WorldWideScience

Sample records for energy nuclear proliferation

  1. Nuclear energy and nuclear weapons proliferation

    International Nuclear Information System (INIS)

    1989-01-01

    A summary of the report dispatched in the middle of 1978 by the Atlantic Council of United States, organized by North American citizens, is presented. The report considers the relation between the production of nucleoelectric energy and the capacity of proliferation of nuclear weapons. The factors which affect the grade of proliferation risk represented by the use of nuclear energy in the world comparing this risk with the proliferation risks independently of nuclear energy, are examined. (M.C.K.) [pt

  2. Emerging nuclear energy systems and nuclear weapon proliferation

    International Nuclear Information System (INIS)

    Gsponer, A.; Sahin, S.; Jasani, B.

    1983-01-01

    Generally when considering problems of proliferation of nuclear weapons, discussions are focused on horizontal proliferation. However, the emerging nuclear energy systems currently have an impact mainly on vertical proliferation. The paper indicates that technologies connected with emerging nuclear energy systems, such as fusion reactors and accelerators, enhance the knowledge of thermonuclear weapon physics and will enable production of military useful nuclear materials (including some rare elements). At present such technologies are enhancing the arsenal of the nuclear weapon states. But one should not forget the future implications for horizontal proliferation of nuclear weapons as some of the techniques will in the near future be within the technological and economic capabilities of non-nuclear weapon states. Some of these systems are not under any international control. (orig.) [de

  3. Proliferation: does the peaceful use of nuclear energy have to lead to proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    Muench, E.; Stein, G.

    The question of whether the proliferation of nuclear weapons is promoted by an increasing use of peaceful nuclear energy can be answered with a well-founded no. Even a regional renouncing of the peaceful use of nuclear energy would not reduce the worldwide problem of nuclear weapons' proliferation. Therefore, joint efforts must be aimed at promoting trust between peoples in the nuclear sphere and the political reasons for the proliferation of nuclear weapons must be reduced in order also to promote international harmony

  4. Energy in debate. Civil nuclear and proliferation. Energy scenarios and freedom latitudes

    International Nuclear Information System (INIS)

    1994-01-01

    This publication first gives a presentation of a European colloquium on energy strategies between the nuclear risk and the greenhouse effect. Then dealing with the relationship between nuclear energy and nuclear proliferation, a contribution comments the relationship between the civil use of nuclear energy (notably for electricity production) and the use of nuclear materials for nuclear weapons (posture of the five nuclear States, development of the counter-proliferation policy, proliferating countries and actors, evolution of the political context after the fall of the USSR). The next article discusses the rooms to manoeuvre when defining energy strategies, notably with respect to nuclear energy. It also outlines the challenge of energy efficiency improvement in France, particularly for electricity uses, and by limiting the road traffic dramatic increase. A last article is an answer to critics by the author of a book on the greenhouse effect

  5. Technical features to enhance proliferation resistance of nuclear energy systems

    International Nuclear Information System (INIS)

    2010-01-01

    It is generally accepted that proliferation resistance is an essential issue for the continued development and sustainability of nuclear energy. Several comprehensive assessment activities on the proliferation resistance of the nuclear fuel cycle have previously been completed, notably the International Nuclear Fuel Cycle Evaluation (INFCE) carried out under the auspices of the IAEA, and the Non-proliferation Alternative Systems Assessment Program (NASAP) review carried out by the USA. There have been, however, relatively few comprehensive treatments of the issue following these efforts in the 1970s. However, interest in and concern about this issue have increased recently, particularly because of greater interest in innovative nuclear fuel cycles and systems. In 2000, the IAEA initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) and the US Department of Energy initiated the Generation IV International Forum (GIF). These projects are aimed at the selection and development of concepts of innovative nuclear energy systems and fuel cycles. Proliferation resistance is one of the fundamental considerations for both projects. In this context, the IAEA in 2001 initiated a study entitled 'Technical Aspects of Increasing Proliferation Resistance of the Nuclear Fuel Cycle'. This task is not intended as an effort to assess the merits of a particular fuel cycle system for the future, but to describe a qualitative framework for an examination of the proliferation resistance provided by the intrinsic features of an innovative nuclear energy system and fuel cycle. This task also seeks to provide a high level survey of a variety of innovative nuclear energy systems and fuel cycles with respect to that framework. The concept of proliferation resistance is considered in terms of intrinsic features and extrinsic measures. The intrinsic features, sometimes referred to as the physical/technical aspects, are those features that result from the

  6. Report of the international forum on nuclear energy, nuclear non-proliferation and nuclear security. Measures to ensure nuclear non-proliferation and nuclear security for the back end of nuclear fuel cycle and regional cooperation in Asia

    International Nuclear Information System (INIS)

    Tazaki, Makiko; Yamamura, Tsukasa; Suzuki, Mitsutoshi; Kuno, Yusuke; Mochiji, Toshiro

    2013-03-01

    The Japan Atomic Energy Agency (JAEA) held 'International Forum on Nuclear Energy, Nuclear Non-proliferation and Nuclear Security - Measures to ensure nuclear non-proliferation and nuclear security for the back end of nuclear fuel cycle and regional cooperation in Asia-' on 12 and 13 December 2012, co-hosted by the Japan Institute of International Affairs (JIIA) and School of Engineering, The University of Tokyo. In the forum, keynote speakers from Japan, International Atomic Energy Agency (IAEA), the U.S., France and Republic of Korea (ROK), respectively explained their efforts regarding peaceful use of nuclear energy and nuclear non-proliferation. In two panel discussions, entitled 'Measures to ensure nuclear non-proliferation and nuclear security of nuclear fuel cycle back end' and 'Measures to ensure nuclear non-proliferation and nuclear security for nuclear energy use in the Asian region and a multilateral cooperative framework', active discussions were made among panelists from Japan, IAEA, the U.S., France, ROK, Russia and Kazakhstan. This report includes abstracts of keynote speeches, summaries of two panel discussions and materials of the presentations in the forum. The editors take full responsibility for the wording and content of this report except presentation materials. (author)

  7. MEHODOLOGY FOR PROLIFERATION RESISTANCE FOR ADVANCE NUCLEAR ENERGY SYSTEMS

    International Nuclear Information System (INIS)

    YUE, M.; CHANG, L.Y.; BARI, R.

    2006-01-01

    The Technology Goals for Generation IV nuclear energy systems highlight Proliferation Resistance and Physical Protection (PRandPP) as one of the four goal areas for Generation 1V nuclear technology. Accordingly, an evaluation methodology is being developed by a PRandPP Experts Group. This paper presents a possible approach, which is based on Markov modeling, to the evaluation methodology for Generation IV nuclear energy systems being developed for PRandPP. Using the Markov model, a variety of proliferation scenarios can be constructed and the proliferation resistance measures can be quantified, particularly the probability of detection. To model the system with increased fidelity, the Markov model is further developed to incorporate multiple safeguards approaches in this paper. The approach to the determination of the associated parameters is presented. Evaluations of diversion scenarios for an example sodium fast reactor (ESFR) energy system are used to illustrate the methodology. The Markov model is particularly useful because it can provide the probability density function of the time it takes for the effort to be detected at a specific stage of the proliferation effort

  8. Nuclear non-proliferation

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    DOE's nuclear non-proliferation responsibilities are defined by the provisions of the Atomic Energy Act of 1954, as amended, and of the Nuclear Non-Proliferation Act of 1978 (NNPA). The Department's major responsibilities in this area are to: (1) provide technical assistance to the Department of State in negotiating agreements for civil cooperation in the peaceful uses of nuclear energy with other countries and international organizations; (2) join with other agencies to reach executive branch judgments with respect to the issuance of export licenses by the Nuclear Regulatory Commission; (3) be responsible for processing subsequent arrangements with other agencies as required by the Nuclear Non-Proliferation Act; (4) control the distribution of special nuclear materials, components, equipment, and nuclear technology exports; (5) participate in bilateral and multilateral cooperation with foreign governments and organizations to promote the peaceful uses of nuclear energy; and (6) act as a primary technical resource with respect to US participation in the International Atomic Energy Agency

  9. Review of international forum on peaceful use of nuclear energy and nuclear non-proliferation

    International Nuclear Information System (INIS)

    Shimizu, Ryo; Suzuki, Mitsutoshi; Sakurai, Satoshi; Tamai, Hiroshi; Yamamura, Tsukasa; Kuno, Yusuke

    2012-02-01

    International forum on peaceful use of nuclear energy and nuclear non-proliferation was held at Gakushi-kaikan, Tokyo on February 2-3, 2011 in cooperation with The Japan Institute of International Affairs (JIIA) and The University of Tokyo Global COE. In our International Forum, we would like to encourage active discussion of international challenges to and solutions for compatibility between peaceful use of nuclear energy and nuclear non-proliferation, and international cooperation for emerging nuclear energy states. It was successfully carried out with as many as 310 participants and a lot of discussions. This report includes abstracts of keynote speeches, summary of panel discussions and materials of the presentations in the forum. (author)

  10. Position paper on nuclear proliferation issues preventing nuclear proliferation. A duty for the nuclear community

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Pierre; Bonin, Bernard [ENS High Scientific Council, Brussels (Belgium)

    2010-06-15

    The production of electricity from nuclear power plants is widely seen today as having an increasing role to play in meeting global energy requirements in a sustainable manner. Conscious of the inherently sensitive nature of nuclear technology and materials the ENS-HSC (European Nuclear Society - High Scientific Council) is well aware that a severe safety, security, environmental or proliferation mishap stemming from nuclear energy anywhere in the world would undermine the potential for nuclear energy to contribute to the global energy supply and the minimization of harmful carbon emissions. While the safety of nuclear power plants has continuously improved over the last three decades, the same degree of success cannot be claimed when it comes to the achievements of the international community in stemming the risk of nuclear weapons proliferation. This unfortunate situation is due to both technical and political reasons. The European nuclear industry is committed to the exclusively peaceful use of nuclear energy and to export nuclear facilities and related materials, equipment and technology solely in accordance with relevant national export laws and regulations, Nuclear Suppliers Group guidelines and pertinent United Nations Security Council Resolutions. The ENS-HSC considers that, as a manifestation of their strong commitment to nonproliferation, it is important for the nuclear industry to pay special attention to and promote proliferation-resistant designs and to take IAEA safeguards requirements into account at the design stage. Preventing nuclear proliferation is primarily the responsibility of states but, as major stakeholders, the nuclear industry and scientific community should actively support nuclear disarmament as foreseen in the Non-Proliferation Treaty and measures necessary to strengthen the non-proliferation regime, particularly the international control of the flux of nuclear material and technology. (orig.)

  11. Position paper on nuclear proliferation issues preventing nuclear proliferation. A duty for the nuclear community

    International Nuclear Information System (INIS)

    Goldschmidt, Pierre; Bonin, Bernard

    2010-01-01

    The production of electricity from nuclear power plants is widely seen today as having an increasing role to play in meeting global energy requirements in a sustainable manner. Conscious of the inherently sensitive nature of nuclear technology and materials the ENS-HSC (European Nuclear Society - High Scientific Council) is well aware that a severe safety, security, environmental or proliferation mishap stemming from nuclear energy anywhere in the world would undermine the potential for nuclear energy to contribute to the global energy supply and the minimization of harmful carbon emissions. While the safety of nuclear power plants has continuously improved over the last three decades, the same degree of success cannot be claimed when it comes to the achievements of the international community in stemming the risk of nuclear weapons proliferation. This unfortunate situation is due to both technical and political reasons. The European nuclear industry is committed to the exclusively peaceful use of nuclear energy and to export nuclear facilities and related materials, equipment and technology solely in accordance with relevant national export laws and regulations, Nuclear Suppliers Group guidelines and pertinent United Nations Security Council Resolutions. The ENS-HSC considers that, as a manifestation of their strong commitment to nonproliferation, it is important for the nuclear industry to pay special attention to and promote proliferation-resistant designs and to take IAEA safeguards requirements into account at the design stage. Preventing nuclear proliferation is primarily the responsibility of states but, as major stakeholders, the nuclear industry and scientific community should actively support nuclear disarmament as foreseen in the Non-Proliferation Treaty and measures necessary to strengthen the non-proliferation regime, particularly the international control of the flux of nuclear material and technology. (orig.)

  12. Report of “the 2013 international forum on peaceful use of nuclear energy, nuclear non-proliferation and nuclear security. Ensuring nuclear non-proliferation and nuclear security of nuclear fuel cycle options in consideration of the accident at TEPCO's Fukushima Daiichi Nuclear Power Station”

    International Nuclear Information System (INIS)

    Yamamura, Tsukasa; Suda, Kazunori; Tomikawa, Hirofumi; Suzuki, Mitsutoshi; Kuno, Yusuke; Mochiji, Toshiro

    2014-03-01

    The Japan Atomic Energy Agency (JAEA) held “International Forum on Peaceful Use of Nuclear Energy, Nuclear Non-proliferation and Nuclear Security – Ensuring Nuclear Non-Proliferation and Nuclear Security of Nuclear Fuel Cycle Options in consideration of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station –” on 3 and 4 December 2013, with the Japan Institute of International Affairs (JIIA) and School of Engineering, The University of Tokyo, as co-hosts. In the Forum, officials from Japan, the United States, France and International Atomic Energy Agency (IAEA) explained their efforts regarding peaceful use of nuclear energy and nuclear non-proliferation. Discussion was made in two panels, entitled “Nuclear non-proliferation and nuclear security measures of nuclear fuel cycle options in consideration of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station” and “Roles of safeguards and technical measures for ensuring nuclear non-proliferation for nuclear fuel cycle options”. In the first panel based on the implications of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station on the domestic and global nuclear energy use and increased interest in the back end of nuclear fuel cycle, discussion was made on nuclear non-proliferation and nuclear security challenges on both fuel cycle options from the policy and institutional viewpoints whereas in the second panel the roles of safeguards and proliferation resistant nuclear technology including plutonium burning technology in ensuring nuclear non-proliferation and nuclear security in the back end of nuclear fuel cycle were discussed. Officials and experts from Japan, IAEA, the United States, France and Republic of Korea participated in the panel and made contributions to active discussion. This report includes abstracts of keynote speeches, summaries of two panel discussions and materials of the presentations in the forum. The editors take full responsibility for the wording

  13. Civil nuclear energy and the proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    1990-04-01

    The issue of whether civil nuclear programmes contribute to the risk of proliferation of nuclear weapons has been discussed since civil programmes were first considered, and has always complicated public attitudes to civil nuclear energy. This paper seeks to define the extent to which there is such ''linkage''. It does not deal with the linkages that exist between nuclear weapons and other industries and activities - for example, those involved in weapons delivery systems -since these are not within the Uranium Institute's area of competence. Linkage concerns regarding civil nuclear programmes arise primarily over the possibility of their being used to produce highly enriched uranium or plutonium for use in weapons. The technologies which can give rise directly to these materials are therefore ''sensitive'' in proliferation terms. Linkage may also arise through the relevant experience of the trained workforce. Such linkage is, however, limited by institutional, technical and economic factors. First, important institutional constraints on using a civil programme for military purposes exist in the form of a network of bilateral agreements and international treaties - most particularly the Nuclear Non-Proliferation Treaty - and the international safeguards inspections. Secondly, without access to the technologies of enrichment or reprocessing, the fissile material needed for an explosive cannot be obtained from any plant or process used to produce electricity. Finally, establishing a civil programme - with equipment whose design is optimized for electricity production - in order to develop weapons is an expensive route compared to specialized facilities. (author)

  14. Nuclear energy and proliferation: A longer perspective

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1985-01-01

    Nuclear power has expanded slowly; and it is largely based on reactors that require no recycle. The original basis for concern about proliferation - that nuclear power would be used very widely and that it would be based on systems that required reprocessing - has been shaken. The present world nuclear energy system, which is small and based on no-recycle reactors, is relatively resistant to proliferation via diversion from power reactors. Though worry about proliferation can never be eliminated, the perceived connection between power and bombs can be slowly reduced. The proposal to link fuel take-back with waste disposal poses a dilemma for the ''nuclear environmental'' activists. This group objects to nuclear power because, in their view, reactor wastes threaten the environment, and because bombs and reactors are connected. Both objections are held, often passionately; it would be difficult to assess which takes primacy. This proposal further breaks the ''Nuclear Connection,'' but at the expense of adding a little to the volume of wastes the United States would have to dispose of. We are in effect saying that the loosening of the nuclear connection through the take-back scheme should take precedence over the tiny environmental burden incurred by the addition of a few percent to the total wastes the U.S. already must dispose of. It is hoped that the nuclear environmental community will recognize this trade-off, and will help create the atmosphere of public understanding necessary if fuel take-back is to be accepted in the United States

  15. Nuclear energy and non proliferation. The role of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Cooley, J.; Rauf, T.

    2008-01-01

    This article discusses the role of the International Atomic Energy Agency (IAEA) in the prevention of the spread of nuclear weapons. The IAEA verifies States compliance with their non-proliferation commitments through the application of safeguards on their civilian nuclear programmes to ensure that they are being used solely for peaceful purposes. The IAEA safeguards have evolved in the course of five decades and have become an integral part of the international non-proliferation regime and the global security system. To continue to serve the international community, they need to continue to move with the times, especially in light of the renewed interest in nuclear energy. (Author)

  16. A study on the proliferation resistance evaluation methodology for nuclear energy system

    International Nuclear Information System (INIS)

    Kim, Min Su

    2007-02-01

    The framework of proliferation resistance evaluation methodology, based on attribute analysis and scenario analysis, for nuclear energy system is suggested in order to allow for the comprehensive assessment of proliferation resistance by addressing the intrinsic and extrinsic features of nuclear energy system. Proliferation resistance is viewed within the context of the success tree model of proliferator's diversion attempt and expressed by the value of top event probability of the success tree model. This study focused on the method that the value of top event is estimated. The methodology uses two different methods to quantify the likelihood of basic events constituting the top event. The likelihood of basic event success affected by intrinsic feature of nuclear energy system was assessed by using multi-attribute utility theory and likelihood of basic event related to the diversion detection measures was assessed by direct expert elicitation. The value of top event was calculated based on the intersection of probabilities of basic event success. Feasibility of the methodology was explored by applying it to selected reference nuclear energy systems. System-Integrated Modular Advanced Reactor (SMART) system and Light Water Reactor (LWR) were chosen as reference systems and the value proliferation resistance of SMART and LWR were evaluated. Characteristics of inherent features and hypothesized safeguards measures of both systems were identified and used as input data to evaluate proliferation resistance. The results and conclusions are applicable only within the context of subjectivity of this methodology

  17. Civil nuclear energy and the proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    1990-04-01

    The issue of whether civil nuclear programmes contribute to the risk of proliferation of nuclear weapons has been discussed since civil programmes were first considered, and has always complicated public attitudes to civil nuclear energy. This paper seeks to define the extent to which there is such 'linkage'. Linkage concerns arise primarily over the possibility of their being used to produce highly enriched uranium or plutonium for use in weapons. Linkage may also arise through the relevant experience of the trained workforce. Such linkage is, however, limited by institutional, technical and economic factors. First important institutional constraints on using a civil programme for military purposes exist in the form of a network of bilateral agreements and international treaties - most particularly the Nuclear Non-Proliferation Treaty - and the international safeguards inspections. Secondly, without access to the technologies of enrichment or reprocessing, the fissile material needed for an explosive cannot be obtained from any plant or process used to produce electricity. Even enrichment and reprocessing, as normally used in electricity programmes, do not give rise to the materials used in weapons. Finally, establishing a civil programme - with equipment whose design is optimized for electricity production - in order to develop weapons is an expensive route compared to specialized facilities. (Author)

  18. Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1994-06-01

    Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy's nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy

  19. Activities of the study group of peaceful uses of nuclear energy and non-proliferation policy. FY Heisei 11

    International Nuclear Information System (INIS)

    Kurosawa, Mitsuru; Oi, Noboru

    2000-01-01

    The Study Group on the Peaceful Uses of Nuclear Energy and Non-Proliferation Policy (Chairman: Prof. Kurosawa) was established in FY1999 with the funding from the Science and Technology Agency. The aim of the Study Group is to clearly understand nuclear proliferation issues and to lead international opinion. Nuclear non-proliferation is a matter of rather scanty interest compared to nuclear safety while both of them are important in promoting peaceful uses of nuclear energy in Japan. In FY2000, the Study Group held International Symposium 'Peaceful Uses of Nuclear Energy and Non-Proliferation: A Challenge of 21st Century' and in conjunction with this Symposium, dispatched 'The Statement on the Peaceful Uses of Nuclear Energy and Non-Proliferation, Action Plan towards 21st Century'. The Statement consists of five propositions: 1) Strengthening the global nuclear non-proliferation regime and making it universally applicable, 2) Negative legacy of cold war: rapid solution of problems, 3) Civil (non-military) plutonium, 4) Development of technology to strengthen the nuclear non-proliferation regime internationally, and 5) Strengthening Japanese initiative on nuclear non-proliferation policy. In this report, these activities will be explained in detail. (author)

  20. Proliferation resistance characteristics of advanced nuclear energy systems: a safeguard ability point of view

    International Nuclear Information System (INIS)

    Sevini, F.; Cojazzi, G.G.M.; Renda, G.

    2008-01-01

    Among the international community there is a renewed interest in nuclear power systems as a major source for energy production in the near to mid future. This is mainly due to concerns connected with future availability of conventional energy resources, and with the environmental impact of fossil fuels. International initiatives have been set up like the Generation 4. International Forum (GIF), the International Project on Innovative Nuclear Reactors and Fuel Cycles (IAEA-INPRO), and, partially, the US driven Global Nuclear Energy Partnership (GNEP), aimed at defining and evaluating the characteristics, in which future innovative nuclear energy systems (INS) will have to excel. Among the identified characteristics, Proliferation Resistance plays an important role for being able to widely deploy nuclear technology worldwide in a secure way. Studies having the objective to assess Proliferation Resistance of nuclear fuel cycles have been carried out since the nineteen seventies, e.g., the International Nuclear Fuel Cycle Evaluation (INFCE) and the Non-proliferation Alternative Systems Assessment Program (NASAP) initiatives, and all agree in stating that absolute intrinsic proliferation resistance, although desirable, is not achievable in the foreseeable future. The above finding is still valid; as a consequence, every INS will have to comply with agreements related to the Non Proliferation Treaty (NPT) and will require safeguards measures, implemented through extrinsic measures. This consideration led to a renewed interest in the Safeguard ability concept which can be seen as a bridge between intrinsic features and extrinsic features and measures.

  1. Nuclear dilemma: power, proliferation, and development

    International Nuclear Information System (INIS)

    Miller, M.

    1979-01-01

    Debate over President Carter's nuclear energy policy centers on how to develop nuclear power for civilian use and prevent the proliferation of nuclear materials for weapons. Both supporters and opponents of nuclear energy have been critical of Carter's policies because each side fails to see the linkage between the two concerns as codified in the 1978 Non-Proliferation Act. The author uses a dialogue format to illustrate the arguments for resisting proliferation and recognizing nuclear energy as an appropriate technology. The consequences of a nuclear moratorium are explored along with implications for foreign policy. U.S. leadership in developing energy technologies that can meet a broad range of appropriate applications, combined with leadership in building appropriate political frameworks, is needed if nuclear energy is to make a positive contribution toward world peace and acceptable living standards. 8 references

  2. Asia nuclear-test-ban network for nuclear non-proliferation

    International Nuclear Information System (INIS)

    Shinohara, Nobuo; Kokaji, Lisa; Ichimasa, Sukeyuki

    2010-01-01

    In Global Center of Excellence Program of The University of Tokyo, Non- Proliferation Study Committee by the members of nuclear industries, electricity utilities, nuclear energy institutes and universities has initiated on October 2008 from the viewpoints of investigating a package of measures for nuclear non-proliferation and bringing up young people who will support the near-future nuclear energy system. One of the non-proliferation issues in the Committee is the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Objective of this treaty is to cease all nuclear weapon test explosions and all other nuclear explosion. This purpose should be contributed effectively to the political stability of the Asian region by continuous efforts to eliminate the nuclear weapons. In the Committee, by extracting several issues related to the CTBT, conception of 'Asia nuclear-test-ban network for nuclear non-proliferation' has been discussed with the aim of the nuclear-weapon security in Asian region, where environmental nuclear-test monitoring data is mainly treated and utilized. In this paper, the conception of the 'network' is presented in detail. (author)

  3. Nuclear energy and non-proliferation in Latin America: the constitution of Tlatelolco system

    International Nuclear Information System (INIS)

    Armanet, P.

    1982-01-01

    The nuclear energy as alternative energy resource and its military use are analysed. Then the main characteristics of the Tratelolco treaty and non-proliferation in Latin America are discussed. Finally the importance of the nuclear-weapons-free zone in Latin America is shown. (A.B.T.) [pt

  4. Multi-component Self-Consistent Nuclear Energy System: On proliferation resistance aspect

    International Nuclear Information System (INIS)

    Shmelev, A.; Saito, M; Artisyuk, V.

    2000-01-01

    Self-Consistent Nuclear Energy System (SCNES) that simultaneously meets four requirements: energy production, fuel production, burning of radionuclides and safety is targeted at harmonization of nuclear energy technology with human environment. The main bulk of SCNES studies focus on a potential of fast reactor (FR) in generating neutron excess to keep suitable neutron balance. Proliferation resistance was implicitly anticipated in a fuel cycle with co-processing of Pu, minor actinides (MA) and some relatively short-lived fission products (FP). In a contrast to such a mono-component system, the present paper advertises advantage of incorporating accelerator and fusion driven neutron sources which could drastically improve characteristics of nuclear waste incineration. What important is that they could help in creating advanced Np and Pa containing fuels with double protection against uncontrolled proliferation. The first level of protection deals with possibility to approach long life core (LLC) in fission reactors. Extending the core life-time to reactor-time is beneficial from the proliferation resistance viewpoint since LLC would not necessarily require fuel management at energy producing site, with potential advantage of being moved to vendor site for spent fuel refabrication. Second level is provided by the presence of substantial amounts of 238 Pu and 232 U in these fuels that makes fissile nuclides in them isotopically protected. All this reveals an important advantage of a multi-component SCNES that could draw in developing countries without elaborated technological infrastructure. (author)

  5. International proliferation on nuclear weapons

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    The subject is dealt with under the following headings: introduction; routes to proliferation (preparation of U 235 , Pu 239 , U 233 ); nuclear power fuel cycles and proliferation; the fast reactor fuel cycle; security aspects of the existing fuel cycle; the IAEA and the nuclear non-proliferation treaty. It is concluded that 'the basis for sound international control exists, and taken together with the further technical steps which will be taken to make the existing fuel cycles more robust against the diversion of materials by terrorists and the abuse of civil nuclear power programmes by governments, we have good reason to proceed now with the orderly exploitation of ...nuclear energy...'. (U.K.)

  6. Report of 'the 2014 international forum on peaceful use of nuclear energy, nuclear non-proliferation and nuclear security. Future direction toward promoting non-proliferation and the ideal method of developing human resources using Centers of Excellence (COEs) following the new strategic energy plan'

    International Nuclear Information System (INIS)

    Yamaga, Chikanobu; Tomikawa, Hirofumi; Kobayashi, Naoki; Naoi, Yosuke; Oda, Tetsuzo; Mochiji, Toshiro

    2015-10-01

    The Japan Atomic Energy Agency (JAEA) held 'International Forum on Peaceful Use of Nuclear Energy, Nuclear Non-proliferation and Nuclear Security – Future direction toward promoting non-proliferation and the ideal method of developing human resources using Centers of Excellence (COEs) following the New Strategic Energy Plan -' on 3 December 2014, with the Japan Institute of International Affairs (JIIA) and School of Engineering, The University of Tokyo, and International Nuclear Research Center, Tokyo Institute of Technology as co-hosts. In the Forum, officials and experts from Japan, the United States explained their efforts regarding peaceful use of nuclear energy, nuclear non-proliferation and nuclear security. Discussion was made in two panels, entitled 'Effective and efficient measures to ensure nuclear non-proliferation based on domestic and foreign issues and the direction and role of technology development' and 'Roles of nuclear security COEs and future expectations'. In Panel Discussion 1, as the nuclear non-proliferation regime is facing various problems and challenges under current international circumstances, how to implement effective and efficient safeguards was discussed. In Panel Discussion 2, panelists discussed the following three points: 1. Current status of Nuclear Security Training and Support Centers and COEs, and Good Practice; 2. What these centers can do to enhance nuclear security (New role for COEs); 3. Regional cooperation in the Nuclear Security Training and Support Center (NSSC) and COEs in states, which the IAEA recommends establishing, and international cooperation and partnerships with international initiatives (New Role). Officials and experts from Japan, IAEA, the United States, France, Republic of Korea, and Indonesia participated in the panel and made contributions to active discussion. This report includes abstracts of keynote speeches, summaries of two panel discussions and materials of the

  7. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ∼12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ∼30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  8. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2011-04-28

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  9. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2010-01-01

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ∼30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64 C long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  10. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2010-03-03

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  11. INCREASED PROLIFERATION RESISTANCE FOR 21ST CENTURY NUCLEAR POWER

    International Nuclear Information System (INIS)

    Demuth, Scott F.; Thomas, Ken E.; Wallace, Richard K.

    2007-01-01

    World energy demand and greenhouse gases are expected to significantly increase in the near future. Key developing countries have identified nuclear power as a major contributor to their future energy sources. Consequently, the US and others are currently exploring the concept of a Global Nuclear Energy Partnership (GNEP) to address the concerns of nuclear proliferation. This effort is also being encouraged by the International Atomic Energy Agency (IAEA). While the IAEA currently provides the framework for monitoring of state sponsored nuclear proliferation by way of international treaties, a complimentary action is to promote more proliferation resistant fuel cycles and advanced safeguards technology. As such, it is the responsibility of current technology owners to increase their nuclear fuel cycle proliferation resistance. For those countries that have an active and well-developed fuel cycle, it will require future enhancements. For those countries with extensive nuclear energy experience, yet less active programs, it requires re-engagement for technology development and deployment. The following paper discusses potential fuel cycle and technology changes that affect proliferation resistance; and consequently, may form the basis of future technology development efforts.

  12. A strategic framework for proliferation resistance: a systematic approach for the identification and evaluation of technology opportunities to enhance the proliferation resistance of civilian nuclear energy systems

    International Nuclear Information System (INIS)

    Hassberger, J.A.; Isaac, T.; Schock, R.N.

    2001-01-01

    The United State Department of Energy Nuclear Energy Research Advisory Committee recently completed a study ''Technological Opportunities To Increase The Proliferation Resistance Of Global Civilian Nuclear Power Systems (TOPS)''. That effort included the development of a set of both intrinsic and extrinsic barriers to proliferation that technologies can directly impact. In this paper we will review these barriers as and framework for assisting in the evaluation of the relative proliferation resistance of various nuclear fuel cycles, technologies and alternatives. (author)

  13. Energy efficiency and proliferation assessment factors

    International Nuclear Information System (INIS)

    1979-02-01

    The objective of INFCE is to evaluate the nuclear fuel cycles from the point of view of their ability to satisfy the worldwide nuclear energy needs, while minimizing the proliferation risks. Accordingly, the different working groups have to take into consideration as well the energy-efficiency and the proliferation-resistance of these nuclear fuel cycles. The present working paper is aimed at suggesting the main assessment factors which should be taken into consideration

  14. Nuclear power generation and nuclear non-proliferation

    International Nuclear Information System (INIS)

    Rathjens, G.

    1979-01-01

    The main points existing between nuclear energy development and nuclear non-proliferation policy are reviewed. The solar energy and other energy will replace for nuclear fission energy in the twenty first century, but it may not occur in the first half, and the structure has to be established to continue the development of nuclear fission technology, including breeder reactor technology. In the near future, it should be encouraged to use advanced thermal reactors if they are economic and operated with safety. Miserable results may be created in the worldwide scale, if a serious accident occurs anywhere or nuclear power reactors are utilized for military object. It is estimated to be possible to develop the ability of manufacturing nuclear weapons within two or three years in the countries where the industry is highly developed so as to generate nuclear power. It is also difficult to take measures so that nuclear power generation does not increase nuclear proliferation problems, and it is necessary to mitigate the motive and to establish the international organization. Concensus exists that as the minimum security action, the storage and transportation of materials, which can be directly utilized for nuclear weapons, should be decided by the international system. The most portions of sensitive nuclear fuel cycle should be put under the international management, as far as possible. This problem is discussed in INFCE. Related to the nuclear nonproliferation, the difference of policy in fuel cycle problems between USA and the other countries, the enrichment of nuclear fuel material, especially the reasons to inhibit the construction of additional enrichment facilities, nuclear fuel reprocessing problems, radioactive waste disposal, plutonium stock and plutonium recycle problems are reviewed. (Nakai, Y.)

  15. The international nuclear non-proliferation system

    International Nuclear Information System (INIS)

    Simpson, J.; McGrew, T.

    1985-01-01

    This volume focuses upon the issues raised at this Conference, and attempts to address the international diplomatic, political and trading, rather than technical, questions which surround nuclear non-proliferation policies. It does so by bringing together chapters contributed by participants in non-proliferation diplomacy, those with experience in shaping International Atomic Energy Agency and national policies and academic observers of non-proliferation activities and the international nuclear industry. An analysis is provided of past non-proliferation policies and activities and current issues, and an attempt is made to offer ideas for new initiatives which may sustain the non-proliferation system in the future

  16. Safety and proliferation concerns as constraints on nuclear power

    International Nuclear Information System (INIS)

    Gordon, L.

    1981-01-01

    Issues of safety and proliferation with respect to the nuclear option are discussed in this chapter. The basic premises underlying the author's analysis are: energy supply and use is a means to promote desired forms of development and not an end in itself; avoidance of nuclear mysticiam; avoidance of permanent discrimination; recognition of incommensurables; technological sophistication; and nuclear proliferation motivations apart from nuclear power development. A rational energy planner in a developing country will have to weigh carefully the interwoven factors of comparative costs and safety. Apart from cost considerations, the principal motivation for developing nuclear power is energy security

  17. The Nuclear Non-Proliferation Policy of the Obama Administration

    International Nuclear Information System (INIS)

    Baek, Jin Hyun; Hwang, Ji Hwan

    2009-12-01

    The objective of this study is to analyze and foresee trends of international nuclear non-proliferation regimes focused on the nuclear non-proliferation policy of the Obama administration, and suggest national policy directions which promote utilization and development of nuclear energy in Korea. For the effective and efficient implementation of the national nuclear use and development program in current international nuclear environment, many efforts should be made: to actively and positively participate in the international nuclear non-proliferation regime; to strengthen nuclear diplomacy in a more systematic manner; and to strengthen the international nuclear cooperation

  18. Nuclear proliferation-resistance and safeguards for future nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kuno, Y.; Inoue, N.; Senzaki, M.

    2009-01-01

    Corresponding to the world nuclear security concerns, future nuclear fuel cycle (NFC) should have high proliferation-resistance (PR) and physical protection (PP), while promotion of the peaceful use of the nuclear energy must not be inhibited. In order to accomplish nuclear non-proliferation from NFC, a few models of the well-PR systems should be developed so that international community can recognize them as worldwide norms. To find a good balance of 'safeguard-ability (so-called extrinsic measure or institutional barrier)' and 'impede-ability (intrinsic feature or technical barrier)' will come to be essential for NFC designers to optimize civilian nuclear technology with nuclear non-proliferation, although the advanced safeguards with high detectability can still play a dominant role for PR in the states complying with full institutional controls. Accomplishment of such goal in a good economic efficiency is a future key challenge

  19. Nuclear proliferation-resistance and safeguards for future nuclear fuel cycle

    Science.gov (United States)

    Kuno, Y.; Inoue, N.; Senzaki, M.

    2009-03-01

    Corresponding to the world nuclear security concerns, future nuclear fuel cycle (NFC) should have high proliferation-resistance (PR) and physical protection (PP), while promotion of the peaceful use of the nuclear energy must not be inhibited. In order to accomplish nuclear non-proliferation from NFC, a few models of the well-PR systems should be developed so that international community can recognize them as worldwide norms. To find a good balance of 'safeguard-ability (so-called extrinsic measure or institutional barrier)' and 'impede-ability (intrinsic feature or technical barrier)' will come to be essential for NFC designers to optimize civilian nuclear technology with nuclear non-proliferation, although the advanced safeguards with high detectability can still play a dominant role for PR in the states complying with full institutional controls. Accomplishment of such goal in a good economic efficiency is a future key challenge.

  20. Proliferation risks from nuclear power infrastructure

    Science.gov (United States)

    Squassoni, Sharon

    2017-11-01

    Certain elements of nuclear energy infrastructure are inherently dual-use, which makes the promotion of nuclear energy fraught with uncertainty. Are current restraints on the materials, equipment, and technology that can be used either to produce fuel for nuclear electricity generation or material for nuclear explosive devices adequate? Technology controls, supply side restrictions, and fuel market assurances have been used to dissuade countries from developing sensitive technologies but the lack of legal restrictions is a continued barrier to permanent reduction of nuclear proliferation risks.

  1. Canada's nuclear non-proliferation policy

    International Nuclear Information System (INIS)

    1985-01-01

    Canada's non-proliferation and safeguards policy has two objectives: 1) to promote the emergence of a more effective and comprehensive international non-proliferation regime; and 2) to assure the Canadian people and the international community that Canadian nuclear exports will not be used for any nuclear explosive purpose. By emphasizing the key role of the NPT, by promoting reliance upon and improvements in the IAEA safeguards system, by treating nuclear weapon and non-nuclear weapon states alike regarding Canadian nuclear exports, by working for new approaches covering the sensitive phases (e.g. reprocessing) of the nuclear fuel cycle, Canada's policy promotes attainment of the first objective. The latter objective is served through the network of bilateral nuclear agreements that Canada has put into place with its nuclear partners. Those agreements provide assurance that Canada's nuclear exports are used solely for legitimate, peaceful, nuclear energy production purposes. At the same time, Canada, having formulated its non-proliferation and safeguards policy during the period 1945 to 1980, has recognized that it has gone as far as it can on its own in this field and that from this point on any further changes should be made on the basis of international agreement. The Canadian objective in post-INFCE forums such as the Committee on Assurances of Supply is to exert Canada's best efforts to persuade the international community to devise a more effective and comprehensive international non-proliferation regime into which Canada and other suppliers might subsume their national requirements

  2. Nuclear proliferation-resistance and safeguards for future nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kuno, Y. [Japan Atomic Energy Agency (JAEA) Nuclear-Non-proliferation Science and Technology Centre (NPSTC), 2-4 Shirane Shirakata, Tokai-mura, Ibaraki, 319-1195 (Japan); University of Tokyo, Nuclear Engineering and Management, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)], E-mail: kuno.yusuke@jaea.go.jp; Inoue, N. [Japan Atomic Energy Agency (JAEA) Nuclear-Non-proliferation Science and Technology Centre (NPSTC), 2-4 Shirane Shirakata, Tokai-mura, Ibaraki, 319-1195 (Japan); University of Tokyo, Nuclear Engineering and Management, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Senzaki, M. [Japan Atomic Energy Agency (JAEA) Nuclear-Non-proliferation Science and Technology Centre (NPSTC), 2-4 Shirane Shirakata, Tokai-mura, Ibaraki, 319-1195 (Japan)

    2009-03-15

    Corresponding to the world nuclear security concerns, future nuclear fuel cycle (NFC) should have high proliferation-resistance (PR) and physical protection (PP), while promotion of the peaceful use of the nuclear energy must not be inhibited. In order to accomplish nuclear non-proliferation from NFC, a few models of the well-PR systems should be developed so that international community can recognize them as worldwide norms. To find a good balance of 'safeguard-ability (so-called extrinsic measure or institutional barrier)' and 'impede-ability (intrinsic feature or technical barrier)' will come to be essential for NFC designers to optimize civilian nuclear technology with nuclear non-proliferation, although the advanced safeguards with high detectability can still play a dominant role for PR in the states complying with full institutional controls. Accomplishment of such goal in a good economic efficiency is a future key challenge.

  3. Energy: nuclear energy

    International Nuclear Information System (INIS)

    Lung, M.

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  4. Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J; Yuldashev, B; Labov, S; Knapp, R

    2006-06-12

    As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoring and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in field use without the necessity for liquid nitrogen. Different detection algorithms enable fissile materials to be distinguished from other radioisotopes.

  5. Nuclear arbitration: Interpreting non-proliferation agreements

    International Nuclear Information System (INIS)

    Tzeng, Peter

    2015-01-01

    At the core of the nuclear non-proliferation regime lie international agreements. These agreements include, inter alia, the Nuclear Non-proliferation Treaty, nuclear co-operation agreements and nuclear export control agreements.1 States, however, do not always comply with their obligations under these agreements. In response, commentators have proposed various enforcement mechanisms to promote compliance. The inconvenient truth, however, is that states are generally unwilling to consent to enforcement mechanisms concerning issues as critical to national security as nuclear non-proliferation.3 This article suggests an alternative solution to the non-compliance problem: interpretation mechanisms. Although an interpretation mechanism does not have the teeth of an enforcement mechanism, it can induce compliance by providing an authoritative interpretation of a legal obligation. Interpretation mechanisms would help solve the non-compliance problem because, as this article shows, in many cases of alleged non-compliance with a non-proliferation agreement, the fundamental problem has been the lack of an authoritative interpretation of the agreement, not the lack of an enforcement mechanism. Specifically, this article proposes arbitration as the proper interpretation mechanism for non-proliferation agreements. It advocates the establishment of a 'Nuclear Arbitration Centre' as an independent branch of the International Atomic Energy Agency (IAEA), and recommends the gradual introduction of arbitration clauses into the texts of non-proliferation agreements. Section I begins with a discussion of international agreements in general and the importance of interpretation and enforcement mechanisms. Section II then discusses nuclear non-proliferation agreements and their lack of interpretation and enforcement mechanisms. Section III examines seven case studies of alleged non-compliance with non-proliferation agreements in order to show that the main problem in many cases

  6. Modeling and evaluating proliferation resistance of nuclear energy systems for strategy switching proliferation

    International Nuclear Information System (INIS)

    Yue, M.; Cheng, L.-Y.; Bari, R.A.

    2013-01-01

    Highlights: ► Sensitivity analysis is carried out for the model and physical input parameters. ► Interphase drag has minor effect on the dryout heat flux (DHF) in 1D configuration. ► Model calibration on pressure drop experiments fails to improve prediction of DHF. ► Calibrated classical model provides the best agreement with DHF data from 1D tests. ► Further validation of drag models requires data from 2D and 3D experiments on DHF. - Abstract: This paper reports a Markov model based approach to systematically evaluating the proliferation resistance (PR) of nuclear energy systems (NESs). The focus of the study is on the development of the Markov models for a class of complex PR scenarios, i.e., mixed covert/overt strategy switching proliferation, for NESs with two modes of material flow, batch and continuous. In particular, a set of diversion and/or breakout scenarios and covert/overt misuse scenarios are studied in detail for an Example Sodium Fast Reactor (ESFR) system. Both probabilistic and deterministic PR measures are calculated using a software tool that implements the proposed approach and can be used to quantitatively compare proliferation resistant characteristics of different scenarios for a given NES, according to the computed PR measures

  7. The self-consistent energy system with an enhanced non-proliferated core concept for global nuclear energy utilization

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Arie, Kazuo; Araki, Yoshio; Sato, Mitsuyoshi; Mori, Kenji; Nakayama, Yoshiyuki; Nakazono, Ryuichi; Kuroda, Yuji; Ishiguma, Kazuo; Fujii-e, Yoichi

    2008-01-01

    A sustainable nuclear energy system was developed based on the concept of Self-Consistent Nuclear Energy System (SCNES). Our study that trans-uranium (TRU) metallic fuel fast reactor cycle coupled with recycling of five long-lived fission products (LLFP) as well as actinides is the most promising system for the sustainable nuclear utilization. Efficient utilization of uranium-238 through the SCNES concept opens the doors to prolong the lifetime of nuclear energy systems towards several tens of thousand years. Recent evolution of the concept revealed compatibility of fuel sustainability, minor actinide (MA) minimization and non-proliferation aspects for peaceful use of nuclear energy systems through the discussion. As for those TRU compositions stabilized under fast neutron spectra, plutonium isotope fractions are remained in the range of reactor grade classification with high fraction of Pu240 isotope. Recent evolution of the SCNES concept has revealed that TRU recycling can cope with enhancing non-proliferation efforts in peaceful use with the 'no-blanket and multi-zoning core' concept. Therefore, the realization of SCNES is most important. In addition, along the process to the goals, a three-step approach is proposed to solve concurrent problems raised in the LWR systems. We discussed possible roles and contribution to the near future demand along worldwide expansion of LWR capacities by applying the 1st generation SCNES. MA fractions in TRU are more than 10% from LWR discharged fuels and even higher up to 20% in fuels from long interim storages. TRU recycling in the 1st generation SCNES system can reduce the MA fractions down to 4-5% in a few decades. This capability significantly releases 'MA' pressures in down-stream of LWR systems. Current efforts for enhancing capabilities for energy generation by LWR systems are efficient against the global warming crisis. In parallel to those movements, early realization of the SCNES concept can be the most viable decision

  8. Controlling nuclear proliferation

    International Nuclear Information System (INIS)

    Sweet, W.

    1981-01-01

    Nuclear non-proliferation policy depends on the 1968 Non-Proliferation Treaty, in which countries promise not to acquire nuclear weapons in exchange for open access to peaceful nuclear technology, and a system of international safeguards that are imposed on exported nuclear equipment and facilities operated by parties to the treaty. Critics have feared all along that non-nuclear countries might circumvent or exploit the system to obtain nuclear weapons and that the Atoms for Peace plan would spread the very technology it sought to control. The nuclear weapons states would like everyone else to believe that atomic bombs are undesirable, but they continue to rely on the bombs for their own defense. Israel's raid on Iraq's nuclear reactor focused world attention on the proliferation problem and helped to broaden and sterengthen its prospects. It also highlighted the weakness that there are no effective sanctions against violators. Until the international community can ageee on enforcement measures powerful enough to prevent nuclear proliferation, individual countries may be tempted to follow Israel's example, 19 references

  9. The Non-Proliferation Treaty and the peaceful use of nuclear energy

    International Nuclear Information System (INIS)

    Wilmshurst, M.J.

    1983-01-01

    The author discusses the reasons of criticism and even rejection of the Non-Proliferation Treaty of 1968, dealing in particular with the alledged discriminating nature of the Treaty and with the statement that the Treaty is not apt to prevent proliferation on a vertical plane. He further discusses the motives behind the efforts of potential nuclear weapons states to get nuclear weapons. The system of worldwide and bilateral safeguards and controls covering the transfer of nuclear technologies is explained. In conclusion the author suggests to pay more attention to article IV, sub-section (2) of the Non-Proliferation Treaty as this might offer a suitable approach to restricting the dissemination of nuclear explosives. (HP) [de

  10. A Study on Introduction of Nuclear Power Plants in India and the Nuclear Non- Proliferation Conditions

    International Nuclear Information System (INIS)

    Yang, Seung Hyo; Lim, Dong Hyuk

    2011-01-01

    Nuclear Suppliers Group (NSG) which was formed to build nuclear export control has been accepting the nuclear cooperation for the member nation of the international nuclear non-proliferation regime. Korea exported nuclear power plants to United Arab Emirates in 2009 and research and training reactor to Jordan in 2010 based on the forcible non-proliferation regime as a member nation of NSG, so it is strengthening its position in the atomic energy industry. In addition, Korea concluded an agreement with India which is planning the construction of 25.based or more nuclear power plants for the next 20 years in last July, 25, so it will enter the atomic energy market in India. But India has been accepted the exceptionally civilian nuclear cooperation as a de facto Nuclear Weapon State (NWS) and non-member state of NPT, so concerns about nuclear proliferation has been raised. This study aims to introduce the allowance of exceptions background in India, to analyze its effect on the non-proliferation regime and to find nuclear non-proliferation conditions

  11. Nuclear experts and nuclear weapons proliferation

    International Nuclear Information System (INIS)

    Mueller, H.

    1979-01-01

    In Germany the issue of nuclear weapons proliferation has attracted scant attention. Most potential nuclear weapon states are important trade partners of the FRG and, since further proliferation of nuclear weapons could worsen conflicts involving these, it should be in the FRG's interest to limit proliferation. The security of the FRG is also dependent on the common interest of the great powers to avoid nuclear war. The contradictory positions of Usa and the USSR on nuclear weapons policy regarding themselves and non-nuclear weapon states encourages less developed countries to see nuclear weaponry as useful. The NPT and IAEA safeguards have only limited inhibiting effect. The nuclear export policy of the FRG has been dominated by short term economic advantage, neglecting the negative long term effects of decreased political stability. The FRG should formulate a policy based on self-restraint, positive stimuli and extension of controls, using its economic strength to deter proliferation. (JIW)

  12. Criteria for proliferation resistance of nuclear fuel cycle options

    International Nuclear Information System (INIS)

    Kiriyama, Eriko; Pickett, Susan; Suzuki, Tatsujiro

    2000-01-01

    In order to understand the concept of nuclear proliferation resistance, this paper examines the technical definitions of proliferation resistance. Although nuclear proliferation resistance is often included as one of the major goals of advanced reactor research and development, the criteria for nuclear proliferation resistance of nuclear fuel cycles is not defined clearly. The implied meaning of proliferation resistance was compared in proposals regarding the nuclear fuel cycle. Discrepancies amongst the proposals regarding the technical definition of proliferation resistance is found. While all these proposals indicate proliferation resistance, few clearly spell out exactly what criteria they are measuring themselves against. However we found there are also common feature in many proposals. They are; (1) Reduction of Pu, (2) Less separated Weapon Usable Materials, (3) Fewer steps, (4) Barrier for Weapon Usable Materials. Recognizing that there are numerous political and infrastructure measures that may also be taken to guard against proliferation risks, we have focused here on the definition of proliferation resistance in terms of technical characteristics. Another important conclusion is that in many proposals proliferation resistance is only one of the important criteria such as energy security, economical efficiency, and safety. (author)

  13. Nuclear proliferation

    International Nuclear Information System (INIS)

    Stencel, S.

    1978-01-01

    The terms and reactions to President Carter's nuclear policy, culminating in the 1978 Nuclear Non-Proliferation Act, are reviewed and analyzed. The new law increases restrictions on nuclear exports, encourages continued use of light water reactors in preference to plutonium-fueled reactors, and emphasizes technical solutions to proliferation problems. Critics of the law point out that it will hurt U.S. trade unfairly, that other countries do not have as many fuel options as the U.S. has, and that nuclear sales have as many political and economic as technical solutions. Compromise areas include new international safety guidelines, the possibility of an international nuclear fuel bank, and a willingness to consider each case on its merits. 21 references

  14. Nuclear energy. Selective bibliography

    International Nuclear Information System (INIS)

    2011-07-01

    This bibliography gathers articles and books from the French National Library about civil nuclear energy, its related risks, and its perspectives of evolution: general overview (figures, legal framework, actors and markets, policies); what price for nuclear energy (environmental and health risks, financing, non-proliferation policy); future of nuclear energy in energy policies (nuclear energy versus other energies, nuclear phase-out); web sites selection

  15. The International Atomic Energy Agency shows keen interest. Innovative warning system for nuclear proliferation

    International Nuclear Information System (INIS)

    Smet, S.; Van der Meer, K.

    2011-01-01

    In order to prevent nuclear proliferation, nuclear fuels and other strategic materials have to be responsibly managed. Non-proliferation aims to counteract the uncontrolled proliferation of nuclear materials worldwide. SCK-CEN is developing an innovative nuclear warning system based on political and economic indicators. Such a system should allow the early detection of the development of a nuclear weapons programme.

  16. Non-proliferation and nuclear data

    International Nuclear Information System (INIS)

    Sowerby, M.G.

    1978-01-01

    A review is made of the problem of the proliferation of nuclear weapons with particular emphasis on proliferation and nuclear power. Some indications of the nuclear data requirements associated with methods of reducing proliferation risks are presented

  17. Nuclear power and the non-proliferation issue

    International Nuclear Information System (INIS)

    1978-12-01

    This leaflet, issued by the British Nuclear Forum on behalf of the industry, seeks first to place the problem of reconciling the need for nuclear power with its possible weapon uses in a historical perspective. Secondly, it describes the technical and political measures which are now taken, and others which could be introduced in order to ensure that nuclear power, which offers the cheapest and safest large-scale energy source for the future, can be made available without contributing to the proliferation of nuclear weapons. Headings are: introduction; the early years; the IAEA; uranium enrichment; plutonium; secrecy has failed; the Non-Proliferation Treaty; the London Suppliers Group; the situation today; the British position; conclusions. (U.K.)

  18. Nuclear proliferation and terrorism

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This section of the book, Part III, has two chapters (9 and 10). Chapter 9, Nuclear Power and Proliferation of Nuclear Weapons, is disucssed under these subjects: nuclear nonproliferation: origins and status; requirements for nuclear weapons manufacture; current nuclear programs and proliferation capabilities; encouraging decisions to forego weapons; arms control; safeguards; attitudes and expectations. Chapter 10, Nuclear Terrorism, discusses these areas: theft of nuclear materials; attacks on nuclear reactors; responding to nuclear terrorism; security and civil liberties

  19. JAEA's actions and contributions to the strengthening of nuclear non-proliferation

    Science.gov (United States)

    Suda, Kazunori; Suzuki, Mitsutoshi; Michiji, Toshiro

    2012-06-01

    Japan, a non-nuclear weapons state, has established a commercial nuclear fuel cycle including LWRs, and now is developing a fast neutron reactor fuel cycle as part of the next generation nuclear energy system, with commercial operation targeted for 2050. Japan Atomic Energy Agency (JAEA) is the independent administrative agency for conducting comprehensive nuclear R&D in Japan after the merger of Japan Atomic Energy Research Institute (JAERI) and Japan Nuclear Cycle Development Institute (JNC). JAEA and its predecessors have extensive experience in R&D, facility operations, and safeguards development and implementation for new types of nuclear facilities for the peaceful use of nuclear energy. As the operator of various nuclear fuel cycle facilities and numerous nuclear materials, JAEA makes international contributions to strengthen nuclear non-proliferation. This paper provides an overview of JAEA's development of nuclear non-proliferation and safeguards technologies, including remote monitoring of nuclear facilities, environmental sample analysis methods and new efforts since the 2010 Nuclear Security Summit in Washington D.C.

  20. Uncertainties in Nuclear Proliferation Modeling

    International Nuclear Information System (INIS)

    Kim, Chul Min; Yim, Man-Sung; Park, Hyeon Seok

    2015-01-01

    There have been various efforts in the research community to understand the determinants of nuclear proliferation and develop quantitative tools to predict nuclear proliferation events. Such systematic approaches have shown the possibility to provide warning for the international community to prevent nuclear proliferation activities. However, there are still large debates for the robustness of the actual effect of determinants and projection results. Some studies have shown that several factors can cause uncertainties in previous quantitative nuclear proliferation modeling works. This paper analyzes the uncertainties in the past approaches and suggests future works in the view of proliferation history, analysis methods, and variable selection. The research community still lacks the knowledge for the source of uncertainty in current models. Fundamental problems in modeling will remain even other advanced modeling method is developed. Before starting to develop fancy model based on the time dependent proliferation determinants' hypothesis, using graph theory, etc., it is important to analyze the uncertainty of current model to solve the fundamental problems of nuclear proliferation modeling. The uncertainty from different proliferation history coding is small. Serious problems are from limited analysis methods and correlation among the variables. Problems in regression analysis and survival analysis cause huge uncertainties when using the same dataset, which decreases the robustness of the result. Inaccurate variables for nuclear proliferation also increase the uncertainty. To overcome these problems, further quantitative research should focus on analyzing the knowledge suggested on the qualitative nuclear proliferation studies

  1. Separation of nuclear power from nuclear proliferation

    International Nuclear Information System (INIS)

    Starr, C.

    1978-01-01

    A successful development of the proposed combination of the Fast Breeder Reactor and the CIVEX fuel reprocessing facility would provide an economical nuclear power source for many centuries which inherently separates nuclear power from the issue of weapons material diversion and proliferation. Further, by so doing, it permits great flexibility in international and national planning for nuclear power, as the issues of fuel dependence and terrorist and subnational diversions disappear. In addition, the expansion of the FBR/CIVEX system would eat into the LWR spent fuel stockpile, diminishing steadily this relatively accessible plutonium source. And finally, a rapid development of the FBR/CIVEX for the above reasons would substantially reduce the worldwide concern as to the adequacy of uranium ore supply. From a historical view, it would restore fast reactor development to the path originally foreseen in the programs of worldwide nuclear energy authorities, including the Atomic Energy Commission during its first two decades of existence

  2. Energy: nuclear energy; Energies: l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Lung, M. [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  3. Plutonium: key issue in nuclear disarmament and non-proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    Yoshisaki, M.B.

    1993-01-01

    The technical report is a 1993 update on weapons-grade plutonium, a key issue in nuclear disarmament. Its vital significance would again be discussed during the fifth and the last Review Conference on the Non-Proliferation Treaty (NPT) for Nuclear Weapons which would end in 1995. Member States shall decide whether an indefinite or conditional extension of NPT is necessary for world peace and international security. Two Non-NPT States, Russia and U.S.A. are in the forefront working for the reduction of nuclear weapons through nuclear disarmament. Their major effort is focused on the implementation of the Strategic Arms Reduction Treaty I and II or START I and II for world peace. The eventual implementation of START I and II would lead to the dismantling of plutonium from nuclear warheads proposed to be eliminated by both countries. This report gives three technical options to be derived from nuclear disarmament issues for the non-proliferation of nuclear weapons: (a) indefinite storage - there is no guarantee that these will not be used in the future (b) disposal as wastes - possible only in principle, because of lack of experience in mixing plutonium with high level wastes, and (c) source of energy - best option in managing stored weapons materials, because it satisfies non-proliferation objectives. It means fuel for energy in Light Water Reactors (LWR) or Fast Breeder Reactors (FBR). (author). 8 refs

  4. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  5. US policies on combating proliferation of nuclear weapons after the cold war

    International Nuclear Information System (INIS)

    Tosaki, Hirofumi

    2005-01-01

    Combating nuclear proliferation has been one of the top priorities for the international community in the post post-Cold War era, and the United States has been taking initiative for tackling the problems. The current Bush administration has placed value high on the effective and concrete actions - including the use of military forces - for such efforts. It is imperative that such actions should be taken in resolving the nuclear proliferation. However, the United States has been criticized that it has disregarded the existing nuclear non-proliferation regime, and that its non-proliferation policy has given negative implications to the regime. Combating nuclear proliferation should be pursued in balanced approach with legitimacy, in consideration of the discriminately nature of the regime as well as of its three pillars - nuclear non-proliferation, nuclear disarmament and peaceful use of nuclear energy. (author)

  6. Can we predict nuclear proliferation

    International Nuclear Information System (INIS)

    Tertrais, Bruno

    2011-01-01

    The author aims at improving nuclear proliferation prediction capacities, i.e. the capacities to identify countries susceptible to acquire nuclear weapons, to interpret sensitive activities, and to assess nuclear program modalities. He first proposes a retrospective assessment of counter-proliferation actions since 1945. Then, based on academic studies, he analyzes what causes and motivates proliferation, with notably the possibility of existence of a chain phenomenon (mechanisms driving from one program to another). He makes recommendations for a global approach to proliferation prediction, and proposes proliferation indices and indicators

  7. Nuclear power and nuclear-weapons proliferation

    International Nuclear Information System (INIS)

    Moniz, E.J.; Neff, T.L.

    1978-01-01

    Concern over the risk of nuclear proliferation has led to extensive reexamination of the technical, economic, and political assumptions underlying both national and international nuclear policies. An attempt is made in the present article to clarify the basic technical and political issues. The connections between various fuel cycles and their possible proliferation risks are discussed. As the resolution of the existing differing views on proliferation risks will be largely a political process, solutions to the problem are not proposed

  8. The control of non-proliferation of nuclear weapons and nuclear development - present uncertainties

    International Nuclear Information System (INIS)

    Machado de Faria, N.G.; Amaral Barros, E.

    1983-01-01

    This report gives the views of Brazilian lawyers on the non-proliferation of nuclear weapons. It deals with the present situation and future prospects concerning the uses of nuclear energy. In particular, it proposes the preparation of a protocol prohibiting the use of nuclear weapons. (NEA) [fr

  9. Analysis of nuclear proliferation resistance reprocessing and recycling technologies

    International Nuclear Information System (INIS)

    Paviet-Hartmann, Patricia; Cerefice, Gary; Stacey, Marcela; Bakhtiar, Steven

    2011-01-01

    The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate - and should not be equated - with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R and D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance

  10. Analysis of nuclear proliferation resistance reprocessing and recycling technologies

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

    2011-05-01

    The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate – and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance

  11. Conference day - Dissuasion, proliferation, disarmament: the nuclear debate beyond 2010. Conference proceedings

    International Nuclear Information System (INIS)

    2010-09-01

    A first set of contributions (round tables) addresses the relationship between NATO, nuclear deterrence and antimissile defence. The second set of contributions addresses nuclear policies of emerging powers (Russia, China, Iran...) and proliferation risks. The third one addresses the perspectives of non proliferation, civil nuclear energy actors, and disarmament

  12. Theoretical Approaches to Nuclear Proliferation

    Directory of Open Access Journals (Sweden)

    Konstantin S. Tarasov

    2015-01-01

    Full Text Available This article analyses discussions between representatives of three schools in the theory of international relations - realism, liberalism and constructivism - on the driving factors of nuclear proliferation. The paper examines major theoretical approaches, outlined in the studies of Russian and foreign scientists, to the causes of nuclear weapons development, while unveiling their advantages and limitations. Much of the article has been devoted to alternative approaches, particularly, the role of mathematical modeling in assessing proliferation risks. The analysis also reveals a variety of different approaches to nuclear weapons acquisition, as well as the absence of a comprehensive proliferation theory. Based on the research results the study uncovers major factors both favoring and impeding nuclear proliferation. The author shows that the lack of consensus between realists, liberals and constructivists on the nature of proliferation led a number of scientists to an attempt to explain nuclear rationale by drawing from the insights of more than one school in the theory of IR. Detailed study of the proliferation puzzle contributes to a greater understating of contemporary international realities, helps to identify mechanisms that are most likely to deter states from obtaining nuclear weapons and is of the outmost importance in predicting short- and long-term security environment. Furthermore, analysis of the existing scientific literature on nuclear proliferation helps to determine future research agenda of the subject at hand.

  13. Nuclear proliferation. II. Monopoly or cartel

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Increasing competition between a growing number of nations exporting nuclear technology and recent exporting of full fuel-cycle facilities raise fears of nuclear proliferation and widespread nuclear weapons. As a result of the 1973 oil crisis, industrial nations seeking a share in the international nuclear market in order to protect their economic interests must also cooperate to protect these same interests from nuclear risks. Disagreement over the form of cooperation centers on the competing exporters' tactics of undercutting safeguards and political restrictions. Monopoly was never an option for even the United States. Government intervention in the international nuclear market in the form of subsidies and financial incentives is a more practical approach than a free market. A cartel arrangement is appropriate to nuclear energy in the sense of reducing economic uncertainties, but political objections would be strong and there would be some risk of independent nuclear development. As a strategy to forestall proliferation, however, the cartel can control exports of enrichment and reprocessing facilities and make it more expensive for nations to independently develop nuclear weapons. An enlargement of safeguards arrangements by nuclear suppliers will require nations to trade some of their economic interests in order to achieve international political objectives

  14. Nuclear proliferation and the near-nuclear countries

    International Nuclear Information System (INIS)

    Marwah, O.; Schulz, A.

    1975-01-01

    The process of nuclear proliferation and its consequences for the international political system is examined by focusing on the issues in the nuclear-strategic debate that divide first and second order states. Information is included on: the US-USSR arms race; SALT agreement; the Non-Proliferation Treaty; the nuclear aspirations and policies of India, Middle Eastern countries, South Africa, Japan, Brazil, and Argentina; and assessment of the risks related to the nuclear fuel cycle and nuclear weapons

  15. Perspectives of the nuclear non-proliferation regime

    International Nuclear Information System (INIS)

    Koungou, Leon

    2004-01-01

    To join traditional methods and new approaches of 'non-proliferation'. This is a technical method and the best way to fight against 'non-proliferation' which is facing few preoccupations: knowledge's disseminations; technologies; equipments and weapons that should be stopped. As it's important to note the return of nuclear danger as the end of confrontation between west-east which should be reduce. As the adaptation of mechanisms is necessary today, as it is important to react about states' incitations to violate international engagement of non-proliferation. Areas control allows finding out change and evolution, but more insufficient. Functional difficulties show that the IAEA (International Agency of Atomic Energy) does not work good. Safeguard system does not allow to respect 'non-proliferation' engagements; for instance 'junkies states' that they cannot dissuade traditional methods. The fight of 'non-proliferation' shows new progresses with fearing methods of prevention actions and heaviest international controls of exportation. The target of this is very ambitious. This new method is self-successful because it contributes to re-enforce international security when defeating acquisition of nuclear and mass destruction weapons by non-states factors. Therefore non-proliferation regime and especially 'non-proliferation treaty' remains delicate as long as some militaries state such USA will reject their 'non-proliferation' engagement. (author) [fr

  16. Nuclear war nuclear proliferation and their consequences

    International Nuclear Information System (INIS)

    Aga Khan, Sadruddin

    1986-01-01

    The paper concerns the proceedings of a conference hosted by the Groupe de Bellerive to explore and discuss the implications for humanity of nuclear war, nuclear proliferation and their consequences, Geneva 1985. The conference was divided into five sessions, headed by the subject titles: the nuclear non-proliferation treaty (NPT) and its future, the spread of nuclear weapons among nations, global effects of a nuclear war, the nuclear arms race and arms control, the NPT and its future. Twenty eight papers were presented in the five sessions. (UK)

  17. Evaluation of the Administration's proposed nuclear non-proliferation strategy. Report to the Congress

    International Nuclear Information System (INIS)

    1977-01-01

    Dwindling supplies of fossil fuels are causing countries to turn increasingly to nuclear power as a major source of energy. Although nuclear power holds out the promise of energy independence, it has a formidable drawback--it can also lead to the proliferation of nuclear weapons. In April, the President announced a new policy designed to curb nuclear proliferation and the executive branch proposed legislation entitled 'The Nuclear Non-Proliferation Policy Act of 1977.' The strategy outlined in these documents calls for stricter export controls and safeguards as well as actions affecting uranium enrichment services, reprocessing, storing of spent fuel, and disposing of radioactive nuclear wastes. GAO analyzed this non-proliferation strategy as it relates to: Improving nuclear export controls; Strengthening international nuclear safeguards; Maintaining U.S. reliability as a supplier of uranium enrichment services; Deferring U.S. reprocessing of spent fuel as an example for others; Reducing risk of proliferation by controlling spent reactor fuel. In general, GAO concluded that the administration's strategy is constructive but noted some weaknesses which should be addressed. Some of the problems noted in this report may already have been addressed by congressional committees in their markup of the legislation

  18. Dynamics of nuclear proliferation

    International Nuclear Information System (INIS)

    Meyer, S.M.

    1984-01-01

    This book looks beyond policy disputes to make a systematic examination of the assumptions and contending hypotheses that constitute contemporary thinking on nuclear proliferation. Rather than determine who is right or wrong, the intent is to develop a better picture by using the various schools of thought as analytic windows. A better understanding of how the process operates should offer better guidance for predicting future nuclear proliferation and, ultimately, for controlling it. Separate chapters deal with the contending views, the technological and motivational bases of nuclear proliferation, the presence of a technological imperative, testing the motivational hypothesis, the dynamics of the process, and forecasting. Four appendices present historical decisions, the technical model, cost-estimating procedures, and procedures for estimating nuclear propensities. 288 references, 17 figures, 26 tables

  19. Model for nuclear proliferation resistance analysis using decision making tools

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong; Yang, Myung Seung

    2003-06-01

    The nuclear proliferation risks of nuclear fuel cycles is being considered as one of the most important factors in assessing advanced and innovative nuclear systems in GEN IV and INPRO program. They have been trying to find out an appropriate and reasonable method to evaluate quantitatively several nuclear energy system alternatives. Any reasonable methodology for integrated analysis of the proliferation resistance, however, has not yet been come out at this time. In this study, several decision making methods, which have been used in the situation of multiple objectives, are described in order to see if those can be appropriately used for proliferation resistance evaluation. Especially, the AHP model for quantitatively evaluating proliferation resistance is dealt with in more detail. The theoretical principle of the method and some examples for the proliferation resistance problem are described. For more efficient applications, a simple computer program for the AHP model is developed, and the usage of the program is introduced here in detail. We hope that the program developed in this study could be useful for quantitative analysis of the proliferation resistance involving multiple conflict criteria

  20. Model for nuclear proliferation resistance analysis using decision making tools

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Ho Dong; Yang, Myung Seung

    2003-06-01

    The nuclear proliferation risks of nuclear fuel cycles is being considered as one of the most important factors in assessing advanced and innovative nuclear systems in GEN IV and INPRO program. They have been trying to find out an appropriate and reasonable method to evaluate quantitatively several nuclear energy system alternatives. Any reasonable methodology for integrated analysis of the proliferation resistance, however, has not yet been come out at this time. In this study, several decision making methods, which have been used in the situation of multiple objectives, are described in order to see if those can be appropriately used for proliferation resistance evaluation. Especially, the AHP model for quantitatively evaluating proliferation resistance is dealt with in more detail. The theoretical principle of the method and some examples for the proliferation resistance problem are described. For more efficient applications, a simple computer program for the AHP model is developed, and the usage of the program is introduced here in detail. We hope that the program developed in this study could be useful for quantitative analysis of the proliferation resistance involving multiple conflict criteria.

  1. U.S. - India nuclear cooperation and non-proliferation

    International Nuclear Information System (INIS)

    Yash Thomas, Mannully

    2008-01-01

    The agreement for cooperation between the Government of the United States of America and the government of India concerning peaceful uses of nuclear energy (referred as 123 agreement) acknowledges a shift in international strategies and relations in both countries. As to India, it marks the end of nuclear isolation resulting from constraint, embargoes and controls and instead opens the path for nuclear commerce. With respect to the United States it entails a major geo strategic ally in the evolving South Asia region and promises large commercial benefits to the US nuclear sector. This is called 'nuclear deal' and constitutes one of the major political, economic and strategic relationship developing between the two countries since 2001. It will lead to the separation of military and civilian nuclear installations in India, the latter to be placed under the safeguards system of the International Atomic Energy Agency (IAEA). It thus, de facto accepts India in the club of nuclear weapon states within the meaning of the Treaty on the non-proliferation of nuclear weapons (NPT) although it is not party to this treaty, refuses adhering to it, officially possesses nuclear weapons and is not subject to a comprehensive system of safeguards. This article will examine the developments which led to the 123 agreement and its subsequent implementation in a wider context of international relations and non proliferation. First, the articles gives a brief introduction into the Indian nuclear programme, the legislative framework and the factors which necessitated nuclear cooperation between India and the United States. Secondly, it will address the implementation of the nuclear deal and subsequent developments. Finally, it will analyse the non proliferation issues related to the implementation of the agreement. (N.C.)

  2. Strategies for managing nuclear proliferation: economic and political issues

    International Nuclear Information System (INIS)

    Brito, D.L.; Intriligator, M.D.; Wick, A.E.

    1983-01-01

    Several new ways of approaching nuclear-weapons proliferation emerged at an April 1982 conference at Tulane University. The new ideas use statistical techniques to emphasize political and economic rather than technological determinants, recognize the possibility that proliferation could have a stabilizing influence, shift their emphasis from eliminating to managing proliferation, and focus on regional factors. The four divisions of this book reflect these new trends. Separate abstracts were prepared for the 18 individual papers selected for the Energy Data Base (EDB) and Energy Abstracts for Policy Analysis (EAPA). 6 figures, 23 tables

  3. Nuclear proliferation and safeguards. Summary

    International Nuclear Information System (INIS)

    1982-03-01

    This comprehensive analysis of the technological, economic, and political factors affecting the potential spread of nuclear weapons proved useful in the congressional debate which culminated in the Nuclear Non-Proliferation Act of 1978. The report was subsequently published commercially and has been a frequently cited reference in the literature on proliferation and nuclear power. Despite developments since 1977, the information in the OTA report is still useful to those wishing to obtain an indepth understanding of the issues. Included is an analysis of why a nation might want nuclear weapons development program and the various sources of nuclear material are discussed. The control of proliferation is considered as well as its relation to the nuclear industry

  4. China's position on nuclear non-proliferation

    International Nuclear Information System (INIS)

    Qian Jiadong.

    1986-01-01

    The paper discusses China's position on nuclear non-proliferation, in view of the fact that China does not subscribe to the Non-Proliferation Treaty (NPT). China refuses to accede to the NPT because it considers the treaty to be discriminatory, and reasons are given for this point of view. However its stand for nuclear disarmament and disapproval of nuclear proliferation are declared. Nuclear arms race, prevention of nuclear war, and nuclear disarmament are also considered. (UK)

  5. Nuclear proliferation: prospects, problems, and proposals

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This issue of the ANNALS addresses itself to three aspects of nuclear proliferation: the prospect that new nuclear powers will come on the scene, the problems that their arrival may create, and ways of coping with those problems. In an introductory paper, ''Quo Vadimus,'' Joseph I. Coffey investigates the pros and cons of proliferation, concluding that it is not a question of whether there will be nuclear proliferation, but in what countries. Part I, Where We Are, contains five papers preceded by introductory comments by Joseph I. Coffey. The papers and their authors are: Why States Go--and Don't Go--Nuclear, William Epstein; How States Can ''Go Nuclear,'' Frank C. Barnaby; What Happens If. . .Terrorists, Revolutionaries, and Nuclear Weapons, David Kreiger; Safeguards Against Diversion of Nuclear Material: An Overview, Ryukichi Imai; and Reducing the Incentives to Proliferation, George H. Quester. Part II, And Where We May Go, again includes some introductory remarks by Joseph I. Coffey. The seven succeeding papers are: Nth Powers of the Future, Ashok Kapur; Nuclear Proliferation and World Politics, Lewis A. Dunn; Arms Control in a Nuclear Armed World, Colin Gray; The United Nations, the Superpowers, and Proliferation, Abraham Bargman; Proliferation and the Future: Destruction or Transformation, Frederick C. Thayer; Decision Making in a Nuclear Armed World, Michael Brenner; and The United States in a World of Nuclear Powers, Michael Nacht. This special report is concluded with a glossary

  6. Nuclear energy at the turning point

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, A.M.

    1977-07-01

    In deciding the future course of nuclear energy, it is necessary to re-examine man's long-term energy options, in particular solar energy and the breeder reactor. Both systems pose difficultiies: energy from the sun is likely to be expensive as well as limited, whereas a massive world-wide deployment of nuclear breeders will create problems of safety and of proliferation. Nuclear energy's long-term success depends on resolving both of these problems. Collocation of nuclear facilities with a system of resident inspectors are measures that ought to help increase the proliferation-resistance as well as the safety of a large-scale, long-term nuclear system based on breeders. In such a long-term system a strengthened International Atomic Energy Agency (IAEA) is viewed as playing a central role.

  7. Intelligence and Nuclear Proliferation: Lessons Learned

    International Nuclear Information System (INIS)

    Hansen, Keith A.

    2011-09-01

    Intelligence agencies play a fundamental role in the prevention of nuclear proliferation, as they help to understand other countries' intentions and assess their technical capabilities and the nature of their nuclear activities. The challenges in this area remain, however, formidable. Past experiences and the discoveries of Iraq's WMD programs, of North Korean nuclear weapon program, and of Iranian activities, have put into question the ability of intelligence to monitor small, clandestine proliferation activities from either states or non-state entities. This Proliferation Paper analyzes the complex challenges intelligence faces and the various roles it plays in supporting national and international nuclear non-proliferation efforts, and reviews its track record. In an effort to shed light on the role and contribution of intelligence in national and international efforts to halt, if not prevent, further nuclear weapon proliferation, this paper first analyzes the challenges intelligence faces in monitoring small, clandestine proliferation activities and the role it plays in supporting non-proliferation efforts. It then reviews the intelligence track record in monitoring proliferation including the lessons learned from Iraq. Finally, it addresses whether it is possible for intelligence to accurately monitor future clandestine proliferation efforts. (author)

  8. Suggested non-proliferation criteria for commercial nuclear fuel cycles

    International Nuclear Information System (INIS)

    Laney, R.V.; Heubotter, P.R.

    1978-01-01

    Based on the Administration's policy to prevent nuclear weapons proliferation through diversion of fuel from commercial reactor fuel cycles, a ''benchmark'' set of nonproliferation criteria was prepared for the commercial nuclear fuel cycle. These criteria should eliminate incremental risks of proliferation beyond those inherent in the present generation of low-enriched-uranium-fueled reactors operating in a once-through mode, with internationally safeguarded storage of spent fuel. They focus on the balanced application of technical constraints consistent with the state of the technology, with minimal requirements for institutional constraints, to provide a basis for assessing the proliferation resistance of proposed fission power systems. The paper contains: (1) our perception of the nuclear energy policy and of the baseline proliferation risk accepted under this policy; (2) objectives for a reactor and fuel cycle strategy which address the technical, political, and institutional aspects of diversion and proliferation and, at the same time, satisfy the Nation's needs for efficient, timely, and economical utilization of nuclear fuel resources; (3) criteria which are responsive to these objectives and can therefore be used to screen proposed reactor and fuel cycle strategies; and (4) a rationale for these criteria

  9. On the non-proliferation framework of Japan's peaceful nuclear utilization program

    International Nuclear Information System (INIS)

    Kano, Takashi

    1996-01-01

    The Conference of the States Party to the Treaty on the Non-proliferation of Nuclear Weapons (hereinafter referred to as the NPT) convened in New York, from April 17 to May 12, 1995 and decided that the NPT shall continue in force indefinitely, after reviewing the operation and affirming some aspects of the NPT, while emphasizing the ''Decision on Strengthening the Review Process'' for the NPT and the ''Decision on Principles and Objectives for Nuclear Non-proliferation and Disarmament,'' also adopted by the Conference. In parallel, Japan made its basic non-proliferation policy clear in the ''Long-Term Program for Research, Development and Utilization of Nuclear Energy'' which was decided by the Atomic Energy Commission (chaired by Mikio Oomi, then Minister of the Science and Technology Agency of Japan) in June 1994. The Long-Term Program discusses various problems facing post-Cold-War international society and describes Japan's policy for establishing international confidence concerning non-proliferation. This paper summarizes Japan's non-proliferation policy as articulated in the Long-Term Program, and describes some results of an analysis comparing the Long-Term Program with the resolutions on the international non-proliferation frameworks adopted by the NPT conference

  10. Nuclear Non-Proliferation and Export Control in the Republic of Croatia

    International Nuclear Information System (INIS)

    Valcic, I.; Prah, M.; Mikec, N.

    2006-01-01

    In accordance with its internationally accepted obligations, the Republic of Croatia is actively implementing principles of non-proliferation and export control of nuclear materials and/or equipment. The article deals with treaties, conventions, agreements and other international arrangements that are creating certain obligation for Republic of Croatia related to nuclear non-proliferation. The most important are the Treaty on the Non-proliferation of Nuclear Weapons, the Convention on the Physical Protection of Nuclear Material, the Agreement between the Republic of Croatia and the International Atomic Energy Agency for the Application of Safeguards with Protocol, the Protocol Additional to the Agreement Between the Republic of Croatia and the International Atomic Energy Agency for the Application of Safeguards, the Comprehensive Nuclear Test-Ban Treaty, the NSG Guidelines for the Export of Nuclear Material, Equipment and Technology and NSG Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Materials, Software and Related Technology. In addition the article describes a national regulative framework, the basis for conducting activities in nuclear material control, export control of dual-use items as well as non-proliferation of the weapons of mass destruction. Details are given about the Nuclear Safety Act, the Act on Liability for Nuclear Damage, the Act on Export of Dual-Use Items, the Decree on the List of Dual-Use Items, the Law on Production, Repair and Trade in Arms and Military Equipment and the Decree specifying goods subject to export and import licenses. (author)

  11. Nuclear non-proliferation

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This patent describes the treaty on the non-proliferation of nuclear weapons which is the corner-stone of an international non-proliferation regime which has grown to embrace the overwhelming majority of countries in the world in the period since the Treaty. The other elements of the regime include, first of all, the safeguards system of IAEA-which operates to prevent the diversion of nuclear materials to military or other prohibited activities and must be accepted by all non-nuclear-weapon parties to the Treaty and, secondly, the Antarctic Treaty, the Treaty for the Prohibition of Nuclear Weapons in Latin America (Treaty of Tlatelolco) and the south Pacific Nuclear Free zone Treaty (Treaty of Rarotonga)-which serve to extend the regime geographically. The last two Treaties require safeguards agreements with IAEA. In addition, the Treaty of Tlatelolco contains provisions establishing the agency for the Prohibition of Nuclear Weapons in Latin America and the Caribbean to ensure compliance

  12. Canada's nuclear non-proliferation policy

    International Nuclear Information System (INIS)

    1982-05-01

    Canada's non-proliferation safeguards policy has two objectives: 1) to promote a more effective and comprehensive international non-proliferation regime; and 2) to ensure that Canadian nuclear exports will not be used for any nuclear explosive purpose. By emphasizing the key role of the Non-Proliferation Treaty, promoting reliance upon and improvements in the IAEA safeguards system, treating nuclear weapon and non-weapon states alike, and working for new approaches covering reprocessing, Canada promotes attainment of the first objective. The second is served through the network of bilateral nuclear agreements that Canada has put into place with its partners. The Canadian objective in post-INFCE forums is to persuade the international community to devise a more effective and comprehensive non-proliferation regime into which Canada and other suppliers may subsume their national requirements

  13. Brexit, Euratom and nuclear proliferation

    International Nuclear Information System (INIS)

    Soedersten, Anna

    2016-01-01

    One of the issues absent from the academic (and public) debate on the United Kingdom's (UK) referendum vote to withdraw from the European Union (EU) (commonly referred to as 'Brexit') is what will happen to the UK's membership in the European Atomic Energy Community (Euratom). The Euratom Treaty was signed in Rome in 1957, together with the European Economic Community (EEC) Treaty. It was concluded for an unlimited period and it establishes a Community that has a separate legal personality from the EU. Thus, the EU and Euratom form two separate, although closely linked entities. Euratom's principal mission is related to the economy, tasked with 'creating the conditions necessary for the speedy establishment and growth of nuclear industries'; in other words, to promote the nuclear industry. This reflects the high expectations for nuclear energy in the 1950's. Some even believed that the development of nuclear energy would trigger an industrial revolution; however, Euratom only came to play a minor role in the European integration process. Despite this, the Euratom Treaty has remained, almost unchanged, since its adoption and is still frequently applied, although it is unclear to what extent it has boosted the nuclear industry. This article has a two-fold purpose. The first purpose is to address the constitutional issue of 'partial membership'. All EU member states are also members of Euratom. It has always been assumed that with membership in the EU also comes a membership in Euratom. But, what about withdrawal? What are the arguments for 'partial membership'? The second purpose of this article is to shed light on some implications of Brexit as it relates to Euratom. The most serious consequences are perhaps found in the area of nuclear non-proliferation. The United Kingdom is one of two nuclear weapon states in the EU (France being the other one). Withdrawal from Euratom means withdrawal from its control system, the system of so-called nuclear safeguards. Under

  14. Nuclear proliferation: linkages and solutions

    International Nuclear Information System (INIS)

    Quester, G.H.

    1979-01-01

    Nuclear proliferation must be periodically re-examined as a moral as well as a practical foreign policy dilemma. The question is asked whether proliferation precludes a safe and peaceful world, or if a halt to proliferation is adequate without other arms control. The moral dilemma in foreign policy arises over the need to make practical choices which often serve one goal while sacrificing another. The ramifications of nuclear proliferation are examined and the conclusions reached that it is not an acceptable option. It is also decided that, because general disarmament steps will be more difficult to achieve, the world may have to accept a small number of nuclear arsenals as the price of state sovereignties. A high priority for making the effort to prevent proliferation is advised. 8 references

  15. Nuclear energy, the climate and nuclear disarmament

    International Nuclear Information System (INIS)

    Knapp, V.

    1998-01-01

    The main concern of Pugwash, with very good reason, is nuclear disarmament, but a negative attitude towards nuclear energy is not only futile, but counterproductive as it misses opportunities to appropriately influence its development. Since nuclear energy cannot be abandoned for ecological (decrease in greenhouse gases emission) and economic reasons as a long term energy source, then efforts should be devoted to make it safe from proliferation, which is possible from scientific and technological point of view

  16. Which future for nuclear counter-proliferation?

    International Nuclear Information System (INIS)

    Duval, M.

    2010-01-01

    Dealing with the case of nuclear weapons possessed by nuclear states (but not eventually by terrorists), the author first identifies the constants of counter-proliferation: it is linked to interest conflicts between those who try to preserve their monopoly and those who try to acquire a new weapon either because of a threat or for reasons of regional prestige, the evolution from use to deterrence, the appearance of new actors after the USA and Russia, the role of nuclear tactical weapons, and the future of Russian weapons and know-how. He presents the international counter-proliferation context: the Non Proliferation Treaty (NPT), the IAEA and its controls, the Nuclear Supplier Group (NSG), the nuclear-free zones, the Comprehensive Test Ban Treaty (CTBT), the Missile Technology Control Regime (MTCR). He describes how and why proliferation occurs: uranium enrichment and plutonium technology, political reasons in different parts of the world. Then, he gives an overview of the proliferation status by commenting the cases of Israel, Iraq, India, Pakistan, North Korea, and Iran. He discusses the future of proliferation (involved countries, existence of a nuclear black market) and of counter-proliferation as far as Middle-East and North Korea are concerned. He tries finally to anticipate the consequences for nuclear deterrence strategy, and more particularly for Europe and France

  17. Nuclear Energy, Long Term Requirements

    International Nuclear Information System (INIS)

    Knapp, V.

    2006-01-01

    There are serious warnings about depletion of oil and gas and even more serious warnings about dangers of climate change caused by emission of carbon dioxide. Should developed countries be called to replace CO2 emitting energy sources as soon as possible, and the time available may not be longer then few decades, can nuclear energy answer the call and what are the requirements? Assuming optimistic contribution of renewable energy sources, can nuclear energy expand to several times present level in order to replace large part of fossil fuels use? Paper considers intermediate and long-term requirements. Future of nuclear power depends on satisfactory answers on several questions. First group of questions are those important for near and intermediate future. They deal with economics and safety of nuclear power stations in the first place. On the same time scale a generally accepted concept for radioactive waste disposal is also required. All these issues are in the focus of present research and development. Safer and more economical reactors are targets of international efforts in Generation IV and INPRO projects, but aiming further ahead these innovative projects are also addressing issues such as waste reduction and proliferation resistance. However, even assuming successful technical development of these projects, and there is no reason to doubt it, long term and large-scale nuclear power use is thereby not yet secured. If nuclear power is to play an essential role in the long-term future energy production and in reduction of CO2 emission, than several additional questions must be replied. These questions will deal with long-term nuclear fuel sufficiency, with necessary contribution of nuclear power in sectors of transport and industrial processes and with nuclear proliferation safety. This last issue is more political then technical, thus sometimes neglected by nuclear engineers, yet it will have essential role for the long-term prospects of nuclear power. The

  18. The nuclear non-proliferation international system before the TNP revision conference (1995)

    International Nuclear Information System (INIS)

    Biad, A.

    1996-01-01

    This document described the international cooperation on nuclear non-proliferation. It consists of different agreements which aim at a pacific use of nuclear energy. However it is shown that many difficulties occurred during the non-proliferation treaty. Questions on equilibrium between control and cooperation, on the link between nuclear weapons reduction and countries equipped with the weapon, on the security for non-equipped countries are separately discussed. (TEC)

  19. Domestic Politics and Nuclear Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chul Min; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The external security threat is known as the most important factor of nuclear weapons program, the domestic politics situation can also affect the nuclear proliferation decision of a country. For example, when a leader wants nuclear weapons as an ultimate weapon, the domestic politics situation can determine the effectiveness of the weapons program of a country. This study analyzes the current knowledge of the relationship between domestic politics and nuclear proliferation and suggests the main challenges of the quantitative models trying to calculate nuclear proliferation risk of countries. The domestic politics status is one of the most important indicators of nuclear program. However, some variables have never been used in quantitative analyses; for example, number of veto players and the public opinion on nuclear weapons; despite they are considered to be important in various qualitative studies. Future studies should focus on how should they be coded and how can they be linked with existing domestic politics variables.

  20. Domestic Politics and Nuclear Proliferation

    International Nuclear Information System (INIS)

    Kim, Chul Min; Yim, Man Sung

    2016-01-01

    The external security threat is known as the most important factor of nuclear weapons program, the domestic politics situation can also affect the nuclear proliferation decision of a country. For example, when a leader wants nuclear weapons as an ultimate weapon, the domestic politics situation can determine the effectiveness of the weapons program of a country. This study analyzes the current knowledge of the relationship between domestic politics and nuclear proliferation and suggests the main challenges of the quantitative models trying to calculate nuclear proliferation risk of countries. The domestic politics status is one of the most important indicators of nuclear program. However, some variables have never been used in quantitative analyses; for example, number of veto players and the public opinion on nuclear weapons; despite they are considered to be important in various qualitative studies. Future studies should focus on how should they be coded and how can they be linked with existing domestic politics variables

  1. First annual report on nuclear non-proliferation: supplement to annual report to Congress

    International Nuclear Information System (INIS)

    1979-01-01

    Section 602 of the Nuclear Non-Proliferation Act of 1978 (NNPA) requires that DOE's Annual Report include views and recommendations regarding non-proliferation policies and actions for which the Department is responsible. The Act also requires a detailed analysis of the proliferation implications of advanced enrichment and reprocessing techniques, advanced reactors, and alternative fuel cycles, including an unclassified summary and a comprehensive version containing relevant classified information. The goals of United States non-proliferation policy are to minimize the spread of nuclear weapons and to create a stable international environment for the peaceful use of nuclear energy

  2. The international framework for safeguarding peaceful nuclear energy programs

    International Nuclear Information System (INIS)

    Mazer, B.M.

    1980-01-01

    International law, in response to the need for safeguard assurances, has provided a framework which can be utilized by supplier and recipient states. Multilateral treaties have created the International Atomic Energy Agency which can serve a vital role in the establishment and supervision of safeguard agreements for nuclear energy programs. The Non-Proliferation Treaty has created definite obligations on nuclear-weapon and non-nuclear weapon states to alleviate some possibilities of proliferation and has rejuvenated the function of the IAEA in providing safeguards, especially to non-nuclear-weapon states which are parties to the Non-Proliferation treaty. States which are not parties to the Non-Proliferation Treaty may receive nuclear energy co-operation subject to IAEA safeguards. States like Canada, have insisted through the bilateral nuclear energy co-operation agreements that either individual or joint agreement be reached with the IAEA for the application of safeguards. Trilateral treaties among Canada, the recipient state and the IAEA have been employed and can provide the necessary assurances against the diversion of peaceful nuclear energy programs to military or non-peaceful uses. The advent of the Nuclear Suppliers Group and its guidlines has definitely advanced the cause of ensuring peaceful uses of nuclear energy. The ultimate objective should be the creation of an international structure incorporating the application of the most comprehensive safeguards which will be applied universally to all nuclear energy programs

  3. Outlook on non-proliferation activities in the world and cooperation in peaceful uses of nuclear energy among Turkish speaking countries

    International Nuclear Information System (INIS)

    Birsen, N.

    2002-01-01

    Nuclear technology is being widely used in protecting the environment, manufacturing industry, medicine, agriculture, food industry and electricity production. In the world, 438 nuclear power plants are in operation, and 31 are under construction. Nuclear share of total electricity generation have reached to 17 percent. However, 2053 nuclear tests from 1945 to 1999 and 2 atom bombs to Hiroshima and Nagasaki in 1945 have initiated nonproliferation activities aiming to halt the spread of nuclear weapons and to create a climate where cooperation in the peaceful uses of nuclear energy can be fostered. In addition to international efforts for non-proliferation of nuclear weapons, great efforts were made for disarmament and banning the nuclear tests which damage the environment. Following the first Geneva Conference in 1955 for expanding peaceful uses of nuclear energy, Turkey was one of the first countries to start activities in the nuclear field. Turkish Atomic Energy Authority (TAEK) was established in 1956 and Turkey became a member of the International Atomic Energy Agency established in 1957 by the United Nations for spreading the use of nuclear energy to contribute peace, health and prosperity throughout the world in same year. Turkey is a candidate state to join to European Union and has already signed Custom Union Agreement, also part of the Eurasian Region. So, there are significant developments in cultural, social, technical, economical and trade relations owning to our common historical and cultural values with the countries in the region and Central Asia. TAEK was established to support, co-ordinate and perform the activities in peaceful uses of nuclear energy and act as a regulatory body and establish cooperation with countries and international organizations. In the late 1990's TAEK, besides the cooperation with various countries, has involved to cooperating with nuclear institutes of Azerbaijan, Kazakhstan, Kyrgyzstan, Uzbekistan and Turkmenistan for

  4. The role of nuclear suppliers group in preventing the proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    Medakovic, S.; Cizmek, A.; Horvatic, M.; Ilijas, B.

    2009-01-01

    The non-proliferation regime today is a pretty heterogeneous system of measures and different ways of control of nuclear material production, transport and use, as well as nuclear activities and technology in general. In its basis are the Statute of International Atomic Energy Agency (IAEA) and Non-proliferation Treaty. However, the development of a nuclear technology and technological progress in the world in general, poses the need for more efficient and much more concrete systems of control of nuclear material and activities. One of organizations which cover these issues is Nuclear Suppliers Group (NSG), founded in 1991 with goal to assemble all states suppliers, regardless are they signatories of Non-proliferation Treaty or not. The important thing is that NSG do not rely only to the list of limitations for traffic of the equipment which is directly related to nuclear activities, but also to so call dual use equipment, i.e. equipment which could be, besides its primary purpose, converted to some nuclear activities. Concerning continuous technological development, and also the actual political situation in the world, these lists are continuously amended. In this presentation the principles and methods of work of NSG are analyzed, together with the role of the Republic of Croatia as its member.(author)

  5. The Role of Nuclear Suppliers Group in Preventing the Proliferation of Nuclear Weapons

    International Nuclear Information System (INIS)

    Ilijas, B.; Cizmek, A.; Prah, M.; Medakovic, S.

    2008-01-01

    The non-proliferation regime today is a pretty heterogeneous system of measures and different ways of control of nuclear material production, transport and use, as well as nuclear activities and technology in general. In its basis are the Statute of International Atomic Energy Agency (IAEA) and Non-proliferation Treaty. However, the development of a nuclear technology and technological progress in the world in general, poses the need for more efficient and much more concrete systems of control of nuclear material and activities. One of organizations which covers these issues is Nuclear Suppliers Group (NSG), founded in 1991 with goal to assemble all states suppliers, regardless are they signatories of Non-proliferation Treaty or not. The important thing is that NSG do not rely only to the list of limitations for traffic of the equipment which is directly related to nuclear activities, but also to so call dual use equipment, i.e. equipment which could be, besides its primary purpose, converted to some nuclear activities. Concerning continuous technological development, and also the actual political situation in the world, these lists are continuously amended. In this presentation the principles and methods of work of NSG are analyzed, together with the role of the Republic of Croatia as its member as from 2005.(author)

  6. Nuclear energy

    International Nuclear Information System (INIS)

    Rippon, S.

    1984-01-01

    Do we need nuclear energy. Is it safe. What are the risks. Will it lead to proliferation. The questions are endless, the answers often confused. In the vigorous debates that surround the siting and operation of nuclear power plants, it is all too easy to lose sight of the central issues amid the mass of arguments and counter-arguments put forward. And there remains the doubt, who do we believe. This book presents the facts, simply, straightforwardly, and comprehensibly. It describes the different types of nuclear reactor, how they work, how energy is produced and transformed into usable power, how nuclear waste is handled, what safeguards are built in to prevent accident, contamination and misuse. More important, it does this in the context of the real world, examining the benefits as well as the dangers of a nuclear power programme, quantifying the risks, and providing an authoritative account of the nuclear industry worldwide. Technically complex and politically controversial, the contribution of nuclear energy to our future energy requirements is a crucial topic of our time. (author)

  7. The separation of nuclear power from nuclear proliferation

    International Nuclear Information System (INIS)

    Starr, C.

    1979-01-01

    There exists world wide a strong common desire to limit nuclear weapons proliferation so as to inhibit or remove the threat of nuclear warfare. While this is a primary international political objective, there has also developed a secondary objective to limit any potential contribution to such nuclear weapons proliferation which might arise by the diversion of weapons material from the civilian nuclear power fuel cycle. This secondary objective is the basis of the present US government policy to defer the reprocessing of nuclear fuels anywhere. This policy has been generally recognized as a temporary expedient to provide time for international reexamination of the problems of weapons proliferation associated with nuclear power. A successful development of the proposed combination of the Fast Breeder Reactor and the Civex fuel reprocessing facility would provide an economical nuclear power source for many centuries which inherently separates nuclear power from the issue of weapons material diversion and proliferation. Further, by so doing, it permits great flexibility in international and national planning for nuclear power, as the issues of fuel dependence and terrorist and subnational diversions disappear. In addition, the expansion of the FBR/Civex system would eat into the LWR spent fuel stockpile, diminishing steadily this relatively accessible plutonium source. And finally, a rapid development of the FBR/Civex for the above reasons would substantially reduce the worldwide concern as to the adequacy of uranium ore supply. (Auth.)

  8. Nuclear weapons proliferation: will US policy be counterproductive

    International Nuclear Information System (INIS)

    Wolfe, B.

    1979-01-01

    The Atoms for Peace Program started in 1954 is first discussed. As a result of the Indian test and plans by France and Germany to export enrichment and reprocessing facilities, US policy has veered from the Atoms for Peace approach. US policy now emphasizes technical abstinence rather than technical leadership. Dr. Wolfe concludes that the US, in attempting to discourage nuclear technologies it believes inimical to its non-proliferation objectives, has instead accelerated their independent development abroad. He states that the meaningful issue that must be faced in today's world is not whether the US can delay promising, but sensitive, technologies such as laser enrichment and reprocessing; rather, it is whether the US can play a lead role in determining the future institutional framework in which such technologies will be deployed. US ability to take this lead depends largely on its ability to maintain technological leadership. Thus, it is ironic to find US nuclear power capacity weakened in the name of non-proliferation objectives. Dr. Wolfe feels that technical leadership by the US in exploiting the immense energy-supply potential of nuclear energy can, as in the past, provide a means to help determine how nuclear technologies are utilized internationally. As an incidental benefit, such technological leadership may in the future help to solve our own energy-supply problem. 20 references

  9. Nuclear power: energy security and supply assurances

    International Nuclear Information System (INIS)

    Rogner, H.H.; McDonald, A.

    2008-01-01

    Expectations are high for nuclear power. This paper first summarizes recent global and regional projections for the medium-term, including the 2007 updates of IAEA projections plus International Energy Agency and World Energy Technology Outlook projections to 2030 and 2050. One driving force for nuclear power is concern about energy supply security. Two potential obstacles are concerns about increased nuclear weapon proliferation risks, and concerns by some countries about potential politically motivated nuclear fuel supply interruptions. Concerning supply security, the paper reviews different definitions, strategies and costs. Supply security is not free; nor does nuclear power categorically increase energy supply security in all situations. Concerning proliferation and nuclear fuel cut-off risks, the IAEA and others are exploring possible 'assurance of supply' mechanisms with 2 motivations. First, the possibility of a political fuel supply interruption is a non-market disincentive discouraging investment in nuclear power. Fuel supply assurance mechanisms could reduce this disincentive. Second, the risk of interruption creates an incentive for a country to insure against that risk by developing a national enrichment capability. Assurance mechanisms could reduce this incentive, thereby reducing the possible spread of new national enrichment capabilities and any associated weapon proliferation risks. (orig.)

  10. Nuclear energy - a professional assessment

    International Nuclear Information System (INIS)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments. (U.K.)

  11. Nuclear energy - a professional assessment

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments.

  12. Nuclear Society and non-proliferation problems

    International Nuclear Information System (INIS)

    Gagarinskij, A.Ya.; Kushnarev, S.V.; Ponomarev-Stepnoj, N.N.; Sukhoruchkin, V.K.; Khromov, V.V.; Shmelev, V.M.

    1997-01-01

    In the USSR Nuclear Society in 1991 the special working group on the problems of nuclear weapons non-proliferation and nuclear materials control, uniting the experts of different types (nuclear physicists, lawyers, teachers), was created. This group became the mechanism of the practical Nuclear Society activity realization in this sphere. Three milestones of the innovative activity can be specified. First Milestone. In January 1992 the Central Nuclear Society Board (of the International Public Nuclear Society Association) published a special appeal to the First Leaders of all countries - former USSR republics. This address paid a special attention to the unity of the USSR power-industrial complex, and numerous problems arisen while separating this complex, including nuclear weapons non-proliferation problems, were indicated as well. Second Milestone. In 1992 and 1993 the Nuclear Society experts issued two selection 'Nuclear Non-proliferation and Control Problems' including reviewing basic papers. In addition, materials on non-proliferation and control are published regularly in the organs. Third Milestone.In 1993 - 1997 some special scientific and technical events (conferences, workshops, meetings) allowing to analyze the joint international projects and contracts outcomes, and establish new contacts between the specialists of NIS, Baltic states and others, have been hold

  13. Crisis as opportunity. Implications of the nuclear conflict with Iran for the nuclear non-proliferation regime

    International Nuclear Information System (INIS)

    Meier, Oliver

    2014-01-01

    The conflict over the Iranian nuclear programme represents the greatest challenge for international efforts to prevent nuclear proliferation. For decades Iran has been violating obligations contained in its safeguards agreement with the International Atomic Energy Agency (IAEA) in order to become nuclear weapons capable. But what impact does the conflict over Tehran's nuclear programme have on the nuclear non-proliferation regime? In three areas there is significant overlap between efforts to find a solution with Iran and broader discussions about strengthening non-proliferation norms, rules and procedures: verification of civilian nuclear programmes, limiting the ability to produce weapons-grade fissile materials, and nuclear fuel supply guarantees. The nuclear dispute with Tehran is likely to have specific effects in each of these fields on the non-proliferation regime's norms, rules and procedures. The ninth NPT review conference, which will take place from 27 April to 22 May 2015, offers an opportunity to draw lessons from the nuclear conflict and discuss ideas for further strengthening the regime. Germany is the only non-nuclear-weapon state within the E3+3 group and the strongest proponent of nuclear disarmament. As a supporter of effective multilateralism, Berlin also bears a special responsibility for ensuring that steps to strengthen nuclear verification and control efforts in the talks with Iran also reflect the non-nuclear-weapon states' interest in disarmament and transparency on the part of the nuclear-weapons states.

  14. Crisis as opportunity. Implications of the nuclear conflict with Iran for the nuclear non-proliferation regime

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Oliver

    2014-11-15

    The conflict over the Iranian nuclear programme represents the greatest challenge for international efforts to prevent nuclear proliferation. For decades Iran has been violating obligations contained in its safeguards agreement with the International Atomic Energy Agency (IAEA) in order to become nuclear weapons capable. But what impact does the conflict over Tehran's nuclear programme have on the nuclear non-proliferation regime? In three areas there is significant overlap between efforts to find a solution with Iran and broader discussions about strengthening non-proliferation norms, rules and procedures: verification of civilian nuclear programmes, limiting the ability to produce weapons-grade fissile materials, and nuclear fuel supply guarantees. The nuclear dispute with Tehran is likely to have specific effects in each of these fields on the non-proliferation regime's norms, rules and procedures. The ninth NPT review conference, which will take place from 27 April to 22 May 2015, offers an opportunity to draw lessons from the nuclear conflict and discuss ideas for further strengthening the regime. Germany is the only non-nuclear-weapon state within the E3+3 group and the strongest proponent of nuclear disarmament. As a supporter of effective multilateralism, Berlin also bears a special responsibility for ensuring that steps to strengthen nuclear verification and control efforts in the talks with Iran also reflect the non-nuclear-weapon states' interest in disarmament and transparency on the part of the nuclear-weapons states.

  15. Nuclear energy: a vital energy choice

    International Nuclear Information System (INIS)

    Pecqueur, Michel

    1980-01-01

    Speaking from the platform of the XIIIth annual session of the International Atomic Energy Agency, at New Delhi, AEC managing director Michel Pecqueur made a solemn appeal to the world community for the decisions which are needed on energy. The present energy crisis can lead the world to a recession and be a factor in grave troubles for peace and balance in the world. The crisis cannot be resolved without accrued recourse to the use of nuclear energy. Two essential themes were outlined: the development of nuclear energy in the world, and the increased reduction of proliferation risks. In concluding, he expressed the hop that with a greater effort in information media, the nuclear fact-of-life would be better accepted by the general public in future, for it is there that lies a brake which may hinder nuclear energy development [fr

  16. From nuclear non-proliferation to nuclear disarmament: a need to refocus NPT priorities

    International Nuclear Information System (INIS)

    Sethi, Manpreet

    1998-01-01

    This paper seeks to suggest that attempts at general and complete nuclear disarmament have largely failed because of an over emphasis on nuclear non-proliferation, particularly horizontal, while disarmament has attracted only lip service from the perpetrators of nuclear weapons. In this regard, the treaty of the Non-Proliferation of Nuclear Weapons (NPT) that is deemed to be the core of the global non-proliferation regime is no less to blame for having indulged in a skewed pursuit of its twin objectives - nuclear non-proliferation and nuclear disarmament. The paper argues that nuclear non-proliferation can be sustainable only if complemented by nuclear disarmament. In the absence of the latter, proliferation of nuclear weapons, irrespective of the NPT and its safeguards regime, would always pose a potential risk

  17. Energy-efficiency and proliferation-resistance assessment factors

    International Nuclear Information System (INIS)

    1979-02-01

    Assessment factors suggested with regard to energy efficiency are: preservation of natural non-renewable resources: the degree of security of supply which can be achieved; the availability of necessary raw materials and technology; economic feasibility; and acceptability of a fuel cycle from environmental and safety views. In the area of proliferation resistance, it is suggested that the basic element is the political commitment by a Government not to use imported nuclear materials and equipment to manufacture nuclear explosives. 100% proliferation resistance is considered unattainable in practice. The role of international safeguards in detering possible diversion through the risk of early detection is described, and it is argued that efficient safeguards will force a Government willing to go nuclear to withdraw from its safeguards agreements. The second assessment factor, accordingly, is to consider different fuel cycles with regard to the efficient and rapid building up of a nuclear weapons capacity once the country has withdrawn from its safeguards commitments

  18. Nuclear energy today

    International Nuclear Information System (INIS)

    2003-01-01

    Energy is the power of the world's economies, whose appetite for this commodity is increasing as the leading economies expand and developing economies grow. How to provide the energy demanded while protecting our environment and conserving natural resources is a vital question facing us today. Many parts of our society are debating how to power the future and whether nuclear energy should play a role. Nuclear energy is a complex technology with serious issues and a controversial past. Yet it also has the potential to provide considerable benefits. In pondering the future of this imposing technology, people want to know. - How safe is nuclear energy? - Is nuclear energy economically competitive? - What role can nuclear energy play in meeting greenhouse gas reduction targets? - What can be done with the radioactive waste it generates? - Does its use increase the risk of proliferation of nuclear weapons? - Are there sufficient and secure resources to permit its prolonged exploitation? - Can tomorrow's nuclear energy be better than today's? This publication provides authoritative and factual replies to these questions. Written primarily to inform policy makers, it will also serve interested members of the public, academics, journalists and industry leaders. (author)

  19. Nuclear energy and security

    International Nuclear Information System (INIS)

    Blejwas, Thomas E.; Sanders, Thomas L.; Eagan, Robert J.; Baker, Arnold B.

    2000-01-01

    Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadership or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity

  20. Handbook for nuclear non-proliferation

    International Nuclear Information System (INIS)

    Lee, Byung Wook; Oh, Keun Bae; Lee, Kwang Seok; Lee, Dong Jin; Ko, Han Seok.

    1997-05-01

    This book analyzed international non-proliferation regime preventing from spread of nuclear weapon. This book took review from the historical background of non-proliferation regime to the recent changes and status. The regime, here, is divided into multilateral and bilateral regime. First of all, this book reports four multilateral treaties concluded for non-proliferation such as NPT, NWFZ, CTBT and others. Secondly, international organization and regimes concerned with non-proliferation are analyzed with emphasis of UN, IAEA, ZC and NSG, Regional Safeguards System and international conference. Finally, this book report the current circumstances of nuclear cooperation agreement related with Korea which is an important means for bilateral regime. (author). 13 tabs., 2 figs

  1. Handbook for nuclear non-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Wook; Oh, Keun Bae; Lee, Kwang Seok; Lee, Dong Jin; Ko, Han Seok

    1997-05-01

    This book analyzed international non-proliferation regime preventing from spread of nuclear weapon. This book took review from the historical background of non-proliferation regime to the recent changes and status. The regime, here, is divided into multilateral and bilateral regime. First of all, this book reports four multilateral treaties concluded for non-proliferation such as NPT, NWFZ, CTBT and others. Secondly, international organization and regimes concerned with non-proliferation are analyzed with emphasis of UN, IAEA, ZC and NSG, Regional Safeguards System and international conference. Finally, this book report the current circumstances of nuclear cooperation agreement related with Korea which is an important means for bilateral regime. (author). 13 tabs., 2 figs.

  2. Which future for nuclear counter-proliferation?; Quel avenir pour la contre-proliferation nucleaire?

    Energy Technology Data Exchange (ETDEWEB)

    Duval, M.

    2010-07-15

    Dealing with the case of nuclear weapons possessed by nuclear states (but not eventually by terrorists), the author first identifies the constants of counter-proliferation: it is linked to interest conflicts between those who try to preserve their monopoly and those who try to acquire a new weapon either because of a threat or for reasons of regional prestige, the evolution from use to deterrence, the appearance of new actors after the USA and Russia, the role of nuclear tactical weapons, and the future of Russian weapons and know-how. He presents the international counter-proliferation context: the Non Proliferation Treaty (NPT), the IAEA and its controls, the Nuclear Supplier Group (NSG), the nuclear-free zones, the Comprehensive Test Ban Treaty (CTBT), the Missile Technology Control Regime (MTCR). He describes how and why proliferation occurs: uranium enrichment and plutonium technology, political reasons in different parts of the world. Then, he gives an overview of the proliferation status by commenting the cases of Israel, Iraq, India, Pakistan, North Korea, and Iran. He discusses the future of proliferation (involved countries, existence of a nuclear black market) and of counter-proliferation as far as Middle-East and North Korea are concerned. He tries finally to anticipate the consequences for nuclear deterrence strategy, and more particularly for Europe and France

  3. Energy in developing countries and the role of nuclear energy

    International Nuclear Information System (INIS)

    Goldemberg, Jose

    1986-01-01

    The role of nuclear energy in developing countries is discussed with respect to energy consumption, energy needs and energy future. The application of Article IV of the Non-Proliferation Treaty (NPT) is examined for the developing countries. It is suggested that a revision of the NPT is needed to encourage effective nuclear disarmament. (UK)

  4. Non Proliferation of Nuclear

    International Nuclear Information System (INIS)

    Bambang S Irawan

    2004-01-01

    Non-Proliferation Treaty of Nuclear Weapons is the international community's efforts to maintain the security of the world, in order to prevent the spread of nuclear technology and the use of nuclear weapons, promoting cooperation for the use of nuclear peaceful purposes, build mutual trust (Confidence Building Measures) as well as to achieve the ultimate goal of disarmament overall (General and Complete Disarmament). Addressing the post-WTC tragedy, 11 September 2001, the Indonesian government should set up a National Measures (National Action Plan), among others formed the National Security Council and NBC Counter Proliferation Unit, or the National Authority for Nuclear Treaty, preparing national legislation, to prevent the abuse nuclear materials for terrorist acts, prevent Illicit Trafficking of Nuclear materials, developed a National Preparedness and Emergency Response Management in the event of a nuclear accident or attack by the use of nuclear terrorism. Importance of a National Action Plan meant the existence of a national commitment in the context of compliance with treaties and conventions which have been ratified relating to safety, security, safeguards towards a general and complete disarmament, to safeguard national security and maintain peace (safeguards) international

  5. The encapsulated nuclear heat source reactor for proliferation-resistant nuclear energy

    International Nuclear Information System (INIS)

    Brown, N.W.; Hossain, Q.; Carelli, M.D.; Conway, L.; Dzodzo, M.; Greenspan, E.; Saphier, D.

    2001-01-01

    The encapsulated nuclear heat source (ENHS) is a modular reactor that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor concept. It is a fast neutron spectrum reactor cooled by Pb-Bi using natural circulation. It is designed for passive load following, for high level of passive safety, and for 15 years without refueling. One of the unique features of the ENHS is that the fission-generated heat is transferred from the primary coolant to the secondary coolant across the reactor vessel wall by conduction-providing for an essentially sealed module that is easy to install and replace. Because the fuel is encapsulated within a heavy steel container throughout its life it provides a unique improvement to the proliferation resistance of the nuclear fuel cycle. This paper presents the innovative technology of the ENHS. (author)

  6. The Nuclear Progress And The Non-Proliferation Policies

    Energy Technology Data Exchange (ETDEWEB)

    Popa-Simil, Liviu [Los Alamos, NM 87544 (United States)

    2009-06-15

    The 2008 fall crisis showed the limits of globalization under the actual rules and de-regulations promoted by few developed countries. It also showed the weakness of the planetary economy induced by strong economic connections that makes the propagation of crises faster than the spread of welfare. The increase in severe weather and natural disasters showed how fast the civilization can be spoiled while the competition for oil resources made the interstate tensions grow. For almost all states, the development of the nuclear power becomes a prime option, even oil producers started to show interest in nuclear technology and also, policies that in particular are clearly oriented towards national development policies. The fact that anybody mastering nuclear technologies and uses for power production is capable in a reasonable time to produce weapons is a well-known fact. Therefore, in order to reduce the proliferation risk it is necessary to contain the nuclear science development. An alternative is to shift the weight in promoting renewable energies, as potential future energy alternative. Considering rigorously the future climate change effects, it becomes obvious that any delay in nuclear development will turn very costly for any nation ignoring all these facts and, the complexity of the real nonproliferation is growing. This new trend raises serious challenges in front of all states regarding the non-proliferation and, in order to keep control and stimulate a sound nuclear development, some of the actual non-proliferation concepts and policies have to be reformulated and enhanced. This has to be done in parallel with a more intensive implication of the international organisms in the real development of the nuclear power at national level. The large diversity of nuclear applications with huge collateral implication in every national economy makes the role of the international organisms orders of magnitude more important. The new challenges posed in front of the

  7. Nuclear energy promise or peril?

    International Nuclear Information System (INIS)

    Van der Zwaan, B.C.C.; Hill, C.R.; Ripka, G.

    1999-01-01

    Nuclear energy will inevitably become an important worldwide issue in the 21. century. The authors are authorities in their own fields and their contributions have been read, discussed and criticized by a wide, international group of experts. The today status of nuclear power is exposed, the authors weigh the pros and cons of nuclear energy. In a near future nuclear energy could play a major role in preventing climate change and atmospheric pollution. The main challenges that put at risk nuclear energy are: nuclear safety, radiation protection, the management of radioactive wastes, the problem of plutonium stocks and the risk of proliferation. For each of these open questions, a specialist makes a precise survey of the situation

  8. Nuclear energy: considerations about nuclear trade

    International Nuclear Information System (INIS)

    Goes Fischer, M.D. de.

    1988-01-01

    A general view of historical aspects of nuclear energy and the arrangements to assure its use for peaceful purposes are presented. Then the internal character of nuclear energy in a juride context is demonstrated; some consideration about the international organizations and conventions and the Brazilian Legislation in the nuclear area are examined. It also deals with the political aspects of nuclear trade and the function of IAEA in this are. Furthermore the restrictions imposed by Non-Proliferation Treaty-NPT, the objectures of the Tlatelolco Treaty and ''London Club'' guidelines. Afterwards the bilateral cooperation under taken by countries and its agreements are discussed. Besides some aspects of agreements made between United States, France Germany and Brazil are discussed [pt

  9. Panel on nuclear export and proliferation

    International Nuclear Information System (INIS)

    Kimel, W.R.

    1977-01-01

    Summaries of six panelists' remarks make the following points: one cannot suppress nuclear weapons by suppressing nuclear power; a proliferated world would be extremely dangerous; US supports IAEA safeguards; plutonium shouldn't be recycled in power reactors; and the problem of nonproliferation is a social and institutional problem, not a technological one. Viewographs showing the semantics of proliferation, ways to get nuclear weapons materials, etc. are included

  10. Nuclear power, nuclear exports and the non-proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    Hildenbrand, G.

    1977-01-01

    Developed and developing countries alike unfortunately have no other options in replacing oil in electricity generation than to use coal or nuclear energy. As far as the supplier countries are concerned, there is no doubt that nobody is interested in adding to the proliferation of nuclear weapons. On the other hand, the future electricity requirement in the developing countries, especially the need for nuclear power plants, represents a considerable market in the medium and long term which the supplier countries cannot simply ignore because they must seek to secure their export shares in order to protect jobs at home. For the receiver countries it is a matter of principle to achieve the highest possible degree of independence in energy generation so as to be able to guarantee continuity of supply. The interest in building up national fuel cycle activities is also closely linked with the creation of jobs in the receiver countries and with the efforts of these countries to straighten out their balance of payments situation. (orig.) [de

  11. Evaluating the attractiveness of nuclear material for proliferation-resistance and nuclear security

    International Nuclear Information System (INIS)

    Choi, Jor-Shan; Ikegame, Kou; Kuno, Yusuke

    2011-01-01

    The attractiveness of nuclear material, defined as a function of the isotopic composition of the nuclear material in formulas expressing the material's intrinsic properties, is of considerably debate in recent developments of proliferation-resistance measures of a nuclear energy system. A reason for such debate arises from the fact that the concept of nuclear material attractiveness can be confusing because the desirability of a material for nuclear explosive use depends on many tangible and intangible factors including the intent and capability of the adversary. In addition, a material that is unattractive to an advanced nation (in the case of proliferation) may be very attractive to a terrorist (in the case of physical protection and nuclear security). Hence, the concept of 'Nuclear Material Attractiveness' for different nuclear materials must be considered in the context of safeguards and security. The development of a ranking scheme on the attractiveness of nuclear materials could be a useful concept to start-off the strategies for safeguards and security on a new footing (i.e., why and how nuclear material is attractive, and what are the quantifiable basis). Japan may benefit from such concept regarding the attractiveness of nuclear materials when recovering nuclear materials from the damaged cores in Fukushima because safety, security, and safeguards (3S) would be a prominent consideration for the recovery operation, and it would be the first time such operation is performed in a non-nuclear weapons state. (author)

  12. Nuclear energy: a sensible alternative

    International Nuclear Information System (INIS)

    Ott, K.O.; Spinrad, B.I.

    1985-01-01

    This book presents information on energy futures; energy demand, energy supplies; exclusive paths and difficult choices--hard, soft, and moderate energy paths; an energy-deficient society; energy shortages; economics of light-water reactors; fast breeder reactor economics; international cooperation in the nuclear field; nuclear recycling; alternative fuels, fuel cycles, and reactors; the nuclear weapons proliferation issue; paths to a world with more reliable nuclear safeguards; the homemade bomb issue; LWR risk assessment; accident analysis and risk assessment; the waste disposal risk; radon problems; risks in our society; health effects of low-level radiation; routine releases of radioactivity from the nuclear industry; low-level radioactivity and infant mortality; the myth of plutonium toxicity; myths about high-level radioactive waste; the aging reactor myth; the police state myth; insurance and nuclear power--the Price-Anderson Act; and solar and nuclear power as partners

  13. The Nuclear Non-Proliferation Treaty: Regulating Nuclear Weapons around the World

    Science.gov (United States)

    Middleton, Tiffany Willey

    2010-01-01

    In May 2010, scientists, national security experts, and state delegates from nations around the world will convene in New York for the 2010 Nuclear Non-Proliferation Treaty Review Conference. They will review current guidelines for nuclear testing and possession of nuclear weapons in accordance with the Nuclear Non-Proliferation Treaty of 1968,…

  14. Nuclear power and nuclear weapons proliferation

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    An appropriate non-proliferation treaty should not discriminate among the non-weapon states, but should seek a cooperative approach with all countries seeking nuclear power and willing to accept international safeguards. Near-term proliferation problems, represented by nations already on the threshold of weapon capability, should not be confused with the long-term problem of world-wide nuclear development. The first can be handled with incentives and disincentives imposed on specific countries, while the latter involves the distribution of plutonium on the basis of alternative fuel cycles. To retain world leadership, U.S. efforts along these lines should be to encourage a dialogue between suppliers and recipients and to coordinate the economic and security issues of its own non-proliferation and foreign policies. One option is a U.S. commitment to a multinational fuel storage and reprocessing facility. Technical evaluation and demonstration of alternative fuel cycles to reach an international consensus would be a parallel activity

  15. Nuclear proliferation: present, past and future

    International Nuclear Information System (INIS)

    Alonso, M.; Zaleski, P.

    1993-01-01

    Since the end of WW II one of the more, if not the most, serious concerns of all people in the world has been to preserve this planet avoiding a nuclear war. On the positive side, in spite of the huge arsenal of strategic and tactical nuclear weapons (NW) accumulated over the years by the US and the former SU and the innumerable military conflicts we have witnessed since WW II, no NW have been used again. But this should not be a great consolation: the fact that countries have refrained from using NW does not necessarily mean that it will always be that way. As long as countries try to solve their differences by the use of force the danger of a nuclear confrontation remains, and nuclear disarmament and proliferation should cotinue to be a serious concern. This concern has profound political, social and ethical components that have been analyzed extensively and profusely. The purpose of this paper is more limited: to provide an overview of the national and international efforts to minimize the risk of a nuclear war by regulating, restricting and containing the development and possession of NW. This is what has become know as the nuclear non-proliferation regime. Any nuclear non-proliferation regime must have two essential goals: achieving nuclear disarmament by the NWS (and thereby eliminating vertical proliferation). To make a regime effective it must rely on international agreements, a system of safeguards coupled with inspection and verification procedures, and above all on the good faith of all nations involved. It should be stated from the very beginning that nuclear non-proliferation efforts, like all disarmament efforts, are essentially of political nature, albeit having an important scientific and technological component. They are effective only to the extent that countries really renounce NW and are prepared to severely sanction those who do not. (Author) 31 refs

  16. Implementing nuclear non-proliferation in Finland. Regulatory control, international cooperation and the Comprehensive Nuclear-Test-Ban Treaty. Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Okko, O [ed.

    2012-07-01

    The regulatory control of nuclear materials (i.e. nuclear safeguards) is a prerequisite for the peaceful use of nuclear energy in Finland. Safeguards are required for Finland to comply with international agreements on nuclear non-proliferation - mainly the Non-Proliferation Treaty (NPT). This regulatory control is exercised by the Nuclear Materials Section of the Finnish Radiation and Nuclear Safety Authority (STUK). The results of STUK's nuclear safeguards inspection activities in 2011 continued to demonstrate that the Finnish licence holders take good care of their nuclear materials. There were no indications of undeclared nuclear materials or activities and the inspected materials and activities were in accordance with the licence holders' declarations.

  17. Internationalization: an alternative to nuclear proliferation

    International Nuclear Information System (INIS)

    Meller, E.

    1980-01-01

    Leading personalities in the field of nuclear energy worldwide assess possible improvements to the present nonproliferation regime and explore the possibilities for the internationalization of sensitive parts of the nuclear fuel cycle. Their studies address past and current nonproliferation policies, the current controversy between the United States and its European allies on the development of fast breeder reactors and plutonium recycling, implications of the recent US Non-Proliferation Act of 1978 upon US/Euratom relations, industrial government relationships, safety concerns, and the special needs of developing countries. Their conclusions stress the recognition of complex factors such as military security, technical competition, the spread of nuclear technology, and politics that will limit any mechanism to govern nonproliferation. They urge greater effort in educating the public to the political and economic complexities of nuclear power and recommend strengthening international agreements and other arrangements, including controls and safeguards, and the general rules for the international trade of nuclear fuel. 11 figures, 7 tables

  18. Conference day - Dissuasion, proliferation, disarmament: the nuclear debate beyond 2010. Conference proceedings; Journee d'etude - Dissuasion, proliferation, desarmement: le debat nucleaire apres 2010. Actes de la conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    A first set of contributions (round tables) addresses the relationship between NATO, nuclear deterrence and antimissile defence. The second set of contributions addresses nuclear policies of emerging powers (Russia, China, Iran...) and proliferation risks. The third one addresses the perspectives of non proliferation, civil nuclear energy actors, and disarmament

  19. Methodology for proliferation resistance and physical protection of Generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Bari, R.; Peterson, P.; Nishimura, R.; Roglans-Ribas, J.

    2005-01-01

    Enhanced proliferation resistance and physical protection (PR and PP) is one of the technology goals for advanced nuclear concepts. Under the auspices of the Generation IV International Forum an international experts group has been chartered to develop an evaluation methodology for PR and PP. This methodology will permit an objective PR and PP comparison between alternative nuclear systems and support design optimization to enhance robustness against proliferation, theft and sabotage. The assessment framework consists of identifying the threats to be considered, defining the PR and PP measures required to evaluate the resistance of a nuclear system to proliferation, theft or sabotage, and establishing quantitative methods to evaluate the proposed measures. The defined PR and PP measures are based on the design of the system (e.g., materials, processes, facilities), and institutional measures (e.g., safeguards, access control). The assessment methodology uses analysis of pathways' with respect to specific threats to determine the PR and PP measures. Analysis requires definition of the threats (i.e. objective, capability, strategy), decomposition of the system into its relevant elements (e.g., reactor core, fuel recycle facility, fuel storage), and identification of targets. (author)

  20. Nuclear Materials Diversion Safety and the Long-term Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Knapp, V.

    2002-01-01

    Primarily due to irresponsible cold war politics of nuclear weapon countries nuclear proliferation situation is little short of getting out of control. In addition to five nominal nuclear weapon countries there are at present at least three more nuclear weapon countries and several countries with nuclear weapon potential. Non-proliferation treaty (NPT), signed in 1970, has been recognized by most non-nuclear weapon countries as unjust and ineffective. After the initial, deliberate, nuclear weapon developments of five nominal nuclear weapon countries, subsequent paths to nuclear weapons have been preceded by nominal peaceful use of nuclear energy. Uranium enrichment installations as well as reprocessing installations in non-nuclear weapon countries are the weakest spots of fuel cycle for diversion of nuclear materials either by governments or by illicit groups. An energy scenario, which would, by the end of century, replace the large part of fossil fuels use through extension of present nuclear practices, would mean very large increase in a number of such installations, with corresponding increase of the probability of diversion of nuclear materials. Such future is not acceptable from the point of view of proliferation safety. Recent events make it clear, that it cannot be accepted from the requirements of nuclear terrorism safety either. Nuclear community should put it clearly to their respective governments that the time has come to put general interest before the supposed national interest, by placing all enrichment and reprocessing installations under full international control. Such internationalization has a chance to be accepted by non-nuclear weapon countries, only in case should it apply to nuclear weapon countries as well, without exception. Recent terrorist acts, however horrible they were, are child,s play compared with possible acts of nuclear terrorism. Nuclear energy can be made proliferation safe and diversion of nuclear materials safe, and provide

  1. Nuclear energy for the 21. century

    International Nuclear Information System (INIS)

    2005-03-01

    This document gathers 5 introductory papers to this conference about nuclear energy for the 21. century: the French energy policy during the last 30 years (situation of France with respect to the energy supply and demand, main trends of the French energy policy, future of the French nuclear policy); presentation of IAEA (technology transfer, nuclear safety, non-proliferation policy, structure and financial resources, council of governors, general conference, secretariat); nuclear power and sustainable development; promoting safety at nuclear facilities (promoting safety, basics of safety, safety at the design stage, risk management, regulatory control and efficiency of the regulation organization, role of IAEA); nuclear energy today (contribution to sustainable development, safety, best solution for the management of radioactive wastes, future of nuclear energy). (J.S.)

  2. A collaboration on development of requirements and guidelines for proliferation resistance of future nuclear system in the IAEA INPRO

    International Nuclear Information System (INIS)

    Oh, Keun Bae; Lee, Kwang Seok; Kim, Hyun Jun; Jeong, Ik; Yang, Myung Seung; Ko, Won Il

    2003-10-01

    This study surveyed and analyzed the existing activities and international status concerning proliferation resistance of nuclear energy systems, reviewed the features of proliferation resistance, and derived the requirements of future innovative nuclear energy systems. In IAEA INPRO, guidance for the evaluation of innovative nuclear reactors and fuel cycles on proliferation resistance was finalized through collaboration of member countries including Korea in reviewing technological status and developing the methodology for evaluation of proliferation resistance. This report, first, describes the progress of INPRO and the participation status of Korea in the project, and briefly summarizes the report of phase IA of INPRO. Next, features of proliferation resistance of nuclear systems, collaboration in the GIF and the INPRO for development of requirements and guidelines for proliferation resistance, and the final result of guidance for the evaluation of proliferation resistance were described. Finally, this study proposed measures for participation of further progress of the INPRO

  3. Climatic change and nuclear energy

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-08-01

    The data presented in the different chapters lead to show that nuclear energy ids not a sustainable energy sources for the following reasons: investments in nuclear energy account financing that lacks to energy efficiency programmes. The nuclear programmes have negative effects such the need of great electric network, the need of highly qualified personnel, the freezing of innovation in the fields of supply and demand, development of small performing units. The countries resort to nuclear energy are among the biggest carbon dioxide emitters, because big size nuclear power plants lead to stimulate electric power consumption instead of inducing its rational use. Nuclear energy produces only electric power then a part of needs concerns heat (or cold) and when it is taken into account nuclear energy loses its advantages to the profit of cogeneration installations. Finally nuclear energy is a dangerous energy source, difficult to control as the accident occurring at Tokai MURA showed it in 1998. The problem of radioactive wastes is not still solved and the nuclear proliferation constitutes one of the most important threat at the international level. (N.C.)

  4. Nuclear weapons proliferation problem: can we lead without leadership

    International Nuclear Information System (INIS)

    Stathakis, G.J.

    1977-01-01

    The immediate problem facing us with respect to proliferation and nuclear power involves reprocessing and the availability of plutonium from reprocessing plants. One solution supported by the Atomic Industrial Forum is that reprocessing centers be restricted to locations in those industrial nations already having weapons capability and that the energy of the reprocessed plutonium be returned to the user nation in the form of low enriched uranium. Thus, the plutonium would remain where it would not add to problems of proliferation

  5. The nuclear proliferation

    International Nuclear Information System (INIS)

    Gere, F.

    1995-04-01

    In this book is detailed the beginning of nuclear military power, with the first bomb of Hiroshima, the different ways of getting uranium 235 and plutonium 239, and how the first countries (Usa, Ussr, China, United kingdom, France) got nuclear weapons. Then the most important part is reviewed with the details of non-proliferation treaty and the creation of IAEA to promote civilian nuclear power in the world and to control the use of plutonium and uranium in nuclear power plants. The cases of countries who reached the atom mastery, such Israel, South Africa, Pakistan, Iraq, North Korea, Argentina, Brazil, Iran, Algeria, Taiwan and the reasons which they wanted nuclear weapon for or why they gave up, are exposed

  6. The handbook of nuclear non-proliferation

    International Nuclear Information System (INIS)

    Yang, M. H.; Lee, B. W.; Oh, K. B.; Lee, H. M.; Ko, H. S.; Ryu, J. S.; Lee, K. S.

    2003-07-01

    This report analyzed international non-proliferation regime preventing from spread of nuclear weapon. This report took review from the historical background of non-proliferation regime to the recent changes and current status. It is here divided into multilateral and bilateral regime. First of all, this report dealt four multilateral treaties concluded for international non-proliferation such as NPT, NWFZ, CTBT and others. And international organization and regimes concerned with non-proliferation are also analyzed focused on UN, IAEA, ZC and NSG, regional safeguards system and international conferences. In addition, this report reviewed the nuclear cooperation agreement related with Korea which is a important tool for bilateral regime

  7. Nuclear exports and non-proliferation

    International Nuclear Information System (INIS)

    Courteix, Simone.

    1978-01-01

    Increased preoccupation in present times with the risk of proliferation of nuclear weapons is reflected in the multiplication of international agreements such as the Non-proliferation Treaty and in the strengthening of consultations between industrialised countries (London Club). After analysing the IAEA safeguards system under the Non-proliferation Treaty and its shortcomings both technically and otherwise, the author considers how this situation can be remedied in the light of the London Agreements and in view of the position of the main countries concerned. The annex to the book contains the texts of many international agreements and relevant national regulations as well as nuclear policy statements. It also includes a detailed bibliograaphy. (NEA) [fr

  8. Implementing nuclear non-proliferation in Finland. Regulatory control, international cooperation and the Comprehensive Nuclear-Test-Ban Treaty. Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Okko, O. (ed.)

    2012-07-01

    The regulatory control of nuclear materials (i.e. nuclear safeguards) is a prerequisite for the peaceful use of nuclear energy in Finland. Safeguards are required for Finland to comply with international agreements on nuclear non-proliferation - mainly the Non-Proliferation Treaty (NPT). This regulatory control is exercised by the Nuclear Materials Section of the Finnish Radiation and Nuclear Safety Authority (STUK). The results of STUK's nuclear safeguards inspection activities in 2011 continued to demonstrate that the Finnish licence holders take good care of their nuclear materials. There were no indications of undeclared nuclear materials or activities and the inspected materials and activities were in accordance with the licence holders' declarations.

  9. Model-Based Calculations of the Probability of a Country's Nuclear Proliferation Decisions

    International Nuclear Information System (INIS)

    Li, Jun; Yim, Man-Sung; McNelis, David N.

    2007-01-01

    The first nuclear weapon was detonated in August 1945 over Japan to end World War II. During the past six decades, the majority of the world's countries have abstained from acquiring nuclear weapons. However, a number of countries have explored the nuclear weapons option, 23 in all. Among them, 14 countries have dropped their interest in nuclear weapons after initiating some efforts. And nine of them today possess nuclear weapons. These countries include the five nuclear weapons states - U.S., Russia, U.K., France, and China - and the four non- NPT member states - Israel, India, Pakistan, and North Korea. Many of these countries initially used civilian nuclear power technology development as a basis or cover for their military program. Recent proliferation incidents in Iraq, Iran, and North Korea brought the world together to pay much attention to nuclear nonproliferation. With the expected surge in the use of nuclear energy for power generation by developing countries, the world's nuclear nonproliferation regime needs to be better prepared for potential future challenges. For the world's nuclear nonproliferation regime to effectively cope with any future proliferation attempts, early detection of potentially proliferation-related activities is highly desirable. Early detection allows the international community to respond and take necessary actions - ideally using political and diplomatic influences without resorting to harsh measures such as sanctions or military actions. In this regard, a capability to quantitatively predict the chance of a country's nuclear proliferation intent or activities is of significant interest. There have been various efforts in the research community to understand the determinants of nuclear proliferation and develop quantitative tools to predict nuclear proliferation events. These efforts have shown that information about the political issues surrounding a country's security along with economic development data can be useful to

  10. Non-proliferation and the control of atomic energy

    International Nuclear Information System (INIS)

    Goldschmidt, B.

    1977-01-01

    The non-proliferation problem has never ceased to haunt and to influence those responsible for the development of atomic energy. During and after the Second World War, Anglo-American co-operation was reflected in restrictions on the exchange of enrichment and reprocessing know-how. Between 1945 and 1955, the Anglo-Saxon powers continued with the policy of secrecy and uranium monopoly decided on in 1943 at the Quebec summit conference. Starting in 1955, the failure of this policy led - at the suggestion of the United States of America - to a freer flow of information and to the creation of the International Atomic Energy Agency with its safeguards, which permitted widespread application of the policy of technical assistance subject to controls and widespread commerce in research and power reactors - mainly fuelled with enriched uranium and manufactured in the USA. There followed periods characterized by general legal blocks, with two unilateral renunciation treaties - the Partial Test Ban Treaty of 1963, covering non-underground tests, and the Treaty on the Non-Proliferation of Nuclear Weapons, of 1968, covering nuclear explosive devices and the entire fuel cycle. The Indian atomic explosion and the acceleration of nuclear programmes owing to the oil crisis prompted - in 1974 - efforts by supplier countries to limit the transfer of sensitive technology and the possession of plants capable of producing substances which could be used in the production of nuclear weapons; the USA has even proposed the curtailment of plutonium extraction and of breeder construction, although these are considered by many countries to be essential to the independence of their energy development programmes. This policy of reserving the sensitive stages of the fuel cycles to a few advanced countries and the questioning of existing nuclear agreements have created, in the relations between supplier and recipient countries, a regrettable intensification of the distrust which must be dispelled

  11. Nuclear proliferation in Northeast Asia: South Korean perspective

    International Nuclear Information System (INIS)

    Seo-Hang Lee

    1995-01-01

    Under new circumstances, that is after the end of the Cold War, the current security situation in Northeast Asia and Korean peninsula is reviewed. The South Korean Non-proliferation policy and its strong commitment to the NPT is embodied in the following: treaty commitments; government officials' statements; presidential declarations; North/South joint declarations; and domestic laws and regulations.Korea has made efforts towards denuclearisation of Korean peninsula. Its nuclear policy is based on peaceful uses of nuclear energy and on maintaining a strong commitment to the NPT. The ultimate goal of its policy is to deter North Korea from developing nuclear weapons and thus secure a nuclear-free Korean peninsula. This could lay foundation for the ultimate creation of region-wide nuclear-free zone in Northeast Asia

  12. Deliberations about nuclear energy

    International Nuclear Information System (INIS)

    Boskma, P.; Smit, W.A.; Vries, G.H. de; Dijk, G. van; Groenewold, H.J.; Jelsma, J.; Tans, P.P.; Doorn, W. van

    1975-01-01

    This report is a discussion of points raised in three safety studies dealing with nuclear energy. It reviews the problems that must be faced in order to form a safe and practical energy policy with regard to health and the environment (potential hazards, biological effects and radiation dose norms), the proliferation of nuclear weapons, reactor accidents (including their causes, consequences and evacuation problems that arise), the fallout and contamination problems, and security (both reactor security and national security)

  13. Commercial Satellite Imagery Analysis for Countering Nuclear Proliferation

    Science.gov (United States)

    Albright, David; Burkhard, Sarah; Lach, Allison

    2018-05-01

    High-resolution commercial satellite imagery from a growing number of private satellite companies allows nongovernmental analysts to better understand secret or opaque nuclear programs of countries in unstable or tense regions, called proliferant states. They include North Korea, Iran, India, Pakistan, and Israel. By using imagery to make these countries’ aims and capabilities more transparent, nongovernmental groups like the Institute for Science and International Security have affected the policies of governments and the course of public debate. Satellite imagery work has also strengthened the efforts of the International Atomic Energy Agency, thereby helping this key international agency build its case to mount inspections of suspect sites and activities. This work has improved assessments of the nuclear capabilities of proliferant states. Several case studies provide insight into the use of commercial satellite imagery as a key tool to educate policy makers and affect policy.

  14. Nuclear proliferation: motivations, capabilities, and strategies for control

    International Nuclear Information System (INIS)

    Greenwood, T.; Feiveson, H.A.; Taylor, T.B.

    1977-01-01

    Two possible patterns of proliferation appear to involve the greatest risks for nuclear use or war. The first is proliferation to particular categories of states and the second dangerous possibility is proliferation at a rapid rate. But rapid proliferation could cause instabilities that might be too great for political systems and institutions to handle, making nuclear use of nuclear war more likely. Thus, any strategy for nonproliferation should especially attempt to prevent a rapid spread of nuclear weapons and to avert acquisition by states in the high-risk categories. Nuclear proliferation will also have important effects on world and regional stability for reasons not directly related to nuclear use. The mere possession of nuclear weapons by certain states could radically alter international perceptions and threaten global arrangements. The main concern in this discussion is to analyze the various incentives and disincentives--involving both security and political considerations--that will affect states' decisions about whether or not to acquire nuclear weapons. The discussion then turns to the means by which individual states and the international community can influence nuclear incentives and disincentives. The particularly important subject of the management of the international nuclear industry is addressed separately, followed by an analysis of nuclear acquisition, use, and threat by non-state entities. Finally, a general strategy for decreasing incentives and increasing disincentives is proposed and applied to four special categories of states

  15. A handbook of nuclear energy. Vol. 2

    International Nuclear Information System (INIS)

    Michaelis, H.

    1982-01-01

    With this new edition of his book 'Nuclear energy', first edited in 1977, which is extremely enlarged and brought up to date, the author has given an overall picture of nuclear energy in which the physical and technical basis and the industrial, economic and environmental aspects of nuclear energy are discussed in a systematic outline. In this second volume the topics of nuclear fuel cycle, safety and environment, and international policies against the proliferation of nuclear weapons are discussed. (UA) [de

  16. Concept of the development of new type reactor and other nuclear technology in which nuclear-proliferation resistivity is taken into consideration

    International Nuclear Information System (INIS)

    Chang, Yoon I.

    2000-01-01

    As we start a new century in a new millennium, it is timely to look back at the last 50 years of nuclear energy development, and take a pause here to formulate the directions we need to take in the nuclear energy development for the next 50 years and beyond. The proliferation resistivity should be given a priority in the development of next-generation advanced reactor concepts, and there are three important principles to be considered in such efforts. The proliferation resistivity should be considered as a part of broader objectives, rather than a design goal by itself; the proliferation resistivity should be considered within the context of global institutional framework; and any technical proliferation resistivity features designed into the reactor system should be made intrinsic in nature. (author)

  17. AN ANALYTICAL FRAMEWORK FOR ASSESSING RELIABLE NUCLEAR FUEL SERVICE APPROACHES: ECONOMIC AND NON-PROLIFERATION MERITS OF NUCLEAR FUEL LEASING

    International Nuclear Information System (INIS)

    Kreyling, Sean J.; Brothers, Alan J.; Short, Steven M.; Phillips, Jon R.; Weimar, Mark R.

    2010-01-01

    The goal of international nuclear policy since the dawn of nuclear power has been the peaceful expansion of nuclear energy while controlling the spread of enrichment and reprocessing technology. Numerous initiatives undertaken in the intervening decades to develop international agreements on providing nuclear fuel supply assurances, or reliable nuclear fuel services (RNFS) attempted to control the spread of sensitive nuclear materials and technology. In order to inform the international debate and the development of government policy, PNNL has been developing an analytical framework to holistically evaluate the economics and non-proliferation merits of alternative approaches to managing the nuclear fuel cycle (i.e., cradle-to-grave). This paper provides an overview of the analytical framework and discusses preliminary results of an economic assessment of one RNFS approach: full-service nuclear fuel leasing. The specific focus of this paper is the metrics under development to systematically evaluate the non-proliferation merits of fuel-cycle management alternatives. Also discussed is the utility of an integrated assessment of the economics and non-proliferation merits of nuclear fuel leasing.

  18. Course modules on nuclear safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Bril, L.-V.; Janssens-Maenhout, G.

    2004-01-01

    Full text: One of major current concern in the nuclear field is the conservation of developed knowledge and expertise. The relevance of this subject is steadily increasing for several reasons: retirement of the generation of first industrial development of nuclear energy, only one new reactor under construction in Europe while several in Eastern and Asian countries, the public's concern on safety, radioactive waste and safeguards aspects, and some lack of interest common to many activities in engineering and physics. Moreover nuclear safeguards is nowadays characterised with an enlarged scope and no longer strictly limited to the accountancy of nuclear material; today it encompasses non proliferation of nuclear material, and deals with the control of dual use equipment and technologies, illicit trafficking and External Security. Some higher education networks, such as the European Nuclear Engineering Network (ENEN), have been established to make better use of dwindling teaching capacity, scientific equipment and research infrastructure, through co-operation amongst universities and research centres. The European Safeguards Research and Development Association (ESARDA) initiated the set-up of course modules under an e-learning medium, to preserve knowledge in nuclear safeguards. These course modules should be considered as basic pedagogical documentation, which will be accessible via the Internet. Monitoring or controlling of the accesses will be ensured. The modules are structured with an increasing level of detail, in function of the audience. On one hand the course modules should be attractive to University students in nuclear, chemical or mechanical engineering, in radiochemistry, statistics, law, political science etc. at universities or specialised institutes. On the other hand the course modules aim to give professionals, working on specific safeguards or non-proliferation issues an overview and detailed technical information on the wide variety of nuclear

  19. The future of nuclear non-proliferation in South Asia

    International Nuclear Information System (INIS)

    Siddiqa, A.

    1997-01-01

    Nuclear proliferation in South Asia is currently one of the hot topics in world politics. The concern of the international community, and especially the USA, over this issue is coupled with the fear of nuclear conflict between India and Pakistan. As a result, Washington has been using its 'stick and carrot' policy to persuade the two countries involved not to develop their nuclear programs for military purposes. However both countries have not only continued to develop their nuclear ambitions, but seem to have achieved vertical nuclear proliferation. This paper examines the future non-proliferation in the South Asian region in the 1990s. This will be achieved by looking at the following: the development of the nuclear capabilities of both India and Pakistan; how these programs have been developed; the reasons for acquiring the capability for non-conventional defence; the real fear in terms of nuclear proliferation in the region; the possible options for dealing with nuclear proliferation in South Asia

  20. The Global Nuclear Futures Model: A Dynamic Simulation Tool for Energy Strategies

    International Nuclear Information System (INIS)

    Bixler, N.E.

    2002-01-01

    The Global Nuclear Futures Model (GNFM) is a dynamic simulation tool that provides an integrated framework to model key aspects of nuclear energy, nuclear materials storage and disposition, global nuclear materials management, and nuclear proliferation risk. It links nuclear energy and other energy shares dynamically to greenhouse gas emissions and twelve other measures of environmental impact. It presents historical data from 1990 to 2000 and extrapolates energy demand through the year 2050. More specifically, it contains separate modules for energy, the nuclear fuel cycle front end, the nuclear fuel cycle back end, defense nuclear materials, environmental impacts, and measures of the potential for nuclear proliferation. It is globally integrated but also breaks out five regions of the world so that environmental impacts and nuclear proliferation concerns can be evaluated on a regional basis. The five regions are the United States of America (USA), The Peoples Republic of China (China), the former Soviet Union (FSU), the OECD nations excluding the USA, and the rest of the world (ROW). (author)

  1. Key Issues on Nuclear Energy Non-proliferation in East Asia

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Whang, Joo Ho; Lee, Un Chul

    2005-01-01

    Energy demand in East Asia casts a significant challenge to sustainable economy development and socio-political stability in the region which has experienced tensions throughout the history. The energy demand in this region has been dramatically increased since the start of reform in PRC. DPRK is another challenge. The current electricity consumption in DPRK is around 10% of that in ROK. If the economy of PRC continuously grows to the level of neighboring states and if the living standard of DPRK reaches that of ROK, the energy and electricity demand in the region will certainly be out of control unless the proper measures are taken into actions from today. The only feasible energy option is the nuclear one. PRC already proclaimed its ambitious plan to deploy more than 30 reactors in the near future. In addition, a couple of the South Eastern Asian states expressed their willingness to introduce nuclear power plants in the future. The increase in the use of nuclear energy is expected to bring up the nuclear renaissance in the region. However, without the proper mechanisms to supply fresh fuels and to manage spent nuclear fuels with full compliance of nuclear energy nonproliferation, the new development will inevitably cause the instability in the region. So far many interesting proposals on nuclear cooperation in East Asia were announced. Unfortunately, none of them works out properly yet, partly because the old proposals were too political. To restart the engine of the nuclear cooperation and nonproliferation in the region, it is necessary to find out what would be the common interests of the region not so much related to politics. In this paper, some key technical issues are addressed for future regional joint studies

  2. Strategic Culture and Energy Security Policy of South Korea: The Case of Nuclear Energy

    International Nuclear Information System (INIS)

    Kim, Taehyun

    2012-01-01

    The U. S. - ROK Civil Nuclear Cooperation Agreement highlights the dilemma of contemporary international non-proliferation regime. Non-Proliferation Treaty has represented an awkward balance between the ideal of nuclear energy and the reality of nuclear weapons. It is neither complete nor effective. It is not complete because it does not cover all the issues with respect to nuclear energy, which have become increasingly complex. Nuclear security, for example, is not an issue that it addresses, and it is precisely why President Obama called for the unprecedented Nuclear Security Summit. It is not effective. It has failed in preventing proliferation of nuclear weapons states, India, Israel, Pakistan and North Korea, who remain outside of the regime. An international regime is defined as 'a set of principles, norms, rules, and decision-procedures around which actors' expectations converge. The extents to which actors' expectations converge and forceful measures in the name of international community against any violation are justified will measure its effectiveness. NPT regime is sub-par on that. The world is in dire need of a comprehensive and integrated regime for nuclear energy regime, where proliferation, security, and safety concern are effectively addressed. South Korea, if it truly wants to become a key player in the field, has to be one of its architects. The ability to meet the challenge of revising Civil Nuclear Cooperation Agreement will show if it is a qualified architect

  3. Pollution by poverty: the need for nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Teller, E

    1977-06-01

    In this speech, Dr. Teller specifically points out the safety record of nuclear reactors and the rising need of power the world over. He further states that ''the real shortage in energy can be overcome if we save energy, if we develop oil and gas and coal and solar energy and geothermal energy, and wave energy, and a number of other things that can be developed; and if we do not neglect nuclear energy, which due to efforts over many years, due to careful scientific investigations, has become the energy source that on a big scale is the most economic and the most clean and which will interfere least with the environment.'' Pointing to the fact that by the year 2000, the world will contain 7 billion persons to feed, additional energy will be needed to provide enough food for this population or face the poverty and starvation brought on by lack of energy. In discussing the proliferation aspects of nuclear energy, the author notes that if the United States does not go nuclear, underdeveloped nations will--and this will be difficult, hazardous, and will make nuclear weapons proliferation more probable. (MCW)

  4. Nuclear energy by way of 110 questions

    International Nuclear Information System (INIS)

    Mandil, C.; Borotra, F.

    1996-01-01

    The main goal of this updated edition is to provide the general public with information on the civil nuclear policy in France. Twelve chapters deal with following topics: nuclear economy, nuclear industry, nuclear fuel cycle and nuclear waste, nuclear safety, radioactivity and health, nuclear accidents in the world, nuclear energy and environment, inspection planning, information, nuclear proliferation prevention, nuclear energy in the world and in the future. At the end of each chapter the authors answer a set of questions corresponding to the general pubic queries. (N.T.)

  5. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  6. Nuclear energy and society: Russian dimension

    International Nuclear Information System (INIS)

    Gagarinski, A.Y.

    2010-01-01

    Nuclear weapons and crisis of confidence resulting from severe accidents have both formed the attitude towards nuclear issues in the Russian minds. The current status of relations between nuclear energy and the public is still close to this politicization of nuclear energy and to the constant irrational fear of radiations. The 3 basic antinuclear arguments usually mentioned are proliferation risk, wastes and accidents. For proliferation risk it is easy to understand that a complete nuclear power phase-out would not prevent the spreading of nuclear weapons because uranium and centrifuges would still exist. For the Russian society, the issue of radioactive wastes is popular these days because the Russian parliament is considering a bill about it. The issue of radioactive wastes seems to be economically and technically solvable. The main problem is nuclear accidents. In Russia this issue is very touchy: we still remember zero-radiation events, which, when happened not very long ago, have aroused panics in whole regions. It is hard to change the idea, well spread in Russian minds that the authorities are always trying to understate the scale of negative events. Nevertheless, some recent polls show that the positive trend in the attitude towards nuclear energy is obvious as it is in most part of the world. (A.C.)

  7. Nuclear power and weapons proliferation

    International Nuclear Information System (INIS)

    Greenwood, T.; Rathjens, C.W.; Ruina, J.

    1977-01-01

    The relationship between nuclear weapons development and nuclear electric power is examined. A brief description of nuclear weapons design is first given. This is then followed by a discussion of various aspects of nuclear power technology and of how they affect a nuclear weapon programme. These include fuel cycles, chemical reprocessing of spent fuel, uranium enrichment, and the control of dissemination of nuclear technology. In conclusion there is a discussion of possible political and institutional controls for limiting nuclear proliferation. (U.K.)

  8. Canada and international safeguards. Verifying nuclear non-proliferation

    International Nuclear Information System (INIS)

    1990-01-01

    The Non-Proliferation Treaty (NPT) came into force in 1970 and now has about 140 signatory nations. By creating legal barriers against proliferation and by promoting an international non-proliferation ethic, the NPT has promoted international peace and security. A key ingredient has been the confidence generated through verification by IAEA safeguards. By the end of 1988 IAEA safeguards agreements had been concluded with about 100 countries, including Canada. Over 500 nuclear facilities worldwide are under safeguards or contain safeguarded nuclear material. The existence of this credible and effective safeguards system makes international trade in nuclear equipment and materials possible, monitoring the transfer of nuclear technology to developing countries as well as between industrial countries. Canada is committed to non-proliferation and IAEA safeguards. Canadian non-proliferation policy is among the strictest in the world, even though opportunities have been lost to sell Canadian technology abroad as a result

  9. Nuclear power and the proliferation issue

    International Nuclear Information System (INIS)

    Marshall, W.

    1978-02-01

    The purpose of the lecture is to discuss nuclear proliferation, analyse which problems are real and which are a misapprehension, and to suggest a way forward which retains the benefits of nuclear power while providing a more certain protection against undesirable proliferation. After an introductory section the lecture continues under the following headings: plutonium production and accessibility; the use of plutonium; fast reactor fuel; the interim period; conclusions. (U.K.)

  10. Promotion of Nuclear Non-proliferation in East Asia

    International Nuclear Information System (INIS)

    Hwang, Yong Soo

    2009-07-01

    KAERI has jointly worked with Sandia National Laboratories for Nuclear Energy Non-proliferation in East Asia for the last five years. This project aims at support activities in this joint project between two states. The annual meetings were held during the project period, the 4th one in 2008 and the 5th one in 2009. In addition code comparison between KAERI and SNL's codes for assessing the back-end fuel cycle options was carried out. This project strongly enhances the close tie for the non-proliferation, transparency and safeguards among Korea Japan China Taiwan the United States Russia Malaysia Singapore Indonesia Thailand Vietnam and others for the project period

  11. History, framework and perspectives of international policy for preventing the proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    Czakainski, M.

    1985-12-01

    The study analyses the framework conditions, such as the Non-Proliferation Treaty and the international non-proliferation regime and their interlacement with international nuclear energy policies, and evaluates the results achieved so far on an international level by the efforts directed towards preventing the proliferation of nuclear weapons. The conclusion to be drawn as stated by the author is that the classical tool of non-proliferation policy - denial of technology transfer - will lose in importance and give way to enhanced, controlled cooperation between countries of the Third World and the industrialised countries. Another instrument that will maintain its value for non-proliferation policy is cooperation for political stabilisation in those parts of the world where regional conflicts might aggravate. (orig./HP) [de

  12. Review of nuclear fuel cycle alternatives including certain features pertaining to weapon proliferation

    International Nuclear Information System (INIS)

    Williams, D.C.; Rosenstroch, B.

    1978-01-01

    Largely as a result of concerns over nuclear weapon proliferation, the U.S. program to develop and commercialize the plutonium-fueled breeder reactor has been slowed down; interest in alternative fuel cycles has increased. The report offers an informal review of the various nuclear fuel cycle options including some aspects relevant to weapon proliferation, although no complete review of the latter subject is attempted. Basic principles governing breeding, reactor safety, and efficient utilization of fission energy resources (thorium and uranium) are discussed. The controversial problems of weapon proliferation and its relation to fuel reprocessing (which is essential for efficient fuel cycles) are reviewed and a number of proposed approaches to reducing proliferation risks are noted. Some representative specific reactor concepts are described, with emphasis on their development status, their potentials for resource utilization, and their implications for proliferation

  13. Non-proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    Fischer, D.; Haeckel, E.; Haefele, W.; Lauppe, W.D.; Mueller, H.; Ungerer, W.

    1991-01-01

    During the turbulant transitional events in world politics in the nineties, the control of nuclear weapons plays a major role. While the superpowers are reducing their nuclear arsenal, the danger of nuclear anarchy in the world remains virulent. The NPT of 1968 is up for review soon. The falling apart of the former communist sphere of power, and the regions of conflict in the Third World present new risks for the proliferation of nuclear arms. For unified Germany, which explicitly renounced nuclear weapons, this situation presents difficult questions concerning national safety policies and international responsibility. This volume presents contributions which take a new look at topical and long-term problems of nuclear NP politics. The authors evaluate the conditions under which the NP regime came into being, and assess short- and long-term possibilities and risks. The following papers are included: 1.) Basic controversies during the negotiations concerning the Treaty on non-proliferation of nuclear weapons (Ungerer); 2.) Prologation of the NPT 1995 and appropriate problems concerning safety and control (Haefele/Lauppe); 3.) Consequences of the Iraq case for NP policy (Ficher); 4.) Problems of nuclear technology control (Mueller); 5.) Framework conditions of a nuclear world system (Haeckel). (orig./HP) [de

  14. Nuclear Non-Proliferation Policy Act of 1977. Hearings before the Subcommittee on Energy Research and Development of the Committee on Energy and Natural Resources, United States Senate, Ninety-Fifth Congress, First Session on S. 897 and S. 1432

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    On April 7, 1977, President Carter announced his nuclear power policy. The policy statement set forth seven specific objectives for the future use of nuclear energy in this country and the rest of the world. The two proposed instruments for implementing this policy are the revised fiscal year 1978 ERDA authorization draft bill and S. 1432, the Nuclear Non-Proliferation Act of 1977. These legislative proposals are linked in that S. 1432 is designed to establish a non-proliferation framework with specific objectives established for the ERDA nuclear energy programs. The ERDA authorization bill is the budgetary vehicle to implement those objectives. The Committee on Energy and Natural Resources obtained joint referral of certain portions of the Nuclear Non-Proliferation Act to insure that non-proliferation policy is implemented in a manner consistent with the policy of having sufficient energy for this country and foreign countries in the future. The Subcommittee on Energy Research and Development must examine the costs and the consequences of various initiatives before they are implemented. F or example, the proposal to guarantee uranium enrichment services for foreign nations poses specific requirements on ERDA to expand considerably our enrichment capacity by the year 2000. Without reprocessing, it is expected that spent fuel rods from abroad will be returned to this country for storage with attendant costs and siting decisions. Also, international fuel-cycle evaluation programs must be carefully examined to insure that all options, including regional fuel cycle centers with international controls and inspection, are considered in seeking international approaches to the non-proliferation objectives. At the June 10 hearing, the subcommittee received testimony on S. 1432, the bill prepared by the administration. The hearings on September 13 and 14 focused on S. 897. Statements by many witnesses are included

  15. Dossier nuclear energy

    International Nuclear Information System (INIS)

    1993-11-01

    The present Dutch government compiled the title document to enable the future Dutch government to declare its opinion on the nuclear energy problemacy. The most important questions which occupy the Dutch society are discussed: safe application and risks of nuclear energy, radioactive wastes and other environmental aspects, and the possible danger of misusing nuclear technology. In chapter two attention is paid to the policy, as formulated by the Dutch government, with regard to risks of nuclear power plants. Next the technical safety regulations that have to be met are dealt with. A brief overview is given of the state of the art of commercially available nuclear reactors, as well as reactors under development. The nuclear waste problem is the subject of chapter three. Attention is paid to the Dutch policy that has been formulated and is executed, the OPLA-program, in which the underground storage of radioactive wastes is studied, the research on the conversion of long-lived radioactive isotopes to short-lived radioactive isotopes, and planned research programs. In chapter four, other environmental effects of the use of nuclear power are taken into consideration, focusing on the nuclear fuel cycle. International obligations and agreements to guarantee the peaceful use of nuclear energy (non-proliferation) are mentioned and discussed in chapter four. In chapter six the necessity to carry out surveys to determine public support for the use of nuclear energy is outlined. In the appendices nuclear energy reports in the period 1986-present are listed. Also the subject of uranium supplies is discussed and a brief overview of the use of nuclear energy in several other countries is given. 2 tabs., 5 annexes, 63 refs

  16. Strengthening the nuclear non-proliferation regime

    International Nuclear Information System (INIS)

    Carlson, J.

    2003-01-01

    Although the nuclear non-proliferation regime has enjoyed considerable success, today the regime has never been under greater threat. Three states have challenged the objectives of the NPT, and there is a technology challenge - the spread of centrifuge enrichment technology and know-how. A major issue confronting the international community is, how to deal with a determined proliferator? Despite this gloomy scenario, however, the non-proliferation regime has considerable strengths - many of which can be developed further. The regime comprises complex interacting and mutually reinforcing elements. At its centre is the NPT - with IAEA safeguards as the Treaty's verification mechanism. Important complementary elements include: restraint in the supply and the acquisition of sensitive technologies; multilateral regimes such as the CTBT and proposed FMCT; various regional and bilateral regimes; the range of security and arms control arrangements outside the nuclear area (including other WMD regimes); and the development of proliferation-resistant technologies. Especially important are political incentives and sanctions in support of non-proliferation objectives. This paper outlines some of the key issues facing the non-proliferation regime

  17. Nuclear energy for the 21. century; Energie nucleaire pour le 21. siecle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-15

    This document gathers 5 introductory papers to this conference about nuclear energy for the 21. century: the French energy policy during the last 30 years (situation of France with respect to the energy supply and demand, main trends of the French energy policy, future of the French nuclear policy); presentation of IAEA (technology transfer, nuclear safety, non-proliferation policy, structure and financial resources, council of governors, general conference, secretariat); nuclear power and sustainable development; promoting safety at nuclear facilities (promoting safety, basics of safety, safety at the design stage, risk management, regulatory control and efficiency of the regulation organization, role of IAEA); nuclear energy today (contribution to sustainable development, safety, best solution for the management of radioactive wastes, future of nuclear energy). (J.S.)

  18. Implementing nuclear non-proliferation in Finland. Regulatory control, international cooperation and the comprehensive nuclear-test-ban treaty. Annual report 2007

    International Nuclear Information System (INIS)

    Haemaelaeinen, M.; Karhu, P.

    2008-04-01

    Regulatory control of nuclear materials (nuclear safeguards) is a prerequisite for the peaceful use of nuclear energy in Finland. In order to uphold our part of the international agreements on nuclear non-proliferation - mainly the Non-Proliferation Treaty (NPT). This regulatory control is exercised by the Nuclear Materials Section of the Finnish Radiation and Nuclear Safety Authority (STUK). Nuclear safeguards are applied to all materials and activities that can lead to the proliferation of nuclear weapons or sensitive nuclear technology. These safeguards include nuclear materials accountancy, control, security and reporting. The results of STUK's nuclear safeguards inspection activities in 2007 continued to demonstrate that Finnish licence holders take good care of their nuclear materials. There were no indications of undeclared nuclear materials or activities and the inspected materials and activities were in accordance with the licence holders' declarations. STUK remarked on the nuclear safeguards systems of two licence holders in 2007, setting required actions for them to correct their reporting and to update the descriptions of their procedures. Neither the IAEA nor the European Commission made any remarks nor did they present any required actions based on their inspections. By their nuclear materials accountancy and control systems, all licence holders enabled STUK to fulfil its own obligations under the international agreements relevant to nuclear safeguards

  19. Nuclear proliferation in developing countries: A comparative study for selected countries

    International Nuclear Information System (INIS)

    Chun Woong.

    1991-01-01

    This study explores major conditions conducive to nuclear proliferation to project possible proliferation trends in the future and, hopefully, to suggest some effective strategies to address the problem of nuclear proliferation. It attempts to provide a qualitative analysis of the causes and trends of nuclear proliferation by presenting generalizations of the causes of proliferation. While a variety of factors can be considered as causes of proliferation, three primary factors appear to influence the prospects for proliferation: (1) the technical capabilities and constraints; (2) motivation: incentives and disincentives; and (3) particular domestic and international situations. It is generally hypothesized that in order for a country to go nuclear, two basic conditions - some minimum level of indigenous national capability and strong motivations - must be simultaneously satisfied. It is concluded that while technology is, of course, one element necessary for the nuclear-proliferation process, the fundamental conditions of nuclear proliferation appear to be motivational factors

  20. Utility of Social Modeling in Assessment of a State's Propensity for Nuclear Proliferation

    International Nuclear Information System (INIS)

    Coles, Garill A.; Brothers, Alan J.; Whitney, Paul D.; Dalton, Angela C.; Olson, Jarrod; White, Amanda M.; Cooley, Scott K.; Youchak, Paul M.; Stafford, Samuel V.

    2011-01-01

    This report is the third and final report out of a set of three reports documenting research for the U.S. Department of Energy (DOE) National Security Administration (NASA) Office of Nonproliferation Research and Development NA-22 Simulations, Algorithms, and Modeling program that investigates how social modeling can be used to improve proliferation assessment for informing nuclear security, policy, safeguards, design of nuclear systems and research decisions. Social modeling has not to have been used to any significant extent in a proliferation studies. This report focuses on the utility of social modeling as applied to the assessment of a State's propensity to develop a nuclear weapons program.

  1. Methodological considerations in evaluating a proliferation resistance of innovative nuclear energy systems

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Takaki, Naoyuki; Murajiri, Masahiro; Nakagome, Yoshihiro; Tokiwai, Moriyasu

    2004-01-01

    Over 25 years ago, INFCE studied the evaluation methodology of proliferation resistance. Recently, INPRO and GEN-IV coordinated by the IAEA and the USDOE respectively seek an appropriate innovative fuel cycle system for next generation that is furnished safer, sustainable, economical and reliable features. The evaluation methodology of the proliferation resistance is also assigned as an essential part of both studies. The IAEA established and has been strictly implementing the verification measures with accurate material accountancy system from the early of the 1970s in order to detect diversion of plutonium that is individually separated from irradiated nuclear material and recycled as MOX fuel. This paper firstly identifies the impedibility of intrinsic features of innovative fuel cycles and the safeguardability of selected nonproliferation measures as two individual essential parameters for evaluation of a proliferation resistance capability. As a next step, this paper also shows methodological considerations in evaluating the proliferation resistance levels as a multiple model of several clusters that are identified the ability of each parameter. (author)

  2. Man is overcharged by nuclear energy

    International Nuclear Information System (INIS)

    Hauff, V.

    1986-01-01

    The author states four points against nuclear power: 1. Although the probability of a catastrophic accident is very low, the consequences will be enormous. 2. Extension of the nuclear power generation worldwide will increase the danger of proliferation of nuclear weapons. 3. Decommissioning of nuclear power plants and disposal of nuclear waste will be a problem for many generations. 4. Protection of nuclear facilities may lead to the eventual abandonment of the civil rights assured by law. The author gives priority to energy conservation; he states that an 80% utilization factor is achievable in cogeneration and district heating. He agress with C.F. Weizsaecker on the long-term relevance of solar energy as the main energy source, which would also help to reduce the CO 2 problem (heat-up of the earth atmosphere, destruction of tropical forests). Energy supply without nuclear power plants would also provide new jobs, since there is no energy source as capital-intensive and low in staff requirements as nuclear power. (GL) [de

  3. International nuclear proliferation: multilateral diplomacy and regional aspects

    Energy Technology Data Exchange (ETDEWEB)

    Kapur, A.

    1979-01-01

    Confidential interviews with about 200 officials at 18 nuclear research sites around the world form the background for this discussion of the proliferation issues as they affect the Nuclear Non-Proliferation Treaty (NPT). Critics of the NPT cite its narrow focus on horizontal proliferation and its failures in the areas of vertical proliferation, nuclear technology transfers, heavy-water-reactor systems, and safeguards. The international negotiations necessary to resolve these issues and the difficulty of reaching a global consensus indicate a need to restructure the U.S. decision process before diplomacy can progress. The book discusses the history and nature of proliferation and its relationship to multinational diplomacy; the problems of permanent and workable safeguards; and regional political ramifications in the creeping dependencies of South Asia, apartheid in South Africa, militarization in Japan, and the nuclearization of Brazil and Argentina. The analysis concludes that central issues were not settled by the NPT and that U.S. failures to speak without consulting allies may mean that a bilateral rather than multinational approach should be tried. 105 references, 5 figures, 12 tables. (DCK)

  4. Nuclear power and nuclear weapon proliferation

    International Nuclear Information System (INIS)

    Apold, A.

    1978-01-01

    The theme of Dr. Marshall's lecture was that it is, from the viewpoint of prevention of proliferation of nuclear weapons,preferable to use plutonium as a fuel in FBR reactors rather than store it in what, in effect, would be plutonium mines. The true threat of proliferation lies in uranium enrichment. The FBR reactor is misunderstood and the US policy is not against breeders as such. Safeguards against the misuse of plutonium by leaving a residue of radioactivity after reprocessing is quite feasible, despite certain practical problems and extra costs. Weapon proliferation is subject to political objectives and intentions. Definite proposals are, (a) a limited number of reprocessing centres, (b) an accelerated development of FBR reactors, (c) a new FBR fuel cycle, (d) stop storage of spent thermal reactor fuel, (e) reinforced safeguards. (JIW)

  5. Non proliferation of nuclear weapons?

    International Nuclear Information System (INIS)

    Le Guelte, Georges

    2015-10-01

    After having evoked the behaviour of nuclear countries regarding the development of nuclear weapons and uranium procurement, or nuclear programmes after the Second World War until nowadays, the author presents the non proliferation Treaty (NPT) as a construction at the service of super-powers. He comments and discusses the role of the IAEA control system and its evolutions: a control limited to declared installations, an export control with the spectre of plutonium, a control system thwarted by some technological innovations, information systems coming in, and an additional protocol related to the application of guarantees. He comments the evolution of the context from a bipolar world to a world without pole which raises the issue of how to have commitments respected: description of the role and practice of non proliferation during the Cold War, after the Cold War, and in a world without governance

  6. Economical scale of nuclear energy application

    International Nuclear Information System (INIS)

    2001-01-01

    The nuclear energy industry is supported by two wheels of radiation and energy applications. When comparing both, they have some different sides, such as numbers of employees and researchers, numbers and scales of works, effect on society, affecting effects and regions of industrial actions, problems on safety, viewpoint on nuclear proliferation protection and safety guarantee, energy security, relationship to environmental problem, efforts on wastes disposal, and so on. Here described on economical scale of radiation application in fields of industry, agriculture, and medicine and medical treatment, and on economical scale of energy application in nuclear power generation and its instruments and apparatus. (G.K.)

  7. Physical protection and its role in nuclear non-proliferation

    International Nuclear Information System (INIS)

    Nilsson, A.

    1999-01-01

    Non-proliferation of nuclear weapons has been one of the main concerns of the international community since the first nuclear weapons were developed. To prevent the proliferation of nuclear weapons has been on the agenda for individual States, groups of States and the international organizations. A number of treaties, conventions and agreements, the most important being the Non-Proliferation Treaty, have been negotiated to prevent the horizontal proliferation of nuclear weapons. States have concluded safeguards agreements with the IAEA to fulfill their obligations according to Article III.1 of the NPT. Other agreements relate to the prevention of vertical proliferation and also to the disarmament of nuclear weapons. It has also been recognized that sub-national, terrorist, or criminal activities may pose a proliferation risk. Illicit trafficking of nuclear material, particularly highly enriched uranium or plutonium, is a non-proliferation concern. States have recognized the need to prevent, as far as possible, the use of nuclear material in unlawful activities. The Convention of Physical Protection of Nuclear Materials, obligates the State Parties to protect nuclear material from theft during international transport, and to make unlawful possession, use, etc., of nuclear material a criminal offense, subject to punishment under national law. Although the physical protection convention recognizes the importance of the physical protection of nuclear material in domestic use, storage and transport, it does not obligate the State party to establish the necessary systems for this purpose. It is this limitation which led many States to believe that the international physical protection regime needs to be strengthened. Although not legally binding per se, the recommendations documented in INFCIRC/225/Rev. 4, The Physical Protection of Nuclear Material and Nuclear Facilities, has obtained wide recognition. There is recognition among States that protecting nuclear material

  8. Nuclear non proliferation and disarmament

    International Nuclear Information System (INIS)

    2000-01-01

    In the framework of the publication of a document on the ''weapons mastership, disarmament and non proliferation: the french action'', by the ministry of Foreign Affairs and the ministry of Defense, the French Documentation organization presents a whole document. This document describes and details the following topics: the conference on the treaty of non proliferation of nuclear weapons, the France, Usa and Non Governmental Organizations position, the threats of the proliferation, the french actions towards the disarmament, the disarmament in the world, a chronology and some bibliographic resources. (A.L.B.)

  9. Does nuclear proliferation in Asia threaten the future of the NPT?

    International Nuclear Information System (INIS)

    Vandier, Pierre

    2005-01-01

    Asia is a region which presents all kinds of situation with respect to nuclear proliferation: nuclear countries, proliferating countries, countries non members of the NPT, countries violating the NPT, pacifist countries, threshold countries, and so on. Through an assessment of nuclear proliferation in Asia, the author first outlines the weaknesses of the Non Proliferation Treaty (NPT), and then discusses origins of tensions which may re-launch a nuclear arms race. In a third part, the author assesses the future of the Treaty within the arrangement for the struggle against nuclear proliferation as its has been strengthened in 2005

  10. Methodologies for evaluating the proliferation resistance of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Shiotani, Hiroki; Hori, Kei-ichiro; Takeda, Hiroshi

    2001-01-01

    The Japan Nuclear Cycle Development Institute (JNC) believes that the development of future nuclear fuel cycle technology should be conducted with careful consideration given to non-proliferation. JNC is studying methodologies for evaluating proliferation resistance of nuclear fuel cycle technologies. However, it is difficult to establish the methodology for evaluating proliferation resistance since the results greatly depend on the assumption for the evaluation and the surrounding conditions. This study grouped factors of proliferation resistance into categories through reviewing past studies and studied the relationships between the factors. Then, this study tried to find vulnerable nuclear material (plutonium) in some FBR fuel cycles from the proliferation perspective, and calculated the time it takes to convert the materials from various nuclear fuel cycles into pure plutonium metal under some assumptions. The result showed that it would take a long time to convert the nuclear materials from the FBR fuel cycles without plutonium separation. While it is a preliminary attempt to evaluate a technical factor of proliferation resistance as the basis of the institutional proliferation resistance, the JNC hopes that it will contribute to future discussions in this area. (author)

  11. Approaches to nuclear disarmament and non-proliferation

    International Nuclear Information System (INIS)

    Subrahmanyam, K.

    1981-01-01

    The logic behind the approach of the nuclear weapon states (NWS) to the issue of nuclear disarmament and non-proliferation is based on: (1) The assumption that the less the number of decision makers who could initiate a nuclear war less the probability of war, (2) the claim of the NWS that their nuclear weapons are under strict control, and (3) the claim of the NWS who have signed the Non-Proliferation Treaty (NPT) that the Treaty is being scrupulously observed by them. This logic is critically examined in the light of disclosures that indicate that: (1) both vertical and horizontal proliferation is going on without respite among the NWS, and (2) the fissile material is clandestinely being allowed to be diverted to the favoured clients by one or more of the NWS. These NWS are not subject to any safeguards under the NPT. They are using the NPT and the concept of nuclear free zone as a sort of tactic to divert the attention from the correct approach to the disarmament and to impose their hegemony over the Third World Countries. Moreover, the NPT has conferred a sort of legitimacy to the possession of nuclear weapons by the NWS. In these circumstances their preaching to the Third World countries about nuclear disarmament and non-proliferation sounds hypocritical. The correct approach to these issues would be to put the nuclear weapons under the category of weapons of mass destruction and to ban their use under a non-discriminatory international convention as has been done in the case of biological and chemical weapons. (M.G.B.)

  12. Energy transition and phasing out nuclear

    International Nuclear Information System (INIS)

    Laponche, Bernard

    2013-05-01

    In the first part of this report, the author outlines and comments the need of an energy transition in the world: overview of world challenges (world energy consumption and its constraints, a necessary energy transition, new actors and new responsibilities), and describes the German example of an energy transition policy. In the second part, he presents and discusses the main reasons for phasing out nuclear: description of a nuclear plant operation (fission and chain reaction, heat production, production of radioactive elements, how to stop a nuclear reactor), safety and risk issues (protection arrangements, risk and consequence of a nuclear accident), issue of radioactive wastes, relationship between civil techniques and proliferation of nuclear weapons. In a third part, the author proposes an overview of the energy issue in France: final energy consumption, electricity production and consumption, primary energy consumption, characteristics of the French energy system (oil dependency, electricity consumption, and high share of nuclear energy in electricity production). In a last part, the author addresses the issue of energy transition in a perspective of phasing out nuclear: presentation of the Negawatt scenario, assessments made by Global Chance, main programmes of energy transition

  13. Nuclear primary energy carriers. Short version

    Energy Technology Data Exchange (ETDEWEB)

    Jaeck, W

    1978-04-01

    Basing on our present knowledge the following energy sources for energy supply must be taken into consideration in the long term: regenerative energy sources, fission energy gained by breeder reactors, nuclear fusion. While regenerative energy sources were treated at full length in the study 'Energy Sources for Tomorrow' the present study specifies the other two energy options. The availability and the reliability of nuclear primary energy carrier supply is described in detail and the conversion systems available or still being developed are investigated with regard to their specific consumption of primary energy. Topical questions concerning the proliferation stability of the fuel cycles and techniques are subject to the INFCE program. With reference to the nuclear energy documentation activities of the Federal Government this study is supposed to supply further fundamental material on nuclear primary energy carriers, consumption and readiness for application. Thus it will contribute to the question: 'Is nuclear energy an option which guarantees energy supply in the long term for the Federal Republic of Germany'. (orig.) 891 UA 892 ARA.

  14. Nuclear primary energy carriers. Pt. 1

    International Nuclear Information System (INIS)

    1978-04-01

    Basing on our present knowledge the following energy sources for energy supply must be taken into consideration in the long term: regenerative energy sources, fission energy gained by breeder reactors, nuclear fusion. While regenerative energy sources were treated at full length in the study 'Energy Sources for tomorrow' the present study specifies the other two energy options. The availability and the reliability of nuclear primary energy carrier supply is described in detail and the conversion systems available or still being developed are investigated with regard to their specific consumption of primary energy. Topical questions concerning the proliferation stability of the fuel cycles and techniques are subject to the INFCE programme. With reference to the nuclear energy documentation activities of the Federal Govenment this study is supposed to supply further fundamental material on nuclear primary energy carriers, consumption and readiness for application. Thus it will contribute to the question: 'Is nuclear energy an option which guarantees energy supply in the long term for the Federal Republic of Germany'. (orig.) [de

  15. Between Shadow and Light: The Treaty on the Non-Proliferation of Nuclear Weapons Forty Years On

    International Nuclear Information System (INIS)

    Abdelwahab, Biad

    2010-01-01

    The NPT was negotiated during the Cold War period to prevent the emergence of new nuclear players by distinguishing between 'nuclear-weapon states' (NWS) which had carried out nuclear testing before 1 January 1967, that is the United States, Russia, the United Kingdom, France and China, and 'non-nuclear-weapon states' (NNWS). Under the NPT, the two groups of states commit to comply with a series of commitments formulated around 'three pillars': 1 - Non-proliferation: the NWSs undertake under Article I not to transfer nuclear weapons or control over such weapons and not in any way to assist, encourage or induce any NNWS to acquire them, while the NNWSs are bound under Article II to neither develop or acquire nuclear weapons or 'other nuclear explosive devices' nor to receive any assistance in that connection. 2 - Peaceful use of nuclear energy: Article IV guarantees the 'inalienable right' to 'develop research, production and use of nuclear energy for peaceful purposes without discrimination'. 3 - Nuclear disarmament: each state party to the treaty undertakes under Article VI 'to pursue negotiations in good faith on effective measures relating to cessation of the nuclear arms race at an early date and to nuclear disarmament'. The treaty entered in force in March 1970 and has since become universal, with 189 states parties in May 2010. At five-year intervals, parties to the treaty convene review conferences in order to review the operation of the treaty, Article VIII(3). The 1975, 1985 and 2000 review conferences culminated in the adoption of a final declaration and the 1995 review conference decided to extend the treaty indefinitely. The preparatory committee (PrepCom) for the 2010 review conference, which met from April 2007 to May 2009, did not adopt any recommendations, in absence of a consensus on essential issues concerning the operation of the treaty. Hence the importance of this 8. review conference of the parties held in New York from 3 to 28 May 2010 in a

  16. ASSESSING THE PROLIFERATION RESISTANCE OF INNOVATIVE NUCLEAR FUEL CYCLES

    International Nuclear Information System (INIS)

    BARI, R.; ROGLANS, J.; DENNING, R.; MLADINEO, S.

    2003-01-01

    The National Nuclear Security Administration is developing methods for nonproliferation assessments to support the development and implementation of U.S. nonproliferation policy. This paper summarizes the key results of that effort. Proliferation resistance is the degree of difficulty that a nuclear material, facility, process, or activity poses to the acquisition of one or more nuclear weapons. A top-level measure of proliferation resistance for a fuel cycle system is developed here from a hierarchy of metrics. At the lowest level, intrinsic and extrinsic barriers to proliferation are defined. These barriers are recommended as a means to characterize the proliferation characteristics of a fuel cycle. Because of the complexity of nonproliferation assessments, the problem is decomposed into: metrics to be computed, barriers to proliferation, and a finite set of threats. The spectrum of potential threats of nuclear proliferation is complex and ranges from small terrorist cells to industrialized countries with advanced nuclear fuel cycles. Two general categories of methods have historically been used for nonproliferation assessments: attribute analysis and scenario analysis. In the former, attributes of the systems being evaluated (often fuel cycle systems) are identified that affect their proliferation potential. For a particular system under consideration, the attributes are weighted subjectively. In scenario analysis, hypothesized scenarios of pathways to proliferation are examined. The analyst models the process undertaken by the proliferant to overcome barriers to proliferation and estimates the likelihood of success in achieving a proliferation objective. An attribute analysis approach should be used at the conceptual design level in the selection of fuel cycles that will receive significant investment for development. In the development of a detailed facility design, a scenario approach should be undertaken to reduce the potential for design vulnerabilities

  17. Review for the military application of nuclear energy

    International Nuclear Information System (INIS)

    Park, M. J.

    1998-01-01

    In order to understand the broad technology of nuclear energy, we have explored how our present knowledge of nuclear energy has been developed, and how some of this knowledge is applied. Techniques learned from nuclear physics are used the build fearsome weapons of mass destruction, whose proliferation is a constant threat to our future. To develop military applications of nuclear technology systematically, high level human resources and creative brains should be sufficiently trained and secured

  18. Nuclear non proliferation and disarmament; Non-proliferation nucleaire et desarmement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the framework of the publication of a document on the ''weapons mastership, disarmament and non proliferation: the french action'', by the ministry of Foreign Affairs and the ministry of Defense, the French Documentation organization presents a whole document. This document describes and details the following topics: the conference on the treaty of non proliferation of nuclear weapons, the France, Usa and Non Governmental Organizations position, the threats of the proliferation, the french actions towards the disarmament, the disarmament in the world, a chronology and some bibliographic resources. (A.L.B.)

  19. Hydrogen economy and nuclear energy

    International Nuclear Information System (INIS)

    Knapp, V.

    2004-01-01

    Global energy outlooks based on present trends, such as WETO study, give little optimism about fulfilling Kyoto commitments in controlling CO2 emissions and avoiding unwanted climate consequences. Whilst the problem of radioactive waste has a prominence in public, in spite of already adequate technical solutions of safe storage for future hundreds and thousands of years, there s generally much less concern with influence of fossil fuels on global climate. In addition to electricity production, process heat and transportation are approximately equal contributors to CO2 emission. Fossil fuels in transportation present also a local pollution problem in congested regions. Backed by extensive R and D, hydrogen economy is seen as the solution, however, often without much thought where from the hydrogen in required very large quantities may come. With welcome contributions from alternative sources, nuclear energy is the only source of energy capable of producing hydrogen in very large amounts, without parallel production of CO2. Future high temperature reactors could do this most efficiently. In view of the fact that nuclear weapon proliferation is not under control, extrapolation from the present level of nuclear power to the future level required by serious attempts to reduce global CO2 emission is a matter of justified concern. Finding the sites for many hundreds of new reactors would, alone, be a formidable problem in developed regions with high population density. What is generally less well understood and not validated is that the production of nuclear hydrogen allows the required large increases of nuclear power without the accompanied increase of proliferation risks. Unlike electricity, hydrogen can be economically shipped or transported by pipelines to places very far from the place of production. Thus, nuclear production of hydrogen can be located and concentrated at few remote, controllable sites, far from the population centers and consumption regions. At such

  20. Geospatial Image Mining For Nuclear Proliferation Detection: Challenges and New Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL; Bhaduri, Budhendra L [ORNL; Cheriyadat, Anil M [ORNL; Arrowood, Lloyd [Y-12 National Security Complex; Bright, Eddie A [ORNL; Gleason, Shaun Scott [ORNL; Diegert, Carl [Sandia National Laboratories (SNL); Katsaggelos, Aggelos K [ORNL; Pappas, Thrasos N [ORNL; Porter, Reid [Los Alamos National Laboratory (LANL); Bollinger, Jim [Savannah River National Laboratory (SRNL); Chen, Barry [Lawrence Livermore National Laboratory (LLNL); Hohimer, Ryan [Pacific Northwest National Laboratory (PNNL)

    2010-01-01

    With increasing understanding and availability of nuclear technologies, and increasing persuasion of nuclear technologies by several new countries, it is increasingly becoming important to monitor the nuclear proliferation activities. There is a great need for developing technologies to automatically or semi-automatically detect nuclear proliferation activities using remote sensing. Images acquired from earth observation satellites is an important source of information in detecting proliferation activities. High-resolution remote sensing images are highly useful in verifying the correctness, as well as completeness of any nuclear program. DOE national laboratories are interested in detecting nuclear proliferation by developing advanced geospatial image mining algorithms. In this paper we describe the current understanding of geospatial image mining techniques and enumerate key gaps and identify future research needs in the context of nuclear proliferation.

  1. Man, environment and nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Gardan, J

    1978-10-01

    The acceptability of nuclear fission as energy source is governed by three factors, economic, ecological and sociological. the economic context the gradual exhaustion of fossil fuels is a result of ever-increasing demands. The biological risk concept which determines the acceptable industrial application level is the second factor to be considered. The danger of radioactive contamination is almost unexistent except in the accident hypothesis, and power stations are built with excessive safeguards against hypothetical accidents. The idea of systematic processing of all working effluent to reduce radioactive waste discharge by several orders of magnitude is being examined. The only serious problems seem to be the disposal of radioactive wastes and the plutonium non-proliferation question bound up with breeder reactors. Whereas vitrification offers some solution to the radioactive waste conditioning problem, responsibility for the proliferation of nuclear weapons rests with the human conscience alone. The development of nuclear power stations over several decades seems to present no inacceptable danger and offers the best compromise betweengrowth and minimum risk requirements. The third factor to be accounted for is the opposition displayed by a fraction of the population to the development of nuclear energy for peaceful applications.

  2. Nuclear proliferation and terrorism in the post-9/11 world

    CERN Document Server

    Hafemeister, David

    2016-01-01

    This book fills a clear gap in the literature for a technically-focused book covering nuclear proliferation and related issues post-9/11. Using a concept-led approach which serves a broad readership, it provides detailed overview of nuclear weapons, nuclear proliferation and international nuclear policy. The author addresses topics including offensive and defensive missile systems, command and control, verification, weapon effects, and nuclear testing. A chronology of nuclear arms is presented including detailed discussion of the Cold War, proliferation, and arms control treaties. The book is tailored to courses on nuclear proliferation, and the general reader will also find it a fascinating introduction to the science and strategy behind international nuclear policy in the modern era. “Finally, a spritely, accessible overview of the nuclear world in historical context from someone who has both seen it from the U.S. State Department and Congressional policy trenches and taught it for 43 years. A gift to bot...

  3. Nuclear Proliferation Technology Trends Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  4. The new US nuclear non-proliferation and export policy

    International Nuclear Information System (INIS)

    Welck, S. von.

    1981-01-01

    The future American nuclear non-proliferation and export policy will be determined chiefly by three elements: (1) Adherence to the former objective of nuclear non-proliferation. (2) A large and varied assortment of old and new tools for implementing this goal. (3) Much more differentiation in applying these tools in the light of the reliability, with respect to non-proliferation policy, of the respective partner. Consequently, it would make little sense for the new Administration to force upon allied industrialized countries, whose nuclear technologies are at the same level as that of the United States, restrictive rules on reprocessing and breeder technology. The new measures designed to curb proliferation are especially meant to destroy motivations that could cause states to own nuclear explosives. This also applies to the removal of economic motivations. (orig.) [de

  5. Utility of Social Modeling in Assessment of a State’s Propensity for Nuclear Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Coles, Garill A.; Brothers, Alan J.; Whitney, Paul D.; Dalton, Angela C.; Olson, Jarrod; White, Amanda M.; Cooley, Scott K.; Youchak, Paul M.; Stafford, Samuel V.

    2011-06-01

    This report is the third and final report out of a set of three reports documenting research for the U.S. Department of Energy (DOE) National Security Administration (NASA) Office of Nonproliferation Research and Development NA-22 Simulations, Algorithms, and Modeling program that investigates how social modeling can be used to improve proliferation assessment for informing nuclear security, policy, safeguards, design of nuclear systems and research decisions. Social modeling has not to have been used to any significant extent in a proliferation studies. This report focuses on the utility of social modeling as applied to the assessment of a State's propensity to develop a nuclear weapons program.

  6. Perspectives of nuclear energy in the view of the World Energy Council

    International Nuclear Information System (INIS)

    Doucet, G.

    2003-01-01

    Since 1930, the World Energy Council (WEC) has been closely involved in problems associated with the use of nuclear power. At the meeting then held by the WEC Executive Committee in Berlin, Albert Einstein drew the attention of power utilities to this new source of energy. In addition to optimized use, technical progress, and waste management, the WEC regards aspects of safety, proliferation, and sustainability of nuclear power as matters of special importance. In the energy scenarios elaborated by the WEC since the 1980s, nuclear power plays one of the leading roles in the future energy mix. The sustainable management of energy resources, worldwide climate protection, but also equal access to energy for all people, require the use of nuclear power and the furtherance of its options. Moreover, the use of nuclear power in the industrialized countries helps to stabilize energy prices worldwide. This is in the interest especially of developing countries, for which low-cost, accessible energy sources are vital factors. The electricity supply crisis in California in 2001 has shown the continuity of supply to be one of the factors important in the deregulation of energy markets. Bottlenecks in electricity supply because of a lack of acceptance of electricity generation are problems affecting the future of industrialized countries. For instance, the increasing digitization of every-day life demands reliable power supply. In its studies of all available energy sources the WEC found no alternative to nuclear power. Factors of importance in the future development and use of nuclear power are public acceptance and the ability, and willingness, to take decisions in economic issues. Waste management, proliferation, safety, and research and development are other priorities. As a source of power protecting the climate, stabilizing costs, and offering a considerable potential, nuclear power is compatible with the objectives of sustainable development for the world of tomorrow

  7. Does nuclear energy save global environment?

    International Nuclear Information System (INIS)

    Matsui, Kazuaki

    2006-01-01

    Since the ecological footprint analysis in 1970s suggested changing consumption patterns and overpopulation concerns, energy policy such as energy conservation and use of renewable energy has become of prime importance. Several results of the long-term energy demand and supply analysis in 2050 or 2100 to reduce drastically carbon dioxide emission as a measure against global warming, showed the necessity of nuclear power deployment as well as maximum efforts to save energy, exploitation of the separation and disposal of carbon dioxide, and shifting energy sources to fuels that emit less greenhouse gases or non-fossil fuels. As a promising means to contribute to long-term energy supply, nuclear power generation is expected with improving safety, economic efficiency, environmental adaptability, and nuclear proliferation resistance of the technologies. (T.Tanaka)

  8. Assessing the optimism-pessimism debate: Nuclear proliferation, nuclear risks, and theories of state action

    International Nuclear Information System (INIS)

    Busch, Nathan Edward

    2001-01-01

    This dissertation focuses on the current debate in international relations literature over the risks associated with the proliferation of nuclear weapons. On this subject, IR scholars are divided into roughly two schools: proliferation 'optimists,' who argue that proliferation can be beneficial and that its associated hazards are at least surmountable, and proliferation 'pessimists,' who believe the opposite. This debate centers upon a theoretical disagreement about how best to explain and predict the behavior of states. Optimists generally ground their arguments on rational deterrence theory and maintain that nuclear weapons can actually increase stability among states, while pessimists often ground their arguments on 'organization theory,' which contends that organizational, bureaucratic, and other factors prevent states from acting rationally. A major difficulty with the proliferation debate, however, is that both sides tend to advance their respective theoretical positions without adequately supporting them with solid empirical evidence. This dissertation detailed analyses of the nuclear programs in the United States, Russia, China, India, and Pakistan to determine whether countries with nuclear weapons have adequate controls over their nuclear arsenals and tissue material stockpiles (such as highly enriched uranium and plutonium). These case studies identify the strengths and weaknesses of different systems of nuclear controls and help predict what types of controls proliferating states are likely to employ. On the basis of the evidence gathered from these cases, this dissertation concludes that a further spread of nuclear weapons would tend to have seriously negative effects on international stability by increasing risks of accidental, unauthorized, or inadvertent use of nuclear weapons and risks of thefts of fissile materials for use in nuclear or radiological devices by aspiring nuclear states or terrorist groups. (author)

  9. The nuclear energy policy challenges

    International Nuclear Information System (INIS)

    Hanne, H.

    2009-01-01

    At a time when the nuclear question mobilizes attentions and when a new cycle of debates about non-proliferation opens up, the author recalls the constraints and challenges of a nuclear power generation policy. After a brief history of the development of nuclear energy in France and in the rest of the world, the author presents the risks linked with this energy source (TMI and Chernobyl accidents), the particularities of the fuel cycle with its safety and security aspects, and the promises of some past and future reactor technologies (FBR's and fusion reactors). Then, the author stresses on the importance of investments in this domain as illustrated by the launching of new nuclear programs in France, UK, Italy, Finland and in the US, and by the willing of some emerging countries to develop this energy source (China, India, United Arab Emirates, Jordan..). Finally, nuclear energy must not be considered as a privilege of developed countries but should benefit to the rest of the world as well since it promotes economic development thanks to an abundant and cheap energy. (J.S.)

  10. DOE/LLNL verification symposium on technologies for monitoring nuclear tests related to weapons proliferation

    International Nuclear Information System (INIS)

    Nakanishi, K.K.

    1993-01-01

    The rapidly changing world situation has raised concerns regarding the proliferation of nuclear weapons and the ability to monitor a possible clandestine nuclear testing program. To address these issues, Lawrence Livermore National Laboratory's (LLNL) Treaty Verification Program sponsored a symposium funded by the US Department of Energy's (DOE) Office of Arms Control, Division of Systems and Technology. The DOE/LLNL Symposium on Technologies for Monitoring Nuclear Tests Related to Weapons Proliferation was held at the DOE's Nevada Operations Office in Las Vegas, May 6--7,1992. This volume is a collection of several papers presented at the symposium. Several experts in monitoring technology presented invited talks assessing the status of monitoring technology with emphasis on the deficient areas requiring more attention in the future. In addition, several speakers discussed proliferation monitoring technologies being developed by the DOE's weapons laboratories

  11. Nuclear power and the proliferation issue

    International Nuclear Information System (INIS)

    Marshall, W.

    1978-02-01

    This lecture addresses the question of ''accessibility'' of plutonium as it would arise in fully commercial LMFBR and LWR once-through operations. It is pointed out that the storage of spent LWR fuel results in the progressive accumulation of plutonium which becomes increasingly accessible with time (the ''plutonium mine'') whereas with the LMFBR, economic considerations demand the rapid recycle of plutonium. Furthermore, the fast breeder reactor is primarily a plutonium incinerator, the net production of plutonium being rather small and controllable so as not to exceed society's needs for new energy supplies. An eight-point world nuclear development programme is suggested, taking full note of non-proliferation considerations

  12. North-East Asia: a risk of nuclear proliferation; Un risque de proliferation nucleaire en Asie du Nord-Est?

    Energy Technology Data Exchange (ETDEWEB)

    Courmont, B. [Centre d' Etudes Transatlantiques, 75 - Paris (France)

    2009-04-15

    North-East Asia is distinguished by being potentially one of the world's most nuclearised regions. It includes two nuclear powers recognised by the Non-Proliferation Treaty (Russia and China), a proliferating state (North Korea) and three countries that could very quickly complete nuclear programmes (Japan, South Korea and Taiwan). Now that the question of nuclear proliferation has again surfaced on the international strategic scene, and that North Korea's test of October 2006 has introduced a new security paradigm into the region, how real is the risk of nuclear proliferation in North-East Asia? (author)

  13. Sweden and the making of nuclear non-proliferation: from indecision to assertiveness

    International Nuclear Information System (INIS)

    Dassen, L. van

    1998-03-01

    Swedish research on nuclear weapons started at a modest scale in 1945 but was soon expanded. By the early 1950s the research programme started to face some of the problems that were going to accompany it for the rest of its life: different priorities and cost-estimates were made by the sectors that wanted to develop nuclear energy and those working on the bomb. Moreover, an introduction of nuclear weapons would lead to a major redistribution of resources to the disadvantage of the navy and army. The public and political debates intensified during the 1950s and culminated in 1960. At first, pro-nuclear voices had been strongest but were soon challenged by interest groups, unions and peace movements. 1960, a committee within the government had established a compromise: Nuclear weapons research for production of weapons would be terminated, while research on the consequences of nuclear weapons would continue. It was a cosmetic decision that could cover for a continued research on weapons design. Nevertheless, there are some general qualities from the debates that indicate why the outcome was that Sweden signed the NPT in 1968. First, the number of interested persons, groups movements and party politicians engaged in the issue increased every time the issue came up. Secondly, the segments of society that supported the nuclear option remained roughly the same. No strong movements rallied to the defence of this position. On the other hand, the anti-nuclear wing received more and more followers. Third, there was a marked tendency by virtually all actors (except the military) to include every sign of progress in international disarmament and non-proliferation efforts as arguments against Swedish proliferation. Since 1968, the non-proliferation choice has ben manifested through Sweden''s adherence to the NPT and this has been accompanied by a strong commitment to other non-proliferation initiatives

  14. Sweden and the making of nuclear non-proliferation: from indecision to assertiveness

    Energy Technology Data Exchange (ETDEWEB)

    Dassen, L. van [Uppsala Univ. (Sweden). Dept. of Peace and Conflict Research

    1998-03-01

    Swedish research on nuclear weapons started at a modest scale in 1945 but was soon expanded. By the early 1950s the research programme started to face some of the problems that were going to accompany it for the rest of its life: different priorities and cost-estimates were made by the sectors that wanted to develop nuclear energy and those working on the bomb. Moreover, an introduction of nuclear weapons would lead to a major redistribution of resources to the disadvantage of the navy and army. The public and political debates intensified during the 1950s and culminated in 1960. At first, pro-nuclear voices had been strongest but were soon challenged by interest groups, unions and peace movements. 1960, a committee within the government had established a compromise: Nuclear weapons research for production of weapons would be terminated, while research on the consequences of nuclear weapons would continue. It was a cosmetic decision that could cover for a continued research on weapons design. Nevertheless, there are some general qualities from the debates that indicate why the outcome was that Sweden signed the NPT in 1968. First, the number of interested persons, groups movements and party politicians engaged in the issue increased every time the issue came up. Secondly, the segments of society that supported the nuclear option remained roughly the same. No strong movements rallied to the defence of this position. On the other hand, the anti-nuclear wing received more and more followers. Third, there was a marked tendency by virtually all actors (except the military) to include every sign of progress in international disarmament and non-proliferation efforts as arguments against Swedish proliferation. Since 1968, the non-proliferation choice has ben manifested through Sweden``s adherence to the NPT and this has been accompanied by a strong commitment to other non-proliferation initiatives. Refs.

  15. Gas Centrifuges and Nuclear Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  16. Nuclear Fuel Leasing, Recycling and proliferation: Modeling a Global View

    International Nuclear Information System (INIS)

    Crozat, M P; Choi, J; Reis, V H; Hill, R

    2004-01-01

    On February 11, 2004, U.S. President George W. Bush, in a speech to the National Defense University stated: ''The world must create a safe, orderly system to field civilian nuclear plants without adding to the danger of weapons proliferation. The world's leading nuclear exporters should ensure that states have reliable access at reasonable cost to fuel for civilian reactors, so long as those states renounce enrichment and reprocessing. Enrichment and reprocessing are not necessary for nations seeking to harness nuclear energy for peaceful purposes.'' This concept would require nations to choose one of two paths for civilian nuclear development: those that only have reactors and those that contain one or more elements of the nuclear fuel cycle, including recycling. ''Fuel cycle'' states would enrich uranium, manufacture and lease fuel to ''reactor'' states and receive the reactor states' spent fuel. All parties would accede to stringent security and safeguard standards, embedded within a newly invigorated international regime. Reactor states would be relieved of the financial, environmental (and political) burden of enriching and manufacturing fuel and dealing with spent fuel. Fuel cycle states would potentially earn money on leasing the fuel and perhaps on sales of reactors to the reactor states. Such a leasing concept is especially interesting in scenarios which envision growth in nuclear power, and an important consideration for such a nuclear growth regime is the role of recycling of civilian spent fuel. Recycling holds promise for improved management of spent fuel and efficient utilization of resources, but continues to raise the specter of a world with uncontrolled nuclear weapons proliferation. If done effectively, a fuel-leasing concept could help create a political and economic foundation for significant growth of clean, carbon-free nuclear power while providing a mechanism for significant international cooperation to reduce proliferation concern. This

  17. Constraining potential nuclear-weapons proliferation from civilian reactors

    International Nuclear Information System (INIS)

    Travelli, A.; Gaines, L.L.; Minkov, V.; Olson, A.P.; Snelgrove, J.

    1993-01-01

    Cessation of the Cold War and renewed international attention to the proliferation of weapons of mass destruction are leading to national policies aimed at restraining nuclear-weapons proliferation that could occur through the nuclear-fuel cycle. Argonne, which has unique experience, technology, and capabilities, is one of the US national laboratories contributing to this nonproliferation effort

  18. Future non-proliferation challenges

    International Nuclear Information System (INIS)

    Yelchenko, Volodymyr

    2008-01-01

    Having chaired the Second Session of the Preparatory Committee Mr. Volodymyr Yelchenko noted that the NPT States parties reaffirmed the important role of the Treaty as the cornerstone of the global non-proliferation regime. They stressed that non-compliance with the Treaty provisions by States parties undermined non-proliferation and placed emphasis on the mutually reinforcing nature of disarmament and non-proliferation, and due respect for the right of States parties to the peaceful use of nuclear energy in conformity with the treaty. They reaffirmed the importance of promoting the peaceful uses of nuclear energy and international nuclear cooperation for peaceful purposes in ways consistent with the non-proliferation goal of the Treaty. The universality aspect was brought to the front with the lack of progress in this area. States parties called upon India, Israel and Pakistan to accede to the Treaty as non-nuclear-weapons states, promptly and without conditions and to bring into force comprehensive safeguards agreements, together with Additional Protocols, for ensuring non-proliferation. There is concern that non-States actors could gain access to weapons of mass destruction. One of the underlying themes at the Second Prepcom was the total elimination of nuclear weapons as the only absolute guarantee against their proliferation. Negative consequences to nuclear non-proliferation were also mentioned in the context of the abrogation of the Anti-Ballistic Missile Treaty and the development of missile defense systems, with the risk of a new arms race on Earth and in outer space. The importance of the immediate commencement of negotiations in the Conference of Disarmament on a treaty concerning fissile material for nuclear weapons or other nuclear explosive devices and the urgent conclusion of such a treaty as a beneficial step towards non-proliferation was stressed. The NPT states parties reaffirmed the role of the IAEA as the sole competent authority responsible for

  19. Nuclear proliferation and civilian nuclear power: report of the nonproliferation alternative systems assessment program. Volume V. Economics and systems analysis

    International Nuclear Information System (INIS)

    1979-12-01

    This NASAP assessment considers the economics of alternative nuclear reactor and fuel-cycle systems in the light of possible patterns of uranium supply and energy demand, as well as the economic implications of improving the proliferation resistance of the various systems. The assessment focuses on the costs of alternative nuclear technologies and the possible timing of their implementation, based on their economic attractiveness. The objectives of this assessment are to identify when economic incentives to deploy advanced nuclear power systems might exist, to estimate the costs of using technologies that would reduce the risk of proliferation, to assess the impact of major economic uncertainties on the transition to new technologies, and to compare the investments required for alternative systems

  20. Nuclear electric power and the proliferation of nuclear weapon states

    International Nuclear Information System (INIS)

    Walske, C.

    1977-01-01

    Control and elimination of the strategic nuclear weapons held by the nuclear weapon states remains the central problem in the arms control and disarmament field. Whether the proliferation of nations with nuclear weapons can be stopped is dubious. A sovereign nation will launch a nuclear weapons program if it has the motivation and resource. Motivation depends on military and political considerations. The necessary resources are economic and technological. Conditions in some sovereign states explain this issue. A survey of commercial nuclear power programs outside the USA lists 45 countries using or planning to use nuclear reactors for power generation. There are currently 112 reactors now operating outside the United States, 117 more under construction, 60 on order, and 180 planned. The U. S. as of December 1976 has 64 operating reactors, 72 under construction, 84 on order, and 8 planned. Nuclear trade and export policies are discussed. In this article, Mr. Walske says that American industry is convinced that the need for nuclear energy abroad is more urgent than in the United States; that in the long run, the breeder reactor must be developed to enable the supply of nuclear fuel to last for centuries; and that the experience of American industry abroad has convinced it that emphasis on restrictive, denial type policies will almost certainly fail--a collapse of what has been gained through the test ban treaty and the nonproliferation treaty

  1. Nuclear energy: Promise and problems

    International Nuclear Information System (INIS)

    Richter, B.

    2005-01-01

    Nuclear energy is having a renaissance driven by both old fashioned supply and demand, and environmental concerns. Oil and gas prices have exploded and show no signs of returning to the levels of only a few years ago. Coal is not in short supply, but the pollution it generates has severe economic and health consequences. Concern about greenhouse gases and global warming has caused the environmental movement to begin a reassessment of the role of nuclear in the world's energy portfolio. The full potential of nuclear energy will be achieved only if governments and the public are satisfied that it is safe, that the radioactive waste can be safely disposed of, and that the risk of the proliferation of nuclear weapons is low. The first criterion has been met with designs that are inherently safer than current LWRs, primarily through design simplification, reducing the number of critical components, and advanced control and monitoring technologies. Operating safety has to be assured through good practices and a rigorous, independent inspection process. The second criterion, waste disposal, is a problem where the science and technology (S and T) communities have the primary role in a solution. Many believe that it is solved in principle, but there has as yet been no solution in practice. I will report on where I think we have gotten and what needs to be done. The third criterion, proliferation resistance, is one that the S and T communities cannot solve on their own. The best that S and T can do is to make proliferation difficult, and to make sure that any attempts are discovered early. The rest can be handled only by enforceable international agreements. Safeguards technology needs more attention. (author)

  2. Tracking Nuclear Material At Proliferation Sensitive Points In The Kazakhstan Fuel Cycle

    NARCIS (Netherlands)

    Janssens-Maenhout, G.; Delbeke, J.F.A.; Caviglia, M.; Janssens, W.

    2006-01-01

    Since 1995 with the ratification and enforcement of the Non Proliferation Treaty in the Republic of Kazakhstan, the Kazakhstan Atomic Energy Committee (KAEC) is responsible for the implementation of the State System for Accountancy and Control (SSAC). In the SSAC, data on nuclear material

  3. Proliferation Persuasion. Coercive Bargaining with Nuclear Technology

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, Tristan A. [George Washington Univ., Washington, DC (United States)

    2015-08-31

    Why do states wait for prolonged periods of time with the technical capacity to produce nuclear weapons? Only a handful of countries have ever acquired the sensitive nuclear fuel cycle technology needed to produce fissile material for nuclear weapons. Yet the enduring trend over the last five decades is for these states to delay or forgo exercising the nuclear weapons option provided by uranium enrichment or plutonium reprocessing capabilities. I show that states pause at this threshold stage because they use nuclear technology to bargain for concessions from both allies and adversaries. But when does nuclear latency offer bargaining benefits? My central argument is that challengers must surmount a dilemma to make coercive diplomacy work: the more they threaten to proliferate, the harder it becomes to reassure others that compliance will be rewarded with nuclear restraint. I identify a range of mechanisms able to solve this credibility problem, from arms control over breakout capacity to third party mediation and confidence building measures. Since each step towards the bomb raises the costs of implementing these policies, a state hits a sweet spot when it first acquires enrichment and/or reprocessing (ENR) technology. Subsequent increases in proliferation capability generate diminishing returns at the bargaining table for two reasons: the state must go to greater lengths to make a credible nonproliferation promise, and nuclear programs exhibit considerable path dependency as they mature over time. Contrary to the conventional wisdom about power in world politics, less nuclear latency thereby yields more coercive threat advantages. I marshal new primary source evidence from archives and interviews to identify episodes in the historical record when states made clear decisions to use ENR technology as a bargaining chip, and employ this theory of proliferation persuasion to explain how Japan, North Korea, and Iran succeeded and failed to barter concessions from the

  4. Nuclear energy and the new era

    International Nuclear Information System (INIS)

    Sefidvash, F.

    1992-01-01

    The problem of the utilization of nuclear energy is not only technical but also has important social, economic, political and ethical ramifications. Therefore, to discuss nuclear energy for the future, a vision of the new era needs to be identified. A model for the new era, as a natural consequence of growing interdependence among nations and the process of human evolution is described. The problems of inherent and passive safety, waste disposal, ecology, proliferation, economy and regulatory institutions in the new era are discussed. The particular role of small nuclear power reactors and their potential advantages are described. (author). 12 refs

  5. What will it take to rejuvenate nuclear energy?

    International Nuclear Information System (INIS)

    Kadak, A.

    2000-01-01

    The issue of rejuvenation of nuclear energy on a worldwide basis will require several fundamental changes. These changes include how we design them, license them and operate them. While on the surface these changes may seem overwhelming, they are prerequisites to nuclear energy's re-emergence as a viable electric energy source. The requirements for new nuclear technology are that the plants must be competitive; they must be 'demonstrably' safe; they must be proliferation resistant; and finally they must exist in the current political climate. (authors)

  6. Model development for quantitative evaluation of proliferation resistance of nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Ho Dong; Yang, Myung Seung

    2000-07-01

    This study addresses the quantitative evaluation of the proliferation resistance which is important factor of the alternative nuclear fuel cycle system. In this study, model was developed to quantitatively evaluate the proliferation resistance of the nuclear fuel cycles. The proposed models were then applied to Korean environment as a sample study to provide better references for the determination of future nuclear fuel cycle system in Korea. In order to quantify the proliferation resistance of the nuclear fuel cycle, the proliferation resistance index was defined in imitation of an electrical circuit with an electromotive force and various electrical resistance components. The analysis on the proliferation resistance of nuclear fuel cycles has shown that the resistance index as defined herein can be used as an international measure of the relative risk of the nuclear proliferation if the motivation index is appropriately defined. It has also shown that the proposed model can include political issues as well as technical ones relevant to the proliferation resistance, and consider all facilities and activities in a specific nuclear fuel cycle (from mining to disposal). In addition, sensitivity analyses on the sample study indicate that the direct disposal option in a country with high nuclear propensity may give rise to a high risk of the nuclear proliferation than the reprocessing option in a country with low nuclear propensity.

  7. Model development for quantitative evaluation of proliferation resistance of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong; Yang, Myung Seung

    2000-07-01

    This study addresses the quantitative evaluation of the proliferation resistance which is important factor of the alternative nuclear fuel cycle system. In this study, model was developed to quantitatively evaluate the proliferation resistance of the nuclear fuel cycles. The proposed models were then applied to Korean environment as a sample study to provide better references for the determination of future nuclear fuel cycle system in Korea. In order to quantify the proliferation resistance of the nuclear fuel cycle, the proliferation resistance index was defined in imitation of an electrical circuit with an electromotive force and various electrical resistance components. The analysis on the proliferation resistance of nuclear fuel cycles has shown that the resistance index as defined herein can be used as an international measure of the relative risk of the nuclear proliferation if the motivation index is appropriately defined. It has also shown that the proposed model can include political issues as well as technical ones relevant to the proliferation resistance, and consider all facilities and activities in a specific nuclear fuel cycle (from mining to disposal). In addition, sensitivity analyses on the sample study indicate that the direct disposal option in a country with high nuclear propensity may give rise to a high risk of the nuclear proliferation than the reprocessing option in a country with low nuclear propensity

  8. The challenge of nuclear proliferation control in South Asia

    International Nuclear Information System (INIS)

    Mian, J.A.

    1996-01-01

    Prevention of nuclear weapon proliferation in South Asia is considered a a difficult challenge. The paper discusses the difficulties met in implementing the nuclear non-proliferation policy due to numerous disputes concerning China, North and South Korea, India and Pakistan, and the countries of former Soviet Union. Matters preventing proliferation are mentioned as well as obstacles to non-proliferation proposing that decisions whether voluntary or, eventually, compulsory would have to be consistently enforced by the Security Council, if states are to rely upon those methods for their security

  9. Nuclear non-proliferation and disarmament: A long-term perspective

    International Nuclear Information System (INIS)

    Haeckel, E.

    1990-01-01

    International nuclear policy has been determined for a long time by the exigencies of the status quo. The non-proliferation regime draws its legitimacy from the continuation of extant patterns of power in world politics. Such a static policy cannot succeed forever. Overcoming the threat of nuclear proliferation will require innovative strategy that reaches beyond the status quo. It calls for structural change in the international system to be accomodated instead of resisted. If the Non-Proliferation Treaty is to hold, nuclear weapon states will finally have to forgo their privileged status. This cannot, however, be accomplished simply through the abolition or renunciation of nuclear weapons since nuclear weapons themselves continue to be instrumental for war prevention and international stability. Rather, what is needed is a new approach to the management of the nuclear world system under international responsibility. Nonproliferation and disarmament objectives together call for a concept of global security in which multilateral institutions assume an increasingly important role of nuclear diplomacy. (orig.) [de

  10. British nuclear non-proliferation policy and the trident purchase

    International Nuclear Information System (INIS)

    Keohane, D.

    1984-01-01

    Since the mid-1950s, the UK has had a policy of making significant and sustained efforts to minimise the spread of nuclear arms. Unlike the global focus of its non-proliferation policy, the decision on Trident in centred upon national and perhaps regional requirements. At a time when non-nuclear countries are charging nuclear-weapon states with a grave failure to meet their obligations under Article VI of the NPT, Britain is making plans that would further increase the gap between the nuclear 'haves' and have-nots' and that indicate it expects to require nuclear arms in the next century. It would of course be unrealistic to expect a government to fully harmonise its manifold policies and unreasonable to suggest it should give absolute priority to one of its policy concerns, such as non-proliferation. But Britain is emphasising the high value it places upon the independent possession of strategic nuclear arms through its decision to purchase Trident, thus implicitly contradicting the logic underlying its non-proliferation policy. Compared to other factors, the influence of the Trident decision upon the non-proliferation regime appears very marginal, yet it is unlikely to strengthen that regime

  11. Prospects for nuclear energy under a Reagan administration

    International Nuclear Information System (INIS)

    Doub, W.O.

    1981-01-01

    The press is told that media treatment of nuclear energy has been superficial and often irresponsible. The press is responsible for much of the public's apprehension, and should work in cooperation with the industry to present objective facts of nuclear energy economics and safety. The Reagan administration intends to reverse the impact of the Carter policies on the nuclear option by supporting commercial reprocessing and shifting the focus from conservation and renewable energy sources back to nuclear energy. New management structure and responsibilities will address the US decline as a world leader in nuclear energy and realign the country with its traditional trading partners. This will reverse the erosion of the Non-Proliferation Treaty and the authority of the International Energy Agency. Current economic problems could delay utility plant expansion without some steps toward deregulation

  12. Remarks on nuclear non-proliferation and nuclear disarmament, United Nations Security Council, 24 September 2009, New York, USA

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2009-01-01

    IAEA Director General Dr. Mohamed ElBaradei, Director General of the International Atomic Energy Agency (IAEA) limited his speech to a few key issues. First he stated that the global nuclear non-proliferation regime is fragile and has many shortcomings because the IAEA's legal authority is severely limited in some countries and the IAEA verification mandate is centred on nuclear material and not on weaponization activities. Secondly there is a growing number of states that have mastered uranium enrichment or plutonium reprocessing. Any one of these states could develop nuclear weapons in a short span of time, if, for example, it decided to withdraw from the NPT. There is a need to move from national to multinational control of the nuclear fuel cycle. Thirdly the highest level of protection for nuclear and radioactive material has to be provided. A fourth issue is the need to strengthen the IAEA. A fifth issue is that the IAEA cannot do its work in isolation but depends on a supportive political process, with the Security Council at its core. A sixth issue is that the Security Council must put more emphasis on addressing the insecurities that lie behind many cases of proliferation, such as endemic conflicts, security imbalances and lack of trust. Finally, Dr. Mohamed ElBaradei is gratified to see nuclear disarmament back at the top of the international agenda, as well as recognition of the intrinsic link between nuclear disarmament and non-proliferation

  13. Nuclear proliferation: the U.S.-Indian conflict

    International Nuclear Information System (INIS)

    Chellaney, Brahma.

    1993-01-01

    The history of the present conflicting positions of U.S. and India on the issue of nuclear proliferation is narrated and various aspects of this U.S. India controversy are studied. These aspects are: U.S.-India cooperation in the nuclear field in the fifties and sixties; India's peaceful nuclear explosion (PNE) in 1974 and U.S. policy of containment through denial of nuclear fuel and spare parts supply for Tarapur Atomic Power Station; and the political, technical and legal aspects of the nuclear conflict between U.S. and India. Since India's PNE in 1974, U.S. has made India a target of its non-proliferation strategy and is coordinating multinational efforts in erecting barriers in the flow of dual-use sensitive technologies to India. The recent instance is U.S. pressure on Russia to cancel the contract with India to sell cryogenic rocket engine technology required for India's civilian space programme. Even though apparently the conflict is over nuclear proliferation issue, in essence it is a conflict between U.S. determination to restrict high-technology transfer to India on one hand and India's resolve to maintain its nuclear independence on the other hand. The study is based on primary sources in the form of U.S. and Indian government documents. Texts of important government documents are given in appendices and bibliographies of primary and secondary sources used in the study are included. (M.G.B.)

  14. Perspective of nuclear fuel cycle for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Fukuda, K.; Bonne, A.; Kagramanian, V.

    2001-01-01

    Nuclear power, on a life-cycle basis, emits about the same level of carbon per unit of electricity generated as wind and solar power. Long-term energy demand and supply analysis projects that global nuclear capacities will expand substantially, i.e. from 350 GW today to more than 1,500 GW by 2050. Uranium supply, spent fuel and waste management, and a non-proliferation nuclear fuel cycle are essential factors for sustainable nuclear power growth. An analysis of the uranium supply up to 2050 indicates that there is no real shortage of potential uranium available if based on the IIASA/WEC scenario on medium nuclear energy growth, although its market price may become more volatile. With regard to spent fuel and waste management, the short term prediction foresees that the amount of spent fuel will increase from the present 145,000 tHM to more than 260,000 tHM in 2015. The IPCC scenarios predicted that the spent fuel quantities accumulated by 2050 will vary between 525 000 tHM and 3 210 000 tHM. Even according to the lowest scenario, it is estimated that spent fuel quantity in 2050 will be double the amount accumulated by 2015. Thus, waste minimization in the nuclear fuel cycle is a central tenet of sustainability. The proliferation risk focusing on separated plutonium and resistant technologies is reviewed. Finally, the IAEA Project INPRO is briefly introduced. (author)

  15. Nuclear disarmament and evolution of the nuclear non-proliferation regime

    International Nuclear Information System (INIS)

    Bragin, V.; Carlson, J.; Bardsley, J.; Hill, J.

    1999-01-01

    The 1995 NPT Review and Extension Conference reaffirmed 'the ultimate goals of the complete elimination of nuclear weapons and a treaty on general and complete disarmament under strict and effective international control' and endorsed 'universal application of safeguards once the complete elimination of nuclear weapons has been achieved'. Hence strengthening the international non-proliferation regime and incremental broadening of its coverage towards the universal application of international safeguards in all States is a high priority albeit for the medium to long term. A tentative attempt is made in this paper to anticipate how the elements of verification under the NPT, FMCT and other conventions and arrangements related to nuclear non-proliferation will evolve against the background of the disarmament process, with the goal of achieving at some future stage an ultimate convergence of verification regimes under a complete nuclear disarmament. We think, however, that most of the new initiatives in the area of disarmament/non-proliferation should be realised during the current disarmament phase. We do not wish our model to be perceived as a rigid time-bound scheme. New initiatives should be implemented in parallel and as soon as practicable. This paper reflects the personal views of the authors and should not be taken to represent Australian Government policy. (author)

  16. Nuclear energy: a master card

    International Nuclear Information System (INIS)

    Garaud, M.F.

    1996-01-01

    Here are exposed the elements of the French doctrine of nuclear deterrence. The historical points, from the American deterrence to the actual situation are detailed. The political aspects, with the non proliferation, the ecologists pressure and the anti nuclear pacifism are evoked to precise the uncertainty of the actual French deterrence. 9 analysis are on the deterrence subject, then the civil aspect of nuclear energy is discussed, with the advantages and the disadvantages of the nuclear power plants and the reprocessing in two analysis; a special mention is noted for the reactor safety in Eastern Europe, in the last article. (N.C.)

  17. Nuclear Energy Principles, Practices, and Prospects

    CERN Document Server

    Bodansky, David

    2008-01-01

    The world faces serious difficulties in obtaining the energy that will be needed in coming decades for a growing population, especially given the problem of climate change caused by fossil fuel use. This book presents a view of nuclear energy as an important carbon-free energy option. It discusses the nuclear fuel cycle, the types of reactors used today and proposed for the future, nuclear waste disposal, reactor accidents and reactor safety, nuclear weapon proliferation, and the cost of electric power. To provide background for these discussions, the book begins with chapters on the history of the development and use of nuclear energy, the health effects of ionizing radiation, and the basic physics principles of reactor operation. The text has been rewritten and substantially expanded for this edition, to reflect changes that have taken place in the eight years since the publication of the first edition and to provide greater coverage of key topics. These include the Yucca Mountain repository plans, designs ...

  18. Nuclear proliferation in South Asia; La proliferation nucleaire en Asie du Sud

    Energy Technology Data Exchange (ETDEWEB)

    Lamballe, A

    2007-07-15

    Neither India nor Pakistan has signed the Nuclear Non-Proliferation Treaty or the Comprehensive Test Ban Treaty.By carrying out tests in 1998, they therefore violated no international agreement but dealt a severe blow to non-proliferation by inciting other countries, including Iran, to develop nuclear weapons. The purpose of India strike force is to deter China; Pakistan hopes that with a credible strike force it will be able to deter any major attack by India. The nuclear phenomenon is now firmly entrenched in the minds of all those on the subcontinent, where the arms race continues without let-up on all fronts: witness the many launches of ballistic and cruise missiles by both countries. And now that radical Islamist movements are showing an interest in nuclear weapons systems there is a risk of tipping from the rational to the irrational world, with all its attendant dangers. (author)

  19. The collection of the information on peaceful use of atomic energy and nuclear now proliferation and its summaries and analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S.; Takeda, Hiroshi [PESCO Co. Ltd., Tokyo (Japan)

    1999-03-01

    This report summarizes the monthly topics on peaceful uses of atomic energy and management of nuclear materials and its proliferation. The topics are based on the 127 related articles appeared in the newspapers of Japan; those are the Yomiuri, the Asahi, the Mainichi and the Sankei in ten months from May 1998 to February 1999. The most frequent topics are (1) nuclear inspection of Iraq and suspicion for nuclear weapon, (2) nuclear experiments, economic sanctions and CTBT in India and Pakistan, (3) underground nuclear facilities of North Korea and discussions on KEDO. The United Nations Security Council, IAEA and each country have responded on the issues of nuclear disarmament, nuclear non-proliferation, a resolution on suspension of nuclear test, reinforcement of IAEA security actions and an organization of NPT. The next topic is disarmament talks of nuclear weapon and nuclear waste disposal between USA and Russian Federation. Noteworthy issues are promotion of international cooperation on disposal of dismantled nuclear material of Russian Federation and supports for commercial use of plutonium. The fundamental concept is the timing of the pace between USA and Russian Federation on nuclear weapon disarmament. The point is how to realize the plan in the economical difficulty of Russian Federation. Other topics in the newspapers are disposal of Russian atomic submarines, sub-critical nuclear experiments of USA and Russian Federation, tritium production of USA, commercial uses of highly enriched uranium, nuclear of Iran, missile issues, transportation of plutonium. Technical terms and abbreviations are explained after the monthly topics with its background. The total 127 references of the newspaper articles are attached after the topics. (Y. Tanaka)

  20. Nuclear PIM1 confers resistance to rapamycin-impaired endothelial proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Walpen, Thomas; Kalus, Ina [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Schwaller, Juerg [Department of Biomedicine, University of Basel, 4031 Basel (Switzerland); Peier, Martin A. [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Battegay, Edouard J. [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), 8057 Zuerich (Switzerland); Humar, Rok, E-mail: Rok.Humar@usz.ch [Research Unit, Division Internal Medicine, University Hospital Zuerich, 8091 Zuerich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), 8057 Zuerich (Switzerland)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Pim1{sup -/-} endothelial cell proliferation displays increased sensitivity to rapamycin. Black-Right-Pointing-Pointer mTOR inhibition by rapamycin enhances PIM1 cytosolic and nuclear protein levels. Black-Right-Pointing-Pointer Truncation of Pim1 beyond serine 276 results in nuclear localization of the kinase. Black-Right-Pointing-Pointer Nuclear PIM1 increases endothelial proliferation independent of rapamycin. -- Abstract: The PIM serine/threonine kinases and the mTOR/AKT pathway integrate growth factor signaling and promote cell proliferation and survival. They both share phosphorylation targets and have overlapping functions, which can partially substitute for each other. In cancer cells PIM kinases have been reported to produce resistance to mTOR inhibition by rapamycin. Tumor growth depends highly on blood vessel infiltration into the malignant tissue and therefore on endothelial cell proliferation. We therefore investigated how the PIM1 kinase modulates growth inhibitory effects of rapamycin in mouse aortic endothelial cells (MAEC). We found that proliferation of MAEC lacking Pim1 was significantly more sensitive to rapamycin inhibition, compared to wildtype cells. Inhibition of mTOR and AKT in normal MAEC resulted in significantly elevated PIM1 protein levels in the cytosol and in the nucleus. We observed that truncation of the C-terminal part of Pim1 beyond Ser 276 resulted in almost exclusive nuclear localization of the protein. Re-expression of this Pim1 deletion mutant significantly increased the proliferation of Pim1{sup -/-} cells when compared to expression of the wildtype Pim1 cDNA. Finally, overexpression of the nuclear localization mutant and the wildtype Pim1 resulted in complete resistance to growth inhibition by rapamycin. Thus, mTOR inhibition-induced nuclear accumulation of PIM1 or expression of a nuclear C-terminal PIM1 truncation mutant is sufficient to increase endothelial cell proliferation

  1. IAEA safeguards: Stemming the spread of nuclear weapons. As the world's nuclear inspectorate, the IAEA performs an indispensable role in furthering nuclear non-proliferation

    International Nuclear Information System (INIS)

    2002-01-01

    Following the completion of the Treaty on the Non- Proliferation of Nuclear Weapons (NPT) in 1968, the IAEA has become the instrument with which to verify that the peaceful use commitments made under the NPT or similar agreements are kept through performing what is known as its safeguards role. Under the NPT, governments around the world have committed to three common objectives: preventing the proliferation of nuclear weapons; pursuing nuclear disarmament; and promoting the peaceful uses of nuclear energy. The NPT has made it obligatory for all its non-nuclear weapon State parties to submit all nuclear material in nuclear activities to IAEA safeguards, and to conclude a comprehensive safeguards agreement with the Agency. With all but a handful of the world community as State parties, the NPT is by far the most widely adhered to legal agreement in the field of disarmament and non-proliferation. The IAEA takes account of all source and special fissionable material in countries under safeguards. Monitoring and verification activities focus on those types of nuclear material that are the most crucial and relevant to nuclear weapons manufacturing. This includes plutonium-239, uranium-233 and -235 and any material containing one or more of these. Safeguards activities are applied routinely at over 900 facilities in 71 countries. In 2001 alone, more than 21,000 calendar days in the field were devoted to verifying hundreds of tons of special fissionable material by more than IAEA 250 inspectors

  2. Framework of Comprehensive Proliferation Resistance Evaluation Methodology

    International Nuclear Information System (INIS)

    Kim, Min Su; Jo, Seong Youn; Kim, Min Soo; Kim, Jae San; Lee, Hyun Kyung

    2007-01-01

    Civilian nuclear programs can be used as a pretext to acquire technologies, materials, equipment for military weapon programs. Consequently, international society has a strong incentive to develop a nuclear system more proliferation resistant to assure that the civilian nuclear energy system is an unattractive and least desirable route for diversion of weapon usable material. The First step developing a more proliferation resistant nuclear energy system is to develop a systematic and standardized evaluation methodology to ensure that any future nuclear energy system satisfies the proliferation resistance goals. Many attempts to develop systematic evaluation methodology have been proposed and many systems for assessing proliferation resistance have been previously studied. However, a comprehensive proliferation resistance evaluation can not be achieved by simply applying one method since complicated proliferation resistance characteristics, including inherent features and extrinsic features, should be completely evaluated. Therefore, it is necessary to develop one incorporated evaluation methodology to make up for weak points of each evaluation method. The objective of this study is to provide a framework of comprehensive proliferation resistance evaluation methodology by incorporating two generally used evaluation methods, attribute and scenario analysis

  3. Nuclear Power and Sustainable Energy Policy: Promises and Perils

    OpenAIRE

    Ioannis N. Kessides

    2010-01-01

    The author examines the challenges and opportunities of nuclear power in meeting the projected large absolute increase in energy demand, especially electricity, throughout the industrialized and developing world, while helping to mitigate the threat of climate change. A significant global nuclear power deployment would engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses...

  4. Proliferation and the Civilian Nuclear Fuel Cycle. Towards a Simplified Recipe to Measure Proliferation Risk

    Energy Technology Data Exchange (ETDEWEB)

    Brogli, R.; Krakowski, R.A

    2001-08-01

    The primary goal of this study is to frame the problem of nuclear proliferation in the context of protection and risks associated with nuclear materials flowing in the civilian nuclear fuel cycle. The perspective adopted for this study is that of a nuclear utility and the flow of fresh and spent nuclear fuel with which that utility must deal in the course of providing economic, safe, and ecologically acceptable electrical power to the public. Within this framework quantitative approaches to a material-dependent, simplified proliferation-risk metric are identified and explored. The driving force behind this search for such a proliferation metric derives from the need to quantify the proliferation risk in the context of evaluating various commercial nuclear fuel cycle options (e.g., plutonium recycle versus once-through). While the formulation of the algebra needed to describe the desired, simplified metric(s) should be straight forward once a modus operandi is defined, considerable interaction with the user of any final product that results is essential. Additionally, a broad contextual review of the proliferation problem and past efforts in the quantification of associated risks was developed as part of this study. This extensive review was essential to setting perspectives and establishing (feasibility) limits to the search for a proliferation metric(s) that meets the goals of this study. Past analyses of proliferation risks associated with the commercial nuclear fuel cycle have generally been based on a range of decision-analysis, operations-research tools. Within the time and budget constraints, as well as the self-enforced (utility) customer focus, the more subjective and data-intensive decision-analysis methodologies where not pursued. Three simplified, less-subjective approaches were investigated instead: a) a simplified 'four-factor' formula expressing as a normalized product political, material-quantity, material-quality, and material

  5. Proliferation and the Civilian Nuclear Fuel Cycle. Towards a Simplified Recipe to Measure Proliferation Risk

    International Nuclear Information System (INIS)

    Brogli, R.; Krakowski, R.A.

    2001-08-01

    The primary goal of this study is to frame the problem of nuclear proliferation in the context of protection and risks associated with nuclear materials flowing in the civilian nuclear fuel cycle. The perspective adopted for this study is that of a nuclear utility and the flow of fresh and spent nuclear fuel with which that utility must deal in the course of providing economic, safe, and ecologically acceptable electrical power to the public. Within this framework quantitative approaches to a material-dependent, simplified proliferation-risk metric are identified and explored. The driving force behind this search for such a proliferation metric derives from the need to quantify the proliferation risk in the context of evaluating various commercial nuclear fuel cycle options (e.g., plutonium recycle versus once-through). While the formulation of the algebra needed to describe the desired, simplified metric(s) should be straight forward once a modus operandi is defined, considerable interaction with the user of any final product that results is essential. Additionally, a broad contextual review of the proliferation problem and past efforts in the quantification of associated risks was developed as part of this study. This extensive review was essential to setting perspectives and establishing (feasibility) limits to the search for a proliferation metric(s) that meets the goals of this study. Past analyses of proliferation risks associated with the commercial nuclear fuel cycle have generally been based on a range of decision-analysis, operations-research tools. Within the time and budget constraints, as well as the self-enforced (utility) customer focus, the more subjective and data-intensive decision-analysis methodologies where not pursued. Three simplified, less-subjective approaches were investigated instead: a) a simplified 'four-factor' formula expressing as a normalized product political, material-quantity, material-quality, and material-protection metrics; b

  6. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume V. Economics and systems analysis

    International Nuclear Information System (INIS)

    1980-06-01

    This NASAP assessment considers the economics of alternative nuclear reactor and fuel-cycle systems in the light of possible patterns of uranium supply and energy demand, as well as the economic implications of improvng the proliferation resistance of the various systems. The assessment focuses on the costs of alternative nuclear technologies and the possible timing of their implementation, based on their economic attractiveness

  7. The international legal regime governing the peaceful uses of nuclear energy

    International Nuclear Information System (INIS)

    Talaie, F.

    2004-01-01

    This paper studies the legal regime governing the peaceful uses of nuclear energy. It addresses the issue of the prevention of the use by states of the nuclear weapons (as the most destructive weapon of mass destruction) and their elimination as the main purpose for maintaining international peace and security.Then, the paper presents examples of peaceful applications of nuclear energy. It points out that the peaceful uses of nuclear materials and technology are not hampered by obligation of States not to divert these materials into nuclear weapons. In this context, the paper analyses the provisions of the main international and regional treaties related to the nuclear energy (especially the Treaty on Non-proliferation of Nuclear Weapons and the Regional Treaty of TLATELOLCO). It also examines the international mechanism for monitoring the peaceful uses of nuclear energy and in particular studies the role of the International Atomic Energy Agency in the prevention of the proliferation of nuclear weapons through the application of safeguards agreements and the additional protocol to these agreements. One special part of the paper is dedicated to Iran and the peaceful uses of nuclear energy. The paper concludes that the existing rules of international law do not prevent any State from using and applying nuclear energy and technology for peaceful uses. These rules only make such uses subject to a comprehensive verification mechanism through the International Atomic Energy Agency safeguards agreements and the additional protocol the these agreements

  8. Proliferation of nuclear weapons. Civilian and military exploitation of nuclear power

    International Nuclear Information System (INIS)

    Andresen, S.; Kongstad, S.

    1978-01-01

    Following brief technical and historical surveys the structure of the nuclear power market is discussed. In the 1970s a major change has been the decline of USA's virtual monopoly and the active entry of West Germany, France and Canada into the merket. Another development has been the commercialisation of progressively more of the fuel cycle, vide the agreements between Brazil and W. Germany, and Pakistan and France. These tendencies, added to the general spread of nuclear technologial ability and the adoption of nuclear power in more and more developing countries is presumed to increase the danger of nuclear weapon proliferation. The motives for, and means of, such proliferation are analysed. The tripartite agreement between Brazil, W. Germany and USA is discussed in great detail to illustrate the situation. The role of the NPT is not found to be significant. It is concluded that though proliferation may be inevitible, the motives may be for prestige and negotiating power, rather than use, and that the policy of the superpowers seems in the long run to lead to a reduction of their military dominance, and possible also their economic and political position in the international community. (JIW)

  9. Nuclear disarmament. Options for the coming non-proliferation treaty surveillance cycle

    International Nuclear Information System (INIS)

    Mueller, Harald

    2011-01-01

    The report is aimed on the nuclear disarmament discussion with respect to the disagreement of nuclear weapon states and those without nuclear weapons, esp. the non-aligned movement (NAM) concerning the non-proliferation treaty. The report covers the following issues: The role of the non-proliferation treaty, nuclear disarmament in the last surveillance conference 2010, the different disarmament philosophies, the possibilities of bridging the disagreement, further disarmament options for the future non-proliferation treaty surveillance cycle, German options for the future surveillance cycle.

  10. Status of Methodology Development for the Evaluation of Proliferation Resistance

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Ko, Won Il; Lee, Jung Won

    2010-01-01

    Concerning the increasing energy demand and green house effect, nuclear energy is now the most feasible option. Therefore, recently, oil countries even have a plan to build the nuclear power plant for energy production. If nuclear systems are to make a major and sustainable contribution to the worlds energy supply, future nuclear energy systems must meet specific requirements. One of the requirements is to satisfy the proliferation resistance condition in an entire nuclear system. Therefore, from the beginning of future nuclear energy system development, it is important to consider a proliferation resistance to prevent the diversion of nuclear materials. The misuse of a nuclear system must be considered as well. Moreover, in the import and export of nuclear system, the evaluation of the proliferation resistance on the nuclear system becomes a key factor The INPRO (International Project on Innovative Nuclear Reactors and Fuel Cycles) program initiated by the IAEA proposed proliferation resistance (PR) as a key component of a future innovative nuclear system (INS) with a sustainability, economics, safety of nuclear installation and waste management. The technical goal for Generation IV (Gen IV) nuclear energy systems (NESs) highlights a Proliferation Resistance and Physical Protection (PR and PP), sustainability, safety, reliability and economics as well. Based on INPRO and Gen IV study, the methodology development for the evaluation of proliferation resistance has been carried out in KAERI. Finally, the systematic procedure for methodology was setup and the indicators for the procedure were decided. The methodology involves the evaluation from total nuclear system to individual process. Therefore, in this study, the detailed procedure for the evaluation of proliferation resistance and the newly proposed additional indicators are described and several conditions are proposed to increase the proliferation resistance in the future nuclear system. The assessment of PR

  11. Nuclear power the challenges of non-proliferation

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The revival of the civil nuclear power industry rekindles the debate on proliferation, in other words, on the increase in the number of States likely to achieve nuclear weapon capability. The history of the past thirty years shows that none of the known attempts at proliferation has occurred within the scope of civil nuclear program development. No country that has decided to 'proliferate' has done so by diverting materials or installations governed by the commitment to peaceful utilization and under IAEA control. The only borderline case is India, which did not sign the NPT, and which in 1974 cleverly played on the clauses imposed on it by Canada without violating them in the strictest sense of the word. The exporters of civil nuclear technologies subsequently got organized to control the export of sensitive materials by creating the Club of London, since renamed the Nuclear Suppliers Group. Another crisis occurred in 1991 following the first Gulf war, with the discovery of an extensive covert nuclear program in Iraq (an NPT signatory country); this caused a shock similar to that of 1974 and resulted in the strengthening of the IAEA's powers and inspection resources. India subsequently carried out several nuclear tests in 1998, at least one of which was a thermonuclear device. Pakistan, India's rival since the 1948 partition, crossed the 'nuclear threshold' in 1999. Proliferation also made headlines in 2003. First of all with Libya which, having decided to sign the NPT, revealed the existence of what is called the 'Nuke AQ Khan Bazaar'. In the presumed ignorance of his government, Dr. Abdul Qadeer Khan had stolen an uranium enrichment technology, becoming the 'father' of the Pakistani bomb, and had organized the traffic of military nuclear technologies, namely with Libya, North Korea and Iran. Again in 2003, North Korea announced its withdrawal from the NPT. This retreat raises the question of what will become of the possible transfers of nuclear technologies that

  12. Nuclear Proliferation Risk Mitigation Approaches and Impacts in the Recycle of Used Nuclear Fuel in the USA

    International Nuclear Information System (INIS)

    Hesketh, K.; Gregg, R.; Phillips, Ch.

    2009-01-01

    EnergySolutions and its team partners, which include the UK National Nuclear Laboratory (NNL), are one of four industry teams to have received an award from the US Department of Energy to carry out design studies in support of the US Global Nuclear Energy Partnership (GNEP). This team has developed a detailed scenario model for a future US nuclear fuel cycle based on a closed used nuclear fuel recycle as an alternative to the current once-though-and-store system. This scenario enables the uranium and plutonium in Light Water Reactor (LWR) used fuel from the current reactor fleet, and from a fleet of replacement LWRs, to be recycled as both Uranium Oxide and Mixed Oxide (MOX) fuel using reprocessing plants that conform to the requirements of GNEP. There is also a provision for 'burning' in thermal reactors certain long-lived transuranics (Np, Am, Cm) formed into targets. The residual fission product waste, without these long-term heat emitters, will be vitrified and consigned to the US National Geologic repository. Later in the scenario a fleet of Advanced Recycle Reactors (ARR), based on sodium cooled fast reactor technology, are introduced to enable full transmutation of all transuranics and thus attain the GNEP sustainability goal. The recycle scenario avoids the need for the Yucca Mountain repository to receive unprocessed used nuclear fuel and is effective at prolonging its lifetime and delaying the need for a second repository. This paper explains the process by which EnergySolutions selected the U-Pu and U-Pu-Np MOX products and the technological requirements for the recycle plants and describes materials flow analysis that has been carried for the US nuclear fuel cycle scenario using NNL's ORION scenario modelling program. One of the prime requisites of GNEP is to ensure that the risk of proliferation is minimized and the paper describes NNL's approach to objectively assessing the proliferation risk of the scenario relative to that of a conventional recycle

  13. Nuclear energy outlook 2008

    International Nuclear Information System (INIS)

    2008-01-01

    With the launch today of its first Nuclear Energy Outlook, the OECD Nuclear Energy Agency (NEA) makes an important contribution to ongoing discussions of nuclear energy's potential role in the energy mixes of its member countries. As world energy demand continues to grow unabated, many countries face serious concerns about the security of energy supplies, rising energy prices and climate change stemming from fossil fuel consumption. In his presentation, the NEA Director-General Luis Echavarri is emphasizing the role that nuclear power could play in delivering cost-competitive and stable supplies of energy, while also helping to reduce greenhouse gas emissions. In one Outlook scenario, existing nuclear power technologies could provide almost four times the current supply of nuclear-generated electricity by 2050. Under this scenario, 1400 reactors of the size commonly in use today would be in operation by 2050. But in order to accomplish such an expansion, securing political and societal support for the choice of nuclear energy is vital. An ongoing relationship between policy makers, the nuclear industry and society to develop knowledge building and public involvement will become increasingly important, the publication notes. Moreover, governments have a clear responsibility to maintain continued effective safety regulation, advance efforts to develop radioactive waste disposal solutions and uphold and reinforce the international non-proliferation regime. The authors find that the security of energy from nuclear power is more reliable than that for oil or gas. Additionally, uranium's high energy density means that transport is less vulnerable to disruption, and storing a large energy reserve is easier than for fossil fuels. One tonne of uranium produces the same energy as 10 000 to 16 000 tonnes of oil using current technology. Ongoing technological developments are likely to improve that performance even more. Until the middle of the century the dominant reactor

  14. A comparative study of European nuclear energy programs

    Energy Technology Data Exchange (ETDEWEB)

    Presas i Puig, Albert [ed.

    2011-07-01

    The report includes the following contributions: Comparative study of European Nuclear Energy Programs. From international cooperation to the failure of a national program: the Austrian case. The ''go-and-stop'' of the Italian civil nuclear programs, among improvisations, ambitions and conspiracy. Nuclear energy in Spain - a research agenda for economic historians. The Portuguese nuclear program: a peripheral experience under dictatorship (1945-1973). The nuclear energy programs in Switzerland. The rise and decline of an independent nuclear power industry in Sweden, 1945-1970. The German fast breeder program, a historical review. Fast reactors as future visions - the case of Sweden. Transnational flows of nuclear knowledge between the U.S. and the U.K. and continental Europe in the 1950/60s. The Carter administration and its non-proliferation policies: the road to INFCE.

  15. E-cadherin expression increases cell proliferation by regulating energy metabolism through nuclear factor-κB in AGS cells.

    Science.gov (United States)

    Park, Song Yi; Shin, Jee-Hye; Kee, Sun-Ho

    2017-09-01

    β-Catenin is a central player in Wnt signaling, and activation of Wnt signaling is associated with cancer development. E-cadherin in complex with β-catenin mediates cell-cell adhesion, which suppresses β-catenin-dependent Wnt signaling. Recently, a tumor-suppressive role for E-cadherin has been reconsidered, as re-expression of E-cadherin was reported to enhance the metastatic potential of malignant tumors. To explore the role of E-cadherin, we established an E-cadherin-expressing cell line, EC96, from AGS cells that featured undetectable E-cadherin expression and a high level of Wnt signaling. In EC96 cells, E-cadherin re-expression enhanced cell proliferation, although Wnt signaling activity was reduced. Subsequent analysis revealed that nuclear factor-κB (NF-κB) activation and consequent c-myc expression might be involved in E-cadherin expression-mediated cell proliferation. To facilitate rapid proliferation, EC96 cells enhance glucose uptake and produce ATP using both mitochondria oxidative phosphorylation and glycolysis, whereas AGS cells use these mechanisms less efficiently. These events appeared to be mediated by NF-κB activation. Therefore, E-cadherin re-expression and subsequent induction of NF-κB signaling likely enhance energy production and cell proliferation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. The risk of nuclear weapons proliferation

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1994-01-01

    During the later years the risks of nuclear proliferation have again become a major topic of interest. This is primarily due to the acute problems caused by Iraq, North Korea, and the 3 new states of the former USSR, Ukraine, Kazakhstan and Belarus. Analysis shows that security problems and prestige are the two most important motives, when the risks of proliferation are considered. But motives are not enough. To produce nuclear weapons a number of technological requirements must also be fulfilled. The country must be able to produce almost pure fissile material, i.e. 235 U or 239 Pu. It must also be able to solve a number of metallurgical, explosive, ignition, physics and other problems. These are in particular non-trivial, if a implosion weapon is to be designed. A review is made of the nuclear facilities in a number of the countries which have been suggested as possible future nuclear weapons countries. In particular facilities which can produce almost pure fissile materials, 235 U and 239 Pu, are considered. The possibility of nuclear terrorists have often been discussed in the media. However, it seems very unlikely that even a major terrorist or mafia organization will be able to solve all the weapons design problems, even if they could steal the fissile material. It is finally discussed what can be done to reduce the risk of further nuclear proliferation. Political pressure can be brought to bear on countries outside the NPT to join it, but it can be counter-productive, and sometimes the countries that are able to exert such pressure, are not willing to do so for other political reasons. The problem of countries which are party to the NPT, but which are believed to acquire nuclear weapons capability in violation of the treaty, can be countered by unannounced inspections of non-declared facilities. However, such inspections can only be meaningfully performed if the necessary intelligence is available. (EG)

  17. United States non-proliferation policy

    International Nuclear Information System (INIS)

    Scheinman, L.

    1978-01-01

    U.S. non-proliferation policy is aimed at slowing the spread of nuclear weapons capabilities, managing the destabilizing effects of nuclear technology for energy purposes, and fostering international standards and institutions to deal responsibly with global nuclear development. These goals assume that nuclear technology has not already precluded social control and recognize the social benefits offered by peaceful uses of atomic energy. Non-proliferation policies recognize that the motivation for possessing nuclear weapons is a more-difficult problem than technical ability and will concentrate on reducing those incentives through international agreements and safeguards and by maintaining the separation of commercial nuclear fuel cycles and military uses

  18. Multi-component nuclear energy system to meet requirement of self-consistency

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, Vladimir; Shmelev, Anotolii; Korovin, Yorii

    2000-01-01

    Environmental harmonization of nuclear energy technology is considered as an absolutely necessary condition in its future successful development for peaceful use. Establishment of Self-Consistent Nuclear Energy System, that simultaneously meets four requirements - energy production, fuel production, burning of radionuclides and safety, strongly relies on the neutron excess generation. Implementation of external non-fission based neutron sources into fission energy system would open the possibility of approaching Multicomponent Self-Consistent Nuclear Energy System with unlimited fuel resources, zero radioactivity release and high protection against uncontrolled proliferation of nuclear materials. (author)

  19. Current nuclear non-proliferation policies in the world

    International Nuclear Information System (INIS)

    Kurosawa, Mitsuru

    1997-01-01

    Although a global nuclear confrontation between the U.S. and the Soviet Union has disappeared, many challenges to nuclear non-proliferation have emerged. Sources of concern, like a nuclear weapon program by Iraq and suspicions of North Korea have caused the adoption of a variety of political and technical measures in order to meet these challenges in the post-Cold War era. This paper describes the following ten policies for non-proliferation: 1) Strengthening the NPT; 2) Nuclear reduction; 3) CTBT and cut-off treaty; 4) Establishment of NWFZs; 5) Counterproliferation; 6) Strengthening the IAEA Safeguards; 7) Control and disposal of nuclear material from dismantled nuclear weapons; 8) Export control; 9) Registration of plutonium; and 10) Actions against nuclear smuggling. The first four measures can be said to be mainly political policies, the fifth measure (counterproliferation), can be categorized as basically a military policy, and the last five measures can be said to be technical. (J.P.N.)

  20. Nuclear energy and society Russian dimension

    International Nuclear Information System (INIS)

    Gagarinski, A.Yu.

    2010-01-01

    Since the very beginning of its brief history, nuclear energy was doomed to public attention - because of its first application. For 50 years of existence it failed to become one of traditional energy technologies, which the society would assess on the basis of its actual advantages (such as energy efficiency, resource availability and environmental acceptability). Nuclear weapons and crisis of confidence resulting from severe accidents have both formed the attitude to nuclear. This paper considers the basic antinuclear arguments, such as proliferation, waste and severe accidents. The current status of relations between nuclear energy and the public is still close (not only in Russia, but also in almost all European countries) to this state of politicization of nuclear and constant irrational fear radiation causes among people. Nevertheless, the positive trend in the attitude towards nuclear energy is obvious, both in Russia and in the world. In 2006, the long-expected 'new nuclear energy policy' (with returned budgetary financing of the new nuclear build) was announced in Russia at the highest governmental level. After that the worldwide recognition of the need to develop nuclear energy was only growing. The scale of global energy development is so large that all sources capable of making a contribution will find their demand. In the same time, public opinion in the world inseparably connects the issue of energy security with measures to combat climate changes. The '2 deg. C problem', if solvable at all, could be addressed only by simultaneous implementation of all possible emission reduction measures (including carbon-free energy technologies) on an unprecedented scale. Emission-free nuclear energy can actually become a system capable of sustainable and prompt development. This paper considers the issues, which could hamper nuclear development and negatively impact the public attitude towards nuclear. (authors)

  1. The Nuclear Question. After Iran: Toward Nuclear Proliferation in the Middle East?

    International Nuclear Information System (INIS)

    Courmont, Barthelemy

    2008-01-01

    Iran's potential acquirement of the atomic bomb could lead to nuclear proliferation in the Middle East. Many countries in the region would be tempted to follow the Iranian example, in order to maintain their regional power. This development could produce significant geopolitical consequences in a region where relationships are already tense. In this context, one can envisage different crisis scenarios: support for terrorist acts, attacks on American bases in the region, threats against the state of Israel. Accelerated nuclear proliferation in the Middle East would also jeopardize the efforts undertaken by regional actors during the past four decades to create a Nuclear Weapon Free Zone (NWFZ)

  2. Non-proliferation and nuclear disarmament

    International Nuclear Information System (INIS)

    Shea, M.

    2000-01-01

    Fissionable materials are common to all nuclear weapons and controls on the production, storage, processing and use of fissionable materials provides one means to address non-proliferation and disarmament. In this article, the relevance of such controls is examined and the current situation and future prospects are assessed. (authors)

  3. Long-Term Problems of Nuclear Energy, October 1976

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    The Text was written by Enelbert Broda in Oktober 1976. In this report, the physicist and chemist Engelbert Broda discusses various areas of peaceful uses of nuclear energy and concludes that the negative aspects outweigh the positive and that the use of nuclear energy has to be rejected in the long term. In 16 chapters the biggest and most dangerous problems are discussed. Include the unresolved question of disposal, problems of reprocessing and transport of fissile materials, the proliferation of nuclear weapons technology, risks of terrorism, dismantling and decontamination of old nuclear power plants, the toxicity of fissile material, as well as the general unprofitable use of nuclear power plants. As a long-term alternative the author suggests an intensification of the exploitation of solar energy, as well as a deliberate restriction of the rising demand for energy.(roessner) [de

  4. Long-Term Problems of Nuclear Energy, December 1976

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    The Text was written by Enelbert Broda in Oktober 1976. In this report, the physicist and chemist Engelbert Broda discusses various areas of peaceful uses of nuclear energy and concludes that the negative aspects outweigh the positive and that the use of nuclear energy has to be rejected in the long term. In 16 chapters the biggest and most dangerous problems are discussed. Include the unresolved question of disposal, problems of reprocessing and transport of fissile materials, the proliferation of nuclear weapons technology, risks of terrorism, dismantling and decontamination of old nuclear power plants, the toxicity of fissile material, as well as the general unprofitable use of nuclear power plants. As a long-term alternative the author suggests an intensification of the exploitation of solar energy, as well as a deliberate restriction of the rising demand for energy.(roessner)

  5. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume II. Proliferation resistance

    International Nuclear Information System (INIS)

    1980-06-01

    The purpose of this volume is limited to an assessment of the relative effects that particular choices of nuclear-power systems, for whatever reasons, may have on the possible spread of nuclear-weapons capabilities. This volume addresses the concern that non-nuclear-weapons states may be able to initiate efforts to acquire or to improve nuclear-weapons capabilities through civilian nuclear-power programs; it also addresses the concern that subnational groups may obtain and abuse the nuclear materials or facilities of such programs, whether in nuclear-weapons states (NWS's) or nonnuclear-weapons states (NNW's). Accordingly, this volume emphasizes one important factor in such decisions, the resistance of nuclear-power systems to the proliferation of nuclear-weapons capabilities

  6. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume V. Economics and systems analysis

    International Nuclear Information System (INIS)

    1979-12-01

    This assessment considers the economics of alternative nuclear reactor and fuel-cycle systems in the light of possible patterns of uranium supply and energy demand, as well as the economic implications of improving the proliferation resistance of the various systems. The assessment focuses on the costs of alternative nuclear technologies and the possible timing of their implementation, based on their economic attractiveness. The objectives of this assessment are to identify when economic incentives to deploy advanced nuclear power systems might exist, to estimate the costs of using technologies that would reduce the risk of proliferation, to assess the impact of major economic uncertainties on the transition to new technologies, and to compare the investments required for alternative systems. This information can then be used to assess the potential economic benefits of alternative research, development, and demonstration programs and the timing of those programs

  7. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume V. Economics and systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    This assessment considers the economics of alternative nuclear reactor and fuel-cycle systems in the light of possible patterns of uranium supply and energy demand, as well as the economic implications of improving the proliferation resistance of the various systems. The assessment focuses on the costs of alternative nuclear technologies and the possible timing of their implementation, based on their economic attractiveness. The objectives of this assessment are to identify when economic incentives to deploy advanced nuclear power systems might exist, to estimate the costs of using technologies that would reduce the risk of proliferation, to assess the impact of major economic uncertainties on the transition to new technologies, and to compare the investments required for alternative systems. This information can then be used to assess the potential economic benefits of alternative research, development, and demonstration programs and the timing of those programs.

  8. Nuclear energy and international organizations

    International Nuclear Information System (INIS)

    Lindemann, B.

    1975-01-01

    The historical perspectives of the international organizations' role concerning the development and spreading of the peaceful uses of nuclear energy, taking into account the national interests within and towards these organizations, are portrayed. The difference in political status between the so-called nuclear and non-nuclear States, lodged in Articles I and II of the Non-Proliferation Treaty is an important factor. The effects so far of these differences in status on the interest of nuclear States to participate in organizations and on factors which might possibly lead to conflict between these two groups are presented. The author skirts the cooperation between organizations (international bureaucracies, group-formation of states). (HP/LN) [de

  9. Role of nuclear energy in the next decades

    Energy Technology Data Exchange (ETDEWEB)

    Beckurts, K H [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.)

    1978-01-01

    The dispute over nuclear energy has led in many countries to an extremely involved entanglement of technology, politics, economy, judiciary and ideology. The role of nuclear energy will be determined in the next decades more by politico-psychological factors than by economic-technical ones; predictions for the future are thus - as in many other fields - uncertain. However, as the case may be, the role of nuclear energy will very decisively depend on the state of development which the fuel cycle will have reached. The article concentrates therefore on this sector, and the questions of uranium supply, waste management and proliferation are dealt with in detail.

  10. The nuclear non-proliferation regime: What it is and how it has evolved

    International Nuclear Information System (INIS)

    Priest, J.

    1999-01-01

    The nuclear non-proliferation regime commonly denotes the legal norms, voluntary undertakings and policies which the international community has developed to deal with the threat of nuclear weapons proliferation. The word 'regime' suggests a legally binding order. Some components of the non-proliferation regime are indeed legally binding. Others represent essentially political rather than legal commitments. This lecture describes the various independent but mutually reinforcing components of the non-proliferation regime. It thus touches on and highlights the particular importance of political incentives - or disincentives - to the acquisition of nuclear weapons; legal undertakings in which non-proliferation commitments are anchored; verification (specifically the IAEA Safeguards System); compliance and enforcement; export controls; physical protection measures; regional nuclear non-proliferation initiatives; and measures taken to curb proliferation in general and to strive for arms control and nuclear disarmament. The purpose of the lecture is to provide an over-arching, tour d'horizon for the more specific and detailed lectures which follow. (author)

  11. Security environment and nuclear proliferation problems in East Asia

    International Nuclear Information System (INIS)

    Suh, Mark Byung-Moon

    1997-01-01

    East Asia was and still is divided into two conflicting ideological blocs. Because of the Cold War between these two blocs, two international wars were fought and tensions limited interactions among these countries. Despite these political constraints, in recent years East Asia has become economically one of the most dynamic regions in the world. Now that the Cold War between the USA and the Soviet Union is over, the danger of global nuclear war involving the nuclear powers in the region has been practically eliminated. Nonetheless, security has become more complex and demands a whole new set of arrangements. Yet the region lacks a cohesive multilateral framework for conflict resolution, and only recently have various attempts been made to create a political forum for the countries in the region. The problem and the danger of nuclear proliferation was vividly shown by the North Korean nuclear crisis in the last years. This issue not only halted the fragile process of normalization between the two Koreas, which started in 1988, but almost led to a new military conflict on the peninsula involving the two Koreas and the USA. It was defused only after the USA proved willing to offer security guarantees to North Korea. This problem still needs to be resolved, and it demands radical changes in the overall political environment in the region. Needless to say, proliferation in North Korea would have entailed grave consequences for the security of the region as well as for the international non-proliferation regime. This paper reviews the issue of nuclear proliferation of the three non-nuclear states in the region and deals with the non-introduction of nuclear weapons in the region by the nuclear powers. It discusses the prospects for a nuclear-weapon-free zone on the Korean peninsula. Perspectives of a sustainable security environment in East Asia will be briefly discussed

  12. The non-proliferation policies of non-nuclear-weapon states

    International Nuclear Information System (INIS)

    Marwah, Onkar

    1987-01-01

    Eight countries are considered to be capable of producing nuclear weapons and highly suspect in their intentions to actually produce them. These are Argentina, Brazil, India, Pakistan, Israel, South Africa, the Republic of Korea and Taiwan. The policies of these suspect Non-nuclear-weapon States (NNWS) are considered in this paper. The first part assesses the non-proliferation (or proliferation) policies of the eight suspect NNWS, the second part evaluates their differences in approach from the policies urged upon them by the nuclear-weapon states (NWS) and the third and final part attempts to understand the future evolution of NNWS policies in the nuclear military field. (U.K.)

  13. Man, environment and nuclear energy

    International Nuclear Information System (INIS)

    Gardan, Jacques.

    1978-10-01

    The acceptability of nuclear fission as energy source is governed by three factors, economic, ecological and sociological. It is necessary to account first for the economic context and for the state of natural resources: gradual exhaustion of fossil fuels as a result of ever-increasing demands. The biological risk concept which determines the acceptable industrial application level is the second factor to be considered. The danger of radioactive contamination is almost inexistent except in the accident hypothesis, and power stations are built with excessive safeguards against hypothetical accidents. The idea of systematic processing of all working effluent to reduce radioactive waste discharge by several orders of magnitude (zero release principle) is being examined. At present, the waste discharge levels are always well below the limits set by the CIPR and present no danger to the population. The only serious problems seem to be the disposal of radioactive wastes and the plutonium non-proliferation question bound up with breeder reactors. Whereas vitrification, the new 'Synroc' process, offer some solution to the radioactive waste conditioning problem, responsibility for the proliferation of nuclear weapons rests with the human conscience alone. The development of nuclear power stations over several decades seems to present no inacceptable danger and offers the best compromise between growth and minimum risk requirements. The third factor to be accounted for is the opposition displayed by a fraction of the population to the development of nuclear energy for peaceful applications [fr

  14. Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation.

    OpenAIRE

    Kubben, F J; Peeters-Haesevoets, A; Engels, L G; Baeten, C G; Schutte, B; Arends, J W; Stockbrügger, R W; Blijham, G H

    1994-01-01

    Immunohistochemistry of the S phase related proliferating cell nuclear antigen (PCNA) was studied as an alternative to ex-vivo bromodeoxyuridine (BrdU) immunohistochemistry for assessment of human colonic cell proliferation. From 16 subjects without colonic disease biopsy specimens were collected from five different sites along the colorectum and processed for BrdU and PCNA immunohistochemistry. The mean proliferation index of PCNA was significantly higher at 133% of the value obtained with B...

  15. Security Guarantees and Nuclear Non-Proliferation

    International Nuclear Information System (INIS)

    Bruno Tertrais

    2011-01-01

    The purpose of this paper is to discuss the value of 'security guarantees', that is, positive security assurances that include a formal or informal defense commitment, in preventing nuclear proliferation. It demonstrates that such guarantees have proven to be a very effective instrument in preventing States from going nuclear. It would thus seem logical to reinforce or extend them. However, this path is fraught with obstacles and dilemmas

  16. Security Guarantees and Nuclear Non-Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Bruno Tertrais

    2011-07-01

    The purpose of this paper is to discuss the value of 'security guarantees', that is, positive security assurances that include a formal or informal defense commitment, in preventing nuclear proliferation. It demonstrates that such guarantees have proven to be a very effective instrument in preventing States from going nuclear. It would thus seem logical to reinforce or extend them. However, this path is fraught with obstacles and dilemmas

  17. Chapter 10. Multinational and international controls. Paper 18. Nuclear proliferation: arrangements for international control

    International Nuclear Information System (INIS)

    Rotblat, J.

    1979-01-01

    In the context of nuclear proliferation, the role of Third World countries is crucial since they constitute the great majority of nations, but only a few of them have as yet decided on their future energy programmes. Both the IAEA and the nuclear energy industries are urging them to opt for nuclear power. This is undesirable, because nuclear energy is an unsuitable energy source for most of these countries; it would create a new economic dependence on industrialized countries and would greatly increase the dangers of a nuclear war. To counteract this, measures are needed (a) to encourage Third World countries to meet their energy need from sources other than nuclear ones; (b) to reduce pressures on countries to acquire nuclear reactors; and (c) to eliminate the threat of new hegemonies to countries that already have nuclear power. To achieve this, it is proposed that two new international organizations be set up. One, a World Energy Organization (WEO), would be a specialized agency of the United Nations, with functions similar to those of WHO or FAO but with sufficient funds to make loans to individual countries which accept WEO's advice about their energy programmes. The second, an International Nuclear Fuel Agency (INFA), would be the sole authority to operate enrichment, fuel fabrication, reprocessing and waste disposal plants. Organizationally, it could be part of the IAEA, but the latter would have to separate its promotional and safeguarding activities. An amendment to the NPT would be needed to oblige all countries both nuclear and non-nuclear weapon states, equally to accept INFA controls. (author)

  18. International nuclear energy organizations; Internationale Organisationen auf dem Gebiet der Kernenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    The publication on International nuclear energy organizations describes the scope of work of the following organizations: IAEA, EURATOM, OECD-NEA, ENSREG, WANO, INSCEAR and ICRO. The issues covered by the organizations include nuclear electricity generation, radiation protection, nuclear safeguards, nuclear liability, public information, reactor safety, radioactive waste management, non-proliferation, marketing, safety technology, utility requirements, effects of nuclear radiation.

  19. Energy and Nuclear Fuel Cycle in the Asia Pacific

    International Nuclear Information System (INIS)

    Soentono, S.

    1998-01-01

    Asia in the Asia Pacific region will face a scarcity of energy supply and an environmental pollution in the near future. On the other hand, development demands an increasing standard of living for a large number of, and still growing, population. Nuclear energy utilization is to be one of the logical alterative to overcome those problems. From the economical point of view, Asia has been ready to introduce the nuclear energy utilization. Asia should establish the cooperation in all aspects such as in politics, economics and human resources through multilateral agreement between countries to enable the introduction successfully. Although the beginning of the introduction, the selection of the reactor types and the nuclear fuel cycle utilized are limited, but eventually the nuclear fuel cycle chosen should be the one of a better material usage as well as non proliferation proof. The fuel reprocessing and spent fuel storage may become the main technological and political issues. The radioactive waste management technology however should not be a problem for a country starting the nuclear energy utilization, but a sound convincing waste management programme is indispensable to obtained public acceptance. The operating nuclear power countries can play important roles in various aspects such as problem solving in waste management, disseminating nuclear safety experiences, conducting education and training, developing the advanced nuclear fuel cycle for better utilization of nuclear fuels, and enhancing as well as strengthening the non-proliferation. It has to be remembered that cooperation in human resources necessitates the important of maintaining and improving the safety culture, which has been already practiced during the last 4 decades by nuclear community

  20. Nuclear energy from radioactive waste

    International Nuclear Information System (INIS)

    Schwarzenberg, M.

    1998-01-01

    The global energy demand is increasing. Sound forecasts indicate that by the year 2020 almost eight thousand million people will be living on our planet, and generating their demand for energy will require conversion of about 20 thousand million tonnes of coal equivalents a year. Against this background scenario, a new concept for energy generation elaborated by nuclear scientists at CERN attracts particular interest. The concept describing a new nuclear energy source and technology intends to meet the following principal requirements: create a new energy source that can be exploited in compliance with extremely stringent safety requirements; reduce the amount of long-lived radioactive waste; substantially reduce the size of required radwaste repositories; use easily available natural fuels that will not need isotopic separation; prevent the risk of proliferation of radioactive materials; process and reduce unwanted actinides as are generated by the operation of current breeder reactors; achieve high efficiency both in terms of technology and economics. (orig./CB) [de

  1. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume VII. International perspectives

    International Nuclear Information System (INIS)

    1979-12-01

    The purpose of this volume is to assess the proliferation vulnerabilities of the present deployment of civilian nuclear-power systems within the current nonproliferation regime and, in light of their prospective deployment, to consider technical and institutional measures and alternatives which may contribute to an improved regime in which nuclear power could play a significant part. An assessment of these measures must include consideration of their nonproliferation effectiveness as well as their bearing upon energy security, and their operational, economic, and political implications. The nature of these considerations can provide some measure of their likely acceptability to various nations. While any final assessment of such measures and alternatives would have to examine the circumstances particular to each nation, it is hoped that the more generic assessments conducted here will be useful in suggesting guidelines for developing an improved nonproliferation regime which also helps to meet nuclear-energy needs. One chapter outlines the existing nonproliferation regime, including the Treaty for the Non-Proliferation of Nuclear Weapons (NPT), International Atomic Energy Agency (IAEA) safeguards, bilateral and multilateral requirements for agreements of cooperation and transfers of technology, and existing provisons for sanctions for violation of nonproliferation commitments. The chapter then proceeds to an assessment of various alternatives for providing assurance of fuel supply in light of this current regime. Another chapter examines a set of technical and institutional measures and alternatives for various components of once-through and closed fuel cycles. The components of the once-through fuel cycle assessed are enrichment services and spent-fuel management; the components of closed fuel cycles assessed are reprocessing and plutonium management and fast-breeder reactor (FBR) deployment

  2. Proliferation resistance assessment of nuclear systems

    International Nuclear Information System (INIS)

    1978-09-01

    The paper focuses on examining the degree to which nuclear systems could be used to acquire nuclear weapons material. It establishes a framework for proliferation resistance assessment and illustrates its applicability through an analysis of reference systems for once-through cycles, breeder cycles and thermal recycle. On a more tentative basis, the approach is applied to various alternative technical and institutional measures. This paper was also submitted to Working Groups 5 and 8

  3. Third Non-Proliferation Treaty review conference and 29th regular session of the general conference of the International Atomic Energy Agency. Hearing before the Subcommittee on Energy, Nuclear Proliferation, and Government Processes of the Committee on Governmental Affairs, United States Senate, Ninety-Ninth Congress, First Session, November 20, 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Ambassador Lewis A. Dunn of the US Arms Control and Disarmament Agency and Danny J. Boggs of DOE reported on two recent international conferences relating to non-proliferation of nuclear weapons and arms control. Dunn summarized the Non-Proliferation Treaty Review conference and its final declaration in which participants reaffirmed treaty principles and made recommendations for strengthening its efforts and enhancing its implementation. Boggs summarized the International Atomic Energy Agency (IAEA) conference, and noted the significance of China's recent entry into IAEA. They stressed that energy security is a key factor in the success of IAEA safeguards because it affects trade and international cooperation. US contributions to the success of non-proliferation policies depend upon our ability to share technological information with less advanced nations. Questions and responses and an appendix with the final declaration of the Review Conference follow the testimony

  4. MARKOV Model Application to Proliferation Risk Reduction of an Advanced Nuclear System

    International Nuclear Information System (INIS)

    Bari, R.A.

    2008-01-01

    The Generation IV International Forum (GIF) emphasizes proliferation resistance and physical protection (PR and PP) as a main goal for future nuclear energy systems. The GIF PR and PP Working Group has developed a methodology for the evaluation of these systems. As an application of the methodology, Markov model has been developed for the evaluation of proliferation resistance and is demonstrated for a hypothetical Example Sodium Fast Reactor (ESFR) system. This paper presents the case of diversion by the facility owner/operator to obtain material that could be used in a nuclear weapon. The Markov model is applied to evaluate material diversion strategies. The following features of the Markov model are presented here: (1) An effective detection rate has been introduced to account for the implementation of multiple safeguards approaches at a given strategic point; (2) Technical failure to divert material is modeled as intrinsic barriers related to the design of the facility or the properties of the material in the facility; and (3) Concealment to defeat or degrade the performance of safeguards is recognized in the Markov model. Three proliferation risk measures are calculated directly by the Markov model: the detection probability, technical failure probability, and proliferation time. The material type is indicated by an index that is based on the quality of material diverted. Sensitivity cases have been done to demonstrate the effects of different modeling features on the measures of proliferation resistance

  5. Global Nuclear Energy Partnership Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Wigeland, R.A.

    2008-01-01

    The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President's Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle - in which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repository - to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

  6. Global Nuclear Energy Partnership Programmatic Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Wigeland

    2008-10-01

    Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President’s Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle—in which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repository—to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

  7. Need for Strengthening Nuclear Non-Proliferation and Safeguards Education to Prepare the Next Generation of Experts

    International Nuclear Information System (INIS)

    Janssens, W.A.M.; Peerani, P.; ); Gariazzo, C.; Ward, S.; Crete, J.-M.; Braunegger-Guelich, A.

    2015-01-01

    Although nuclear non-proliferation and safeguards are a continuous concern of the international community and discussed frequently at international fora and conferences, the academic world is not really on board with these topics. What we mean by this is that nuclear non-proliferation and safeguards is only very seldom part of a university curriculum. In the few cases where it does appear in the curriculum, whether in a nuclear engineering course or a political sciences master programme, it is typically covered only partially. Nuclear non-proliferation and safeguards are multidisciplinary and embrace, inter alia, historical, legal, technical, and political aspects. This is perhaps the reason why it is challenging for a single professor or university to develop and implement a comprehensive academic course or programme in this area. Professional organizations in this field, like the European Safeguards Research and Development Association (ESARDA) and the Institute for Nuclear Materials Management (INMM), have made first steps to address this issue by implementing specific educational activities. However, much more needs to be done. Therefore, ESARDA, INMM and the International Atomic Energy Agency (IAEA) are in the process of joining efforts to identify key elements and priorities to support universities in establishing appropriate and effective academic programmes in this area. This paper will share best practices, achievements and lessons learned by ESARDA, INMM and the IAEA in providing education and training to develop and maintain the expertise of nuclear non-proliferation and safeguards professionals. In addition, it will suggest potential ways on how to assist universities to get prepared for building-up the next generation of experts able to meet any future challenges in the area of non-proliferation and safeguards. (author)

  8. Canada and international safeguards. Verifying nuclear non-proliferation. Verification brochure no. 5

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Non-Proliferation Treaty (NPT) came into force in 1970 and now has about 140 signatory nations. By creating legal barriers against proliferation and by promoting an international non-proliferation ethic, the NPT has promoted international peace and security. A key ingredient has been the confidence generated through verification by IAEA safeguards. By the end of 1988 IAEA safeguards agreements had been concluded with about 100 countries, including Canada. Over 500 nuclear facilities worldwide are under safeguards or contain safeguarded nuclear material. The existence of this credible and effective safeguards system makes international trade in nuclear equipment and materials possible, monitoring the transfer of nuclear technology to developing countries as well as between industrial countries. Canada is committed to non-proliferation and IAEA safeguards. Canadian non-proliferation policy is among the strictest in the world, even though opportunities have been lost to sell Canadian technology abroad as a result.

  9. Utility of Social Modeling for Proliferation Assessment - Preliminary Findings

    International Nuclear Information System (INIS)

    Coles, Garill A.; Gastelum, Zoe N.; Brothers, Alan J.; Thompson, Sandra E.

    2009-01-01

    Often the methodologies for assessing proliferation risk are focused around the inherent vulnerability of nuclear energy systems and associated safeguards. For example an accepted approach involves ways to measure the intrinsic and extrinsic barriers to potential proliferation. This paper describes preliminary investigation into non-traditional use of social and cultural information to improve proliferation assessment and advance the approach to assessing nuclear material diversion. Proliferation resistance assessment, safeguard assessments and related studies typically create technical information about the vulnerability of a nuclear energy system to diversion of nuclear material. The purpose of this research project is to find ways to integrate social information with technical information by explicitly considering the role of culture, groups and/or individuals to factors that impact the possibility of proliferation. When final, this work is expected to describe and demonstrate the utility of social science modeling in proliferation and proliferation risk assessments.

  10. Japanese government makes the first step of the nuclear energy policy. The 'Nuclear Power Nation Plan' that shows the future of the nuclear energy policy of Japan

    International Nuclear Information System (INIS)

    Yanase, Tadao

    2006-01-01

    The Nuclear Energy Subcommittee of the METI Advisory Committee deliberated concrete actions for achieving the basic goals of the framework for nuclear energy policy, namely 1) continuing to meet at least 30 to 40% of electricity supply even after 2030 by nuclear power generation, 2) future promoting the nuclear fuel cycle, and 3) aiming at commercializing practical FBR cycle. In August 2006, the subcommittee recommendations were drawn up as a 'Nuclear Energy National Plan'. This report includes 1) building new nuclear power plants in liberalized electricity market, 2) appropriate use of existing nuclear power plants with assuring safety as a key prerequisite, 3) promoting nuclear fuel cycle and strategically reinforcing of nuclear industries, 4) early commercialization of FBR cycle, 5) assuming ample technical and human resources to support the next generation, 6) supporting for international development of Japan's nuclear industry, 7) positive involvement in creating an international framework to uphold both non-proliferation and the expansion of nuclear power generation, 8) building trust between government and local communities through detailed communication and 9) reinforcement of measures for radioactive waste disposal. (S.Y.)

  11. Nuclear energy - the way ahead

    International Nuclear Information System (INIS)

    Fells, I.

    1981-01-01

    The subject is discussed, after a general introduction, under the headings: current situation; losses and accidents; safety factors; mistaken estimates (risks over-stated); licensing; transport and storage (of spent fuel and radioactive wastes); performance considerations; plant size; costs; developing countries; political considerations; OECD policy (energy policy, government policies, public relations); nuclear proliferation; media role; conclusions (mainly political, safety and public relations considerations). (U.K.)

  12. Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Lindley, B.A.; Parks, G.T.; Nuttall, W.J.; Gregg, R.; Hesketh, K.W.; Kannan, U.; Krishnani, P.D.; Singh, B.; Thakur, A.; Cowper, M.; Talamo, A.

    2014-01-01

    Highlights: • We study three open cycle Th–U-fuelled nuclear energy systems. • Comparison of these systems is made to a reference U-fuelled EPR. • Fuel cycle modelling is performed with UK NNL code “ORION”. • U-fuelled system is economically favourable and needs least separative work per kWh. • Th–U-fuelled systems offer negligible waste and proliferation resistance advantages. - Abstract: In this study, we have sought to determine the advantages, disadvantages, and viability of open cycle thorium–uranium-fuelled (Th–U-fuelled) nuclear energy systems. This has been done by assessing three such systems, each of which requires uranium enriched to ∼20% 235 U, in comparison to a reference uranium-fuelled (U-fuelled) system over various performance indicators, spanning material flows, waste composition, economics, and proliferation resistance. The values of these indicators were determined using the UK National Nuclear Laboratory’s fuel cycle modelling code ORION. This code required the results of lattice-physics calculations to model the neutronics of each nuclear energy system, and these were obtained using various nuclear reactor physics codes and burn-up routines. In summary, all three Th–U-fuelled nuclear energy systems required more separative work capacity than the equivalent benchmark U-fuelled system, with larger levelised fuel cycle costs and larger levelised cost of electricity. Although a reduction of ∼6% in the required uranium ore per kWh was seen for one of the Th–U-fuelled systems compared to the reference U-fuelled system, the other two Th–U-fuelled systems required more uranium ore per kWh than the reference. Negligible advantages and disadvantages were observed for the amount and the properties of the spent nuclear fuel (SNF) generated by the systems considered. Two of the Th–U-fuelled systems showed some benefit in terms of proliferation resistance of the SNF generated. Overall, it appears that there is little

  13. Nuclear energy in a nuclear weapon free world

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, Joseph [Los Alamos National Laboratory

    2009-01-01

    The prospect of a nuclear renaissance has revived a decades old debate over the proliferation and terrorism risks of the use of nuclear power. This debate in the last few years has taken on an added dimension with renewed attention to disarmament. Increasingly, concerns that proliferation risks may reduce the prospects for realizing the vision of a nuclear-weapon-free world are being voiced.

  14. The third review conference of the parties of the Treaty on Non-Proliferation of Nuclear Weapons, and recent developments concerning international safeguards

    International Nuclear Information System (INIS)

    Canty, M.J.; Richter, B.; Schlupp, C.; Stein, G.

    1986-11-01

    The non-proliferation activities and instruments are listed in a table. The two main instruments are the Non-Proliferation Treaty and the IAEA Safeguards, which are supplemented by treaties of regional restricted effects, such as the Treaty of Tlatelolco and the EURATOM treaty. The two-tier structure of the treaties, i.e. to provide for non-proliferation of nuclear weapons and at the same time foster the peaceful uses of nuclear energy, has proven to have a particularly stabilizing effect, which was confirmed by the last Review Conference of the Parties to the Treaty on Non-Proliferation. The conference members were particularly satisfied with the results of the IAEA Safeguards. Future developments towards improving international safeguards will concentrate on operator-friendly and financially reasonable safeguards measures, such as safeguards effectiveness evaluations and near-real-time accountancy. The results of the CAS discussions on the definition of principles and goals of co-operation for the peaceful uses of nuclear energy are of importance also to the PUNE conference. The PUNE conference will be held in 1987 and is expected to yield points of orientation for further embedding the non-proliferation principle in the international co-operative activities and the nuclear business in the 1980s. (orig./HP) [de

  15. South Africa and nuclear energy - national and international legal aspects

    International Nuclear Information System (INIS)

    Barrie, G.N.

    1987-01-01

    This article gives an exposition of the national and international legal aspects of what appears to be a technological triumph for South Africa. The nuclear policy, facilities, aims and capabilities of the country are described, as well as its nuclear energy program and development. When the Nuclear Energy Act 92 of 1982 was promulgated, a new internal legal dispensation commenced. The main objects of the act, powers and functions of the Atomic Energy Corporation of South Africa Ltd and the Council for Nuclear Safety are stated. South Africa's official viewpoint and attitude regarding the Nuclear Non-Proliferation Treaty, the advantages and obstades to South Africa's signature and ratification of the Treaty are discussed

  16. The new generation of nuclear submarines: in violation of the non proliferation treaty - Booklet No. 3, June 2000

    International Nuclear Information System (INIS)

    2000-06-01

    The Observatory of French nuclear weapons looks forwards to the elimination of nuclear weapons in conformity with the aims of the nuclear non-proliferation Treaty. The object of this booklet of the Observatory of French nuclear weapons about the program of new generation missile-launching nuclear submarines is to show the amplitude of this program that is going to mobilize considerable industrial resources and energies to the detriment of other security alternatives

  17. Establishment of Japan Atomic Energy Agency and strategy for nuclear non-proliferation studies

    International Nuclear Information System (INIS)

    Senzaki, Masao; Kurasaki, Takaaki; Inoue, Naoko

    2005-01-01

    Japan Atomic Energy Agency (JAEA) was established on October 1, 2005, after the merger of Japan Atomic Energy Research Institute and Japan Nuclear Cycle Development Institute. JAEA is the only governmental nuclear research and development institute in Japan. It will engage in research activities ranging from basic research to practical applications in the nuclear field and will operate research laboratories, reactors, a reprocessing plant and a fuel fabrication plant. At the same time, the Nuclear Nonproliferation Science and Technology Center (NPSTC) was also established inside of JAEA to conduct the studies on the strategy for nuclear nonproliferation studies. Five roles that JAEA should play for nuclear nonproliferation were identified and four offices were established in the center to carry out those five roles effectively. To conduct the research and development for nuclear nonproliferation efficiently, the center aims to be a 'Research Hub' based on Partnership' with other organizations. (author)

  18. India's nuclear energy programme: prospects and challenges

    International Nuclear Information System (INIS)

    Gupta, Arvind

    2011-01-01

    India has announced ambitious plans to expand its nuclear energy programme nearly 15 fold in the next 20 years, from the current 4,500 MWe to about 62,000 MWe by 2032. By 2020, India's Department of Atomic Energy (DAE) plans to install 20,000 MWe of nuclear power generation capacity (the fifth largest in the world). The department has plans beyond 2030 too. According to these plans India will have the capacity to produce 275 GWe (Giga Watt of electricity) of nuclear power by the year 2052. The DAE's projections are summarised. This is a truly ambitious plan. Without sufficient quantities of energy, India cannot hope to become a global power. Its dream of registering eight to nine per cent economic growth per annum will remain just that, a dream. Even with such ambitious plans on the nuclear energy front, the share of nuclear power in the overall energy mix will remain small. Currently nuclear energy constitutes only about three per cent of the total energy consumed in India. If the current projections are realised, the share of nuclear energy in the total energy output will still be about 20 per cent. India takes pride in its nuclear programme. Over the years, successive governments have fully supported the DAE's plans. This support is likely to continue in the future. In fact, following the Indo-US civil nuclear deal and the Nuclear Suppliers Group (NSG) waiver in 2008, the mood in India has turned upbeat. India is now getting integrated into the global nuclear regime even though it has not signed the Nuclear Non Proliferation Treaty (NNPT). The NSG waiver has, however, allowed India to enter into civil nuclear cooperation with several countries

  19. Nuclear power proliferation

    International Nuclear Information System (INIS)

    Johnson, B.

    1977-01-01

    The nuclear industry is experiencing a multiple crisis in which economic, technical and ethical aspects are blended inextricably. Nuclear hardware costs have everywhere soared far beyond inflation in the last five years, largely as a result of delays in programme completion arising from problems of reactor and fuel cycle. Meanwhile, partly as a result of this cost escalation, there is widespread and growing doubt as to whether capital will be available to finance the electricity generating levels projected by the industry and by governments for the 1990s. The nuclear industry is now in trouble at every stage of the fuel cycle. The industry's difficulties have also revealed a lack of overall - but particularly nuclear - energy strategy at either national or international levels, and a lack of will to create regulations and institutional machinery at either of these levels which might reassure both concerned publics and the energy industries themselves. This paper appraises some of the present limitations of international institutions in achieving control and management of nuclear power. (author)

  20. Case of nuclear and other sources of electric energy

    International Nuclear Information System (INIS)

    Tonnac, A. de

    1999-01-01

    This work is destined primarily to the FRAMATOME personnel and aim at endowing them with knowledge necessary to answer the usual questions raised by inquiring people. The booklet presents basic data, figures and arguments necessary in sustaining a discussion upon the nuclear energy controversial issues. These data are grouped around the following 13 issues: 1. Electric power in the world; 2. Production costs; 3. Resources and reserves; 4.Safety and nuclear accidents; 5. Accidents related to the energy production; 6. Health and radiation protection; 7. Environment and refuses; 8. Reprocessing; 9. Radioactive waste transportation; 10. Wastes; 11. Dismantling; 12; PWR and non-proliferation; 13. Public opinion and nuclear energy

  1. Previewing the 2010 Nuclear Non-Proliferation Treaty Review Conference

    International Nuclear Information System (INIS)

    Pomper, Miles A.

    2010-01-01

    Despite groundbreaking disarmament pledges and substantial effort, the Obama administration's hopes for a successful Nuclear Non-Proliferation Treaty (NPT) Review Conference may not be fully realised. Many developing countries are in no mood to grant new non-proliferation concessions, such as tightened rules on access to sensitive nuclear technologies, tougher inspection rules, or limits on withdrawing from the treaty. The non-nuclear weapon states (NNWS) remain angered by the failure to move forward on many disarmament commitments pledged at the 1995 and 2000 Conferences. Moreover, progress on disarmament measures under Obama has been slower than hoped, as he faces considerable scepticism in Washington about his strategy. (author)

  2. Geopolitical and Economic Aspects of Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Stanislaw Z. Zhiznin

    2015-01-01

    Full Text Available Nuclear power in its present form was created during the Cold War and is its heritage. The main objective of nuclear energy at that time, along with energy, was the creation and accumulation of nuclear materials. To this aim a existing nuclear power plants based on uranium-plutonium cycle. Everything else - the processing of radioactive waste and spent nuclear fuel, storage, recycling themselves nuclear power plant after its end of life, the risks of proliferation of nuclear materials and other environmental issues - minor. It was also believed that the nuclear power plant - the most reliable and safe plant. During the last twenty years all over the world the number of new orders for nuclear aggregates has decreased. That happens for a number of reasons, including public resistance, that the construction of new NPP and the excess of energy utilities in many markets, which is mainly connected with high market competition in energy markets and low economic indicators of the current nuclear utilities. The technology that consists of low capital costs, a possibility for quick construction and guarantied exploitation quality is on the winners side, but currently this technology is absent. However, despite abovementioned downsides, as the experience of state corporation "Rosatom"has shown, many developing countries of the South-east Asia, The middle East, African regions express high interest in the development of nuclear energy in their countries. The decision whether to develop nuclear energy or to continue to develop is, in the end, up to the choice of the tasks that a country faces. The article describes these "minor" issues, as well as geopolitical and economic problems of the further development of nuclear energy.

  3. Utility of Social Modeling for Proliferation Assessment - Enhancing a Facility-Level Model for Proliferation Resistance Assessment of a Nuclear Enegry System

    Energy Technology Data Exchange (ETDEWEB)

    Coles, Garill A.; Brothers, Alan J.; Gastelum, Zoe N.; Olson, Jarrod; Thompson, Sandra E.

    2009-10-26

    The Utility of Social Modeling for Proliferation Assessment project (PL09-UtilSocial) investigates the use of social and cultural information to improve nuclear proliferation assessments, including nonproliferation assessments, Proliferation Resistance (PR) assessments, safeguards assessments, and other related studies. These assessments often use and create technical information about a host State and its posture towards proliferation, the vulnerability of a nuclear energy system (NES) to an undesired event, and the effectiveness of safeguards. This objective of this project is to find and integrate social and technical information by explicitly considering the role of cultural, social, and behavioral factors relevant to proliferation; and to describe and demonstrate if and how social science modeling has utility in proliferation assessment. This report describes a modeling approach and how it might be used to support a location-specific assessment of the PR assessment of a particular NES. The report demonstrates the use of social modeling to enhance an existing assessment process that relies on primarily technical factors. This effort builds on a literature review and preliminary assessment performed as the first stage of the project and compiled in PNNL-18438. [ T his report describes an effort to answer questions about whether it is possible to incorporate social modeling into a PR assessment in such a way that we can determine the effects of social factors on a primarily technical assessment. This report provides: 1. background information about relevant social factors literature; 2. background information about a particular PR assessment approach relevant to this particular demonstration; 3. a discussion of social modeling undertaken to find and characterize social factors that are relevant to the PR assessment of a nuclear facility in a specific location; 4. description of an enhancement concept that integrates social factors into an existing, technically

  4. Information report on the behalf of the foreign affairs, defence and armed forces Commission on France security, nuclear disarmament and non proliferation

    International Nuclear Information System (INIS)

    2010-01-01

    This report first gives an overview of nuclear disarmament and non proliferation twenty years after the end of Cold War: evolution and status of Russia's and United States' nuclear weapon arsenals, France's and United Kingdom's trend to reduce their nuclear armament, reinforcement of China's nuclear armament, effects and limitations of the Non Proliferation Treaty (NPT). It notices that the new international context gave birth to some expectations and may lead to a lower nuclear pressure, notably with the influence of START negotiations between Russia and the United States, provided that the Comprehensive Nuclear Test Ban Treaty is ratified by more countries, and that negotiations promote a Fissile Material Cut-off Treaty. The report also outlines the importance of the promotion of better controlled peaceful uses of nuclear energy. It discusses the relationship between maintaining the world nuclear order and the reduction of international and regional tensions, and the importance of struggle against all forms of proliferation. It analyses the French nuclear posture in terms of security requirements, and in front of the zero nuclear option, in a context of ballistic missile proliferation, and in relationship with the issue of tactical nuclear weapons in Europe

  5. Which future for the nuclear counter-proliferation?

    International Nuclear Information System (INIS)

    Duval, M.

    2004-01-01

    After a recall of the permanent data about proliferation and of the safeguards implemented by the international community, the author demonstrates that proliferation has moved towards Asia where a real 'black market' has been created. Then he analyzes the consequences of this change on the future of nuclear deterrent. Finally, he expresses his nostalgia in front of this drift and worries about the future uselessness of the means devoted to this 'pacifying' strategy. (J.S.)

  6. Director`s series on proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, K.C. [ed.

    1993-09-07

    Two essays are included in this booklet. Their titles are ``The Dynamics of the NPT Extension Decision`` and ``North Korea`s Nuclear Gambit.`` The first paper discusses the conference to be held in 1995 to review the Nuclear Non-Proliferation Treaty (NPT) which will decide whether the treaty shall continue in force indefinitely, or shall be extended for an additional fixed period or periods. Topics relevant to this discussion are: Arms control issues, the nuclear test ban, the limited test ban treaty, the French nuclear testing moratorium, former Soviet nuclear weapons, Iraq, North Korea, nuclear-weapon-free zones, security, controls on nuclear weapon materials, peaceful uses of nuclear energy, safeguards, politics, and organizational and procedural issues. The second paper examines short, medium, and long term issues entailed in Korea`s nuclear proliferation. Topics considered include: Korean unification, North Korean politics, the nuclear issue as leverage, and the Nuclear Non- Proliferation Treaty.

  7. CANDLE reactor: an option for simple, safe, high nuclear proliferation resistant , small waste and efficient fuel use reactor

    International Nuclear Information System (INIS)

    Sekimoto, H.

    2010-01-01

    The innovative nuclear energy systems have been investigated intensively for long period in COE-INES program and CRINES activities in Tokyo Institute of Technology. Five requirements; sustainability, safety, waste, nuclear-proliferation, and economy; are considered as inevitable requirements for nuclear energy. Characteristics of small LBE cooled CANDLE fast reactor developed in this Institute are discussed for these requirements. It satisfies clearly four requirements; safety, nonproliferation and safeguard, less wastes and sustainability. For the remaining requirement, economy, a high potential to satisfy this requirement is also shown

  8. Nuclear proliferation: Some context and consequences

    International Nuclear Information System (INIS)

    Ford, C. A.

    2007-01-01

    The article addressed the importance of nonproliferation and supporting and reinforcing nonproliferation commitments. The most important benefit of the NPT has been in its contribution to the security of individual states party, as well as to regional and international security, through the obligations which help to prevent any further proliferation of nuclear weapons. The NPT therefore powerfully augments the national security of every state party, and not merely just the NPT nuclear weapons states. Indeed, it is the countries of the developing world, as well as many other non-nuclear weapon states, that could suffer the most in security terms if a non-nuclear weapons state in the developing world suddenly acquired T he Bomb a nd became emboldened to engage in threats and adventurism against its neighbors. The nonproliferation regime hinges upon the steps that all countries take on their own and with like-minded allies to further nonproliferation goals - and whether the international community can successfully shape the calculations of present-day and future would-be proliferation in useful ways. The nonproliferation regime, therefore, includes not just the NPT and other legally-binding obligations but complex dynamics of persuasion and deterrence that employ many different tools. The NPT helps establish the core nonproliferation obligations toward which many of the tools in the international community's tool kit are directed.

  9. Nuclear weapons proliferation and the new world order

    International Nuclear Information System (INIS)

    Krause, J.

    1994-01-01

    The proliferation of nuclear weapons has become the priority safety problem since the end of the cold war. The danger that new nuclear states may arise from the former Soviet Union, the limited effectiveness of existing control systems, the increased attractiveness of nuclear weapons for countries in which a 'safety vacuum' has developed since the withdrawal of American and Russian forces, as well as the danger that additional nuclear states (China, India, Pakistan) may become unstable or disintegrate, make it necessary to explore and show the ensuing risks. The study contains analyses from well-respected experts from Germany, Russia, Japan and the USA. They show how the changes in regional security situations could lead to nuclear risks under certain circumstances, and the likely international consequences. A second point of emphasis consens the feasibility of new approaches or instruments in international non-proliferatic policy. New possibilities for the improvement of excisting control systems and the extension of international consensus on an intensification of the non-proliferation regime are offered by the changes in world politics. (orig.) [de

  10. Examination of methods of proliferation control for application to nuclear fuel reprocessing facilities

    International Nuclear Information System (INIS)

    O'Hara, F.A.

    1980-01-01

    Potential methods are examined that could be applied to the nuclear fuel reprocessing facility as a means of more effectively controlling the proliferation threat and, at the same time, permitting the further development of nuclear power as an energy source. The proposed remedies for this problem are basically technical or economic and political in nature and include: ''technical fixes'', institutional arrangements, and international political solutions. Each of these approaches to the problem is examined, along with a consideration of their interaction and an estimation of their effectiveness, either individually or in combination. 22 refs

  11. Nuclear proliferation in the Near East. What is the reaction of the regional neighbors on Iran's nuclear program? An analysis based on the proliferation debate; Nukleare Proliferation im Nahen Osten. Wie reagieren die regionalen Nachbarn auf Irans Nuklearprogramm? Eine Analyse anhand der Proliferationsdebatte

    Energy Technology Data Exchange (ETDEWEB)

    Erny, Matthias [Zuericher Hochschule fuer Angewandte Wissenschaften (ZHAW), Winterthur (Switzerland)

    2012-07-01

    The booklet on the reactions of the neighbor states on Iran's nuclear program covers the following topics: Iran's position in the Near East: historical aspects, Iran's nuclear program. The nuclear proliferation and the theory debate: the role of nuclear weapons in the international policy, proliferation optimism, proliferation pessimism. Analysis of the players and theory criticism: nuclear states (Israel, Pakistan), emerging nuclear states (Saudi Arab, Egypt, Turkey, Syria), states without nuclear weapons (Iraq, Jordan, GCC states); analysis, theory criticism.

  12. Nuclear energy: public controversies and the analysis of risks

    International Nuclear Information System (INIS)

    Sills, D.L.

    1984-01-01

    Energy is a social concept, the product of social, economic, and political processes that define certain raw materials as resources and thus convert them into usable energy. Like all social concepts, energy is controversial. Out of a wide range of controversies, three are selected for analysis here: (1) the relationship of nuclear power systems to nuclear weapons proliferation; (2) the risks of terrorism and sabotage associated with the operation of nuclear power facilities, including threats to civil liberties; and (3) the problems associated with the long-term management of radioactive wastes. The final section of the paper describes various modes of analyzing risks and the perception of risks. It is concluded that it may take many decades to learn whether nuclear energy is as natural a source of electrical power as wells are of drinking water, or whether nuclear energy is a horror that mankind in the 1980s or 1990s took a hard look at and then backed away. (author)

  13. Nuclear energy and global governance to 2030 : an action plan

    International Nuclear Information System (INIS)

    Frechette, L.; Findlay, T.; Brem, M.; Hanson, J.; Bunch, M.; McCausland, T.

    2010-01-01

    This document presented the key findings of the Nuclear Energy Futures project that was initiated in May 2006 to consider global governance of nuclear energy. The five-point action plan presented in this document included: (1) nuclear safety whereby all nuclear states are committed to and capable of implementing the highest nuclear safety standards, (2) nuclear security whereby all nuclear material and facilities are secure from unauthorized access or terrorist seizure or attack, (3) nuclear nonproliferation whereby a nuclear revival does not contribute to the proliferation of nuclear weapons, (4) the re-enforcement of the International Atomic Energy Agency's centrality through increased funding, modernization and reform, and (5) stakeholder involvement whereby all partners, especially industry, participate in judiciously managing a nuclear revival. This document suggested that despite some powerful drivers, the revival of nuclear energy faces too many barriers compared to other means of electricity production. These barriers include high costs; fewer subsidies; too slow for meeting the threat of climate change; inadequate power grids; unresolved nuclear waste issue; and fears about safety, security and nuclear weapons.

  14. Nuclear energy and global governance to 2030 : an action plan

    Energy Technology Data Exchange (ETDEWEB)

    Frechette, L.; Findlay, T. (comps.); Brem, M.; Hanson, J.; Bunch, M.; McCausland, T. (eds.)

    2010-07-01

    This document presented the key findings of the Nuclear Energy Futures project that was initiated in May 2006 to consider global governance of nuclear energy. The five-point action plan presented in this document included: (1) nuclear safety whereby all nuclear states are committed to and capable of implementing the highest nuclear safety standards, (2) nuclear security whereby all nuclear material and facilities are secure from unauthorized access or terrorist seizure or attack, (3) nuclear nonproliferation whereby a nuclear revival does not contribute to the proliferation of nuclear weapons, (4) the re-enforcement of the International Atomic Energy Agency's centrality through increased funding, modernization and reform, and (5) stakeholder involvement whereby all partners, especially industry, participate in judiciously managing a nuclear revival. This document suggested that despite some powerful drivers, the revival of nuclear energy faces too many barriers compared to other means of electricity production. These barriers include high costs; fewer subsidies; too slow for meeting the threat of climate change; inadequate power grids; unresolved nuclear waste issue; and fears about safety, security and nuclear weapons.

  15. Predicting Proliferation: High Reliability Forecasting Models of Nuclear Proliferation as a Policy & Analytical Aid

    OpenAIRE

    Center on Contemporary Conflict; Gartzke, Erik

    2015-01-01

    Performer: University of California at San Diego Project Lead: Erik Gartzke Project Cost: $121,000 FY15-16 Objective: Scholars have spent decades studying and explaining nuclear proliferation. This project will develop a model to predict the behavior of states regarding their pursuit and acquisition of nuclear weapons. An accurate prediction model will allow for action against potential suppliers, interdiction of nuclear trade, intelligence collection on covert nuclea...

  16. Nuclear energy: Where do we go from here?

    Science.gov (United States)

    Muslim, Dato'Noramly, Dr

    2015-04-01

    As Malaysia progresses towards 2020, the depleting resource of oil and gas has forced a re-look at alternatives to replace fossil fuels as energy sources. Among the viable options is nuclear energy, enabling us to meet energy needs and sustain national development in the twenty-first century. Three essential steps Malaysia must take to introduce nuclear power into its energy mix are: energy planning, infrastructure development, and deployment. Malaysia has to face a series of challenges, including public acceptance, waste management, minimizing proliferation risk, and ensuring the security of nuclear plants and materials. Timely development of qualified and competent manpower is a key limiting factor in the development and transfer of nuclear technologies — and education and training take time, effort and money. There is a need for political will. Within the Asian region, China, Korea and Japan are in the forefront in utilizing nuclear power to meet electricity demands. Countries such as UAE, Bangladesh, Vietnam and Turkey are moving ahead with the nuclear option for electricity generation and they have begun planning and construction of nuclear power plants. Against this backdrop, what are Malaysia's moves? This paper discusses various options and challenges, obstacles and repercussions in meeting future energy demands.

  17. Nuclear energy: Where do we go from here?

    International Nuclear Information System (INIS)

    Muslim, Dato’ Dr Noramly

    2015-01-01

    As Malaysia progresses towards 2020, the depleting resource of oil and gas has forced a re-look at alternatives to replace fossil fuels as energy sources. Among the viable options is nuclear energy, enabling us to meet energy needs and sustain national development in the twenty-first century. Three essential steps Malaysia must take to introduce nuclear power into its energy mix are: energy planning, infrastructure development, and deployment. Malaysia has to face a series of challenges, including public acceptance, waste management, minimizing proliferation risk, and ensuring the security of nuclear plants and materials. Timely development of qualified and competent manpower is a key limiting factor in the development and transfer of nuclear technologies — and education and training take time, effort and money. There is a need for political will. Within the Asian region, China, Korea and Japan are in the forefront in utilizing nuclear power to meet electricity demands. Countries such as UAE, Bangladesh, Vietnam and Turkey are moving ahead with the nuclear option for electricity generation and they have begun planning and construction of nuclear power plants. Against this backdrop, what are Malaysia’s moves? This paper discusses various options and challenges, obstacles and repercussions in meeting future energy demands

  18. Nuclear energy: Where do we go from here?

    Energy Technology Data Exchange (ETDEWEB)

    Muslim, Dato’ Dr Noramly, E-mail: noramlymuslim@yahoo.com [Visiting Professor, Universiti Tenaga Nasional, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    As Malaysia progresses towards 2020, the depleting resource of oil and gas has forced a re-look at alternatives to replace fossil fuels as energy sources. Among the viable options is nuclear energy, enabling us to meet energy needs and sustain national development in the twenty-first century. Three essential steps Malaysia must take to introduce nuclear power into its energy mix are: energy planning, infrastructure development, and deployment. Malaysia has to face a series of challenges, including public acceptance, waste management, minimizing proliferation risk, and ensuring the security of nuclear plants and materials. Timely development of qualified and competent manpower is a key limiting factor in the development and transfer of nuclear technologies — and education and training take time, effort and money. There is a need for political will. Within the Asian region, China, Korea and Japan are in the forefront in utilizing nuclear power to meet electricity demands. Countries such as UAE, Bangladesh, Vietnam and Turkey are moving ahead with the nuclear option for electricity generation and they have begun planning and construction of nuclear power plants. Against this backdrop, what are Malaysia’s moves? This paper discusses various options and challenges, obstacles and repercussions in meeting future energy demands.

  19. The challenges of nuclear proliferation

    International Nuclear Information System (INIS)

    Le Guelte, Georges

    2015-01-01

    The author of this article first outlines that the Non Proliferation Treaty (NPT) is a tool of domination used by nuclear powers: they can keep and even develop their own nuclear arsenal, while other countries who sign this treaty commit themselves not to try to acquire nuclear weapons. The USA and USSR kept on persuading various countries to sign this treaty, but eventually let some countries develop their military nuclear programme (Israel, Pakistan, or India). He evokes technical difficulties in the application of the Treaty, notably for the control of centrifugation activities. He outlines that the USA have now a dominant position with respect to this Treaty and its application, but that the Treaty remains a major safety element for the world. He evokes more recent and negative evolutions: the withdrawal of North Korea from the Treaty, the destruction of an Iraqi nuclear reactor by Israel (i.e. the destruction of a nuclear installation belonging to a country who signed the NPT by a country who did not sign it). He proposes an overview of the Iranian issue (history of the Iranian nuclear programme, of the nuclear crisis, of the still going on negotiations), and describes what could be the worst possible scenario

  20. Proliferation resistance assessment of pyro processing

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, E. H.; Ko, W. I.; Kim, H. D. [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    In 2002, world experts gathered and defined the term proliferation resistance as 'the characteristic of a nuclear energy system that impedes the diversion or undeclared production of nuclear material, or misuse of technology, by State in order to acquire nuclear weapons or other nuclear explosive devices.' The same report also defines the following terms: Intrinsic barriers (technical features) of proliferation resistance are features that result from the technical design of nuclear energy systems, including those that facilitate the implementation of extrinsic measures. Extrinsic barriers (institutional measures) of proliferation resistance are features that result from the decisions and undertakings of states related to nuclear energy system. Intrinsic barriers are further divided into material barriers.the 'intrinsic, or inherent, qualities of materials that reduce the inherent desirability or attractiveness of the material as an explosive' and technical barriers. The 'intrinsic technical lements of the fuel cycle, its facilities, processes, and equipment that serve to make it difficult to gain access to materials and/or to use or misuse facilities to obtain weapons usable materials.' Material barriers include isotopic, chemical, radiological, mass and bulk, and detectability, whereas technical barriers include facility unattractiveness, accessibility, available fissile mass, detectability of and time required for diversion, and skills, expertise, and knowledge. Assessing the proliferation resistance of pyro processing is meaningful only when compared with other processes. This paper attempts to discuss the features of pyro processing by comparing it with direct disposal and aqueous separation processes from a proliferation resistance viewpoint.

  1. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VII. International perspectives

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The purpose of this volume is to assess the proliferation vulnerabilities of the present deployment of civilian nuclear-power systems within the current nonproliferation regime and, in light of their prospective deployment, to consider technical and institutional measures and alternatives which may contribute to an improved regime in which nuclear power could play a significant part. An assessment of these measures must include consideration of their nonproliferation effectiveness as well as their bearing upon energy security, and their operational, economic, and political implications. The nature of these considerations can provide some measure of their likely acceptability to various nations.

  2. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VII. International perspectives

    International Nuclear Information System (INIS)

    1980-06-01

    The purpose of this volume is to assess the proliferation vulnerabilities of the present deployment of civilian nuclear-power systems within the current nonproliferation regime and, in light of their prospective deployment, to consider technical and institutional measures and alternatives which may contribute to an improved regime in which nuclear power could play a significant part. An assessment of these measures must include consideration of their nonproliferation effectiveness as well as their bearing upon energy security, and their operational, economic, and political implications. The nature of these considerations can provide some measure of their likely acceptability to various nations

  3. Neutronic simulation calculations to assess the proliferation resistance of nuclear technologies

    International Nuclear Information System (INIS)

    Englert, Matthias

    2009-01-01

    This thesis investigates the proliferation resistance of nuclear technologies on the basis of three case studies. After a brief description of the concept of proliferation resistance the utilized computer codes and methods are presented. The first case study investigates the potential of monolithic fuel for the conversion of one-fuel-element high-flux research reactors from highly enriched to low enriched uranium using the example of the german research reactor FRM-II. The second case study assesses the proliferation potential of future tokamak based fusion reactors by using neutronic simulations of a possible plutonium production. The third example investigates the proliferation potential of spallation neutron sources to produce nuclear weapon relevant material and the proliferation resistance of such facilities. (orig.)

  4. Evaluating the Cost, Safety, and Proliferation Risks of Small Floating Nuclear Reactors.

    Science.gov (United States)

    Ford, Michael J; Abdulla, Ahmed; Morgan, M Granger

    2017-11-01

    It is hard to see how our energy system can be decarbonized if the world abandons nuclear power, but equally hard to introduce the technology in nonnuclear energy states. This is especially true in countries with limited technical, institutional, and regulatory capabilities, where safety and proliferation concerns are acute. Given the need to achieve serious emissions mitigation by mid-century, and the multidecadal effort required to develop robust nuclear governance institutions, we must look to other models that might facilitate nuclear plant deployment while mitigating the technology's risks. One such deployment paradigm is the build-own-operate-return model. Because returning small land-based reactors containing spent fuel is infeasible, we evaluate the cost, safety, and proliferation risks of a system in which small modular reactors are manufactured in a factory, and then deployed to a customer nation on a floating platform. This floating small modular reactor would be owned and operated by a single entity and returned unopened to the developed state for refueling. We developed a decision model that allows for a comparison of floating and land-based alternatives considering key International Atomic Energy Agency plant-siting criteria. Abandoning onsite refueling is beneficial, and floating reactors built in a central facility can potentially reduce the risk of cost overruns and the consequences of accidents. However, if the floating platform must be built to military-grade specifications, then the cost would be much higher than a land-based system. The analysis tool presented is flexible, and can assist planners in determining the scope of risks and uncertainty associated with different deployment options. © 2017 Society for Risk Analysis.

  5. Proliferation resistance modeling

    International Nuclear Information System (INIS)

    Bari, R.; Peterson, P.; Roglans, J.; Mladineo, S.; Nuclear Engineering Division; BNL; Univ. of California at Berkely; PNNL

    2004-01-01

    The National Nuclear Security Administration is developing methods for nonproliferation assessments. A working group on Nonproliferation Assessment Methodology (NPAM) assembled a toolbox of methods for various applications in the nonproliferation arena. One application of this methodology is to the evaluation of the proliferation resistance of Generation IV nuclear energy systems. This paper first summarizes the key results of the NPAM program and then provides results obtained thus far in the ongoing application, which is co-sponsored by the DOE Office of Nuclear Energy Science and Technology. In NPAM, a top-level measure of proliferation resistance for a fuel cycle system is developed from a hierarchy of metrics. The problem is decomposed into: metrics to be computed, barriers to proliferation, and a finite set of threats. The analyst models the process undertaken by the proliferant to overcome barriers to proliferation and evaluates the outcomes. In addition to proliferation resistance (PR) evaluation, the application also addresses physical protection (PP) evaluation against sabotage and theft. The Generation IV goal for future nuclear energy systems is to assure that they are very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased physical protection against terrorism. An Expert Group, addressing this application, has identified six high-level measures for the PR goals (six measures have also been identified for the PP goals). Combined together, the complete set of measures provides information for program policy makers and system designers to compare specific system design features and integral system characteristics and to make choices among alternative options. The Group has developed a framework for a phased evaluation approach to analyzing PR and PP of system characteristics and to quantifying metrics and measures. This approach allows evaluations to become more detailed and representative

  6. Report of the International Consultative Group on Nuclear Energy

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The International Consultative Groups on Nuclear Energy adopted as its working premise the proposition that nuclear power will play a significant part in meeting future energy needs in an increasing number of countries. The Group's concern has been to examine the international political and economic conditions under which civil nuclear activities may be conducted safely, rationally, and in a manner generally acceptable to the world community. The views are presented in sections entitled: Energy and Nuclear Power; Establishing Nuclear Options; Nuclear Safety and the Public Interest; Nuclear Trade and Nuclear Proliferation; Conditions for the Future in which five conditions are summarized. The Group believes that if nuclear power is to be available to meet an increasing fraction of the world's future energy needs, nuclear power must, despite the difficulty of the sort-term climate, be systematically developed, without interruption or undue delay; earn and retain public acceptance; present technologies for using uranium more efficiently and be developed and tested as soon as possible, with both the coming decades and the 21st century in mind; be less feared; and convince countries depending on nuclear technology, services, or materials of continued international access to them under safeguards, on acceptable terms

  7. Export of nuclear equipment and materials and the non-proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    Courteix, Simone.

    1977-01-01

    The problem of the non-proliferation of nuclear weapons is one of great concern today despite the entry into force in the early '70s of the NPT. To master civilian nuclear technology implies the ability to develop nuclear explosive devices; therefore in recent years contacts have strengthened between countries exporting nuclear equipment, specially in the frame of the 'London Club' so as to ensure that their exports will not result in disseminating nuclear weapons. (NEA) [fr

  8. A Strategy for Nuclear Energy Research and Development

    International Nuclear Information System (INIS)

    Bennett, Ralph G.

    2008-01-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: (1) Increase the electricity generated by non-emitting sources to mitigate climate change, (2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, (3) Reduce the transportation sector's dependence on imported fossil fuels, and (4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy's share will require a coordinated research effort-combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R and D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R and D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally

  9. Nuclear energy and materials in the 21st century

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

    1997-01-01

    The Global Nuclear Vision Project at the Los Alamos National Laboratory is examining a range of long- term nuclear energy futures as well as exploring and assessing optimal nuclear fuel-cycle and material strategies. An established global energy, economics, environmental (E 3 ) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed, where future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term (∼2100) demographic, economic, policy, and technological drivers. A spectrum of futures is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. The results reported examine departures from a ''basis scenario'' and are presented in the following order of increasing specificity: a) definition and parametric variations the basis scenario; b) comparison of the basis scenario with other recent studies; c) parametric studies that vary upper-level hierarchical scenario attributes (external drivers); and d) variations of the lower-level scenario attributes (internal drivers). Impacts of a range of nuclear fuel cycle scenarios are reflected back to the higher-level scenario attributes that characterize particular nuclear energy scenarios. Special attention is given to the role of nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy, the future competitiveness of both conventional and advanced nuclear reactors, and proliferation risk. (author)

  10. Nuclear energy and materials in the 21st century

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.

    1997-05-01

    The Global Nuclear Vision Project at the Los Alamos National Laboratory is examining a range of long-term nuclear energy futures as well as exploring and assessing optimal nuclear fuel-cycle and material strategies. An established global energy, economics, environmental (E 3 ) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed, where future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term (∼2100) demographic, economic, policy, and technological drivers. A spectrum of futures is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. The result reported examine departures from a basis scenario and are presented in the following order of increasing specificity: (a) definition and parametric variations of the basis scenario; (b) comparison of the basis scenario with other recent studies; (c) parametric studies that vary upper-level hierarchical scenario attributes (external drivers); and (d) variations of the lower-level scenario attributes (internal drivers). Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes that characterize particular nuclear energy scenarios. Special attention is given to the role of nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy, the future competitiveness of both conventional and advanced nuclear reactors, and proliferation risk

  11. Evaluation of proliferation resistance using the INPRO methodology

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, Joo Hwan; Ko, Won Il; Song, Kee Chan; Choi, Kun Mo; Kim, Jin Kyoung

    2007-01-01

    The IAEA launched the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) and developed the INPRO Methodology to provide guidelines and to assess the characteristics of a future innovative nuclear energy system in areas such as safety, economics, waste management, and proliferation resistance. The proliferation resistance area of the INPRO Methodology is reviewed here, and modifications for further improvements are proposed. The evaluation metrics including the evaluation parameters, evaluation scales and acceptance limits are developed for a practical application of the methodology to assess the proliferation resistance. The proliferation resistant characteristics of the DUPIC fuel cycle are assessed by applying the modified INPRO Methodology based on the developed evaluation metrics and acceptance criteria. The evaluation procedure and the metrics can be utilized as a reference for an evaluation of the proliferation resistance of a future innovative nuclear energy system

  12. Long-term global nuclear energy and fuel cycle strategies

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1997-01-01

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E 3 (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E 3 model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E 3 model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues

  13. Long-term global nuclear energy and fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.

    1997-09-24

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  14. Statement to 2010 Review Conference of Parties to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), 3 May 2010, New York, USA

    International Nuclear Information System (INIS)

    Amano, Y.

    2010-01-01

    The IAEA works to prevent the proliferation of nuclear weapons and to promote the use of nuclear energy for peaceful purposes and technical cooperation. The IAEA also has a role to play in verifying nuclear disarmament. As all of these activities are relevant to the work of the NPT Review Conference, I would like to provide you with a brief overview of recent developments. As you know, reliable supplies of energy are vital to ensure continued prosperity and sustained development. Nuclear power is enjoying growing acceptance as a stable and clean source of energy that can help to mitigate the impact of climate change. More than 60 countries are considering introducing nuclear power to generate electricity. It is expected that between 10 and 25 new countries will bring their first nuclear power plants online by 2030. Certainly, it is for each sovereign State to decide whether or not to use nuclear power, but the IAEA assists interested countries in establishing a reliable nuclear infrastructure. Nuclear power must be accessible not only for developed countries but also for developing countries. Nuclear power needs to be efficient, sustainable and profitable. Any expansion in its use must be done safely and securely, and without increasing the proliferation risk.A successful NPT Review Conference is indispensable because it will enhance confidence in the non-proliferation regime, which in turn will provide the Agency with a stronger basis for our work in all areas

  15. The promise of innovation: Nuclear energy horizons

    International Nuclear Information System (INIS)

    Mourogov, V.

    2003-01-01

    The 21st century promises the most open, competitive, and globalized markets in human history, as well as the most rapid pace of technological change ever. For nuclear energy, as any other, that presents challenges. Though the atom now supplies a good share of world electricity, its share of total energy is relatively small, anywhere from four to six per cent depending on how it is calculated. And, while energy is most needed in the developing world, four of every five nuclear plants are in industrialized countries. Critical problems that need to be overcome are well known - high capital costs for new plants, and concerns over proliferation risks and safety, (including safety of waste disposal) stand high among them. The IAEA and other programmes are confronting these problems through ambitious initiatives involving both industrialized and developing countries. They include the collaborative efforts known as the Generation-IV International Forum (GIF) and the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). They use ideas, results and the best experiences from today's research and development tools and advanced types of nuclear energy systems to meet tomorrow's challenges. Though the market often decides the fate of new initiatives, the market is not always right for the common good. Governments, and the people that influence them, play an indispensable role in shaping progress in energy fields for rich and poor countries alike. They shoulder the main responsibilities for fundamental science, basic research, and long-term investments. For energy in particular, government investment and support will prove instrumental in the pace of innovation toward long-term options that are ready to replace limited fossil fuel supplies, and respond to the growing premium put on clean energy alternatives. Yet governments cannot go it alone. The challenges are too diverse and complex, and public concerns - about proliferation or safety - go beyond

  16. Nuclear non proliferation. Challenges after the NPT extension - CERI Studies Nr 11

    International Nuclear Information System (INIS)

    Delpech, Therese

    1996-01-01

    After the decision of extension of the Non Proliferation Treaty (NPT) in May 1995, the author first discusses strengths and weaknesses of the non proliferation regime. On the one side, the five nuclear powers are tight by international commitments, the number of proliferating countries has not increased, some countries have willingly decided to give up their military nuclear programme, ex-USSR republics have joined the NPT, the Israel-PLO agreement of 1993 initiated a new era, potentially proliferating countries do not have very significant nuclear programmes, shortcomings of international controls have been identified, international cooperation has improved, and control techniques are available. On the other hand, some matters of concern remain: lessons from the Gulf War, an apparently easier access to nuclear weapons, new opportunities of regional domination, a weaker American guarantee, the North-Korean problem, new exporters of nuclear and ballistic goods and technologies. In the next part, the author discusses the conditions of the agreement for an undefined extension of the NPT, and notably outlines what made this success possible. Then, she addresses political issues related to the universal character of the NPT and to nuclear disarmament. She also discusses the responsibility of the Five nuclear powers, the role of nuclear weapons, and the implication of the extension of the Treaty for the European Union

  17. The future of nuclear power worldwide and the role of the global nuclear energy partnership

    International Nuclear Information System (INIS)

    Spurgeon, D.R.

    2008-01-01

    This presentation is entitled, 'The Future of Nuclear Power Worldwide and the Role of the Global Nuclear Energy Partnership', and the core message in one sentence is: When we look at the challenges of meeting our growing energy demands, providing for energy security and reducing greenhouse gas emissions, we must conclude that nuclear power has to play a significant and growing role in meeting these challenges. Similarly, the mission of the Global Nuclear Energy Partnership is to foster the safe and secure worldwide expansion of nuclear energy. GNEP comes at a crucial time in the burgeoning expansion of nuclear power. It is the only comprehensive proposal to close the nuclear fuel cycle in the United States, and engage the international community to minimize proliferation risks as well as provide and benefit from cooperation in policy formation, technical support, and technology and infrastructure development. Nuclear power's poised renaissance is encouraging, but it will require public support, expanded R and D activities and facilities, and increases in human capital needed for wide-scale construction and operation of new nuclear plants. Despite recent political currents, Germany can, too, become a part of this renaissance and become a full partner in the global partnership that shares a common vision for nuclear power's expansion. (orig.)

  18. Non-proliferation and advances in nuclear science

    International Nuclear Information System (INIS)

    Iyengar, P.K.

    1995-01-01

    So far, the non-proliferation treaty (NPT) has concentrated on safeguard regimes based on technologies relating to the production of uranium and plutonium in nuclear reactors, and on their potential diversion for use in nuclear weapons. As nuclear science advances, however, nuclear technology both peaceful and for weapons will change, and for the NPT to remain relevant, it must reflect these changes. At this juncture, when the NPT is coming up for review in a year's time, it is important for physicists to take a fresh look at recent advances in nuclear science, and inform the policy-makers and the public at large about their potential for impacting nuclear technology in the future. In this article a few such advances are highlighted and their implications for the NPT are considered. (author). 4 refs

  19. The generation IV nuclear reactor systems - Energy of future

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Jianu, Adrian

    2006-01-01

    Ten nations joined within the Generation IV International Forum (GIF), agreeing on a framework for international cooperation in research. Their goal is to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in an economically competitive way while addressing the issues of safety, proliferation, and other public perception concerns. The objective is for the Gen IV systems to be available for deployment by 2030. Using more than 100 nuclear experts from its 10 member nations, the GIF has developed a Gen IV Technology Roadmap to guide the research and development of the world's most advanced, efficient and safe nuclear power systems. The Gen IV Technology Roadmap calls for extensive research and development of six different potential future reactor systems. These include water-cooled, gas-cooled, liquid metal-cooled and nonclassical systems. One or more of these reactor systems will provide the best combination of safety, reliability, efficiency and proliferation resistance at a competitive cost. The main goals for the Gen IV Nuclear Energy Systems are: - Provide sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel use for worldwide energy production; - Minimize and manage their nuclear waste and noticeably reduce the long-term stewardship burden in the future, improving the protection of public health and the environment; - Increase the assurance that these reactors are very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased protection against acts of terrorism; - Have a clear life-cycle cost advantage over other energy sources; - Have a level of financial risk comparable to other energy projects; - Excel in safety and reliability; - Have a low likelihood and degree of reactor core damage. (authors)

  20. Nuclear commerce and non-proliferation in the 1980's: some thoughst

    International Nuclear Information System (INIS)

    Smith, G.

    1982-01-01

    The spread of nuclear technology and the possibility of nuclear proliferation were discussed. The United States foreign policies on these topics, and their effects on the nuclear power industry, were also included

  1. Nuclear Energy: General aspects of risk assessment and public acceptance

    International Nuclear Information System (INIS)

    Fischerhof, Hans.

    1977-01-01

    While the peaceful uses of nuclear energy have progressed greatly in many countries and nuclear energy for electricity generation is greatly in demand also in developing countries, progress in this field is being threatened by minorities in those very countries which were originally responsible for this development. The paper analyses the various reasons behind this public opposition. The fear of nuclear war cannot be dispelled despite Government declarations promoting prohibition of the use of nuclear energy for military purposes and the numerous parties to the non-proliferation treaty. However, there is no cogent reason for transferring this mistrust to the peaceful uses of this source of energy. Also, hostility to technology is gaining ground in many countries and large groups of people are not prepared to accept the minimalised risks of nuclear energy. It is recommended that industry and politicians should pay more attention than in the past to the psychological question of acceptance of nuclear energy and lawyers have an important role to play in this context. They should co-operate more in gaining acceptance for the undeniable even if improbable remaining risks and integrate nuclear energy even closer into established law. (NEA) [fr

  2. The depletion of nuclear glutathione impairs cell proliferation in 3t3 fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jelena Markovic

    2009-07-01

    Full Text Available Glutathione is considered essential for survival in mammalian cells and yeast but not in prokaryotic cells. The presence of a nuclear pool of glutathione has been demonstrated but its role in cellular proliferation and differentiation is still a matter of debate.We have studied proliferation of 3T3 fibroblasts for a period of 5 days. Cells were treated with two well known depleting agents, diethyl maleate (DEM and buthionine sulfoximine (BSO, and the cellular and nuclear glutathione levels were assessed by analytical and confocal microscopic techniques, respectively. Both agents decreased total cellular glutathione although depletion by BSO was more sustained. However, the nuclear glutathione pool resisted depletion by BSO but not with DEM. Interestingly, cell proliferation was impaired by DEM, but not by BSO. Treating the cells simultaneously with DEM and with glutathione ethyl ester to restore intracellular GSH levels completely prevented the effects of DEM on cell proliferation.Our results demonstrate the importance of nuclear glutathione in the control of cell proliferation in 3T3 fibroblasts and suggest that a reduced nuclear environment is necessary for cells to progress in the cell cycle.

  3. Argentina’s nuclear development and the non-proliferation regime

    Directory of Open Access Journals (Sweden)

    Sandra Colombo

    2017-01-01

    Full Text Available The development and transfer of nuclear technology have been put under strict control due to its possible military use, leading to the creation of international non-proliferation regimes. One of the latest proposals was the creation of multilateral banks of low enriched uranium (leu. The article states that, under the goal of non-proliferation, this initiative can contribute to accentuate the asymmetry in the distribution of world economic and political power, damaging the endogenous development of this technology in emerging countries. Against this, the article investigates the existence of margins to maneuver in the international system from the case of study of Argentina, one of the few developing countries that have managed to export nuclear technology, and has declared the development of independent nuclear activity as a State policy

  4. Pollution by poverty: the need for nuclear energy

    International Nuclear Information System (INIS)

    Teller, E.

    1977-01-01

    It is stated that this lecture reflects a 'change of mind' on the part of the author, and reasons for this change are indicated. The author is now an advocate of nuclear reactors. One reason is the very great safety so far associated with nuclear reactors operating in the USA; not one of these has so far damaged the health of anybody as far as is known. The safety record is unparalleled by any other method for producing energy. Reference is made to a book by Beckmann entitled 'The Health Hazards of NOT Going Nuclear'. In this book it is asserted, amongst other things that solar energy is much more dangerous than nuclear energy; also that coal is at least a hundred times more dangerous than nuclear power. A second reason is the rising need for power throughout the world. The author asserts that nuclear energy, in conjunction with conservation and the use of oil, gas, coal, solar energy, geothermal energy, wave energy, etc., could overcome the energy crisis and that nuclear energy on a big scale is the most economic and the cleanest source, and would interfere least with the environment. Activities of anti-nuclear organisations in the USA are mentioned, but it is thought that the more people know about nuclear reactors the more they would favour them. Waste disposal is also discussed -also the fast breeder reactor. With regard to the latter, international collaboration is advocated, but the author does not subscribe to the contention that sooner or later such reactors will be essential if fission technology is to survive. The Candian CANDU reactor might be a useful alternative, irradiating Th. Sabotage receives attention, including the safeguarding of nuclear materials. Finally the proliferation of nuclear weapons is mentioned. (U.K.)

  5. Pollution by poverty: the need for nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Teller, E [California Univ., Berkeley (USA)

    1977-02-01

    It is stated that this lecture reflects a 'change of mind' on the part of the author, and reasons for this change are indicated. The author is now an advocate of nuclear reactors. One reason is the very great safety so far associated with nuclear reactors operating in the USA; not one of these has so far damaged the health of anybody as far as is known. The safety record is unparalleled by any other method for producing energy. Reference is made to a book by Beckmann entitled 'The Health Hazards of NOT Going Nuclear'. In this book it is asserted, amongst other things that solar energy is much more dangerous than nuclear energy; also that coal is at least a hundred times more dangerous than nuclear power. A second reason is the rising need for power throughout the world. The author asserts that nuclear energy, in conjunction with conservation and the use of oil, gas, coal, solar energy, geothermal energy, wave energy, etc., could overcome the energy crisis and that nuclear energy on a big scale is the most economic and the cleanest source, and would interfere least with the environment. Activities of anti-nuclear organisations in the USA are mentioned, but it is thought that the more people know about nuclear reactors the more they would favour them. Waste disposal is also discussed -also the fast breeder reactor. With regard to the latter, international collaboration is advocated, but the author does not subscribe to the contention that sooner or later such reactors will be essential if fission technology is to survive. The Candian CANDU reactor might be a useful alternative, irradiating thorium. Sabotage receives attention, including the safeguarding of nuclear materials. Finally the proliferation of nuclear weapons is mentioned.

  6. Which future for the nuclear counter-proliferation?; Quel avenir pour la contre-proliferation nucleaire?

    Energy Technology Data Exchange (ETDEWEB)

    Duval, M

    2004-10-01

    After a recall of the permanent data about proliferation and of the safeguards implemented by the international community, the author demonstrates that proliferation has moved towards Asia where a real 'black market' has been created. Then he analyzes the consequences of this change on the future of nuclear deterrent. Finally, he expresses his nostalgia in front of this drift and worries about the future uselessness of the means devoted to this 'pacifying' strategy. (J.S.)

  7. Fuel Cycle Services The Heart of Nuclear Energy

    International Nuclear Information System (INIS)

    Soedyartomo-Soentono

    2007-01-01

    Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO 2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services world wide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international cooperations are central for proceeding with the utilization of nuclear energy, while this advantagous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically. (author)

  8. Fuel Cycle Services the Heart of Nuclear Energy

    Directory of Open Access Journals (Sweden)

    S. Soentono

    2007-01-01

    Full Text Available Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant, management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services worldwide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international co-operations are central for proceeding with the utilization of nuclear energy, while this advantageous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically.

  9. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α.

    Science.gov (United States)

    Kim, Kang Ho; Moore, David D

    2017-01-01

    The liver undergoes major changes in substrate utilization and metabolic output over the daily feeding and fasting cycle. These changes occur acutely in response to hormones such as insulin and glucagon, with rapid changes in signaling pathways mediated by protein phosphorylation and other post-translational modifications. They are also reflected in chronic alterations in gene expression in response to nutrient-sensitive transcription factors. Among these, the nuclear receptors farnesoid X receptor (FXR) and peroxisome proliferator activated receptor α (PPARα) provide an intriguing, coordinated response to maintain energy balance in the liver. FXR is activated in the fed state by bile acids returning to the liver, while PPARα is activated in the fasted state in response to the free fatty acids produced by adipocyte lipolysis or possibly other signals. Key Messages: Previous studies indicate that FXR and PPARα have opposing effects on each other's primary targets in key metabolic pathways including gluconeogenesis. Our more recent work shows that these 2 nuclear receptors coordinately regulate autophagy: FXR suppresses this pathway of nutrient and energy recovery, while PPARα activates it. Another recent study indicates that FXR activates the complement and coagulation pathway, while earlier studies identify this as a negative target of PPARα. Since secretion is a very energy- and nutrient-intensive process for hepatocytes, it is possible that FXR licenses it in the nutrient-rich fed state, while PPARα represses it to spare resources in the fasted state. Energy balance is a potential connection linking FXR and PPARα regulation of autophagy and secretion, 2 seemingly unrelated aspects of hepatocyte function. FXR and PPARα act coordinately to promote energy balance and homeostasis in the liver by regulating autophagy and potentially protein secretion. It is quite likely that their impact extends to additional pathways relevant to hepatic energy balance, and

  10. Agreement between the Kingdom of Cambodia and the International Atomic Energy Agency for the application of safeguards in connection with the Treaty on the Non-Proliferation of Nuclear Weapons and the Southeast Asia Nuclear Weapon-Free Zone Treaty

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the Agreement (and the Protocol thereto) concluded between the Kingdom of Cambodia and the International Atomic Energy Agency for the application of safeguards in connection with the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) and the Southeast Asia Nuclear Weapon-Free Zone Treaty. The Agreement was approved by the Board of Governors on 11 November 1999, signed in Vienna on 17 December 1999, and entered into force on the same date

  11. International nuclear commerce: structure, trends and proliferation potentials

    International Nuclear Information System (INIS)

    Lodgaard, S.

    1977-01-01

    In recent years a surge has taken place in international nuclear commerce and this paper analyses the new patterns that have emerged. Despite uncertainties in nuclear energy forecasting the market is huge. Projections for the industry for the period 1971-1985 estimate a worldwide investment of 250 billion dollars. Following an initial decade of cooperation, 1955-1965, the superpower monopoly has become eroded. The export market for power reactors is analysed and the growth and spread of reprocessing facilities is discussed. It is pointed out that while commercial scale reprocessing requires vast and complex chemical plant, reprocessing small amounts for bomb production may be done relatively simply. Enrichment capabilities are also becoming more generally available. The market is not only expanding, but becoming multipolar and diversified, and the entire fuel cycle is now involved. The cooperation network France - W. Germany - South Africa- Iran is discussed at some length. The role of international safeguards is also treated fairly extensively, leading to a discussion of the motives and paths in the acquisition of nuclear weapons. It is concluded that little is to be gained from the London talks on safeguard measures and commercial restraint and that the root causes of proliferation should be tackled by comprehensive disarmament schemes. (JIW)

  12. Nuclear energy: A balance of power

    International Nuclear Information System (INIS)

    1992-01-01

    The Forum was attended by public information officers of the Member States' atomic energy commissions and agencies; public relations and information representatives of the international nuclear industry, including vendors, utilities and information dispersal groups; scientific societies; and trade associations. The Forum provided an international opportunity for those working in nuclear energy public information programmes to learn from one another, and to exchange ideas and methods on how best to demystify this form of energy and reach the public for better general understanding of the issues involved. The described report of the Forum consists of two parts. One is designed to represent the conclusions, recommendations and specific activities from the strategy sessions. It is followed by examples provided by the participants. An individual section is intended as a ready resources for up-to-date information on non-proliferation and radiation and health. A separate abstract was prepared for each of the presentations

  13. Enhancing VVER annular proliferation resistance fuel with minor actinides

    International Nuclear Information System (INIS)

    Chang, G. S.

    2007-01-01

    Key aspects of the Global Nuclear Energy Partnership (GNEP) are to significantly advance the science and technology of nuclear energy systems and the Advanced Fuel Cycle (AFC) program. It consists of both innovative nuclear reactors and innovative research in separation and transmutation. To accomplish these goals, international cooperation is very important and public acceptance is crucial. The merits of nuclear energy are high-density energy, with low environmental impacts (i.e. almost zero greenhouse gas emission). Planned efforts involve near term and intermediate-term improvements in fuel utilization and recycling in current light water reactors (LWRs) as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. The challenges are solving the energy needs of the world, protection against nuclear proliferation, the problem of nuclear waste, and the global environmental problem. To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 2 38Pu and 2 40Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides ( 2 37Np and 2 41Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 2 38Pu /Pu. For future advanced nuclear systems, the minor actinides (MA) are viewed more as a resource to be recycled, or transmuted to less hazardous and possibly more useful forms, rather than simply as a waste stream to be disposed of in expensive repository facilities. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors

  14. European community energy policy and non-proliferation

    International Nuclear Information System (INIS)

    Jacchia, E.

    1982-01-01

    The author discusses the lack of get-tough attitudes in political solutions of the proliferation threat but sees the recent scientific breakthrough in nuclear fusion as hope for a new political direction

  15. Thorium Molten-Salt Nuclear Energy Synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Lecocq, A.; Kato, Yoshio; Mitachi, Kohshi.

    1990-01-01

    In the next century, the 'fission breeder' concept will not be practical to solve the global energy problems, including environmental and North-South problems. As a new measure, a simple rational Th molten salt breeding fuel cycle system, named 'Thorium Molten-Salt Nuclear Energy Synergetics (THORIMS-NES)', which composed of simple power stations and fissile producers, is proposed. This is effective to establish the essential improvement in issues of resources, safety, power-size flexibility, anti-nuclear proliferation and terrorism, radiowaste, economy, etc. securing the simple operation, maintenance, chemical processing, and rational breeding fuel cycle. As examples, 155 MWe fuel self-sustaining power station 'FUJI-II', 7 MWe pilot-plant 'miniFUJI-II', 1 GeV-300 mA proton Accelerator Molten-Salt Breeder 'AMSB', and their combined fuel cycle system are explained. (author)

  16. Using proliferation risk as a design metric in the development of nuclear systems

    International Nuclear Information System (INIS)

    Beard, C.; Lebouf, R.

    2001-01-01

    The necessity has arisen for newly proposed nuclear systems to be evaluated with regard to their potential aid to any proliferation. Thus, a mechanism is needed to introduce nonproliferation as a measure in the design phase of a new nuclear system. To accomplish this, a methodology for quantifying and measuring the proliferation risk of proposed system options is required. Such quantification has its difficulties due to inherent uncertainty, e.g. what is the probability that a quantity of material will be stolen in a given situation? Also, the lack of data on such occurrences makes the task of quantification nearly insurmountable. A systematic approach is necessary to estimate the proliferation risk. Currently, an advanced nuclear power system, the Accelerator Transmutation of Waste (ATW) program has been initiated to develop a system that will concurrently generate electricity while destroying long-lived radioactive isotopes. Therefore, because of the issues noted above, an effort to introduce proliferation risk into the design phase has been started. The purpose of this paper is to review previous work in quantification of proliferation risk in an effort to develop the proper basis for the current work. It should be noted that while proliferation on a national level has been studied extensively, efforts to quantify proliferation risk of individual nuclear systems or processes have been limited. Consequently, the available literature base is relatively sparse. (author)

  17. Using proliferation risk as a design metric in the development of nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Beard, C.; Lebouf, R. [Texas Univ., Austin, TX (United States). Nuclear Engineering Teaching Lab.

    2001-07-01

    The necessity has arisen for newly proposed nuclear systems to be evaluated with regard to their potential aid to any proliferation. Thus, a mechanism is needed to introduce nonproliferation as a measure in the design phase of a new nuclear system. To accomplish this, a methodology for quantifying and measuring the proliferation risk of proposed system options is required. Such quantification has its difficulties due to inherent uncertainty, e.g. what is the probability that a quantity of material will be stolen in a given situation? Also, the lack of data on such occurrences makes the task of quantification nearly insurmountable. A systematic approach is necessary to estimate the proliferation risk. Currently, an advanced nuclear power system, the Accelerator Transmutation of Waste (ATW) program has been initiated to develop a system that will concurrently generate electricity while destroying long-lived radioactive isotopes. Therefore, because of the issues noted above, an effort to introduce proliferation risk into the design phase has been started. The purpose of this paper is to review previous work in quantification of proliferation risk in an effort to develop the proper basis for the current work. It should be noted that while proliferation on a national level has been studied extensively, efforts to quantify proliferation risk of individual nuclear systems or processes have been limited. Consequently, the available literature base is relatively sparse. (author)

  18. Prospective benefits analysis of the DOE Nuclear Energy portfolio: NE R&D program data assumptions, approach, & results

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Vatsal [Brookhaven National Lab. (BNL), Upton, NY (United States); Friley, Paul [Brookhaven National Lab. (BNL), Upton, NY (United States); Lee, John [Brookhaven National Lab. (BNL), Upton, NY (United States); Reisman, Ann [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2006-10-31

    The Office of Nuclear Energy (NE) leads the U.S. Government’s efforts to develop new nuclear energy generation technologies to meet energy and climate goals, and to develop advanced proliferation-resistant nuclear fuel technologies that maximize energy from nuclear fuel; contributes to the R&D for a possible transition to a hydrogen economy; and maintains and enhances the national nuclear technology infrastructure. NE serves the present and future energy needs of the Nation by managing the safe operation and maintenance of the Department of Energy (DOE) critical nuclear in frastructure, providing nuclear technology goods and services, and conducting R&D.

  19. Is nuclear energy acceptable

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1977-01-01

    Nuclear hazards are assessed as being unique only in the sense of their unfamiliarity, with future development of nuclear energy dependent on overcoming public fears. Economics is clearly in favor of properly operated nuclear energy facilities for long-term power generation. Risks arise over the potential for human error to permit improper operation and for an industry shutdown because of a reactor accident. Attempts to ascertain accident probabilities have revealed that emergency core cooling systems and containment are not simply parallel, but operate in series and provide more safety than was thought. Insurance liability, resting on the small probability of very costly damage, is felt to be best placed on the utility with the government providing ultimate protection in the event of a potentially bankrupting accident. Problems of nuclear waste handling and low-level release are felt to be solvable with present technology. Proliferation is felt to be a political problem that is incidental to power plants. Public concern is blamed on possible diversion of materials for weapons, unfamiliarity with radiation, and the demand for meticulous handling of materials and operations. Burner reactors are projected to phase out and be replaced by breeder reactors that are operated in physical isolation under strict security by a professional cadre aware of its responsibility. A restructuring of the nuclear industry is called for so that the generation of power can be insulated from the distribution and marketing functions. (13 references)

  20. Nuclear energy and global warning - looking ahead to the 21st century

    International Nuclear Information System (INIS)

    Ion, M.

    1994-01-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use of energy. These include the fossil fuels consumption and nuclear energy proliferation, local and original environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect. Having in view the world population dynamics the future of energy use, and supply is less clear and predictable. Energy scenarios assuming explicit contributions from nuclear power to energy supply clearly show that global emissions of CO 2 - one of the most important gases linked to the greenhouse effect - can be substantially reduced if nuclear energy can further penetrate the electricity market. (Author)

  1. Supporting non proliferation and global security efforts

    International Nuclear Information System (INIS)

    Pochon, E.

    2013-01-01

    CEA contributes as a major actor of France's action against nuclear proliferation and to the strengthening of nuclear security at national level as European and International levels, in particular through the support of the IAEA activities in nuclear non proliferation with the French Support Programme for the IAEA safeguards system and security with the contribution to the IAEA Nuclear Security Plan and cooperation projects with the European Commission. The CEA is a French government funded technological research organization, organized around 5 branches: Nuclear Energy, Technological Researches, Defence (DAM), Material Sciences and Life Sciences. Within the scope of its activities, CEA covers most of the research areas and techniques in nuclear non-proliferation and security. The CEA is also the advisor of the French Government on nuclear policy. Treaty monitoring and the development and implementation of non proliferation and global security programs is an important mission of DAM which rely on nuclear weapons manufacture and past testing experience. The programmes on non proliferation and global security carried out to fulfil DAM's mission cover the following areas: development of monitoring and detection methods and equipments, country profiles and nuclear stockpiles assessment, arms control instruments, proliferation resistance of nuclear fuel cycle, monitoring of nuclear tests, operation and maintenance of national detection capabilities and contribution to CTBT verification systems. (A.C.)

  2. International cooperation and nuclear development. On the approval of the Argentina - Australia co-operation agreement for the peaceful uses of the nuclear energy

    International Nuclear Information System (INIS)

    Gasol Varela, Claudia

    2005-01-01

    Argentina, with its National Atomic Energy Commission, has been maintaining during more than half a century an important activity for the development of nuclear energy and its peaceful applications. As a consequence of this tradition, it has strengthened its experience with the contribution to the international co-operation, as in the case of the Argentina-Australia co-operation agreement for the peaceful uses of nuclear energy, signed on August 8th, 2001 and ratified by the Argentine Law No. 26.014. Both countries are parties of several international treaties and conventions: physical protection of nuclear materials, nuclear non-proliferation, nuclear accidents, fuel and wastes management, and others. These legal instruments are complemented by agreements for the applications of safeguards with the International Atomic Energy Agency. On the basis of these regulations the parties agreed to establish co-operation conditions in accordance with the pledge of non-proliferation. Furthermore the agreement states that the Governments have the power to designate the governmental organizations or individuals, as well as the legal entities, which will carry out the co-operation. The co-operation covers basic and applied research, development, design, construction and operation of nuclear reactors and other installations of the nuclear fuel cycle, its related technology as well as nuclear medicine, radioisotopes, etc [es

  3. The year 2000 examination conference of the non-proliferation treaty and the future of the nuclear non-proliferation regime

    International Nuclear Information System (INIS)

    Grand, C.

    2001-01-01

    The nuclear weapons non-proliferation treaty (NPT), signed on July 1, 1968 and enforced on March 5, 1970, has been progressively considered as the headstone of the international non-proliferation and disarmament regime. The sixth NPT examination conference took place at New York (USA) in the year 2000, 5 years after the previous conference but also after the first nuclear weapon tests of India and Pakistan. This article recalls up the main non-proliferation events that took place between the 1995 and 2000 conferences and presents the progresses and results of the New York conference. Finally, it wonders about the ambiguities in the conclusions of this last conference. (J.S.)

  4. Non-proliferation and nuclear cooperation - accomplishments and challenges

    International Nuclear Information System (INIS)

    Marshall, H.R. Jr.

    1983-01-01

    The purpose of this paper is to assess the accomplishments in non-proliferation and nuclear co-operation since the beginning of President Reagan's administration, and the challenges remaining to be met in those fields. (NEA) [fr

  5. The Attractiveness of Materials in Advanced Nuclear Fuel Cycles for Various Proliferation and Theft Scenarios

    International Nuclear Information System (INIS)

    Bathke, C.G.; Wallace, R.K.; Ireland, J.R.; Johnson, M.W.; Hase, Kevin R.; Jarvinen, G.D.; Ebbinghaus, B.B.; Sleaford, Brad W.; Bradley, Keith S.; Collins, Brian A.; Smith, Brian W.; Prichard, Andrew W.

    2010-01-01

    This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.

  6. The attractiveness of materials in advanced nuclear fuel cycles for various proliferation and theft scenarios

    International Nuclear Information System (INIS)

    Bathke, Charles G.; Wallace, Richard K.; Ireland, John R.; Johnson, M.W.; Hase, Kevin R.; Jarvinen, Gordon D.; Ebbinghaus, Bartley B.; Sleaford, Brad A.; Bradley, Keith S.; Collins, Brian W.; Smith, Brian W.; Prichard, Andrew W.

    2009-01-01

    This paper is an extension to earlier studies that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no 'silver bullet' has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities. The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.

  7. The bomb black market - Inquiry about nuclear proliferation

    International Nuclear Information System (INIS)

    Tertrais, B.

    2009-01-01

    Nuclear weapons remain for a long time in the hands of the five big powers: USA, Soviet Union, Great Britain, France and China. Things started to change when Israel, and then India acquired the atomic bomb as well. Pakistan took up the race too but Abdul Qadeer Khan, one of the nuclear program maker of the country, took profit of the situation to set up a huge international proliferation network for the spreading of the technologies, tools and materials necessary for weapons fabrication. He offered his services not only to Iran and North Korea, but to Iraq and Libya as well and probably to some other countries. Today, the Iranian nuclear program generates both envy and fear in the Middle East. Who is going to be the next domino of the nuclear game? Egypt, Saudi Arabia, Algeria and Turkey are potential candidates. But while Pakistan sinks into crisis, the terrorists are taking interest in nukes. The author of this book has worked for more than 10 years on this dossier. He has had access to the most sensible documents and to essential testimonies. He now lifts the curtain on the secrets of nuclear proliferation. In this book, where reality sometimes surpasses fiction, he explains how the CIA finally succeeded in infiltrating the 'Khan ring' after having closed its eyes on his deals for a long time. He describes the branches of the Pakistani atomic complex and analyses with lucidity the nuclear terrorism risk

  8. Nuclear proliferation: past, present, and future

    International Nuclear Information System (INIS)

    Bundy, M.

    1983-01-01

    Three things can be learned from the past and present that might tell us how to get a larger share of attention for nuclear nonproliferation. First, a decision to develop nuclear weapons has always been a conscious, serious, deliberate choice by the head of the government concerned. The complicated historical record of our and other country's efforts in this field suggests that no country can have a coherent policy on proliferation unless the subject enjoys the sustained attention of a leader, nearly always a head of government, who is able to make his purposes clearly understood and to ensure that they are persistently carried through. The most important contribution any one country can make is to exhibit understanding and restraint in its own appetite for nuclear solution, economic as well as military. The US is in a favorable position to take a lead, even a unilateral lead, in reducing the number of nuclear weapons. 1 reference

  9. Non-proliferation of nuclear weapons: The road ahead. London, 15 January 2001

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2001-01-01

    The document reproduces the text of the conference given by the Director General of the IAEA at the Royal Institute of International Affairs in London, 15 January 2001. The Director General points out that for over five decades since the summer of 1945, strategies of national and international security have been intertwined with the concept of nuclear weapons as a strategic deterrent. In his view, the achievement of a nuclear weapon free world will crucially depend on a fundamental change in that concept of 'security'. Besides the historical perspectives the paper focuses on the non-proliferation and nuclear disarmament strategies. The Director General also states that to achieve the main goal of universal non-proliferation and disarmament it is indispensable to re-evaluate nuclear weapon states status; challenge the doctrine of nuclear deterrence; develop alternatives to nuclear deterrence; and engage in constructive dialogue. In conclusion it is re-emphasized that there remain both the difficulties and the opportunities of the road towards nuclear disarmament. It is pointed out that construction of a non-proliferation regime with near-universal participation has been successful and some progress towards nuclear disarmament has been achieved, but several goals must be pursued to maintain and build upon achievements

  10. Treaty on the non-proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2000-01-01

    The document reproduces the statement of the Director General of the IAEA to the Review Conference of the Treaty on the Non-Proliferation of Nuclear Weapons, New York, 24 April 2000. The speech focus on the IAEA activities relevant to the implementation of the Treaty, namely: verification through the IAEA safeguards, peaceful nuclear co-operation in the field of human health, food and agriculture, water resources management, environmental pollution monitoring, training

  11. Preparation for the Nuclear Non-Proliferation Treaty Extension Conference in 1995

    International Nuclear Information System (INIS)

    Chrzanowski, P.L.

    1993-01-01

    About 30 specialists in non-proliferation participated in a workshop to explore ideas for US Government preparatory steps leading to the 1995 Nuclear Non-Proliferation Treaty (NPT) Extension Conference. To that end, workshop sessions were devoted to reviewing the lessons learned from previous Review Conferences, discussing the threats to the non-proliferation regime together with ways of preserving and strengthening it, and examining the management of international nuclear commerce. A fundamental premise shared by workshop participants was that extension of the NPT is immensely important to international security. The importance of stemming proliferation and, more specifically, extending the Treaty, is growing as a result of the significant changes in the world. If the conferees of the Extension Conference decide on no extension or extension for a short limited duration, some technically advanced states that have foregone development of nuclear weapons may begin to rethink their options. Also, other arms control measures, such as the Chemical Weapons Convention, could start to unravel. The US must provide strong international leadership to ensure that the Extension Conference is a success, resulting in Treaty extension, perhaps through successive terms, into the indefinite future. Workshop participants were struck by the urgent need for the US to take organizational steps so that it is highly effective in its advance preparations for the Extension Conference. Moreover, the Extension Conference provides both a challenge and an opportunity to mold a cohesive set of US policy actions to define the future role of nuclear weapons and combat their proliferation

  12. Nuclear energy risks and benefits

    International Nuclear Information System (INIS)

    Jansen, S.D.; Bailey, R.E.; Randolph, J.C.; Hartnett, J.P.; Mastanaiah, K.

    1981-09-01

    The report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program. The study region consists of all of Kentucky, most of West Virginia, and substantial portions of Illinois, Indiana, Ohio, and Pennsylvania. By 1988, coal-fired electrical generating capacity in the region is expected to total over 100,000 MWe, versus about 11,000 MWe projected for nuclear-fueled capacity by that year. Thus, the ORBES emphasis was on coal-fired generation. This report attempts to fill in some of the gaps in the relative lack of emphasis on the risks and benefits of nuclear electricity production in the study region. It covers the following topics: (1) basic facts about radiation, (2) an overview of the current regulatory framework of the nuclear industry, (3) health risks associated with electricity production by LWRs, (4) the risks of nuclear proliferation, terrorism, and sabotage, (5) comparative economics and healthy risks of coal versus nuclear, and (6) the March 1979 accident at Three Mile Island

  13. Nuclear non-proliferation: a guide to the debate

    International Nuclear Information System (INIS)

    Goldblat, Jozef.

    1985-01-01

    The non-proliferation policies of 15 countries have been studied and summarized for use by participants of the third Review Conference of the Parties to the Treaty on the Non-Proliferation (NPT) of Nuclear weapons held in September 1985. The main purpose of the guide is to examine what action must be taken to ensure the Treaty's survival. There are four chapters following an introduction, covering the implementation of the essential provisions of the NPT, the motivations of the countries which have not joined the NPT, together with the motivations of those which have formally renounced the possession of nuclear weapons, even though they possess the technical and economic potential necessary to manufacture them. The last chapter summarises measures which might be taken to strengthen the NPT including ideas put forward at a workshop held in 1984. (author)

  14. The sustainable nuclear energy technology platform. A vision report

    International Nuclear Information System (INIS)

    2007-01-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain Europe's leadership in

  15. 1995 review and extension conference of the parties to the treaty on the non-proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    1995-01-01

    On 19 July 1995, the Director General received a letter, addressed to him by the Alternate Resident Representative of Canada to the International Atomic Energy Agency, concerning 1995 review and extension conference of the parties to the treaty on the non-proliferation of nuclear weapons

  16. The gas centrifuge, uranium enrichment and nuclear proliferation

    International Nuclear Information System (INIS)

    Chapman, A.

    1988-01-01

    The author considers the consequences for controlling nuclear proliferation of the emergence of the gas centrifuge method for enriching uranium and succeeds in the difficult and delicate task of saying enough about gas centrifuge techniques for readers to judge, what may be involved in fully embracing gas centrifuge enrichment within the constraints of an anti-proliferation strategy, whilst at the same time saying nothing that could be construed as encouraging an interest in the gas centrifuge route to highly enriched uranium where none had before existed. (author)

  17. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  18. The contribution of nuclear energy in the evolution of the electric power market

    International Nuclear Information System (INIS)

    Benavides, P.

    1999-01-01

    The third of electric power produced in the European Union comes from nuclear energy. This proportion favoured our diversification policy. The competitive aspect of nuclear energy has been decisive in energy supplies. The governments have to decide at the appropriate time, if they want to renew the nuclear park by building new economic and safe reactors. They can contribute to electric power supply without having effect on carbon dioxide emissions. But the future of nuclear energy needs a bigger acceptance of this energy by a large part of the population. So, that industry has to prove the safety of installation, to insure the non proliferation and to manage efficiency the radioactive wastes. A behaviour beyond reproach from industrialists is necessary to reinforce confidence. (N.C.)

  19. An architecture for nuclear energy in the 21st century

    International Nuclear Information System (INIS)

    Arthur, E.D.; Cunningham, P.T.; Wagner, R.L. Jr.

    1998-01-01

    Nuclear energy currently plays a significant role in the energy economies of the US and other major industrial nations. Its future (several scenarios are described later) may involve significant growth in developing countries but controversy and debate surrounds future nuclear energy scenarios. In that ongoing debate, proponents and critics both appear to assume that nuclear technologies, practices and institutions will continue over the long term to look much as they do today. This paper discusses possible global and regional nuclear energy scenarios, and proposes changes in the global nuclear architecture that could reshape technologies, practices and institutions of nuclear energy over the coming decades. In doing so the array of choices available for exercising the nuclear energy option could be enlarged, making such a potential deployment less problematic and perhaps less controversial. How fuel discharged from power reactors is used and disposed of is a central issue of nuclear energy's present controversy and central factor in determining its long-term potential. Many proponents of nuclear power, especially outside the US, believe that extracting all the energy available in reactor fuel--and, in particular, recovering the plutonium from discharged fuel for recycling through breeder reactors--is necessary to realize the technology's ultimate potential as a source of virtually inexhaustible energy. Others consider the plutonium contained in discharged fuel to be a challenge to waste disposal and a potential proliferation risk. Focusing on the back end of the nuclear fuel cycle as a principal arena for improvement represents a fruitful pathway towards creating a significantly improved fuel-cycle architecture

  20. Agreement between the Czech Republic and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons. Suspension

    International Nuclear Information System (INIS)

    2010-01-01

    The Agreement of 5 April 1973 between Belgium, Denmark, the Federal Republic of Germany, Ireland, Italy, Luxembourg, the Netherlands, the European Atomic Energy Community and the Agency in implementation of Article III, (I) and (4) of the Treaty on the Non-Proliferation of Nuclear Weapons, and the Protocol Additional thereto, entered into force for the Czech Republic on 1 October 2009 [es

  1. Impasses and mistakes of the nuclear non-proliferation policy

    International Nuclear Information System (INIS)

    Hirst, M.

    1980-01-01

    It is analyzed the limitations for implementing the American Nuclear non-proliferation policy. It is shown the crisis of the North American international relations, with the economic and scientific development of the advanced capitalist nations and some countries of the third world, the penetration of these countries in the world trade commerce of the nuclear industry as sellers and cunsumers, and the Latin American's and Brazil's position in the international panorama of nuclear power. (M.C.K.) [pt

  2. Assessment of Proliferation Resistance of Closed Nuclear Fuel Cycle System with Sodium Cooled Fast Reactors Using INPRO Evaluation Methodology

    International Nuclear Information System (INIS)

    Kim, Young In; Hahn, Do Hee; Won, Byung Chool; Lee, Dong Uk

    2007-11-01

    Using the INPRO methodology, the proliferation resistance of an innovative nuclear energy system(INS) defined as a closed nuclear fuel cycle system consisting of KALIMER and pyroprocessing, has been assessed. Considering a very early development stage of the INS concept, the PR assessment is carried out based on intrinsic features, if required information and data are not available. The PR assessment of KALIMER and JSFR using the INPRO methodology affirmed that an adequate proliferation resistance has been achieved in both INSs CNFC-SFR, considering the assessor's progress and maturity of design development. KALIMER and JSFR are developed or being developed conforming to the targets and criteria defined for developing Gen IV nuclear reactor system. Based on these assessment results, proliferation resistance and physical protection(PR and PP) of KALIMER and JSFR are evaluated from the viewpoint of requirements for future nuclear fuel cycle system. The envisioned INSs CNFC-SFR rely on active plutonium management based on a closed fuel cycle, in which a fissile material is recycled in an integrated fuel cycle facility within proper safeguards. There is no isolated plutonium in the closed fuel cycle. The material remains continuously in a sequence of highly radioactive matrices within inaccessible facilities. The proliferation resistance assessment should be an ongoing analysis that keeps up with the progress and maturity of the design of Gen IV SFR

  3. Assessment of Proliferation Resistance of Closed Nuclear Fuel Cycle System with Sodium Cooled Fast Reactors Using INPRO Evaluation Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Hahn, Do Hee; Won, Byung Chool; Lee, Dong Uk

    2007-11-15

    Using the INPRO methodology, the proliferation resistance of an innovative nuclear energy system(INS) defined as a closed nuclear fuel cycle system consisting of KALIMER and pyroprocessing, has been assessed. Considering a very early development stage of the INS concept, the PR assessment is carried out based on intrinsic features, if required information and data are not available. The PR assessment of KALIMER and JSFR using the INPRO methodology affirmed that an adequate proliferation resistance has been achieved in both INSs CNFC-SFR, considering the assessor's progress and maturity of design development. KALIMER and JSFR are developed or being developed conforming to the targets and criteria defined for developing Gen IV nuclear reactor system. Based on these assessment results, proliferation resistance and physical protection(PR and PP) of KALIMER and JSFR are evaluated from the viewpoint of requirements for future nuclear fuel cycle system. The envisioned INSs CNFC-SFR rely on active plutonium management based on a closed fuel cycle, in which a fissile material is recycled in an integrated fuel cycle facility within proper safeguards. There is no isolated plutonium in the closed fuel cycle. The material remains continuously in a sequence of highly radioactive matrices within inaccessible facilities. The proliferation resistance assessment should be an ongoing analysis that keeps up with the progress and maturity of the design of Gen IV SFR.

  4. The Importance of Reliable Nuclear Power For Energy Supply

    International Nuclear Information System (INIS)

    Blix, Hans

    1989-01-01

    The severe accident at Chernobyl in 1986 caused a setback in public acceptance of nuclear power practically everywhere in the world. In some countries, the media even give the impression that nuclear power is on the way out worldwide, because of concerns about safety, radioactive waste disposal, and the risk of proliferation of nuclear weapons. Let me give you a more accurate picture of the situation. At the beginning of this year there were about 430 nuclear power reactors in operation in 26 countries around the world and they produced more than 16% of the world's electric energy. That amount of electricity is equal to the total amount of electric energy that was produced in the world in 1956. I mention this because, when we concentrate on the problems which nuclear power is facing, we tend to forget that among all the major energy sources? coal, oil, gas, hydro and nuclear- it is nuclear which has experienced the fastest rise in relative importance for the global energy supply. Its contribution to global energy supply has increased from just under 1% in 1974 to about 5% in 1987. On the positive side we can note the continuation of strong nuclear power programmes with construction starts in France and Japan, the start of construction at Sizewell B, which marks a new departure for nuclear power in the United Kingdom, and the orders for the Korean units 11 and 12

  5. An Introduction to Nuclear Non-Proliferation and Safeguards

    International Nuclear Information System (INIS)

    Haakansson, Ane; Jonter, Thomas

    2007-06-01

    The purpose of this project was to compile a course material that covers how the nuclear safeguards system has emerged and how it works today. The produced compendium is directed to both university students and people concerned by safeguards from the industry. The primary aim of the first part of this paper is to describe the historical development of this global non-proliferation system and its central tasks. A second purpose is to discuss the advantages and disadvantages of its current design in order to answer the following question: Can we today say that we have a functioning global non-proliferation system? Does it require further strengthening, and, if so, how can this be achieved? In the second section we review the verification regime within nuclear safeguards, i. e. describe the methods and techniques that are available to reassure the world community that concluded treaties are adhered to

  6. An Introduction to Nuclear Non-Proliferation and Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Ane; Jonter, Thomas

    2007-06-15

    The purpose of this project was to compile a course material that covers how the nuclear safeguards system has emerged and how it works today. The produced compendium is directed to both university students and people concerned by safeguards from the industry. The primary aim of the first part of this paper is to describe the historical development of this global non-proliferation system and its central tasks. A second purpose is to discuss the advantages and disadvantages of its current design in order to answer the following question: Can we today say that we have a functioning global non-proliferation system? Does it require further strengthening, and, if so, how can this be achieved? In the second section we review the verification regime within nuclear safeguards, i. e. describe the methods and techniques that are available to reassure the world community that concluded treaties are adhered to

  7. Argentina’s nuclear development and the non-proliferation regime

    OpenAIRE

    Sandra Colombo; Cristian Guglielminotti; María Nevia Vera

    2017-01-01

    The development and transfer of nuclear technology have been put under strict control due to its possible military use, leading to the creation of international non-proliferation regimes. One of the latest proposals was the creation of multilateral banks of low enriched uranium (leu). The article states that, under the goal of non-proliferation, this initiative can contribute to accentuate the asymmetry in the distribution of world economic and political power, damaging the endogenous develop...

  8. Accountability and non-proliferation nuclear regime: a review of the mutual surveillance Brazilian-Argentine model for nuclear safeguards

    International Nuclear Information System (INIS)

    Xavier, Roberto Salles

    2014-01-01

    The regimes of accountability, the organizations of global governance and institutional arrangements of global governance of nuclear non-proliferation and of Mutual Vigilance Brazilian-Argentine of Nuclear Safeguards are the subject of research. The starting point is the importance of the institutional model of global governance for the effective control of non-proliferation of nuclear weapons. In this context, the research investigates how to structure the current arrangements of the international nuclear non-proliferation and what is the performance of model Mutual Vigilance Brazilian-Argentine of Nuclear Safeguards in relation to accountability regimes of global governance. For that, was searched the current literature of three theoretical dimensions: accountability, global governance and global governance organizations. In relation to the research method was used the case study and the treatment technique of data the analysis of content. The results allowed: to establish an evaluation model based on accountability mechanisms; to assess how behaves the model Mutual Vigilance Brazilian-Argentine Nuclear Safeguards front of the proposed accountability regime; and to measure the degree to which regional arrangements that work with systems of global governance can strengthen these international systems. (author)

  9. Nuclear energy in the 21st century - free from nuclear danger myths

    International Nuclear Information System (INIS)

    Akimoto, Yumi

    2002-01-01

    In the past year, 2000, the approx. 430 nuclear power plants worldwide covered some 16-17% of the electricity supply. This corresponds, e.g., to the energy equivalent of the aggregate oil production of Saudi Arabia and Iran over the same period of time. The first major steps towards the peaceful uses of nuclear energy in the world were initiated after the 'Atoms for Peace' speech by the then U.S. President, Dwight D. Eisenhower, before the United Nations on December 8, 1953. They were followed by two decades of intense reasearch and development work. The know-how obtained and developed further in this way made countries, such as France and Japan, greatly expand their nuclear power programs under the impact of the two oil price crises in the seventies. As a result, a powerful potential is now available for electricity supply - also in the European Union - which not only offers continuity of supply but also makes an important contribution to reducing emissions which affect our climate. Despite its technical and economic success, the peaceful use of nuclear power, like other technical developments, has become an object of societal criticism in many countries. Two major aspects in this regard are issues of proliferation and the evaluation of the risk of radiation. Although the proliferation risk has been settled technically for the light water reactor line, and can be practically excluded, this has not so far been put to use politically. As far as the effects of low radiation doses are concerned, the question must be answered to what extent the application of the linear dose-effect relationship is an adequate and meaningful reflection of biological reality, and how radiation effects can be evaluated effectively. In the light of the problems to be solved in the 21st century, nuclear power and its potential can and will make important contributions to supplying energy worldwide. (orig.) [de

  10. Transmutation and the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Bresee, James

    2007-01-01

    In the January 2006 State of the Union address, President Bush announced a new Advanced Energy Initiative, a significant part of which is the Global Nuclear Energy Initiative. Its details were described on February 6, 2006 by the U.S. Secretary of Energy. In summary, it has three parts: (1) a program to expand nuclear energy use domestically and in foreign countries to support economic growth while reducing the release of greenhouse gases such as carbon dioxide. (2) an expansion of the U.S. nuclear infrastructure that will lead to the recycling of spent fuel and a closed fuel cycle and, through transmutation, a reduction in the quantity and radiotoxicity of nuclear waste and its proliferation concerns, and (3) a partnership with other fuel cycle nations to support nuclear power in additional nations by providing small nuclear power plants and leased fuel with the provision that the resulting spent fuel would be returned by the lessee to the lessor. The final part would have the effect of stabilizing the number of fuel cycle countries with attendant non-proliferation value. Details will be given later in the paper. Commercial spent fuel recycling, pioneered in the U.S., has not been carried out since the nineteen seventies following a decision by President Carter to forego fuel reprocessing and to recommend similar practices by other countries. However, many nations have continued spent fuel reprocessing, generally using the U.S.-developed PUREX process. The latest to do so are Japan, which began operations of an 800 metric tons (tonnes) per year PUREX reprocessing plant at Rokkasho-mura in northern Honshu in 2006 and China, which recently began operations of a separations pilot plant, also using PUREX. Countries using the PUREX process, recycle the separated plutonium to light water reactors (LWRs) in a mixed plutonium/uranium oxide fuel called MOX. Plutonium recycling in LWRs, which are used for electricity production in all nuclear power nations, reduces

  11. Nuclear non-proliferation: The security context, 5 October 2007, University of Florence, Florence, Italy

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2007-01-01

    Dr. Mohamed ElBaradei, Director General of the International Atomic Energy Agency, stated that nuclear threats have become more dangerous and more complex. We have witnessed the emergence of illicit trade in nuclear technology. Countries have managed to develop clandestine nuclear programmes. Sophisticated extremist groups have shown keen interest in acquiring nuclear weapons. n parallel, nuclear material and nuclear material production have become more difficult to control. Energy security concerns and fears of climate change are prompting many countries to revisit the nuclear power option. And to ensure a supply of reactor fuel, more countries have shown interest in mastering the nuclear fuel cycle - a step that brings them quite close to nuclear weapons capability. Add to this the 27 000 nuclear warheads that already exist in the arsenals of nine countries, and the hair trigger alert deployment level of some of these weapons. And as if these stockpiles and their deployment were not threat enough, most of these countries continue to repeat two inherently contradictory mantras: first, that it is important for them to continue to rely on nuclear weapons for their security; and second, that no one else should have them. 'Do as I say, not as I do'. Against this backdrop, there are four critical aspects of the nuclear non-proliferation regime that we must strengthen - addressing both symptoms and root causes - if we are to avoid a cascade of nuclear proliferation, and our ultimate self-destruction. First, we must develop a more effective approach for dealing with proliferation threats. Second, we must secure existing nuclear material stockpiles and tighten controls over the transfer and production of nuclear material. Third, we must strengthen the verification authority and capability of the IAEA. Fourth, we urgently need to find a way for disarmament to be given the prominence and priority it deserves. In conclusion, it is clear that a security strategy rooted in 'Us

  12. State-of-the-art research: Reflections on a concerted Nordic-Baltic nuclear energy effort

    Energy Technology Data Exchange (ETDEWEB)

    Husdal, Lars; Tveit, Jesper; Vaagen, Jan S; Ridikas, Danas

    2009-09-15

    Quite a few hold the view that nuclear energy will have its renaissance in the not too distant future. Technology is, however, a necessary, but not sufficient condition. The needed prerequisites represent a complex issue. With increasing energy demand and depletion of non-renewable energy resources, nuclear will have to prove its role in an increasing energy mix, globally, regionally and often also nationally. Based on its history, experience with coordinated interplay in electricity production from a variety of energy sources, and science engagements, we argue for a future Nordic/Baltic SHOWCASE: A nuclear weapons free and proliferation safe nuclear energy supplier in the region, with a concerted role in competence building and in international ventures, and with focus on operation, safety, economy and societal aspects. (Author)

  13. State-of-the-art research: Reflections on a concerted Nordic-Baltic nuclear energy effort

    International Nuclear Information System (INIS)

    Husdal, Lars; Tveit, Jesper; Vaagen, Jan S.; Ridikas, Danas

    2009-09-01

    Quite a few hold the view that nuclear energy will have its renaissance in the not too distant future. Technology is, however, a necessary, but not sufficient condition. The needed prerequisites represent a complex issue. With increasing energy demand and depletion of non-renewable energy resources, nuclear will have to prove its role in an increasing energy mix, globally, regionally and often also nationally. Based on its history, experience with coordinated interplay in electricity production from a variety of energy sources, and science engagements, we argue for a future Nordic/Baltic SHOWCASE: A nuclear weapons free and proliferation safe nuclear energy supplier in the region, with a concerted role in competence building and in international ventures, and with focus on operation, safety, economy and societal aspects. (Author)

  14. India's nuclear energy programme and future power need

    International Nuclear Information System (INIS)

    Pal, M.K.

    2010-01-01

    Critics of the recently negotiated 123 Nuclear Agreement between India and the United States of America often cite its retrograde effects on India's longstanding policy of non-alignment in foreign relations. The major part of this article will, therefore, is devoted to various aspects of DAE's performance, areas and problems that need more attention, their future plan on stepping up the production of nuclear energy by a big factor beyond their indigenous reach, and the consequent imperative and compulsion of opening the doors to the international market for bulk purchases. India's access to the international market for nuclear energy was barred because of our refusal to sign the nuclear non-proliferation treaty (NPT). Hence, when George Bush, ex-President of U.S.A., offered to sign a bilateral treaty with India, opening the door for nuclear and other strategic co-operation, the offer was welcome by the DAE and the Government of India with open arms. However, obligations under the rules of the International Atomic Energy Agency (IAEA), of which India is a member, still required applying to the Body for their approval so that India could approach the Consortium of nuclear supplier countries for their agreement to do business with India without raising any hindrance arising from NPT and Comprehensive Test Ban Treaty (CTBT)

  15. Development of proliferation resistance assessment methodology based on international standard

    International Nuclear Information System (INIS)

    Ko, W. I.; Chang, H. L.; Lee, Y. D.; Lee, J. W.; Park, J. H.; Kim, Y. I.; Ryu, J. S.; Ko, H. S.; Lee, K. W.

    2012-04-01

    Nonproliferation is one of the main requirements to be satisfied by the advanced future nuclear energy systems that have been developed in the Generation IV and INPRO studies. The methodologies to evaluate proliferation resistance has been developed since 1980s, however, the systematic evaluation approach has begun from around 2000. Domestically a study to develop national method to evaluate proliferation resistance (PR) of advanced future nuclear energy systems has started in 2007 as one of the long-term nuclear R and D subjects in order to promote export and international credibility and transparency of national nuclear energy systems and nuclear fuel cycle technology development program. In the first phase (2007-2010) development and improvement of intrinsic evaluation parameters for the evaluation of proliferation resistance, quantification of evaluation parameters, development of evaluation models, and development of permissible ranges of evaluation parameters have been carried out. In the second phase (2010-2012) generic principle of to evaluate PR was established, and techincal guidelines, nuclear material diversion pathway analysis method, and a method to integrate evaluation parameters have been developed. which were applied to 5 alternative nuclear fuel cycles to estimate their appicability and objectivity. In addition, measures to enhance PR of advanced future nuclear energy systems and technical guidelines of PR assessment using intrinsic PR evaluation parameters were developed. Lastly, requlatory requirements to secure nonproliferation requirements of nuclear energy systems from the early design stage, operation and to decommissioning which will support the export of newly developed advanced future nuclear energy system

  16. The IAEA international project on innovative nuclear reactors and fuel cycles (INPRO): study on opportunities and challenges of large-scale nuclear energy development

    International Nuclear Information System (INIS)

    Khoroshev, M.; Subbotin, S.

    2006-01-01

    Existing scenarios for global energy use project that demand will at least double over the next 50 years. Electricity demand is projected to grow even faster. These scenarios suggest that the use of all available generating options, including nuclear energy, will inevitably be required to meet those demands. If nuclear energy is to play a meaningful role in the global energy supply in the foreseeable future, innovative approaches will be required to address concerns about economic competitiveness, environment, safety, waste management, potential proliferation risks and necessary infrastructure. In the event of a renaissance of nuclear energy, adequate infrastructure development will become crucial for Member States considering the future use of nuclear power. The IAEA should be ready to provide assistance in this area. A special resolution was adopted by the General Conference in September 2005 on 'Strengthening the Agency's Activities Related to Nuclear Science, Technology and Applications: Approaches to Supporting Nuclear Power Infrastructure Development'. Previously, in 2000, taking into account future energy scenarios and the needs of Member States, the IAEA General Conference had adopted a resolution initiating the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Based on scenarios for the next fifty years, INPRO identified requirements for different aspects of future nuclear energy systems, such as economics, environment, safety, waste management, proliferation resistance and infrastructure and developed a methodology to assess innovative nuclear systems and fuel cycles. Using this assessment tool, the need for innovations in nuclear technology can be defined, which can be achieved through research, development and demonstration (RD and D). INPRO developed these requirements during its first stage, Phase 1A, which lasted from 2001 to mid-2003. In the second stage, Phase 1B (first part), INPRO organized 14 case studies (8 by

  17. Is more better or worse? New empirics on nuclear proliferation and interstate conflict by Random Forests1

    Directory of Open Access Journals (Sweden)

    Akisato Suzuki

    2015-06-01

    Full Text Available In the literature on nuclear proliferation, some argue that further proliferation decreases interstate conflict, some say that it increases interstate conflict, and others indicate a non-linear relationship between these two factors. However, there has been no systematic empirical investigation on the relationship between nuclear proliferation and a propensity for conflict at the interstate–systemic level. To fill this gap, the current paper uses the machine learning method Random Forests, which can investigate complex non-linear relationships between dependent and independent variables, and which can identify important regressors from a group of all potential regressors in explaining the relationship between nuclear proliferation and the propensity for conflict. The results indicate that, on average, a larger number of nuclear states decrease the systemic propensity for interstate conflict, while the emergence of new nuclear states does not have an important effect. This paper also notes, however, that scholars should investigate other risks of proliferation to assess whether nuclear proliferation is better or worse for international peace and security in general.

  18. Dangerous deterrent: nuclear weapons proliferation and conflict in South Asia

    International Nuclear Information System (INIS)

    Paul Kapur, S.

    2008-01-01

    This book discusses the acquisition of nuclear weapons by India and Pakistan and its effect on security of the South Asian region. The author uses quantitative analysis to establish the relationship between nuclearization and conventional stability in the region between 1971 and 2002. He shows a positive correlation between nuclear proliferation and conventional instability during these three decades. Thus, this study affirms that nuclear weapons have failed to prevent conflict in South Asia. In fact, they have escalated tensions

  19. Nuclear non-proliferation: Revisiting the basics. Carnegie international non-proliferation conference 2002. Washington, D.C., 14 November 2002

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2002-01-01

    The 1970 Treaty on the Non-Proliferation of Nuclear Weapons (NPT), with 188 States party, represents the cornerstone of the global nuclear non-proliferation and disarmament effort - and despite recent challenges, it has never been more relevant than it is today. But the international community has to move forward, it is essential that a number of the basic assumptions should be revisited, and a number of new approaches reconsidered. A key assumption at the core of the NPT was that the asymmetry between nuclear-weapon States and non-nuclear-weapon States would gradually disappear. The nuclear non-proliferation regime has overall been successful - but with some shortcomings. Efforts to end nuclear weapons development achieved an important milestone with the conclusion of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in September 1996, but the pace of progress has been sluggish among the 44 countries whose ratification is required for the treaty to enter into force - and the rejection of the CTBT by the US Senate in 1999 was a distinct setback. Negotiation of a Fissile Material Cut-Off Treaty (FMCT) continues to languish in Geneva, more than seven years after agreement was reached on a mandate. The 2000 NPT Review Conference, building on the package of decisions and resolutions that led to the indefinite extension of the NPT in 1995, resulted in a number of encouraging commitments, not least the 'unequivocal undertaking' by the nuclear-weapon States to accomplish the total elimination of their nuclear arsenals. But a scant two years later, we have moved sharply away from those commitments, with a number of the '13 steps' toward nuclear disarmament - such as 'irreversibility,' 'START II, START III and the ABM Treaty,' further 'unilateral' reductions in nuclear arsenals, 'increased transparency,' 'further reduction of non-strategic nuclear weapons,' and 'regular reports' on the implementation of Article VI of the NPT - left without concrete follow-up actions and in

  20. Advanced nuclear energy systems and the need of accurate nuclear data: the n_TOF project at CERN

    CERN Document Server

    Colonna, N; Praena, J; Lederer, C; Karadimos, D; Sarmento, R; Domingo-Pardo, C; Plag, R; Massimi, C; Calviani, M; Guerrero, C; Paradela, C; Belloni, F

    2010-01-01

    To satisfy the world's constantly increasing demand for energy, a suitable mix of different energy sources has to be devised. In this scenario, an important role could be played by nuclear energy, provided that major safety, waste and proliferation issues affecting current nuclear reactors are satisfactorily addressed. To this purpose, a large effort has been under way for a few years towards the development of advanced nuclear systems with the aim of closing the fuel cycle. Generation IV reactors, with full or partial waste recycling capability, accelerator driven systems, as well as new fuel cycles are the main options being investigated. The design of advanced systems requires improvements in basic nuclear data, such as cross-sections for neutron-induced reactions on actinides. In this paper, the main concepts of advanced reactor systems are described, together with the related needs of new and accurate nuclear data. The present activity in this field at the neutron facility n\\_TOF at CERN is discussed.

  1. IAEA Director General calls for rededication to nuclear non-proliferation regime

    International Nuclear Information System (INIS)

    2000-01-01

    Speaking at the opening session of the Review Conference of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) in New York on April 24, 2000, the Director General of the IAEA urged all nations to commit themselves unequivocally to the basic tenets of the non-proliferation regime

  2. Nuclear non-proliferation: failures and prospects

    International Nuclear Information System (INIS)

    Imai, R.; Press, R.

    1980-01-01

    The objective of this paper is to examine the evolution of combined political and technical attempts to achieve worldwide acceptance of a commitment to non-proliferation, to note failures to date, and to identify essential factors to be satisfied if greater and necessary success is to be achieved in the immediate future. For this it is necessary to separate the realism and unrealism so often involved in discussing the concept of non-proliferation, as defined above, particularly if treated as a moral principle rather than as part of a general security issue reflecting shifts in regional and global stability. The political nature of the non-proliferation problem is underlined by the fact that whereas five nuclear weapon states are currently accepted, any threatened increase in that number is discouraged by every possible peaceful means. This fact combines political acceptance of an existing international situation with a belief that any addition to the present number must lead to international instability. Success in preventing additions may be more readily achieved through political understanding and perhaps some compromises, in particular cases, rather than through seeking a universal solution to a generalized problem

  3. Nuclear energy and the nuclear energy industry

    International Nuclear Information System (INIS)

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  4. Nuclear power without nuclear weapons

    International Nuclear Information System (INIS)

    Kaiser, K.; Klein, F.J.

    1982-01-01

    In this study leading experts summarize the work of a working group meeting during several years, and they represent the state of the art of the international discussion about the non-proliferation of nuclear weapons. The technical basis of proliferation, the relations between energy policy and nuclear energy, as well as the development of the non-proliferation system up to the present are thoroughly studied. Special attention is paid to the further development of the instruments of the non-proliferation policy, and approaches and ways to improving the control of the fuel cycle, e.g. by means of multinational methods or by improving the control requirements are analyzed. Also the field of positive inducements and negative sanctions to prevent the proliferation as well as the question of ensured supply are elucidated in detail. A further section then analyzes the functions of the international organizations active in this field and the nuclear policy of the most important western industrial nations, the RGW-states and the threshold countries of the Third World. This volume pays special attention to the nuclear policy of the Federal Republic of Germany and to the possibilities and necessities of a further development of the non-proliferation policy. (orig.) [de

  5. The role of nuclear energy in mitigating greenhouse warming

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1997-01-01

    A behavioral, top-down, forced-equilibrium market model of long-term (∼ 2,100) global energy-economics interactions has been modified with a bottom-up nuclear energy model and used to construct consistent scenarios describing future impacts of civil nuclear materials flows in an expanding, multi-regional (13) world economy. The relative measures and tradeoffs between economic (GNP, tax impacts, productivity, etc.), environmental (greenhouse gas accumulations, waste accumulation, proliferation risk), and energy (resources, energy mixes, supply-side versus demand-side attributes) interactions that emerge from these analyses are focused herein on advancing understanding of the role that nuclear energy (and other non-carbon energy sources) might play in mitigating greenhouse warming. Two ostensibly opposing scenario drivers are investigated: (a) demand-side improvements in (non-price-induced) autonomous energy efficiency improvements; and (b) supply-side carbon-tax inducements to shift energy mixes towards reduced- or non-carbon forms. In terms of stemming greenhouse warming for minimal cost of greenhouse-gas abatement, and with the limitations of the simplified taxing schedule used, a symbiotic combination of these two approaches may offer advantages not found if each is applied separately

  6. Nuclear energy: The need for a new framework, 17 April 2008, Berlin, Germany

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2008-01-01

    IAEA Director General Dr. Mohamed ElBaradei addresses the critical issue of assurance of supply of nuclear fuel. He indicates that a growing number of countries are looking seriously at introducing or expanding the use of nuclear power as part of their energy mix. This is primarily because of the huge need for additional energy as the world's reserves of fossil fuels are inexorably depleted and concerns about global warming mount. To date, the use of nuclear power has been concentrated mainly in industrialized countries. But of the 35 new reactors currently under construction, 17 are in developing countries. Recent expansion has been primarily in Asia and Eastern Europe. It is vital that the expected increase in the use of nuclear power is managed properly, taking into account all economic, safety, security and non-proliferation requirements. It is possible - and indeed essential - to create a new mechanism that will assure supplies of nuclear fuel and reactors to countries which want them, while strengthening non-proliferation through better controls over the sensitive parts of the nuclear fuel cycle - uranium enrichment and plutonium separation - by way of a multinational approach to the front and back ends of the cycle. So far 12 proposals have been made on different ways of assuring supply of nuclear fuel. The 12 proposals cover a broad spectrum, from establishing an IAEA-controlled last resort reserve of low enriched uranium to providing backup assurance of supply and setting up international uranium enrichment centres. A three-stage process can be envisaged. The first step would be to establish a system for assuring supply of fuel for nuclear power reactors - and, if necessary, supply of the actual reactors. The second step would be to have all new enrichment and reprocessing activities in future put exclusively under multilateral control. And the third step would be to convert all existing enrichment and reprocessing facilities from national to multilateral

  7. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  8. Agreement between the Republic of Slovenia and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons. Suspension

    International Nuclear Information System (INIS)

    2007-01-01

    The Agreement of 5 April 1973 between Belgium, Denmark, the Federal Republic of Germany, Ireland, Italy, Luxembourg, the Netherlands, the European Atomic Energy Community and the Agency in implementation of Article III, (I) and (4) of the Treaty on the Non-Proliferation of Nuclear Weapons, and the Protocol Additional thereto, entered into force for the Republic of Slovenia on 1 September 2006 [es

  9. The nuclear energy of the future: the researches and the objectives

    International Nuclear Information System (INIS)

    2005-01-01

    Today energy problems are global problems. That is why the new generation of energy production by nuclear power must be realized basely on serious forecasts at a world scale. The nuclear energy presents many trumps for an energetic answer, at long-dated, concerning the environment and the resources. This will be for two main conditions: the ability to answer the public opinion anxiety and the development of new systems more high- performance in terms of safety and economy in the framework of the sustainable development and the non proliferation policy. These subjects are at the earth of the CEA missions. This document proposes a detailed presentation of the nuclear origins, the fuel and its cycle, the radioactive wastes and their management,the dismantling and the decommissioning of the nuclear installations, the challenges of the nuclear safety, the energy in the world, the nuclear economy, the nuclear in the world, the researches of the future, the third generation reactors, the research on radioactive wastes, the fuel cycle of the nuclear systems of the future, the uranium resources, the generation four forum, the gas coolant reactors, the thorium, hybrid systems and the thermonuclear fusion. (A.L.B.)

  10. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  11. Recommendations for a Department of Energy. Nuclear energy R and D agenda volume 1

    International Nuclear Information System (INIS)

    1997-12-01

    On January 14, 1997, the President requested that his Committee of Advisors on Science and Technology (PCAST) make ''recommendations ... by October 1, 1997 on how to ensure that the United States has a program that addresses its energy and environmental needs for the next century.'' In its report, Federal Energy Research and Development for the Challenges of the Twenty-First Century, the PCAST Panel stated that ''the United States faces major energy-related challenges as it enters the twenty-first century'' and links these challenges to national economic and environmental well-being as well as to national security. The Panel concluded that ''Fission belongs in the R and D portfolio.'' In conjunction with this activity, the DOE Office of Nuclear Energy, Science and Technology, together with seven of the national laboratories, undertook a study to recommend nuclear energy R and D responses to the challenges and recommendations identified by the PCAST Panel. This seven-laboratory study included an analysis of past and present nuclear energy policies, current R and D activities, key issues, and alternative scenarios for domestic and global nuclear energy R and D programs and policies. The results are summarized. Nuclear power makes important contributions to the nation's well-being that can be neither ignored nor easily replaced without significant environmental and economic costs, particularly in an energy future dominated by global energy growth but marked by significant uncertainties and potential instabilities. Future reliance on these contributions requires continuing past progress on the issues confronting nuclear power today: safety, waste management, proliferation, and economics. A strong nuclear energy agenda will enable the U.S. government to meet its three primary energy responsibilities: (1) respond to current needs; (2) prepare the country for anticipated future developments; and (3) safeguard the country from unexpected future events

  12. Finding synergy between local competitiveness and global sustainability to provide a future to nuclear energy

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Yacout, Abdellatif; Wade, Dave

    2008-01-01

    The world's future energy needs will require a mix of energy conversion technologies matched to the local energy market needs while also responding to both local and global socio-political concerns, e.g. energy security, environmental impact, safety and non-proliferation. There is growing recognition worldwide that nuclear energy should not only be part of the solution but maybe as well play a larger share in future's energy supply. The sustainability of future nuclear energy systems is hereby important and a variety of studies have already shown that sustainability of nuclear energy from a resource perspective is achievable via the nuclear fuel cycle though where economic sustainability is essentially defined by the nuclear power plants. The main challenge in deploying sustainable nuclear energy systems will be to find synergies between this local competitiveness of nuclear power plants and the global resource sustainability defined via the nuclear fuel cycle. Both may go hand-in-hand in the long-term but may need government guidance in starting the transition towards such future sustainable nuclear energy systems. (authors)

  13. Nuclear weapon-free zone, non-proliferation treaty and South Asia

    International Nuclear Information System (INIS)

    Jayaramu, P.S.

    1980-01-01

    Emergence of and the motivations behind the concept of nuclear weapon free zone, the conceptual linkage between the nuclear weapon free zone and the Non-Proliferation Treaty and the problems involved in the implementation of nuclear weapon free zone proposals put forward from time to time are discussed. Pakistan's proposal for a nuclear weapon free zone in South Asia, motivations behind the proposal, and India's response to it are examined. It is pointed out that both the NPT and nuclear weapon free zone indirectly grant a certain amount of legitimacy to the use of nuclear weapons. (M.G.B.)

  14. The third-world response to anti-nuclear proliferation strategy

    International Nuclear Information System (INIS)

    Poulose, T.T.

    1978-01-01

    The discriminatory aspect of the NPT and its implications for the nuclear have-nots are discussed. India's refusal to sign the NPT and misgivings it has created in the 'Nuclear haves' are explained. It is emphasised that India should retain the nuclear option, even though the option at present stands renounced voluntarily, in order to bargain with the nuclear weapons powers for nuclear disarmament. India may even give up PNEs as a price in return for Comprehensive Test Ban Treaty. It has also been pointed out that the nuclear weapons powers and other nuclear suppliers are using the NPT as a political weapon, to deny technical details to the developing nations. The approach of the nuclear haves to the NPT is technical and that of the nuclear have-nots is political. Third world's demand is that nuclear proliferation must be differentiated from the dissemination of nuclear technology. (M.G.B.)

  15. Public Acceptance of Nuclear Energy in Mexico

    International Nuclear Information System (INIS)

    Ramirez-Sanchez, Jose R.; Alonso, Gustavo; Palacios, H. Javier

    2006-01-01

    The nuclear energy is attracting renewed interest of public and policy makers due to his potential role in long term strategies aiming to reduce the risk of global warming and in a more general, to carry out sustainable policies, however, any project of nuclear nature arise concerns about the risks associated with the release of radioactivity during accident conditions, radioactive waste disposal and nuclear weapons proliferation. Then in light of the likeliness for a new nuclear project in Mexico, is necessary to design a strategy to improve the social acceptance of nuclear power. This concern is been boarding since the environmental and economic point of view. The information that can change the perception of nuclear energy towards increase public acceptance, should be an honest debate about the benefits of nuclear energy, of course there are questions and they have to be answered, but in a realistic and scientific way: So thinking in Mexico as a first step it is important to communicate to the government entities and political parties that nuclear energy is a proven asset that it is emission free and safe. Of course besides the guarantee of a proven technology, clean and safe relies the economic fact, and in Mexico this could be the most important aspect to communicate to key people in government. Based in the Laguna Verde survey it is clear that we have to find the adequate means to distribute the real information concerning nuclear technology to the public, because the results shows that Mexican people does not have complete information about nuclear energy, but public can support it when they have enough information. From the IAEA study we can say that in Mexico public acceptance of nuclear energy it s not so bad, is the highest percentage of acceptance of nuclear technology for health, considering benefits to the environment Mexican opposition to build new plants is the second less percentage, and generally speaking 60% of the people accept somehow nuclear

  16. Nuclear Non-Proliferation Policy Act of 1977. Hearings before the Subcommittee on Energy Research and Development of the Committee on Energy and Natural Resources, United States Senate, Ninety-Fifth Congress, First Session, June 10, September 13, 14, 1977

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Senator Frank Church presented the opening statement on the June 10, 1977 hearing concerning the Nuclear Non-Proliferation Policy Act of 1977, S.1432. S.1432 is designed to establish a nonproliferation framework with specific objectives established for the ERDA nuclear energy programs. The ERDA authorization bill is the budgetary vehicle to implement these objectives. The Committee on Energy and Natural Resources obtained joint referral of certain portions of the Nuclear Non-Proliferation Act to insure that nonproliferation policy is implemented in a manner consistent with the policy of having sufficent energy for this country and foreign countries in the future. Additionally, the Subcommittee on Energy Research and Development must examine the cost and the consequences of various initiatives before they are implemented. For example, the proposal to guarantee uranium enrichment services for foreign nations poses specific requirements on ERDA to expand considerably our enrichment capacity by the year 2000. Without reprocessing, it is expected that spent fuel rods from abroad will be returned to this country for storage with attendant costs and siting decisions. Also, international fuel cycle evaluation programs must be carefully examined to insure that all options, including regional fuel cycle centers with international controls and inspection, are considered in seeking international approaches to the nonproliferation objectives. It is these and related questions to which the subcommittee seeks answers. The hearings on September 13 and 14 focused on S.897, a bill to strengthen U.S. policies on nonproliferation and to reorganize certain export functions of the Federal government to promote more efficient administration of such functions. Statements were presented by experts in government, private firms, and industrial sectors

  17. Destruction of nuclear energy facilities in war: the problem and the implications

    International Nuclear Information System (INIS)

    Ramberg, B.

    1980-01-01

    This book examines current practices, policies, and regulations concerning nuclear energy in the light of potential sabotage. Dr. Ramberg explains clearly, for both the lay reader and the technical community, the vulnerabilities of different sorts of nuclear facilities. In a case-by-case analysis of countries using or building nuclear power plants, he outlines the strategic hazards of these facilities. The safety of thousands could depend on such volatile factors as the psychological sensitivity of national leaders and the direction of the wind. A combination of engineering changes, use of alternative forms of energy to limit nuclear proliferation, and changes in international law could lessen these risks. Finally, Dr. Ramberg suggests specific national and international guidelines for monitoring nuclear exports

  18. Nuclear Safeguards and Non-Proliferation Education at Texas A&M University

    International Nuclear Information System (INIS)

    Gariazzo, C.; Charlton, W.

    2015-01-01

    The MS degree in Nuclear Engineering - Non-proliferation at Texas A&M University is administered by the Nuclear Security Science and Policy Institute (NSSPI). The oldest and largest of its kind in the US, 45 M.S. and 15 Ph.D. students conducted technical research in relevant areas: safeguards, nuclear security, non-proliferation, and arms control. In addition to focusing on graduate education with a wide combination of internationally-recognized talent, NSSPI faculty lead research and service activities in safeguarding of nuclear materials and reducing nuclear threats. Texas A&M Nuclear Engineering students take relevant nonproliferation and safeguards courses (within the College of Engineering and the Texas A&M Bush School of Government) as well as conduct their research under competent experts. The complete educational experience here is unique because of the strong research and educational support NSSPI provides. This paper will detail these endeavors and convey contributions from NSSPI for developing next-generation safeguards experts via practical experiences and strong affiliations with real-world practitioners. The safeguards and non-proliferation education programme blends historical, legal, technical and policy aspects that is unique for a technical university such as Texas A&M. Beyond classroom lectures, NSSPI provides opportunities for students ranging from asynchronous learning modules to practical experiences. Publicly-available self-paced, online course modules in basic and advanced safeguards education have been developed by NSSPI as supplemental nuclear education for students and professionals. By leveraging NSSPI's contacts, students participate in exchange programmes with international institutions as well as partake in experiences like engaging safeguards practitioners at nuclear fuel cycle facilities around the world, conducting experiments at internationally-renowned laboratories, and representing their communities at workshops worldwide

  19. The future of nuclear energy

    International Nuclear Information System (INIS)

    El-Hinnawi, E.E.

    1980-01-01

    The subject is discussed under the headings: introduction; nuclear power as a public issue; issues of major concern (environmental aspects); effects of radiation on man; the safety of nuclear power plants (risk analysis; Three Mile Island accident); radioactive waste management; nuclear proliferation and safeguards; conclusion. (U.K.)

  20. User requirements and criteria for proliferation resistance in INPRO

    International Nuclear Information System (INIS)

    Choi, K.; Shea, T.E.; Hurt, R.D.; Nishimura, R.

    2004-01-01

    In designing future nuclear energy systems, it is important to consider the potential that such systems could be misused for the purpose of producing nuclear weapons. INPRO set out to provide guidance on incorporating proliferation resistance into innovative nuclear energy systems (INS). Generally two types of proliferation resistance measures are distinguished: intrinsic and extrinsic. Intrinsic features consist of technical design features that reduce the attractiveness of nuclear material for nuclear weapon program, or prevent the diversion of nuclear material or production of undeclared nuclear material for nuclear weapons. Extrinsic measures include commitments, obligations and policies of states such as the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) and IAEA safeguards agreements. INPRO has produced five basic principles and five user requirements for INS. It emphasizes that INS must continue to be an unattractive means to acquire fissile material for a nuclear weapon program. It also addresses as user requirements: 1) a balanced and optimised combination of intrinsic features and extrinsic measures, 2) the development and implementation of intrinsic features, 3) an early consideration of proliferation resistance in the development of INS and 4) the utilization of intrinsic features to increase the efficiency of extrinsic measures. INPRO has also developed criteria, consisting of indicators and acceptance limits, which would be used by a state to assess how an INS satisfies those user requirements. For the first user requirement, the most important but complex one, INPRO provides a 3-layer hierarchy of indicators to assess how unattractive a specific INS would be as part of a nuclear weapon program. Attributes of nuclear material and facilities are used as indicators to assess intrinsic features. Extrinsic measures imposed on the system are also assessed. Indicators to assess defence in depth for proliferation resistance include the number and

  1. Nuclear energy education and training in France

    International Nuclear Information System (INIS)

    2010-01-01

    In its continuing use of nuclear power, France faces numerous challenges, including the operation and maintenance of its existing array of reactors, waste management, the decommissioning of obsolete reactors, and research and development for future nuclear systems. All of these efforts must recognize and conform to international requirements. These activities mean that all participants in the French nuclear industry must continually update their approaches and skills, with respect to both domestic and worldwide nuclear power development. This requirement calls for the hiring and training of thousands of scientists and engineers each year in France and its partner or customer countries. Over the next ten years, domestic and international nuclear power activities in France will call for the recruitment of about 13,000 engineers with Master of Science or Ph.D. degrees, and 10,000 science technicians and operators with Bachelor of Science degrees. The chief employers will be EDF, AREVA, GDF-Suez, national agencies such as the Agence nationale pour la gestion des dechets radioactifs (ANDRA), sub-contractors, and R and D agencies such as the Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), and the technical safety organization, Institut de Radioprotection et de Surete Nucleaire (IRSN). France has made a commitment to support countries that are ready to create the human, institutional, and technical conditions required to establish a civilian nuclear energy programme that meets all the requirements of safety, security, non-proliferation and environmental protection for present and future generations. These efforts are conducted through the France International Nuclear Agency (AFNI). In response to the need for competence-building in nuclear energy production, France now offers training opportunities in both French and English education programmes. Partnerships created by French nuclear energy participants and by AFNI can provide dedicated programmes

  2. Nuclear energy

    International Nuclear Information System (INIS)

    Kuhn, W.

    1986-01-01

    This loose-leaf collection is made up of five didactically prepared units covering the following subjects: basic knowledge on nuclear energy, nuclear energy in relation to energy economy, site issues, environmental compatibility of nuclear energy, and nuclear energy in the focus of political and social action. To this was added a comprehensive collection of material: specific scientific background material, a multitude of tables, diagrams, charts etc. for copying, as well as 44 transparent charts, mostly in four colours. (orig./HP) [de

  3. Protocol Additional to the Agreement between Ukraine and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty on the Non- Proliferation of Nuclear Weapons

    International Nuclear Information System (INIS)

    2006-01-01

    The text of the Protocol Additional to the Agreement between Ukraine and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons is reproduced in this document for the information of all Members. The Board of Governors approved the Additional Protocol on 7 June 2000. It was signed on 15 August 2000 in Vienna [es

  4. Protocol Additional to the Agreement between Mauritius and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons

    International Nuclear Information System (INIS)

    2008-01-01

    The text of the Protocol Additional to the Agreement between Mauritius and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons is reproduced in this document for the information of all Members. The Board of Governors approved the Additional Protocol on 14 September 2004. It was signed on 9 December 2004 in Vienna

  5. Nuclear energy and sustainability in Latin America

    International Nuclear Information System (INIS)

    Sterner, Thomas

    1991-01-01

    The concept of sustainability has been given numerous interpretations, some overlapping or complementary, some contradictory. Thus it is difficult to judge whether the nuclear industry does, or does not, meet sustainability criteria; particularly as the present nuclear technologies are not renewable. Uranium resources appear to be of the same order of magnitude as oil and gas resources. This implies that they are a transitional source of energy. There are also other potential arguments against the sustainability of nuclear power: its pollution, risks and costs. Environmental damage may come from various parts of the nuclear fuel cycle. Two types of risk will be discussed: first the risk of major accidents and thereby exceptional environmental damage, and second the risks associated with the proliferation of nuclear weapons. Each of these factors, as well as the pure economic cost of nuclear electricity, ought to be compared to the environmental damage, risks and costs of the available alternatives. Only the Latin American experience will be considered. For example, the need for Mexico to use nuclear power when it has large oil and gas supplies, is considered. (author)

  6. Nuclear Non-Proliferation and Disarmament: Where Next?

    International Nuclear Information System (INIS)

    Evans, G.

    2013-01-01

    completely stalled; there is now real uncertainty about US ratification of the New START treaty with the Russian Federation, and with it any major new round of arms reduction negotiations; there has been less movement than hoped for in reducing the role and salience of nuclear weapons in national security doctrine; there has been no movement on the file of the Democratic People's Republic of Korea (DPRK); and concern about the intentions of the Islamic Republic of Iran (Iran) remain as strong as ever. About the only ray of real light for the year has been the substantial measure of agreement achieved at the Washington Summit on nuclear security issues and cooperative implementation of the global anti-terrorism agenda. In my own approach to difficult international policy issues, I usually err on the side of congenital optimism, and it is possible to see the glass as half full rather than half empty on most of the specific issues I have mentioned - and others as well, such as the question of multilateralization of sensitive stages of the fuel cycle on which the IAEA Board of Governors has already expended so much time and energy. The road ahead - as mapped in detail, for example, in the report last year by the International Commission on Nuclear Non-proliferation and Disarmament (ICNND), with which I hope you are familiar - was always going to be long and slow. But everything depends on some real momentum being sustained. If that momentum is lost, as it was during the fifteen years or so of sleepwalking that followed the initial flurry of disarmament activity in the early post-Cold War years, and looks in real danger right now of being completely lost again, it is not easy to see how it will ever be regained. And that is very bad news indeed for this planet. It is worth reminding ourselves on these occasions, although the facts and arguments are familiar enough to this audience, why such an outcome would be such bad news, and why it is that the work that is done at symposiums

  7. The international nuclear non-proliferation system: Challenges and choices

    International Nuclear Information System (INIS)

    Simpson, J.; McGrew, A.G.

    1984-01-01

    When a topic has been under discussion for almost 40 years there is a danger that the literature will become excessively esoteric and that, as Philip Grummett suggests, '...a new scholasticism will arise' (p.79). Originating in a November l982 seminar co-sponsored by the British International Studies Association and the Foreign and Commonwealth Office, this volume is a refreshing, well conceived, and well written antidote to that trend. It is also well timed for the 1985 NPT Review Conference. The eight chapters of the volume are divided into three sections. Following an introduction by Anthony McGrew that touches on all the major themes of the volume, the first section deals with the existing non-proliferation system. In three chapters the historical, institutional and policy-making elements of the present system are outlined. There is a vignette on the Nuclear Suppliers Group in Wilmshurst's chapter one (pp. 28-33). Fischer's informative chapter on the IAEA is followed by Gummett's examination of policy options, including, for example, the linking of conventional weapons transfer to non-proliferation policies. The second section, also of three chapters, examines current issues: the state of the international nuclear industry, and the non-proliferation policies of the United States and Britain. Walker's chapter focuses chiefly on change in the industry-from monopoly to pluralism in suppliers, the effect of the economic recession, and the combined effect of these two factors on international politics. Devine's American non-proliferation chapter is a statement of the State Department view, whilst Keohane's chapter on Britain attempts to put the Trident procurement into a proliferation context. The British chapter is present because of ethnocentric considerations

  8. Nuclear energy development in China: A study of opportunities and challenges

    International Nuclear Information System (INIS)

    Zhou, Sheng; Zhang, Xiliang

    2010-01-01

    With rapid economic development, China faces a great challenge to meet its increasing energy demand. Currently, China's energy supply is dominated by coal consumption, while natural gas and oil are in relative short supply. At the same time, nuclear energy is a relatively clean energy without green-house gas emissions. Considering the growing cost of fossil energy and the limited resources in China, oil supply security, coal mining disasters, the domestic environment pressure, and global climate warming, nuclear energy is an inevitable strategic option. Generally speaking, nuclear energy development has a promising future in China. Its driving factors include the brisk electricity demand, environment impact pressure, oil supply security, and positive public acceptance. Meanwhile, the question still remains whether nuclear energy development in China is sustainable. Just like in other parts of the world, China is also bewildered by the problems of reactor safety, nuclear waste treatment, and risk of proliferation of weapons material. In addition, nuclear technology diversity, shortage of uranium resources, and weak market competitiveness of nuclear power in the short term are certain barriers that China's nuclear energy development also faces. There are also other worrying issues such as: whether public acceptance in the future will change? Whether the current approaches to nuclear waste disposal are still acceptable when nuclear plants gains scale? In this paper, some suggestions and recommendations are put forward on the measures to be followed to 1) enhance domestic nuclear technology development and imported technology localization; 2) reduce the cost of nuclear power and enhance its market competitiveness; 3) accelerate the process of cleanly developing nuclear technology; 4) accelerate the process of developing more efficient reactor and nuclear fuel cycle; and 5) conduct effective publicity work to uphold public acceptance.

  9. Prospects for Nuclear Proliferation.

    Science.gov (United States)

    1983-06-01

    David Lilienthal, a Harvard Law graduate and director of the Tenne- see Valley Authority, as chairman of the board of consul- tants. Their job, as...Nuclear Age, pp. 81-83, The MIT Press, 1974. Paul C. Szasz , "International Atomic Energy Agency Safeguards," in International Safeguards and Nuclear...princi- ple of national sovereignty as embodied in international law , As stated earlier, the NPT safeguards system included the whole range of a

  10. Evaluation of selected features of US nuclear non-proliferation law and policy. Report to the Congress

    International Nuclear Information System (INIS)

    1980-01-01

    Because other nations now have uranium enrichment facilities, no nation can use nuclear fuel services to dictate actions to others. The United States, therefore, should avoid undue reliance on its uranium enrichment capability as a tool to prevent the spread of nuclear weapons. The 1978 nuclear non-proliferation law requires the United States to ensure the availability of US enrichment services to meet foreign demand, but it is not apparent that a new enrichment plant authorized in 1975 is needed to meet this demand. The 1978 law has proven to be administratively workable as a means of exercising control over nuclear exports, but more needs to be done to make Government reviews of nuclear exports predictable and timely. A comprehensive interagency reassessment is needed of the controls the Department of Energy administers over foreign activities of US firms and individuals

  11. American security perspectives: public views on energy, environment, nuclear weapons and terrorism: 2008

    International Nuclear Information System (INIS)

    Herron, Kerry Gale; Jenkins-Smith, Hank C.

    2008-01-01

    We analyze and compare findings from matching national surveys of the US general public on US energy and environmental security administered by telephone and Internet in mid-2008. Key areas of investigation include: energy supplies and reliability; energy vulnerabilities and threats, and relationships among security, costs, energy dependence, alter-native sources, and research and investment priorities. We analyze public assessments of nuclear energy risks and benefits, nuclear materials management issues, and preferences for the future of nuclear energy in the US. Additionally, we investigate environmental issues as they relate to energy security, to include evolving perspectives on global climate change and relationships among environmental issues and potential policy options. We also report findings from an Internet survey of the general public conducted in mid-2008 that investigates assessments of threats to US security; valuations of US nuclear weapons and nuclear deterrence; perspectives on nuclear proliferation; and support for investments in nuclear weapons capabilities. Our analysis of public views on terrorism include assessments of the current threat, progress in the struggle against terrorism, preferences for responding to terrorist attacks at different levels of assumed casualties, and support for domestic policies intended to reduce the threat of terrorism.

  12. Nuclear policies: fuel without the bomb

    International Nuclear Information System (INIS)

    Wohlstetter, A.; Gilinsky, V.; Gillette, R.; Wohlstetter, R.

    1978-01-01

    The essays, developed from studies conducted by the California seminar on arms control and foreign policy, address technical, political, and economic aspects of nonproliferation. How to halt nuclear proliferation commands worldwide attention today. The search for new energy resources by industrial as well as nonindustral nations has led to the spread of nuclear technology and the production of weapons grade fuel materials such as plutonium and enriched uranium in the name of energy independence. The background and consequences of this growing danger and possible solutions to it are the substance of the essays. Conceding the desirability (if not necessity) of developing nuclear power as an energy source, the writers focus on the different reactor technologies; an historical perspective of proliferation through the example of India; the rationales for stringent international monitoring; and finally, the link between proliferation and the spread of nuclear weapons. The chapters are: Nuclear technology: essential elements for decisionmakers, Robert Gillette; Must we decide now for worldwide commerce in plutonium fuel, Albert Wohlstetter; US peaceful aid and the Indian bomb, Roberta Wohlstetter; International discipline over the uses of nuclear energy, Victor Gilinsky; and Nuclear energy and the proliferation of nuclear weapons, Victor Gilinsky

  13. Nuclear energy and energy security

    International Nuclear Information System (INIS)

    Mamasakhlisi, J.

    2010-01-01

    Do Georgia needs nuclear energy? Nuclear energy is high technology and application of such technology needs definite level of industry, science and society development. Nuclear energy is not only source of electricity production - application of nuclear energy increases year-by-year for medical, science and industrial use. As an energy source Georgia has priority to extend hydro-power capacity by reasonable use of all available water resources. In parallel regime the application of energy efficiency and energy conservation measures should be considered but currently this is not prioritized by Government. Meanwhile this should be taken into consideration that attempts to reduce energy consumption by increasing energy efficiency would simply raise demand for energy in the economy as a whole. The Nuclear energy application needs routine calculation and investigation. For this reason Government Commission is already established. But it seems in advance that regional nuclear power plant for South-Caucasus region would be much more attractive for future

  14. Romania non-proliferation policy

    International Nuclear Information System (INIS)

    Biro, Lucian; Grama, Viviana

    2001-01-01

    Full text: Non-proliferation concept in Romania is based on the Treaty on the Non-proliferation of Nuclear Weapons, which was ratified in 1970. According to the Article III of the Treaty, Romania ratified in 1972, the Agreement between Romania and IAEA for the application of Safeguards in connection with the Treaty on the Non-proliferation of Nuclear Weapons. In 2000 Romania ratified the Additional Protocol to contribute through increased transparency, to confidence that no undeclared nuclear activities are concealed within the declared programme or make use of elements of that programme. Under the Additional Protocol Romania understands to increase the transparency of its nuclear activities lengthways fuel cycle. Romania has a strong legal framework to control nuclear material and nuclear activities. The Law 111/1996, republished is the Law on the safe deployment of nuclear activities. CNCAN issued National Regulations for Safeguards and Physical Protection. Prospecting for uranium in Romania was initiated in 1950. Between 1962 and 1978 all the uranium ore production was stockpiled at the mine sites. In 1978 the Feldioara Powder Plant was commissioned, since then both ore stockpiles and ore exploited have been processed to uranium chemical concentrates. The Powder Plant Feldioara was conceived and built following the necessity of milling and processing the uranium ore to UO 2 , in concordance with the national nuclear programme in order to produce electric energy from nuclear fuel. The Nuclear Fuel Plant has capability to manufacture CANDU-6 nuclear fuel. Nuclear Fuel Plant consists of two Production areas, the Quality Assurance and Engineering Departments. There are two Production Departments: Pelleting area including granulation, pressing, sintering, pellet grinding, uranium recycling and Assembling area including components fabrication, beryllium coating, brazing, graphite coating, fuel element and bundle assembly welding. Romania's Strategy for Energy Sector

  15. The missing link? Nuclear proliferation and the international mobility of Russian nuclear experts

    International Nuclear Information System (INIS)

    Zinberg, D.S.

    1995-01-01

    Within the frame of Nuclear Non-proliferation Treaty and increasing international mobility which provides opportunities for the growth of science as well as for the careers of underemployed scientists and engineers there exists a problem illegal transfer of knowledge in the field as well as nuclear material. Although there are strong cultural factors against the sale of nuclear knowledge, these constraints do not apply to mafia. International efforts should be used to improve the long-term financial and social welfare of Soviet scientists, engineers and technologists in order to prevent the attempts of would-be nuclear thieves. The international community should focus on the importance of prevention, not detection of such possibilities. Programs providing alternate civilian employment for Soviet engineers and scientists specialised in the nuclear fields should be supported

  16. The history of Finnish nuclear non-proliferation policy during the cold war. What did the Finns know about nuclear weapons

    International Nuclear Information System (INIS)

    Ahosniemi, A.

    2004-03-01

    This article is a summary of the Finnish historical survey during the Cold War. In the article, I try to show how the Finnish Nuclear Non-Proliferation Policy during the Cold War is linked to the broader context of the Finnish foreign and security policy. In the research report I have focused on several questions. One of the most important is the following: What did the Finns know about nuclear weapons during the Cold War? And in this context scientific knowledge is meant by knowing something about nuclear weapons. Basically, the Finnish national based survey of nuclear non-proliferation policy attempted to investigate issues like the kind of research concerning Nuclear Technology in general, Nuclear weapons, and Nuclear weapon policies of super powers in Finland during the Cold War era. (author)

  17. Potential strategic consequences of the nuclear energy revival

    International Nuclear Information System (INIS)

    Ferguson, Ch.D.

    2010-01-01

    acquire nuclear power infrastructures. Even if the total number of operating reactors does not substantially increase worldwide, the security threats may increase because of more countries acquiring nuclear power plants or at least developing a nuclear infrastructure. This infrastructure could provide a portal for states to acquire knowledge of nuclear weapons design and manufacture by offering a convenient political and commercial cover for this transaction and could provide a means to acquire the types of research reactors that are optimized for production of weapons-usable fissile material. Once a state has a significant number of nuclear power plants, it may then have an economic rationale to argue for developing a uranium enrichment plant to provide for its own nuclear fuel, but before that threshold number is crossed, economics argue against building an indigenous enrichment plant. The latent proliferation threat revolves mainly around where many of these countries are located. In particular, the Middle East is a politically volatile region and includes numerous states that have recently expressed interest in acquiring nuclear power plants. The Arab states that have expressed interest in these plants are not monolithic in their view on this energy source, and they are not all major petroleum and natural gas producing states. Of course, the backdrop for these recent pronouncements is the growth of Iran's acquisition of a latent nuclear weapons capability. In addition, some of the petroleum and gas producing states have stated that they want to free up more of these resources for export and not use as much for electricity production and seawater desalination. Moreover, the states lacking these resources such as Jordan are seeking ways to reduce dependency on oil and gas imports. They see nuclear energy as helping to do that. In the long term, solar power would likely provide a sustainable solution without the risk of proliferation. But solar energy is not as powerful

  18. Potential strategic consequences of the nuclear energy revival

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Ch.D.

    2010-07-01

    acquire nuclear power infrastructures. Even if the total number of operating reactors does not substantially increase worldwide, the security threats may increase because of more countries acquiring nuclear power plants or at least developing a nuclear infrastructure. This infrastructure could provide a portal for states to acquire knowledge of nuclear weapons design and manufacture by offering a convenient political and commercial cover for this transaction and could provide a means to acquire the types of research reactors that are optimized for production of weapons-usable fissile material. Once a state has a significant number of nuclear power plants, it may then have an economic rationale to argue for developing a uranium enrichment plant to provide for its own nuclear fuel, but before that threshold number is crossed, economics argue against building an indigenous enrichment plant. The latent proliferation threat revolves mainly around where many of these countries are located. In particular, the Middle East is a politically volatile region and includes numerous states that have recently expressed interest in acquiring nuclear power plants. The Arab states that have expressed interest in these plants are not monolithic in their view on this energy source, and they are not all major petroleum and natural gas producing states. Of course, the backdrop for these recent pronouncements is the growth of Iran's acquisition of a latent nuclear weapons capability. In addition, some of the petroleum and gas producing states have stated that they want to free up more of these resources for export and not use as much for electricity production and seawater desalination. Moreover, the states lacking these resources such as Jordan are seeking ways to reduce dependency on oil and gas imports. They see nuclear energy as helping to do that. In the long term, solar power would likely provide a sustainable solution without the risk of proliferation. But solar energy is not as

  19. The importance of the nuclear glutathione in the Cell Proliferation

    OpenAIRE

    Markovic, Jelena

    2009-01-01

    The present thesis offers an insight in the importance of nuclear GSH in cell proliferation. The research was performed in three different cellular models of diverse proliferating activity: immortalized mouse embryonic fibroblasts 3T3, mammary adenocarcinoma cell line MCF7 and primary embryonic neuralonal culture. The results presented here provide evidence that suggest that the relationship between GSH level and telomerase activity, previously described by our group for 3T3 fibroblasts is a ...

  20. IAEA safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Harry, R.J.S.

    1995-02-01

    An overview is given of the efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the exclusively peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this 'Full Scope Safeguards' on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear

  1. IAEA safeguards and non-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Harry, R J.S.

    1995-02-01

    An overview is given of efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this `Full Scope Safeguards` on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear weapon applications.

  2. Global measure for energy + environmental problems by thorium molten-salt nuclear energy synergetics

    International Nuclear Information System (INIS)

    Furukawa, K.; Lecocq, A.; Mitachi, K.; Kato, Y.

    1991-01-01

    The new global fission industry as a measure for energy and environmental problems of the next century should keep a strong public acceptance, which means to ensure an enough rational safety feature not only in the engineering issue but also in the all issues of integral fuel-cycle system. In these sense, the rational characteristics of the Thorium Molten-Salt Nuclear Energy Synergetic System (THORIMS-NES) is widely explained relating with a) resources and environmental problems, b) safety, c) nuclear-proliferation and -terrorism, d) breeding fuel-cycle, chemical processing and radio-wastes, and e) social acceptability and economy, including 'North-South' problems. The basic technology of Molten-Salt Reactor system has been established, and the practical and economical development program of THORIMS-NES is also proposed. (author) 3 figs., 1 tab., 16 refs

  3. Present status of nuclear energy development and utilization in Japan 1994

    International Nuclear Information System (INIS)

    1994-03-01

    Today, world energy demands continue to increase, and over the middle and long-term, access to petroleum supplies may become difficult. At the same time, such serious environmental problems as global warming and acid rain, which are caused by the burning of fossil fuels, have drawn great public attention, and the international community has urged that solutions to them should be found. Because nuclear power offers an economically efficient, stable supply of energy whose production has little adverse effect on the environment, the world has recognized the necessity of continuing to develop and use it. The changing international political situation, however, has complicated nuclear energy matters. In Japan, particularly the collapse of the former Soviet Union and North Korea's announcement of its intention to withdraw from the Nuclear Weapons Non-Proliferation Treaty have been cause for concern. Under these circumstances, it has become increasingly important for Japan to secure stable sources of energy, since Japan is dependent on imports for its energy supply. To that end, Japan has steadily promoted the development and utilization of nuclear energy. In fiscal 1992, nuclear power accounted for 28.2 % of the total power generated by Japanese electric utilities. Japan has also worked steadily to develop a nuclear fuel cycle, which is important to the long-term stability of the energy supply. This publication describes the present status of nuclear energy development and utilization in Japan. (J.P.N.)

  4. Nuclear energy synergetics and molten-salt technology

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1988-01-01

    There are various problems with nuclear energy techniques in terms of resources, safety, environmental effects, nuclear proliferation, reactor size reduction and overall economics. To overcome these problems, future studies should be focused on utilization of thorium resources, separation of multiplication process and power generation process, and application of liquid nuclear fuel. These studies will lead to the development of molten thorium salt nuclear synergetics. The most likely candidate for working medium is Lif-BeF 2 material (flibe). 233 U production facilities are required for the completion of the Th cycle. For this, three ideas have been proposed: accelerator M.S. breeder, impact fusion MSB and inertial conf. fusion hybrid MSB. The first step toward the development of molten Th salt nuclear energy synergetics will be the construction of a pilot plant of an extreme small size. As candidate reactor, the author has selected mini FUJI-II (7.0 MWe), an extremely small molten salt power reactor. Mini FUJI-II facilities are expected to be developed in 7 - 8 years. For the next step (demonstration step), the designing of a small power reactor (FUJI 160 MWe) has already been carried out. A small molten salt reactor will have good safety characteristics in terms of chemistry, material, structure, nuclear safety and design basis accidents. Such reactors will also have favorable economic aspects. (Nogami, K.)

  5. Forensic Analysis of Terrorist Counter-Financing to Combat Nuclear Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Drame, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Toler, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bachner, Katherine [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-01

    The single greatest threat to U.S. homeland security remains the proliferation of nuclear weapons, especially among terrorists and other non-state actors who are not governed by the Non-Proliferation Treaty. One of the most important tools for combating terrorism among such rogue actors is counter-financing. Without funding, terrorists cannot acquire, maintain, or deploy nuclear weapons. According to the official report of the 9/11 Commission, counter-financing could have prevented the attacks of September 11, 2001. Unfortunately, no single country can defeat global terrorism. Successful counter-financing requires significant international cooperation. Since 2001, the United States and the European Union, despite vastly different approaches to intelligence gathering, have shared information through the Terrorist Finance Tracking Program (TFTP). That shared information allows authorities to trace suspicious transactions, identify culprits, and map out global terrorist networks. The TFTP successfully thwarted a 2011 plot to assassinate the Saudi Arabian Ambassador to the U.S. and multiple threats during the 2012 Summer Olympics in London; it also aided in the investigation of the 2013 Boston Marathon bombing. That program is necessary but not sufficient. To strengthen our ability to detect and disrupt terrorist plotting and prevent nuclear proliferation, we must expand and coordinate two additional transnational measures: (1) the Society for Worldwide Interbank Financial Telecommunications (SWIFT), a standardized global messaging network for financial institutions to quickly, accurately, and securely send and receive money transfer instructions, and (2) International Bank Account Numbers (IBAN) to identify individual accounts involved in international transactions. Both initiatives were incompletely adopted in the wake of 9/11, but most global banks use one or neither. More fully implementing and coordinating these two systems would allow for coherent information

  6. Protocol Additional to the Agreement between the Republic of Nicaragua and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Treaty on the Non-Proliferation of Nuclear Weapons

    International Nuclear Information System (INIS)

    2005-01-01

    The text of the Protocol Additional to the Agreement between the Republic of Nicaragua and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty for teh Prohibition of Nuclear Weapons in Latin America and the Treaty on the Non-Proliferation of Nuclear Weapons is reproduced in the Annex to this document for the information of all Members. The Additional Protocol was approved by the Board of Governors on 12 June 2002 [es

  7. Protocol Additional to the Agreement between the Republic of Nicaragua and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Treaty on the Non-Proliferation of Nuclear Weapons

    International Nuclear Information System (INIS)

    2005-01-01

    The text of the Protocol Additional to the Agreement between the Republic of Nicaragua and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty for teh Prohibition of Nuclear Weapons in Latin America and the Treaty on the Non-Proliferation of Nuclear Weapons is reproduced in the Annex to this document for the information of all Members. The Additional Protocol was approved by the Board of Governors on 12 June 2002 [fr

  8. Protocol Additional to the Agreement between the Republic of Nicaragua and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Treaty on the Non-Proliferation of Nuclear Weapons

    International Nuclear Information System (INIS)

    2005-01-01

    The text of the Protocol Additional to the Agreement between the Republic of Nicaragua and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty for teh Prohibition of Nuclear Weapons in Latin America and the Treaty on the Non-Proliferation of Nuclear Weapons is reproduced in the Annex to this document for the information of all Members. The Additional Protocol was approved by the Board of Governors on 12 June 2002

  9. Nuclear fuel cycle industry. A responsible approach supporting non proliferation efforts in global perspective

    International Nuclear Information System (INIS)

    Jorant, Caroline

    2005-01-01

    This paper presents the reasons why and the manner in which nuclear industry is a stakeholder in non proliferation efforts. It then presents some recent proposals on multinational approaches to the fuel cycle industry and offers some comments and an industry view on these issues. A parallel is established with fundamental concepts in the field of radiation protection. Our industry, involved in 'nuclear technology development' (activities) qualified of 'sensitive' from a non proliferation standpoint, has major interests at stake in the evolution of the international non proliferation regime and is genuinely committed to the spreading of a non proliferation culture. The international community and in particular the nuclear community have been recently reflecting on ways to strengthen the non-proliferation regime in reaction to new threats or the perception thereof. Multilateral approaches regarding the nuclear fuel cycle are being discussed or proposed in this regard. Our approach as an industrial may be illustrated using the three basic principles developed in the field of radiation protection, namely limitation, justification and optimization. a) an overall limitation of sensitive facilities worldwide may be judicious, b) however no prohibition should be imposed if justified needs can be demonstrated on objective criteria, c) optimized used for existing facilities should be promoted through strengthened guarantees of supply where it may be necessary. (author)

  10. The threat of proliferation

    International Nuclear Information System (INIS)

    Palme, Olof.

    1986-01-01

    The paper on the threat of proliferation, is a keynote speech delivered to the Colloquium on Nuclear War, Nuclear Proliferation and their Consequences, Geneva, 1985. Topics discussed in the address include: nuclear weapons, nuclear war, terrorists, Non-Proliferation Treaty, nuclear disarmament, and leadership in world affairs. (UK)

  11. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  12. On the future of civilian plutonium: An assessment of technological impediments to nuclear terrorism and proliferation

    Science.gov (United States)

    Avedon, Roger Edmond

    This dissertation addresses the value of developing diversion- and theft-resistant nuclear power technology, given uncertain future demand for nuclear power, and uncertain risks of nuclear terrorism and of proliferation from the reprocessing of civilian plutonium. The methodology comprises four elements: Economics. An economic growth model coupled with market penetration effects for plutonium and for the hypothetical new technology provides a range of estimates for future nuclear demand. A flow model accounts for the longevity of capital assets (nuclear plants) over time. Terrorism. The commercial nuclear fuel cycle may provide a source of fissile material for terrorists seeking to construct a crude nuclear device. An option value model is used to estimate the effects of the hypothetical new technology on reducing the probability of theft. A game theoretic model is used to explore the deterrence value of physical security and then to draw conclusions about how learning on the part of terrorists or security forces might affect the theft estimate. The principal uncertainties in the theft model can be updated using Bayesian techniques as new data emerge. Proliferation. Access to fissile material is the principal technical impediment to a state's acquisition of nuclear weapons. A game theoretic model is used to determine the circumstances under which a state may proliferate via diversion. The model shows that the hypothetical new technology will have little value for counter-proliferation if diversion is not a preferred proliferation method. A technology policy analysis of the choice of proliferation method establishes that diversion is unlikely to be used because it has no constituency among the important parties to the decision, namely the political leadership, the scientific establishment, and the military. Value. The decision whether to develop a diversion- and theft-resistant fuel cycle depends on the perceived value of avoiding nuclear terrorism and proliferation

  13. Protocol Additional to the Agreement between Mongolia and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty on the Non-proliferation of Nuclear weapons

    International Nuclear Information System (INIS)

    2003-01-01

    The text of the Protocol Additional to the Agreement between Mongolia and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons is reproduced in the Annex to this document for the information of all Members. The Additional Protocol was approved by the Board of Governors on 11 September 2001. It was signed in Vienna on 5 December 2001

  14. Protocol Additional to the Agreement between Uruguay and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons

    International Nuclear Information System (INIS)

    2004-01-01

    The text of the Protocol Additional to the Agreement between Uruguay and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons is reproduced in the Annex to this document for the information of all Members. The Additional Protocol was approved by the Board of Governors on 23 September 1997. It was signed in Vienna on 29 September 1997

  15. Non-Proliferation, the IAEA Safeguards System, and the importance of nuclear material measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Rebecca S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-18

    The objective of this project is to explain the contribution of nuclear material measurements to the system of international verification of State declarations and the non-proliferation of nuclear weapons.

  16. The international nuclear non-proliferation system: Challenges and choices

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.; McGrew, A.G.

    1984-01-01

    When a topic has been under discussion for almost 40 years there is a danger that the literature will become excessively esoteric and that, as Philip Grummett suggests, '...a new scholasticism will arise' (p.79). Originating in a November l982 seminar co-sponsored by the British International Studies Association and the Foreign and Commonwealth Office, this volume is a refreshing, well conceived, and well written antidote to that trend. It is also well timed for the 1985 NPT Review Conference. The eight chapters of the volume are divided into three sections. Following an introduction by Anthony McGrew that touches on all the major themes of the volume, the first section deals with the existing non-proliferation system. In three chapters the historical, institutional and policy-making elements of the present system are outlined. There is a vignette on the Nuclear Suppliers Group in Wilmshurst's chapter one (pp. 28-33). Fischer's informative chapter on the IAEA is followed by Gummett's examination of policy options, including, for example, the linking of conventional weapons transfer to non-proliferation policies. The second section, also of three chapters, examines current issues: the state of the international nuclear industry, and the non-proliferation policies of the United States and Britain. Walker's chapter focuses chiefly on change in the industry-from monopoly to pluralism in suppliers, the effect of the economic recession, and the combined effect of these two factors on international politics. Devine's American non-proliferation chapter is a statement of the State Department view, whilst Keohane's chapter on Britain attempts to put the Trident procurement into a proliferation context. The British chapter is present because of ethnocentric considerations.

  17. Agreement between the Government of the Republic of Estonia and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons. Suspension

    International Nuclear Information System (INIS)

    2007-01-01

    The Agreement of 5 April 1973 between Belgium, Denmark, the Federal Republic of Germany, Ireland, Italy, Luxembourg, the Netherlands, the European Atomic Energy Community and the Agency in implementation of Article III, (I) and (4) of the Treaty on the Non-Proliferation of Nuclear Weapons came into force for the Republic of Estonia on 1 December 2005 [es

  18. IAEA Director General welcomes Cuba's intention to join the nuclear Non-Proliferation Treaty

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: IAEA Director General Mohamed ElBaradei welcomed Cuba's announcement to accede to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) and to ratify the Treaty of Tlatelolco establishing a nuclear-weapon-free zone in Latin America and the Caribbean. He expressed the hope that Cuba will conclude soon a comprehensive safeguards agreement with the Agency, as required under Article III of the NPT. 'With Cuba's intention to become party to the NPT, we have come a step closer to a universal nuclear non-proliferation regime,' Mr. ElBaradei said. Only three countries worldwide with significant nuclear activities now remain outside the NPT. With 188 countries party to the Treaty, the NPT is the most adhered to international agreement after the United Nations Charter and the most widely adhered to multilateral arms control treaty. The NPT makes it mandatory that all non-nuclear-weapon States conclude comprehensive safeguards agreements with the IAEA, and thus put all of their nuclear material under IAEA safeguards. The Director General also welcomed Cuba's ratification of the Tlatelolco Treaty, which completes the process of having all countries in the region of Latin America and the Caribbean as members of the nuclear-weapon-free zone in that region. Mr. ElBaradei said that, 'the Tlatelolco Treaty provides a good model for other regional nuclear-weapon-free zones to follow'. He added that 'universal adherence of all countries in regions having nuclear-weapon-free zone arrangements is important to further strengthen the non-proliferation regime'. (IAEA)

  19. Nuclear materials management procedures

    International Nuclear Information System (INIS)

    Veevers, K.; Silver, J.M.; Quealy, K.J.; Steege, E. van der.

    1987-10-01

    This manual describes the procedures for the management of nuclear materials and associated materials at the Lucas Heights Research Laboratories. The procedures are designed to comply with Australia's nuclear non-proliferation obligations to the International Atomic Energy Agency (IAEA), bilateral agreements with other countries and ANSTO's responsibilities under the Nuclear Non-Proliferation (Safeguards) Act, 1987. The manual replaces those issued by the Australian Atomic Energy Commission in 1959, 1960 and 1969

  20. Comparative analysis of proliferation resistance assessment methodologies

    International Nuclear Information System (INIS)

    Takaki, Naoyuki; Kikuchi, Masahiro; Inoue, Naoko; Osabe, Takeshi

    2005-01-01

    Comparative analysis of the methodologies was performed based on the discussions in the international workshop on 'Assessment Methodology of Proliferation Resistance for Future Nuclear Energy Systems' held in Tokyo, on March 2005. Through the workshop and succeeding considerations, it is clarified that the proliferation resistance assessment methodologies are affected by the broader nuclear options being pursued and also by the political situations of the state. Even the definition of proliferation resistance, despite the commonality of fundamental issues, derives from perceived threat and implementation circumstances inherent to the larger programs. Deep recognitions of the 'difference' among communities would help us to make further essential and progressed discussion with harmonization. (author)

  1. Scientists for non-proliferation of nuclear weapons. Transactions of international seminar

    International Nuclear Information System (INIS)

    1994-01-01

    This publication presents the results of the Second International Seminar 'Scientists for Non-Proliferation of Nuclear Weapons'. The Seminar took place from 11 to 14 October 1994 in Nakhabino Country Club near Moscow. More than 60 specialists from Russia, USA, France, Belgium as well as IAEA and CEU took part in the seminar. Problems of cooperation in the field of nuclear materials accounting, control and safeguards, physical protection of nuclear materials, nuclear export regulations and disarmament control are discussed at the seminar

  2. Nuclear Non-proliferation (Safeguards) Act 1987 - No 8 of 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This Act aims at giving domestic legislative effect to Australia's international non-proliferation obligations and establishes controls over the possession and transport of nuclear materials and equipment by a system of permits. These obligations arise inter alia under the NPT Convention on the Physical Protection of Nuclear Material. The Act provides that its provisions shall apply to nuclear material (as defined in Article XX of the IAEA Statute) and associated items which include associated material, equipment or technology. These are clearly defined in the Act. (NEA) [fr

  3. Treaty on the non-proliferation of nuclear weapons. 2005 review conference of the Treaty on the Non-Proliferation of Nuclear Weapons, 2 May 2005, United Nations, New York, USA

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2005-01-01

    The core of the Treaty on the Non-Proliferation of Nuclear Weapons can be summed up in two words: 'Security' and 'Development'. While the States Party to this Treaty hold differing priorities and views, I trust that all share these two goals: development for all through advanced technology; and security for all by reducing - and ultimately eliminating - the nuclear threat. These shared goals were the foundation on which the international community, in 1970, built this landmark Treaty. They agreed to work towards a world free of nuclear weapons. They agreed, while working towards this goal, to prevent the acquisition of nuclear weapons by additional States. And they agreed to make the peaceful applications of nuclear energy available to all. Folded together, these agreements, these commitments, are mutually reinforcing. They are as valid today as when they were first made - and even more urgent. What should be all too evident is that, if we cannot work together, each acknowledging the development priorities and security concerns of the other, then the result of this Conference will be inaction. In five years, since the 2000 NPT Review Conference the world has changed. Our fears of a deadly nuclear detonation, whatever the cause, have been reawakened. These realities have heightened the awareness of vulnerabilities in the NPT regime. The Treaty has served us well for 35 years. But unless we regard it as part of a living, dynamic regime - capable of evolving to match changing realities, it will fade into irrelevance and leave us vulnerable and unprotected. The expectations from this Conference are to: re-affirm the goals established in 1970; strengthen the IAEA's verification authority; control over proliferation sensitive parts of the nuclear fuel cycle (activities that involve uranium enrichment and plutonium separation); secure and control nuclear material; show the world that our commitment to nuclear disarmament is firm; back the verification efforts by an

  4. Redefining interrelationship between nuclear safety, nuclear security and safeguards

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2012-01-01

    Since the beginning of this century, the so-called 3Ss (Nuclear Safety, Nuclear Security and Safeguards) have become major regulatory areas for peaceful uses of nuclear energy. In order to rationalize the allocation of regulatory resources, interrelationship of the 3Ss should be investigated. From the viewpoint of the number of the parties concerned in regulation, nuclear security is peculiar with having “aggressors” as the third party. From the viewpoint of final goal of regulation, nuclear security in general and safeguards share the goal of preventing non-peaceful uses of nuclear energy, though the goal of anti-sabotage within nuclear security is rather similar to nuclear safety. As often recognized, safeguards are representative of various policy tools for nuclear non-proliferation. Strictly speaking, it is not safeguards as a policy tool but nuclear non-proliferation as a policy purpose that should be parallel to other policy purposes (nuclear safety and nuclear security). That suggests “SSN” which stands for Safety, Security and Non-proliferation is a better abbreviation rather than 3Ss. Safeguards as a policy tool should be enumerated along with nuclear safety regulation, nuclear security measures and trade controls on nuclear-related items. Trade controls have been playing an important role for nuclear non-proliferation. These policy tools can be called “SSST” in which Trade controls are also emphasized along with Safety regulation, Security measures and Safeguards. (author)

  5. Printed Proliferation: The Implications of Additive Manufacturing and Nuclear Weapons Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Nicholas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-01-26

    The growth of additive manufacturing as a disruptive technology poses nuclear proliferation concerns worthy of serious consideration. Additive manufacturing began in the early 1980s with technological advances in polymer manipulation, computer capabilities, and computer-aided design (CAD) modeling. It was originally limited to rapid prototyping; however, it eventually developed into a complete means of production that has slowly penetrated the consumer market. Today, additive manufacturing machines can produce complex and unique items in a vast array of materials including plastics, metals, and ceramics. These capabilities have democratized the manufacturing industry, allowing almost anyone to produce items as simple as cup holders or as complex as jet fuel nozzles. Additive manufacturing, or three-dimensional (3D) printing as it is commonly called, relies on CAD files created or shared by individuals with additive manufacturing machines to produce a 3D object from a digital model. This sharing of files means that a 3D object can be scanned or rendered as a CAD model in one country, and then downloaded and printed in another country, allowing items to be shared globally without physically crossing borders. The sharing of CAD files online has been a challenging task for the export controls regime to manage over the years, and additive manufacturing could make these transfers more common. In this sense, additive manufacturing is a disruptive technology not only within the manufacturing industry but also within the nuclear nonproliferation world. This paper provides an overview of additive manufacturing concerns of proliferation.

  6. The nuclear non-proliferation: The validity of the rule in Latin America

    International Nuclear Information System (INIS)

    Cubillos Meza, Adela

    2005-01-01

    The position of Latin American countries within the framework of the Non Nuclear Proliferation Treaty NPT is analyzed in this article. This treaty which entered into force in 1968, has been ratified by a significant number of countries. The nuclear- weapon states, the United States and the former USSR gave origin to the NPT in order to control nuclear proliferation. This treaty has been subject to criticism since it discriminates between the countries which have nuclear weapons and the ones that do not. Thus, the former are allowed to manufacture atomic devices, but it has been forbidden for the latter. Even nuclear- weapon states such as France and China did not support the treaty immediately because they consider it as highly discriminatory. Countries that do not have nuclear weapons have criticized the NPT and did not joined immediately. Among these parties, we can mention three Latin American countries, Argentina, Brazil and Chile. The first two only signed the NPT when they were fully capable and autonomous in nuclear power. The Chilean position of not joining immediately depended upon the Argentinian and Brazilian decision [es

  7. Gamma-ray imaging. Applications in nuclear non-proliferation and homeland security

    International Nuclear Information System (INIS)

    Vetter, Kai; Mihailescu, Lucian

    2010-01-01

    This paper provides the motivation and describes implementations of gamma-ray imaging for homeland security applications and more general for national and international nuclear security. As in nuclear medicine and astrophysics, the goal of gamma-ray imaging is the detection and localization of nuclear materials, however, here in a terrestrial environment with distances between nuclear medicine and astrophysics, i.e. in the range of 1-100 meters. Due to the recently increased threat of nuclear terrorism, the detection of illicit nuclear materials and the prevention of nuclear proliferation through the development of advanced gamma-ray imaging concepts and technologies has become and active research field. (author)

  8. A Study on the Nuclear Foreign Policy

    International Nuclear Information System (INIS)

    Lee, Byung Wook; Lee, H. M.; Ko, H. S.; Ryu, J. S.; Oh, K. B.; Yang, M. H.; Lee, K. S.

    2007-12-01

    This study approaches the international trends related to nuclear non-proliferation in four aspects. First, this study analyzes the trend of the international nuclear non-proliferation regime, which includes the Treaty on the Non-proliferation of Nuclear Weapons (NPT), the international nuclear export control regime and proposals for assurance of nuclear fuel supply. Second, this study analyzes the trend of international nuclear organizations, which includes the International Atomic Energy Agency (IAEA), a central body of development of nuclear technology and international nuclear diplomacy, and the Organization for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA), a intergovernmental organization to consist of a group of nuclear advanced countries. Third, this study analyzes the trends of the U.S.'s nuclear foreign policies, particularly nuclear non-proliferation. Fourth, this study analyzes the nuclear issues of North Korea and Iran as they cause serious concerns to a international society

  9. A Study on the Nuclear Foreign Policy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Wook; Lee, H. M.; Ko, H. S.; Ryu, J. S.; Oh, K. B.; Yang, M. H.; Lee, K. S

    2007-12-15

    This study approaches the international trends related to nuclear non-proliferation in four aspects. First, this study analyzes the trend of the international nuclear non-proliferation regime, which includes the Treaty on the Non-proliferation of Nuclear Weapons (NPT), the international nuclear export control regime and proposals for assurance of nuclear fuel supply. Second, this study analyzes the trend of international nuclear organizations, which includes the International Atomic Energy Agency (IAEA), a central body of development of nuclear technology and international nuclear diplomacy, and the Organization for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA), a intergovernmental organization to consist of a group of nuclear advanced countries. Third, this study analyzes the trends of the U.S.'s nuclear foreign policies, particularly nuclear non-proliferation. Fourth, this study analyzes the nuclear issues of North Korea and Iran as they cause serious concerns to a international society.

  10. Protocol Additional to the Agreement between the Dominican Republic and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Treaty on the Non-Proliferation of Nuclear Weapons

    International Nuclear Information System (INIS)

    2010-01-01

    The text of the Protocol Additional to the Agreement between the Dominican Republic and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Treaty on the Non-Proliferation of Nuclear Weapons is reproduced in this document for the information of all Members. The Board of Governors approved the Additional Protocol on 23 November 2006. It was signed in Vienna on 20 September 2007 [es

  11. Protocol Additional to the Agreement between the Republic of Guatemala and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty for the Prohibition of Nuclear Weapons in Latin-America and the Treaty on the Non-Proliferation of Nuclear Weapons

    International Nuclear Information System (INIS)

    2009-01-01

    The text of the Protocol Additional to the Agreement between the Republic of Guatemala and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Treaty on the Non-Proliferation of Nuclear Weapons is reproduced in this document for the information of all Members. The Board of Governors approved the Additional Protocol on 29 November 2001. It was signed in Guatemala City on 14 December 2001

  12. Protocol Additional to the Agreement between the Dominican Republic and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Treaty on the Non-Proliferation of Nuclear Weapons

    International Nuclear Information System (INIS)

    2010-01-01

    The text of the Protocol Additional to the Agreement between the Dominican Republic and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Treaty on the Non-Proliferation of Nuclear Weapons is reproduced in this document for the information of all Members. The Board of Governors approved the Additional Protocol on 23 November 2006. It was signed in Vienna on 20 September 2007

  13. Revised INPRO Methodology in the Area of Proliferation Resistance

    International Nuclear Information System (INIS)

    Park, J.H.; Lee, Y.D.; Yang, M.S.; Kim, J.K.; Haas, E.; Depisch, F.

    2008-01-01

    The official INPRO User Manual in the area of proliferation resistance is being processed for the evaluation of innovative nuclear energy systems. Proliferation resistance is one of the goals to be satisfied for future nuclear energy systems in INPRO. The features of currently updated and released INPRO methodology were introduced on basic principles, user requirements and indicators. The criteria for an acceptance limit were specified. The DUPIC fuel cycle was evaluated based on the updated INPRO methodology for the applicability of the INPRO User Manual. However, the INPRO methodology has some difficulty in quantifying the multiplicity and robustness as well as the total cost to improve proliferation resistance. Moreover, the integration method for the evaluation results still needs to be improved.

  14. The Power of Integrators, Financiers, and Insurers to Reduce Proliferation Risks: Nuclear Dual-Use Goods

    Energy Technology Data Exchange (ETDEWEB)

    Weise, Rachel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hund, Gretchen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-01

    Globalization of manufacturing supply chains has changed the nature of nuclear proliferation. Before 1991, nonproliferation efforts focused almost exclusively on limiting the spread of materials and equipment specifically designed for nuclear use -- reactors, centrifuges, and fissile material. Dual-use items, those items with both nuclear and non-nuclear applications, were not closely scrutinized or controlled. However, in 1991 the international community discovered that Iraq had developed a fairly sophisticated nuclear weapons program by importing dual-use items; this discovery spurred the international community to increase controls on dual-use technologies. Despite these international efforts, dual-use items are still a challenge for those seeking to limit proliferation.

  15. The Power of Integrators, Financiers, and Insurers to Reduce Proliferation Risks: Nuclear Dual-Use Goods

    International Nuclear Information System (INIS)

    Weise, Rachel A.; Hund, Gretchen

    2015-01-01

    Globalization of manufacturing supply chains has changed the nature of nuclear proliferation. Before 1991, nonproliferation efforts focused almost exclusively on limiting the spread of materials and equipment specifically designed for nuclear use -- reactors, centrifuges, and fissile material. Dual-use items, those items with both nuclear and non-nuclear applications, were not closely scrutinized or controlled. However, in 1991 the international community discovered that Iraq had developed a fairly sophisticated nuclear weapons program by importing dual-use items; this discovery spurred the international community to increase controls on dual-use technologies. Despite these international efforts, dual-use items are still a challenge for those seeking to limit proliferation.

  16. Indonesia ratifies the treaty on non proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    Moendi Poernomo

    1979-01-01

    By Act no. 8 of 1978 Indonesia ratified the treaty on the non proliferation of nuclear weapons. This means that Indonesia became a party to the treaty. Ratification does not guarantee that Indonesia will automatically obtain assistance in developing its nuclear technology capability, but in this way at least Indonesia demonstrates its intention to promote world peace as clearly stated in the Main Guide Lines of State Policy. Development of nuclear technology can be achieved through international cooperation with advanced countries without being suspected of having intention other than peace. (author)

  17. Protocol Additional to the Agreement between Canada and the International Atomic Energy Agency for the Application of Safeguards in connection with the Treaty on the Non-Proliferation of Nuclear Weapons

    International Nuclear Information System (INIS)

    2000-01-01

    The text of the Protocol Additional to the Safeguards Agreement concluded between Canada and the International Atomic Energy Agency for the application of safeguards in connection with the Treaty for the Non-Proliferation of Nuclear Weapons (NPT) is reproduced in this document for the information of all Members. The Additional Protocol was approved by the Board of Governors on 11 June 1998. It was signed in Vienna on 24 September 1998 [fr

  18. An approach to quantitative assessment of relative proliferation risks from nuclear fuel cycles

    International Nuclear Information System (INIS)

    Silvennoinen, P.; Vira, J.

    1981-01-01

    Feasibility of quantitative assessments of the risk of nuclear weapons proliferation is discussed in this paper. The proliferation risk is defined as a combined utility of the different fuel cycle processes or materials for the proscribed acquisition of a nuclear weapon. Based on a set of selected weighted criteria, the process utilities are calculated employing utility functions or fuzzy expectation values. The methods are compared to each other. The scheme appears feasible in relative comparisons while certain leeway must still be retained for political judgement. (author)

  19. Present trends in nuclear energy development

    International Nuclear Information System (INIS)

    Rotaru, Ioan

    2006-01-01

    The paper presents the current trends of nuclear energy in Europe, the issue of radioactive waste management, the modern technical solutions for building new nuclear power plants and, also, the nuclear power long term prospects. The following trends and methods of reducing costs are addressed: - upgrading the availability of nuclear power units; since 1990 till now in Europe the availability factor has risen from 74 % to 84%; - extending the operation life of nuclear power plants from 30 - 40 years to 60 years; - stable reduction of the duration of annual planned outages necessary for maintenance and nuclear fuel re-loading; it is noteworthy the performance of Unit 2 Olkiluoto NPP, Finland, that was shutdown for annual outage and fuel re-loading for a 7 days only; - stable cuts of nuclear fuel cost by using advanced nuclear fuel and by increasing the fuel burnup; over the last years, nuclear fuel cost share in the operation costs has constantly decreased to values of about 0.5 USD cent/KWh e; - increase of the rated capacity of the existing in Europe nuclear power units, through upgrading programs that contribute to enhancing their efficiency. In the year 2002 Generation IV International Forum (GIF) finalized the technological strategy in the field, identifying the most promising nuclear power systems for which the research will continue. This strategy also identifies the main objectives that must by pursued within the research-development programs out of which one mentions the following: - identifying sustainable solution for generating electricity; - minimizing the radioactive waste and its management; - optimization of operation costs; - reducing the financial risk comparable to other energy solutions; - excellence in nuclear safety and reliability; - increasing resistance to proliferation; - ruling out the emergency solutions. Finally, the paper mentions the international engagement, representing a new approach in nuclear power, namely the transition to the use

  20. Nuclear energy worldwide

    International Nuclear Information System (INIS)

    Fertel, M.

    2000-01-01

    In this short paper the author provides a list of tables and charts concerning the nuclear energy worldwide, the clean air benefits of nuclear energy, the nuclear competitiveness and the public opinion. He shows that the nuclear energy has a vital role to play in satisfying global energy and environmental goals. (A.L.B)

  1. Inertial Confinement Fusion R and D and Nuclear Proliferation

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R and D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  2. Nuclear energy; real problems of the long term development

    International Nuclear Information System (INIS)

    Knapp, V.

    1996-01-01

    Whilst general public accepts the operation of western designed nuclear power stations as safe, waste management and decommission still figure as open problems, although such views are not in agreement with technical and economic status of these operations. A concern with imagined problems can have the effect of neglecting the real ones. In considering the long term development of nuclear energy the real problems can be associated with the wide use of plutonium and multiplication of national reprocessing and enrichment installations. Nuclear proliferation safety could be retained and developed through establishment of international nuclear fuel centres. Their operation would be particularly beneficial for small or medium nuclear countries. Several arguments are given why it is not premature to initiate a study which would identify and analyze the problems of establishing an international nuclear fuel centre. Central Europe could be a region which could be served by one of such nuclear fuel centres. (author)

  3. Proceedings of the International Conference on Access to Civil Nuclear Energy

    International Nuclear Information System (INIS)

    2010-01-01

    Today a growing number of states are considering to civil nuclear power to meet their energy needs, in a context of spiraling fossil fuel prices and the drive to combat climate change. France's position is that the peaceful use of nuclear power should not be confined to a handful of states that already hold the technology. At the same time, though, it is essential - both for the countries under consideration and for the international community as a whole - that any country undertaking a civil nuclear programme is not only willing but also capable of meeting essential requirements regarding safety, security, non-proliferation and protection of the environment for future generations. Similarly, the countries in question are confronted with the challenges of finding financing, obtaining access to the technology and the latest research, and training people to satisfactorily conduct their projects. This is why France has expressed its willingness to assist any country wishing to use nuclear technology for peaceful purposes which fully abide by their non proliferation obligations. The International Conference on Access to Civil Nuclear Energy, to be held in Paris on 8 and 9 March 2010, addresses this goal, namely to promote the peaceful and responsible use of nuclear power. It aims to enable debate on every aspect of developing a nuclear programme and on ways of using bilateral and multilateral cooperation to help countries wishing to embark on such a course to fulfill their international obligations. It will provide for a discussion forum for all of the stakeholders: government policy-makers, executives from the international organisations involved in drawing up and monitoring compliance with the regulatory framework, the managers of industrial companies in the sector and of financial establishments, the heads of research and training bodies, and qualified public figures involved in the debate. The conference programme includes several types of sessions: - Opening and

  4. Protocol Additional to the Agreement between the Republic of Ecuador and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Treaty on the Non-Proliferation of Nuclear Weapons

    International Nuclear Information System (INIS)

    2002-01-01

    The text of the Protocol Additional to the Safeguards Agreement concluded between the Republic of Ecuador and the International Atomic Energy Agency for the application of safeguards in connection with the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) is reproduced in this document for the information of all Members. The Additional Protocol was approved by the Board of Governors on 20 September 1999. It was signed in Vienna on 1 October 1999

  5. Protocol Additional to the Agreement between the Republic of Peru and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Treaty on the Non-Proliferation of Nuclear Weapons

    International Nuclear Information System (INIS)

    2002-01-01

    The text of the Protocol Additional to the Safeguards Agreement concluded between the Republic of Peru and the International Atomic Energy Agency for the application of safeguards in connection with the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) is reproduced in this document for the information of all Members. The Additional Protocol was approved by the Board of Governors on 10 December 1999. It was signed in Vienna on 22 March 2000

  6. Nuclear fuel cycle and no proliferation

    International Nuclear Information System (INIS)

    Villagra Delgado, Pedro

    2005-01-01

    The worry produced by the possibility of new countries acquiring nuclear weapons through the forbidden use of sensitive installations for the production of fissionable materials, had arisen proposals intended to restrict activities related to the full nuclear fuel cycle, even when these activities are allowed in the frame of rules in force for the peaceful uses of nuclear energy. (author) [es

  7. Crystallization and X-ray diffraction studies of crustacean proliferating cell nuclear antigen

    International Nuclear Information System (INIS)

    Carrasco-Miranda, Jesus S.; Cardona-Felix, Cesar S.; Lopez-Zavala, Alonso A.; Re Vega, Enrique de la; De la Mora, Eugenio; Rudiño-Piñera, Enrique; Sotelo-Mundo, Rogerio R.; Brieba, Luis G.

    2012-01-01

    Proliferating cell nuclear antigen from Litopenaeus vannamei was recombinantly expressed, purified and crystallized. Diffraction data were obtained and processed to 3 Å. Proliferating cell nuclear antigen (PCNA), a member of the sliding clamp family of proteins, interacts specifically with DNA replication and repair proteins through a small peptide motif called the PCNA-interacting protein or PIP box. PCNA is recognized as one of the key proteins involved in DNA metabolism. In the present study, the recombinant PCNA from Litopenaeus vannamei (LvPCNA) was heterologously overexpressed and purified using metal ion-affinity chromatography. Crystals suitable for diffraction grew overnight using the hanging-drop vapour-diffusion method. LvPCNA crystals belong to space group C2 with unit-cell parameters a = 144.6, b = 83.4, c = 74.3 Å, β = 117.6°. One data set was processed to 3 Å resolution, with an overall R meas of 0.09 and a completeness of 93.3%. Initial phases were obtained by molecular replacement using a homology model of LvPCNA as the search model. Refinement and structural analysis are underway. This report is the first successful crystallographic analysis of a marine crustacean decapod shrimp (L. vannamei) proliferating cell nuclear antigen

  8. Non-proliferation of nuclear weapons - crisis of a concept

    International Nuclear Information System (INIS)

    Eisenbart, C.; Ehrenstein, D. von

    1990-01-01

    The Working Group of FEST (Protestant Study Community) and VDW (Association of German Scientists) presents twelve theses on the policy of non-proliferation of nuclear weapons and deduces recommendations, in particular for the Federal Government. The WG thinks that scope and significance of international nuclear policy has not been sufficiently perceived neither by the German public nor by politicians. The theses are supplemented and explained in more detail by special contributions of the WG's members. The contributions deal with the historical background, with the instruments of NP policy, with international law, with risks and limiting these risks, with economic aspects, with nuclear policy in the Third World, with the chances of nuclear disarmament, and with Federal NP policy. The 'twelve theses' as well as the 22 contributions are individual records. (HSCH) [de

  9. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation

    DEFF Research Database (Denmark)

    Krogsdam, Anne-M; Nielsen, Curt A F; Neve, Søren

    2002-01-01

    delta-RXR alpha heterodimer bound to an acyl-CoA oxidase (ACO)-type peroxisome-proliferator response element recruited a glutathione S-transferase-NCoR fusion protein in a ligand-independent manner. Contrasting with most other nuclear receptors, PPAR delta was found to interact equally well......The nuclear receptor corepressor (NCoR) was isolated as a peroxisome-proliferator-activated receptor (PPAR) delta interacting protein using the yeast two-hybrid system. NCoR interacted strongly with the ligand-binding domain of PPAR delta, whereas interactions with the ligand-binding domains...

  10. Mastering nuclear energy: what do we know and what can we do after Fukushima?

    International Nuclear Information System (INIS)

    Basdevant, J.L.

    2011-01-01

    The nuclear catastrophe of Fukushima is a illustration of the contradiction between the will of using nuclear energy for the well-being of humanity and the reasons of state with behind, the imprudence of men due to the degradation of the political decision process. The Fukushima accident is not the first of a kind, and one can ask when, where and how the next ones will happen. When we know that the economical stakes of energy resources raise political problems, we can better understand why the civil nuclear industry is considered as strategic on all aspects, and thus highly controlled on the public information side. Nuclear physics has marked the modern times in various domains like medicine, war, arts or astrophysics. With some schemes and many examples, the author explains in this book what is nuclear energy and what are its applications. He describes the mechanisms involved in nuclear reactions, before, during and after the reactions. Content: Forewords. What is nuclear physics? Radioactivity: applications and risks. Fission. Nuclear power generation. Nuclear accidents and catastrophes. Thermonuclear fusion. Some energy figures. Nuclear proliferation. What can we think about and do after Fukushima? Index. (J.S.)

  11. Generation IV Nuclear Energy Systems Ten-Year Program Plan Fiscal Year 2005, Volume 1

    International Nuclear Information System (INIS)

    None

    2005-01-01

    As reflected in the U.S. ''National Energy Policy'', nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S. energy portfolio, but also in the world's future energy portfolio. Accordingly, on September 20, 2002, U.S. Energy Secretary Spencer Abraham announced that, ''The United States and nine other countries have agreed to develop six Generation IV nuclear energy concepts''. The Secretary also noted that the systems are expected to ''represent significant advances in economics, safety, reliability, proliferation resistance, and waste minimization''. The six systems and their broad, worldwide research and development (R and D) needs are described in ''A Technology Roadmap for Generation IV Nuclear Energy Systems'' (hereafter referred to as the Generation IV Roadmap). The first 10 years of required U.S. R and D contributions to achieve the goals described in the Generation IV Roadmap are outlined in this Program Plan

  12. An Introduction to The Interdisciplinary Concept of Risk-Informed Proliferation Resistance

    International Nuclear Information System (INIS)

    Gouveia, Fernando

    2010-01-01

    The nonproliferation community is rich in diverse attempts aimed at predicting and preventing attempts at nuclear proliferation. Such efforts, however, are rarely incorporated into a holistic approach well-suited to solving both existing and emerging proliferation dilemmas. This division is particularly apparent with respect to the partition that separates the socio-political and technical approaches to solving such problems, approaches which are very often developed and utilized in isolation. Complicating matters further, are the diverse positions taken by various entities as they relate to the secure implementation of nuclear energy world-wide. Such positions range from the obdurate belief in the supposed inherent proliferation resistance of traditional spent fuel, to those regarding all nuclear energy systems as inherently proliferation prone, given their core reliance on the sensitive technologies of enrichment and reprocessing. Accordingly, moderates have argued for a risk-informed approach to combat nuclear proliferation, combining institutional factors, such as IAEA safeguards, with innovative reactor and fuel designs to bring about an acceptable notion of proliferation resistance. To this end, methodologies have been developed, which seek to assess and score attained proliferation resistance. Most notably, these include, the Proliferation Resistance and Physical Protection (PR and PP) methodology prepared by the GEN-IV International Forum and the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Such approaches have greatly advanced the concept of proliferation resistance; however, they remain limited by their exclusive concentration on the technological determinants of proliferation and non-consideration of other, equally important, socio-political determinants. This limitation is significant as numerous incidents have illustrated the ability of atypical states to find alternate paths to proliferation, for example

  13. Re-launching nuclear energy in the United States: the last obstacles to be cleared

    International Nuclear Information System (INIS)

    Babinet, R.

    2006-10-01

    The author discusses the different important events, notably within the context of energy policy and in relationship with economical factors, which concern the nuclear sector and occurred within the past few years in the United States (since 2001). He describes the failure of the 'all-gas' strategy, the strengthening of the nuclear sector since 2001 (evolution of the stock availability, of operators, of production). He discusses the role of the federal State in the re-launching of nuclear energy by facilitating the licensing procedure for new reactors and by addressing the waste storage issue. He comments the adoption of the global bill on energy (EPAct 2005) and the freezing of the Yucca Mountain storage site. This last aspect promotes the interest in waste transmutation and in related programs, and the implementation of the GNEP (global nuclear energy partnership) which notably proposed an international approach to limit an uncontrolled proliferation of nuclear cycle technologies

  14. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    Seo, Du Hwan

    1987-01-01

    This book gives descriptions of explanations of terminologies concerning to nuclear energy such as analysis of financial safety of nuclear energy, radwaste disposal, fast breeder reactor, nuclear reactor and device, nuclear fuel and technique for concentration, using of nuclear energy radiation and measurement, plan for development of nuclear energy and international institution. This book includes 160 terms on nuclear energy and arranges in Korean alphabetical order.

  15. Nuclear energy

    International Nuclear Information System (INIS)

    Wethe, Per Ivar

    2009-01-01

    Today we know two forms of nuclear energy: fission and fusion. Fission is the decomposition of heavy nuclei, while fusion is the melting together of light nuclei. Both processes create a large surplus of energy. Technologically, we can currently only use fission to produce energy in today's nuclear power plants, but there is intense research worldwide in order to realize a controlled fusion process. In a practical context, today's nuclear energy is a sustained source of energy since the resource base is virtually unlimited. When fusion technology is realized, the resource supply will be a marginal problem. (AG)

  16. Nuclear energy data

    International Nuclear Information System (INIS)

    2002-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (authors)

  17. Nuclear energy data

    International Nuclear Information System (INIS)

    2003-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  18. I wonder nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Cheol

    2009-04-15

    This book consists seven chapters, which are powerful nuclear energy, principle of nuclear fission, nuclear energy in our daily life, is nuclear energy safe?, what is radiation?, radiation spread in pur daily life and radiation like a spy. It adds nuclear energy story through quiz. This book with pictures is for kids to explain nuclear energy easily.

  19. Nuclear energy for electricity generation: historical analysis, nowadays situation and future

    International Nuclear Information System (INIS)

    Mongelli, Sara Tania

    2006-01-01

    On December 2, 1942, man first initiated a self-sustaining nuclear chain reaction, and controlled it. Since then, nuclear energy development, firstly stimulated by military goals, was fast. But nuclear energy use for electricity production grew too, until becoming a very important energy source in the world energy mix. In 1987 there were in the world 418 nuclear reactors capable of producing commercially useful supplies of electricity. Over two thirds were in just seven countries: United States, Soviet Union, France, United Kingdom, Germany, Canada and Japan. In the 90's, nuclear energy development slowed down as a consequence of the Chernobyl accident and of the more optimistic evaluations of world oil resources. In 2005 the number of nuclear reactors commercially producing electricity amounted to 441, not much more than the 418 reactors operating in 1987. From this point of view, the primary scope of this work is to analyze the world pattern and the state of the art of nuclear power production focusing on the countries above mentioned. Brazil case is analyzed too, since this work has been developed there. Once this international outlook is concluded, the next step passes through the analyses of new technologies, tendencies and initiatives for the future development of nuclear energy. Since feelings run high in the debate about nuclear energy, some fundamental and fervent points are raised: security, environment, proliferation and sustainable development. Nevertheless, it is important to point out that effort has been made in this work not to take sides, but to be impartial in selecting materials and giving data. The scope is not to convert the reader to a pro-nuclear view but to inform and, in doing so, to provide a volume that is a textbook and not a piece of polemic. (author)

  20. Nuclear energy: a key role despite problems

    International Nuclear Information System (INIS)

    Anderson, E.V.

    1977-01-01

    Nuclear energy is projected to be the fastest growing power source and a key to meeting power demands in spite of the many problems facing the nuclear industry in the form of delays, protests, and cancellations. Pressures for a nuclear moratorium will slow the industry, Mr. Anderson feels, but in the long run nuclear reactors will make up an increasing share of the power generating capacity. The Arthur D. Little Co. projects a fourfold increase between 1975 and 1985 on the basis of 10-year lead times for construction of nuclear power plants. Half the new generating capacity after 1985 will be nuclear. Problems besetting every stage of the nuclear fuel cycle result from debates over proliferation, waste disposal, reactor safety, and environmental damage and lead to controversy over regulations and licensing. U.S. utilities are not ordering reactors, but manufacturers are finding markets in other countries. Financial difficulties have kept domestic utilities from undertaking large investment programs until they can resolve problems of fuel costs and rate structures. New construction is inevitable, however, to meet future electrical requirements. Nuclear companies, which number nearly 1300 manufacturers and service providers, need to develop a better public image by working together to demonstrate their ability to manage the risks and uncertainties