important to expand the educational object on nuclear energy from colleges and gradual schools to elementary, middle high schools. And, the Committee of Japan Nuclear Energy Industries also proposed that as an effort forward security of reliability and popularization of knowledge, completeness of learning chance on energy and nuclear energy in education such as usage of general learning time, concept on establishment of educational reactor for demonstration and experience, is essential. Here was described on a concept on establishment of nuclear reactor for demonstration and experience at objectives of common national peoples, which was based on results of searches and investigations carried out by authors and aimed to supply to a field to grow up a literary adequately and widely capable of judging various information on the peoples by focusing to effectiveness of empirical learning as a method of promoting corrective understanding of common citizens on high class technical system and by establishment of the reactor aiming at general education on nuclear energy at a place easily accessible by common citizens, such as large city. (G.K.)

  9. Nuclear reactor operator licensing

    International Nuclear Information System (INIS)

    Bursey, R.J.

    1978-01-01

    The Atomic Energy Act of 1954, which was amended in 1974 by the Energy Reorganization Act, established the requirement that individuals who had the responsibility of operating the reactors in nuclear power plants must be licensed. Section 107 of the act states ''the Commission shall (1) prescribe uniform conditions for licensing individuals; (2) determine the qualifications of such individuals; and (3) issue licenses to such individuals in such form as the Commission may prescribe.'' The article discusses the types of licenses, the selection and training of individuals, and the administration of the Nuclear Regulatory Commission licensing examinations

  10. The church and nuclear energy

    International Nuclear Information System (INIS)

    Phillips, G.O.

    1978-03-01

    The subject is covered in sections, entitled: foreword (explaining that report is a synopsis of the Hearing on Nuclear Energy arranged by the World Council of Churches, held in Sigtune, Sweden, June 24 to 29, 1975); humanity's energy needs); alternative sources of energy (nuclear fission, nuclear fusion, non-nuclear processes; some generalisations (concerning the advantages and disadvantages of nuclear energy to various sections of the world); what risks are acceptable (radiation hazards, reactor safety, radioactive wastes, misuse of Pu, safeguarding); nuclear weapons; nuclear energy - a challenge to the Churches; social and ethical issues; certain conclusions; postscript -the American move. (U.K.)

  11. Analysis of reactor strategies to meet world nuclear energy demands

    International Nuclear Information System (INIS)

    Ligon, D.M.; Brogli, R.H.

    1979-07-01

    A number of reactor deployment strategies for long-term nuclear system development are analyzed from a global perspective in terms of resource utilization and economic benefits. Two time frames are chosen: 1975 - 2025 and 1975 - 2050. Uranium demand for various strategies is compared with uranium supply assuming different production capabilities and resource base. The analysis shows that a given reactor deployment strategy could strongly influence the extent of uranium exploration and production. Power systems cost comparisons are made to identify clearly competitive or non-competitive reactors. The sensitivity of power cost to different uranium price projections and nuclear demands is also examined. The results indicate that breeders are necessary to support a long-term nuclear power system. Advanced converter-breeder symbiotic systems, particularly those operating on the Th/U-233 cycle, have clear advantages in terms of resources and economics

  12. Nuclear energy and danger of war

    International Nuclear Information System (INIS)

    Lovins, A.B.; Lovins, L.H.

    1981-01-01

    For decades the peaceful use of nuclear energy has been regarded as a blessing, the military use, however, as a curse. The scepticism, however, whether this principal difference is justified has increased with the criticism of nuclear energy. Can the one who disposes of nuclear power plants also build nuclear bombs. These questions are posed by Amory Lovins (Soft Energy) and his wife in this work. Against this background the world-wide export of nuclear reactors gains a special explosive effect. The exporters, among them also the Federal Republic of Germany, claim that the military use of the nuclear know-how can be stopped by controls. Reality looks quite different. The authors show that the plutonium being produced in the reactor can be used for military purpose without any big technical efforts and that an effective control of this military use does not exist. On the contrary: nuclear reactors may be the welcome civilian cloak for the production of nuclear bombs. The hard energy-political way which is oriented towards nuclear energy increases the military destruction potential and thus threatens the world peace. To-day, as only one bomb has the total explosive force being used during the Second World War more and more people are of the conviction: we all will explode, the question is only - when. (orig./HP) [de

  13. Direction of Nuclear Energy. Activity report 2010

    International Nuclear Information System (INIS)

    2011-11-01

    This report proposes an overview of the research activities performed by the French DEN (Direction de l'Energie Nucleaire, Direction of Nuclear Energy) within the CEA. These activities address the future nuclear industrial systems (4. generation reactors, back-end of the future fuel cycle, basic scientific and technological research), the optimization of the industrial nuclear power (fuel cycle front end, second and third generation reactors, back-end of the present fuel cycle), major tools for the development of nuclear energy (simulation tools, Jules Horowitz reactor, value creation), clean up and dismantling of nuclear facilities (present status, the Passage project in Grenoble, the Aladin project in Fontenay-aux-Roses, projects at Marcoule, flow management of radioactive wastes, materials and disused fuels, transport). Three research centres are presented: Marcoule, Cadarache and Saclay

  14. Nuclear calculation for employing medium enrichment in reactors of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    1979-01-01

    The fuel used for the research reactors of Japan Atomic Energy Research Institute (JAERI) is presently highly enriched uranium of 93%. However, the U.S. government (the supplier of fuel) is claiming to utilize low or medium enriched uranium from the viewpoint of resistivity to nuclear proliferation, and the availability of highly enriched uranium is becoming hard owing to the required procedure. This report is described on the results of nuclear calculation which is the basis of fuel design in the countermeasures to the reduction of enrichment. The basic conception in the reduction of enrichment is three-fold: to lower the latent potential of nuclear proliferation as far as possible, to hold the present reactor performance as far as possible, and to limit the reduction in the range which is not accompanied by the modification of reactor core construction and cooling system. This time, the increase of the density and thickness of fuel plates and the effect of enrichment change to 45% on reactivity and neutron flux were investigated. The fuel of UAl sub(x) - Al system was assumed, which was produced by powder metallurgical method. The results of investigations on JRR-2 and JMTR reactors revealed that 45% enriched fuel does not affect the performances much. However, deterioration of the performances is not neglegible if further reduction is needed. In future, the influence of the burn-up effect of fuel on the life of reactor cores must be investigated. (Wakatsuki, Y.)

  15. Nuclear energy and radiation

    International Nuclear Information System (INIS)

    Myers, D.K.; Johnson, J.R.

    1980-01-01

    Both the light water reactor and the Canadian heavy water reactor systems produce electricity cheaply and efficiently. They produce some fissionable byproducts, which can be recycled to extend energy sources many-fold. Besides the production of electrical power, the nuclear industry produces various radioistopes used for treatment of cancer, in diagnostic procedures in nuclear medicine, in ionization smoke detectors, and as radioactive tracers with various technological applications including the study of the mechanisms of life. The increment in environmental radiation levels resulting from operation of nuclear power reactors represents a very small fraction of the radiation levels to which we are all exposed from natural sources, and of the average radiation exposures resulting from diagnostic procedures in the healing arts. The total health hazard of the complete nuclear power cycle is generally agreed to be smaller than the hazards associated with the generation of an equal amount of electricity from most other currently available sources of energy. The hazards from energy production in terms of shortened life expectancy are much smaller in all cases than the resulting increase in health and life expectancy. (auth)

  16. Nuclear data requirements for fusion reactor shielding

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1979-01-01

    The nuclear data requirements for experimental, demonstration and commercial fusion reactors are reviewed. Particular emphasis is given to the shield as well as major reactor components of concern to the nuclear performance. The nuclear data requirements are defined as a result of analyzing four key areas. These are the most likely candidate materials, energy range, types of needed nuclear data, and the required accuracy in the data. Deducing the latter from the target goals for the accuracy in prediction is also discussed. A specific proposal of measurements is recommended. Priorities for acquisition of data are also assigned. (author)

  17. Design of an organic simplified nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shirvan, Koroush [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge (United States); Forrest, Eric [Primary Standards Laboratory, Sandia National Laboratories, Albuquerque (United States)

    2016-08-15

    Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  18. Design of an Organic Simplified Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-08-01

    Full Text Available Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  19. Department of Nuclear Energy

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The activities of Department was engaged in the selected topics in nuclear fission reactor science and engineering. Present and future industry competitiveness, economic prosperity and living standards within the world are strongly dependent on maintaining the availability of energy at reasonable prices and with security of supply. Also, protection of man and the environment from the harmful effects of all uses of energy is an important element of the quality of life especially in Europe. It is unrealistic to assume that the technology for renewable (hydro, wind, solar and biomass) available within a 20-30 year perspective could provide the production capacity to replace present use of nuclear power and at the same time substantially reduce the use of fossil fuels, especially when considering that energy demand in industrialized countries can be expected to continue to increase even within a framework of overall energy conservation and continued improvement of efficiency in energy usage. In the area of nuclear fission, we continue support to maintain and develop the competence needed to ensure the safety of existing and future reactors and other nuclear installations. In addition support is given to explore the potential for improving present fission technology from a sustainable development point of view. The focus on advanced modelling of improved reactor and fuel cycle concepts, including supporting experimental research, with a view to improving the utilisation of the inherent energy content of uranium and other nuclear fuels, whilst at the same time reducing the amount of long-lived radioactive waste produced. A common scientific understanding of the frequently used concept of ''reasonable assurance of safety'' for the long-term, post-closure phase of repositories for spent fuel and high-level waste developed in order to ensure reasonably equivalent legal interpretations in environmental impact assessment and licensing procedures. Also, research is

  20. French nuclear energy policy

    International Nuclear Information System (INIS)

    Ferrari, A.; Bertel, E.

    1980-11-01

    The French energy policy is supported by a lucid view of the situation of our country and the constraints linked to the international context. This statement implies, the definition of a French policy or energy production essentially based on national resources, uranium, and especially for long term, technical know how which allows using plutonium in breeder reactors. This policy implies an effort in R and D, and industrial development of nuclear field, both in reactor construction and at all levels of fuel cycle. This coherent scientific and financial effort has been pursued since the beginning of years 60, and has placed France among the first nuclear countries in the world. Now this effort enables the mastership of a strong nuclear industry capable to assure the energy future of the country [fr

  1. Extending the Candu Nuclear Reactor Concept: The Multi-Spectrum Nuclear Reactor

    International Nuclear Information System (INIS)

    Allen, Francis; Bonin, Hugues

    2008-01-01

    The aim of this work is to examine the multi-spectrum nuclear reactor concept as an alternative to fast reactors and accelerator-driven systems for breeding fissile material and reducing the radiotoxicity of spent nuclear fuel. The design characteristics of the CANDU TM nuclear power reactor are shown to provide a basis for a novel approach to this concept. (authors)

  2. Extending the Candu Nuclear Reactor Concept: The Multi-Spectrum Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Francis [Director General Nuclear Safety, 280 Slater St, Ottawa, K1A OK2 (Canada); Bonin, Hugues [Royal Military College of Canada, 11 General Crerar Cres, Kingston, K7K 7B4 (Canada)

    2008-07-01

    The aim of this work is to examine the multi-spectrum nuclear reactor concept as an alternative to fast reactors and accelerator-driven systems for breeding fissile material and reducing the radiotoxicity of spent nuclear fuel. The design characteristics of the CANDU{sup TM} nuclear power reactor are shown to provide a basis for a novel approach to this concept. (authors)

  3. Materials for nuclear reactors

    International Nuclear Information System (INIS)

    Banerjee, S.; Kamath, H.S.

    2005-01-01

    The improved performance of present generation nuclear reactors and the realization of advanced reactor concepts, both, require development of better materials. Physical metallurgy/materials science principles which have been exploited in meeting the exacting requirements of nuclear reactor materials (fuels and structural materials), are outlined citing a few specific examples. While the incentive for improvement of traditional fuels (e.g., UO 2 fuel) is primarily for increasing the average core burn up, the development of advanced fuels (e.g., MOX, mixed carbide, nitride, silicide and dispersion fuels) are directed towards better utilization of fissile and fertile inventories through adaptation of innovative fuel cycles. As the burn up of UO 2 fuel reaches higher levels, a more detailed and quantitative understanding of the phenomena such as fission gas release, fuel restructuring induced by radiation and thermal gradients and pellet-clad interaction is being achieved. Development of zirconium based alloys for both cladding and pressure tube applications is discussed with reference to their physical metallurgy, fabrication techniques and in-reactor degradation mechanisms. The issue of radiation embrittlement of reactor pressure vessels (RPVs) is covered drawing a comparison between the western and eastern specifications of RPV steels. The search for new materials which can stand higher rates of atomic displacement due to radiation has led to the development of swelling resistant austenitic and ferritic stainless steels for fast reactor applications as exemplified by the development of the D-9 steel for Indian fast breeder reactor. The presentation will conclude by listing various materials related phenomena, which have a strong bearing on the successful development of future nuclear energy systems. (author)

  4. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  5. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  6. Subchannel analysis in nuclear reactors

    International Nuclear Information System (INIS)

    Ninokata, H.; Aritomi, M.

    1992-01-01

    This book contains 10 informative papers, presented at the International Seminar on Subchannel Analysis 1992 (ISSCA '92), organized by the Institute of Applied Energy, in collaboration with Atomic Energy Society of Japan, Tokyo Electric Power Company, Kansai Electric Power Company, Nuclear Power Engineering Corporation and the Japan Atomic Energy Research Institute, and held at the TIS-Green Forum, Tokyo, Japan, 30 October 1992. The seminar ISSCA '92 was intended to review the current state-of-the-arts of the method being applied to advanced nuclear reactors including Advanced BWRs, Advanced PWRs and LMRs, and to identify the problems to be solved, improvements to be made, and the needs of R and Ds that were required from the new fuel bundles design. The critical review was to focus on the performances of currently available subchannel analysis codes with regard to heat transfer and fluid flows in various types of nuclear reactor bundles under both steady-state and transient operating conditions, CHF, boiling transition (BT) or dryout behaviors and post BT. The behaviors of physical modeling and numerical methods in these extreme conditions were discussed and the methods critically evaluated in comparison with experiments. (author) (J.P.N.)

  7. Nuclear Energy Data - 2016

    International Nuclear Information System (INIS)

    2016-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projections of nuclear generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants increased slightly in 2015, by 0.2% and 0.1%, respectively. Two new units were connected to the grid in 2015, in Russia and Korea; two reactors returned to operation in Japan under the new regulatory regime; and seven reactors were officially shut down - five in Japan, one in Germany and one in the United Kingdom. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects progressing in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Stat Links'. For each Stat Link, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  8. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  9. Nuclear energy

    International Nuclear Information System (INIS)

    Rippon, S.

    1984-01-01

    Do we need nuclear energy. Is it safe. What are the risks. Will it lead to proliferation. The questions are endless, the answers often confused. In the vigorous debates that surround the siting and operation of nuclear power plants, it is all too easy to lose sight of the central issues amid the mass of arguments and counter-arguments put forward. And there remains the doubt, who do we believe. This book presents the facts, simply, straightforwardly, and comprehensibly. It describes the different types of nuclear reactor, how they work, how energy is produced and transformed into usable power, how nuclear waste is handled, what safeguards are built in to prevent accident, contamination and misuse. More important, it does this in the context of the real world, examining the benefits as well as the dangers of a nuclear power programme, quantifying the risks, and providing an authoritative account of the nuclear industry worldwide. Technically complex and politically controversial, the contribution of nuclear energy to our future energy requirements is a crucial topic of our time. (author)

  10. Canisters and nonfuel components at commercial nuclear reactors

    International Nuclear Information System (INIS)

    Gibbard, K.; Thorpe, J.; Moore, R.S.

    1995-01-01

    The Energy Information Administration of the U.S. Department of Energy (DOE) collects data annually from commercial nuclear power reactors via the Nuclear Fuel Data survey, Form RW-859. Over the past three years, the survey has collected data on the quantities and types of nonfuel components and on the quantities and contents of canisters in storage at reactor sites. This paper focuses on the annual changes in the data, specific implications of these changes, and lessons that should be applied to future revisions of the study. The total number of canisters reported by utilities for each year from 1986 to 1993 is listed. Changes in the quantities of nonfuel components report by General Reactors from 1992 to 1993 are also provided. Comparisons of canister and nonfuel components components data from year to year and from reactor to reactor point out that survey questions on these topics have been interpreted differently by reactor personnel

  11. Nuclear energy and environment: abstracts; Energia nuclear y medio ambiente: resumenes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    In this meeting on nuclear energy and environment, abstracts on the following subjects were presented: nuclear fuels; materials; radioisotopes and its applications; reactors and nuclear power plants; regulations, energy and environment; radioactive wastes; and analytical techniques.

  12. Investigation for calculation methods used in analyzing the physics characteristics of nuclear power reactor

    International Nuclear Information System (INIS)

    Nguyen Tuan Khai; Hoang Van Khanh; Phan Quoc Vuong; Tran Viet Phu; Tran Vinh Thanh; Nguyen Thi Mai Huong; Nguyen Thi Dung; Le Tran Chung; Nguyen Minh Tuan; Tran Quoc Duong

    2014-01-01

    The project aims at nuclear human resource development and enhancement in research capability in reactor physics and kinetics at Nuclear Energy Center (Institute for Nuclear Science and Technology) and Nuclear Reactor Center (Nuclear Research Institute, Dalat). The main research items of the project can be summarized as follows: i) Considering possibility on using modern calculation techniques and methods in investigating neutronic characteristics and neutronics-thermal hydraulics coupling. This item is proposed to carry out based on international collaboration with Prof. Le Trong Thuy, San Jose University, US; ii) Carrying out the collaborative activities in research and training between Nuclear Energy Center (Institute for Nuclear Science and Technology) and Nuclear Reactor Center (Nuclear Research Institute, Dalat); iii) Opening two-week training course on nuclear reactor engineering (25 Nov - 12 Dec 2013) in collaboration with Japan Atomic Energy Agency (JAEA). (author)

  13. Department of Energy Nuclear Energy Standards Program

    International Nuclear Information System (INIS)

    Silver, E.G.

    1980-01-01

    The policy with respect to the development and use of standards in the Department of Energy (DOE) programs concerned with maintaining and developing the nuclear option for the civilian sector (both in the form of the currently used light water reactors and for advanced concepts including the Liquid Metal Fast Breeder Reactor), is embodied in a Nuclear Standards Policy, issued in 1978, whose perspectives and philosophy are discussed

  14. Next generation advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Turgut, M. H.

    2009-01-01

    Growing energy demand by technological developments and the increase of the world population and gradually diminishing energy resources made nuclear power an indispensable option. The renewable energy sources like solar, wind and geothermal may be suited to meet some local needs. Environment friendly nuclear energy which is a suitable solution to large scale demands tends to develop highly economical, advanced next generation reactors by incorporating technological developments and years of operating experience. The enhancement of safety and reliability, facilitation of maintainability, impeccable compatibility with the environment are the goals of the new generation reactors. The protection of the investment and property is considered as well as the protection of the environment and mankind. They became economically attractive compared to fossil-fired units by the use of standard designs, replacing some active systems by passive, reducing construction time and increasing the operation lifetime. The evolutionary designs were introduced at first by ameliorating the conventional plants, than revolutionary systems which are denoted as generation IV were verged to meet future needs. The investigations on the advanced, proliferation resistant fuel cycle technologies were initiated to minimize the radioactive waste burden by using new generation fast reactors and ADS transmuters.

  15. Guides about nuclear energy in South Korea; Reperes sur l'energie nucleaire en Coree du Sud

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    This document summarizes the main information on nuclear energy in South Korea: number of reactors in operation, type, date of commissioning, nuclear facilities under construction, nuclear share in power production, companies and organizations (Korea electric power company (KEPCO), Korea atomic energy institute (KAERI), Korea institute of nuclear safety (KINS), Korea nuclear energy foundation (KNEF), Korea hydro and nuclear power (KHNP), nuclear environment technology institute (NETEC), Korea basic science institute (KBSI)), nuclear fuel fabrication, research works on waste disposal, nuclear R and D in fission and fusion, safety of nuclear facilities, strategies under study (1000 MWe Korea standard nuclear power plant (KSNP), 1400 MWe advanced power reactor (APR), small power water cooled reactors (system-integrated modular advanced reactor (SMART) research program), development of fast reactors (Kalimer research program), development of the process of direct use of PWR fuel in Candu (DUPIC), use of reprocessing uranium, transmutation of trans-uranian and wastes (KOMAC program), first dismantling experience (Triga Mark II and III research reactors). (J.S.)

  16. The law for the Power Reactor and Nuclear Fule Development Corporation

    International Nuclear Information System (INIS)

    1977-01-01

    The Corporation is designated to engage in the independent development of fast breeder and advanced thermal reactors, the production, reprocessing and holding of nuclear fuel materials, and the exploration, mining and ore dressing of nuclear source materials to promoting the development and utilization of atomic energy. These activities are based on the Atomic Energy Basic Law, and limited to the peaceful uses. The basic concepts of a fast breeder reactor and an advanced thermal reactor are defined. A chapter is dedicated to the number, constitution, duties, competence, appointment and dismissal of the officers. The score of business is specified, beginning from the development and research of the reactors and ending with the import, export, purchase and selling of nuclear fuel materials and nuclear source materials. (Okada, K.)

  17. Advanced Reactor Systems and Future Energy Market Needs

    International Nuclear Information System (INIS)

    Magwood, W.; Keppler, J.H.; Paillere, Henri; ); Gogan, K.; Ben Naceur, K.; Baritaud, M.; ); Shropshire, D.; ); Wilmshurst, N.; Janssens, A.; Janes, J.; Urdal, H.; Finan, A.; Cubbage, A.; Stoltz, M.; Toni, J. de; Wasylyk, A.; Ivens, R.; Paramonov, D.; Franceschini, F.; Mundy, Th.; Kuran, S.; Edwards, L.; Kamide, H.; Hwang, I.; Hittner, D.; ); Levesque, C.; LeBlanc, D.; Redmond, E.; Rayment, F.; Faudon, V.; Finan, A.; Gauche, F.

    2017-04-01

    It is clear that future nuclear systems will operate in an environment that will be very different from the electricity systems that accompanied the fast deployment of nuclear power plants in the 1970's and 1980's. As countries fulfil their commitment to de-carbonise their energy systems, low-carbon sources of electricity and in particular variable renewables, will take large shares of the overall generation capacities. This is challenging since in most cases, the timescale for nuclear technology development is far greater than the speed at which markets and policy/regulation frameworks can change. Nuclear energy, which in OECD countries is still the largest source of low-carbon electricity, has a major role to play as a low-carbon dispatchable technology. In its 2 degree scenarios, the International Energy Agency (IEA) projects that nuclear capacity globally could reach over 900 GW by 2050, with a share of electricity generation rising from less than 11% today to about 16%. Nuclear energy could also play a role in the decarbonization of the heat sector, by targeting non-electric applications. The workshop discussed how energy systems are evolving towards low-carbon systems, what the future of energy market needs are, the changing regulatory framework from both the point of view of safety requirements and environmental constraints, and how reactor developers are taking these into account in their designs. In terms of technology, the scope covered all advanced reactor systems under development today, including evolutionary light water reactors (LWRs), small modular reactors (SMRs) - whether LWR technology-based or not, and Generation IV (Gen IV) systems. This document brings together the available presentations (slides) of the workshop

  18. Nuclear reactors built, being built, or planned: 1986

    International Nuclear Information System (INIS)

    Carter, E.P.

    1987-03-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1986, which are capable of sustaining a nuclear chain reaction. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commisssion; from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; and from US embassies of foreign countries. Information is presented in five parts, each of which is categorized by primary function or purpose: civilian, production, military, export, and critical assembly facilities

  19. The energy yield of nuclear energy

    International Nuclear Information System (INIS)

    Smith, Ph.B.

    1983-01-01

    In this paper, a comparison is made between the energy produced in a nuclear cycle in a light-water reactor without recycling of plutonium or uranium on the one hand and the energy stored into the system to realize this energy production on the other. Only empirical data are used, which means that some energy costs are omitted because no empirical data were available (e.g. energy needed to waste processing and waste disposal). The following steps are taken into account: production and processing of ores, conversion and enrichment of fuels, construction and shutdown of the reactor itself. (Auth.)

  20. Press kit. EPR (European pressurized water reactor). The advanced nuclear reactor

    International Nuclear Information System (INIS)

    2004-10-01

    Nuclear energy, which provides a steady supply of electricity at low cost, has its rightful place in the energy mix of the 21 century, which puts the emphasis on sustainable development. In this framework, this document presents the advantages of the EPR (European Pressurized water Reactor). The EPR is the only third generation reactor under construction today. It is an evolutionary reactor that represents a new generation of pressurized water reactors with no break in the technology used for the most recent models. The EPR can guarantee a safe, inexpensive electricity supply, without adding to the greenhouse effect. It meets the requirements of the safety authorities and lives up to the expectations of electricity utilities. (A.L.B.)

  1. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a

  2. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a determined

  3. Nuclear Energy Scientific, technical and social perspectives of nuclear-electrical conversion

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2009-01-01

    The book begins with a brief review of basic knowledge historic milestones, radiation physics, biological effects of radiation and radioprotection, and nuclear physics. Then, several subjects in nuclear reactor engineering and nuclear power plants are introduced: a brief description of nuclear reactors and systems in a nuclear power plant, neutron physics, thermal hydraulics (including the thermodynamics of the whole nuclear power plant), nuclear fuels and fuel cycles, dynamic and control of nuclear reactors and nuclear power plant, safety of nuclear reactors, operation of power plants, decisions related with a nuclear power station (including sitting, economic and financial aspects, risks and detriments assessment), and a brief survey of future technologies. In the last chapter, the book enters into other subjects (in part of a philosophical nature) that relate, from the standpoint of energy, social and environmental problems with political issues and current world views

  4. Present Status of Nuclear Energy

    Czech Academy of Sciences Publication Activity Database

    Wagner, Vladimír

    2013-01-01

    Roč. 2013, SI (2013), s. 89-94 ISSN 0375-8842. [European Nuclear Forum. Praha, 12.05.2013-13.05.2013] Institutional support: RVO:61389005 Keywords : nuclear energy * nuclear reactors * electricity production Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  5. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). 2011 Progress Report. Enhancing Global Nuclear Energy Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    When INPRO was established in 2000, some key characteristics and main objectives for the project were determined and remain basically unchanged to this day: to help ensure that nuclear energy is available to contribute to satisfying energy needs in the 21st century in a sustainable manner and to bring together technology holders, technology users and other stakeholders to consider jointly the national and international actions required to achieve desired innovations in nuclear reactors and fuel cycles. I wish to use the occasion of this INPRO Progress Report to review some of the key highlights of the past year and share with you my views and vision of INPRO's future. The ''Great East Japan Earthquake and Tsunami'' and the resulting accident at TEPCO's Fukushima Daiichi nuclear power plant occurred on 11 March 2011. In response to this accident and at the request of its Member States, the IAEA drafted an Action Plan which defines a programme of work o strengthen the global nuclear safety framework. The activities proposed in the Action Plan are meant to be implemented in the near term, to assess the safety of operating nuclear power plants n the light of lessons learned from the Fukushima Daiichi accident. The assessment covers both technical elements, specifically the design of nuclear power plants with regard to site specific extreme natural hazards, and institutional elements, such as the effectiveness of regulatory bodies, operating organizations and the international legal framework in regard to the implementation of IAEA Safety tandards and Conventions. The lessons learned in the medium and long terms will also be reflected n a periodic update of the design requirements for nuclear power plants, international safety tandards, regulations issued by national supervisory authorities, operational procedures, emergency planning and safety assessment methodologies. INPRO has a long term perspective and provides an assessment of the whole nuclear system. Ensuring

  6. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). 2011 Progress Report. Enhancing Global Nuclear Energy Sustainability

    International Nuclear Information System (INIS)

    2012-05-01

    When INPRO was established in 2000, some key characteristics and main objectives for the project were determined and remain basically unchanged to this day: to help ensure that nuclear energy is available to contribute to satisfying energy needs in the 21st century in a sustainable manner and to bring together technology holders, technology users and other stakeholders to consider jointly the national and international actions required to achieve desired innovations in nuclear reactors and fuel cycles. I wish to use the occasion of this INPRO Progress Report to review some of the key highlights of the past year and share with you my views and vision of INPRO's future. The ''Great East Japan Earthquake and Tsunami'' and the resulting accident at TEPCO's Fukushima Daiichi nuclear power plant occurred on 11 March 2011. In response to this accident and at the request of its Member States, the IAEA drafted an Action Plan which defines a programme of work o strengthen the global nuclear safety framework. The activities proposed in the Action Plan are meant to be implemented in the near term, to assess the safety of operating nuclear power plants n the light of lessons learned from the Fukushima Daiichi accident. The assessment covers both technical elements, specifically the design of nuclear power plants with regard to site specific extreme natural hazards, and institutional elements, such as the effectiveness of regulatory bodies, operating organizations and the international legal framework in regard to the implementation of IAEA Safety tandards and Conventions. The lessons learned in the medium and long terms will also be reflected n a periodic update of the design requirements for nuclear power plants, international safety tandards, regulations issued by national supervisory authorities, operational procedures, emergency planning and safety assessment methodologies. INPRO has a long term perspective and provides an assessment of the whole nuclear system. Ensuring

  7. Next-generation reactors in the national energy strategy

    International Nuclear Information System (INIS)

    McGoff, D.J.

    1991-01-01

    In February 1991, the Bush Administration released the National Energy Strategy designed to provide an adequate and balanced energy supply. The strategy provides for major increases in energy efficiency and conservation. Even with these savings, however, there will be a need for substantial increases in base-load electrical generating capacity to sustain economic growth. The strategy identifies the actions required to allow nuclear power to cleanly and safely meet a substantial portion of this needed additional base-load capacity after the turn of the century. On June 27, 1991, the US Department of Energy (DOE) transmitted to Congress the Strategic Plan for Civilian Reactor Development, which reflects the initiative identified in the National Energy Strategy. The strategic plan identifies the advanced light water reactor (ALWR) as the basis for expanded use of nuclear power. The second advanced reactor concept that is being pursued is the modular high-temperature gas-cooled reactor (MHTGR)

  8. Impact of the nuclear transmuters in the acceptance of nuclear energy

    International Nuclear Information System (INIS)

    Solanilla, Roberto

    1999-01-01

    It is well known that nuclear energy generation does not produce greenhouse gases emissions which are responsible of the climate change on a global scale. Nevertheless nuclear energy suffers a kind of stagnation due to a disproportionate perception of risk by the public. In this paper, reference is made to a technology aimed to the use of nuclear reactors to eliminate the high level wastes by means of the spallation process with the combined use of a proton accelerator and a nuclear reactor. Some results are presented confirming that feedback with nuclear waste and thorium instead of uranium reduces drastically the potential danger of nuclear waste

  9. The nuclear energy policy challenges

    International Nuclear Information System (INIS)

    Hanne, H.

    2009-01-01

    At a time when the nuclear question mobilizes attentions and when a new cycle of debates about non-proliferation opens up, the author recalls the constraints and challenges of a nuclear power generation policy. After a brief history of the development of nuclear energy in France and in the rest of the world, the author presents the risks linked with this energy source (TMI and Chernobyl accidents), the particularities of the fuel cycle with its safety and security aspects, and the promises of some past and future reactor technologies (FBR's and fusion reactors). Then, the author stresses on the importance of investments in this domain as illustrated by the launching of new nuclear programs in France, UK, Italy, Finland and in the US, and by the willing of some emerging countries to develop this energy source (China, India, United Arab Emirates, Jordan..). Finally, nuclear energy must not be considered as a privilege of developed countries but should benefit to the rest of the world as well since it promotes economic development thanks to an abundant and cheap energy. (J.S.)

  10. Large-scale hydrogen production using nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryland, D.; Stolberg, L.; Kettner, A.; Gnanapragasam, N.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    For many years, Atomic Energy of Canada Limited (AECL) has been studying the feasibility of using nuclear reactors, such as the Supercritical Water-cooled Reactor, as an energy source for large scale hydrogen production processes such as High Temperature Steam Electrolysis and the Copper-Chlorine thermochemical cycle. Recent progress includes the augmentation of AECL's experimental capabilities by the construction of experimental systems to test high temperature steam electrolysis button cells at ambient pressure and temperatures up to 850{sup o}C and CuCl/HCl electrolysis cells at pressures up to 7 bar and temperatures up to 100{sup o}C. In parallel, detailed models of solid oxide electrolysis cells and the CuCl/HCl electrolysis cell are being refined and validated using experimental data. Process models are also under development to assess options for economic integration of these hydrogen production processes with nuclear reactors. Options for large-scale energy storage, including hydrogen storage, are also under study. (author)

  11. ZEEP: Canada's first nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.E.; Okazaki, A. [retired, Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2015-09-15

    In 1905 Albert Einstein published his historic paper on special relativity, which contained the equation E=mc 2. The significance of this mass-energy relationship became evident with the discovery of nuclear fission in 1939, when it was realized that large amounts of energy would be released in a fission chain reaction. Canadian scientists were involved in this field from the beginning and their efforts resulted in the startup in September 1945 of the ZEEP reactor at Chalk River, the first reactor to go critical outside the USA. In this paper we recall some of the events that led to the construction of ZEEP, and describe the role it played in the development of the Canadian nuclear energy program. (author)

  12. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Oh, K. B.

    2002-12-01

    This study deals with current energy issues, environmental aspects of energy, project feasibility evaluation, and activities of international organizations. Current energy issues including activities related with UNFCCC, sustainable development, and global concern on energy issues were surveyed with focusing on nuclear related activities. Environmental aspects of energy includes various topics such as, inter- industrial analysis of nuclear sector, the role of nuclear power in mitigating GHG emission, carbon capture and sequestration technology, hydrogen production by using nuclear energy, Life Cycle Analysis as a method of evaluating environmental impacts of a technology, and spent fuel management in the case of introducing fast reactor and/or accelerator driven system. Project feasibility evaluation includes nuclear desalination using SMART reactor, and introduction of COMFAR computer model, developed by UNIDO to carry out feasibility analysis in terms of business attitude. Activities of international organizations includes energy planning activities of IAEA and OECD/NEA, introduction of the activities of FNCA, one of the cooperation mechanism among Asian countries. In addition, MESSAGE computer model was also introduced. The model is being developed by IAEA to effectively handle liberalization of electricity market combined with environmental constraints

  13. Concerning control of radiation exposure to workers in nuclear reactor facilities for testing and nuclear reactor facilities in research and development phase (fiscal 1987)

    International Nuclear Information System (INIS)

    1988-01-01

    A nuclear reactor operator is required by the Nuclear Reactor Control Law to ensure that the radiation dose to workers engaged in the operations of his nuclear reactor is controlled below the permissible exposure doses that are specified in notifications issued based on the Law. The present note briefly summarizes the data given in the Reports on Radiation Control, which have been submitted according to the Nuclear Reactor Control Law by the operators of nuclear reactor facilities for testing and those in the research and development phase, and the Reports on Control of Radiation Exposure to Workers submitted in accordance with the applicable administrative notices. According to these reports, the measured exposure to workers in 1987 were below the above-mentioned permissible exposure doses in all these nuclear facilities. The 1986 and 1987 measurements of radiation exposure dose to workers in nuclear reactor facilities for testing are tabulated. The measurements cover dose distribution among the facilities' personnel and workers of contractors. They also cover the total exposure dose for all workers in each of four plants operated under the Japan Atomic Energy Research Institute and the Power Reactor and Nuclear Fuel Development Corporation. (N.K.)

  14. Chinese nuclear heating test reactor and demonstration plant

    International Nuclear Information System (INIS)

    Wang Dazhong; Ma Changwen; Dong Duo; Lin Jiagui

    1992-01-01

    In this report the importance of nuclear district heating is discussed. From the viewpoint of environmental protection, uses of energy resources and transport, the development of nuclear heating in China is necessary. The development program of district nuclear heating in China is given in the report. At the time being, commissioning of the 5 MW Test Heating Reactor is going on. A 200 MWt Demonstration Plant will be built. In this report, the main characteristics of these reactors are given. It shows this type of reactor has a high inherent safety. Further the report points out that for this type of reactor the stability is very important. Some experimental results of the driving facility are included in the report. (orig.)

  15. A world class nuclear research reactor complex for South Africa's nuclear future

    International Nuclear Information System (INIS)

    Keshaw, Jeetesh

    2008-01-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  16. Light-water nuclear reactors

    International Nuclear Information System (INIS)

    Drevon, G.

    1983-01-01

    This work gives basic information on light-water reactors which is advanced enough for the reader to become familiar with the essential objectives and aspects of their design, their operation and their insertion in the industrial, economic and human environment. In view of the capital role of electric energy in the modern economy a significant place is given to electron-nuclear power stations, particularly those of the type adopted for the French programme. The work includes sixteen chapters. The first chapter relates the history and presents the various applications of light water reactors. The second refers to the general elementary knowledge of reactor physics. The third chapter deals with the high power light-water nuclear power station and thereby introduces the ensuing chapters which, up to and including chapter 13, are devoted to the components and the various aspects of the operation of power stations, in particular safety and the relationship with the environment. Chapter 14 provides information on the reactors adapted to applications other than the generation of electricity on an industrial scale. Chapter 15 shows the extent of the industrial effort devoted to light-water reactors and chapter 16 indicates the paths along which the present work is preparing the future of these reactors. The various chapters have been written to allow for separate consultation. An index of the main technical terms and a bibliography complete the work [fr

  17. Proceedings of the 1. General Congress of Nuclear Energy. v. 1

    International Nuclear Information System (INIS)

    1986-01-01

    The proceedings of 1 General Congress of Nuclear Energy are presented. All fields related to nuclear energy are enclosed. In the first part the following fields are shown: safety analysis, science and technology of materials, nuclear materials, nuclear laws, education and trainning, reactor physics, nuclear physics, quality assurance, mathematical models, reactor operation, safeguards, advanced technologies, thermohydraulic and reactor licensing. (M.C.K.) [pt

  18. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    Chester, K.

    1982-01-01

    In order to make a real contribution to the nuclear energy debate (is nuclear energy the limitless solution to man's energy problems or the path to man's destruction) people must be aware of the facts. The Science Reference Library (SRL) has a collection of the primary sources of information on nuclear energy - especially journals. This guideline aims to draw attention to the up-to-date literature on nuclear energy and its technology, freely available for consultation in the main Holborn reading room. After explanations of where to look for particular types of information and the SRL classification, the booklet gives lists and brief notes on the sources held. These are abstracting and indexing periodicals and periodicals. Reports, conference proceedings, patents, bibliographies, directories, year-books and buyer's guides are covered very briefly but not listed. Nuclear reactor data and organisations are also listed with brief details of each. (U.K.)

  19. Trends in the design of advanced nuclear reactors

    International Nuclear Information System (INIS)

    Poong-Eil Juhn; Kupitz, Juergen

    1996-01-01

    Nuclear energy is an essentially unlimited energy source with the potential to provide energy in the form of electricity, district heat and process heat environmentally acceptable conditions. However, this potential will be realized only if nuclear power plants can meet the challenges of national safety requirements, economic competitiveness and public acceptance. Worldwide, a tremendous amount of experience has been accumulated during the development, licensing, construction and operation of nuclear power plants. This experience forms a sound basis for further improvements. Nuclear programmes in the IAEA Member States are addressing the development of advanced reactors, which are intended to have better economics, higher reliability and improved safety. The IAEA, as a global international governmental organization dealing with nuclear power, promotes international information exchange and international co-operation between all countries with their own advanced power programmes and offers assistance to countries with an interest in exploratory or research programmes. The paper gives an overview of global trends in the design of advanced nuclear reactors for electricity generation and heat production along with the role of IAEA. (author)

  20. Arkansas Tech University TRIGA nuclear reactor

    International Nuclear Information System (INIS)

    Sankoorikal, J.; Culp, R.; Hamm, J.; Elliott, D.; Hodgson, L.; Apple, S.

    1990-01-01

    This paper describes the TRIGA nuclear reactor (ATUTR) proposed for construction on the campus of Arkansas Tech University in Russellville, Arkansas. The reactor will be part of the Center for Energy Studies located at Arkansas Tech University. The reactor has a steady state power level of 250 kW and can be pulsed with a maximum reactivity insertion of $2.0. Experience gained in dismantling and transporting some of the components from Michigan State University, and the storage of these components will be presented. The reactor will be used for education, training, and research. (author)

  1. Nuclear energy, environmental protection and international conflicts

    International Nuclear Information System (INIS)

    Menke-Glueckert, P.

    1975-01-01

    Some general and some critical remarks on: nuclear energy as an image for politics; nuclear energy as a model for research planning; nuclear controversy; the principle of precaution in nuclear and radiation protection law; reactor safety on probation; advantages and economy of nuclear energy; communication difficulties; the special role of nuclear energy; the need for European site planning; supervision of fissionable materials; the world's energy household in danger; global structure politics and nuclear energy; nuclear energy with a capacity for social innovations. (HP/LN) [de

  2. An independent safety assessment of Department of Energy nuclear reactor facilities: Training of operating personnel and personnel selection

    International Nuclear Information System (INIS)

    Drain, J.F.

    1981-02-01

    This study has been prepared for the Department of Energy's Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee. Its purpose is to provide the Committee with background information on, and assessment of, the selection, training, and qualification of nuclear reactor operating personnel at DOE-owned facilities

  3. Nuclear energy - a professional assessment

    International Nuclear Information System (INIS)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments. (U.K.)

  4. Nuclear energy - a professional assessment

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments.

  5. Nuclear reactor technology: the next 50 years

    International Nuclear Information System (INIS)

    Sollychin, R.; Subki, H.; Adelfang, P.; Koshy, T.

    2013-01-01

    In light of the growing awareness of the environmental externalities of fossil fuel combustion, alternatives for electric power generation such as solar, wind and nuclear energy are becoming more desirable. In developed countries, large power markets are currently served by a centralized energy system through well inter-connected electricity grids. However, as shares of variable renewable energy sources (mainly wind and solar power) are increasing in the future; larger fluctuation in power generation can be expected which lead to higher risk of grid instabilities. Less-capital intensive small and medium sized nuclear reactors (SMR) are emerging as an important element of alternative power generation system to fossil fuel, with a unique additional role of balancing the power generation fluctuation caused by the solar and wind power generation. In regions not served by large electricity grids, including many parts of the developing countries with increasing demand for energy at rates above world's average, power generation using locally available energy sources including renewable energy is the practical means of providing basic energy needed for social and economic development. The integration of locally supportable SMR and local renewable energy system in a hybrid fashion can reduce the relative scale but not eliminate the fluctuation in power generation caused by the irregular availability of solar and wind energy. Without the use of commercial electricity trading that is only available in regions served by large inter-connected electricity grids, further minimization of power generation fluctuation can be done by the installation of local energy (electricity and/or heat) applications and/or energy storage device. The operation of these applications and energy storage can be done in synchronization with the availability of excess power throughout the fluctuation of the overall power generation in the region. Under these conditions, SMRs utilization as part of

  6. Nuclear safety cooperation for Soviet designed reactors

    International Nuclear Information System (INIS)

    Reisman, A.W.; Horak, W.C.

    1995-01-01

    The nuclear accident at the Chernobyl nuclear power plant in 1986 first alerted the West to the significant safety risks of Soviet designed reactors. Five years later, this concern was reaffirmed when the IAEA, as a result of a review by an international team of nuclear safety experts, announced that it did not believe the Kozloduy nuclear power plants in Bulgaria could be operated safely. To address these safety concerns, the G-7 summit in Munich in July 1992 outlined a five point program to address the safety problems of Soviet Designed Reactors: operational safety improvement; near-term technical improvements to plants based on safety assessment; enhancing regulatory regimes; examination of the scope for replacing less safe plants by the development of alternative energy sources and the more efficient use of energy; and upgrading of the plants of more recent design. As of early 1994, over 20 countries and international organizations have pledged hundreds of millions of dollars in financial assistance to improve safety. This paper summarizes these assistance efforts for Soviet designed reactors, draws lessons learned from these activities, and offers some options for better addressing these concerns

  7. Operating history of U.S. nuclear power reactors

    International Nuclear Information System (INIS)

    1974-01-01

    The operating history of U. S. nuclear power plants through December 31, 1974 has been collected. Included are those nuclear reactor facilities which produce electricity, even if in token amounts, or which are part of a development program concerned with the generation of electricity through the use of a nuclear reactor as a heat source. The information is based on data furnished by facility operators. The charts are plotted in terms of cumulative thermal energy as a function of time. Since only those shutdowns of five days or more are shown, the charts do not give a detailed history of plant operation. They do, however, give an overview of the operating history of a variety of developmental and experimental nuclear power reactors. The data show the yearly gross generation of electricity for each U. S. nuclear plant and, for civilian power plants, information on reactor availability and plant capacity factor. (U.S.)

  8. Nuclear reactors built, being built, or planned 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled.

  9. Nuclear reactors built, being built, or planned: 1996

    International Nuclear Information System (INIS)

    1997-08-01

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled

  10. On the safety performance of the advanced nuclear energy systems

    International Nuclear Information System (INIS)

    Li Shounan

    1999-01-01

    Some features on the safety performances of the Advanced Nuclear Energy Systems are discussed. The advantages and some peculiar problems on the safety of Advanced Nuclear Energy Systems with subcritical nuclear reactor driven by external neutron sources are also pointed out in comparison with conventional nuclear reactors

  11. Nuclear energy. Can we live with it. Or without it

    International Nuclear Information System (INIS)

    1983-01-01

    The subject is covered in chapters, entitled: introduction; some fundamental issues; nuclear energy (the potential and limits of nuclear fission; health and safety aspects (biological effects of radiation, and the natural background; radioactive waste; reactor accidents; the safety of fast breeder reactors); a note on nuclear fusion; the link between nuclear reactors and nuclear weapons; the perception of risk; an interim summary); alternative energy sources (tidal power; wind power; wave power; solar power; the need for energy storage; hydroelectricity; geothermal power; biomass; methane in deep rocks; an interim summary); conservation and political factors (energy saving; time scale for change; third world needs; a further interim summary); conclusions. (U.K.)

  12. Nuclear reaction data and nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Paver, N [University of Trieste (Italy); Herman, M [International Atomic Energy Agency, Vienna (Austria); Gandini, A [ENEA, Rome (Italy)

    2001-12-15

    These two volumes contain the lecture notes of the workshop 'Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety', which was held at the Abdus Salam ICTP in the Spring of 2000. The workshop consisted of five weeks of lecture courses followed by practical computer exercises on nuclear data treatment and design of nuclear power systems. The spectrum of topics is wide enough to timely cover the state-of-the-art and the perspectives of this broad field. The first two weeks were devoted to nuclear reaction models and nuclear data evaluation. Nuclear data processing for applications to reactor calculations was the subject of the third week. On the last two weeks reactor physics and on-going projects in nuclear power generation, waste disposal and safety were presented.

  13. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    International Nuclear Information System (INIS)

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor's Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced

  14. Nuclear Energy in Central Europe 98, Proceedings

    International Nuclear Information System (INIS)

    Ravnik, M.; Jencic, I.; Zagar, T.

    1998-01-01

    Regional Meeting for Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contain 63 articles from Slovenia, sorounding countries and countries of the Central and Eastern European Region. Topics are: Research Reactors, Nuclear Methods, Reactor Physics, Thermal Hydraulics, Structural Analysis, Probabilistic Safety Assessment, Severe Accidents, NPP Operation and Nuclear Waste disposal

  15. Nuclear energy technology: theory and practice of commercial nuclear power

    International Nuclear Information System (INIS)

    Knief, R.A.

    1982-01-01

    Reviews Nuclear Energy Technology: Theory and Practice of Commercial Nuclear Power by Ronald Allen Knief, whose contents include an overview of the basic concepts of reactors and the nuclear fuel cycle; the basics of nuclear physics; reactor theory; heat removal; economics; current concerns at the front and back ends of the fuel cycle; design descriptions of domestic and foreign reactor systems; reactor safety and safeguards; Three Mile Island; and a brief overview of the basic concepts of nuclear fusion. Both magnetic and inertial confinement techniques are clearly outlined. Also reviews Nuclear Fuel Management by Harry W. Graves, Jr., consisting of introductory subjects (e.g. front end of fuel cycle); core physics methodology required for fuel depletion calculations; power capability evaluation (analyzes physical parameters that limit potential core power density); and fuel management topics (economics, loading arrangements and core operation strategies)

  16. Advanced nuclear reactor safety issues and research needs

    International Nuclear Information System (INIS)

    2002-01-01

    On 18-20 February 2002, the OECD Nuclear Energy Agency (NEA) organised, with the co-sponsorship of the International Atomic Energy Agency (IAEA) and in collaboration with the European Commission (EC), a Workshop on Advanced Nuclear Reactor Safety Issues and Research Needs. Currently, advanced nuclear reactor projects range from the development of evolutionary and advanced light water reactor (LWR) designs to initial work to develop even further advanced designs which go beyond LWR technology (e.g. high-temperature gas-cooled reactors and liquid metal-cooled reactors). These advanced designs include a greater use of advanced technology and safety features than those employed in currently operating plants or approved designs. The objectives of the workshop were to: - facilitate early identification and resolution of safety issues by developing a consensus among participating countries on the identification of safety issues, the scope of research needed to address these issues and a potential approach to their resolution; - promote the preservation of knowledge and expertise on advanced reactor technology; - provide input to the Generation IV International Forum Technology Road-map. In addition, the workshop tried to link advancement of knowledge and understanding of advanced designs to the regulatory process, with emphasis on building public confidence. It also helped to document current views on advanced reactor safety and technology, thereby contributing to preserving knowledge and expertise before it is lost. (author)

  17. Space nuclear reactors: energy gateway into the next millennium

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.; Buden, D.

    1981-01-01

    Power - reliable, abundant and economic - is the key to man's conquest of the Solar System. Space activities of the next few decades will be highlighted by the creation of the extraterrestrial phase of human civilization. Nuclear power is needed both to propel massive quantities of materials through cislunar and eventually translunar space, and to power the sophisticated satellites, space platforms, and space stations of tomorrow. To meet these anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100-kW(e) heat pipe nuclear reactor. The objectives of this program are to develop components for a space nuclear power plant capable of unattended operation for 7 to 10 years; having a reliability of greater than 0.95; and weighing less than 1910 kg. In addition, this heat pipe reactor is also compatible for launch by the US Space Transportation System

  18. Future nuclear systems, Astrid, an option for the fourth generation: preparing the future of nuclear energy, sustainably optimising resources, defining technological options, sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ter Minassian, Vahe

    2016-01-01

    Energy independence and security of supplies, improved safety standards, sustainably optimised material management, minimal waste production - all without greenhouse gas emissions. These are the Generation IV International Forum specifications for nuclear energy of the future. The CEA is responsible for designing Astrid, an integrated technology demonstrator for the 4. generation of sodium-cooled fast reactors, in accordance with the French Sustainable Nuclear Materials and Waste Management Act of June 28, 2006, and funded as part of the Investments for the Future programme enacted by the French parliament in 2010. Energy management - a vital need and a factor of economic growth - is a major challenge for the world of tomorrow. The nuclear industry has significant advantages in this regard, although it faces safety, resource sustainability, and waste management issues that must be met through continuing technological innovation. Fast reactors are also of interest to the nuclear industry because their recycling capability would solve a number of problems related to the stockpiles of uranium and plutonium. After the resumption of R and D work with EDF and AREVA in 2006, the Astrid design studies began in 2010. The CEA, as owner and contracting authority for this programme, is now in a position to define the broad outlines of the demonstrator 4. generation reactor that could be commissioned during the next decade. A sodium-cooled fast reactor (SFR) operates in the same way as a conventional nuclear reactor: fission reactions in the atoms of fuel in the core generate heat, which is conveyed to a turbine generator to produce electricity. In the context of 4. generation technology, SFRs represent an innovative solution for optimising the use of raw materials as well as for enhancing safety. Here are a few ideas advanced by the CEA. (authors)

  19. Simulation of a marine nuclear reactor

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Kyouya, Masahiko; Kobayashi, Hideo; Ochiai, Masaaki

    1995-01-01

    A Nuclear-powered ship Engineering Simulation SYstem (NESSY) has been developed by the Japan Atomic Energy Research Institute as an advanced design tool for research and development of future marine reactors. A marine reactor must respond to changing loads and to the ship's motions because of the ship's maneuvering and its presence in a marine environment. The NESSY has combined programs for the reactor plant behavior calculations and the ship's motion calculations. Thus, it can simulate reactor power fluctuations caused by changing loads and the ship's motions. It can also simulate the behavior of water in the pressurizer and steam generators. This water sloshes in response to the ship's motions. The performance of NESSY has been verified by comparing the simulation calculations with the measured data obtained by experiments performed using the nuclear ship Mutsu. The effects of changing loads and the ship's motions on the reactor behavior can be accurately simulated by NESSY

  20. The control of emissions from nuclear power reactors in Canada

    International Nuclear Information System (INIS)

    Gorman, D.J.; Neil, B.C.J.; Chatterjee, R.M.

    1988-01-01

    Nuclear power reactors in Canada are of the CANDU pressurised heavy water design. These are located in the provinces of Ontario, Quebec, and New Brunswick. Most of the nuclear generating capacity is in the province of Ontario which has 16 commissioned reactors with a total capacity of 11,500 MWe. There are four reactors under construction with an additional capacity of 3400 MWe. Nuclear power currently accounts for approximately 50% of the electrical power generation of Ontario. Regulation of the reactors is a Federal Government responsibility administered by the Atomic Energy Control Board (AECB) which licenses the reactors and sets occupational and public dose limits

  1. Nuclear data and low energy nuclear research in Israel

    International Nuclear Information System (INIS)

    Yiftah, S.

    1977-04-01

    The Israel Nuclear Data and Low Energy Nuclear Research relevant to the International Nuclear Data Committee was continued in various institutions. The major experimental facilities consist of: A 5 Megawatt swimming pool enriched uranium reactor at the Soreq Nuclear Research Centre; A 26 Megawatt heavy water tank-type natural uranium reactor at the Negev Research Centre; A 6-million volt EN tandem accelerator at the Weizmann Institute of Science, Rehovot; The new most modern high energy 14 UD pelletron accelerator manufactured by the National Electrostatic Corporation of Middleton, Wisconsin, installed inside the Koffler Accelerator Tower at the Weizmann Institute of Science, Rehovot. Brief abstracts of the research work, both published and unpublished, listed according to the various laboratories, are reported in the following pages. (author)

  2. Handbook of nuclear engineering: vol 1: nuclear engineering fundamentals; vol 2: reactor design; vol 3: reactor analysis; vol 4: reactors of waste disposal and safeguards

    CERN Document Server

    2013-01-01

    The Handbook of Nuclear Engineering is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all academic levels, this five volume set provides the latest findings in nuclear data and experimental techniques, reactor physics, kinetics, dynamics and control. Readers will also find a detailed description of data assimilation, model validation and calibration, sensitivity and uncertainty analysis, fuel management and cycles, nuclear reactor types and radiation shielding. A discussion of radioactive waste disposal, safeguards and non-proliferation, and fuel processing with partitioning and transmutation is also included. As nuclear technology becomes an important resource of non-polluting sustainable energy in the future, The Handbook of Nuclear Engineering is an excellent reference for practicing engineers, researchers and professionals.

  3. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  4. Status of advanced nuclear reactor development in Korea

    International Nuclear Information System (INIS)

    Kim, H.R.; Kim, K.K.; Kim, Y.W.; Joo, H.K.

    2014-01-01

    The Korean nuclear industry is facing new challenges to solve the spent fuel storage problem and meet the needs to diversify the application areas of nuclear energy. In order to provide solutions to these challenges, the Korea Atomic Energy Research Institute (KAERI) has been developing advanced nuclear reactors including a Sodium-cooled Fast Reactor, Very High Temperature Gas cooled Reactor (VHTR), and System-integrated Modular Advanced Reactor (SMART) with substantially improved safety, economics, and environment-friendly features. A fast reactor system is one of the most promising options for a reduction of radioactive wastes. The long-term plan for Advanced SFR development in conjunction with the pyro-process was authorized by the Korean Atomic Energy Commission in 2008. The development milestone includes specific design approval of a prototype SFR by 2020, and the construction of a prototype SFR by 2028. KAERI has been carrying out the preliminary design of a 150MWe SFR prototype plant system since 2012. The development of advanced SFR technologies and the basic key technologies necessary for the prototype SFR are also being carried out. By virtue of high-temperature heat, a VHTR has diverse applications including hydrogen production. KAERI launched a nuclear hydrogen project using a VHTR in 2006, which focused on four basic technologies: the development of design tools, very high-temperature experimental technology, TRISO fuel fabrication, and Sulfur-iodine thermo-chemical hydrogen production technology. The technology development project will be continued until 2017. A conceptual reactor design study was started in 2012 as collaboration between industry and government to enhance the early-launching of the nuclear hydrogen development and demonstration (NHDD) project. The goal of the NHDD project is to design and build a nuclear hydrogen demonstration system by 2030. KAERI has developed SMART which is a small-sized advanced integral reactor with a rated

  5. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  6. THERMOS, district central heating nuclear reactors

    International Nuclear Information System (INIS)

    Patarin, L.

    1981-02-01

    In order to expand the penetration of uranium in the national energy balance sheet, the C.E.A. has been studying nuclear reactors for several years now, that are capable of providing heat at favourable economic conditions. In this paper the THERMOS model is introduced. After showing the attraction of direct town heating by nuclear energy, the author describes the THERMOS project, defines the potential market, notably in France, and applies the lay-out study to the Grenoble Nuclear Study Centre site with district communal heating in mind. The economic aspects of the scheme are briefly mentioned [fr

  7. Nuclear reactors built, being built, or planned, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  8. Nuclear reactors built, being built, or planned: 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  9. Nuclear reactors built, being built, or planned, 1994

    International Nuclear Information System (INIS)

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5)

  10. Nuclear reactors built, being built, or planned: 1995

    International Nuclear Information System (INIS)

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5)

  11. An approach to a self-consistent nuclear energy system

    International Nuclear Information System (INIS)

    Fujii-e, Yoichi; Arie, Kazuo; Endo, Hiroshi

    1992-01-01

    A nuclear energy system should provide a stable supply of energy without endangering the environment or humans. If there is fear about exhausting world energy resources, accumulating radionuclides, and nuclear reactor safety, tension is created in human society. Nuclear energy systems of the future should be able to eliminate fear from people's minds. In other words, the whole system, including the nuclear fuel cycle, should be self-consistent. This is the ultimate goal of nuclear energy. If it can be realized, public acceptance of nuclear energy will increase significantly. In a self-consistent nuclear energy system, misunderstandings between experts on nuclear energy and the public should be minimized. The way to achieve this goal is to explain using simple logic. This paper proposes specific targets for self-consistent nuclear energy systems and shows that the fast breeder reactor (FBR) lies on the route to attaining the final goal

  12. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  13. The present status of nuclear power and prospects for fast reactors - the IAEA outlook

    International Nuclear Information System (INIS)

    Dastidar, P.; Kupitz, J.; Arkhipov, V.

    1991-01-01

    Nuclear power continues to provide a significant amount of the world's electricity supply. Based on the experience gained from about 6000 reactor years of operation, improvements are continuing to be made in the design of nuclear power plants of all types including liquid metal cooled fast reactors. Five demonstration, prototypical or semi-commercial nuclear plants with liquid metal-cooled reactors (LMR) are in operation in the world. Although the commercial deployment of fast reactors has not been seen as urgent due to the availability of adequate low-cost uranium resources there is an awareness in many countries that breeder reactors will be needed in the early decades of the next century. Adequate energy supply for all countries of the world is vital. The exploitation of all non-polluting forms of energy, of which nuclear energy is the most abundant, must be planned now to meet the growing worldwide energy demand. (author)

  14. Preliminary nuclear power reactor technology qualitative assessment for Malaysia

    International Nuclear Information System (INIS)

    Shamsul Amri Sulaiman

    2011-01-01

    Since the worlds first nuclear reactor major breakthrough in December 02, 1942, the nuclear power industry has undergone tremendous development and evolution for more than half a century. After surpassing moratorium of nuclear power plant construction caused by catastrophic accidents at Three-mile island (1979) and Chernobyl (1986), today, nuclear energy is back on the policy agendas of many countries, both developed and developing, signaling nuclear revival or nuclear renaissance. Selection of suitable nuclear power technology has thus been subjected to primary attention. This short paper attempts to draw preliminary technology assessment for the first nuclear power reactor technology for Malaysia. Methodology employed is qualitative analysis collating recent finding of tnb-kepco preliminary feasibility study for nuclear power program in peninsular malaysia and other published presentations and/or papers by multiple experts. The results suggested that pressurized water reactor (PWR) is the prevailing technology in terms of numbers and plant performances, and while the commercialization of generation IV reactors is remote (e.g. Not until 2030), generation III/ III+ NPP models are commercially available on the market today. Five (5) major steps involved in reactor technology selection were introduced with a focus on introducing important aspects of selection criteria. Three (3) categories for the of reactor technology selection were used for the cursory evaluation. The outcome of these analyses shall lead to deeper and full analyses of the recommended reactor technologies for a comprehensive feasibility study in the near future. Recommendations for reactor technology option were also provided for both strategic and technical recommendations. The paper shall also implore the best way to select systematically the first civilian nuclear power reactor. (Author)

  15. The OEEC European Nuclear Energy Agency

    International Nuclear Information System (INIS)

    1961-01-01

    The European Nuclear Energy Agency (ENEA) was set up in December 1957 as part of the OEEC to develop nuclear collaboration in Western Europe. The promotion of joint undertakings is one of the most important functions of ENEA, and why one of the first committees of the Agency to be set up was its Top Level Group on Co-operation in the Reactor Field. International collaboration in joint undertakings enables resources in effort, equipment and money to be pooled for the maximum benefit of the countries participating, and is the only way whereby a sufficiently wide range of research possibilities can be covered in a reasonable time. Examples fro such projects are: 1) Halden project - a joint three-year project to exploit the boiling heavy water reactor built by the Norwegian Institute for Atom energy at Halden; 2) Dragon Project - to investigate the possibilities of high-temperature gas-cooled reactors centered on the construction and operation, by an international team, of an experimental 20 MWt high-temperature gas-cooled reactor (Dragon) at the UK Atomic Energy Establishment at Winfrith; 3) Eurochemic - with a principle objective to construct an experimental plant for the treatment of used uranium fuel from reactors in the participating countries; 4) Nuclear Shops. In addition to promoting joint undertakings, a function of ENEA is to encourage scientific and technical collaboration between national research organizations. Co-operation has been facilitated in the areas od nuclear data, food irradiation, environment radioactivity, training, information and nuclear legislation

  16. The OEEC European Nuclear Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-07-15

    The European Nuclear Energy Agency (ENEA) was set up in December 1957 as part of the OEEC to develop nuclear collaboration in Western Europe. The promotion of joint undertakings is one of the most important functions of ENEA, and why one of the first committees of the Agency to be set up was its Top Level Group on Co-operation in the Reactor Field. International collaboration in joint undertakings enables resources in effort, equipment and money to be pooled for the maximum benefit of the countries participating, and is the only way whereby a sufficiently wide range of research possibilities can be covered in a reasonable time. Examples fro such projects are: 1) Halden project - a joint three-year project to exploit the boiling heavy water reactor built by the Norwegian Institute for Atom energy at Halden; 2) Dragon Project - to investigate the possibilities of high-temperature gas-cooled reactors centered on the construction and operation, by an international team, of an experimental 20 MWt high-temperature gas-cooled reactor (Dragon) at the UK Atomic Energy Establishment at Winfrith; 3) Eurochemic - with a principle objective to construct an experimental plant for the treatment of used uranium fuel from reactors in the participating countries; 4) Nuclear Shops. In addition to promoting joint undertakings, a function of ENEA is to encourage scientific and technical collaboration between national research organizations. Co-operation has been facilitated in the areas od nuclear data, food irradiation, environment radioactivity, training, information and nuclear legislation.

  17. INPRO Assessment of the Planned Nuclear Energy System of Belarus. A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-09-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was started in 2001 on the basis of IAEA General Conference resolution GC(44)/RES/21. INPRO activities have since been continuously endorsed by IAEA General Conference resolutions and by the General Assembly of the United Nations. The objectives of INPRO are to help ensure that nuclear energy is available to contribute, in a sustainable manner, to the goal of meeting the energy needs of the 21st century, and to bring together technology holders and users so that they can jointly consider the international and national actions required for ensuring sustainability of nuclear energy through innovations in technology and/or institutional arrangements. To fulfill these objectives, INPRO has developed a set of basic principles, user requirements and criteria, and an assessment method which, taken together, comprise the INPRO methodology for the evaluation of the long term sustainability of innovative nuclear energy systems. The INPRO methodology is documented in IAEA-TECDOC-1575 Rev.1, comprising an overview volume and eight additional volumes covering economics, institutional measures (infrastructure), waste management, proliferation resistance, physical protection, environment (impact of stressors and availability of resources), safety of reactors, and safety of nuclear fuel cycle facilities. This publication is the final report of an assessment of the planned nuclear energy system of Belarus using the INPRO methodology. The assessment was performed in 2009-2011 by Belarusian experts in a strategic partnership with the Russian Federation and with support from the IAEA's INPRO Group

  18. INPRO Assessment of the Planned Nuclear Energy System of Belarus. A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was started in 2001 on the basis of IAEA General Conference resolution GC(44)/RES/21. INPRO activities have since been continuously endorsed by IAEA General Conference resolutions and by the General Assembly of the United Nations. The objectives of INPRO are to help ensure that nuclear energy is available to contribute, in a sustainable manner, to the goal of meeting the energy needs of the 21st century, and to bring together technology holders and users so that they can jointly consider the international and national actions required for ensuring sustainability of nuclear energy through innovations in technology and/or institutional arrangements. To fulfill these objectives, INPRO has developed a set of basic principles, user requirements and criteria, and an assessment method which, taken together, comprise the INPRO methodology for the evaluation of the long term sustainability of innovative nuclear energy systems. The INPRO methodology is documented in IAEA-TECDOC-1575 Rev.1, comprising an overview volume and eight additional volumes covering economics, institutional measures (infrastructure), waste management, proliferation resistance, physical protection, environment (impact of stressors and availability of resources), safety of reactors, and safety of nuclear fuel cycle facilities. This publication is the final report of an assessment of the planned nuclear energy system of Belarus using the INPRO methodology. The assessment was performed in 2009-2011 by Belarusian experts in a strategic partnership with the Russian Federation and with support from the IAEA's INPRO Group.

  19. Nuclear energy, energy for the present and the future; Energia nuclear, una energia para el presente y el futuro

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo S, C. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: cas@nuclear.inin.mx

    2008-07-01

    In this work we will try to show that nuclear energy can contribute to the generation energy in the present and the future, considering that its effect on the climatic change is relatively low and that the fuels that uses are available a large scale. At the moment it is had already commercial thermal fission reactors , there are also them of fast fission that allow the fuel rearing, although these last ones in much smaller number, with both types of fission nuclear reactors can be obtained a very important contribution to the generation of energy at world-wide level during the time that is necessary so that it is developed, constructs and operates the first commercial fusion reactor. The energy that is generated in the present and future must come from different sources, which require to be reliable, to have little effect on the environment, to have wide reserves of fuels and to be viable from an economic and social point of view, they must be viable and safe. Between possible alternative energies it is counted on the lot, the wind one, the geothermal one, originating of the tides and some others. An energy that must be considered so that it has arrived at his maturity and he is already able to contribute widely to cover the present needs and future it is nuclear energy, as much the originating one of the fission of a heavy centre like obtained when fusing two light centers. On base in the nuclear fuel reserves at world-wide level a simple calculation takes control of the lapse in which energy by means of the nuclear fission in rearing can be generated reactors expresses demonstrating that the time sufficient to finish to the investigation and development of fusion reactors which they generate energy in economic, safe and reliable form. Combining these two options the nuclear energy can be considered the future like for the present and the future with practically null effects in the climatic change. (Author)

  20. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The law aims to perform regulations on enterprises of refining, processing and reprocessing of nuclear source and fuel materials and on establishment and operation of reactors to realize the peaceful and deliberate utilization of atomic energy according to the principle of the atomic energy basic law. Regulations of use of internationally regulated substances are also envisaged to observe international agreements. Basic concepts and terms are defined, such as: atomic energy; nuclear fuel material; nuclear source material; reactor; refining; processing; reprocessing and internationally regulated substance. Any person besides the Power Reactor and Nuclear Fuel Material Developing Corporation who undertakes refining shall be designated by the Prime Minister and the Minister of International Trade and Industry. An application shall be filed to the ministers concerned, listing name and address of the person, name and location of the refining works, equipment and method of refining, etc. The permission of the Prime Minister is necessary for any person who engages in processing. An application shall be filed to the Prime Minister, listing name and address of the person, name and location of the processing works and equipment and method of processing, etc. Permission of the Prime Minister, the Minister of International Trade and Industry or the Minister of Transport is necessary for any person who sets up reactors. An application shall be filed to the minister concerned, listing name and address of the person, purpose of operation, style, thermal output of reactor and number of units, etc. (Okada, K.)

  1. Linear regression and sensitivity analysis in nuclear reactor design

    International Nuclear Information System (INIS)

    Kumar, Akansha; Tsvetkov, Pavel V.; McClarren, Ryan G.

    2015-01-01

    Highlights: • Presented a benchmark for the applicability of linear regression to complex systems. • Applied linear regression to a nuclear reactor power system. • Performed neutronics, thermal–hydraulics, and energy conversion using Brayton’s cycle for the design of a GCFBR. • Performed detailed sensitivity analysis to a set of parameters in a nuclear reactor power system. • Modeled and developed reactor design using MCNP, regression using R, and thermal–hydraulics in Java. - Abstract: The paper presents a general strategy applicable for sensitivity analysis (SA), and uncertainity quantification analysis (UA) of parameters related to a nuclear reactor design. This work also validates the use of linear regression (LR) for predictive analysis in a nuclear reactor design. The analysis helps to determine the parameters on which a LR model can be fit for predictive analysis. For those parameters, a regression surface is created based on trial data and predictions are made using this surface. A general strategy of SA to determine and identify the influential parameters those affect the operation of the reactor is mentioned. Identification of design parameters and validation of linearity assumption for the application of LR of reactor design based on a set of tests is performed. The testing methods used to determine the behavior of the parameters can be used as a general strategy for UA, and SA of nuclear reactor models, and thermal hydraulics calculations. A design of a gas cooled fast breeder reactor (GCFBR), with thermal–hydraulics, and energy transfer has been used for the demonstration of this method. MCNP6 is used to simulate the GCFBR design, and perform the necessary criticality calculations. Java is used to build and run input samples, and to extract data from the output files of MCNP6, and R is used to perform regression analysis and other multivariate variance, and analysis of the collinearity of data

  2. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  3. Nuclear reactor PBMR and cogeneration

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Alonso V, G.

    2013-10-01

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  4. Nuclear calculation of the thorium reactor

    International Nuclear Information System (INIS)

    Hirakawa, Naohiro

    1998-01-01

    Even if for a reactor using thorium (and 233-U), its nuclear design calculation procedure is similar to the case using conventional 235-U, 238-U and plutonium. As nuclear composition varies with time on operation of nuclear reactor, calculation of its mean cross section should be conducted in details. At that time, one-group cross section obtained by integration over a whole of energy range is used for small member group. And, as the nuclear data for a base of its calculation is already prepared by JENDL3.2 and nuclear data library derived from it, the nuclear calculation of a nuclear reactor using thorium has no problem. From such a veiwpoint, IAEA has organized a coordinated research program of 'Potential of Th-based Fuel Cycles to Constrain Pu and to reduce Long-term Waste Toxicities' since 1996. All nations entering this program were regulated so as to institute by selecting a nuclear fuel cycle thinking better by each nation and to examine what cycle is expected by comparing their results. For a promise to conduct such neutral comparison, a comparison of bench mark calculations aiming at PWR was conducted to protect that the obtained results became different because of different calculation method and cross section adopted by each nation. Therefore, it was promoted by entrance of China, Germany, India, Israel, Japan, Korea, Russia and USA. The SWAT system developed by Tohoku University is used for its calculation code, by using which calculated results on the bench mark calculation at the fist and second stages and the nuclear reactor were reported. (G.K.)

  5. Net energy from nuclear power

    International Nuclear Information System (INIS)

    Rotty, R.M.; Perry, A.M.; Reister, D.B.

    1975-11-01

    An analysis of net energy from nuclear power plants is dependent on a large number of variables and assumptions. The energy requirements as they relate to reactor type, concentration of uranium in the ore, enrichment tails assays, and possible recycle of uranium and plutonium were examined. Specifically, four reactor types were considered: pressurized water reactor, boiling water reactor, high temperature gas-cooled reactor, and heavy water reactor (CANDU). The energy requirements of systems employing both conventional (current) ores with uranium concentration of 0.176 percent and Chattanooga Shales with uranium concentration of 0.006 percent were determined. Data were given for no recycle, uranium recycle only, and uranium plus plutonium recycle. Starting with the energy requirements in the mining process and continuing through fuel reprocessing and waste storage, an evaluation of both electrical energy requirements and thermal energy requirements of each process was made. All of the energy, direct and indirect, required by the processing of uranium in order to produce electrical power was obtained by adding the quantities for the individual processes. The energy inputs required for the operation of a nuclear power system for an assumed life of approximately 30 years are tabulated for nine example cases. The input requirements were based on the production of 197,100,000 MWH(e), i.e., the operation of a 1000 MW(e) plant for 30 years with an average plant factor of 0.75. Both electrical requirements and thermal energy requirements are tabulated, and it should be emphasized that both quantities are needed. It was found that the electricity generated far exceeded the energy input requirements for all the cases considered

  6. Development of the reactor lithium ampoule device for research of spectral-luminescent characteristics of nuclear-excited plasma

    Energy Technology Data Exchange (ETDEWEB)

    Batyrbekov, E.G. [National Nuclear Center of RK, Kurchatov (Kazakhstan); Gordienko, Yu. N., E-mail: gordienko@nnc.kz [National Nuclear Center of RK, Kurchatov (Kazakhstan); Ponkratov, Yu. V. [National Nuclear Center of RK, Kurchatov (Kazakhstan); Khasenov, M.U. [PI “National Laboratory Astana”, Astana (Kazakhstan); Tazhibayeva, I.L.; Barsukov, N.I.; Kulsartov, T.V.; Zaurbekova, Zh. A.; Tulubayev, Ye. Yu.; Skakov, M.K. [National Nuclear Center of RK, Kurchatov (Kazakhstan)

    2017-04-15

    Highlights: • The development procedure of the ampoule device for experiments with nuclear-excited plasma under neutron irradiation is described. • The methods of nuclear reactions’ energy conversion into the energy of optical radiation of nuclear-excited plasma are presented. • A scheme of reactor experiments, the experimental facility and experimental device to carry out the reactor experiments are considered. - Abstract: This paper describes the development procedure of the reactor ampoule device to perform the experiments on study of spectral luminescence characteristics of nuclear-excited plasma formed by products of {sup 6}Li(n,α){sup 3}H reaction under neutron irradiation at the IVG.1 M research reactor. The methods of nuclear reactions’ energy conversion into the energy of optical radiation of nuclear-excited plasma are presented. A scheme of reactor experiments, the experimental facility and experimental device to carry out the reactor experiments are considered in paper. The designed ampoule device is totally meets the requirements of irradiation experiments on the IVG.1M reactor.

  7. Nuclear energy. Economical aspects

    International Nuclear Information System (INIS)

    Legee, F.

    2010-01-01

    This document present 43 slides of a power point presentation containing detailed data on economical and cost data for nuclear energy and nuclear power plants: evolution from 1971 to 2007 of world total primary energy supply, development of nuclear energy in the world, nuclear power plants in the world in 2009, service life of nuclear power plants and its extension; nuclear energy market and perspectives at 2030, the EPR concept (generation III) and its perspectives at 2030 in the world; cost assessment (power generation cost, nuclear power generation cost, costs due to nuclear safety, comparison of investment costs for gas, coal and nuclear power generation, costs for building a nuclear reactor and general cost; cost for the entire fuel cycle, the case of the closed cycle with recycling (MOX); costs for radioactive waste storage; financial costs and other costs such as environmental impacts, strategic stocks, comparative evaluation of the competitiveness of nuclear versus coal and gas

  8. Statements on Energy from Nuclear Fusion

    International Nuclear Information System (INIS)

    The Energy Committee of the Royal Swedish Academy of Sciences

    2006-07-01

    The Royal Swedish Academy of Sciences (KVA) is an independent non-governmental organization, with expertise in most of the sciences as well as in the economical, social and humanistic fields. The KVA has appointed an Energy Committee that will summarize scientific knowledge on supply and use of energy over the coming fifty years. The Energy Committee has selected a number of subjects to be studied in some depth, one of these being nuclear energy from the fission process. The Energy Committee's key issues concerning nuclear energy: We have identified six key issues which require very careful analysis during the coming years. Safety remains a key issue. It is one of the major activities of OECD's Nuclear Energy Agency. 40 years of multilateral cooperation has led to improvements in the analysis and management of accidents and in the assessment of safety margins in the fuel cycle. In particular, attention is focused on ageing and structural integrity as the lifetime of reactors is extended to up to 60 years. The new Gen III reactors have improved safety features such as double containment, better separation of critical safety systems and improved possibilities to handle steam explosions and core meltdown. The Gen IV reactors will be designed with a goal to further improve safety features. Handling of the nuclear waste: Today, in most light water reactors, the fuel is used once only ('once through') and then sent directly to repositories. After some cooling time, the waste will be buried in underground repositories. Another important aspect is that a final decision for waste disposal is of great importance to the public's acceptance of any new nuclear ventures. The waste handling in future reactors is an important item for research and its solution will also influence how the waste from current reactors is managed. Non-proliferation: With increased use of nuclear energy, more countries may build up facilities for the whole fuel cycle, thus also, at least theoretically

  9. The prospects and trends of nuclear energy technology in China

    International Nuclear Information System (INIS)

    Jiang Shengjie

    1989-09-01

    Assurance of reliable and economic energy supply under conditions acceptable to the environment and transportation is one of the major prerequisites for achieving the ultimate goal of quadrupling the national gross annual value of industry and agriculture by the end of this century in China. The statistical data on energy and electricity usage and socioeconomic development in China show clearly the necessity for developing nuclear power station in this century, and for developing advanced nuclear energy technology in the next century, this paper gives a summary description of the nuclear power development plan by 2000, as well as the trends of nuclear energy technology in the future of China. Before the year 2000 there will be approximately 10 nuclear power reactors with a total net capacity of 6700 MWe connected into the grid and 5 nuclear power reactors with net capacity of 5000 MWe under construction. From now on, great attention is being paid to developing advanced nuclear reactor systems, and there are several types of reactors to be taken into account: High-Temperature Gas Cooled Reactor, Fast Breeder Reactor and Hybrid Fusion-Fission Reactor. At all stages of nuclear power development particular emphasis is being given for enhancing reactor safety and measuring operational reliability. Supply of nuclear fuels based on self-reliance is our inherent policy. China is undertaking to set up a fully integrated advanced nuclear fuel cycle, adapted to the nuclear power development. With the decommissioning of some nuclear facilities set up during the 1960's, the R and D program is being considered on the following topics: decommissioning safety assessment, robotic remote handling, decommissioning waste treatment environment evaluation methodology and cost analysis. 2 refs, 2 tabs

  10. The role and importance of nuclear energy in the realisation of energy requirements

    International Nuclear Information System (INIS)

    Giraud, A.

    1976-01-01

    The competitiveness of nuclear energy in relation to fuel oil is now fully established for electricity generation, not merely for base production but also for much lower load factors. Likewise, in the field of steam generation nuclear energy has a high competitivity margin in comparison with fuel oil. At the outlet of the boiler the cost of the nuclear steam B.T.U. is much lower than the cost of the nuclear electricity B.T.U., but this advantage could be evened out, partially or totally, by the ease of transportation and the flexibility of utilization of electricity. The availability of high temperatures may in the future open new markets (hydrogen production, industrial processes ..). Thus, through its various vectors, nuclear energy may occupy an important place in the energy balance of a country. An evaluation has been made, on certain assumptions, until the year 2030, of the place that nuclear energy will take. The evaluation shows clearly that uranium supply will be next to impossible if nuclear energy is supplied by light water reactors, associated or not with other thermal reactors. It will be necessary to resort urgently to fast breeder reactors. The acceleration of the fast breeder reactors breakthrough resulting from the insertion of natural uranium converters does not fundamentally change the supply problem, nor does the insertion of HTRs intended to break into the high temperature market. On the other hand, improvement of the performance of fast breeder reactors, particularly an increase in the breeding ratio and a shortening of the cycle, might have a decisive effect and might ensure the definite mastering of the uranium needs. (author)

  11. Future plant of basic research for nuclear energy by university researchers

    International Nuclear Information System (INIS)

    Shibata, Toshikazu

    1984-01-01

    National Committee for Nuclear Energy Research, Japan Science Council has completed a future plan for basic nuclear energy research by university researchers. The JSC has recommended the promotion of basic research for nuclear energy based on the plan in 1983. The future plan consists of four main research fields, namely, (1) improvements of reactor safety, (2) down stream, (3) thorium fuel reactors, and (4) applications of research reactor and radioisotopes. (author)

  12. Seawater desalination plant using nuclear heating reactor coupled with MED process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. This seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. The intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10~200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m3/d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented.

  13. Seawater desalination plant using nuclear heating reactor coupled with MED process

    International Nuclear Information System (INIS)

    Wu Shaorong; Dong Duo; Zhang Dafang; Wang Xiuzhen

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. this seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. the intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10-200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m 3 /d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented

  14. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  15. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    A nuclear reactor coolant channel is described that is suitable for sub-cooled reactors as in pressurised water reactors as well as for bulk boiling, as in boiling water reactors and steam generating nuclear reactors. The arrangement aims to improve heat transfer between the fuel elements and the coolant. Full constructional details are given. See also other similar patents by the author. (U.K.)

  16. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Science.gov (United States)

    2010-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...

  17. Nuclear energy - some aspects

    International Nuclear Information System (INIS)

    Bandeira, Fausto de Paula Menezes

    2005-05-01

    This work presents a brief history of research and development concerning to nuclear technology worldwide and in Brazil, also information about radiations and radioactive elements as well; the nuclear technology applications; nuclear reactor types and functioning of thermonuclear power plants; the number of existing nuclear power plants; the nuclear hazards occurred; the national fiscalization of nuclear sector; the Brazilian legislation in effect and the propositions under proceduring at House of Representatives related to the nuclear energy

  18. Calculation of heat generation due to nuclear radiation in nuclear reactors

    International Nuclear Information System (INIS)

    Torres, L.M.R.; Gomes, I.C.; Maiorino, J.R.

    1986-01-01

    The study is performed for caculating nuclear heating due to the interaction of neutrons and gamma-rays with matter. Modifications were implemented in the ANISN code, that solves the one-dimensional transport equation using the discrete ordinate method, to include nuclear heating calculations. Tests of the implemented modifications were performed in problems of nuclear heating due to radiation energy deposition in a fusion reactor. (Author) [pt

  19. Physics of nuclear reactors

    International Nuclear Information System (INIS)

    Baeten, Peter

    2006-01-01

    This course gives an introduction to Nuclear Reactor Physics. The first chapter explains the most important parameters and concepts in nuclear reactor physics such as fission, cross sections and the effective multiplication factor. Further on, in the second chapter, the flux distributions in a stationary reactor are derived from the diffusion equation. Reactor kinetics, reactor control and reactor dynamics (feedback effects) are described in the following three chapters. The course concludes with a short description of the different types of existing and future reactors. (author)

  20. 9th Pacific Basin Nuclear Conference. Nuclear energy, science and technology - Pacific partnership. Proceedings Volume 1

    International Nuclear Information System (INIS)

    1994-04-01

    The theme of the 9th Pacific Basin Nuclear conference held in Sydney from 1-6 May 1994, embraced the use of the atom in energy production and in science and technology. The focus was on selected topics of current and ongoing interest to countries around the Pacific Basin. The two-volume proceedings include both invited and contributed papers. They have been indexed separately. This document, Volume 1 covers the following topics: Pacific partnership; perspectives on nuclear energy, science and technology in Pacific Basin countries; nuclear energy and sustainable development; economics of the power reactors; new power reactor projects; power reactor technology; advanced reactors; radioisotope and radiation technology; biomedical applications

  1. Bulletin of the Research Laboratory for Nuclear Reactors

    International Nuclear Information System (INIS)

    Aritomi, Masanori

    2008-01-01

    The bulletin consists of two parts. The first part includes General Research Report. The Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology has three engineering divisions such as Energy Engineering, Mass Transmutation Engineering, and System and Safety Engineering. In this part, 17 reports of Energy Engineering division, 8 reports of Mass transmutation Engineering division, 11 reports of System and Safety Engineering division are described as their activities. In addition, 3 reports of Cooperative Researches are also summarized. The second part is Special Issue about COE-INES RESEARCH REPORT 2007. In this part, 3 reports of Innovative Reactor Group, 2 reports of Innovative Nuclear Energy Utilization System Group, 3 reports of Innovative Transmutation/Separation Group, 2 reports of Relationship between Nuclear and Society Group, 1 report of RA Students in the COE-INES Captainship Educational Program are described as results to their researches. (J.P.N.)

  2. INPRO economic assessment of the IRIS nuclear reactor for deployment in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves Filho, Orlando Joao Agostinho, E-mail: orlando@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN - RJ), Rua Helio de Almeida, 75, Cidade Universitaria, Ilha do Fundao, 21941-906 Rio de Janeiro, RJ (Brazil)

    2011-06-15

    Highlights: > First INPRO evaluation of IRIS economic competitiveness for deployment in Brazil. > Plant arrangement of three independent IRIS single units constructed in series. > Angra 3 reactor used as reference design for judgment of IRIS economic potential. > IRIS economically competes with 2nd generation nuclear power plants in Brazil - Abstract: This paper presents the results of the economic assessment of the International Reactor Innovative and Secure (IRIS) for deployment in Brazil using the assessment methodology developed under the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), co-ordinated by the International Atomic Energy Agency (IAEA). INPRO initiated in 2001 and has the main objective of helping to ensure that nuclear energy will be available to contribute in a sustainable manner to the energy needs of the 21st century. Among its missions is the development of a methodology to assess innovative nuclear energy systems (INSs) on a global, regional and national basis. In 2005, Brazil submitted a proposal for the assessment of two small-size reactors as components of an INS, completed with a conventional open nuclear fuel cycle based on enriched uranium. One of the reactors assessed was IRIS, a small-size, modular, integral-type PWR reactor. IRIS was evaluated with regard to the areas of reactor safety and economics only. This paper outlines the rationale for the study and summarizes the results of the economic assessment. The study concluded that the reference design of IRIS complies with most of INPRO economics criteria and has potential to comply with the remaining ones.

  3. Nuclear energy in our future

    International Nuclear Information System (INIS)

    Hennies, H.H.

    1988-01-01

    Nuclear energy for electricity generation will extend its market portion in Europe in the coming decades because: 1) its economic and/or environment-relevant advantages compared with the fossil energy sources are so explicit that the latter will no longer be competitive; 2) the improvements of the system engineering, which are presently being implemented and are to be expected in the future, will enhance the safety facilities to the extent that accident risk will cease to be a decisive factor; 3) energy-saving effects or the use of solar energy will not provide an appropriate large scale alternative for coal and/or nuclear energy; 4) the problems of radioactive waste disposal will be definitely solved within the foreseeable future. Considering all the technological systems available the light water reactor will continue to dominate. The change to the breeder reactor is not yet under discussion because of the medium-term guaranteed uranium supply. The use of nuclear technology in the heating market will depend for the moment on the availability and cost of oil and gas development. In principle nuclear energy can play an important role also in this sector

  4. SCW Pressure-Channel Nuclear Reactors: Some Design Features and Concepts

    International Nuclear Information System (INIS)

    Duffey, R.B.; Pioro, I.L.; Gabaraev, B.A.; Kuznetsov, Yu. N.

    2006-01-01

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950's and 1960's in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with supercritical water (SCW) became attractive again as the ultimate development path for water-cooling. The main objectives of using SCW in nuclear reactors are 1) to increase the thermal efficiency of modern nuclear power plants (NPPs) from 33 -- 35% to about 40 -- 45%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (∼$ 1000 US/kW). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625 deg. C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia. Design features related to both channels and fuel bundles are discussed in this paper. Also, Russian experience with operating supercritical steam heaters at NPP is presented. The main conclusion is that development of SCW pressure-channel nuclear reactors is feasible and significant benefits can be expected over other thermal energy systems. (authors)

  5. Legal Review: Issuance of Separate Permits for a Nuclear Reactor for Research

    International Nuclear Information System (INIS)

    Chang, Gun-Hyun; Kim, Sang-Wwon; Koh, Jae-Dong; Kim, Chang-Bum; Ahn, Sang-kyu

    2006-01-01

    With regard to the nuclear reactor permission system under the Atomic Energy Act of the Republic of Korea, two types of permits must be obtained for nuclear power reactors under Article 11 and Article 21 of the Atomic Energy Act: construction permits and operation permits. Concerning nuclear reactors for research, however, only one permit is required: a dual permit that authorizes both construction and operation, under Article 33 of said act. This permit can be obtained by submitting an application for a dual construction and operation permit to the regulatory authority. The question is whether a dual permit can be issued for nuclear reactors for research under any circumstances. If the literal provisions of the Atomic Energy Act are applied rigorously even in cases where it is realistically difficult to submit a dual permit application or issue a dual permit for construction and operation considering the power output, usage, and design complexity of nuclear reactors for research, separate permits for construction or operation shall never be issued, with only dual permits for construction and operation issued. For the Hanaro research reactor, a dual permit was issued with a condition attached thereto based on the literal provisions of the Atomic Energy Act at the time of its construction, although an application for and issuance of a dual permit for its construction and operation were impossible at the time. This is in violation of the purport of the law that provides for a dual permit

  6. The role of nuclear energy in reducing the environmental impact of China's energy utilization

    International Nuclear Information System (INIS)

    Wu, Zongxin; Sun, Yuliang

    1998-01-01

    It is presented in this paper the current status of China's energy market and the projections of its future development. China's energy market, currently and in the next decades, is mainly characterized by rapidly increasing demand and dominant role of coal which is directly related to serious environmental pollution. The role of nuclear energy utilization in improving the primary energy infrastructure is addressed. Status and development of nuclear power generation are described. Potential of introducing nuclear energy into heat market is discussed. An overview of the research and development work of water cooled low temperature heating reactors and gas-cooled high temperature gas cooled reactors in China is given and the technical and safety features of these two reactor types are briefly described. (author)

  7. Nuclear reactors with auxiliary boiler circuit

    International Nuclear Information System (INIS)

    George, B.V.; Cook, R.K.

    1976-01-01

    A gas-cooled nuclear reactor has a main circulatory system for the gaseous coolant incorporating one or more main energy converting units, such as gas turbines, and an auxiliary circulatory system for the gaseous coolant incorporating at least one steam generating boiler arranged to be heated by the coolant after its passage through the reactor core to provide steam for driving an auxiliary steam turbine, such an arrangement providing a simplified start-up procedure also providing emergency duties associated with long term heat removal on reactor shut down

  8. Decommissioning of Salaspils nuclear reactor

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Malnachs, J.; Popelis, A.

    2002-01-01

    In May 1995, the Latvian Government decided to shut down the Research Reactor Salaspils (SRR) and to dispense with nuclear energy in future. The reactor has been out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH from 1998-1999. he Latvian Government decided on 26 October 1999 to start the direct dismantling to 'green field' in 2001. The results of decommissioning and dismantling performed in 1999-2001 are presented and discussed. The main efforts were devoted to collecting and conditioning 'historical' radioactive waste from different storages outside and inside the reactor hall. All radioactive material more than 20 tons were conditioned in concrete containers for disposal in the radioactive waste depository 'Radons' in the Baldone site. Personal protective and radiation measurement equipment was upgraded significantly. All non-radioactive equipment and material outside the reactor buildings were free-released and dismantled for reuse or conventional disposal. Weakly contaminated material from the reactor hall was collected and removed for free-release measurements. The technology of dismantling of the reactor's systems, i.e. second cooling circuit, zero power reactors and equipment, is discussed in the paper. (author)

  9. Nuclear energy

    International Nuclear Information System (INIS)

    Panait, A.

    1994-01-01

    This is a general report presenting the section VII entitled Nuclear Power of the National Conference on Energy (CNE '94) held in Neptun, Romania, on 13-16 June 1994. The problems addressed were those relating to electric power produced by nuclear power plant, to heat secondary generation, to quality assurance, to safety, etc. A special attention was paid to the commissioning of the first Romanian nuclear power unit, the Cernavoda-1 reactor of CANDU type. The communications were grouped in four subsections. These were: 1. Quality assurance, nuclear safety, and environmental protection; 2. Nuclear power plant, commissioning, and operation; 3. Nuclear power plant inspection, maintenance, and repairs, heavy water technology; 4. Public opinion education. There were 22 reports, altogether

  10. A Nuclear Energy Renaissance in the U.S.?

    International Nuclear Information System (INIS)

    Kessler, Carol E.; Mahy, Heidi A.; Ankrum, Al; Buelt, James L.; Branch, Kristi M.; Phillips, Jon R.

    2008-01-01

    Is it time for a nuclear energy renaissance? Among other things, nuclear power is a carbon neutral source of base load power. With the growth in energy use expected over the next 20 years and the growing negative impacts of global climate changes, the cost of oil and gas, energy security and diversity concerns, and progress on advanced reactor designs, it may be the right time for nuclear power to enter a new age of growth. Asia and Russia are both planning for a nuclear renaissance. In Europe, Finland and France have both taken steps to pursue new nuclear reactors. U.S. utilities are preparing for orders of new reactors; one submitted a request to the U.S. Nuclear Regulatory Commission (NRC) to review its request to construct a new reactor on an existing site. What has the industry been doing since nuclear energy was birthed in the 1960s? In those days a bold new industry boasted that nuclear power in the United States was going to be ''too cheap to meter'', but as we all know this did not come about for many reasons. Eventually, it became clear that industry had neglected to do its homework. Critiques of the industry were made on safety, security, environment, economic competitiveness (without government support), and nonproliferation. All of these factors need to be effectively addressed to promote the confidence and support of the public - without which a nuclear power program is not feasible.

  11. Lessons Learned from Nuclear Energy System Assessments (NESA) Using the INPRO Methodology. A Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2009-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in 2001 on the basis of a resolution of the IAEA General Conference in 2000 (GC(44)/RES/21). INPRO activities have since been continuously endorsed by resolutions of IAEA General Conferences and by the General Assembly of the United Nations. The objectives of INPRO are to: Help ensure that nuclear energy is available to contribute, in a sustainable manner, to meeting the energy needs of the 21st century; Bring together technology holders and users so that they can consider jointly the international and national actions required for achieving desired innovations in nuclear reactors and fuel cycles. INPRO is proceeding in steps. In its first step, referred to as Phase 1, 2001 to 2006, INPRO developed a set of basic principles, user requirements and criteria together with an assessment method, which taken together, comprise the INPRO methodology for the evaluation of innovative nuclear energy systems. To provide additional guidance in using the INPRO methodology an INPRO Manual was developed; it is comprised of an overview volume and eight additional volumes covering the areas of economics, infrastructure, waste management, proliferation resistance, physical protection, environment, safety of reactors, and safety of the nuclear fuel cycle facilities. Based on a decision of the 9 INPRO steering committee in July 2006, INPRO has entered into Phase 2. This phase has three main directions of activity: methodology improvement, infrastructure/institutional aspects and collaborative projects. As of March 2009, INPRO had 28 members: Argentina, Armenia, Belarus, Belgium, Brazil, Bulgaria, Canada, Chile, China, Czech Republic, France, Germany, India, Indonesia, Japan, Republic of Korea, Morocco, Netherlands, Pakistan, the Russian Federation, Slovakia, South Africa, Spain, Switzerland, Turkey, Ukraine, United States of America and the European Commission. This IAEA-TECDOC is part of

  12. Nuclear energy synergetics and molten-salt technology

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1988-01-01

    There are various problems with nuclear energy techniques in terms of resources, safety, environmental effects, nuclear proliferation, reactor size reduction and overall economics. To overcome these problems, future studies should be focused on utilization of thorium resources, separation of multiplication process and power generation process, and application of liquid nuclear fuel. These studies will lead to the development of molten thorium salt nuclear synergetics. The most likely candidate for working medium is Lif-BeF 2 material (flibe). 233 U production facilities are required for the completion of the Th cycle. For this, three ideas have been proposed: accelerator M.S. breeder, impact fusion MSB and inertial conf. fusion hybrid MSB. The first step toward the development of molten Th salt nuclear energy synergetics will be the construction of a pilot plant of an extreme small size. As candidate reactor, the author has selected mini FUJI-II (7.0 MWe), an extremely small molten salt power reactor. Mini FUJI-II facilities are expected to be developed in 7 - 8 years. For the next step (demonstration step), the designing of a small power reactor (FUJI 160 MWe) has already been carried out. A small molten salt reactor will have good safety characteristics in terms of chemistry, material, structure, nuclear safety and design basis accidents. Such reactors will also have favorable economic aspects. (Nogami, K.)

  13. Reactor design for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Koenig, D.R.; Ranken, W.A.

    1979-01-01

    Conceptual design studies of a nuclear power plant for electric propulsion of spacecrafts have been on going for several years. An attractive concept which has evolved from these studies and which has been described in previous publications, is a heat-pipe cooled, fast spectrum nuclear reactor that provides 3 MW of thermal energy to out-of-core thermionic converters. The primary motivation for using heat pipes is to provide redundancy in the core cooling system that is not available in gas or liquid-metal cooled reactors. Detailed investigation of the consequences of heat pipe failures has resulted in modifications to the basic reactor design and has led to consideration of an entirely different core design. The new design features an integral laminated core configuration consisting of alternating layers of UO 2 and molybdenum sheets that span the entire diameter of the core. Design characteristics are presented and compared for the two reactors

  14. An easy explanation book on glossary of nuclear energy

    International Nuclear Information System (INIS)

    Seo, Du Hwan; Seo, Gyeong Won

    2011-03-01

    This book mentions about 260 words of nuclear energy, which include general term of nuclear energy, nuclear reactor, nuclear fuel and technique for concentration, using of nuclear energy, radiation and measurement, radwaste disposal, development plan on nuclear energy and international bodies. This book is useful for students studying nuclear energy and radiation and those who are interested in nuclear field to research in easy access.

  15. Change in plan for installation of nuclear reactor in No.1 atomic powered vessel of Japan Atomic Energy Research Institute (change in purpose of use and in method for nuclear reactor installation and spent fuel disposal) (report)

    International Nuclear Information System (INIS)

    1987-01-01

    This report, compiled by the Nuclear Safety Commission to be submitted to the Prime Minister, deals with studies concerning some changes in the plan for the installation of a nuclear reactor in the No.1 atomic powered vessel to be constructed under the Japan Atomic Energy Research Institute (changes in the purpose of its use and in the methods for the nuclear reactor installation and spent fuel disposal). The conclusions of and procedures for the examination and evaluation are presented and then detailes of the studies are described. The study on the location requirements for the incidental land facilities at Sekinehama covers various conditions concerning the location, geology, earthquakes, meteorology, hydrology and social environment. The study on the safety design of the nuclear reactor facilities deals with the reactor, fuel handling facilities and other auxiliary facilities, as well as various land facilities to be constructed at Sekinehama including the reactor facilities and other facilities for fuel handling, waste disposal and protection and management of radioactive rays. Evaluation of possible radiation emission is shown and the accident analysis is also addressed. (Nogami, K.)

  16. Thermophotovoltaic Energy Conversion in Space Nuclear Reactor Power Systems

    National Research Council Canada - National Science Library

    Presby, Andrew L

    2004-01-01

    .... This has potential benefits for space nuclear reactor power systems currently in development. The primary obstacle to space operation of thermophotovoltaic devices appears to be the low heat rejection temperatures which necessitate large radiator areas...

  17. Regulations concerning licensing of nuclear reactor facilities and other nuclear installations, Decree No 7/9141, 6 January 1975

    International Nuclear Information System (INIS)

    1975-01-01

    This Decree lays down the licensing system for nuclear installations in Turkey and also sets up a Nuclear Safety Committee whose duty is to ensure that the requirements of this Decree are met. The Committee is made up of members of the Atomic Energy Commission specialized in reactors, nuclear safety, health physics, reactor physics as well as two experts respectively appointed by the Ministry of Health and Social Welfare and the Ministry of Energy and National Resources. (NEA) [fr

  18. Nuclear energy: the opinion of future

    International Nuclear Information System (INIS)

    Mathis, Agostino; Monti, Stefano

    2006-01-01

    The article described the international programs for development of nuclear systems of new generation for energy production with which many countries have started the development of new concepts of nuclear reactors to put in production in the next decades in order to protect the environment. At last it comes made the aspects of economy of nuclear energy [it

  19. Nuclear reactor buildings

    International Nuclear Information System (INIS)

    Nagashima, Shoji; Kato, Ryoichi.

    1985-01-01

    Purpose: To reduce the cost of reactor buildings and satisfy the severe seismic demands in tank type FBR type reactors. Constitution: In usual nuclear reactor buildings of a flat bottom embedding structure, the flat bottom is entirely embedded into the rock below the soils down to the deck level of the nuclear reactor. As a result, although the weight of the seismic structure can be decreased, the amount of excavating the cavity is significantly increased to inevitably increase the plant construction cost. Cross-like intersecting foundation mats are embedded to the building rock into a thickness capable withstanding to earthquakes while maintaining the arrangement of equipments around the reactor core in the nuclear buildings required by the system design, such as vertical relationship between the equipments, fuel exchange systems and sponteneous drainings. Since the rock is hard and less deformable, the rigidity of the walls and the support structures of the reactor buildings can be increased by the embedding into the rock substrate and floor responsivity can be reduced. This enables to reduce the cost and increasing the seismic proofness. (Kamimura, M.)

  20. Nuclear energy - some aspects; Energia nuclear - alguns aspectos

    Energy Technology Data Exchange (ETDEWEB)

    Bandeira, Fausto de Paula Menezes

    2005-05-15

    This work presents a brief history of research and development concerning to nuclear technology worldwide and in Brazil, also information about radiations and radioactive elements as well; the nuclear technology applications; nuclear reactor types and functioning of thermonuclear power plants; the number of existing nuclear power plants; the nuclear hazards occurred; the national fiscalization of nuclear sector; the Brazilian legislation in effect and the propositions under proceduring at House of Representatives related to the nuclear energy.

  1. Nuclear reactor technology: the next 50 years

    Energy Technology Data Exchange (ETDEWEB)

    Sollychin, R.; Subki, H.; Adelfang, P.; Koshy, T. [International Atomic Energy Agency, Vienna (Austria)

    2013-07-01

    In light of the growing awareness of the environmental externalities of fossil fuel combustion, alternatives for electric power generation such as solar, wind and nuclear energy are becoming more desirable. In developed countries, large power markets are currently served by a centralized energy system through well inter-connected electricity grids. However, as shares of variable renewable energy sources (mainly wind and solar power) are increasing in the future; larger fluctuation in power generation can be expected which lead to higher risk of grid instabilities. Less-capital intensive small and medium sized nuclear reactors (SMR) are emerging as an important element of alternative power generation system to fossil fuel, with a unique additional role of balancing the power generation fluctuation caused by the solar and wind power generation. In regions not served by large electricity grids, including many parts of the developing countries with increasing demand for energy at rates above world's average, power generation using locally available energy sources including renewable energy is the practical means of providing basic energy needed for social and economic development. The integration of locally supportable SMR and local renewable energy system in a hybrid fashion can reduce the relative scale but not eliminate the fluctuation in power generation caused by the irregular availability of solar and wind energy. Without the use of commercial electricity trading that is only available in regions served by large inter-connected electricity grids, further minimization of power generation fluctuation can be done by the installation of local energy (electricity and/or heat) applications and/or energy storage device. The operation of these applications and energy storage can be done in synchronization with the availability of excess power throughout the fluctuation of the overall power generation in the region. Under these conditions, SMRs utilization as part of

  2. Overview of nuclear safety activities performed by JRC-IE on Gen IV fast reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Tsige-Tamirat, H.; Ammirabile, L.; D' Agata, E.; Fuetterer, M.; Ranguelova, V. [European Commission, Joint Research Centre, Institute for Energy, Westerduinweg 3, 1755LE Petten (Netherlands)

    2010-07-01

    The European Strategic Energy Technology (SET) Plan recognizes the need to develop new energy technologies, in order to reduce greenhouse gas emissions and secure energy supply in Europe. Besides renewable energy and improved energy efficiency, a new generation of nuclear power plants and innovative nuclear power applications can play a significant role to achieve this goal. The JRC Institute for Energy 'Safety of Future Nuclear Reactors' (SFNR) Unit is engaged in experimental research, numerical simulation and modelling, scientific, feasibility and engineering studies on innovative nuclear reactor systems. This also represents a significant EURATOM contribution to the Generation IV International Forum. Its activities deal with, among others, the performance assessment of innovative fuels and materials, development of new reactor core concepts and safety solutions, and knowledge management and preservation. Special attention is given to fast reactor concepts, namely the sodium (SFR) and lead (LFR) cooled reactors. Recognizing the maturity of the SFR technology, the European Sustainable Nuclear Energy Technology Platform (SNETP) considers a prototype SFR to be built as a next-step towards the deployment of a first-of-a-kind Gen IV SFR. This paper gives an overview of current research preformed at JRC-IE with emphasis on the work performed in the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) within the European Commission's Seventh Framework Program. (authors)

  3. Overview of nuclear safety activities performed by JRC-IE on Gen IV fast reactor concepts

    International Nuclear Information System (INIS)

    Tsige-Tamirat, H.; Ammirabile, L.; D'Agata, E.; Fuetterer, M.; Ranguelova, V.

    2010-01-01

    The European Strategic Energy Technology (SET) Plan recognizes the need to develop new energy technologies, in order to reduce greenhouse gas emissions and secure energy supply in Europe. Besides renewable energy and improved energy efficiency, a new generation of nuclear power plants and innovative nuclear power applications can play a significant role to achieve this goal. The JRC Institute for Energy 'Safety of Future Nuclear Reactors' (SFNR) Unit is engaged in experimental research, numerical simulation and modelling, scientific, feasibility and engineering studies on innovative nuclear reactor systems. This also represents a significant EURATOM contribution to the Generation IV International Forum. Its activities deal with, among others, the performance assessment of innovative fuels and materials, development of new reactor core concepts and safety solutions, and knowledge management and preservation. Special attention is given to fast reactor concepts, namely the sodium (SFR) and lead (LFR) cooled reactors. Recognizing the maturity of the SFR technology, the European Sustainable Nuclear Energy Technology Platform (SNETP) considers a prototype SFR to be built as a next-step towards the deployment of a first-of-a-kind Gen IV SFR. This paper gives an overview of current research preformed at JRC-IE with emphasis on the work performed in the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) within the European Commission's Seventh Framework Program. (authors)

  4. Nuclear Data Measurements for 21st Century Reactor Physics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rahmat Aryaeinejad; Jerald D. Cole; Mark W. Drigert; James K. Jewell; Christopher A. McGrath; David W. Nigg; Edward L. Reber

    2003-03-01

    The United States Department of Energy (DOE), Office of Nuclear Energy (NE) has embarked on a long-term program to significantly advance the science and technology of nuclear energy. This is in response to the overall national plan for accelerated development of domestic energy resources on several fronts, punctuated by recent dramatic events that have emphasized the need for the US to reduce its dependence on foreign petroleum supplies. Key aspects of the DOE-NE agenda are embodied in the Generation-IV (Gen-IV) advanced nuclear energy systems development program and in the Advanced Fuel Cycle (AFC) program. The planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current nuclear power reactor systems as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. The success of the overall NE effort will depend not only on sophisticated system development and engineering, but also on the advances in the supporting sciences and technologies. Of these, one of the most important is the improvement of the relevant fundamental nuclear science data bases, especially the evaluated neutron interaction cross section files that serve as the foundation of all reactor system designs, operating strategies, and fuel cycle engineering activities. The new concepts for reactors and fuel cycles involve the use of transuranic nuclides that were previously of little interest, and where experimentally measured information is lacking. The current state of the cross section database for some of these nuclides is such that design computations for advanced fast-spectrum reactor systems and fuel cycles that incorporate such materials in significant quantities are meaningful only for approximate conceptual applications. No actual system could reliably be designed according to currently accepted standards, nor

  5. Nuclear Data Measurements for 21st Century Reactor Physics Applications

    International Nuclear Information System (INIS)

    Rahmat Aryaeinejad; Jerald D. Cole; Mark W. Drigert; James K. Jewell; Christopher A. McGrath; David W. Nigg; Edward L. Reber

    2003-01-01

    The United States Department of Energy (DOE), Office of Nuclear Energy (NE) has embarked on a long-term program to significantly advance the science and technology of nuclear energy. This is in response to the overall national plan for accelerated development of domestic energy resources on several fronts, punctuated by recent dramatic events that have emphasized the need for the US to reduce its dependence on foreign petroleum supplies. Key aspects of the DOE-NE agenda are embodied in the Generation-IV (Gen-IV) advanced nuclear energy systems development program and in the Advanced Fuel Cycle (AFC) program. The planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current nuclear power reactor systems as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. The success of the overall NE effort will depend not only on sophisticated system development and engineering, but also on the advances in the supporting sciences and technologies. Of these, one of the most important is the improvement of the relevant fundamental nuclear science data bases, especially the evaluated neutron interaction cross section files that serve as the foundation of all reactor system designs, operating strategies, and fuel cycle engineering activities. The new concepts for reactors and fuel cycles involve the use of transuranic nuclides that were previously of little interest, and where experimentally measured information is lacking. The current state of the cross section database for some of these nuclides is such that design computations for advanced fast-spectrum reactor systems and fuel cycles that incorporate such materials in significant quantities are meaningful only for approximate conceptual applications. No actual system could reliably be designed according to currently accepted standards, nor

  6. Nuclear Energy System Department annual report. (April 1, 2002 - March 31, 2003)

    International Nuclear Information System (INIS)

    Nakajima, Hajime; Shibata, Keiichi; Kugo, Teruhiko

    2003-09-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 2002 (April 1, 2002 - March 31, 2003). The Department has carried out researches and developments (R and Ds) of innovative nuclear energy system and their related fundamental technologies to ensure the long-term energy supply in Japan. The report deals with the R and Ds of an innovative water reactor, called Reduced-Moderation Water Reactor (RMWR), which has the capability of multiple recycling and breeding of plutonium using light water reactor technologies. In addition, as basic studies and fundamental researches of nuclear energy system in general, described are intensive researches in the fields of reactor physics, thermal-hydraulics, nuclear data, nuclear fuels, and materials. These activities are essential not only for the R and Ds of innovative nuclear energy systems but also for the improvement of safety and reliability of current nuclear energy systems. The maintenance and operation of reactor engineering facilities belonging to the Department support experimental activities. The activities of the research committees to which the Department takes a role of secretariat are also summarized. (author)

  7. Present status of space nuclear reactor

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1996-01-01

    USA and former USSR led space development, and had the experience of launching nuclear reactor satellites. In USA, the research and development of space nuclear reactor were advanced mainly by NASA, and in 1965, the nuclear reactor for power source ''SNAP-10A'' was launched and put on the orbit around the earth. Thereafter, the reactor was started up, and the verifying test at 500 We was successfully carried out. Also for developing the reactor for thermal propulsion, NERVA/ROVER project was done till 1973, and the technological basis was established. The space Exploration Initiative for sending mankind to other solar system planets than the earth is the essential point of the future projects. In former USSR, the ground experiment of the reactor for 800 We power source ''Romashka'', the development of the reactor for 10 kWe power source ''Topaz-1 and 2'', the flight of the artificial satellites, Cosmos 954 and Cosmos 1900, on which nuclear reactors were mounted, and the operation of 33 ocean-monitoring satellites ''RORSAT'' using small fast reactors were carried out. The mission of space development and the nuclear reactors as power source, the engineering of space nuclear reactors, the present status and the trend of space nuclear reactor development, and the investigation by the UN working group on the safety problem of space nuclear reactors are described. (K.I.)

  8. Nuclear energy Division - 2011 Activity report

    International Nuclear Information System (INIS)

    2012-01-01

    This document reports the activity of the Nuclear Energy Department (DEN) within the CEA. It evokes its international relationship (participation to international initiatives, cooperation with different countries), describes the scientific activity within the DEN, presents the Advanced Material Program, and the activities undertaken in different fields: future nuclear industrial systems (fourth generation reactors, downstream part of the future fuel cycle, fundamental scientific and technological research), optimization of the present nuclear industrial activity (second and third generation reactors, nuclear security, upstream and downstream part of the present fuel cycle), tools for nuclear development (numerical simulation, Jules Horowitz reactor), cleaning up and nuclear dismantling (dismantling strategy, the Passage project in Grenoble, works in Marcoule, the Aladin project in Fontenay, waste and material flow management, nuclear support installations, transports). It finally addresses the specific activities of the Marcoule, Cadarache and Saclay centres

  9. A world class nuclear research reactor complex for South Africa's nuclear future

    Energy Technology Data Exchange (ETDEWEB)

    Keshaw, Jeetesh [South African Young Nuclear Professional Society, PO Box 9396, Centurion, 0157 (South Africa)

    2008-07-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  10. China's nuclear energy demand and CGNPC's nuclear power development

    International Nuclear Information System (INIS)

    Rugang, Sh.

    2007-01-01

    By importation, assimilation and innovation from French nuclear power technology and experience, the China Guangdong Nuclear Power Plant Holding Company (CGNPC) has developed the capabilities of indigenous construction and operation of 1000 MW-class nuclear power plants. Through the industrial development over the past 20 years, four 1000 MW-class reactors have been built and put into commercial operation in China. CGNPC is negotiating with AREVA on the transfer of the EPR technology and the application of this technology for the Yangjang nuclear power plant depends on the negotiation results. Since China became a member of the 4. Generation International Forum, CGNPC as a large state-owned enterprise, will take an active part in the 4. generation nuclear power technology developments under the leadership of China Atomic Energy Authority, particularly it will contribute to the research work on the high-temperature gas-cooled reactor and on the super-critical water reactor

  11. Fusion reactor cost reductions by employing non-nuclear grade components

    International Nuclear Information System (INIS)

    Bourque, R.F.; Maya, I.; Schultz, K.R.; Sonn, D.L.; Wise, R.K.

    1987-09-01

    The Cascade inertial confinement fusion reactor fits the requirements of low radioactive inventories and inherent safety and is therefore a candidate for non-nuclear construction throughout. This reactor consists of a rotating blanket of ceramic granules that absorb the energy from D-T target explosions occurring along the rotational axis. Laser energy is beamed in axially from both ends. Two cost estimates were made for an 815 MWe Cascade power plant. One was based on an ''all conventional'' plant, which is constructed and costed using well-established, conventional fossil power plant methods. The second was a ''nuclear plus conventional'' design, constructed and costed using a combination of fossil and fission reactor plant methods and standards that would be typical of advanced fission reactors. The total capital requirements for the ''all conventional'' construction plant were estimated in 1985 dollars at $1490 M, including indirect costs. Similarly, the ''nuclear plus conventional'' construction plant was estimated at $1940 M. The savings of $450 M (23%) represents strictly the difference between Cascade ICF power plants designed and constructed to nuclear safety-related requirements versus all non-nuclear. This example clearly shows that, if fusion plants can take advantage of low activation materials and inherent safety features to eliminate the need for nuclear-related expenses, then such plants may have economic advantages over nuclear-grade systems. 13 refs., 1 fig., 5 tabs

  12. Uranium resources, scenarios, nuclear and energy dynamics - 5200

    International Nuclear Information System (INIS)

    Bidaud, A.; Mima, S.; Criqui, P.; Gabriel, S.; Monnet, A.; Mathonniere, G.; Cuney, M.; Bruneton, P.

    2015-01-01

    In this paper we present a new model of the impact of uranium scarcity on the development of nuclear reactors. A dynamic simulation of coupled supply and demand of energy, resources and nuclear reactors is done with the global model Prospective Outlook for Long Term Energy Supply (POLES) over this century. In this model, both electricity demand and uranium supply are not independent of the cost of all base load electricity suppliers. Only two nuclear reactor types are modeled in POLES. Globally one has the characteristics of a Thermal Neutron Reactor (TR) and the other one has the ones of Fast Breeder Reactors (FBR). The results show that If both generations of nuclear reactors can be competitive with other sources, we see that in many countries their development would probably be limited by the availability of natural and recycled materials. Depending on the locally available alternative (hydro, coal) and local regulatory framework (safety and waste management for nuclear reactors but also environmental constraints such as CO 2 targets), both nuclear technologies could be developed. The advantage of the new model is that it avoids the difficult question of defining 'ultimate resources'. The drawback is that it needs a description of the volume of uranium resources but also of the link between the cost and the potential production capacities of these resources

  13. Overview of US nuclear energy initiatives

    International Nuclear Information System (INIS)

    McFarlane, H.

    2006-01-01

    The United States has embraced nuclear as an important component of its energy future. Triggered by successful passage of the Energy Policy Act in November 2005, four federal initiatives are enjoying some measure of initial success. The first energy authorization act in 13 years, the new legislation contains incentives for up to six new nuclear plants comparable to those for other clean energy sources. Once these incentives were codified, US utilities began to express interest in expanding the nuclear fleet. The Department of Energy's (DOE) push for new nuclear plants, called the 2010 Initiative, has been underway since 2002. Prior to last November, the Nuclear Regulatory Commission (NRC) had no official expressions of interest in building new nuclear plants. Since November, the NRC has been notified of interest in building at least 26 new advanced light water reactors, concentrated at existing nuclear sites in the rapidly growing Southeastern United States. In addition, most of the 103 currently operating plants are expected to obtain 20 year life extensions. Utilities, suppliers and the regulator have been increasing their staffs in anticipation of the new plant orders. Undergraduate nuclear engineering enrollment has surged to its highest level in more than 15 years. The Department of Energy is also moving ahead with its licensing application for a geologic repository at Yucca Mountain. Because exiting legislation limits the amount of spent fuel and nuclear waste that could be stored in the mountain, Congress, DOE and the nuclear industry have become interested in alternative management schemes for the repository. The major DOE initiative is the Global Nuclear Energy Partnership (GNEP), which would close the fuel cycle and introduce advanced fast reactors to manage the long-lived actinides. GNEP also has a major international component, with partnerships to provide reliable fuel supply worldwide to any nation with valid nonproliferation credentials. The United

  14. The nuclear energy in the seawater desalination

    International Nuclear Information System (INIS)

    Moreno A, J.; Flores E, R.M.

    2004-01-01

    In general, the hydric resources of diverse regions of the world are insufficient for to satisfy the necessities of their inhabitants. Among the different technologies that are applied for the desalination of seawater are the distillation processes, the use of membranes and in particular recently in development the use of the nuclear energy (Nuclear Desalination; System to produce drinkable water starting from seawater in a complex integrated in that as much the nuclear reactor as the desalination system are in a common location, the facilities and pertinent services are shared, and the nuclear reactor produces the energy that is used for the desalination process). (Author)

  15. Nuclear technologies for local energy systems

    International Nuclear Information System (INIS)

    McDonnell, F.N.; Lynch, G.F.

    1990-03-01

    If nuclear energy is to realize its full potential as a safe and cost-effective alternative to fossil fuels, applications beyond those that are currently being serviced by large, central nuclear power stations must be identified and appropriate reactors developed. The Canadian program on reactor systems for local energy supply is at the forefront of these developments. This program emphasizes design simplicity, low power density and fuel rating, reliance on natural processes, passive systems, and reduced reliance on operator action. The first product, the SLOWPOKE Energy System, is a 10 MW heat source specifically designed to provide hot water to satisfy the needs of local heating systems for building complexes, institutions and municipal district heating systems. A demonstration heating reactor has been constructed at the Whiteshell Nuclear Research Establishment in Manitoba and has been undergoing an extensive test program since first operation in 1987 July. Based on the knowledge learned from the design, construction, licensing and operational testing of this facility, the design of the 10 MW commercial-size unit is well advanced, and Atomic Energy of Canada Limited is prepared to commit the construction of the first commercial unit. Although the technical demonstration of the concept is important, it is recognized that another crucial element is the public and regulatory acceptance of small nuclear systems in urban areas. The decision by a community to commit the construction of a SLOWPOKE Energy System brings to a sharp focus the current public apprehension about nuclear technologies

  16. HYPER (hybrid power extraction reactor): a system for clean nuclear energy

    International Nuclear Information System (INIS)

    Park, W.S.; Shin, U.; Han, S.-J.; Song, T.Y.; Choi, B.H.; Park, C.K.

    2000-01-01

    The Korea Atomic Energy Research Institute (KAERI) has been performing accelerator driven system related research and development (RID) called HYPER (hybrid power extraction reactor) for the transmutation of nuclear waste and energy production through the transmutation process. HYPER program is within the frame work of the national mid and long-term nuclear research plan. KAERI is aiming to develop the elemental technologies for the subcritical transmutation system by the year of 2001 and build a small bench scale test facility (∝5 MW) by the year of 2006. Some major features of HYPER have been developed and employed. On-power fueling concepts are employed to keep system power constant with a minimum variation of accelerator power. A hollow cylinder-type metal fuel is designed for the on-line refueling concept. Lead-bismuth (Pb-Bi) is adopted as a coolant and spallation target material. 1 GeV 16 mA proton beam is designed to be provided for HYPER. HYPER is to transmute about 380 kg of TRU a year and produce 1000 MW of power. The support ratio of HYPER for LWR units producing the same power is believed to be 5∝6. (orig.)

  17. Can the future, world-wide energy supply be achieved without nuclear energy?

    International Nuclear Information System (INIS)

    Kugeler, K.

    1995-01-01

    In the future the world-wide energy demand is going to increase considerably. The use of nuclear energy will continuously grow if the demand of climate researchers for a reduction of the world-wide CO 2 emission is fulfilled and if the possible contribution of regenerative energy sources is assessed realistically. In the future a world-wide use of nuclear energy will be realised according to even higher safety standards. The modification of the German Atom Law, which determines the limitation of damage caused to the reactor plant for future reactors fulfils this demand. The efforts in the field of nuclear technical development will concentrate on the proof of the required safety properties. (orig.) [de

  18. Micro-structured nuclear fuel and novel nuclear reactor concepts for advanced power production

    International Nuclear Information System (INIS)

    Popa-Simil, Liviu

    2008-01-01

    Many applications (e.g. terrestrial and space electric power production, naval, underwater and railroad propulsion and auxiliary power for isolated regions) require a compact-high-power electricity source. The development of such a reactor structure necessitates a deeper understanding of fission energy transport and materials behavior in radiation dominated structures. One solution to reduce the greenhouse-gas emissions and delay the catastrophic events' occurrences may be the development of massive nuclear power. The actual basic conceptions in nuclear reactors are at the base of the bottleneck in enhancements. The current nuclear reactors look like high security prisons applied to fission products. The micro-bead heterogeneous fuel mesh gives the fission products the possibility to acquire stable conditions outside the hot zones without spilling, in exchange for advantages - possibility of enhancing the nuclear technology for power production. There is a possibility to accommodate the materials and structures with the phenomenon of interest, the high temperature fission products free fuel with near perfect burning. This feature is important to the future of nuclear power development in order to avoid the nuclear fuel peak, and high price increase due to the immobilization of the fuel in the waste fuel nuclear reactor pools. (author)

  19. Aiming at super long term application of nuclear energy. Scope and subjects on the water cooled breeder reactor, the 'reduced moderation water reactor'

    International Nuclear Information System (INIS)

    Sato, Osamu; Tatematsu, Kenji; Tanaka, Yoji

    2001-01-01

    In order to make possible on nuclear energy application for super long term, development of sodium cooling type fast breeder reactor (FBR) has been carried out before today. However, as it was found that its commercialization was technically and economically difficult beyond expectation, a number of nations withdrew from its development. And, as Japan has continued its development, scope of its actual application is not found yet. Now, a research and development on a water cooling type breeder reactor, the reduced moderation water reactor (RMWR)' using LWR technology has now been progressed under a center of JAERI. This RMWR is a reactor intending a jumping upgrade of conversion ratio by densely arranging fuel bars to shift neutron spectrum to faster region. The RMWR has a potential realizable on full-dress plutonium application at earlier timing through its high conversion ratio, high combustion degree, plutonium multi-recycling, and so on. And, it has also feasibility to solve uranium resource problem by realization of conversion ratio with more than 1.0, to contribute to super long term application of nuclear energy. Here was investigated on an effect of reactor core on RMWR, especially of its conversion ratio and plutonium loading on introduction effect as well as on how RMWR could be contributed to reduction of uranium resource consumption, by drawing some scenario on development of power generation reactor and fuel cycle in Japan under scope of super long term with more than 100 years in future. And, trial calculation on power generation cost of the RMWR was carried out to investigate some subjects at a viewpoint of upgrading on economy. (G.K.)

  20. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E. II; Rochau, Gary Eugene

    2009-01-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink(reg s ign), an extension of MATLAB(reg s ign), is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  1. Energy supply, nuclear power, and the international energy situation

    International Nuclear Information System (INIS)

    Pierer, H. von

    1991-01-01

    The Chernobyl accident has greatly intensified the readiness for international cooperation on problems of reactor safety and for exchanges of operating experience. That accident was more than a regional event. If all psychological and political consequences are taken into account, its international significance is apparent. In principle, it demonstrated not the lack of safety of nuclear power plants generally, but rather that of the Soviet RBMK reactor line, which would not have been licensed in any Western country because of its inherent unsafety. In the long run, the worldwide acceptance of nuclear power can be regained and stabilized only by an open dialog and by international exchanges of experience. The pronounced growth of the world's population requires energy policy to think beyond national frontiers. The rising energy requirement permits of no other decision than to exploit all technically feasible and economically viable as well as ecologically tolerable sources of energy. This includes nuclear power as well as solar energy. (orig.) [de

  2. The situation of the nuclear energy in the world

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1996-12-01

    This work presents an overview of the nuclear energy in the world. It approaches the following main topics: kinds of nuclear power plants; operation experience of the nuclear plants; environmental and social aspects of the nuclear energy; economic aspects of the nuclear energy; development of the reactors technology and supply of the nuclear fuel

  3. Electrofluid gasification of coal with nuclear energy

    International Nuclear Information System (INIS)

    Pulsifer, A.H.; Wheelock, T.D.

    1978-01-01

    The gasification of coal by reaction with steam requires addition of large amounts of energy. This energy can be supplied by a high-temperature nuclear reactor which is coupled to a fluidized bed gasifier either thermally or electrically via an electrofluid gasifier. A comparison of the economics of supplying energy by these two alternatives demonstrates that electrofluid gasification in combination with a high-temperature nuclear reactor may in some circumstances be economically attractive. In addition, a review of recent experiments in small-scale electrofluid gasifiers indicates that this method of gasification is technically feasible. (Auth.)

  4. Electrofluid gasification of coal with nuclear energy

    International Nuclear Information System (INIS)

    Pulsifer, A.H.; Wheelock, T.D.

    1978-01-01

    The gasification of coal by reaction with steam requires the addition of large amounts of energy. This energy can be supplied by a high-temperature nuclear reactor which is coupled to a fluidized bed gasifier either thermally or electrically via an electrofluid gasifier. A comparison of the economics of supplying energy by these two alternatives demonstrates that electrofluid gasification in combination with a high-temperature nuclear reactor may in some circumstances be economically attractive. In addition, a review of recent experiments in small-scale electrofluid gasifiers indicates that this method of gasification is technically feasible

  5. Comparison of methodologies for assessing the risks from nuclear weapons and from nuclear reactors

    International Nuclear Information System (INIS)

    Benjamin, A.S.

    1996-01-01

    There are important differences between the safety principles for nuclear weapons and for nuclear reactors. For example, a principal concern for nuclear weapons is to prevent electrical energy from reaching the nuclear package during accidents produced by crashes, fires, and other hazards, whereas the foremost concern for nuclear reactors is to maintain coolant around the core in the event of certain system failures. Not surprisingly, new methods have had to be developed to assess the risk from nuclear weapons. These include fault tree transformations that accommodate time dependencies, thermal and structural analysis techniques that are fast and unconditionally stable, and parameter sampling methods that incorporate intelligent searching. This paper provides an overview of the new methods for nuclear weapons and compares them with existing methods for nuclear reactors. It also presents a new intelligent searching process for identifying potential nuclear detonation vulnerabilities. The new searching technique runs very rapidly on a workstation and shows promise for providing an accurate assessment of potential vulnerabilities with far fewer physical response calculations than would be required using a standard Monte Carlo sampling procedure

  6. Fast reactors in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Kazachkovskii, O

    1981-02-01

    The possible applications are discussed of fast reactor nuclear power plants. Basic differences are explained in fast and thermal reactors, mainly with a view to nuclear fuel utilization. Discussed in more detail are the problems of nuclear fuel reproduction and the nost important technical problems of fast reactors. Flow charts are shown of heat transfer for fast reactors BN-350 (loop design) and BN-600 (integral coolant circuit design). Main specifications are given for demonstration and power fast reactors in operation, under construction and in project-stage.

  7. The nuclear instrumentation system of the French 1400 MWe reactors

    International Nuclear Information System (INIS)

    Bourgerette, A.; Mauduit, J.P.

    1993-01-01

    The nuclear instrumentation systems in power reactors in France have made considerable advances thanks to technological progress. The appearance of an integrated digital protection system (SPIN) and the extension of digital techniques have considerably improved performance and operating flexibility. Working on the basis of technology developed jointly with the Nuclear Electronics and Instrumentation Department at the French Atomic Energy Commission (CEA), Framatome and Merlin Gerin have designed the new nuclear instrumentation system for 1400 MW reactors. (authors). 4 figs

  8. Improvements in streaking nuclear reactors

    International Nuclear Information System (INIS)

    Pedrick, A.P.

    1976-01-01

    In this type of reactor atomic nuclei are stripped of their electron shells by heating to form a very high temperature plasma which is passed at high speed through a chamber in which they are forced into contact with a 'wall' formed by a unidirectional stream of photons from continuous laser beams. In this way it should be possible to brush off from the surface of the nuclei protons and neutrons, with release of their binding energy. The energy thus produced can be subjected to much more gentle control than with a fission or fusion reactor. Furthermore, if this concept can be successfully applied to elements of high atomic number which are normally regarded as stable and unfissionable, a vast new source of nuclear energy release will have been made available. It also seems possible that an atomic nucleus might be spun sufficiently in such a reactor to disintegrate it completely into nucleons by simple centrifugal action, with great release of binding energy. The reactor described has a central body with radial ducts through which the nuclei are passed, and a number of lasers are provided whose beams are arranged so that the nuclei are discharged at the cross-over point of two or more laser beams which form a corner at the junction of two or more photon walls. (U.K.)

  9. Nuclear energy and sustainable development: recent trends

    International Nuclear Information System (INIS)

    Singh, B.P.

    2012-01-01

    During the last 50 years or so there is enormous development in various fields like agriculture, industry, medicine, etc. Further, the population on this globe has increased many folds. In order to cater to the needs of the present population there is an increasing demand of electricity in the society. Per capita electricity consumption also is an index of development in the country. Considering the facts like green house effect and global warming, nuclear energy is the better option. But at the same time there are some critical issues like nuclear waste management globally and availability of fissile material in the context of our country. Research and development are going on to take care of these issues where scientists and engineers are working on alternative fuel cycle and new reactor types, for example Accelerator Driven Subcritical (ADS) System is one of them. Since, ADS reactor is a subcritical system, safety related issues are in fact of low concern relative to existing critical reactors. As a matter of fact, the ADS system is the combination of a particle accelerator and a nuclear reactor. In this talk, a detailed description of the need of energy in our country, which can only be met if nuclear energy contributes a substantial energy requirement, will be presented. Further, how the nuclear waste management issues may be addressed, with the new ADS system will also be presented. (author)

  10. The evolution of nuclear energy Opportunities for the industry

    International Nuclear Information System (INIS)

    Dominguez, M. T.

    2013-01-01

    At the turn of the XXI century, the world energy context underwent a significant change due mainly to the increases in the demand for energy in the developing countries, a rise in gas prices and increased government support of clean energies in response to environmental issues. these boundary conditions led rapidly to renewed interest in nuclear energy worldwide. The phrase a Renaissance in nuclear energy was included in almost all energy forecasts. Unexpectedly, however, just then years later the panorama changed once again: unconventional gas appeared as new energy source, the world financial crisis hampered investment, and the demand for energy fell. This panorama has lowered expectations with regard to the size of the nuclear energy renaissance to a less buoyant but more balance scenario of nuclear energy deployment that we could now dub as the evolution of nuclear energy. This article describes how fission nuclear energy has continuously been evolving to adjust itself to these changing scenarios, and, in particular, how it is being adapted itself to todays vision of the role of the nuclear energy in the long term. The analysis in this paper focuses on those programs that could bring opportunities for Spanish nuclear industry participation. Starting with the development programs affecting existing reactors already in operation, the analysis moves on the new builds of Light Water Reactors (LWR) Generation III+, to then address, in two sections, Research Reactors and finally, the opportunities presented by Generation IV technologies. The development of fusion technology is not covered in this paper. (Author)

  11. A basic plan of a micro reactor for the promotion of nuclear literacy necessity of the reactor

    International Nuclear Information System (INIS)

    Murata, Takashi; Yoshiki, Nobuya; Kinehara, Yoshiki

    2000-01-01

    It is important for ordinary Japanese to achieve scientific literacy, which enables to understand information appropriately and make their decision reasonably, on science and technology, including nuclear activities. To achieve nuclear literacy, a reactor for interpretation should be established at a science and technology museum, where students, educators and the public would understand functions of an actual reactor and get interests in nuclear activities, so they would understand what nuclear energy is. In this facility, scientists and engineers including pioneers of nuclear activities in Japan should be engaged and provide interpretative contents for various guests, for example, practical operation of the reactor. This facility would be preferred to be established in metropolitan area, where many visitors would be expected to come. Then this facility would be very useful for the achievement of nuclear literacy. (author)

  12. Nuclear reactors; graphical symbols

    International Nuclear Information System (INIS)

    1987-11-01

    This standard contains graphical symbols that reveal the type of nuclear reactor and is used to design graphical and technical presentations. Distinguishing features for nuclear reactors are laid down in graphical symbols. (orig.) [de

  13. Perspectives for nuclear energy

    International Nuclear Information System (INIS)

    Baugnet, J.-M.; Abderrahim, H.A.; Dekeyser, J.; Meskens, G.

    1998-09-01

    In Belgium, approximately 60 percent of the produced electricity is generated by nuclear power. At present, nuclear power production tends to stagnate in Europe and North America but is still growing in Asia. The document gives an overview of the present status and the future energy demand with emphasis on electric power. Different evaluation criteria including factors hindering and factors promoting the expansion of nuclear power as well as requirements of new nuclear power plants are discussed. The extension of the lifetime of existing facilities as well as fuel supply are taken into consideration. A comparative assesment of nuclear power with other energy sources is made. The report concludes with estimating the contribution and the role of nuclear power in future energy demand as well as with an overview of future reactors and research and development programmes

  14. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  15. Application of a Russian nuclear reactor simulator VVER-1000; Aplicacion de un simulador de reactor nuclear ruso VVER-1000

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Peniche S, A. [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04360 Mexico D. F. (Mexico); Salazar S, E., E-mail: alpsordo@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, 62250 Jiutepec, Morelos (Mexico)

    2012-10-15

    The objective of the present work is to give to know the most important characteristics in the Russian nuclear reactor of pressurized light water VVER-1000, doing emphasis in the differences that has with the western equivalent the reactor PWR in the design and the safety systems. Therefore, a description of the computerized simulation of the reactor VVER-1000 developed by the company Eniko TSO that the International Atomic of Energy Agency distributes to the states members with academic purposes will take place. The simulator includes mathematical models that represent to the essential systems in the real nuclear power plant, for what is possible to reproduce common faults and transitory characteristic of the nuclear industry with a behavior sufficiently attached to the reality. In this work is analyzed the response of the system before a turbine shot. After the accident in the nuclear power plant of Three Mile Island (US) they have been carried out improvements in the design of the reactor PWR and their safety systems. To know the reach and the limitations of the program, the events that gave place to this accident will be reproduced in the simulator VVER-1000. With base to the results of the simulation we will conclude that so reliable is the response of the safety system of this reactor. (Author)

  16. An accelerator-driven reactor for meeting future energy demand

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Yang, Y.; Yu, A.

    1997-01-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early introduction of the fast reactor can be moderated. Subcritical operation provides flexible nuclear energy options along with high neutron economy for producing the fuel, for transmuting high-level waste such as minor actinides, and for efficiently converting excess and military Pu into proliferation-resistant fuel

  17. Guidebook to nuclear reactors

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-05-01

    A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen

  18. Nuclear power plant with several reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grishanin, E I; Ilyunin, V G; Kuznetsov, I A; Murogov, V M; Shmelev, A N

    1972-05-10

    A design of a nuclear power plant suggested involves several reactors consequently transmitting heat to a gaseous coolant in the joint thermodynamical circuit. In order to increase the power and the rate of fuel reproduction the low temperature section of the thermodynamical circuit involves a fast nuclear reactor, whereas a thermal nuclear reactor is employed in the high temperature section of the circuit for intermediate heating and for over-heating of the working body. Between the fast nuclear and the thermal nuclear reactors there is a turbine providing for the necessary ratio between pressures in the reactors. Each reactor may employ its own coolant.

  19. Spent nuclear fuel discharges from US reactors 1992

    International Nuclear Information System (INIS)

    1994-01-01

    This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ''Nuclear Fuel Data'' survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactive Waste Management

  20. 9th international conference on high-temperature reactors - coal and nuclear energy for electricity and gas generation

    International Nuclear Information System (INIS)

    Kelber, G.

    1987-01-01

    The site of the high-temperatur reactor in the Ruhr region neighbouring on a coal-fired power plant is not accidental. The potential of the high-temperature reactor as a central plant element for the supply of heat for heating purposes and process heat covers also the possibility of coal gasification and liquefaction. Therefore the high-temperature reactor is, in the long term, a ray of hope for the coal region, able to compensate for the production-related competitive disadvantages of local coal. It can contribute to guaranteeing in the long term the task of German hard coal as an essential pillar of our energy supply. The VGB as a technical association of thermal power plant operators is particularly committed to the integration of coal and nuclear energy. Within the bounds of its possibilities, it will contribute to promoting the safe and environmentally beneficial generation of electricity from the two primary energy sources. (orig./DG) [de

  1. A three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition in graphite components of advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, D.O.; Robinson, A.T.; Allen, D.A.; Picton, D.J.; Thornton, D.A. [TCS, Serco, Rutherford House, Olympus Park, Quedgeley, Gloucester, Gloucestershire GL2 4NF (United Kingdom); Shaw, S.E. [EDF Energy, Barnet Way, Barnwood, Gloucester GL4 3RS (United Kingdom)

    2011-07-01

    This paper describes the development of a three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition (or nuclear heating) throughout the graphite cores of the UK's Advanced Gas-cooled Reactors. Advances in the development of the Monte Carlo radiation transport code MCBEND have enabled the efficient production of detailed fully three-dimensional models that utilise three-dimensional source distributions obtained from Core Follow data supplied by the reactor physics code PANTHER. The calculational approach can be simplified to reduce both the requisite number of intensive radiation transport calculations, as well as the quantity of data output. These simplifications have been qualified by comparison with explicit calculations and they have been shown not to introduce significant systematic uncertainties. Simple calculational approaches are described that allow users of the data to address the effects on neutron damage and nuclear energy deposition predictions of the feedback resulting from the mutual dependencies of graphite weight loss and nuclear energy deposition. (authors)

  2. National need for utilizing nuclear energy for process heat generation

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280 0 C, LMRs up to 540 0 C, and GCRs up to 950 0 C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized

  3. Nuclear energy maturity. A report on the European nuclear conference 1975 at Paris

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, H H [Brown, Boveri und Cie A.G., Mannheim (F.R. Germany). Geschaeftsbereich Kraftwerke

    1975-09-01

    The papers presented at the plenary sessions of the first European Nuclear Conference are reviewed. Having discussed energy needs and resources, the role of different reactor types for the supply of natural uranium and the generation of electricity as well as gas in energy parks the issues between the social and technical aspects related to siting, environment and nuclear safety are investigated. In the evaluation of capital costs and operating costs of modern power stations with light water reactors and fossil fueled boilers the price increasing items safety, environmental protection and price escalation are mentioned too. The summary on the operating performance of natural uranium reactors, heavy water and light water reactors and high temperature gas cooled reactors includes informations of availability figures and typical occurrences. (orig.).

  4. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  5. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs

  6. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1988-01-01

    Nuclear technology brings the chance to provide an essential long term contribution to the energy supply of the world population and to use the raw materials uranium and thorium which have no other use. The use of nuclear energy is ethically justifiable providing certain simple fundamental rules for the design of nuclear facilities are observed. Such rules were clearly violated before the reactor accident at Chernobyl. They are, however, observed in our existing nuclear power plants. Compared with other energy systems nuclear energy has, with the exception of natural gas, the lowest risk. The consideration of the ethical justification of nuclear energy must also include the question of withdrawal. A withdrawal would have considerable social consequences for the industrial nations as well as for the developing countries. The problem of spreading alarm (and concern) by the opponents of nuclear energy should also be included in the ethical justification. 8 refs., 2 figs

  7. The SGR Multipurpose - Generation IV - Transportable Cogeneration Nuclear Reactor with Innovative Shielding

    International Nuclear Information System (INIS)

    Pahladsingh, R.R.

    2002-01-01

    Deregulation and liberalization are changing the global energy-markets. At the same time innovative technologies are introduced in the electricity industry; often as a requirement from the upcoming Digital Society. Energy solutions for the future are more seen as a mix of energy-sources for generation-, transmission- and distribution energy-services. The Internet Energy-web based 'Virtual' enterprises are coming up and will gradually change our society. It the fast changing world we have to realize that there will be less time to look for the adequate solutions to anticipate on global developments and the way they will influence our own societies. Global population may reach 9 billion people by 2030; this will put tremendous pressure on energy-, water- and food supply in the global economy. It is time to think about some major issues as described below and come up with the right answers. These are needed on very short term to secure a humane global economic growth and the sustainable global environment. The DOE (Department of Energy - USA) has started the Generation IV initiative for the new generation of nuclear reactors that must lead to much better safety, economics and public acceptance the new reactors. The SGR (Simplified Gas-cooled Reactor) is being proposed as a Generation IV modular nuclear reactor, using graphite pebbles as fuel, whereby an attempt has been made to meet all the DOE requirements, to be used for future nuclear reactors. The focus in this paper is on the changing and emerging global energy-markets and shows some relevant criteria to the nuclear industry and how we can anticipate with improved and new designs towards the coming Digital Society. (author)

  8. Optimisation of the coupling of nuclear reactors and desalination systems in Morocco

    International Nuclear Information System (INIS)

    Tabet, M.; Htet, A.; Alami, A.M.

    2006-01-01

    This study has been undertaken in the framework of IAEA CRP on 'Optimisation of the Coupling of Nuclear Reactors and Desalination Systems in Morocco'. Two sites have been selected to host nuclear desalination plants, and different combinations with nuclear reactors have been investigated. Other combinations with fossil fuel plants have been examined for comparison. The results obtained showed the competitiveness of nuclear energy, which could be a solution to supply the region that will suffer from water shortage. On the other hand, this study could help the decision makers in the management and planning of water, energy resources and supply. (author)

  9. Fourth Regional Meeting: Nuclear Energy in Central Europe, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Mavko, B; Cizelj, L [eds.; Nuclear Society of Slovenia (Slovenia)

    1997-07-01

    Fourth Regional Meeting for Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contain 89 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region. Topics are: Research Reactors, Reactor Physics, Probabilistic Safety Assessment, Severe Accidents, Ageing and Integrity, Thermal Hydraulics, NPP Operation Experiance, Radioactive Waste Management, Environment and Other Aspects, Public and Nuclear Energy, SG Replacement and Plant Uprating.

  10. Is nuclear energy acceptable

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1977-01-01

    Nuclear hazards are assessed as being unique only in the sense of their unfamiliarity, with future development of nuclear energy dependent on overcoming public fears. Economics is clearly in favor of properly operated nuclear energy facilities for long-term power generation. Risks arise over the potential for human error to permit improper operation and for an industry shutdown because of a reactor accident. Attempts to ascertain accident probabilities have revealed that emergency core cooling systems and containment are not simply parallel, but operate in series and provide more safety than was thought. Insurance liability, resting on the small probability of very costly damage, is felt to be best placed on the utility with the government providing ultimate protection in the event of a potentially bankrupting accident. Problems of nuclear waste handling and low-level release are felt to be solvable with present technology. Proliferation is felt to be a political problem that is incidental to power plants. Public concern is blamed on possible diversion of materials for weapons, unfamiliarity with radiation, and the demand for meticulous handling of materials and operations. Burner reactors are projected to phase out and be replaced by breeder reactors that are operated in physical isolation under strict security by a professional cadre aware of its responsibility. A restructuring of the nuclear industry is called for so that the generation of power can be insulated from the distribution and marketing functions. (13 references)

  11. Nuclear reactor safety research in Idaho

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1983-01-01

    Detailed information about the performance of nuclear reactor systems, and especially about the nuclear fuel, is vital in determining the consequences of a reactor accident. Fission products released from the fuel during accidents are the ultimate safety concern to the general public living in the vicinity of a nuclear reactor plant. Safety research conducted at the Idaho National Engineering Laboratory (INEL) in support of the U.S. Nuclear Regulatory Commission (NRC) has provided the NRC with detailed data relating to most of the postulated nuclear reactor accidents. Engineers and scientists at the INEL are now in the process of gathering data related to the most severe nuclear reactor accident - the core melt accident. This paper describes the focus of the nuclear reactor safety research at the INEL. The key results expected from the severe core damage safety research program are discussed

  12. Present state of the perception gap of nuclear energy between Japanese nuclear energy supplying region and an energy consuming region

    International Nuclear Information System (INIS)

    Ohnishi, Teruaki

    2002-01-01

    Public opinion surveys have been carried out since 1998 on what phase and on what extent of the perception of nuclear energy differs between Japanese dwelling in energy supplying region and an energy-consuming region. Southern Fukui rural district where 15 nuclear reactors are now installed and Osaka urban region of about 100 km apart from Fukui were selected as the respective targets for the energy supplying and consuming regions. Analyses of the data of about 3000 samples have revealed the followings. (1) The public in the nuclear energy supplying region are very friendly to nuclear energy so that only about 20 and 39 of the public are resistive to the general promotion of nuclear energy in Japan and to the construction of another nuclear reactor in their dwelling region, respectively. (2) On the other hand, in the energy-consuming region those respective fractions are 41 and 70 implying strong resistance to nuclear energy in the urban region. (3) Both the degree of interest in and the degree of knowledge on nuclear energy are very low, whereas the extent of fear to nuclear is high for the urban public. (4) Not only the fraction of the public who are satisfied with their present life, but the public fraction who is eagerly support the thought of return-to-nature are very high in the urban region. (5) On the other hand, in the energy supplying region, many peoples eagerly want their life to become more convenient than it is now, and 6) all those trends (I)-(5) are revealed more pronouncedly in the woman than the man. The perception gap of nuclear energy thus became clear between Japanese dwelling in rural and urban regions. On the basis of this knowledge, discussions on the nature of the so-called NIMBY will be made from the socio-psychological viewpoint and propositions will also be made on the methods to dissolve the perception gap of that soft. (author)

  13. Thermionic reactors for space nuclear power

    Science.gov (United States)

    Homeyer, W. G.; Merrill, M. H.; Holland, J. W.; Fisher, C. R.; Allen, D. T.

    1985-01-01

    Thermionic reactor designs for a variety of space power applications spanning the range from 5 kWe to 3 MWe are described. In all of these reactors, nuclear heat is converted directly to electrical energy in thermionic fuel elements (TFEs). A circulating reactor coolant carries heat from the core of TFEs directly to a heat rejection radiator system. The recent design of a thermionic reactor to meet the SP-100 requirements is emphasized. Design studies of reactors at other power levels show that the same TFE can be used over a broad range in power, and that design modifications can extend the range to many megawatts. The design of the SP-100 TFE is similar to that of TFEs operated successfully in test reactors, but with design improvements to extend the operating lifetime to seven years.

  14. Emerging nuclear energy systems and nuclear weapon proliferation

    International Nuclear Information System (INIS)

    Gsponer, A.; Sahin, S.; Jasani, B.

    1983-01-01

    Generally when considering problems of proliferation of nuclear weapons, discussions are focused on horizontal proliferation. However, the emerging nuclear energy systems currently have an impact mainly on vertical proliferation. The paper indicates that technologies connected with emerging nuclear energy systems, such as fusion reactors and accelerators, enhance the knowledge of thermonuclear weapon physics and will enable production of military useful nuclear materials (including some rare elements). At present such technologies are enhancing the arsenal of the nuclear weapon states. But one should not forget the future implications for horizontal proliferation of nuclear weapons as some of the techniques will in the near future be within the technological and economic capabilities of non-nuclear weapon states. Some of these systems are not under any international control. (orig.) [de

  15. Nuclear reactor development in Korea: It's history and status

    International Nuclear Information System (INIS)

    Cheong, J.; Kim, I.; Kim, D. S.

    2007-01-01

    Currently in Korea, 20 nuclear plants are in operation, generating some 18,000 MWe of electricity which is about 30% of the national electricity supply. Further 8 reactors, including innovative light water reactors developed with 30 years' experience in construction and operation with continuous technology development, are either under construction or being planned. Executing an energetic program of nuclear development, Korea is now the world's sixth-ranked nuclear nation. In this paper, at first, history of the nuclear reactor development in Korea will be discussed including technology self-reliance efforts of the nuclear industry, and future plan and prospects will also be presented. Secondly, the OPR1000 which is a Korean standard plant will be introduced in detail including its characteristics, design approach and features. Six OPR1000's are being operated with outstanding performance and 4 more units are under construction. The APR1400, an upgraded reactor of the OPR1000 in capacity and design, has been developed as a next generation reactor, and the contracts were signed for the first 2 units' construction in August 2006. Its development process and design features will be described. Finally, Korea's efforts for future nuclear power generation will be introduced. For future reliable energy supply, Korea has been actively participating in international cooperation such as Gen IV International Forum. In summary, this paper will introduce the history and status of the Korean nuclear reactor development with its past, present and future, which might be helpful to understand the Korean nuclear industry and find a way for international cooperation especially with European countries

  16. Cost-benefit analysis of multi-regional nuclear energy systems deployment

    International Nuclear Information System (INIS)

    Van Den Durpel, L.G.G.; Wade, D.C.; Yacout, A.M.

    2007-01-01

    The paper describes the preliminary results of a cost/benefit-analysis of multi-regional nuclear energy system approaches with a focus on how multi-regional approaches may benefit a growing nuclear energy system in various world regions also being able to limit, or even reduce, the costs associated with the nuclear fuel cycle and facilitating the introduction of nuclear energy in various regions in the world. The paper highlights the trade-off one might envisage in deploying such multi-regional approaches but also the pay backs possible and concludes on the economical benefits one may associate to regional fuel cycle centres serving a world-fleet of STAR (small fast reactors of long refueling interval) where these STARs may be competitive compared to the LWRs (Light Water Reactors) as a base-case nuclear reactor option. (authors)

  17. Nuclear energy policy in Britain

    International Nuclear Information System (INIS)

    Fishlock, David.

    1978-01-01

    The history of nuclear energy development in Britain is outlined. Presently three major strategic decisions remain undecided. One is the choice of a thermal reactor type for the steady expansion of nuclear electricity capacity until the end of this century. Another is the reprocessing of spent oxide fuel which at present offers Britain its most promising foreign market. The third one is the future of fast breeders after the successfull demonstration of the 250 MWe prototype reactor at Dounreay [fr

  18. Nuclear energy in future sustainable, competitive energy mixes

    International Nuclear Information System (INIS)

    Echavarri, L.

    2002-01-01

    Full text: Nuclear energy is an established component of electricity supply worldwide (16%) and in particular in OECD (nearly a quarter). It is supported by a mature industry benefiting from extensive experience (more than 8 000 reactor years of commercial operation) and dynamic R and D programmes implemented by governments and industries. Existing nuclear power plants are competing successfully in deregulated electricity markets owing to their low marginal production costs, their technical reliability (availability factors exceeding 80% in many countries) and good safety performance. Stringent safety requirements and radiation protection regulations in place in OECD countries allow potential impacts of nuclear energy facilities on human health and the environment to remain extremely low. Furthermore, nuclear energy, a nearly carbon free source, contributes to alleviating the risk of global climate change (worldwide, GHG emissions from the energy sector are already 8% lower than they would be without nuclear energy). Issues related to high-level waste management and disposal are being addressed in comprehensive, step by step approach. Progress towards the implementation of deep geological repositories is being demonstrated (e.g., Yucca Mountain in the US, Olkiluoto in Finland) and research on innovative fuel cycles aiming at partitioning and transmutation of minor actinides is being actively pursued. Up to 2010-2020, nuclear energy will maintain its role mainly through capacity upgrade and lifetime extension of existing plants, in many cases the most cost effective means to increase power capacity and generation. Examples are provided by utility policies and decisions in a number of OECD countries (e.g., Spain, Sweden, Switzerland, UK, US). Although only few new units are being or will be built in the very near term, their construction and operation is bringing additional experience on advanced evolutionary nuclear systems and paving the way for the renaissance of

  19. Self-sustaining nuclear pumped laser-fusion reactor experiment

    International Nuclear Information System (INIS)

    Boody, F.P.; Choi, C.K.; Miley, G.H.

    1977-01-01

    The features of a neutron feedback nuclear pumped (NFNP) laser-fusion reactor equipment were studied with the intention of establishing the feasibility of the concept. The NFNP laser-fusion concept is compared schematically to electrically pumped laser fusion. The study showed that, once a method of energy storage has been demonstrated, a self-sustaining fusion-fission hybrid reactor with a ''blanket multiplication'' of two would be feasible using nuclear pumped Xe F* excimer lasers having efficiencies of 1 to 2 percent and D-D-T pellets with gains of 50 to 100

  20. PSI nuclear energy research progress report 1989

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-01-01

    This report gives on overview on the PSI's nuclear energy research in the field of reactor physics and systems, thermal-hydraulics, materials technology and nuclear processes, waste management program and LWR safety program. It contains also papers dealing with reactor safety, high temperature materials, decontamination, radioactive waste management and materials testing. 74 figs., 20 tabs., 256 refs

  1. Nuclear energy system department annual report. April 1, 2001 - March 31, 2002

    International Nuclear Information System (INIS)

    Nakajima, Hajime; Ohnuki, Akira; Kunii, Katsuhiko

    2003-03-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 2001 (April 1, 2001 - March 31, 2002). The Department has been organized from April 1998. The main research activity is aimed to build the basis of the development of future nuclear energy systems. The research activities of the Department cover basic nuclear data evaluation, conceptual design of a reduced-moderation water reactor, reactor physics experiments and development of the reactor analysis codes, experiment and analysis of thermal-hydrodynamics, energy system analysis and assessment, development of advanced materials for a reactor, lifetime reliability assessment on structural material, development of advanced nuclear fuel, design of a marine reactor and the research for a nuclear ship system. The maintenance and operation of reactor engineering facilities belonging to the Department are undertaken. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  2. The nuclear: a vital choice for energy

    International Nuclear Information System (INIS)

    Pecqueur, M.

    1980-01-01

    This paper read from the platform of the 13th annual session of the International Agency of Atomic Energy is a plea in favour of the development of nuclear energy. The majority of the reports of enquiry conclude by underlining the sane and efficient character of nuclear reactors. To face up to the energy crisis, France has decided to increase tenfold its production of nuclear energy between 1975 and 1985 -Future prospects [fr

  3. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    world. In recent years, the scope of the IAEA's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. The OECD Nuclear Energy Agency, Euratom and the Generation IV International Forum have also shown interest in the non-electric applications of nuclear power based on future generation advanced and innovative nuclear reactors. This report was developed under an IAEA project with the objective of providing updated, balanced and objective information on the current status of hydrogen production processes using nuclear energy. It documents the state of the art of the development of hydrogen as an energy carrier in many Member States, as well as its corresponding production through the use of nuclear power. The report includes an introduction to the technology of nuclear process heat reactors as a means of producing hydrogen or other upgraded fuels, with a focus on high temperature reactor technology to achieve simultaneous generation of electricity and high temperature process heat and steam. Special emphasis is placed on the safety aspects of nuclear hydrogen production systems.

  4. World nuclear atlas. A step toward energy transition

    International Nuclear Information System (INIS)

    Lepage, Corinne; Laborde, Xemartin

    2015-01-01

    Illustrated by more than 120 maps and figures, this book proposes an overview of the world nuclear industry, of its development, and of the various strategies chosen within the perspective of energy transition. It proposes an overview of the status of nuclear energy in the world (presentation of the nuclear energy, development during the X X century, uranium production, fuel production and processing, the nuclear reactor industry), addresses the main controversies (health and environmental impact, waste management, opacity of the information, major accidents), the new challenges faced by the nuclear sector (a difficult assessment of huge costs, competition with renewable energies, a competitive environment, a technological uncertainty, transparency and democracy), the solutions chosen by big countries (USA, China, India, Japan, Europe, the German energy transition), and proposes a focus on France which is the only country which chose an all-nuclear strategy (history, nuclear installations, main actors, the myth of the French energy independence, the post-Fukushima French fleet, the case of the Fessenheim reactor, the EPR in question, the challenge of waste storage with the Cigeo project, the debate on the nuclear cost)

  5. Nuclear reactor

    International Nuclear Information System (INIS)

    Batheja, P.; Huber, R.; Rau, P.

    1985-01-01

    Particularly for nuclear reactors of small output, the reactor pressure vessel contains at least two heat exchangers, which have coolant flowing through them in a circuit through the reactor core. The circuit of at least one heat exchanger is controlled by a slide valve, so that even for low drive forces, particularly in natural circulation, the required even loading of the heat exchanger is possible. (orig./HP) [de

  6. High-temperature and breeder reactors - economic nuclear reactors of the future

    International Nuclear Information System (INIS)

    Djalilzadeh, A.M.

    1977-01-01

    The thesis begins with a review of the theory of nuclear fission and sections on the basic technology of nuclear reactors and the development of the first generation of gas-cooled reactors applied to electricity generation. It then deals in some detail with currently available and suggested types of high temperature reactor and with some related subsidiary issues such as the coupling of different reactor systems and various schemes for combining nuclear reactors with chemical processes (hydrogenation, hydrogen production, etc.), going on to discuss breeder reactors and their application. Further sections deal with questions of cost, comparison of nuclear with coal- and oil-fired stations, system analysis of reactor systems and the effect of nuclear generation on electricity supply. (C.J.O.G.)

  7. Five MW Nuclear Heating Reactor

    International Nuclear Information System (INIS)

    Zhang Dafang; Dong Duo; Su Qingshan

    1997-01-01

    The 5 MW Nuclear Heating Reactor (NHR-5) developed and designed by the Institute of Nuclear Energy Technology (INET) has been operated for four winter seasons since 1989. During the time of commissioning and operation a number of experiments including self-stability, self-regulation, and simulation of ATWS etc. were carried out. Some operating experiences such as water chemistry, radiation protection and environmental impacts and so on were also obtained at the same time. All of these results demonstrate the design of the NHR-5 is successful. (author). 9 refs, 11 figs, 5 tabs

  8. Five MW Nuclear Heating Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dafang, Zhang; Duo, Dong; Qingshan, Su [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The 5 MW Nuclear Heating Reactor (NHR-5) developed and designed by the Institute of Nuclear Energy Technology (INET) has been operated for four winter seasons since 1989. During the time of commissioning and operation a number of experiments including self-stability, self-regulation, and simulation of ATWS etc. were carried out. Some operating experiences such as water chemistry, radiation protection and environmental impacts and so on were also obtained at the same time. All of these results demonstrate the design of the NHR-5 is successful. (author). 9 refs, 11 figs, 5 tabs.

  9. Applications of nuclear energy in future

    International Nuclear Information System (INIS)

    Sitek, J.; Necas, V.

    2012-01-01

    Concepts and international frames of generation IV nuclear reactors. A review of use of nuclear energy for non electric applications especially in areas such as seawater desalination, hydrogen production, district heating and other industrial applications. (Author)

  10. Institute of Energy and Climate Research IEK-6 : nuclear waste management & reactor safety report 2009/2010 ; material science for nuclear waste management

    OpenAIRE

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (Editors)

    2011-01-01

    This is the first issue of a new series of bi-annual reports intended to provide an overview of research activities for the safe management of nuclear waste in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety devision in Jülich. The report gives a thematic overview of the research in 2009 and 2010 by short papers of five to eight pages. Some papers are discussing the work within different projects with intensive overlap, such as ...

  11. Innovative nuclear reactor - Indian approach to meet user requirements for safety

    International Nuclear Information System (INIS)

    Saha, D.; Sinha, R.K.

    2002-01-01

    Full text: For sustainable development of nuclear energy, a number of key issues are to be addressed. It should be economically competitive; it must address the issues related to nuclear safety, proliferation resistance, environmental impact, waste disposal and cross cutting issues like social and infra-structural aspects. To compete successfully in the long term, in the highly competitive energy market and to overcome other challenges, it is necessary to introduce innovative reactor and fuel cycle concepts. Indian Advanced Heavy Water Reactor (AHWR) is one such innovative reactor. To guide the research and development activities related to innovative concepts, user requirements are to be formulated. User requirements covering various aspects of sustainable development are being formulated at both national and international levels. One such international project involved in the formulation of user requirements is the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). This paper deals with INPRO user requirements for safety and Indian approach to meet these requirements through AHWR

  12. Nuclear energy system department annual report. April 1, 2000 - March 31, 2001

    International Nuclear Information System (INIS)

    Osugi, Toshitaka; Takase, Kazuyuki; Kunii, Katsuhiko

    2002-03-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 2000 (April 1, 2000 - March 31, 2001). The Department has been organized from April 1998. The main research activity is aimed to build the basis of the development of future nuclear energy systems. The research activities of the Department cover basic nuclear and atomic and molecular data evaluation, conceptual design of a reduced-moderation water reactor, reactor physics experiments and development of the reactor analysis codes, experiment and analysis of thermal-hydrodynamics, energy system analysis and assessment, development of advanced materials for a reactor, lifetime reliability assessment on structural material, development of advanced nuclear fuel, study of nuclear transmutation systems, design of a marine reactor and the research for a nuclear ship system. The maintenance and operation of reactor engineering facilities belonging to the Department are undertaken. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  13. New reactor concepts for new generation of nuclear power plants: an overview, invited paper

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Milosevic, M.

    2006-01-01

    The outlook for energy demand underscores the need to increase the share of nuclear energy production. Achieving the vision of sustainable growth of nuclear energy will require development of both advanced nuclear fuel cycles and next generation reactor technologies and advanced reprocessing and fuel treatment technologies. To achieve this vision, the US department of energy (DOE) has adopted new strategy, the Global Nuclear Energy Partnership (GNEP), which integrates earlier programs: the Generation IV Nuclear Energy Systems Initiative (Generation IV), Nuclear Hydrogen Initiative (NHI), and the Advanced Fuel Cycle Initiative (AFCI) with proliferation-resistant spent fuel reprocessing to minimize nuclear waste. Generation IV furthers this vision beyond previous energy systems, such as Generation III+, through incremental improvements in economic competitiveness, sustainability, development of passively safe systems, and breakthrough methods to reduce the routes of nuclear proliferation. This paper summarizes the main characteristics of the six most promising nuclear energy systems identified by the Generation IV Roadmap and reviews some Generation IV system designs for small-side proliferation resistant reactors being developed by University of California at Berkeley. (author)

  14. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    Science.gov (United States)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  15. Nuclear energy. Risk or advantage

    International Nuclear Information System (INIS)

    Boettiger, Helmut

    2011-01-01

    Nuclear energy is controversial. But what's all about really in the controversy? It's about more than safty or electricity prices. Nuclear energy is not only a technical or political question, but also a moral, a human. The discussion enter various rational and irrational arguments, beside straightforward arguments various misleading and mendacious exist. The present publication is comprehensively dedicated to the thema of nuclear energy - its pro and contra - and considers its risks and advantages. Thereby the sources of energy, the processes in the nuclear reactor, and the risk potentials (Harrisburg, Chernobyl, Fukushima) are illustratively and reproducibly presented. Extensively the text explains the forms of the radiation, its doses, and the tolerance of it. Also to the theme waste and final disposal an explaining chapter is dedicated and the question for the exit from nuclear energy elucidated. Finally the author appoints with the question ''How considers mankind nuclear energy world-wide'' the international comparison.

  16. Nuclear future: thinking for building. Proceedings of the 12. Brazilian national meeting on reactor physics and thermal hydraulics; 8. General congress on nuclear energy; 5. Brazilian national meeting on nuclear applications

    International Nuclear Information System (INIS)

    2000-01-01

    These proceedings, for the first time, present jointly the 12. Brazilian national meeting on reactor physics and thermal hydraulics (12 ENFIR), 8. General congress on nuclear energy (8. CGEN), and 5. Brazilian national meeting on nuclear applications (5. ENAN). The main theme of discussion was: 'Nuclear Future: thinking for building'. The papers have analysed the progresses of peaceful utilization of nuclear technology and its forecasting for the beginning of the new millennium. The construction of Angra-3 nuclear power plant have been discussed

  17. Summary of trial design of improved marine nuclear reactors

    International Nuclear Information System (INIS)

    1984-01-01

    In order to carry out the research and development of improved marine nuclear reactors, the Japan Nuclear Ship Research and Development Agency decided the project for the purpose in accordance with the procedure of research and development shown by the Nuclear Ship Research and Development Committee of Atomic Energy Commission in December, 1979, and along the basic plan regarding the development of nuclear ships of the Agency decided in February, 1981. As the first step, the Agency has been advancing the research on the design evaluation comprising the trial design and conceptual design to establish the concept of the marine reactor plant with excellent economical efficiency and reliability, which will be developed as the practical plant for future nuclear ships. The trial design started as a three-year project from 1983 is related to a 100 MWt marine reactor, and it is to obtain the concept of improved marine reactors which can be realized after adequate development period based on the pressurized water reactors of separate type, one-body type and semi-one-body type. In this summary, the works carried out in fiscal year 1983 are reported, that is, the design and calculation of the reactor core and the equipment of primary cooling system, and the selection of the required items of research and development. (Kako, I.)

  18. Safety of light water reactors. Risks of nuclear technology

    International Nuclear Information System (INIS)

    Veser, Anke; Schlueter, Franz-Hermann; Raskob, Wolfgang; Landman, Claudia; Paesler-Sauer, Juergen; Kessler, Guenter

    2012-01-01

    The book on the safety of light-water reactors includes the following chapters: Part I: Physical and technical safety concept of actual German and future European light-water reactors: (1) Worldwide operated nuclear power plants in 2011, (2) Some reactor physical fundamentals. (3) Nuclear power plants in Germany. (4) Radioactive exposure due to nuclear power plants. (5) Safety concept of light-water reactors. (6) Probabilistic analyses and risk studies. (7) Design of light-water reactors against external incidents. (8) Risk comparison of nuclear power plants and other energy systems. (9) Evaluation of risk studies using the improved (new) safety concept for LWR. (19) The severe reactor accidents of Three Mile Island, Chernobyl and Fukushima. Part II: Safety of German LWR in case of a postulated aircraft impact. (11) Literature. (12) Review of requirements and actual design. (13) Incident scenarios. (14) Load approach for aircraft impact. (15) Demonstration of the structural behavior in case of aircraft impact. (16) Special considerations. (17) Evaluation of the safety state of German and foreign nuclear power plants. Part III: ROSOS as example for a computer-based decision making support system for the severe accident management. (19) Literature. (20) Radiological fundamentals, accident management, modeling of the radiological situation. (21) The decision making support system RODOS. (22) RODOS and the Fukushima accident. (23) Recent developments in the radiological emergency management in the European frame.

  19. Korean nuclear reactor strategy for the early 21st century

    International Nuclear Information System (INIS)

    Lee, Byong Whi; Shin, Young Kyun

    1991-01-01

    The system analysis for Korean nuclear power reactor option is made on the basis of reliability, cost minimization, finite uranium resource availability and nuclear engineering manpower supply constraints. The reference reactor scenarios are developed considering the future electricity demand, nuclear share, current nuclear power plant standardization program and manufacturing capacity. The levelized power generation cost, uranium requirement and nuclear engineering professionals demand are estimated for each reference reactor scenarios and nuclear fuel cycle options from the year 1990 up to the year 2030. Based on the outcomes of the analysis, uranium resource utilization, reliability and nuclear engineering manpower requirements are sensitive to the nuclear reactor strategy and associated fuel cycle whereas the system cost is not. APWR, CANDU: FBR strategy is to be the best option for Korea. However, APWR, CANDU: Passive Safe Reactor (PSR) vFBR strategy should be also considered as a contingency for growing national concerns on nuclear safety and public acceptance deterioration in the future. FBR development and establishment of related fuel cycle should be started as soon as possible considering the uranium shortage anticipated between 2007 and 2032. It should be noted that the increasing use of nuclear energy to minimize the greenhouse effects in the early 21st century would accelerate the uranium resource depletion. The study also concludes that the current level of nuclear engineering professionals employment is not sufficient until 2010 for the establishment of nuclear infrastructure. (Author)

  20. Refuelling nuclear reactors

    International Nuclear Information System (INIS)

    Stacey, J.; Webb, J.; White, W.P.; McLaren, N.H.

    1981-01-01

    An improved nuclear reactor refuelling machine is described which can be left in the reactor vault to reduce the off-load refuelling time for the reactor. The system comprises a gripper device rangeable within a tubular chute, the gripper device being movable by a pantograph. (U.K.)

  1. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  2. The nuclear power cycle; Le cycle de l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Fifty years after the first nuclear reactor come on-line, nuclear power is fourth among the world's primary energy sources, after oil, coal and gas. In 2002, there were 441 reactors in operation worldwide. The United States led the world with 104 reactors and an installed capacity of 100,000 MWe, or more than one fourth of global capacity. Electricity from nuclear energy represents 78% of the production in France, 57% in Belgium, 46% in Sweden, 40% in Switzerland, 39% in South Korea, 34% in Japan, 30% in Germany, 30% in Finland, 26% in Spain, 22% in Great Britain, 20% in the United States and 16% in Russia. Worldwide, 32 reactors are under construction, including 21 in Asia. This information document presents the Areva activities in the nuclear power cycle: the nuclear fuel, the nuclear reactors, the spent fuel reprocessing and recycling and nuclear cleanup and dismantling. (A.L.B.)

  3. An overview of future sustainable nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2013-07-01

    fuel cycles and burn the long-lived actinides now forming part of spent fuel, so that fission products are the only high-level waste. Relative to current nuclear power plant technology, the claimed benefits for generation IV reactors include nuclear waste that lasts a few centuries instead of millennia, 100-300 times more energy yield from the same amount of nuclear fuel, the ability to consume existing nuclear waste in the production of electricity and improved operating safety. Generation V+ reactors are designs which are theoretically possible, but which are not being actively considered or researched at present. Though such reactors could be built with current or near term technology, they trigger little interest for reasons of economics, practicality or safety.

  4. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  5. Development of methods for monitoring and controlling power in nuclear reactors

    International Nuclear Information System (INIS)

    Mesquita, Amir Zacarias; Rezende, Hugo Cesar; Santos, Andre Augusto Campagnole dos; Silva, Vitor Vasconcelos Araujo

    2012-01-01

    Redundancy and diversity are two important criteria for power measurement in nuclear reactors. Other criteria such as accuracy, reliability and response speed are also of major concern. Power monitoring of nuclear reactors is normally done by means of neutronic instruments, i.e. by the measurement of neutron flux. The greater the number of channels for power measuring the greater is the reliability and safety of reactor operations. The aim of this research is to develop new methodologies for on-line monitoring of nuclear reactor power using other reliable processes. One method uses the temperature difference between an instrumented fuel element and the pool water below the reactor core. Another method consists of the steady-state energy balance of the primary and secondary reactor cooling loops. A further method is the calorimetric procedure whereby a constant reactor power is monitored as a function of the temperature-rise rate and the system heat capacity. Another methodology, which does not employ thermal methods, is based on measurement of Cherenkov radiation produced within and around the core. The first three procedures, fuel temperature, energy balance and calorimetric, were implemented in the IPR-R1 TRIGA nuclear research reactor at Belo Horizonte (Brazil) and are the focus of the work described here. Knowledge of the reactor thermal power is very important for precise neutron flux and fuel element burnup calculations. The burnup is linearly dependent on the reactor thermal power and its accuracy is important in the determination of the mass of burned 235 U, fission products, fuel element activity, decay heat power generation and radiotoxicity. The thermal balance method developed in this project is now the standard methodology used for IPR-R1 TRIGA reactor power calibration and the fuel temperature measuring is the most reliable way of on-line monitoring of the reactor power. This research project primarily aims at increasing the reliability and safety of

  6. Extending nuclear energy to non-electrical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Houghton, Z. [NuScale Power, LLC, Corvallis, Oregon (United States); Bromm, R. [Fluor Corp., Greenville, SC (United States); Desportes, C. [Aquatech International, Canonsburg, PA (United States); McKellar, M.; Boardman, R. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-07-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these nontraditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers. (author)

  7. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  8. Advanced methods for nuclear reactor gas laser coupling

    International Nuclear Information System (INIS)

    Miley, G.H.; Verdeyen, J.T.

    1978-06-01

    Research is described that led to the discovery of three nuclear-pumped lasers (NPLs) using mixtures of Ne--N 2 , He--Hg, and He or Ne with CO or CO 2 . The Ne--N 2 NPL was the first laser obtained with modest neutron fluxes from a TRIGA reactor (vs fast burst reactors used elsewhere in such work), the He--Hg NPL was the first visible nuclear-pumped laser, while the Ne--CO and He--CO 2 lasers are the first to provide energy storage on a millisecond time scale. Important potential applications of NPLs include coupling and power transmission from remote power stations such as nuclear plants in satellites and neutron-feedback operation of inertial confinement fusion plants

  9. Nuclear energy research until 2000

    International Nuclear Information System (INIS)

    Reiman, L.; Rintamaa, R.; Vanttola, T.

    1994-03-01

    The working group was to assess the need and orientation of nuclear energy research (apart from research on nuclear waste management and fusion technology) up until the year 2000 in Finland and to propose framework schemes and organization guidelines for any forthcoming publicly financed research programmes from 1995 onwards. The main purpose of nuclear energy research is to ensure the safety and continued development of Finland's existing nuclear power plants. Factors necessarily influencing the orientation of research are Parliaments decision of late 1993 against further nuclear capacity in the country, the need to assess reactor safety in the eastern neighbour regions, and Finland's potential membership in the European Union. The working group proposes two new research programmes similar to the current ones but with slightly modified emphasis. Dedicated to reactor safety and structural safety respectively, they would both cover the four years from 1995 to 1998. A separate research project is proposed for automation technology. In addition, environmental research projects should have a joint coordination unit. (9 figs., 4 tabs.)

  10. Nuclear energy - overview of development trends

    International Nuclear Information System (INIS)

    1985-01-01

    Proceeding from the organizational structure of the IAEA selected activities of the IAEA in connection with power reactor safety are dealt with. Based on the IAEA's computerized Power Reactor Information System (PRIS) a survey is presented of the most recent statistical data concerning status and trends of nuclear power plant development throughout the world. The central role of the IAEA in assisting Member States in the utilization of nuclear energy for peaceful purposes is underscored. Finally, a brief account of the state-of-the-art of the USSR's nuclear power programme is given

  11. Assessing the risks of nuclear energy

    International Nuclear Information System (INIS)

    Evans, Nigel

    1986-01-01

    The question how safe is safe is discussed. The way in which nuclear energy is presented in the context of the risks inherent in daily life is considered. Calculations based on actual reactor accidents (not Chernobyl) are then extrapolated for the proposed Sizewell-B reactor. Comparison is made between the risks of the nuclear industry and coal mining. Risk perception is considered and a risk index is constructed that allows for the fact that nuclear power continues to arouse public fear in spite of a good safety record. (UK)

  12. ICENES '91:Sixth international conference on emerging nuclear energy systems

    International Nuclear Information System (INIS)

    1991-01-01

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, μ-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session

  13. Conceptual design of nuclear fusion power reactor DREAM. Reactor structures and remote maintenance

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Seki, Yasushi; Ueda, Shuzo; Kurihara, Ryoichi; Adachi, Junichi; Yamazaki, Seiichiro; Hashimoto, Toshiyuki.

    1997-01-01

    Nuclear fusion reactors are required to be able to compete another energy sources in economy, reliability, safety and environmental integrity for commercial use. In the DREAM (DRastically EAsy Maintenance) reactor, a very low activated material of SiC/SiC composite has been introduced for the structural material, a reactor configuration for very easy maintenance and the helium gas of a high temperature for the cooling system, and hence DREAM has been proven to be very attractively as the commercial power reactor due to the high availability and efficiency of the plant and minimization of radioactive wastes. (author)

  14. Nuclear desalination in the Arab world - Part II: Advanced inherent and passive safe nuclear reactors

    International Nuclear Information System (INIS)

    Karameldin, A.; Samer S. Mekhemar

    2004-01-01

    Rapid increases in population levels have led to greater demands for fresh water and electricity in the Arab World. Different types of energies are needed to contribute to bridging the gap between increased demand and production. Increased levels of safeguards in nuclear power plants have became reliable due to their large operational experience, which now exceeds 11,000 years of operation. Thus, the nuclear power industry should be attracting greater attention. World electricity production from nuclear power has risen from 1.7% in 1970 to 17%-20% today. This ratio had increased in June 2002 to reach more than 30%, 33% and 42% in Europe, Japan, and South Korea respectively. In the Arab World, both the public acceptance and economic viability of nuclear power as a major source of energy are greatly dependent on the achievement of a high level of safety and environmental protection. An assessment of the recent generation of advanced reactor safety criteria requirements has been carried out. The promising reactor designs adapted for the Arab world and other similar developing countries are those that profit from the enhanced and passive safety features of the new generation of reactors, with a stronger focus on the effective use of intrinsic characteristics, simplified plant design, and easy construction, operation and maintenance. In addition, selected advanced reactors with a full spectrum from small to large capacities, and from evolutionary to radical types, which have inherent and passive safety features, are discussed. The relevant economic assessment of these reactors adapted for water/electricity cogeneration have been carried out and compared with non-nuclear desalination methods. This assessment indicates that, water/electricity cogeneration by the nuclear method with advanced inherent and passive safe nuclear power plants, is viable and competitive. (author)

  15. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  16. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  17. By paths of the history of nuclear energy in Korea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-15

    This book contains 44 papers on nuclear energy in Korea. The titles of these papers are view of an atomic energy agreement, development of nuclear energy and a technological revolution, education of nuclear energy and university, reconsideration for nuclear energy business in Korea, reminiscence and problem in nuclear energy administration in Korea, Is the nuclear power plant safe? advice for establishment of constructure of nuclear power, the meaning of Korean nuclear reactor, responsibility for anti nuclear power and from discovering fire to using nuclear energy.

  18. By paths of the history of nuclear energy in Korea

    International Nuclear Information System (INIS)

    1999-12-01

    This book contains 44 papers on nuclear energy in Korea. The titles of these papers are view of an atomic energy agreement, development of nuclear energy and a technological revolution, education of nuclear energy and university, reconsideration for nuclear energy business in Korea, reminiscence and problem in nuclear energy administration in Korea, Is the nuclear power plant safe? advice for establishment of constructure of nuclear power, the meaning of Korean nuclear reactor, responsibility for anti nuclear power and from discovering fire to using nuclear energy.

  19. Nuclear Energy Division. 2009 Activity report

    International Nuclear Information System (INIS)

    2009-01-01

    After a presentation of the future investment programme of the nuclear energy department at the French national Nuclear Research Center (CEA), this report proposes a description of tomorrow's industrial nuclear systems (back-end of future fuel cycle, fourth generation systems, basic scientific and technological research), describes how current nuclear industrial systems are optimized (front-end and back-end of fuel cycle, second and third generation reactors). It presents the main tools for nuclear development: simulation programme, the Jules Horowitz reactor project, maintenance of specific facilities, research valorisation. It reports the activities related to the clean-up and dismantling in different nuclear sites, presents the activities of CEA's nuclear research centres (Saclay, Cadarache, Marcoule), briefly presents the transverse material programme, recalls some events, and gives some key figures

  20. Shielding considerations for advanced space nuclear reactor systems

    International Nuclear Information System (INIS)

    Angelo, J.P. Jr.; Buden, D.

    1982-01-01

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO 2 ) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications

  1. Nuclear energy - short-term and long-term aspects of its answerability and realization

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1982-01-01

    The recommendations of the two phases 'nuclar energy I' and 'nuclear energy II' create the necessary technological conditions for nuclear energy utilization on one hand, on the other, they basically secure that it shall still be possible to waive nuclear energy in the future. Within this framework the lecture deals with the question of reactor safety, nuclear waste management and breeder reactor technology, especially of the SNR-300. (HSCH) [de

  2. Nuclear reactor internals arrangement

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    A nuclear reactor internals arrangement is disclosed which facilitates reactor refueling. A reactor vessel and a nuclear core is utilized in conjunction with an upper core support arrangement having means for storing withdrawn control rods therein. The upper core support is mounted to the underside of the reactor vessel closure head so that upon withdrawal of the control rods into the upper core support, the closure head, the upper core support and the control rods are removed as a single unit thereby directly exposing the core for purposes of refueling

  3. PSI nuclear energy research progress report 1988

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-07-01

    The progress report at hand deals with nuclear energy research at PSI. The collection of articles covers a large number of topics: different reactor systems, part of the fuel cycle, the behaviour of structural materials. Examples of the state of knowledege in different disciplines are given: reactor physics, thermal-hydraulics, heat transfer, fracture mechanics, instrumental analysis, mathematical modelling. The purpose of this collection is to give a fair account of nuclear energy research at PSI. It should demonstrate that nuclear energy research is a central activity also in the new institute, the scientific basis for the continuing exploitation of nuclear power in Switzerland is preserved, work has continued not only along established lines but also new research topics were tackled, the quality of work corresponds to international standards and in selected areas is in the forefront, the expertise acquired also finds applications in non-nuclear research tasks. (author) 92 figs., 18 tabs., 316 refs

  4. Licensing of nuclear reactor operators

    International Nuclear Information System (INIS)

    1979-09-01

    Recommendations are presented for the licensing of nuclear reactor operators in units licensed according to the legislation in effect. They apply to all physical persons designated by the Operating Organization of the nuclear reactor or reactors to execute any of the following functional activities: a) to manipulate the controls of a definite reactor b) to direct the authorized activities of the reactor operators licesed according to the present recommendations. (F.E.) [pt

  5. The nuclear news interview. John Gilleland. On the traveling-wave reactor

    International Nuclear Information System (INIS)

    Michal, Rick; Blake, E. Michael

    2010-01-01

    The traveling-wave reactor, in concept, would use depleted uranium to produce vast amounts of energy without the need for enrichment plants and reprocessing facilities, which is why billionaire Bill Gates is interested in developing it. TerraPower LLC has been launched by the company Intellectual Ventures to design a traveling-wave nuclear reactor that could run for 100 years without refueling or removing spent fuel. So convincing is the science behind the concept that billionaire Bill Gates has gotten involved to help finance the project. Led by John Gilleland, TerraPower's chief executive officer, a team of researchers has run computer simulations and is doing engineering studies that have produced evidence that a wave of fission moving slowly through a fuel core could generate a billion watts of electricity continuously without refueling. Gilleland noted that these new reactors could reduce the amount of nuclear waste by using existing stockpiles of depleted uranium as fuel. ''By extracting centuries' worth of energy from waste at enrichment plants, these reactors would turn a social and financial liability into an asset,'' he said. Gilleland, a member of the American Nuclear Society, talked about the traveling-wave reactor with Nuclear News editors Rick Michal and E. Michael Blake. (orig.)

  6. Sodium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hammers, H.W.

    1982-01-01

    The invention concerns a sodium-cooled nuclear reactor, whose reactor tank contains the primary circuit, shielding surrounding the reactor core and a primary/secondary heat exchanger, particularly a fast breeder reactor on the module principle. In order to achieve this module principle it is proposed to have electromagnetic circulating pumps outside the reactor tank, where the heat exchanger is accomodated in an annular case above the pumps. This case has several openings at the top end to the space above the reactor core, some smaller openings in the middle to the same space and is connected at the bottom to an annular space between the tank wall and the reactor core. As a favoured variant, it is proposed that the annular electromagnetic pumps should be arranged concentrically to the reactor tank, where there is an annual duct on the inside of the reactor tank. In this way the sodium-cooled nuclear reactor is made suitable as a module with a large number of such elements. (orig.) [de

  7. Industrial and natural nuclear reactors; Industrielle und natuerliche Kernreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Binnewies, Michael [Hannover Univ. (Germany); Willner, Helge; Woenckhaus, Juergen

    2015-08-15

    As described in the preceding article, all elements with atomic masses above that of iron and also the radioactive elements thorium and uranium have been formed by a supernova star explosion. Their long-lived isotopes of thorium and uranium are now distributed in the earth crust. The chemistry of uranium and thorium is of less importance, but these elements can be used to produce enormous amounts of energy in nuclear power stations. It will be described how it works. Surprisingly, small natural nuclear reactors were producing heat during hundreds of thousand years. Subsequently, we are dealing with this phenomenon, the principle of nuclear fission, the different types of nuclear reactors, security aspects and new developments.

  8. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  9. The CANDUR Reactor - The Practical Path to RU and TH use in Nuclear Reactors

    International Nuclear Information System (INIS)

    Kuran, Sermet; Yang, Dezi

    2012-01-01

    The CANDU heavy water reactor has unrivalled flexibility for using a variety of fuels, such as Natural Uranium (NU), Low Enriched Uranium (LEU), Recycled Uranium (RU), Mixed Oxide (MOX), and Thorium (Th). Recently, this unique CANDU reactor feature attracted considerable attention due to favourable commercial, environmental and strategic needs. This paper summarizes the solid progress over the last three years and outlines CANDU Energy Incorporated's (CEI) multi-stage vision of utilizing various fuels in currently operational and new build CANDU reactors. In CEI's fuel-cycle vision, CANDU reactors will operate in conjunction with other reactor types and use advanced fuels to produce more energy and ensure the most efficient and least costly method of utilizing Light Water Reactor (LWR) used fuel. With this vision and the tandem goal of systematic adoption of Thorium based fuels, CANDU reactors will be a strong technology partner in ensuring the availability of long-term stable resources for nuclear power plants

  10. Molten salt reactors and possible scenarios for future nuclear power deployment

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Mathieu, L.; Heuer, D.; Loiseaux, J. M.; Billebaud, A.; Brissot, R.; David, S.; Garzenne, C.; Laulan, O.; Le Brun, C.; Lecarpentier, D.; Liatard, E.; Meplan, O.; Michel-Sendis, F.; Nuttin, A.; Perdu, F.

    2004-01-01

    An important fraction of the nature energy demand may be satisfied by nuclear power. In this context, the possibilities of worldwide nuclear deployment are studied. We are convinced that the Molten Salt Reactors may play a central role in this deployment. The Molten Salt Reactor needs to be coupled to a reprocessing unit in order to extract the Fission Products which poison the core. The efficiency of this reprocessing has a crucial influence on reactor behavior especially for the breeding ratio. The Molten Salt Breeder Reactor project was based on an intensive reprocessing for high breeding purposes. A new concept of Thorium Molten Salt Reactor is presented here. Including this new concept in the worldwide nuclear deployment, to satisfy these power needs, we consider three typical scenarios, based on three reactor types: Pressurized Water Reactor, Fast Neutron Reactor and Thorium Molten Salt Reactor. The aim of this paper is to demonstrate, in a first hand that a Thorium Molten Salt Reactor can be realistic, with correct temperature coefficients and at least iso-breeder with slow reprocessing and new geometry; on the other hand that such Molten Salt Reactors enable a successful nuclear deployment, while minimizing fuel and waste management problems. (authors)

  11. Nuclear power: tomorrow's energy source

    International Nuclear Information System (INIS)

    2002-01-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  12. Applications of plasma core reactors to terrestrial energy systems

    International Nuclear Information System (INIS)

    Lantham, T.S.; Biancardi, F.R.; Rodgers, R.J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrail applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times

  13. Fears caused by nuclear energy

    International Nuclear Information System (INIS)

    2011-01-01

    As after the Fukushima accident, fears with respect to nuclear energy may appear again, this very positive document outlines the differences between a nuclear bomb and a nuclear reactor, outlines the natural character of radioactivity and its benefits when used with low dose, outlines the fact that radioactivity although invisible can be easily and well measured. It comments the accident and recalls that TEPCO did not take the fact that ten meter high waves could happen as in Indonesia in 2004. It discusses the loss of confidence in scientists, in nuclear authorities. It addresses the issue of nuclear wastes, evokes the discovery of a natural underground nuclear reactor in Gabon, outlines properties of waste vitrification, discusses the case of high level wastes, of minor actinides, and of storage reversibility. It outlines the safety of installations containing plutonium, of plutonium transportation

  14. Nuclear future: thinking for building. Proceedings of the 5. Brazilian national meeting on nuclear applications; 8. General congress on nuclear energy; 12. Brazilian national meeting on reactor physics and thermal hydraulics

    International Nuclear Information System (INIS)

    2000-01-01

    These proceedings, for the first time, present jointly the 12. Brazilian national meeting on reactor physics and thermal hydraulics (12. ENFIR), the 8. General congress on nuclear energy (8. CGEN), and the 5. Brazilian national meeting on nuclear applications (5. ENAN). The main theme of discussion was: 'Nuclear Future: thinking for building'. The papers have analysed the progresses of peaceful utilization of nuclear technology and its forecasting for the beginning of the new millennium. The construction of Angra-3 nuclear power plant have been discussed

  15. Nuclear energy resources for electrical power generation

    International Nuclear Information System (INIS)

    Alder, K.F.

    1974-01-01

    'Nuclear Energy Resources' is interpreted as the nuclear power systems currently available commercially and those at an advanced stage of development, together with full and associated resources required to implement large-scale nuclear programs. Technical advantages and disadvantages of the established power reactor systems are reviewed, and the uranium fuel situation is outlined in terms of supply and demand, the relationship of resources to the requiremnts of current reactor types, and the likely future implications of the Fast Breeder Reactor (FBR). Because of its importance for the future, the problems, status, and likely time scale of the FBR are discussed in some detail. It is concluded that the most important areas for nearterm attention in Australia are the criteria and conditions that would apply to nuclear installations, and the possible development of uranium fuel cycle industries. The pattern of development of reactor and fuel cycle strategies overseas is important for uranium industry planning, and in the long term plutonium availability may be a key factor in power and energy planning. Finally, acceptance of nuclear power includes acceptance that its radioactive wastes will have to be stored on earth, and recent developments to demonstrate that this can be done safely and economically are very important in terms of longterm public attitudes. (author)

  16. Nuclear energy at the turning point

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, A.M.

    1977-07-01

    In deciding the future course of nuclear energy, it is necessary to re-examine man's long-term energy options, in particular solar energy and the breeder reactor. Both systems pose difficultiies: energy from the sun is likely to be expensive as well as limited, whereas a massive world-wide deployment of nuclear breeders will create problems of safety and of proliferation. Nuclear energy's long-term success depends on resolving both of these problems. Collocation of nuclear facilities with a system of resident inspectors are measures that ought to help increase the proliferation-resistance as well as the safety of a large-scale, long-term nuclear system based on breeders. In such a long-term system a strengthened International Atomic Energy Agency (IAEA) is viewed as playing a central role.

  17. Fuel Management at the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pham, V.L.; Nguyen, N.D.; Luong, B.V.; Le, V.V.; Huynh, T.N.; Nguyen, K.C. [Nuclear Research Institute, 01 Nguyen Tu Luc Street, Dalat City (Viet Nam)

    2011-07-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type research reactor which was reconstructed in 1982 from the old 250 kW TRIGA-MARK II reactor. The spent fuel storage was newly designed and installed in the place of the old thermalizing column for biological irradiation. The core was loaded by Russian WWR-M2 fuel assemblies (FAs) with 36% enrichment. The reconstructed reactor reached its initial criticality in November 1983 and attained it nominal power of 500 kW in February 1984. The first fuel reloading was executed in April 1994 after more than 10 years of operation with 89 highly enriched uranium (HEU) FAs. The third fuel reloading by shuffling of HEU FAs was executed in June 2004. After the shuffling the working configuration of reactor core kept unchanged of 104 HEU FAs. The fourth fuel reloading was executed in November 2006. The 2 new HEU FAs were loaded in the core periphery, at previous locations of wet irradiation channel and dry irradiation channel. After reloading the working configuration of reactor core consisted of 106 HEU FAs. Contracts for reactor core conversion between USA, Russia, Vietnam and the International Atomic Energy Agency for Nuclear fuel manufacture and supply for DNRR and Return of Russian-origin non-irradiated highly enriched uranium fuel to the Russian Federation have been realized in 2007. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory and Vietnam Atomic Energy Institute the mixed core configurations of irradiated HEU and new low enriched uranium (LEU) FAs has been created on 12 September, 2007 and on 20 July, 2009. After reloading in 2009, the 14 HEU FAs with highest burnup were removed from the core and put in the interim storage in reactor pool. The works on full core conversion for the DNRR are being realized in cooperation with the organizations, DOE and IAEA. Contract for Nuclear fuel manufacture and supply of 66 LEU FAs for DNRR

  18. An architecture for nuclear energy in the 21st century

    International Nuclear Information System (INIS)

    Arthur, E.D.; Cunningham, P.T.; Wagner, R.L. Jr.

    1998-01-01

    Nuclear energy currently plays a significant role in the energy economies of the US and other major industrial nations. Its future (several scenarios are described later) may involve significant growth in developing countries but controversy and debate surrounds future nuclear energy scenarios. In that ongoing debate, proponents and critics both appear to assume that nuclear technologies, practices and institutions will continue over the long term to look much as they do today. This paper discusses possible global and regional nuclear energy scenarios, and proposes changes in the global nuclear architecture that could reshape technologies, practices and institutions of nuclear energy over the coming decades. In doing so the array of choices available for exercising the nuclear energy option could be enlarged, making such a potential deployment less problematic and perhaps less controversial. How fuel discharged from power reactors is used and disposed of is a central issue of nuclear energy's present controversy and central factor in determining its long-term potential. Many proponents of nuclear power, especially outside the US, believe that extracting all the energy available in reactor fuel--and, in particular, recovering the plutonium from discharged fuel for recycling through breeder reactors--is necessary to realize the technology's ultimate potential as a source of virtually inexhaustible energy. Others consider the plutonium contained in discharged fuel to be a challenge to waste disposal and a potential proliferation risk. Focusing on the back end of the nuclear fuel cycle as a principal arena for improvement represents a fruitful pathway towards creating a significantly improved fuel-cycle architecture

  19. Nuclear reactor simulator

    International Nuclear Information System (INIS)

    Baptista, Vinicius Damas

    1996-01-01

    The Nuclear Reactor Simulator was projected to help the basic training in the formation of the Nuclear Power Plants operators. It gives the trainee the opportunity to see the nuclear reactor dynamics. It's specially indicated to be used as the support tool to NPPT (Nuclear Power Preparatory Training) from NUS Corporation. The software was developed to Intel platform (80 x 86, Pentium and compatible ones) working under the Windows operational system from Microsoft. The program language used in development was Object Pascal and the compiler used was Delphi from Borland. During the development, computer algorithms were used, based in numeric methods, to the resolution of the differential equations involved in the process. (author)

  20. Nuclear Energy System Department annual report (April 1, 1998 - March 31, 1999)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 1998 (April 1, 1998 - March 31, 1999). The Department has been organized from April 1998. The main research activity is aimed to build the basis of the development of future nuclear energy system. The research activities of the fiscal year cover basic nuclear and atomic and molecular data evaluation, conceptual design of reduced-moderation water reactor, development of reactor analysis code, reactor physics study on fast neutron system, control and sensing technology development for nuclear reactor, experiment and analysis of thermal-hydrodynamics, development of advanced material for reactor, lifetime reliability assessment on structural material for advanced reactor, development of advanced nuclear fuel, design of marine reactor and the research for nuclear ship system. The maintenance and operation of reactor engineering facilities belonging to the Department are undertaken. The activities of the research committee to which the Department takes a role of secretariat are also summarized in this report. The 98 papers are indexed individually. (J.P.N.)

  1. Nuclear characteristics of D-D fusion reactor blankets, (1)

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao; Seki, Yasushi.

    1977-01-01

    Fusion reactors operating on the deuterium (D-D) cycle are considered promising for their freedom from tritium breeding in the blanket. In this paper, neutronic and photonic calculations are undertaken covering several blanket models of the D-D fusion reactor, using presently available data, with a view to comparing the nuclear characteristics of these models, in particular, the nuclear heating rates and their spatial distributions. Nine models are taken up for the study, embodying various combinations of coolant, blanket, structural and reflector materials. About 10 MeV is found to be a typical value for the total nuclear energy deposition per source neutron in the models considered here. The realization of high energy gain is contingent upon finding a favorable combination of blanket composition and configuration. The resulting implications on the thermal design aspect are briefly discussed. (auth.)

  2. Potential of light water reactors for future nuclear power plants

    International Nuclear Information System (INIS)

    Gueldner, R.

    2003-01-01

    Energy consumption worldwide is going to increase further in the next few decades. Reliable supplies of electricity can be achieved only by centralized power plant structures. In this scenario, nuclear power plants are going to play a leading role as reliable and competitive plants, also under deregulated market conditions. Today, light water reactors have achieved a leading position, both technically and economically, contributing 85% to worldwide electricity generation in nuclear plants. They will continue to be a proven technology in power generation. In many countries, activities therefore are concentrated on extending the service life of plants beyond a period of forty years. New nuclear generating capacities are expected to be created and added from the end of this decade onward. Most of this capacity will be in light water reactors. The concepts of third-generation reactors will meet all economic and technical safety requirements of the 21st century and will offer considerable potential for further development. Probably some thirty years from now, fourth-generation nuclear power plants will be ready for commercial application. These plants will penetrate especially new sectors of the energy markets. Public acceptance of new nuclear power plants is not a matter of reactor lines, provided that safety requirements are met. The important issue is the management of radioactive waste. The construction of new nuclear power plants in Western Europe and North America mainly hinges on the ability to explain to the public that there is a need for new plants and that nuclear power is fundamental to assuring sustainable development. (orig.)

  3. Development of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, John [Secretary of State for Energy, London (UK)

    1991-06-01

    The Government's views on the development of nuclear energy are outlined. In this country, we continue to see some important advantages in maintaining nuclear power generation. It increases diversity, and so helps to maintain security of energy supply. It does not produce greenhouse gases or contribute to acid rain. But it is equally clear that nuclear costs must be brought under control whilst at the same time maintaining the high standards of safety and environmental protection which we have come to expect in the UK. The three main elements which the nuclear industry must address in the future are summarized. First the costs of nuclear generation must be reduced. Secondly, once the feasibility and costings of PWRs have been established consideration must be given to the choices for the future energy policy and thirdly new reactor designs should be standardized so the benefits of replication can be realised. (author).

  4. Nuclear energy industry in Russia promoting global strategy

    International Nuclear Information System (INIS)

    Kobayashi, Masaharu

    2001-01-01

    Since former USSR disintegrated to birth new Russia on December, 1991, it already passed ten years. As Russian economic hardship affected its nuclear energy development, No.1 reactor of the Rostov nuclear power station (VVER-1000) established its full power operation on September, 2001 after passing eight years of pausing period as a Russian nuclear power station, at dull development of nuclear energy in the world. When beginning of its commercial operation, scale of nuclear power generation under operation in Russia will reach to the fourth one in the world by getting over the one in Germany. Russia also begins international business on reprocessing of spent fuel and intermittent storage. And, Russia positively develops export business of concentrated uranium and nuclear fuel, too. Furthermore, Russia shows some positive initiatives on export of nuclear power station to China, Iran and India, and development on advanced nuclear reactor and nuclear fuel cycle forecast to future. Here was introduced on international developmental development of nuclear energy industry activated recently at delayed time for this ten years. (G.K.)

  5. Transmutation of nuclear waste in nuclear reactors

    International Nuclear Information System (INIS)

    Abrahams, K.; Kloosterman, J.L.; Pilate, S.; Wehmann, U.K.

    1996-03-01

    The objective of this joint study of ECN, Belgonucleaire, and Siemens is to investigate possibilities for transmutation of nuclear waste in regular nuclear reactors or in special transmutation devices. Studies of possibilities included the limits and technological development steps which would be needed. Burning plutonium in fast reactors, gas-cooled high-temperature reactors and light water reactors (LWR) have been considered. For minor actinides the transmutation rate mainly depends on the content of the minor actinides in the reactor and to a much less degree on the fact whether one uses a homogeneous system (with the actinides mixed into the fuel) or a heterogeneous system. If one wishes to stabilise the amount of actinides from the present LWRs, about 20% of all nuclear power would have to be generated in special burner reactors. It turned out that reactor transmutation of fission products would require considerable recycling efforts and that the time needed for a substantial transmutation would be rather long for the presently available levels of the neutron flux. If one would like to design burner systems which can serve more light water reactors, a large effort would be needed and other burners (possibly driven by accelerators) should be considered. (orig.)

  6. Characterization and testing of materials for nuclear reactors. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2007-03-01

    Nuclear techniques in general and neutrons based methods in particular have played and will continue to play an important role in research in materials science and technology. Today the world is looking at nuclear fission and nuclear fusion as the main sources of energy supply for the future. Research reactors have played a key role in the development of nuclear technology. A materials development programme will thus play a major role in the design and development of new nuclear power plants, for the extension of the life of operating reactors as well as for fusion reactors. Against this background, the IAEA had organized a Technical Meeting on Development, Characterization and Testing of Materials - With Special Reference to the Energy Sector under the activity on specific applications of research reactors. The meeting was held in Vienna, May 29- June 2, 2006. There was also participation by experts in techniques, complementary to neutrons. The participants for the technical meeting were experts in the utilization of nuclear techniques namely the high flux and medium flux research reactors, fusion research and positron annihilation. They presented the design, development and utilization of the facilities at their respective centres for materials characterization with main focus on materials for nuclear energy, both fission and fusion. In core irradiation of materials, development of instrument for residual stress measurement in large and / or irradiated specimen, neutron radiography for inspection of irradiated fuel, work on oxide dispersion strengthened (ODS) steels and SiC composites, relevant to future power systems were cited as application of nuclear techniques in fission reactors. The use of neutron scattering for helium bubbles in steel, application of positron annihilation to study helium bubbles in Cu, Ti-stabilized stainless steel and voidswelling studies etc. show that these techniques have an important role in the development of materials for energy

  7. Nuclear power: an essential energy

    International Nuclear Information System (INIS)

    Agnew, H.M.

    1980-01-01

    Dr. Agnew notes that the public fails to remember that the electric utilities and equipment manufacturers did not invent nuclear energy; they only choose whether or not to use it to generate power. The effort to regain world leadership in nuclear energy will require recognizing that the rest of the world needs it too. Opposition to the use of nuclear power has been politically effective, in spite of the need to move to a non-petroleum fuel base and without coming up with a viable alternative. The nuclear industry responded to the Three Mile Island accident by taking steps to improve reactor safety, but the industry continues to be threatened because of the suspended reprocessing and breeder programs. The industry must make a compelling case for energy independence to persuade the public that all energy sources, including nuclear, must be developed

  8. Nuclear energy: a reasonable choice?

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2011-01-01

    While nuclear energy appears today as a powerful and carbon-free energy, it generates at the same time doubts and apprehension in the general public. Are these fears justified? Is France the most advanced country in the nuclear domain? Should we fear a Chernobyl-like accident in France? Is any irradiation dangerous? What would be the consequences of a terror attack against a reactor? Will nuclear energy be powerful enough to take up the energy reserves challenge? Will the waste management and the nuclear facilities dismantlement be extremely expensive in comparison with the electricity production costs? Do we know how to manage nuclear wastes on the long-term? This book tries to supply some relevant arguments in order to let the reader answering these questions himself and making his own opinion on this topic. (J.S.)

  9. CEA nuclear energy Directorate - Activity report 2012

    International Nuclear Information System (INIS)

    2013-01-01

    After an overview of the activities of the Directorate at the international level, of its scientific activities, and of the consideration given to quality, and a presentation of the transverse program on advanced materials, this report proposes presentations of activities in different domains: future nuclear industrial systems (reactors of 4. generation, back-end of the future cycle, sustainable management of nuclear materials, fundamental scientific and technological research), optimization of the present industrial nuclear activity (reactors of 2. and 3. generation, front-end and back-end of the fuel cycle), the main tools for nuclear development (numerical simulation, the Jules Horowitz reactor), valorisation, economic support of Haute-Marne and Meuse territories (the Syndiese project), nuclear dismantling and decontamination (dismantling projects, projects and works in Fontenay-aux-Roses, Grenoble and Saclay, waste and material flow management, nuclear service facilities, transports). It also presents the activities of some specific CEA centres like Marcoule (R and D in fuel cycle), Cadarache (future energies) and Saclay (nuclear sciences and simulation of reactors and fuel cycle)

  10. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    Directory of Open Access Journals (Sweden)

    Vladimir Petrochenko

    2012-09-01

    Full Text Available On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing mode. The reactor is distinct in that it has a high level of self-protection and passive safety, it is factory manufactured and the assembled reactor can be transported by railway. Multipurpose application of the reactor is presumed, primarily, it can be used for regional power to produce electricity, heat and for water desalination. The Project is being realized within the framework of state-private partnership with joint venture OJSC “AKME-Engineering” established on a parity basis by the State Atomic Energy Corporation “Rosatom” and the Limited Liability Company “EuroSibEnergo”.

  11. Nuclear energy: obstacles and promises

    International Nuclear Information System (INIS)

    Bacher, P.

    2003-01-01

    Nuclear energy has distinctive merits (sustainable resources, low costs, no greenhouse gases) but its development must overcome serious hurdles (fear of accidents, radio-phobia, waste management). The large unit size of present-day reactors is compatible only with large electrical grids, and involves a high capital cost. Taking into account these different factors, the paper outlines how nuclear energy may contribute to the reduction of greenhouse gases, and which are the most promising developments. (author)

  12. The risks of nuclear energy technology. Safety concepts of light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Raskob, Wolfgang; Landman, Claudia; Paesler-Sauer, Juergen [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Kern- und Energietechnk (IKET); Kessler, Guenter; Veser, Anke; Schlueter, Franz-Hermann

    2014-11-01

    Analyses the risks of nuclear power stations. Discusses the security concept of reactors. Analyzes possible crash of air planes on a reactor containment. Presents measures against the spread of radioactivity after a severe accident. Written in engaging style for professionals and policy makers. The book analyses the risks of nuclear power stations. The security concept of reactors is explained. Measures against the spread of radioactivity after a severe accident, accidents of core melting and a possible crash of an air plane on a reactor containment are discussed. The book covers three scientific subjects of the safety concepts of Light Water Reactors: - A first part describes the basic safety design concepts of operating German Pressurized Water Reactors and Boiling Water Reactors including accident management measures introduced after the reactor accidents of Three Mile Island and Chernobyl. These safety concepts are also compared with the experiences of the Fukushima accidents. In addition, the safety design concepts of the future modern European Pressurized Water Reactor (EPR) and of the future modern Boiling Water Reactor SWR-1000 (KERENA) are presented. These are based on new safety research results of the past decades. - In a second, part the possible crash of military or heavy commercial air planes on a reactor containment is analyzed. It is shown that reactor containments can be designed to resist to such an airplane crash. - In a third part, an online decision system is presented. It allows to analyze the distribution of radioactivity in the atmosphere and to the environment after a severe reactor accident. It provides data for decisions to be taken by authorities for the minimization of radiobiological effects to the population. This book appeals to readers who have an interest in save living conditions and some understanding for physics or engineering.

  13. Nuclear energy in the hydrogen economy

    International Nuclear Information System (INIS)

    Bertel, E.; Lee, K.S.; Nordborg, C.

    2004-01-01

    In the framework of a sustainable development, the hydrogen economy is envisaged as an alternative scenario in substitution to the fossil fuels. After a presentation of the hydrogen economy advantages, the author analyzes the nuclear energy a a possible energy source for hydrogen production since nuclear reactors can produce both the heat and electricity required for it. (A.L.B.)

  14. Assessment of two small-sized innovative nuclear reactors for electricity generation in Brazil using INPRO methodology

    International Nuclear Information System (INIS)

    Goncalves Filho, Orlando Joao Agostinho; Sefidvash, Farhang

    2009-01-01

    This paper presents the main results of the assessment study of two small-sized innovative reactors for electricity generation in Brazil using the methodology developed under the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), co-ordinated by the International Atomic Energy Agency (IAEA). INPRO was initiated in 2001 and has the main objective of helping to ensure that nuclear energy is available to contribute in a sustainable manner to the energy needs of the 21st century. Brazil joined the INPRO project since its beginning and in 2005 submitted a proposal for the assessment using INPRO methodology of two small-sized reactors (IRIS - International Reactor Innovative and Secure, and FBNR - Fixed Bed Nuclear Reactor) as potential components of an innovative nuclear energy system (INS) completed by a conventional open nuclear fuel cycle based on enriched uranium. The scope of this assessment study was restricted to the reactor component of the INS and to the methodology areas of economics and safety for IRIS, and proliferation resistance and safety for FBNR. The results indicate that both IRIS and FBNR innovative designs comply mostly with the basic principles of the areas assessed and have potential to comply with the remaining ones. (author)

  15. Generalities about nuclear reactors

    International Nuclear Information System (INIS)

    Jaouen, C.; Beroux, P.

    2012-01-01

    From Zoe, the first nuclear reactor, till the current EPR, the French nuclear industry has always advanced by profiting from the feedback from dozens of years of experience and operations, in particular by drawing lessons from the most significant events in its history, such as the Fukushima accident. The new generations of reactors must improve safety and economic performance so that the industry maintain its legitimacy and its share in the production of electricity. This article draws the history of nuclear power in France, gives a brief description of the pressurized water reactor design, lists the technical features of the different versions of PWR that operate in France and compares them with other types of reactors. The feedback experience concerning safety, learnt from the major nuclear accidents Three Miles Island (1979), Chernobyl (1986) and Fukushima (2011) is also detailed. Today there are 26 third generation reactors being built in the world: 4 EPR (1 in Finland, 1 in France and 2 in China); 2 VVER-1200 in Russia, 8 AP-1000 (4 in China and 4 in the Usa), 8 APR-1400 (4 in Korea and 4 in UAE), and 4 ABWR (2 in Japan and 2 in Taiwan)

  16. Study of the Utilization BWR Type Nuclear Power Reactor for Desalination Process

    International Nuclear Information System (INIS)

    Itjeu Karliana; Sumijanto; Dhandhang Purwadi, M.

    2008-01-01

    The needs of fresh water increased by rapid population growth and industrials expansion, but these demands can not be prepared naturally. Following this case, seawater desalination becomes the primer option which can fulfill the need through the nuclear desalination technology. The coupled nuclear power reactor enables to supply thermal energy for auxiliary equipment and pumps operation. The utilization study of power reactor type BWR coupled with desalination process has been performed. The goal of study is to obtain characteristic data of desalted water specification which desalination system coupling with nuclear power plant produced energy for desalination process. The study is carried out by browsing data and information, and comprehensive review of thermal energy correlation between NPP with desalination process installation. According to reviewing are found that the thermal energy and electric power utilization from the nuclear power reactor are enable to remove the seawater to produce desalted water and also to operate auxiliary equipments. The assessment results is VK-300 reactor prototype, BWR type 250 MW(e) power are cogeneration unit can supplied hot steam temperature 285 °C to the extraction turbine to empower 150 MW electric power, and a part of hot steam 130 °C is use to operate desalination process and remind heat is distribute to the municipal and offices at that region. The coupled of VK-300 reactor power type BWR with desalination installation of MED type enable to produce desalted water with high quality distillate. Based on the economic calculation that the VK-300 reactor power of BWR type produced water distillate capacity is 300.000 m 3 /hour with cost US$ 0.58/m 3 . The coupling VK-300 reactor power type BWR with MED desalination plant is competitive economically. (author)

  17. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    International Nuclear Information System (INIS)

    Zhiwei Zhou

    2006-01-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  18. Nuclear fission sustainability with subcritical reactors driven by external neutron sources

    International Nuclear Information System (INIS)

    Lafuente, A.; Piera, M.

    2011-01-01

    Although nuclear breeder reactors are a promising way to enhance the potential energy currently retrievable from the Uranium reserves, they still have disadvantages because of their safety features (i.e. poor stabilizing mechanisms) and the security of their fuel cycle (diversion of Pu for non-civilian purposes). Loading natural nuclear fuels to a reactor and completely burning them without reprocessing would be ideal, however, this is not possible in critical reactors due to the limitations imposed by the maximum achievable burn-up. An alternative option to attain very high percentages of nuclear natural materials exploitation, while meeting other objectives of Nuclear Sustainability, could consist of using externally-driven subcritical reactors to reach the desired high burn-ups (of the order of 30% and more) without reprocessing. Such scheme would lead to an efficient exploitation of the available raw material, without any risk of proliferation. Exploring this type of reactor concept, this paper analyzes the different ways to accomplish this goal while identifying potential setbacks.

  19. Public acceptance of nuclear energy in Mexico

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon; Palacios, Javier; Gomez, Armando

    2008-01-01

    One of the main constraints to adopt a nuclear program is the public acceptance. In Mexico, at least, it lacks of an adequate promotion of its benefits and challenges. A big stigma for nuclear electricity production is the association with nuclear weapons, along with myths and misconceptions and bad information about nuclear energy. Mexico has adopted an energy policy to diversify the electricity sources and nuclear energy is among the alternatives to achieve this goal because current studies show that is a safe and a competitive option from an economical point of view. Public opinion plays a very important role in the policy decision making to adopt the deployment of new reactor units; therefore it is necessary to define communication strategies to promote nuclear energy. The current study is an investigation to learn what is the perception and positioning about nuclear energy as a starting point to define the way to improve public acceptance. The national assessment carry on here is divided in two parts, the first one is a qualitative study to know knowledge level, associations and nuclear perception, identifying controversy items and expectations about advantages and disadvantages to define the adequate question to be used in the second part, which is a quantitative study that shows the acceptance of nuclear energy at national level and in particular in two sites that are suitable to deploy new nuclear reactors. From the results of this study some communication and persuasion strategies to improve public perception are defined and they could be used as part of a nuclear program. (author)

  20. Perspectives of nuclear energy in Lithuania

    International Nuclear Information System (INIS)

    Bieliauskas, V.; Marchenas, V.

    1998-01-01

    Description of present status of nuclear power in Lithuania and prospects for future are presented. Lithuania operate two reactors of RBMK-1500 type. Since regaining of independence in 1990 Lithuania made a great efforts in developing legal framework for nuclear power regulation and improving safety of both reactors at Ignalina NPP. The main ideas of the draft of a new energy strategy are summarized. As regards nuclear power development in Lithuania there are two scenarios in the draft strategy: operation of the plant till the end of its design lifetime and operation of the plant till the gap closure between fuel channel and graphite and non re channeling of the reactors. Comparison of the cost and implications to the country's economy of both scenarios is discussed

  1. Final report. U.S. Department of Energy University Reactor Sharing Program

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, John A

    2003-01-21

    Activities supported at the MIT Nuclear Reactor Laboratory under the U.S. DOE University Reactor Sharing Program are reported for Grant DE FG02-95NE38121 (September 16, 1995 through May 31, 2002). These activities fell under four subcategories: support for research at thesis and post-doctoral levels, support for college-level laboratory exercises, support for reactor tours/lectures on nuclear energy, and support for science fair participants.

  2. Nuclear power reactors and hydrogen storage systems

    International Nuclear Information System (INIS)

    Ibrahim Aly Mahmoud El Osery.

    1980-01-01

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  3. International Conference Nuclear Energy in Central Europe 99, V. 1. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Gortnar, O; Stritar, A [Nuclear Society of Slovenia (Slovenia)

    1999-07-01

    International Conference Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contain 101 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region. Topics are: Reactor Physics, Research Reactors, Thermal Hydraulics, Structural Analysis, Probabilistic Safety Assessment, Severe Accidents, NPP Operation, Nuclear Energy and Public, Radioactive Waste, Radiological Protection and Environmental Issues, Nuclear Methods and Monte Carlo and Deterministic Transport Calculations.

  4. International Conference Nuclear Energy in Central Europe 99, V. 1. Proceedings

    International Nuclear Information System (INIS)

    Gortnar, O.; Stritar, A.

    1999-01-01

    International Conference Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contain 101 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region. Topics are: Reactor Physics, Research Reactors, Thermal Hydraulics, Structural Analysis, Probabilistic Safety Assessment, Severe Accidents, NPP Operation, Nuclear Energy and Public, Radioactive Waste, Radiological Protection and Environmental Issues, Nuclear Methods and Monte Carlo and Deterministic Transport Calculations

  5. Gasification with nuclear reactor heat

    International Nuclear Information System (INIS)

    Weisbrodt, I.A.

    1977-01-01

    The energy-political ultimate aims for the introduction of nuclear coal gasification and the present state of technology concerning the HTR reactor, concerning gasification and heat exchanging components are outlined. Presented on the plans a) for hydro-gasification of lignite and for steam gasification of pit coal for the production of synthetic natural gas, and b) for the introduction of a nuclear heat system. The safety and environmental problems to be expected are portrayed. The main points of development, the planned prototype plant and the schedule of the project Pototype plant Nuclear Process heat (PNP) are specified. In a market and economic viability study of nuclear coal gasification, the application potential of SNG, the possible construction programme for the FRG, as well as costs and rentability of SNG production are estimated. (GG) [de

  6. Reactors licensing: proposal of an integrated quality and environment regulatory structure for nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Serra, Reynaldo Cavalcanti

    2014-01-01

    A new integrated regulatory structure based on quality and integrated issues has been proposed to be implemented on the licensing process of nuclear research reactors in Brazil. The study starts with a literature review about the licensing process in several countries, all of them members of the International Atomic Energy Agency. After this phase it is performed a comparative study with the Brazilian licensing process to identify good practices (positive aspects), the gaps on it and to propose an approach of an integrated quality and environmental management system, in order to contribute with a new licensing process scheme in Brazil. The literature review considered the following research nuclear reactors: Jules-Horowitz and OSIRIS (France), Hanaro (Korea), Maples 1 and 2 (Canada), OPAL (Australia), Pallas (Holand), ETRR-2 (Egypt) and IEA-R1 (Brazil). The current nuclear research reactors licensing process in Brazil is conducted by two regulatory bodies: the Brazilian National Nuclear Energy Commission (CNEN) and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). CNEN is responsible by nuclear issues, while IBAMA by environmental one. To support the study it was applied a questionnaire and interviews based on the current regulatory structure to four nuclear research reactors in Brazil. Nowadays, the nuclear research reactor’s licensing process, in Brazil, has six phases and the environmental licensing process has three phases. A correlation study among these phases leads to a proposal of a new quality and environmental integrated licensing structure with four harmonized phases, hence reducing potential delays in this process. (author)

  7. Proceedings of the International Conference Nuclear Energy for New Europe 2005

    Energy Technology Data Exchange (ETDEWEB)

    Mavko, B; Kljenak, I [Nuclear Society of Slovenia (Slovenia)

    2005-07-01

    International Conference Nuclear Energy for New Europe is an annual meeting of the Nuclear Society of Slovenia. This Cd-Rom is the collection of the 139 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region presented at the title conference. Topics are: reactor physics, nuclear fusion, radiation monitoring, research and training reactors, fluid dynamics, heat and mass transfer, thermal hydraulics, safety analyses, severe accidents, nuclear materials, probabilistic safety assessment, nuclear power plant operation and monitoring, nuclear waste, public safety and environmental issues, nuclear knowledge, education and training, nuclear energy and society, advances in nuclear technology and other topics.

  8. Proceedings of the International Conference Nuclear Energy for New Europe 2005

    International Nuclear Information System (INIS)

    Mavko, B.; Kljenak, I.

    2005-01-01

    International Conference Nuclear Energy for New Europe is an annual meeting of the Nuclear Society of Slovenia. This Cd-Rom is the collection of the 139 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region presented at the title conference. Topics are: reactor physics, nuclear fusion, radiation monitoring, research and training reactors, fluid dynamics, heat and mass transfer, thermal hydraulics, safety analyses, severe accidents, nuclear materials, probabilistic safety assessment, nuclear power plant operation and monitoring, nuclear waste, public safety and environmental issues, nuclear knowledge, education and training, nuclear energy and society, advances in nuclear technology and other topics

  9. Environmentalists for nuclear energy

    International Nuclear Information System (INIS)

    Comby, B.

    2001-01-01

    Fossil fuels such as coal oil, and gas, massively pollute the Earth atmosphere (CO, CO 2 , SOX, NOX...), provoking acid rains and changing the global climate by increasing the greenhouse effect, while nuclear energy does not participate in these pollutions and presents well-founded environmental benefits. Renewable energies (solar, wind) not being able to deliver the amount of energy required by populations in developing and developed countries, nuclear energy is in fact the only clean and safe energy available to protect the planet during the 21 century. The first half of the book, titled The Atomic Paradox, describes in layman language the risks of nuclear power, its environmental impact, quality and safety standards, waste management, why a power reactor is not a bomb, energy alternatives, nuclear weapons, and other major global and environmental problems. In each case the major conclusions are framed for greater emphasis. Although examples are taken from the French nuclear power program, the conclusions are equally valid elsewhere. The second half of the book is titled Information on Nuclear Energy and the Environment and briefly provides a historical survey, an explanation of the different types of radiation, radioactivity, dose effects of radiation, Chernobyl, medical uses of radiation, accident precautions, as well as a glossary of terms and abbreviations and a bibliography. (author)

  10. Progress and status of the international project on innovative nuclear reactors and fuel cycles (INPRO) - 5182

    International Nuclear Information System (INIS)

    Ponomarev, A.; Fesenko, G.; Grigoriev, F.G.; Korinny, A.; Phillips, J.R.; Rho, K.

    2015-01-01

    The IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was established in 2000 through IAEA General Conference resolution. INPRO cooperates with Member States to ensure that sustainable nuclear energy is available to help meet the energy needs of the 21. century. INPRO membership has grown to 41 members and 16 observers. The paper presents the current prospectus of the INPRO programme and details the most recent achievements in the following 7 projects: 1) the GAINS project (Global Architecture of Innovative Nuclear Energy Systems with thermal and fast reactors and a closed nuclear fuel cycle); 2) the SYNERGIES project applies and amends the analytical framework developed in GAINS project to examine more specifically the various forms of regional collaboration among nuclear energy suppliers and users; 3) the KIND project (Key Indicators for Innovative Nuclear Energy Systems) has the objective of developing guidance on the evaluation on innovative nuclear technologies; 4) the ROADMAPS project addresses several possible stages toward nuclear energy sustainability; 5) the RISC project aims at demonstrating that the evolution of safety requirements and technical innovations provide continual progress towards the avoidance of evacuation measures outside NPP sites in case of severe accidents; 6) the FANES project has the objective of carrying out feasibility analyses of advanced and innovative fuels for different reactor systems; and 7) the WIRAF project aims at identifying problematic waste from innovative reactor designs and corresponding nuclear fuel cycles

  11. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Immediate notification requirements for operating nuclear power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... systems. (8) Emergency ac electrical power systems, including: Emergency diesel generators (EDGs...

  12. Which energies for tomorrow? The perspectives of development of nuclear energy

    International Nuclear Information System (INIS)

    Sicard, Bruno; Regaldo, Jacques; Salvatores, Stephano; Bigot, Bernard; Billot, Philippe; Kert, Christian; Blisson, Yves; Beslu, Pierre

    2016-03-01

    This document first proposes a brief synthesis of opening speeches and of contributions, and then Power Point presentations of these contributions. These interventions proposed an overview of development perspectives and safety challenges for nuclear energy in the world (current evolution of the world nuclear fleet, international cooperation, role and mission of the World Association of Nuclear Operators or WANO, new tools, a first assessment 5 years after the Fukushima accident), an overview of perspectives on the medium and long terms for EDF nuclear fleet in view of a fourth decennial inspection of 900 MWe reactors (continuous improvement of safety in the operated fleet, orientations proposed for the fourth decennial inspections in terms of conformity control and of peculiarities for this safety re-assessment with respect to different accidents and threats), an overview according the CEA of what is at stake for research as far as tomorrow's energies are concerned (CEA global strategy, CEA missions in the field of civil nuclear, R and D on reactors of second and third generation, industrial challenges of R and D, R and D as a support to reactor lifetime extension, presentation of various research platforms and projects)

  13. Innovative and practical technical development of nuclear energy. Efforts on proposal and recruitment type technical development of nuclear energy

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Shioiri, Akio; Hamada, Jun; Kanagawa, Takashi; Mori, Yukihide; Kouno, Koji

    2003-01-01

    In technical development of nuclear energy conceiving a view on energy environment problem at the 21st Century, technical development on innovative nuclear energy system as well as next generation LWR is an important subject. Even in Japan, on the 'Long-term program for research, development and utilization of nuclear energy (LPRNE)' summarized by the Atomic Energy Commission, investigation on R and Ds of innovative reactors under cooperation of government, industrial field, and universities is required. In the Energy Generalized Engineering Institute, by receiving a subsidy from the Ministry of Economy and Industry since 2000, a proposal recruitment business on innovative and practical technical development of nuclear energy has been carried out. Here were introduced hopeful and unique five themes out of them applied to the recruitment, such as a super-critical pressure water cooling reactor (SCPR), an integrated modular LWR (IMR): technical development for practice, technical development on general purpose boiling transitional analysis method, technical development on direct extraction of U and Pu from consumed fuels based on super-DIREX reprocessing method, and material transfer forecasting in natural barriers at landfill disposal of radioactive wastes. (G.K.)

  14. Nuclear energy and ensuring the long-term energy supply in the German Federal Republic

    International Nuclear Information System (INIS)

    Koenig, H.H.

    1975-01-01

    The author reports on the papers read at the Reactor Conference in 1975. He pays special attention to the development of energy supply from nuclear stations, investigates the motives behind the growing resistance of the public, and shows that the acceptance procedure ensures the construction and operation of safe nuclear power installations. He also discusses the possibilities of improved energy utilisation, the climatic changes in coming generations, the characteristics of supply with nuclear district heating and process heat, as well as the state of building projects with high-temperature reactors and fast breeders. (orig.) [de

  15. Overview of nuclear energy: Present and projected use

    Energy Technology Data Exchange (ETDEWEB)

    Stanculescu, Alexander [Idaho National Laboratory 2525 North Fremont Avenue, Idaho Falls, Idaho 83415 (United States)

    2012-06-19

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  16. Overview of Nuclear Energy: Present and Projected Use

    Energy Technology Data Exchange (ETDEWEB)

    Alexander Stanculescu

    2011-09-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  17. Overview of Nuclear Energy: Present and Projected Use

    International Nuclear Information System (INIS)

    Stanculescu, Alexander

    2011-01-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  18. Holland's reactor centre makes the shift to energy research

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The change of name in 1976 of Reactor Centrum Nederland (RCN) to Energieonderzoek Centrum Nederland (ECN) reflects its expansion to activities in non-nuclear fields. A brief summary is given of these activities, including those in co-operation with other organisations. Amongst the fields of interest in non-nuclear fields are joint projects on risk analysis, future energy strategies, wind power, and environmental research. Work on fusion reactor technology is expanding. (UK)

  19. Synergistic smart fuel for in-pile nuclear reactor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.A.; Kotter, D.K. [Idaho National Laboratories, Idaho Falls (United States); Ali, R.A.; Garrett, S.L. [Penn State University, University Park, State College, PA 16801 (United States)

    2013-07-01

    The thermo-acoustic fuel rod sensor developed in this research has demonstrated a novel technique for monitoring the temperature within the core of a nuclear reactor or the temperature of the surrounding heat-transfer fluid. It uses the heat from the nuclear fuel to generate sustained acoustic oscillations whose frequency will be indicative of the temperature. Converting a nuclear fuel rod into this type of thermo-acoustic sensor simply requires the insertion of a porous material (stack). This sensor has demonstrated a synergy with the elevated temperatures that exist within the nuclear reactor using materials that have only minimal susceptibility to high-energy particle fluxes. When the sensor is in operation, the sound waves radiated from the fuel rod resonator will propagate through the surrounding cooling fluid. The frequency of these oscillations is directly correlated with an effective temperature within the fuel rod resonator. This device is self-powered and is operational even in case of total loss of power of the reactor.

  20. Confinement inertial fusion. Power reactors of nuclear fusion by lasers

    International Nuclear Information System (INIS)

    Velarde, G.; Ahnert, C.; Aragones, J.M.; Leira, G; Martinez-Val, J.M.

    1980-01-01

    The energy crisis and the need of the nuclear fusion energy are analized. The nuclear processes in the laser interation with the ablator material are studied, as well as the thermohydrodinamic processes in the implossion, and the neutronics of the fusion. The fusion reactor components are described and the economic and social impact of its introduction in the future energetic strategies.(author)

  1. Why the Japanese Nuclear Power Plants are not trusted? Verification of current nuclear energy policy

    International Nuclear Information System (INIS)

    Yoshioka, Hitoshi

    2007-01-01

    Since the liberalization of electric power following the trend of structural reform and government's economic and financial rebuild had impacted the management of electric utilities in 1990, current nuclear power comes to be subject to government's leadership and support to promote nuclear energy. The Framework for Nuclear Energy Policy Japan of atomic energy commission in 2005 aims to (1) maintain the 30 to 40% or more share of nuclear energy in electricity generation up to 2030 and afterwards, (2) promote the nuclear fuel cycle and (3) commercialize the fast-breeder reactors. Nuclear Energy National Plan of ministry of economy, trade and industry in 2006 makes reference to construction of FBR demonstration reactor by 2025, development of Japanese next-generation LWR and also construction of second reprocessing plant. Major stakeholders related with nuclear power generation such as politicians, government (the authorities concerned), electric utilities and local governments play respective important role in nuclear policy as 'a tetrahedral structure'. The Niigataken Chuets-oki earthquake reminded risk problems of nuclear power management and shook the nuclear tetrahedron structure, which might collapse with loss of public trust. (T. Tanaka)

  2. The role of nuclear energy in times of energy transition

    International Nuclear Information System (INIS)

    2012-01-01

    Since the reactor catastrophe in Fukushima, the risk of nuclear power has once again become more evident to the public and has also led to a rethinking of politics in Europe. Slogans like ''Nuclear Power, No Thanks!'', ''Get Out of Euratom'' are making more and more the rounds. The phase-out of nuclear energy is the topic that is increasingly provoking people to think. But how should one handle this? What role will nuclear energy play in a distant future? Central factors such as the economic viability of renewable energy sources and the environmental and social compatibility of production and distribution must be taken into account, while at the same time the reduction of pollutants and greenhouse gases must continue. If this is done without nuclear energy, is the rapid abandonment of nuclear energy even necessary or does nuclear energy generation have to be used as a temporary solution? (roessner)

  3. Requirements of coolants in nuclear reactors

    International Nuclear Information System (INIS)

    Abass, O. A. M.

    2014-11-01

    This study discussed the purposes and types of coolants in nuclear reactors to generate electricity. The major systems and components associated with nuclear reactors are cooling system. There are two major cooling systems utilized to convert the heat generated in the fuel into electrical power. The primary system transfers the heat from the fuel to the steam generator, where the secondary system begins. The steam formed in the steam generator is transferred by the secondary system to the main turbine generator, where it s converted into electricity after passing through the low pressure turbine. There are various coolants used in nuclear reactors-light water, heavy water and liquid metal. The two major types of water-cooled reactors are pressurized water reactors (PWR) and boiling water reactors (BWR) but pressurized water reactors are more in the world. Also discusses this study the reactors and impact of the major nuclear accidents, in the April 1986 disaster at the Chernobyl nuclear power plant in Ukraine was the product operators, and in the March 2011 at the Fukushima nuclear power plant in Japan was the product of earthquake of magnitude 9.0, the accidents caused the largest uncontrolled radioactive release into the environment.(Author)

  4. Present status of design, research and development of nuclear fusion reactors and problems

    International Nuclear Information System (INIS)

    1983-04-01

    Seven years have elapsed since the publication of ''Progress of nuclear fusion research and perspective toward the development of power reactors'' by the Atomic Energy Society of Japan in August, 1976. During this period, the research and development of nuclear fusion have changed from plasma physics to reactor technology, being conscious of the realization of fusion reactors. There are the R project in the Institute of Plasma Physics, Nagoya University, and the design and construction of JT-60 in Japan Atomic Energy Research Institute, to put it concretely. Now the research and development taking the economical efficiency into account are adopted. However, the type of fusion reactors is not reduced to tokamak type, accordingly the research and development to meet the diverse possibilities are forwarded. The progress of tokamak reactor research, core plasma design, nuclear design and shielding design, thermal structure design, the design of superconducting magnets, disassembling and repair, safety, economical efficiency, the conceptual design of other types than tokamak and others are reported. (Kako, I.)

  5. Nuclear data for fission reactor core design and safety analysis: Requirements and status of accuracy of nuclear data

    International Nuclear Information System (INIS)

    Rowlands, J.L.

    1984-01-01

    The types of nuclear data required for fission reactor design and safety analysis, and the ways in which the data are represented and approximated for use in reactor calculations, are summarised first. The relative importance of different items of nuclear data in the prediction of reactor parameters is described and ways of investigating the accuracy of these data by evaluating related integral measurements are discussed. The use of sensitivity analysis, together with estimates of the uncertainties in nuclear data and relevant integral measurements, in assessing the accuracy of prediction of reactor parameters is described. The inverse procedure for deciding nuclear data requirements from the target accuracies for prediction of reactor parameters follows on from this. The need for assessments of the uncertainties in nuclear data evaluations and the form of the uncertainty information is discussed. The status of the accuracies of predictions and nuclear data requirements are then summarised. The reactor parameters considered include: (a) Criticality conditions, conversion and burn-up effects. (b) Energy production and deposition, decay heating, irradiation damage, dosimetry and induced radioactivity. (c) Kinetics characteristics and control, including temperature, power and coolant density coefficients, delayed neutrons and control absorbers. (author)

  6. Annual report 2015 of the Institute for Nuclear and Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schulenberg, Thomas

    2016-07-01

    The annual report of the Institute for Nuclear and Energy Technologies of KIT summarizes its research activities and provides some highlights of each working group, like thermal-hydraulic analyses for nuclear fusion reactors, accident analyses for light water reactors, and research on innovative energy technologies: liquid metal technologies for energy conversion, hydrogen technologies and geothermal power plants. The institute has been engaged in education and training in energy technologies.

  7. The new face of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Alex (comp.)

    2014-12-15

    The United Arab Emirates will be the first of the Gulf Co-operation Council nations to develop nuclear power - and only the second in the Middle East after Iran. In this exclusive interview, the CEO of the Emirates Nuclear Energy Corporation, Mohamed Al Hammadi, explains why the UAE has chosen to develop nuclear energy, why he is confident the reactors will come on stream on time and within budget, and why the nation sees itself as a model of how nuclear power can be developed cost-effectively and safely.

  8. OECD Nuclear Energy Agency. 3. Activity report, 1974

    International Nuclear Information System (INIS)

    1975-01-01

    The main activities of the Agency are reviewed: study of nuclear power trends; regulatory aspects of nuclear power; technical developments: Eurochemic, Halden, Dragon, food irradiation, gas-cooled fast reactors, direct conversion, isotopic batteries; nuclear energy information

  9. Thermodynamic exergy analysis for small modular reactor in nuclear hybrid energy system - 15110

    International Nuclear Information System (INIS)

    Boldon, L.; Liu, L.; Sabharwall, P.; Rabiti, C.; Bragg-Sitton, S.M.

    2015-01-01

    To assess the inherent value of energy in a thermal system, it is necessary to understand both the quantity and quality of energy available or the exergy. We study the case where nuclear energy through a small modular reactor (SMR) is supplementing the available wind energy through storage to meet the needs of the electrical grid. Nuclear power is also being used for the production of hydrogen via high temperature steam electrolysis. For a SMR exergy analysis, both the physical and economic environments must be considered. The physical environment incorporates the energy, raw materials, and reference environment, where the reference environment refers to natural resources available without limit and without cost. This paper aims to explore the use of exergy analysis methods to estimate and optimize SMR resources and costs for individual subsystems, based on thermodynamic principles-resource utilization and efficiency. The paper will present background information on exergy theory; identify the core subsystems in an SMR plant coupled with storage systems in support of renewable energy and hydrogen production; perform a thermodynamic exergy analysis; determine the cost allocation among these subsystems; and calculate unit 'exergetic' costs, unit 'exergo-economic' costs, and first and second law efficiencies. Exergetic and 'exergo-economic' costs ultimately determine how individual subsystems contribute to overall profitability and how efficiencies and consumption may be optimized to improve profitability, making SMRs more competitive with other generation technologies

  10. Historical civilian nuclear accident based Nuclear Reactor Condition Analyzer

    Science.gov (United States)

    McCoy, Kaylyn Marie

    There are significant challenges to successfully monitoring multiple processes within a nuclear reactor facility. The evidence for this observation can be seen in the historical civilian nuclear incidents that have occurred with similar initiating conditions and sequences of events. Because there is a current lack within the nuclear industry, with regards to the monitoring of internal sensors across multiple processes for patterns of failure, this study has developed a program that is directed at accomplishing that charge through an innovation that monitors these systems simultaneously. The inclusion of digital sensor technology within the nuclear industry has appreciably increased computer systems' capabilities to manipulate sensor signals, thus making the satisfaction of these monitoring challenges possible. One such manipulation to signal data has been explored in this study. The Nuclear Reactor Condition Analyzer (NRCA) program that has been developed for this research, with the assistance of the Nuclear Regulatory Commission's Graduate Fellowship, utilizes one-norm distance and kernel weighting equations to normalize all nuclear reactor parameters under the program's analysis. This normalization allows the program to set more consistent parameter value thresholds for a more simplified approach to analyzing the condition of the nuclear reactor under its scrutiny. The product of this research provides a means for the nuclear industry to implement a safety and monitoring program that can oversee the system parameters of a nuclear power reactor facility, like that of a nuclear power plant.

  11. Order concerning a nuclear reactor shutdown

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Judgment of the State Administrative Court of Baden Wuerttemberg in head notes including: The authority of the Minister-President to give general guidelines includes the right to issue single directives; in matters of prime political significance he can take measures to realize such aims. - It is no extraneous consideration for the supervisory board under atomic energy law to point out in an order concerning a nuclear reactor shutdown that the disallowed operation of a nuclear plant conflicts with the obligation of the state to provide protection and constitutes a penal offence. Further a discourse on the assignment of discretionary powers under Paragraph 19 Section 3 Clause 2 No. 3 of the Atomic Energy Law. (HSCH) [de

  12. Nuclear reactor

    International Nuclear Information System (INIS)

    Mysels, K.J.; Shenoy, A.S.

    1976-01-01

    A nuclear reactor is described in which the core consists of a number of fuel regions through each of which regulated coolant flows. The coolant from neighbouring fuel regions is combined in a manner which results in an averaging of the coolant temperature at the outlet of the core. By this method the presence of hot streaks in the reactor is reduced. (UK)

  13. Proceedings of the International Conference Nuclear Energy for New Europe 2006

    International Nuclear Information System (INIS)

    Glumac, B.; Lengar, I.

    2006-01-01

    International Conference Nuclear Energy for New Europe is an annual meeting of the Nuclear Society of Slovenia. The conference is meant to address the prospects and the future of the nuclear energy in the world faced with the, now already very expressed, threat of the global warming. The conference evolved from annual conferences of Nuclear Society of Slovenia, which was first held in the alpine resort Bovec in 1992. The jubilee 15th conference was held and it was attended by 138 participants from 20 countries. Topics are: next generation reactor and fuels, reactor physics, reactor operation, nuclear materials, nuclear fusion and plasma technology, thermal hydraulics, probabilistic safety assessment, severe accidents, radiology and environment, radioactive waste and education, public relations and regulatory issues.The technical part of the program was complemented with a visit to Institute Jozef Stefan TRIGA reactor which in 2006 celebrated forty years of operation

  14. Control rod drive of nuclear reactor

    International Nuclear Information System (INIS)

    Zhuchkov, I.I.; Gorjunov, V.S.; Zaitsev, B.I.

    1980-01-01

    This invention relates to nuclear reactors and, more particularly, to a drive of a control rod of a nuclear reactor and allows power control, excess reactivity compensation, and emergency shut-down of a reactor. (author)

  15. Nuclear reactor

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1975-01-01

    A description is given of a nuclear reactor and especially a high-temperature reactor in which provision is made within a pressure vessel for a main cavity containing the reactor core and a series of vertical cylindrical pods arranged in spaced relation around the main cavity and each adapted to communicate with the cavity through two collector ducts or headers for the primary fluid which flows downwards through the reactor core. Each pod contains two superposed steam-generator and circulator sets disposed in substantially symmetrical relation on each side of the hot primary-fluid header which conveys the primary fluid from the reactor cavity to the pod, the circulators of both sets being mounted respectively at the bottom and top ends of the pod

  16. The situation of the nuclear energy in the world (Oct. 1991)

    International Nuclear Information System (INIS)

    1991-10-01

    This work presents an overview of the nuclear energy in the world. It approaches the following main topics: kinds of nuclear power plants; operation experience of the nuclear plants; environmental and social aspects of the nuclear energy; economic aspects of the nuclear energy; development of the reactors technology and supply of the nuclear fuel

  17. The situation of the nuclear energy in the world (Sep. 1992)

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1992-09-01

    This work presents an overview of the nuclear energy in the world. It approaches the following main topics: kinds of nuclear power plants; operation experience of the nuclear plants; environmental and social aspects of the nuclear energy; economic aspects of the nuclear energy; development of the reactors technology and supply of the nuclear fuel

  18. Defense nuclear energy systems selection methodology for civil nuclear power applications

    International Nuclear Information System (INIS)

    Scarborough, J.C.

    1986-01-01

    A methodology developed to select a preferred nuclear power system for a US Department of Defense (DOD) application has been used to evaluate preferred nuclear power systems for a remote island community in Southeast Asia. The plant would provide ∼10 MW of electric power, possibly low-temperature process heat for the local community, and would supplement existing island diesel electric capacity. The nuclear power system evaluation procedure was evolved from a disciplined methodology for ranking ten nuclear power designs under joint development by the US Department of Energy (DOE) and DOD. These included six designs proposed by industry for the Secure Military Power Plant Program (now termed Multimegawatt Terrestrial Reactor Program), the SP-100 Program, the North Warning System Program, and the Modular Advanced High-Temperature Gas-Cooled Reactor (HTGR) and Liquid-Metal Reactor (LMR) programs. The 15 evaluation criteria established for the civil application were generally similar to those developed and used for the defense energy systems evaluation, except that the weighting factor applied to each individual criterion differed. The criteria and their weighting (importance) functions for the civil application are described

  19. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards

  20. Perspectives for nuclear energy; Perspectives pour l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Baugnet, J -M; Abderrahim, H A; Dekeyser, J; Meskens, G

    1998-09-01

    In Belgium, approximately 60 percent of the produced electricity is generated by nuclear power. At present, nuclear power production tends to stagnate in Europe and North America but is still growing in Asia. The document gives an overview of the present status and the future energy demand with emphasis on electric power. Different evaluation criteria including factors hindering and factors promoting the expansion of nuclear power as well as requirements of new nuclear power plants are discussed. The extension of the lifetime of existing facilities as well as fuel supply are taken into consideration. A comparative assesment of nuclear power with other energy sources is made. The report concludes with estimating the contribution and the role of nuclear power in future energy demand as well as with an overview of future reactors and research and development programmes.