WorldWideScience

Sample records for energy minimization problem

  1. Free-energy minimization and the dark-room problem.

    Science.gov (United States)

    Friston, Karl; Thornton, Christopher; Clark, Andy

    2012-01-01

    Recent years have seen the emergence of an important new fundamental theory of brain function. This theory brings information-theoretic, Bayesian, neuroscientific, and machine learning approaches into a single framework whose overarching principle is the minimization of surprise (or, equivalently, the maximization of expectation). The most comprehensive such treatment is the "free-energy minimization" formulation due to Karl Friston (see e.g., Friston and Stephan, 2007; Friston, 2010a,b - see also Fiorillo, 2010; Thornton, 2010). A recurrent puzzle raised by critics of these models is that biological systems do not seem to avoid surprises. We do not simply seek a dark, unchanging chamber, and stay there. This is the "Dark-Room Problem." Here, we describe the problem and further unpack the issues to which it speaks. Using the same format as the prolog of Eddington's Space, Time, and Gravitation (Eddington, 1920) we present our discussion as a conversation between: an information theorist (Thornton), a physicist (Friston), and a philosopher (Clark).

  2. Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem

    Science.gov (United States)

    Tang, Dunbing; Dai, Min

    2015-09-01

    The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production planning and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed smalland large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.

  3. Gravitino problem in minimal supergravity inflation

    Directory of Open Access Journals (Sweden)

    Fuminori Hasegawa

    2017-04-01

    Full Text Available We study non-thermal gravitino production in the minimal supergravity inflation. In this minimal model utilizing orthogonal nilpotent superfields, the particle spectrum includes only graviton, gravitino, inflaton, and goldstino. We find that a substantial fraction of the cosmic energy density can be transferred to the longitudinal gravitino due to non-trivial change of its sound speed. This implies either a breakdown of the effective theory after inflation or a serious gravitino problem.

  4. Gravitino problem in minimal supergravity inflation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Fuminori [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Mukaida, Kyohei [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Nakayama, Kazunori [Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 133-0033 (Japan); Terada, Takahiro, E-mail: terada@kias.re.kr [School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 02455 (Korea, Republic of); Yamada, Yusuke [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2017-04-10

    We study non-thermal gravitino production in the minimal supergravity inflation. In this minimal model utilizing orthogonal nilpotent superfields, the particle spectrum includes only graviton, gravitino, inflaton, and goldstino. We find that a substantial fraction of the cosmic energy density can be transferred to the longitudinal gravitino due to non-trivial change of its sound speed. This implies either a breakdown of the effective theory after inflation or a serious gravitino problem.

  5. One-dimensional Gromov minimal filling problem

    International Nuclear Information System (INIS)

    Ivanov, Alexandr O; Tuzhilin, Alexey A

    2012-01-01

    The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.

  6. Energy problems

    International Nuclear Information System (INIS)

    Hoefling, O.

    1980-01-01

    The physical and technical fundamentals of energy conversion are described in popular form. There are chapters on fossil nuclear, and renewable energy sources. The final chapter attempts to give a picture of the complex interactions in the fields of energy economy and energy policy. (UA) [de

  7. Minimal nuclear energy density functional

    Science.gov (United States)

    Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; Perez, Rodrigo Navarro; Schunck, Nicolas

    2018-04-01

    We present a minimal nuclear energy density functional (NEDF) called "SeaLL1" that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ɛr=0.022 fm and a standard deviation σr=0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body (NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body (NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. We identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.

  8. Geothermal Energy: Prospects and Problems

    Science.gov (United States)

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  9. Optimal Allocation of Renewable Energy Sources for Energy Loss Minimization

    Directory of Open Access Journals (Sweden)

    Vaiju Kalkhambkar

    2017-03-01

    Full Text Available Optimal allocation of renewable distributed generation (RDG, i.e., solar and the wind in a distribution system becomes challenging due to intermittent generation and uncertainty of loads. This paper proposes an optimal allocation methodology for single and hybrid RDGs for energy loss minimization. The deterministic generation-load model integrated with optimal power flow provides optimal solutions for single and hybrid RDG. Considering the complexity of the proposed nonlinear, constrained optimization problem, it is solved by a robust and high performance meta-heuristic, Symbiotic Organisms Search (SOS algorithm. Results obtained from SOS algorithm offer optimal solutions than Genetic Algorithm (GA, Particle Swarm Optimization (PSO and Firefly Algorithm (FFA. Economic analysis is carried out to quantify the economic benefits of energy loss minimization over the life span of RDGs.

  10. Energy - the existential problem

    International Nuclear Information System (INIS)

    Michaelis, H.

    1980-01-01

    The volume contains the 16 speeches held on the meeting of the German Atom Forum Nuclear energy with the background of the world's energy situation of January 1980. They deal with the new dimensions of the world energy problem, possibilities of an alternative long-term development, long-term prognoses, energy for the Third World, international problems of energy policy, availability of hard coal, energy policy in the Federal Republic, ways of application and substitution potential of nuclear energy, industrial development, new energy sources, the purpose of energy decentralized energy supply, the energy demand, environment protection as a vehicle for cultural criticism. The editor sees in the debate a serious approach between supporters and opponents of nuclear energy. (HSCH) [de

  11. 3D motion analysis via energy minimization

    Energy Technology Data Exchange (ETDEWEB)

    Wedel, Andreas

    2009-10-16

    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to

  12. Quantum N-body problem with a minimal length

    International Nuclear Information System (INIS)

    Buisseret, Fabien

    2010-01-01

    The quantum N-body problem is studied in the context of nonrelativistic quantum mechanics with a one-dimensional deformed Heisenberg algebra of the form [x,p]=i(1+βp 2 ), leading to the existence of a minimal observable length √(β). For a generic pairwise interaction potential, analytical formulas are obtained that allow estimation of the ground-state energy of the N-body system by finding the ground-state energy of a corresponding two-body problem. It is first shown that in the harmonic oscillator case, the β-dependent term grows faster with increasing N than the β-independent term. Then, it is argued that such a behavior should also be observed with generic potentials and for D-dimensional systems. Consequently, quantum N-body bound states might be interesting places to look at nontrivial manifestations of a minimal length, since the more particles that are present, the more the system deviates from standard quantum-mechanical predictions.

  13. Minimal Time Problem with Impulsive Controls

    Energy Technology Data Exchange (ETDEWEB)

    Kunisch, Karl, E-mail: karl.kunisch@uni-graz.at [University of Graz, Institute for Mathematics and Scientific Computing (Austria); Rao, Zhiping, E-mail: zhiping.rao@ricam.oeaw.ac.at [Austrian Academy of Sciences, Radon Institute of Computational and Applied Mathematics (Austria)

    2017-02-15

    Time optimal control problems for systems with impulsive controls are investigated. Sufficient conditions for the existence of time optimal controls are given. A dynamical programming principle is derived and Lipschitz continuity of an appropriately defined value functional is established. The value functional satisfies a Hamilton–Jacobi–Bellman equation in the viscosity sense. A numerical example for a rider-swing system is presented and it is shown that the reachable set is enlargered by allowing for impulsive controls, when compared to nonimpulsive controls.

  14. Unused energy sources inducing minimal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Voss, A [Inst. fur Reaktorentwicklung, Kernforschungsanlage Julich GmbH, German Federal Republic

    1974-01-01

    The contribution of hydroelectricity to the growing worldwide energy demand is not expected to exceed 6%. As the largest amount of hydroelectric potential is located in developing nations, it will find its greatest development outside the currently industrialized sphere. The potential of 60 GW ascribed to tidal and geothermal energy is a negligible quantity. Solar energy represents an essentially inexhaustible source, but technological problems will preclude any major contribution from it during this century. The environmental problems caused by these 'new' energy sources are different from those engendered by fossil and nuclear power plants, but they are not negligible. It is irresponsible and misleading to describe them as pollution-free.

  15. Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem

    Directory of Open Access Journals (Sweden)

    Xiaomei Zhang

    2012-01-01

    Full Text Available We present some sufficient global optimality conditions for a special cubic minimization problem with box constraints or binary constraints by extending the global subdifferential approach proposed by V. Jeyakumar et al. (2006. The present conditions generalize the results developed in the work of V. Jeyakumar et al. where a quadratic minimization problem with box constraints or binary constraints was considered. In addition, a special diagonal matrix is constructed, which is used to provide a convenient method for justifying the proposed sufficient conditions. Then, the reformulation of the sufficient conditions follows. It is worth noting that this reformulation is also applicable to the quadratic minimization problem with box or binary constraints considered in the works of V. Jeyakumar et al. (2006 and Y. Wang et al. (2010. Finally some examples demonstrate that our optimality conditions can effectively be used for identifying global minimizers of the certain nonconvex cubic minimization problem.

  16. Energy Cost Minimization in Heterogeneous Cellular Networks with Hybrid Energy Supplies

    Directory of Open Access Journals (Sweden)

    Bang Wang

    2016-01-01

    Full Text Available The ever increasing data demand has led to the significant increase of energy consumption in cellular mobile networks. Recent advancements in heterogeneous cellular networks and green energy supplied base stations provide promising solutions for cellular communications industry. In this article, we first review the motivations and challenges as well as approaches to address the energy cost minimization problem for such green heterogeneous networks. Owing to the diversities of mobile traffic and renewable energy, the energy cost minimization problem involves both temporal and spatial optimization of resource allocation. We next present a new solution to illustrate how to combine the optimization of the temporal green energy allocation and spatial mobile traffic distribution. The whole optimization problem is decomposed into four subproblems, and correspondingly our proposed solution is divided into four parts: energy consumption estimation, green energy allocation, user association, and green energy reallocation. Simulation results demonstrate that our proposed algorithm can significantly reduce the total energy cost.

  17. OPTIM, Minimization of Band-Width of Finite Elements Problems

    International Nuclear Information System (INIS)

    Huart, M.

    1977-01-01

    1 - Nature of the physical problem solved: To minimize the band-width of finite element problems. 2 - Method of solution: A surface is constructed from the x-y-coordinates of each node using its node number as z-value. This surface consists of triangles. Nodes are renumbered in such a way as to minimize the surface area. 3 - Restrictions on the complexity of the problem: This program is applicable to 2-D problems. It is dimensioned for a maximum of 1000 elements

  18. Minimization under entropy conditions, with applications in lower bound problems

    International Nuclear Information System (INIS)

    Toft, Joachim

    2004-01-01

    We minimize the functional f->∫ afdμ under the entropy condition E(f)=-∫ f log fdμ≥E, ∫ fdμ=1 and f≥0, where E is a member of R is fixed. We prove that the minimum is attained for f=e -sa /∫ e -sa dμ, where s is a member of R is chosen such that E(f)=E. We apply the result on minimizing problems in pseudodifferential calculus, where we minimize the harmonic oscillator

  19. Minimization In Digital Design As A Meta-Planning Problem

    Science.gov (United States)

    Ho, William P. C.; Wu, Jung-Gen

    1987-05-01

    In our model-based expert system for automatic digital system design, we formalize the design process into three sub-processes - compiling high-level behavioral specifications into primitive behavioral operations, grouping primitive operations into behavioral functions, and grouping functions into modules. Consideration of design minimization explicitly controls decision-making in the last two subprocesses. Design minimization, a key task in the automatic design of digital systems, is complicated by the high degree of interaction among the time sequence and content of design decisions. In this paper, we present an AI approach which directly addresses these interactions and their consequences by modeling the minimization prob-lem as a planning problem, and the management of design decision-making as a meta-planning problem.

  20. Minimal surfaces, stratified multivarifolds, and the plateau problem

    CERN Document Server

    Thi, Dao Trong; Primrose, E J F; Silver, Ben

    1991-01-01

    Plateau's problem is a scientific trend in modern mathematics that unites several different problems connected with the study of minimal surfaces. In its simplest version, Plateau's problem is concerned with finding a surface of least area that spans a given fixed one-dimensional contour in three-dimensional space--perhaps the best-known example of such surfaces is provided by soap films. From the mathematical point of view, such films are described as solutions of a second-order partial differential equation, so their behavior is quite complicated and has still not been thoroughly studied. Soap films, or, more generally, interfaces between physical media in equilibrium, arise in many applied problems in chemistry, physics, and also in nature. In applications, one finds not only two-dimensional but also multidimensional minimal surfaces that span fixed closed "contours" in some multidimensional Riemannian space. An exact mathematical statement of the problem of finding a surface of least area or volume requir...

  1. Microgrids: Energy management by loss minimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Basu, A.K. [Electrical Engineering Dept., Jadavpur University & 20/2, Khanpur Road, Kolkata 700047 (India); Chowdhury, S.; Chowdhury, S.P. [Electrical Engineering Department, University of Cape Town & Private Bag X3, Menzies Building, Room-517, Rondebosch, Cape Town 7701 (India)

    2011-07-01

    Energy management is a techno-economic issue, which dictates, in the context of microgrids, how optimal investment in technology front could bring optimal power quality and reliability (PQR) of supply to the consumers. Investment in distributed energy resources (DERs), with their connection to the utility grid at optimal locations and with optimal sizes, saves energy in the form of line loss reduction. Line loss reduction is the indirect benefit to the microgrid owner who may recover it as an incentive from utility. The present paper focuses on planning of optimal siting and sizing of DERs based on minimization of line loss. Optimal siting is done, here, on the loss sensitivity index (LSI) method and optimal sizing by differential evolution (DE) algorithms, which is, again, compared with particle swarm optimization (PSO) technique. Studies are conducted on 6-bus and 14-bus radial networks under islanded mode of operation with electric demand profile. Islanding helps planning of DER capacity of microgrid, which is self-sufficient to cater its own consumers without utility's support.

  2. Periodic-cylinder vesicle with minimal energy

    International Nuclear Information System (INIS)

    Xiao-Hua, Zhou

    2010-01-01

    We give some details about the periodic cylindrical solution found by Zhang and Ou-Yang in [1996 Phys. Rev. E 53 4206] for the general shape equation of vesicle. Three different kinds of periodic cylindrical surfaces and a special closed cylindrical surface are obtained. Using the elliptic functions contained in mathematic, we find that this periodic shape has the minimal total energy for one period when the period–amplitude ratio β ≈ 1.477, and point out that it is a discontinuous deformation between plane and this periodic shape. Our results also are suitable for DNA and multi-walled carbon nanotubes (MWNTs). (cross-disciplinary physics and related areas of science and technology)

  3. Iterative Schemes for Convex Minimization Problems with Constraints

    Directory of Open Access Journals (Sweden)

    Lu-Chuan Ceng

    2014-01-01

    Full Text Available We first introduce and analyze one implicit iterative algorithm for finding a solution of the minimization problem for a convex and continuously Fréchet differentiable functional, with constraints of several problems: the generalized mixed equilibrium problem, the system of generalized equilibrium problems, and finitely many variational inclusions in a real Hilbert space. We prove strong convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another implicit iterative algorithm for finding a fixed point of infinitely many nonexpansive mappings with the same constraints, and derive its strong convergence under mild assumptions.

  4. Wormholes minimally violating the null energy condition

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-López, Mariam [Departamento de Física, Universidade da Beira Interior, 6200 Covilhã (Portugal); Lobo, Francisco S N; Martín-Moruno, Prado, E-mail: mariam.bouhmadi@ehu.es, E-mail: fslobo@fc.ul.pt, E-mail: pmmoruno@fc.ul.pt [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Edifício C8, 1749-016 Lisboa (Portugal)

    2014-11-01

    We consider novel wormhole solutions supported by a matter content that minimally violates the null energy condition. More specifically, we consider an equation of state in which the sum of the energy density and radial pressure is proportional to a constant with a value smaller than that of the inverse area characterising the system, i.e., the area of the wormhole mouth. This approach is motivated by a recently proposed cosmological event, denoted {sup t}he little sibling of the big rip{sup ,} where the Hubble rate and the scale factor blow up but the cosmic derivative of the Hubble rate does not [1]. By using the cut-and-paste approach, we match interior spherically symmetric wormhole solutions to an exterior Schwarzschild geometry, and analyse the stability of the thin-shell to linearized spherically symmetric perturbations around static solutions, by choosing suitable properties for the exotic material residing on the junction interface radius. Furthermore, we also consider an inhomogeneous generalization of the equation of state considered above and analyse the respective stability regions. In particular, we obtain a specific wormhole solution with an asymptotic behaviour corresponding to a global monopole.

  5. NP-hardness of the cluster minimization problem revisited

    Science.gov (United States)

    Adib, Artur B.

    2005-10-01

    The computational complexity of the 'cluster minimization problem' is revisited (Wille and Vennik 1985 J. Phys. A: Math. Gen. 18 L419). It is argued that the original NP-hardness proof does not apply to pairwise potentials of physical interest, such as those that depend on the geometric distance between the particles. A geometric analogue of the original problem is formulated, and a new proof for such potentials is provided by polynomial time transformation from the independent set problem for unit disk graphs. Limitations of this formulation are pointed out, and new subproblems that bear more direct consequences to the numerical study of clusters are suggested.

  6. NP-hardness of the cluster minimization problem revisited

    International Nuclear Information System (INIS)

    Adib, Artur B

    2005-01-01

    The computational complexity of the 'cluster minimization problem' is revisited (Wille and Vennik 1985 J. Phys. A: Math. Gen. 18 L419). It is argued that the original NP-hardness proof does not apply to pairwise potentials of physical interest, such as those that depend on the geometric distance between the particles. A geometric analogue of the original problem is formulated, and a new proof for such potentials is provided by polynomial time transformation from the independent set problem for unit disk graphs. Limitations of this formulation are pointed out, and new subproblems that bear more direct consequences to the numerical study of clusters are suggested

  7. NP-hardness of the cluster minimization problem revisited

    Energy Technology Data Exchange (ETDEWEB)

    Adib, Artur B [Physics Department, Brown University, Providence, RI 02912 (United States)

    2005-10-07

    The computational complexity of the 'cluster minimization problem' is revisited (Wille and Vennik 1985 J. Phys. A: Math. Gen. 18 L419). It is argued that the original NP-hardness proof does not apply to pairwise potentials of physical interest, such as those that depend on the geometric distance between the particles. A geometric analogue of the original problem is formulated, and a new proof for such potentials is provided by polynomial time transformation from the independent set problem for unit disk graphs. Limitations of this formulation are pointed out, and new subproblems that bear more direct consequences to the numerical study of clusters are suggested.

  8. Free time minimizers for the three-body problem

    Science.gov (United States)

    Moeckel, Richard; Montgomery, Richard; Sánchez Morgado, Héctor

    2018-03-01

    Free time minimizers of the action (called "semi-static" solutions by Mañe in International congress on dynamical systems in Montevideo (a tribute to Ricardo Mañé), vol 362, pp 120-131, 1996) play a central role in the theory of weak KAM solutions to the Hamilton-Jacobi equation (Fathi in Weak KAM Theorem in Lagrangian Dynamics Preliminary Version Number 10, 2017). We prove that any solution to Newton's three-body problem which is asymptotic to Lagrange's parabolic homothetic solution is eventually a free time minimizer. Conversely, we prove that every free time minimizer tends to Lagrange's solution, provided the mass ratios lie in a certain large open set of mass ratios. We were inspired by the work of Da Luz and Maderna (Math Proc Camb Philos Soc 156:209-227, 1980) which showed that every free time minimizer for the N-body problem is parabolic and therefore must be asymptotic to the set of central configurations. We exclude being asymptotic to Euler's central configurations by a second variation argument. Central configurations correspond to rest points for the McGehee blown-up dynamics. The large open set of mass ratios are those for which the linearized dynamics at each Euler rest point has a complex eigenvalue.

  9. On the uniqueness of minimizers for a class of variational problems with Polyconvex integrand

    KAUST Repository

    Awi, Romeo

    2017-02-05

    We prove existence and uniqueness of minimizers for a family of energy functionals that arises in Elasticity and involves polyconvex integrands over a certain subset of displacement maps. This work extends previous results by Awi and Gangbo to a larger class of integrands. First, we study these variational problems over displacements for which the determinant is positive. Second, we consider a limit case in which the functionals are degenerate. In that case, the set of admissible displacements reduces to that of incompressible displacements which are measure preserving maps. Finally, we establish that the minimizer over the set of incompressible maps may be obtained as a limit of minimizers corresponding to a sequence of minimization problems over general displacements provided we have enough regularity on the dual problems. We point out that these results defy the direct methods of the calculus of variations.

  10. A Hybrid ACO Approach to the Matrix Bandwidth Minimization Problem

    Science.gov (United States)

    Pintea, Camelia-M.; Crişan, Gloria-Cerasela; Chira, Camelia

    The evolution of the human society raises more and more difficult endeavors. For some of the real-life problems, the computing time-restriction enhances their complexity. The Matrix Bandwidth Minimization Problem (MBMP) seeks for a simultaneous permutation of the rows and the columns of a square matrix in order to keep its nonzero entries close to the main diagonal. The MBMP is a highly investigated {NP}-complete problem, as it has broad applications in industry, logistics, artificial intelligence or information recovery. This paper describes a new attempt to use the Ant Colony Optimization framework in tackling MBMP. The introduced model is based on the hybridization of the Ant Colony System technique with new local search mechanisms. Computational experiments confirm a good performance of the proposed algorithm for the considered set of MBMP instances.

  11. Energy Resources Consumption Minimization in Housing Construction

    Directory of Open Access Journals (Sweden)

    Balastov Alexey

    2017-01-01

    Full Text Available The article deals with the energy savings analysis during operation of buildings, provides the heat balance of residential premises, considers options for energy-efficient solutions for hot water supply systems in buildings. As technical facilities that allow the use of secondary heat sources and solar energy, there are also considered the systems with heat recovery of “gray” wastewater, heat pumps, solar collectors and photoelectric converters.

  12. Problems of high energy physics

    International Nuclear Information System (INIS)

    Kadyshevskij, V.G.

    1989-01-01

    Some problems of high energy physics are discussed. The main attention is paid to describibg the standard model. The model comprises quantum chromodynamics and electroweak interaction theory. The problem of CP breaking is considered as well. 8 refs.; 1 tab

  13. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.

    Science.gov (United States)

    Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  14. Low energy implications of minimal superstring unification

    International Nuclear Information System (INIS)

    Khalil, S.; Vissani, F.; Masiero, A.

    1995-11-01

    We study the phenomenological implications of effective supergravities based on string vacua with spontaneously broken N =1 supersymmetry by dilation and moduli F-terms. We further require Minimal String Unification, namely that large string threshold corrections ensure the correct unification of the gauge couplings at the grand unification scale. The whole supersymmetric mass spectrum turns out to be determined in terms of only two independent parameters, the dilaton-moduli mixing angle and the gravitino mass. In particular we discuss the region of the parameter space where at least one superpartner is ''visible'' at LEPII. We find that the most likely candidates are the scalar partner of the right-handed electron and the lightest chargino, with interesting correlations between their masses and with the mass of the lightest higgs. We show how discovering SUSY particles at LEPII might rather sharply discriminate between scenarios with pure dilaton SUSY breaking and mixed dilaton-moduli breaking. (author). 10 refs, 7 figs

  15. Inference with minimal Gibbs free energy in information field theory

    International Nuclear Information System (INIS)

    Ensslin, Torsten A.; Weig, Cornelius

    2010-01-01

    Non-linear and non-Gaussian signal inference problems are difficult to tackle. Renormalization techniques permit us to construct good estimators for the posterior signal mean within information field theory (IFT), but the approximations and assumptions made are not very obvious. Here we introduce the simple concept of minimal Gibbs free energy to IFT, and show that previous renormalization results emerge naturally. They can be understood as being the Gaussian approximation to the full posterior probability, which has maximal cross information with it. We derive optimized estimators for three applications, to illustrate the usage of the framework: (i) reconstruction of a log-normal signal from Poissonian data with background counts and point spread function, as it is needed for gamma ray astronomy and for cosmography using photometric galaxy redshifts, (ii) inference of a Gaussian signal with unknown spectrum, and (iii) inference of a Poissonian log-normal signal with unknown spectrum, the combination of (i) and (ii). Finally we explain how Gaussian knowledge states constructed by the minimal Gibbs free energy principle at different temperatures can be combined into a more accurate surrogate of the non-Gaussian posterior.

  16. High energy physics problems

    International Nuclear Information System (INIS)

    Arbuzov, B.A.

    1977-01-01

    Described are modern views on the particle structure and particle interactions at high energies. According to the latest data recieved, all particles can be classified in three groups: 1) strong interacting hadrons; 2) leptons, having no strong interactions; 3) photon. The particle structure is described in a quark model, and with the use of gluons. The elementary particle theory is based on the quantum field theory. The energy increase of interacting particles enables to check the main theory principles, such as conventions for causality, relativistic invariance and unitarity. Investigations of weak interactions are of great importance. The progress in this field is connected with unified gauge theories of weak and electromagnetic interactions. For weak interactions promissing are the experiments with colliding electron-proton rings. The new data, especially at higher energies, will lead to a further refinement of the nature of particles and their interactions

  17. Outage Probability Minimization for Energy Harvesting Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2017-01-01

    Full Text Available The incorporation of cognitive radio (CR capability in wireless sensor networks yields a promising network paradigm known as CR sensor networks (CRSNs, which is able to provide spectrum efficient data communication. However, due to the high energy consumption results from spectrum sensing, as well as subsequent data transmission, the energy supply for the conventional sensor nodes powered by batteries is regarded as a severe bottleneck for sustainable operation. The energy harvesting technique, which gathers energy from the ambient environment, is regarded as a promising solution to perpetually power-up energy-limited devices with a continual source of energy. Therefore, applying the energy harvesting (EH technique in CRSNs is able to facilitate the self-sustainability of the energy-limited sensors. The primary concern of this study is to design sensing-transmission policies to minimize the long-term outage probability of EH-powered CR sensor nodes. We formulate this problem as an infinite-horizon discounted Markov decision process and propose an ϵ-optimal sensing-transmission (ST policy through using the value iteration algorithm. ϵ is the error bound between the ST policy and the optimal policy, which can be pre-defined according to the actual need. Moreover, for a special case that the signal-to-noise (SNR power ratio is sufficiently high, we present an efficient transmission (ET policy and prove that the ET policy achieves the same performance with the ST policy. Finally, extensive simulations are conducted to evaluate the performance of the proposed policies and the impaction of various network parameters.

  18. Dimensionality of Local Minimizers of the Interaction Energy

    KAUST Repository

    Balagué, D.

    2013-05-22

    In this work we consider local minimizers (in the topology of transport distances) of the interaction energy associated with a repulsive-attractive potential. We show how the dimensionality of the support of local minimizers is related to the repulsive strength of the potential at the origin. © 2013 Springer-Verlag Berlin Heidelberg.

  19. Dimensionality of Local Minimizers of the Interaction Energy

    KAUST Repository

    Balagué , D.; Carrillo, J. A.; Laurent, T.; Raoul, G.

    2013-01-01

    In this work we consider local minimizers (in the topology of transport distances) of the interaction energy associated with a repulsive-attractive potential. We show how the dimensionality of the support of local minimizers is related to the repulsive strength of the potential at the origin. © 2013 Springer-Verlag Berlin Heidelberg.

  20. Energy supply - a global problem

    International Nuclear Information System (INIS)

    Barthelt, K.

    1990-01-01

    The text of a speech celebrating the 10 years operation of the nuclear power plant in Goesgen. The author expresses his opinion on the future of nuclear energy, on the responsibility towards the next generation and on the energy supply for the Third World. He draws attention to the gap between north and south and to the limited amount of resources and mention the CO2-problem and the potential of nuclear energy

  1. Limit behavior of mass critical Hartree minimization problems with steep potential wells

    Science.gov (United States)

    Guo, Yujin; Luo, Yong; Wang, Zhi-Qiang

    2018-06-01

    We consider minimizers of the following mass critical Hartree minimization problem: eλ(N ) ≔inf {u ∈H1(Rd ) , ‖u‖2 2=N } Eλ(u ) , where d ≥ 3, λ > 0, and the Hartree energy functional Eλ(u) is defined by Eλ(u ) ≔∫Rd|∇u (x ) |2d x +λ ∫Rdg (x ) u2(x ) d x -1/2 ∫Rd∫Rdu/2(x ) u2(y ) |x -y |2 d x d y . Here the steep potential g(x) satisfies 0 =g (0 ) =infRdg (x ) ≤g (x ) ≤1 and 1 -g (x ) ∈Ld/2(Rd ) . We prove that there exists a constant N* > 0, independent of λg(x), such that if N ≥ N*, then eλ(N) does not admit minimizers for any λ > 0; if 0 N N*, then there exists a constant λ*(N) > 0 such that eλ(N) admits minimizers for any λ > λ*(N) and eλ(N) does not admit minimizers for 0 N). For any given 0 N N*, the limit behavior of positive minimizers for eλ(N) is also studied as λ → ∞, where the mass concentrates at the bottom of g(x).

  2. Minimalism

    CERN Document Server

    Obendorf, Hartmut

    2009-01-01

    The notion of Minimalism is proposed as a theoretical tool supporting a more differentiated understanding of reduction and thus forms a standpoint that allows definition of aspects of simplicity. This book traces the development of minimalism, defines the four types of minimalism in interaction design, and looks at how to apply it.

  3. Hoelder continuity of energy minimizer maps between Riemannian polyhedra

    International Nuclear Information System (INIS)

    Bouziane, Taoufik

    2004-10-01

    The goal of the present paper is to establish some kind of regularity of an energy minimizer map between Riemannian polyhedra. More precisely, we will show the Hoelder continuity of local energy minimizers between Riemannian polyhedra with the target spaces without focal points. With this new result, we also complete our existence theorem obtained elsewhere, and consequently we generalize completely, to the case of target polyhedra without focal points (which is a weaker geometric condition than the nonpositivity of the curvature), the Eells-Fuglede's existence and regularity theorem which is the new version of the famous Eells-Sampson's theorem. (author)

  4. Contribution of Fuzzy Minimal Cost Flow Problem by Possibility Programming

    OpenAIRE

    S. Fanati Rashidi; A. A. Noora

    2010-01-01

    Using the concept of possibility proposed by zadeh, luhandjula ([4,8]) and buckley ([1]) have proposed the possibility programming. The formulation of buckley results in nonlinear programming problems. Negi [6]re-formulated the approach of Buckley by the use of trapezoidal fuzzy numbers and reduced the problem into fuzzy linear programming problem. Shih and Lee ([7]) used the Negi approach to solve a minimum cost flow problem, whit fuzzy costs and the upper and lower bound. ...

  5. Contribution of Fuzzy Minimal Cost Flow Problem by Possibility Programming

    Directory of Open Access Journals (Sweden)

    S. Fanati Rashidi

    2010-06-01

    Full Text Available Using the concept of possibility proposed by zadeh, luhandjula ([4,8] and buckley ([1] have proposed the possibility programming. The formulation of buckley results in nonlinear programming problems. Negi [6]re-formulated the approach of Buckley by the use of trapezoidal fuzzy numbers and reduced the problem into fuzzy linear programming problem. Shih and Lee ([7] used the Negi approach to solve a minimum cost flow problem, whit fuzzy costs and the upper and lower bound. In this paper we shall consider the general form of this problem where all of the parameters and variables are fuzzy and also a model for solving is proposed

  6. Energy Efficient Smartphones: Minimizing the Energy Consumption of Smartphone GPUs using DVFS Governors

    KAUST Repository

    Ahmad, Enas M.

    2013-01-01

    , they are significantly adding an overhead on the limited energy of the battery. This thesis aims at enhancing the energy efficiency of modern smartphones and increasing their battery life by minimizing the energy consumption of smartphones Graphical Processing Unit (GPU

  7. Minimizing energy consumption of accelerators and storage ring facilities

    International Nuclear Information System (INIS)

    The discussion of energy usage falls naturally into three parts. The first is a review of what the problem is, the second is a description of steps that can be taken to conserve energy at existing facilities, and the third is a review of the implications of energy consumption on future facilities

  8. An existence result of energy minimizer maps between Riemannian polyhedra

    International Nuclear Information System (INIS)

    Bouziane, T.

    2004-06-01

    In this paper, we prove the existence of energy minimizers in each free homotopy class of maps between polyhedra with target space without focal points. Our proof involves a careful study of some geometric properties of Riemannian polyhedra without focal points. Among other things, we show that on the relevant polyhedra, there exists a convex supporting function. (author)

  9. Detection of Cavities by Inverse Heat Conduction Boundary Element Method Using Minimal Energy Technique

    International Nuclear Information System (INIS)

    Choi, C. Y.

    1997-01-01

    A geometrical inverse heat conduction problem is solved for the infrared scanning cavity detection by the boundary element method using minimal energy technique. By minimizing the kinetic energy of temperature field, boundary element equations are converted to the quadratic programming problem. A hypothetical inner boundary is defined such that the actual cavity is located interior to the domain. Temperatures at hypothetical inner boundary are determined to meet the constraints of measurement error of surface temperature obtained by infrared scanning, and then boundary element analysis is performed for the position of an unknown boundary (cavity). Cavity detection algorithm is provided, and the effects of minimal energy technique on the inverse solution method are investigated by means of numerical analysis

  10. Minimal Self-Models and the Free Energy Principle

    Directory of Open Access Journals (Sweden)

    Jakub eLimanowski

    2013-09-01

    Full Text Available The term "minimal phenomenal selfhood" describes the basic, pre-reflective experience of being a self (Blanke & Metzinger, 2009. Theoretical accounts of the minimal self have long recognized the importance and the ambivalence of the body as both part of the physical world, and the enabling condition for being in this world (Gallagher, 2005; Grafton, 2009. A recent account of minimal phenomenal selfhood (MPS, Metzinger, 2004a centers on the consideration that minimal selfhood emerges as the result of basic self-modeling mechanisms, thereby being founded on pre-reflective bodily processes. The free energy principle (FEP, Friston, 2010 is a novel unified theory of cortical function that builds upon the imperative that self-organizing systems entail hierarchical generative models of the causes of their sensory input, which are optimized by minimizing free energy as an approximation of the log-likelihood of the model. The implementation of the FEP via predictive coding mechanisms and in particular the active inference principle emphasizes the role of embodiment for predictive self-modeling, which has been appreciated in recent publications. In this review, we provide an overview of these conceptions and illustrate thereby the potential power of the FEP in explaining the mechanisms underlying minimal selfhood and its key constituents, multisensory integration, interoception, agency, perspective, and the experience of mineness. We conclude that the conceptualization of MPS can be well mapped onto a hierarchical generative model furnished by the free energy principle and may constitute the basis for higher-level, cognitive forms of self-referral, as well as the understanding of other minds.

  11. Efficient modified Jacobi relaxation for minimizing the energy functional

    International Nuclear Information System (INIS)

    Park, C.H.; Lee, I.; Chang, K.J.

    1993-01-01

    We present an efficient scheme of diagonalizing large Hamiltonian matrices in a self-consistent manner. In the framework of the preconditioned conjugate gradient minimization of the energy functional, we replace the modified Jacobi relaxation for preconditioning and use for band-by-band minimization the restricted-block Davidson algorithm, in which only the previous wave functions and the relaxation vectors are included additionally for subspace diagonalization. Our scheme is found to be comparable with the preconditioned conjugate gradient method for both large ordered and disordered Si systems, while it is more rapidly converged for systems with transition-metal elements

  12. Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.

    Science.gov (United States)

    Heald, Emerson F.

    1978-01-01

    Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)

  13. Problems of energy supply planning

    International Nuclear Information System (INIS)

    Lelek, V.

    2009-01-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), existing within IAEA Vienna decided to prepare energy and nuclear vision of 21st century. We were asked on behalf of AER Working Group F - 'Spent Fuel Transmutations' and INPRO IAEA collaborative project RMI 'Meeting energy needs in the period of raw materials insufficiency during the 21st century' to prepare material about the situations, reasons and expected time table concerning future nuclear fuel cycle closing and influences of fossil raw materials deficiencies, expected during the coming century. Material does not content, specially in the second part complete solution and partially is only formulating extremely complex problems of mutual interaction of technologies, raw materials availability and economy needs, together with political demands of non-proliferation of nuclear weapons and ecology, taking into account equal rights to have electricity and further services using nuclear energy. (author)

  14. Minimization of local impact of energy systems through exergy analysis

    International Nuclear Information System (INIS)

    Cassetti, Gabriele; Colombo, Emanuela

    2013-01-01

    Highlights: • The model proposed aims at minimizing local impact of energy systems. • The model is meant to minimize the impact starting from system thermodynamics. • The formulation combines exergy analysis and quantitative risk analysis. • The approach of the model is dual to Thermoeconomics. - Abstract: For the acceptability of energy systems, environmental impacts are becoming more and more important. One primary way for reducing impacts related to processes is by improving efficiency of plants. A key instrument currently used to verify such improvements is exergy analysis, extended to include also the environmental externalities generated by systems. Through exergy-based analyses, it is possible indeed to evaluate the overall amount of resources consumed along all the phases of the life cycle of a system, from construction to dismantling. However, resource consumption is a dimension of the impact of a system at global level, while it may not be considered a measure of its local impact. In the paper a complementary approach named Combined Risk and Exergy Analysis (CRExA) to assess impacts from major accidents in energy systems is proposed, based on the combination of classical exergy analysis and quantitative risk analysis (QRA). Impacts considered are focused on effects on human health. The approach leads to the identification of solutions to minimize damages of major accidents by acting on the energy system design

  15. Minimizing Energy Spread In The REX/HIE-ISOLDE Linac

    CERN Document Server

    Yucemoz, Mert

    2017-01-01

    This report tries to minimize the energy spread of the beam at the end of the REX-HIE-ISOLDE Linac using the last RF cavity as a buncher. Beams with very low energy spread are often required by the users of the facility In addition, one of the main reason to have minimum energy spread in longitudinal phase space is that higher beam energy spread translates in to a position spread after interacting with target. This causes an overlap in the position of different particles that makes it difficult to distinguish them. Hence, in order to find the operation settings for minimum energy spread at the end of the REX-HIE-ISOLDE linac and to inspect the ongoing physics, several functions on Matlab were created that runs beam dynamics program called “TRACKV39” that provides some graphs and values as a result for analysis.

  16. Radiological terrorism: problems of prevention and minimization of consequences

    International Nuclear Information System (INIS)

    Bolshov, Leonid; Arutyunyan, Rafael; Pavlovski, Oleg

    2008-01-01

    This paper gives a review of the key factors defining the extent of potential hazard caused by ionizing radiation sources for the purpose of radiological terrorism and the key areas of activities in the field of counteractions and minimization of possible consequences of such acts. The importance of carrying out system analysis of the practical experience of response to radiation accidents and elimination of their consequences is emphasized. The need to develop scientific approaches, methods and software to realistically analyze possible scenarios and predict the scale of consequences of the acts of terrorism involving radioactive materials is pointed out. The importance of improvement of radioactive materials accounting, control and monitoring systems, especially in non-nuclear areas, as well as improvement of the legal and regulatory framework governing all aspects of radiation source application in the national economy is of particular importance. (author)

  17. Minimal investment risk of a portfolio optimization problem with budget and investment concentration constraints

    Science.gov (United States)

    Shinzato, Takashi

    2017-02-01

    In the present paper, the minimal investment risk for a portfolio optimization problem with imposed budget and investment concentration constraints is considered using replica analysis. Since the minimal investment risk is influenced by the investment concentration constraint (as well as the budget constraint), it is intuitive that the minimal investment risk for the problem with an investment concentration constraint can be larger than that without the constraint (that is, with only the budget constraint). Moreover, a numerical experiment shows the effectiveness of our proposed analysis. In contrast, the standard operations research approach failed to identify accurately the minimal investment risk of the portfolio optimization problem.

  18. Non-minimal quintessence: Dynamics and coincidence problem

    Indian Academy of Sciences (India)

    Brans–Dicke scalar–tensor theory provides a conformal coupling of the scalar field with gravity in Einstein's frame. ... explain the present ratio of energy densities in the Universe, i.e. the ... and it's differences from general relativity is presented.

  19. Energy levels of one-dimensional systems satisfying the minimal length uncertainty relation

    Energy Technology Data Exchange (ETDEWEB)

    Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    2016-10-15

    The standard approach to calculating the energy levels for quantum systems satisfying the minimal length uncertainty relation is to solve an eigenvalue problem involving a fourth- or higher-order differential equation in quasiposition space. It is shown that the problem can be reformulated so that the energy levels of these systems can be obtained by solving only a second-order quasiposition eigenvalue equation. Through this formulation the energy levels are calculated for the following potentials: particle in a box, harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well. For the particle in a box, the second-order quasiposition eigenvalue equation is a second-order differential equation with constant coefficients. For the harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well, a method that involves using Wronskians has been used to solve the second-order quasiposition eigenvalue equation. It is observed for all of these quantum systems that the introduction of a nonzero minimal length uncertainty induces a positive shift in the energy levels. It is shown that the calculation of energy levels in systems satisfying the minimal length uncertainty relation is not limited to a small number of problems like particle in a box and the harmonic oscillator but can be extended to a wider class of problems involving potentials such as the Pöschl–Teller and Gaussian wells.

  20. Cooperative relay-based multicasting for energy and delay minimization

    KAUST Repository

    Atat, Rachad

    2012-08-01

    Relay-based multicasting for the purpose of cooperative content distribution is studied. Optimized relay selection is performed with the objective of minimizing the energy consumption or the content distribution delay within a cluster of cooperating mobiles. Two schemes are investigated. The first consists of the BS sending the data only to the relay, and the second scheme considers the scenario of threshold-based multicasting by the BS, where a relay is selected to transmit the data to the mobiles that were not able to receive the multicast data. Both schemes show significant superiority compared to the non-cooperative scenarios, in terms of energy consumption and delay reduction. © 2012 IEEE.

  1. Fuzzy-TLBO optimal reactive power control variables planning for energy loss minimization

    International Nuclear Information System (INIS)

    Moghadam, Ahmad; Seifi, Ali Reza

    2014-01-01

    Highlights: • A new approach to the problem of optimal reactive power control variables planning is proposed. • The energy loss minimization problem has been formulated by modeling the load of system as a Load Duration Curve. • To solving the energy loss problem, the classic methods and the evolutionary methods are used. • A new proposed fuzzy teaching–learning based algorithm is applied to energy loss problem. • Simulations are done to show the effectiveness and superiority of the proposed algorithm compared with other methods. - Abstract: This paper offers a new approach to the problem of optimal reactive power control variables planning (ORPVCP). The basic idea is division of Load Duration Curve (LDC) into several time intervals with constant active power demand in each interval and then solving the energy loss minimization (ELM) problem to obtain an optimal initial set of control variables of the system so that is valid for all time intervals and can be used as an initial operating condition of the system. In this paper, the ELM problem has been solved by the linear programming (LP) and fuzzy linear programming (Fuzzy-LP) and evolutionary algorithms i.e. MHBMO and TLBO and the results are compared with the proposed Fuzzy-TLBO method. In the proposed method both objective function and constraints are evaluated by membership functions. The inequality constraints are embedded into the fitness function by the membership function of the fuzzy decision and the problem is modeled by fuzzy set theory. The proposed Fuzzy-TLBO method is performed on the IEEE 30 bus test system by considering two different LDC; and it is shown that using this method has further minimized objective function than original TLBO and other optimization techniques and confirms its potential to solve the ORPCVP problem with considering ELM as the objective function

  2. Rigid Body Energy Minimization on Manifolds for Molecular Docking.

    Science.gov (United States)

    Mirzaei, Hanieh; Beglov, Dmitri; Paschalidis, Ioannis Ch; Vajda, Sandor; Vakili, Pirooz; Kozakov, Dima

    2012-11-13

    Virtually all docking methods include some local continuous minimization of an energy/scoring function in order to remove steric clashes and obtain more reliable energy values. In this paper, we describe an efficient rigid-body optimization algorithm that, compared to the most widely used algorithms, converges approximately an order of magnitude faster to conformations with equal or slightly lower energy. The space of rigid body transformations is a nonlinear manifold, namely, a space which locally resembles a Euclidean space. We use a canonical parametrization of the manifold, called the exponential parametrization, to map the Euclidean tangent space of the manifold onto the manifold itself. Thus, we locally transform the rigid body optimization to an optimization over a Euclidean space where basic optimization algorithms are applicable. Compared to commonly used methods, this formulation substantially reduces the dimension of the search space. As a result, it requires far fewer costly function and gradient evaluations and leads to a more efficient algorithm. We have selected the LBFGS quasi-Newton method for local optimization since it uses only gradient information to obtain second order information about the energy function and avoids the far more costly direct Hessian evaluations. Two applications, one in protein-protein docking, and the other in protein-small molecular interactions, as part of macromolecular docking protocols are presented. The code is available to the community under open source license, and with minimal effort can be incorporated into any molecular modeling package.

  3. Free energy minimization to predict RNA secondary structures and computational RNA design.

    Science.gov (United States)

    Churkin, Alexander; Weinbrand, Lina; Barash, Danny

    2015-01-01

    Determining the RNA secondary structure from sequence data by computational predictions is a long-standing problem. Its solution has been approached in two distinctive ways. If a multiple sequence alignment of a collection of homologous sequences is available, the comparative method uses phylogeny to determine conserved base pairs that are more likely to form as a result of billions of years of evolution than by chance. In the case of single sequences, recursive algorithms that compute free energy structures by using empirically derived energy parameters have been developed. This latter approach of RNA folding prediction by energy minimization is widely used to predict RNA secondary structure from sequence. For a significant number of RNA molecules, the secondary structure of the RNA molecule is indicative of its function and its computational prediction by minimizing its free energy is important for its functional analysis. A general method for free energy minimization to predict RNA secondary structures is dynamic programming, although other optimization methods have been developed as well along with empirically derived energy parameters. In this chapter, we introduce and illustrate by examples the approach of free energy minimization to predict RNA secondary structures.

  4. Canonical Primal-Dual Method for Solving Non-convex Minimization Problems

    OpenAIRE

    Wu, Changzhi; Li, Chaojie; Gao, David Yang

    2012-01-01

    A new primal-dual algorithm is presented for solving a class of non-convex minimization problems. This algorithm is based on canonical duality theory such that the original non-convex minimization problem is first reformulated as a convex-concave saddle point optimization problem, which is then solved by a quadratically perturbed primal-dual method. %It is proved that the popular SDP method is indeed a special case of the canonical duality theory. Numerical examples are illustrated. Comparing...

  5. A strategy to find minimal energy nanocluster structures.

    Science.gov (United States)

    Rogan, José; Varas, Alejandro; Valdivia, Juan Alejandro; Kiwi, Miguel

    2013-11-05

    An unbiased strategy to search for the global and local minimal energy structures of free standing nanoclusters is presented. Our objectives are twofold: to find a diverse set of low lying local minima, as well as the global minimum. To do so, we use massively the fast inertial relaxation engine algorithm as an efficient local minimizer. This procedure turns out to be quite efficient to reach the global minimum, and also most of the local minima. We test the method with the Lennard-Jones (LJ) potential, for which an abundant literature does exist, and obtain novel results, which include a new local minimum for LJ13 , 10 new local minima for LJ14 , and thousands of new local minima for 15≤N≤65. Insights on how to choose the initial configurations, analyzing the effectiveness of the method in reaching low-energy structures, including the global minimum, are developed as a function of the number of atoms of the cluster. Also, a novel characterization of the potential energy surface, analyzing properties of the local minima basins, is provided. The procedure constitutes a promising tool to generate a diverse set of cluster conformations, both two- and three-dimensional, that can be used as an input for refinement by means of ab initio methods. Copyright © 2013 Wiley Periodicals, Inc.

  6. Discretized energy minimization in a wave guide with point sources

    Science.gov (United States)

    Propst, G.

    1994-01-01

    An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.

  7. Minimizing the Energy Consumption in ‎Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammed Saad Talib

    2017-12-01

    Full Text Available Energy in Wireless Sensor networks (WSNs represents an essential factor in designing, controlling and operating the sensor networks. Minimizing the consumed energy in WSNs application is a crucial issue for the network effectiveness and efficiency in terms of lifetime, cost and operation. Number of algorithms and protocols were proposed and implemented to decrease the energy consumption. WSNs operate with battery powered sensors. Sensors batteries have not easily rechargeable even though having restricted power. Frequently the network failure occurs due to the sensors energy insufficiency. MAC protocols in WSNs achieved low duty-cycle by employing periodic sleep and wakeup. Predictive Wakeup MAC (PW-MAC protocol was made use of the asynchronous duty cycling. It reduces the consumption of the node energy by allowing the senders to predict the receiver′s wakeup times. The WSN must be applied in an efficient manner to utilize the sensor nodes and their energy to ensure efficient network throughput. Prediction of the WSN lifetime previously to its installation represents a significant concern. To ensure energy efficiency the sensors duty cycles must be adjusted appropriately to meet the network traffic demands. The energy consumed in each node due to its switching between the active and the idle states were also estimated. The sensors are assumed to be randomly deployed. This paper aims to improve the randomly deployed network lifetime by scheduling the effects of transmission, reception and sleep states on the sensor node energy consumption. Results for these states with many performance metrics were also studied and discussed

  8. Energy minimization in medical image analysis: Methodologies and applications.

    Science.gov (United States)

    Zhao, Feng; Xie, Xianghua

    2016-02-01

    Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety of optimization schemes have been developed. In this paper, we present a comprehensive survey of the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories: continuous method and discrete method. The former includes Newton-Raphson method, gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-reweighted message passing method, linear programming method, maximum margin learning method, simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface method, primal-dual method, and the multi-objective optimization method. In addition, we review several comparative studies that evaluate the performance of different minimization techniques in terms of accuracy, efficiency, or complexity. These optimization techniques are widely used in many medical applications, for example, image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an overview on those applications as well. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Nuclear energy: Promise and problems

    International Nuclear Information System (INIS)

    Richter, B.

    2005-01-01

    Nuclear energy is having a renaissance driven by both old fashioned supply and demand, and environmental concerns. Oil and gas prices have exploded and show no signs of returning to the levels of only a few years ago. Coal is not in short supply, but the pollution it generates has severe economic and health consequences. Concern about greenhouse gases and global warming has caused the environmental movement to begin a reassessment of the role of nuclear in the world's energy portfolio. The full potential of nuclear energy will be achieved only if governments and the public are satisfied that it is safe, that the radioactive waste can be safely disposed of, and that the risk of the proliferation of nuclear weapons is low. The first criterion has been met with designs that are inherently safer than current LWRs, primarily through design simplification, reducing the number of critical components, and advanced control and monitoring technologies. Operating safety has to be assured through good practices and a rigorous, independent inspection process. The second criterion, waste disposal, is a problem where the science and technology (S and T) communities have the primary role in a solution. Many believe that it is solved in principle, but there has as yet been no solution in practice. I will report on where I think we have gotten and what needs to be done. The third criterion, proliferation resistance, is one that the S and T communities cannot solve on their own. The best that S and T can do is to make proliferation difficult, and to make sure that any attempts are discovered early. The rest can be handled only by enforceable international agreements. Safeguards technology needs more attention. (author)

  10. On the minimizers of calculus of variations problems in Hilbert spaces

    KAUST Repository

    Gomes, Diogo A.

    2014-01-19

    The objective of this paper is to discuss existence, uniqueness and regularity issues of minimizers of one dimensional calculus of variations problem in Hilbert spaces. © 2014 Springer-Verlag Berlin Heidelberg.

  11. Minimizers of a Class of Constrained Vectorial Variational Problems: Part I

    KAUST Repository

    Hajaiej, Hichem; Markowich, Peter A.; Trabelsi, Saber

    2014-01-01

    In this paper, we prove the existence of minimizers of a class of multiconstrained variational problems. We consider systems involving a nonlinearity that does not satisfy compactness, monotonicity, neither symmetry properties. Our approach hinges

  12. On the minimizers of calculus of variations problems in Hilbert spaces

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon

    2014-01-01

    The objective of this paper is to discuss existence, uniqueness and regularity issues of minimizers of one dimensional calculus of variations problem in Hilbert spaces. © 2014 Springer-Verlag Berlin Heidelberg.

  13. Energy supply - a global problem

    International Nuclear Information System (INIS)

    Rittstieg, G.

    1980-12-01

    A briefly commented data collection is presented. The following diagrams are related to energy requirements and consumption as well as primary energy reserves. Finally some comments referring to nuclear energy are given. (UA) [de

  14. Energy problems in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Tasugi, Hirosaburo [Japan Industrial Tech. Association, Tokyo, Japan

    1989-06-20

    In order to rid the people's living of poverty in developing countries, first, the production of food has been planned to increase. And then, resource development and industrialization have been tried to improve with efforts. Because of such development and an increase in population, energy consumption has been increasing. Advanced countries have supported these countries in many ways, however, there is much difference in their assistance depend on various situations such as racial, religious, and political ones. Moreover, a gap between cities and farm villages has widen since infrastructure has not been fully equipped in developing countries. The electrification ratio is used as an index to show the degree of development in developing countries. It is low in the countries where development is lagging, particularly in farm villages. This gap is an urgent problem that faces developing countries. In order to cope with the actual conditions, advanced countries including Japan should be plan to reinforce their technological and economic assistance more suitable for farm villages. Furthermore, they should also improve the assistance system which includes a measure for environmental pollution control, considering the spot directly. 3 figs., 14 tabs.

  15. Cooperative Content Distribution over Wireless Networks for Energy and Delay Minimization

    KAUST Repository

    Atat, Rachad

    2012-06-01

    Content distribution with mobile-to-mobile cooperation is studied. Data is sent to mobile terminals on a long range link then the terminals exchange the content using an appropriate short range wireless technology. Unicasting and multicasting are investigated, both on the long range and short range links. Energy minimization is formulated as an optimization problem for each scenario, and the optimal solutions are determined in closed form. Moreover, the schemes are applied in public safety vehicular networks, where Long Term Evolution (LTE) network is used for the long range link, while IEEE 802.11 p is considered for inter-vehicle collaboration on the short range links. Finally, relay-based multicasting is applied in high speed trains for energy and delay minimization. Results show that cooperative schemes outperform non-cooperative ones and other previous related work in terms of energy and delay savings. Furthermore, practical implementation aspects of the proposed methods are also discussed.

  16. Interactive seismic interpretation with piecewise global energy minimization

    KAUST Repository

    Hollt, Thomas

    2011-03-01

    Increasing demands in world-wide energy consumption and oil depletion of large reservoirs have resulted in the need for exploring smaller and more complex oil reservoirs. Planning of the reservoir valorization usually starts with creating a model of the subsurface structures, including seismic faults and horizons. However, seismic interpretation and horizon tracing is a difficult and error-prone task, often resulting in hours of work needing to be manually repeated. In this paper, we propose a novel, interactive workflow for horizon interpretation based on well positions, which include additional geological and geophysical data captured by actual drillings. Instead of interpreting the volume slice-by-slice in 2D, we propose 3D seismic interpretation based on well positions. We introduce a combination of 2D and 3D minimal cost path and minimal cost surface tracing for extracting horizons with very little user input. By processing the volume based on well positions rather than slice-based, we are able to create a piecewise optimal horizon surface at interactive rates. We have integrated our system into a visual analysis platform which supports multiple linked views for fast verification, exploration and analysis of the extracted horizons. The system is currently being evaluated by our collaborating domain experts. © 2011 IEEE.

  17. Interactive seismic interpretation with piecewise global energy minimization

    KAUST Repository

    Hollt, Thomas; Beyer, Johanna; Gschwantner, Fritz M.; Muigg, Philipp; Doleisch, Helmut; Heinemann, Gabor F.; Hadwiger, Markus

    2011-01-01

    Increasing demands in world-wide energy consumption and oil depletion of large reservoirs have resulted in the need for exploring smaller and more complex oil reservoirs. Planning of the reservoir valorization usually starts with creating a model of the subsurface structures, including seismic faults and horizons. However, seismic interpretation and horizon tracing is a difficult and error-prone task, often resulting in hours of work needing to be manually repeated. In this paper, we propose a novel, interactive workflow for horizon interpretation based on well positions, which include additional geological and geophysical data captured by actual drillings. Instead of interpreting the volume slice-by-slice in 2D, we propose 3D seismic interpretation based on well positions. We introduce a combination of 2D and 3D minimal cost path and minimal cost surface tracing for extracting horizons with very little user input. By processing the volume based on well positions rather than slice-based, we are able to create a piecewise optimal horizon surface at interactive rates. We have integrated our system into a visual analysis platform which supports multiple linked views for fast verification, exploration and analysis of the extracted horizons. The system is currently being evaluated by our collaborating domain experts. © 2011 IEEE.

  18. Energy Issues and Problems in Developing Countries

    International Nuclear Information System (INIS)

    Mehdizadeh, Saeed

    1999-01-01

    In general, the developing countries due to changes in supply and demand for energy in the world, are facing several problems, such as: 1. Energy growth. 2.Energy consumption 3.Environmental protection. The objective of this paper is to study the problems caused by the increase in the energy consumption of the developing countries. also several guideline and solution schemes are recommended for these problems

  19. Energy Hub’s Structural and Operational Optimization for Minimal Energy Usage Costs in Energy Systems

    Directory of Open Access Journals (Sweden)

    Thanh Tung Ha

    2018-03-01

    Full Text Available The structural and optimal operation of an Energy Hub (EH has a tremendous influence on the hub’s performance and reliability. This paper envisions an innovative methodology that prominently increases the synergy between structural and operational optimization and targets system cost affordability. The generalized energy system structure is presented theoretically with all selective hub sub-modules, including electric heater (EHe and solar sources block sub-modules. To minimize energy usage cost, an energy hub is proposed that consists of 12 kinds of elements (i.e., energy resources, conversion, and storage functions and is modeled mathematically in a General Algebraic Modeling System (GAMS, which indicates the optimal hub structure’s corresponding elements with binary variables (0, 1. Simulation results contrast with 144 various scenarios established in all 144 categories of hub structures, in which for each scenario the corresponding optimal operation cost is previously calculated. These case studies demonstrate the effectiveness of the suggested model and methodology. Finally, avenues for future research are also prospected.

  20. Minimizers of a Class of Constrained Vectorial Variational Problems: Part I

    KAUST Repository

    Hajaiej, Hichem

    2014-04-18

    In this paper, we prove the existence of minimizers of a class of multiconstrained variational problems. We consider systems involving a nonlinearity that does not satisfy compactness, monotonicity, neither symmetry properties. Our approach hinges on the concentration-compactness approach. In the second part, we will treat orthogonal constrained problems for another class of integrands using density matrices method. © 2014 Springer Basel.

  1. Minimization of Linear Functionals Defined on| Solutions of Large-Scale Discrete Ill-Posed Problems

    DEFF Research Database (Denmark)

    Elden, Lars; Hansen, Per Christian; Rojas, Marielba

    2003-01-01

    The minimization of linear functionals de ned on the solutions of discrete ill-posed problems arises, e.g., in the computation of con dence intervals for these solutions. In 1990, Elden proposed an algorithm for this minimization problem based on a parametric-programming reformulation involving...... the solution of a sequence of trust-region problems, and using matrix factorizations. In this paper, we describe MLFIP, a large-scale version of this algorithm where a limited-memory trust-region solver is used on the subproblems. We illustrate the use of our algorithm in connection with an inverse heat...

  2. Energy problems in latin america.

    Science.gov (United States)

    Goldemberg, J

    1984-03-30

    Present energy consumption patterns, known reserves of conventional energy sources (oil, gas, coal, and hydroelectricity), and the impact of the oil crisis on the oil-importing countries of Latin America are discussed. New approaches to energy use, including improvements on end-use efficiency, fuel substitutions, nonconventional energy sources, and changes in consumption patterns, are important. Of particular significance are the alcohol program in Brazil and the possibilities for increased use of hydroelectricity. Investments needed to sustain a reasonable increase in production from conventional energy sources up to 1990 are presented.

  3. Scheduling stochastic two-machine flow shop problems to minimize expected makespan

    Directory of Open Access Journals (Sweden)

    Mehdi Heydari

    2013-07-01

    Full Text Available During the past few years, despite tremendous contribution on deterministic flow shop problem, there are only limited number of works dedicated on stochastic cases. This paper examines stochastic scheduling problems in two-machine flow shop environment for expected makespan minimization where processing times of jobs are normally distributed. Since jobs have stochastic processing times, to minimize the expected makespan, the expected sum of the second machine’s free times is minimized. In other words, by minimization waiting times for the second machine, it is possible to reach the minimum of the objective function. A mathematical method is proposed which utilizes the properties of the normal distributions. Furthermore, this method can be used as a heuristic method for other distributions, as long as the means and variances are available. The performance of the proposed method is explored using some numerical examples.

  4. Energy minimization strategies and renewable energy utilization for desalination: a review.

    Science.gov (United States)

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Segmentation of Synchrotron Radiation micro-Computed Tomography Images using Energy Minimization via Graph Cuts

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson A.M. [Federal University of Western Para (Brazil); Physics Institute, Rio de Janeiro State University (Brazil); Giusti, Alessandro [IDSIA (Dalle Molle Institute for Artificial Intelligence), University of Lugano (Switzerland); Almeida, Andre P. de, E-mail: apalmeid@gmail.com [Physics Institute, Rio de Janeiro State University (Brazil); Nuclear Engineering Program, Federal University of Rio de Janeiro (Brazil); Nogueira, Liebert; Braz, Delson [Nuclear Engineering Program, Federal University of Rio de Janeiro (Brazil); Almeida, Carlos E. de [Radiological Sciences Laboratory, Rio de Janeiro State University (Brazil); Barroso, Regina C. [Physics Institute, Rio de Janeiro State University (Brazil)

    2012-07-15

    The research on applications of segmentation algorithms to Synchrotron Radiation X-Ray micro-Computed Tomography (SR-{mu}CT) is an open problem, due to the interesting and well-known characteristics of SR images, such as the phase contrast effect. The Energy Minimization via Graph Cuts (EMvGC) algorithm represents state-of-art segmentation algorithm, presenting an enormous potential of application in SR-{mu}CT imaging. We describe the application of the algorithm EMvGC with swap move for the segmentation of bone images acquired at the ELETTRA Laboratory (Trieste, Italy). - Highlights: Black-Right-Pointing-Pointer Microstructures of Wistar rats' ribs are investigated with Synchrotron Radiation {mu}CT imaging. Black-Right-Pointing-Pointer The present work is part of a research on the effects of radiotherapy on the thoracic region. Black-Right-Pointing-Pointer Application of the Energy Minimization via Graph Cuts algorithm for segmentation is described.

  6. Segmentation of Synchrotron Radiation micro-Computed Tomography Images using Energy Minimization via Graph Cuts

    International Nuclear Information System (INIS)

    Meneses, Anderson A.M.; Giusti, Alessandro; Almeida, André P. de; Nogueira, Liebert; Braz, Delson; Almeida, Carlos E. de; Barroso, Regina C.

    2012-01-01

    The research on applications of segmentation algorithms to Synchrotron Radiation X-Ray micro-Computed Tomography (SR-μCT) is an open problem, due to the interesting and well-known characteristics of SR images, such as the phase contrast effect. The Energy Minimization via Graph Cuts (EMvGC) algorithm represents state-of-art segmentation algorithm, presenting an enormous potential of application in SR-μCT imaging. We describe the application of the algorithm EMvGC with swap move for the segmentation of bone images acquired at the ELETTRA Laboratory (Trieste, Italy). - Highlights: ► Microstructures of Wistar rats' ribs are investigated with Synchrotron Radiation μCT imaging. ► The present work is part of a research on the effects of radiotherapy on the thoracic region. ► Application of the Energy Minimization via Graph Cuts algorithm for segmentation is described.

  7. Numerical solution of large nonlinear boundary value problems by quadratic minimization techniques

    International Nuclear Information System (INIS)

    Glowinski, R.; Le Tallec, P.

    1984-01-01

    The objective of this paper is to describe the numerical treatment of large highly nonlinear two or three dimensional boundary value problems by quadratic minimization techniques. In all the different situations where these techniques were applied, the methodology remains the same and is organized as follows: 1) derive a variational formulation of the original boundary value problem, and approximate it by Galerkin methods; 2) transform this variational formulation into a quadratic minimization problem (least squares methods) or into a sequence of quadratic minimization problems (augmented lagrangian decomposition); 3) solve each quadratic minimization problem by a conjugate gradient method with preconditioning, the preconditioning matrix being sparse, positive definite, and fixed once for all in the iterative process. This paper will illustrate the methodology above on two different examples: the description of least squares solution methods and their application to the solution of the unsteady Navier-Stokes equations for incompressible viscous fluids; the description of augmented lagrangian decomposition techniques and their application to the solution of equilibrium problems in finite elasticity

  8. Facts and possibilities for the energy problem

    Energy Technology Data Exchange (ETDEWEB)

    Koch, E [Kernforschungszentrum Karlsruhe (Germany, F.R.). Abt. Bauwesen

    1977-01-01

    After the oil crisis, all countries have become more aware of the energy problem. The economic dictate of OPEC countries must be counteracted at least by a partial self-supply with energy. The article deals with a few selected, realistic developments on the energy sector. Among others, the following facts are discussed: pretroleum reserves in the FRG, coal liquefaction, efficiency of thermal power plants, alternative projects for nuclear energy, reprocessing of nuclear waste, and problems of nuclear waste storage.

  9. Minimizing the Total Service Time of Discrete Dynamic Berth Allocation Problem by an Iterated Greedy Heuristic

    Science.gov (United States)

    2014-01-01

    Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set. PMID:25295295

  10. Minimizing the Total Service Time of Discrete Dynamic Berth Allocation Problem by an Iterated Greedy Heuristic

    Directory of Open Access Journals (Sweden)

    Shih-Wei Lin

    2014-01-01

    Full Text Available Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP, which aims to minimize total service time, and proposes an iterated greedy (IG algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set.

  11. Energy problems in a global view

    International Nuclear Information System (INIS)

    Dubois, J.-E.

    1976-01-01

    Energy problems in general are examined, considering first the ecosystem of pre-Newtonian societies, then that of industrial societies and their resulting energy consumptions. Primary energy sources are listed and the manner in which they are used is described. New techniques (uranium isotope separation, energy conversion, solar energy, controlled fusion) are discussed as a function of their potential saving in energy expenditure. Solutions are proposed for the future of post-industrial societies [fr

  12. Attitude to nuclear energy problems

    International Nuclear Information System (INIS)

    Danzmann, H.J.

    1975-01-01

    Two methods are dealt with which show the dialectic shrewdness of some of the active nuclear energy opponents in their attempt to influence opinions. By means of examples of quotations from lectures of recognized scientists (v. Weizsaecker, Teller, Heisenberg, Winnacker) which are torn out of their context, the public are deliberately misled by a few demagogic nuclear power critics. (HP/LH) [de

  13. Solving Minimal Covering Location Problems with Single and Multiple Node Coverage

    Directory of Open Access Journals (Sweden)

    Darko DRAKULIĆ

    2016-12-01

    Full Text Available Location science represents a very attractiveresearch field in combinatorial optimization and it is in expansion in last five decades. The main objective of location problems is determining the best position for facilities in a given set of nodes.Location science includes techniques for modelling problemsand methods for solving them. This paper presents results of solving two types of minimal covering location problems, with single and multiple node coverage, by using CPLEX optimizer and Particle Swarm Optimization method.

  14. Analytical solution and experimental validation of the energy management problem for fuel cell hybrid vehicles

    NARCIS (Netherlands)

    P.P.J. van den Bosch; Edwin Tazelaar; M. Grimminck; Stijn Hoppenbrouwers; Bram Veenhuizen

    2011-01-01

    The objective of an energy management strategy for fuel cell hybrid propulsion systems is to minimize the fuel needed to provide the required power demand. This minimization is defined as an optimization problem. Methods such as dynamic programming numerically solve this optimization problem.

  15. Sensitivity computation of the l1 minimization problem and its application to dictionary design of ill-posed problems

    International Nuclear Information System (INIS)

    Horesh, L; Haber, E

    2009-01-01

    The l 1 minimization problem has been studied extensively in the past few years. Recently, there has been a growing interest in its application for inverse problems. Most studies have concentrated in devising ways for sparse representation of a solution using a given prototype dictionary. Very few studies have addressed the more challenging problem of optimal dictionary construction, and even these were primarily devoted to the simplistic sparse coding application. In this paper, sensitivity analysis of the inverse solution with respect to the dictionary is presented. This analysis reveals some of the salient features and intrinsic difficulties which are associated with the dictionary design problem. Equipped with these insights, we propose an optimization strategy that alleviates these hurdles while utilizing the derived sensitivity relations for the design of a locally optimal dictionary. Our optimality criterion is based on local minimization of the Bayesian risk, given a set of training models. We present a mathematical formulation and an algorithmic framework to achieve this goal. The proposed framework offers the design of dictionaries for inverse problems that incorporate non-trivial, non-injective observation operators, where the data and the recovered parameters may reside in different spaces. We test our algorithm and show that it yields improved dictionaries for a diverse set of inverse problems in geophysics and medical imaging

  16. Sensitivity computation of the ell1 minimization problem and its application to dictionary design of ill-posed problems

    Science.gov (United States)

    Horesh, L.; Haber, E.

    2009-09-01

    The ell1 minimization problem has been studied extensively in the past few years. Recently, there has been a growing interest in its application for inverse problems. Most studies have concentrated in devising ways for sparse representation of a solution using a given prototype dictionary. Very few studies have addressed the more challenging problem of optimal dictionary construction, and even these were primarily devoted to the simplistic sparse coding application. In this paper, sensitivity analysis of the inverse solution with respect to the dictionary is presented. This analysis reveals some of the salient features and intrinsic difficulties which are associated with the dictionary design problem. Equipped with these insights, we propose an optimization strategy that alleviates these hurdles while utilizing the derived sensitivity relations for the design of a locally optimal dictionary. Our optimality criterion is based on local minimization of the Bayesian risk, given a set of training models. We present a mathematical formulation and an algorithmic framework to achieve this goal. The proposed framework offers the design of dictionaries for inverse problems that incorporate non-trivial, non-injective observation operators, where the data and the recovered parameters may reside in different spaces. We test our algorithm and show that it yields improved dictionaries for a diverse set of inverse problems in geophysics and medical imaging.

  17. New Zealand faces energy problems

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    New Zealand's known reserves of petroleum are rapidly depleting and yet, with an expanding economy, overall energy demand is expected to grow by 1.4 per cent per annum over the next 30 years. The difficulties centre on New Zealand's dependence on natural gas. Built up over the last 15-20 years, gas has become a key component in electricity generation, transport fuels (both as compressed natural gas and the synthesis of gasoline), and in the manufacture of petrochemicals as well as its use as a domestic and industrial fuel. But known reserves are limited. Latest assessments of economically recoverable reserves, albeit conservative, suggest that indigenous gas supply will last until about 2016. Competition among the major users is expected to begin to push up market prices by 2005, and at higher prices some of the current applications will simply stop. It is suggested, for instance, that the synfuels and petrochemical plants are unlikely to operate after 2008. Other gas customers will continue by becoming more energy efficient and some, depending on environmental pressures, will shift to coal, fuel oil and alternative sources like geothermal power. But perhaps the most interesting outcome -particularly for gas rich countries like Australia - is the possibility of New Zealand importing natural gas during the first decades of the new century in the form of liquefied natural gas. (author)

  18. Sahel energy problems and firewood

    Energy Technology Data Exchange (ETDEWEB)

    Joffre, J

    1981-08-01

    In many developing countries and especially in Sahel, almost all the consumed firewood is used for combustion. The wood share in the energy supply in Sahel countries represents from 60 to more than 90% of their total energy consumption. Firewood in domestic use has a leading part. The studies carried out in 2 Malian villages and 3 Nigerian villages allows us to situate the firewood consumption between 1 and 1.5 kg per person per day for meal cooking, which corresponds to the magnitude found at the time of the previous studies in rural areas as well as in urban ones. The actual production of the Sahel forest is remaining ill known but with the increase in population, this production becomes at times inadequate and the firewood needs risk the total destruction of the Sahel forest heritage. The substitution for firewood by fuel oil is more than ever impossible for Sahel households. No miracle solution seems to exist but the remarks of many experts allow us to draw three solutions which could be complementary.

  19. Power allocation strategies to minimize energy consumption in wireless body area networks.

    Science.gov (United States)

    Kailas, Aravind

    2011-01-01

    The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency.

  20. Energy-efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted ℓ₁ minimization reconstruction.

    Science.gov (United States)

    Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing

    2015-03-01

    Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission.

  1. Problems of environment pollution in energy production

    International Nuclear Information System (INIS)

    Soyberk, Oe.

    2000-01-01

    This publication relates to nuclear fuel cycle and environment, nuclear accidents, risk analysis, test of nuclear weapon, security problems of nuclear power plants, advantages and disadvantages of energy sources, climate variation due to environment pollution

  2. Energy Efficient Smartphones: Minimizing the Energy Consumption of Smartphone GPUs using DVFS Governors

    KAUST Repository

    Ahmad, Enas M.

    2013-05-15

    Modern smartphones are being designed with increasing processing power, memory capacity, network communication, and graphics performance. Although all of these features are enriching and expanding the experience of a smartphone user, they are significantly adding an overhead on the limited energy of the battery. This thesis aims at enhancing the energy efficiency of modern smartphones and increasing their battery life by minimizing the energy consumption of smartphones Graphical Processing Unit (GPU). Smartphone operating systems are becoming fully hardware-accelerated, which implies relying on the GPU power for rendering all application graphics. In addition, the GPUs installed in smartphones are becoming more and more powerful by the day. This raises an energy consumption concern. We present a novel implementation of GPU Scaling Governors, a Dynamic Voltage and Frequency Scaling (DVFS) scheme implemented in the Android kernel to dynamically scale the GPU. The scheme includes four main governors: Performance, Powersave, Ondmand, and Conservative. Unlike previous studies which looked into the power efficiency of mobile GPUs only through simulation and power estimations, we have implemented our approach on a real modern smartphone GPU, and acquired actual energy measurements using an external power monitor. Our results show that the energy consumption of smartphones can be reduced up to 15% using the Conservative governor in 2D rendering mode, and up to 9% in 3D rendering mode, with minimal effect on the performance.

  3. Trade unionist looks at energy problems

    International Nuclear Information System (INIS)

    Abel, I.W.

    1976-01-01

    Mr. Abel suggests American society use a technique applied in labor-management relations to attack the energy problem--that of finding facts. He indicates that when the leadership of the trade unions has the facts and has gained some perspective, it will be better able to help with the energy problem. He says that the labor movement had not been thinking about the energy problem, but they, like almost everyone else, assumed cheap and abundant energy was unlimited. The labor movement is not committed to a scenario of ''no growth,'' and the experience and inclinations of labor support a belief that the production of nuclear energy is basically safe--in a basically unsafe world. Answers to five questions were hoped to be gained from the conference; is nuclear energy reasonably safe; is nuclear energy a viable source of energy supply in the short run and in the long run; what is the relationship between the future production of greater supplies of nuclear energy and the economic goals of prosperity and full employment; what needs to be done, in the Congress, in the executive branch of government, and in the states and cities, to assure a plentiful supply of energy for homes, commerce, and industry; and how to strike a happy balance between the real need to protect the environment and the economic system

  4. Reflections on the surface energy imbalance problem

    Science.gov (United States)

    Ray Leuning; Eva van Gorsela; William J. Massman; Peter R. Isaac

    2012-01-01

    The 'energy imbalance problem' in micrometeorology arises because at most flux measurement sites the sum of eddy fluxes of sensible and latent heat (H + λE) is less than the available energy (A). Either eddy fluxes are underestimated or A is overestimated. Reasons for the imbalance are: (1) a failure to satisfy the fundamental assumption of one-...

  5. A novel discrete PSO algorithm for solving job shop scheduling problem to minimize makespan

    Science.gov (United States)

    Rameshkumar, K.; Rajendran, C.

    2018-02-01

    In this work, a discrete version of PSO algorithm is proposed to minimize the makespan of a job-shop. A novel schedule builder has been utilized to generate active schedules. The discrete PSO is tested using well known benchmark problems available in the literature. The solution produced by the proposed algorithms is compared with best known solution published in the literature and also compared with hybrid particle swarm algorithm and variable neighborhood search PSO algorithm. The solution construction methodology adopted in this study is found to be effective in producing good quality solutions for the various benchmark job-shop scheduling problems.

  6. Present day problems concerning the energy industry

    International Nuclear Information System (INIS)

    Hecker, G.

    1978-01-01

    Problems of the regional energy supply industry touching directly the energy supply utilities (e.g. territorial reform, power prices) are discussed. In a survey on the overall energy situation in the FRG as seen by energy supply utilities, the following conclusions are drawn: 1) The electricity supply industry is in the favourite position to make the required structural changes by utilizing primary energy for generating electric power. It offers - via electric energy - an effective opportunity for substituting oil. 2) The electricity supply industry alone will be in a position to use nuclear energy during the next few decades. A decision in favour of nuclear energy must not be at disposal to make oneself momentarily politically popular. This indispensable decision results exclusively from our responsibility for the future of our national economy and thus our society. (orig./HP) [de

  7. Predicting Consensus Structures for RNA Alignments Via Pseudo-Energy Minimization

    Directory of Open Access Journals (Sweden)

    Junilda Spirollari

    2009-01-01

    Full Text Available Thermodynamic processes with free energy parameters are often used in algorithms that solve the free energy minimization problem to predict secondary structures of single RNA sequences. While results from these algorithms are promising, an observation is that single sequence-based methods have moderate accuracy and more information is needed to improve on RNA secondary structure prediction, such as covariance scores obtained from multiple sequence alignments. We present in this paper a new approach to predicting the consensus secondary structure of a set of aligned RNA sequences via pseudo-energy minimization. Our tool, called RSpredict, takes into account sequence covariation and employs effective heuristics for accuracy improvement. RSpredict accepts, as input data, a multiple sequence alignment in FASTA or ClustalW format and outputs the consensus secondary structure of the input sequences in both the Vienna style Dot Bracket format and the Connectivity Table format. Our method was compared with some widely used tools including KNetFold, Pfold and RNAalifold. A comprehensive test on different datasets including Rfam sequence alignments and a multiple sequence alignment obtained from our study on the Drosophila X chromosome reveals that RSpredict is competitive with the existing tools on the tested datasets. RSpredict is freely available online as a web server and also as a jar file for download at http:// datalab.njit.edu/biology/RSpredict.

  8. Climate change policy is an energy problem

    International Nuclear Information System (INIS)

    Green, C.; Lightfoot, H.D.

    1999-01-01

    In an important respect the climate change (global warming) problem is an energy problem. Any policy aimed at substantially reducing greenhouse gas (GHG) emissions will require large amounts of carbon free energy as substitutes for fossil fuels. No conceivable rates of improvement in energy efficiency and/or changes in lifestyles will obviate the need for vast amounts of carbon free energy if GHG emissions are to be reduced and the atmospheric concentration of carbon eventually stabilized. Where will such large amounts of carbon free energy come from? The renewable energies (solar, wind, biomass) are dilute and enormously land-using. Their potential contribution is seemingly limited in a world in which competing demands for land for food production, living space, leisure activities, ecological preserve, and natural resource production are increasing. Nuclear energy is controversial (fission) or problematic (fusion). Fuel cells require hydrogen which must be produced using some other form of energy. Tapping the earth's mantle with its vast amount of geothermal energy may be a future possibility. The present limitations of existing alternatives to fossil fuels suggest climate change policy should focus to a greater extent on what 'can' be done, rather than the present emphasis on what 'should' be done. Once refocused, the aim of climate policy should be to spur a decades long search for and development of new carbon free energy sources and technologies capable of displacing fossil fuels and of eventually meeting the world's baseload energy requirements. (author)

  9. A constrained optimization algorithm for total energy minimization in electronic structure calculations

    International Nuclear Information System (INIS)

    Yang Chao; Meza, Juan C.; Wang Linwang

    2006-01-01

    A new direct constrained optimization algorithm for minimizing the Kohn-Sham (KS) total energy functional is presented in this paper. The key ingredients of this algorithm involve projecting the total energy functional into a sequence of subspaces of small dimensions and seeking the minimizer of total energy functional within each subspace. The minimizer of a subspace energy functional not only provides a search direction along which the KS total energy functional decreases but also gives an optimal 'step-length' to move along this search direction. Numerical examples are provided to demonstrate that this new direct constrained optimization algorithm can be more efficient than the self-consistent field (SCF) iteration

  10. Free energy minimization and information gain: The devil is in the details

    NARCIS (Netherlands)

    Kwisthout, J.H.P.; Rooij, I.J.E.I. van

    2015-01-01

    Contrary to Friston's previous work, this paper describes free energy minimization using categorical probability distributions over discrete states. This alternative mathematical framework exposes a fundamental, yet unnoticed challenge for the free energy principle. When considering discrete state

  11. Energy problem and harmony in international relations

    International Nuclear Information System (INIS)

    Ogata, Akira

    1975-01-01

    Energy problems and harmony in international relation are closely related with world politics. Oil is destined to remain as the primary energy source for the time being. The situation of oil has different implications to the U.S. and U.S.S.R., oil producing countries, and consumer countries. The hasty attitude in the past to attain energy sufficiency must be avoided by all means. Congenial harmony is to be established in international relation to meet world energy requirement. This also applies to the case of nuclear power in future. (Mori, K.)

  12. Mathematical models for a batch scheduling problem to minimize earliness and tardiness

    Directory of Open Access Journals (Sweden)

    Basar Ogun

    2018-05-01

    Full Text Available Purpose: Today’s manufacturing facilities are challenged by highly customized products and just in time manufacturing and delivery of these products. In this study, a batch scheduling problem is addressed to provide on-time completion of customer orders in the environment of lean manufacturing. The problem is to optimize partitioning of product components into batches and scheduling of the resulting batches where each customer order is received as a set of products made of various components. Design/methodology/approach: Three different mathematical models for minimization of total earliness and tardiness of customer orders are developed to provide on-time completion of customer orders and also, to avoid from inventory of final products. The first model is a non-linear integer programming model while the second is a linearized version of the first. Finally, to solve larger sized instances of the problem, an alternative linear integer model is presented. Findings: Computational study using a suit set of test instances showed that the alternative linear integer model is able to solve all test instances in varying sizes within quite shorter computer times comparing to the other two models. It was also showed that the alternative model can solve moderate sized real-world problems. Originality/value: The problem under study differentiates from existing batch scheduling problems in the literature since it includes new circumstances which may arise in real-world applications. This research, also, contributes the literature of batch scheduling problem by presenting new optimization models.

  13. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    Science.gov (United States)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  14. Exact and Heuristic Solutions to Minimize Total Waiting Time in the Blood Products Distribution Problem

    Directory of Open Access Journals (Sweden)

    Amir Salehipour

    2012-01-01

    Full Text Available This paper presents a novel application of operations research to support decision making in blood distribution management. The rapid and dynamic increasing demand, criticality of the product, storage, handling, and distribution requirements, and the different geographical locations of hospitals and medical centers have made blood distribution a complex and important problem. In this study, a real blood distribution problem containing 24 hospitals was tackled by the authors, and an exact approach was presented. The objective of the problem is to distribute blood and its products among hospitals and medical centers such that the total waiting time of those requiring the product is minimized. Following the exact solution, a hybrid heuristic algorithm is proposed. Computational experiments showed the optimal solutions could be obtained for medium size instances, while for larger instances the proposed hybrid heuristic is very competitive.

  15. Thermodynamic analysis of environmental problems of energy

    Directory of Open Access Journals (Sweden)

    Kaganovich Boris M.

    2017-01-01

    Full Text Available The paper discusses the problems of the ecological analysis of physicochemical processes in power units and the impact of energy systems on the nature in large territorial regions. The model of extreme intermediate states developed at the Energy Systems Institute based on the principles of classical equilibrium thermodynamics was chosen to devise specific computational methods. The results of the conducted studies are presented and directions for further work are outlined.

  16. The problem of valuing new energy technologies

    International Nuclear Information System (INIS)

    Awerbuch, Shimon.

    1996-01-01

    A brief editorial outlines the concepts and challenges facing the valuation of modular, renewable energy technologies which are covered in a special issue of ''Energy Policy''. The main problem is the narrowness of the traditional discounted cash flow analysis for valuing such projects when some of the benefits (e.g. flexibility, financial risk, reduction in overhead and indirect costs) are not fully recognized at the outset. (UK)

  17. A physicist's views on energy problems

    International Nuclear Information System (INIS)

    Revol, Ch.J.P.

    2003-01-01

    The energy problem is one of the most serious challenges facing our civilization. The issue is not whether there are sufficient energy resources in the short- or medium-term, even though world consumption is already considerable, but rather how can we satisfy the world's current and future energy requirements without compromising the planet's ecological balance and how can we ensure an equitable distribution of an acceptable level of energy resources between all countries, including developing countries? The problem has now become a worldwide one with consequences that are also world-wide. The developed countries have lost control of the Earth's ecological future. In 1990 the developing countries consumed only a quarter of the world's energy resources. By 2020 they will already be consuming 60 %. New environmental) friendly technologies will have to be invented to produce sufficient energy at competitive prices. It is not just in the interests of the developed countries to help developing countries to acquire these new technologies, it is also their moral duty to do so. Any injunction to the developing countries not to burn coal and oil as we have done to date would be indefensible. Nuclear energy appears to be one of the possible ways of combating global warming since it produces no CO 2 and is currently the only source or energy capable of meeting demand for several centuries at least. This is the general background to the proposal of Carlo Rubbia and his team of CERN physicists for a new way of exploiting nuclear fission energy which addresses the question: can one imagine fission-based nuclear energy that would be acceptable to our society in other words, an ecological source of nuclear energy? (author)

  18. Probing gravitational non-minimal coupling with dark energy surveys

    International Nuclear Information System (INIS)

    Geng, Chao-Qiang; Lee, Chung-Chi; Wu, Yi-Peng

    2017-01-01

    We investigate observational constraints on a specific one-parameter extension to the minimal quintessence model, where the quintessence field acquires a quadratic coupling to the scalar curvature through a coupling constant ξ. The value of ξ is highly suppressed in typical tracker models if the late-time cosmic acceleration is driven at some field values near the Planck scale. We test ξ in a second class of models in which the field value today becomes a free model parameter. We use the combined data from type-Ia supernovae, cosmic microwave background, baryon acoustic oscillations and matter power spectrum, to weak lensing measurements and find a best-fit value ξ > 0.289 where ξ = 0 is excluded outside the 95% confidence region. The effective gravitational constant G_e_f_f subject to the hint of a non-zero ξ is constrained to -0.003 < 1 - G_e_f_f/G < 0.033 at the same confidence level on cosmological scales, and it can be narrowed down to 1 - G_e_f_f/G < 2.2 x 10"-"5 when combining with Solar System tests. (orig.)

  19. Probing gravitational non-minimal coupling with dark energy surveys

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Chao-Qiang [Chongqing University of Posts and Telecommunications, Chongqing (China); National Tsing Hua University, Department of Physics, Hsinchu (China); National Center for Theoretical Sciences, Hsinchu (China); Lee, Chung-Chi [National Center for Theoretical Sciences, Hsinchu (China); Wu, Yi-Peng [Academia Sinica, Institute of Physics, Taipei (China)

    2017-03-15

    We investigate observational constraints on a specific one-parameter extension to the minimal quintessence model, where the quintessence field acquires a quadratic coupling to the scalar curvature through a coupling constant ξ. The value of ξ is highly suppressed in typical tracker models if the late-time cosmic acceleration is driven at some field values near the Planck scale. We test ξ in a second class of models in which the field value today becomes a free model parameter. We use the combined data from type-Ia supernovae, cosmic microwave background, baryon acoustic oscillations and matter power spectrum, to weak lensing measurements and find a best-fit value ξ > 0.289 where ξ = 0 is excluded outside the 95% confidence region. The effective gravitational constant G{sub eff} subject to the hint of a non-zero ξ is constrained to -0.003 < 1 - G{sub eff}/G < 0.033 at the same confidence level on cosmological scales, and it can be narrowed down to 1 - G{sub eff}/G < 2.2 x 10{sup -5} when combining with Solar System tests. (orig.)

  20. An introduction to the dark energy problem

    Science.gov (United States)

    Dobado, Antonio; Maroto, Antonio L.

    2009-04-01

    In this work we review briefly the origin and history of the cosmological constant and its recent reincarnation in the form of the dark energy component of the universe. We also comment on the fundamental problems associated to its existence and magnitude which require an urgent solution for the sake of the internal consistency of theoretical physics.

  1. Poverty or progress: energy problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Gair, G F

    1977-12-25

    In a review of the presentations at the International Energy Agency meet in Paris in the fall of 1977, the author noted that 19 developed nations agreed on a program of 12 principles to provide the positive response that must be made to meet the energy problem. To succeed, the principles must reflect themselves as quickly as possible in the development of national policies--greater effort in conservation and efficient use of energy; new impetus into research and development; progressive easing of dependence upon imported oil; programs for greater public support for and involvement in energy economies. New Zealand signed participation in a wind energy research project and will support one in coal technology. It did not actively support nuclear energy development. With the depletion of liquid fuels for transportation purposes, problems are cited. New Zealand does have abundant geothermal and hydro as static energy supplies. New Zealand must make plans for domestic exploration for petroleum to cut down on the cost of imported oil. Plans for substantially increasing indigenous coal production and increasing natural gas supplies are reviewed. It is also the government's hope that the larger elements of the South Island manufactured gas industry can be maintained by the use of liquefied petroleum gas as a feedstock, providing that satisfactory transport and pricing can be arranged. (MCW)

  2. Perspectives of U.S. energy problems

    International Nuclear Information System (INIS)

    Kimel, W.R.

    In 1973 U.S. energy problems were brought dramatically into focus by the Arab oil embargo. A variety of bills passed by the Congress since that time and others that are under consideration do not adequately address our energy situation. To correct this situation the author believes free enterprise should be allowed to operate with as little regulation as possible to increase energy production using coal and nuclear as well as other 'soft' technologies. Conservation will also play an important role if economic factors are allowed to control logical implementation and application of energy saving techniques. Specifically, nuclear power must play a significant role because it has been proven economical, safe, dependable and the best energy source we know from an environmental perspective. (L.L.)

  3. Minimizing the water and air impacts of unconventional energy extraction

    Science.gov (United States)

    Jackson, R. B.

    2014-12-01

    Unconventional energy generates income and, done well, can reduce air pollution compared to other fossil fuels and even water use compared to fossil fuels and nuclear energy. Alternatively, it could slow the adoption of renewables and, done poorly, release toxic chemicals into water and air. Based on research to date, some primary threats to water resources come from surface spills, wastewater disposal, and drinking-water contamination through poor well integrity. For air resources, an increase in volatile organic compounds and air toxics locally is a potential health threat, but the switch from coal to natural gas for electricity generation will reduce sulfur, nitrogen, mercury, and particulate pollution regionally. Critical needs for future research include data for 1) estimated ultimate recovery (EUR) of unconventional hydrocarbons; 2) the potential for further reductions of water requirements and chemical toxicity; 3) whether unconventional resource development alters the frequency of well-integrity failures; 4) potential contamination of surface and ground waters from drilling and spills; and 5) the consequences of greenhouse gases and air pollution on ecosystems and human health.

  4. Energy problems and nuclear power in Japan

    International Nuclear Information System (INIS)

    Shirasawa, T.

    1980-01-01

    International petroleum situation maintains the balance between demand and supply for the time being, but hereafter, it seems to be more serious and uncertain. Japanese economy tided over the first oil crisis with difficulty, and moreover, responded to the second oil crisis after the Iranian revolution somehow or other. But oil price has continued to rise, and the acceleration of inflation, the serious depression of businesses and electric power crisis are feared. In Japan where the dependence on imported petroleum is as high as 75%, it is necessary to establish the long term energy policy making energy saving and the development of substitute energy as its mainstay. In August, 1979, the report concerning the interim prospect of long term energy demand and supply was made. Largest efforts will be exerted to reduce the oil import. Then the total demand of energy in 1985 will be 582 million kl calculated in terms of petroleum. The law concerning energy saving was enacted in June, 1979. As the substitute energy, imported coal, LNG and nuclear power generation should be adopted. However, in order to put these energies in practical use, many problems to be solved remain. 21 nuclear power plants of 14.9 million kW capacity are in operation, and provide with 12% of total power generation installations. 30 million kW of nuclear power generation will be attained by 1985. (Kako, I.)

  5. Nuclear energy and the greenhouse problem

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2001-01-01

    Last November - almost in parallel with the Hague Meeting on Climate Change - more than 1,500 of the world's top nuclear scientists and energy technologists met in Washington DC, at the Joint Conference of the American Nuclear Society, the European Nuclear Society, the Nuclear Energy Institute and the International Nuclear Energy Academy. Unlike the United Nations follow up to the Kyoto protocol, which ended in disarray, a note of high optimism and informed realism pervaded the nuclear conference which, among its multiple streams of subject material and papers by international experts, carried the two main themes of Long Term Globally Sustainable Energy Options and Nuclear Energy and the Greenhouse Problem. This paper considers the immense contribution to Greenhouse gas emission minimisation made by nuclear energy in 1999. In that year the global electricity production by the world's 435 nuclear power stations was 2,398 TWh or 16% of total electricity generation or 5% of total primary energy production. The amount of avoided carbon dioxide emission because of the use of nuclear energy in 1999 was 2.4 billion tonnes. This is 10% of total emissions. Japan's 54 nuclear power stations alone save the equivalent of Australia's total Greenhouse emissions. The secret of this success is Australia's uranium fuel

  6. A Comparative Study for Orthogonal Subspace Projection and Constrained Energy Minimization

    National Research Council Canada - National Science Library

    Du, Qian; Ren, Hsuan; Chang, Chein-I

    2003-01-01

    ...: orthogonal subspace projection (OSP) and constrained energy minimization (CEM). It is shown that they are closely related and essentially equivalent provided that the noise is white with large SNR...

  7. Regulatory problems relating to energy in Hungary

    International Nuclear Information System (INIS)

    Remenyi, K.

    2002-01-01

    One of basic problems of the transition in the energy economy is, how far the process of liberalisation and privatisation could go, i.e. to what extent the control of state/government would be given up, and how the breakdown of the commanding positions of the government would be managed. The transition in the energy sector toward a market economy is characterised by restructuring the regulatory framework of the energy industry, changing the operational structure of the sector and profound reshaping of ownership structures of the enterprises. In Hungary the government, being convinced of the importance of the implementation of the market forces, in 1991 made the first step on the way of restructuring the energy sector in order to increase economic efficiency, to enable companies to react to market forces and to privatise them. Parallel and partly after the restructuring, a profound modification of legal and regulatory framework took place and finally a relatively large scale of privatisation has newly emerged, which will continue in future, too. The process of the energy sector liberalisation in Hungary has a stop and go character and the game is not over. The process can be characterised by institutional restructuring in the energy sector (coal, oil/gas, power ), which is the basic condition for market liberalisation and privatisation, and by the creation of an appropriate environment (regulatory framework, pricing policy, etc. ) for the smooth implementation of the liberation process(author)

  8. The Use of Trust Regions in Kohn-Sham Total Energy Minimization

    International Nuclear Information System (INIS)

    Yang, Chao; Meza, Juan C.; Wang, Lin-wang

    2006-01-01

    The Self Consistent Field (SCF) iteration, widely used for computing the ground state energy and the corresponding single particle wave functions associated with a many-electron atomistic system, is viewed in this paper as an optimization procedure that minimizes the Kohn-Sham total energy indirectly by minimizing a sequence of quadratic surrogate functions. We point out the similarity and difference between the total energy and the surrogate, and show how the SCF iteration can fail when the minimizer of the surrogate produces an increase in the KS total energy. A trust region technique is introduced as a way to restrict the update of the wave functions within a small neighborhood of an approximate solution at which the gradient of the total energy agrees with that of the surrogate. The use of trust region in SCF is not new. However, it has been observed that directly applying a trust region based SCF(TRSCF) to the Kohn-Sham total energy often leads to slow convergence. We propose to use TRSCF within a direct constrained minimization(DCM) algorithm we developed in dcm. The key ingredients of the DCM algorithm involve projecting the total energy function into a sequence of subspaces of small dimensions and seeking the minimizer of the total energy function within each subspace. The minimizer of a subspace energy function, which is computed by TRSCF, not only provides a search direction along which the KS total energy function decreases but also gives an optimal 'step-length' that yields a sufficient decrease in total energy. A numerical example is provided to demonstrate that the combination of TRSCF and DCM is more efficient than SCF

  9. A procedure to compute equilibrium concentrations in multicomponent systems by Gibbs energy minimization on spreadsheets

    International Nuclear Information System (INIS)

    Lima da Silva, Aline; Heck, Nestor Cesar

    2003-01-01

    Equilibrium concentrations are traditionally calculated with the help of equilibrium constant equations from selected reactions. This procedure, however, is only useful for simpler problems. Analysis of the equilibrium state in a multicomponent and multiphase system necessarily involves solution of several simultaneous equations, and, as the number of system components grows, the required computation becomes more complex and tedious. A more direct and general method for solving the problem is the direct minimization of the Gibbs energy function. The solution for the nonlinear problem consists in minimizing the objective function (Gibbs energy of the system) subjected to the constraints of the elemental mass-balance. To solve it, usually a computer code is developed, which requires considerable testing and debugging efforts. In this work, a simple method to predict equilibrium composition in multicomponent systems is presented, which makes use of an electronic spreadsheet. The ability to carry out these calculations within a spreadsheet environment shows several advantages. First, spreadsheets are available 'universally' on nearly all personal computers. Second, the input and output capabilities of spreadsheets can be effectively used to monitor calculated results. Third, no additional systems or programs need to be learned. In this way, spreadsheets can be as suitable in computing equilibrium concentrations as well as to be used as teaching and learning aids. This work describes, therefore, the use of the Solver tool, contained in the Microsoft Excel spreadsheet package, on computing equilibrium concentrations in a multicomponent system, by the method of direct Gibbs energy minimization. The four phases Fe-Cr-O-C-Ni system is used as an example to illustrate the method proposed. The pure stoichiometric phases considered in equilibrium calculations are: Cr 2 O 3 (s) and FeO C r 2 O 3 (s). The atmosphere consists of O 2 , CO e CO 2 constituents. The liquid iron

  10. Dark energy and the hierarchy problem

    International Nuclear Information System (INIS)

    Chen, Pisin

    2007-01-01

    The well-known hierarchy between the Planck scale (∼10 19 GeV) and the TeV scale, namely a ratio of ∼10 16 between the two, is coincidentally repeated in a inverted order between the TeV scale and the dark energy scale at ∼10 -3 eV implied by the observations. We argue that this is not a numerical coincidence. The same brane-world setups to address the first hierarchy problem may also in principle address this second hierarchy issue. Specifically, we consider supersymmetry in the bulk and its breaking on the brane and resort to the Casimir energy induced by the bulk graviton-gravitino mass-shift on the brane as the dark energy. For the ADD model we found that our notion is sensible only if the number of extra dimension n=2. We extend our study to the Randall-Sundrum model. Invoking the chirality-flip on the boundaries for SUSY-breaking, the zero-mode gravitino contribution to the Casimir energy does give rise to the double hierarchy. Unfortunately since the higher Kaluza-Klein modes acquire relative mass-shifts at the TeV level, the zero-mode contribution to Casimir energy is overshadowed

  11. Caffeinated Energy Drinks -- A Growing Problem

    Science.gov (United States)

    Reissig, Chad J.; Strain, Eric C.; Griffiths, Roland R.

    2009-01-01

    Since the introduction of Red Bull in Austria in 1987 and in the United States in 1997, the energy drink market has grown exponentially. Hundreds of different brands are now marketed, with caffeine content ranging from a modest 50 mg to an alarming 505 mg per can or bottle. Regulation of energy drinks, including content labeling and health warnings differs across countries, with some of the most lax regulatory requirements in the U.S. The absence of regulatory oversight has resulted in aggressive marketing of energy drinks, targeted primarily toward young males, for psychoactive, performance-enhancing and stimulant drug effects. There are increasing reports of caffeine intoxication from energy drinks, and it seems likely that problems with caffeine dependence and withdrawal will also increase. In children and adolescents who are not habitual caffeine users, vulnerability to caffeine intoxication may be markedly increased due to an absence of pharmacological tolerance. Genetic factors may also contribute to an individual’s vulnerability to caffeine related disorders including caffeine intoxication, dependence, and withdrawal. The combined use of caffeine and alcohol is increasing sharply, and studies suggest that such combined use may increase the rate of alcohol-related injury. Several studies suggest that energy drinks may serve as a gateway to other forms of drug dependence. Regulatory implications concerning labeling and advertising, and the clinical implications for children and adolescents are discussed. PMID:18809264

  12. Minimizing the Carbon Footprint for the Time-Dependent Heterogeneous-Fleet Vehicle Routing Problem with Alternative Paths

    Directory of Open Access Journals (Sweden)

    Wan-Yu Liu

    2014-07-01

    Full Text Available Torespondto the reduction of greenhouse gas emissions and global warming, this paper investigates the minimal-carbon-footprint time-dependent heterogeneous-fleet vehicle routing problem with alternative paths (MTHVRPP. This finds a route with the smallestcarbon footprint, instead of the shortestroute distance, which is the conventional approach, to serve a number of customers with a heterogeneous fleet of vehicles in cases wherethere may not be only one path between each pair of customers, and the vehicle speed differs at different times of the day. Inheriting from the NP-hardness of the vehicle routing problem, the MTHVRPP is also NP-hard. This paper further proposes a genetic algorithm (GA to solve this problem. The solution representedbyour GA determines the customer serving ordering of each vehicle type. Then, the capacity check is used to classify multiple routes of each vehicle type, and the path selection determines the detailed paths of each route. Additionally, this paper improves the energy consumption model used for calculating the carbon footprint amount more precisely. Compared with the results without alternative paths, our experimental results show that the alternative path in this experimenthas a significant impact on the experimental results in terms of carbon footprint.

  13. Main physical problems of superhigh energy accelerators

    International Nuclear Information System (INIS)

    Lapidus, L.I.

    1979-01-01

    A survey is given of the state and prospects for the scientific researches to be carried out at the largest charged particle accelerators now under construction. The fundamental problems of the elementary particle physics are considered which can be solved on the base of experiments at high-energy accelerators. The problems to be solved involve development of the theory of various quark number, accurate determination of the charged and neutral intermediate vector boson masses in the Weinberg-Salam theory, the problem of production of t-quark, W -+ - and Z deg bosons, Higgs mesons and investigation of their interactions, examination of quark and lepton spectra, studies on the effects of strong interactions. As a result of the investigations on hadrons at maximum momentum transfers, the data on space-time structure at short distances can be obtained. It is emphasized that there are no engineering barriers to the construction of such accelerators. The main problem lies in financial investment. A conclusion is drawn that the next generation of accelerators will be developed on the base of cooperation between many countries [ru

  14. Studies in nonlinear problems of energy

    Energy Technology Data Exchange (ETDEWEB)

    Matkowsky, B.J.

    1992-07-01

    Emphasis has been on combustion and flame propagation. The research program was on modeling, analysis and computation of combustion phenomena, with emphasis on transition from laminar to turbulent combustion. Nonlinear dynamics and pattern formation were investigated in the transition. Stability of combustion waves, and transitions to complex waves are described. Combustion waves possess large activation energies, so that chemical reactions are significant only in thin layers, or reaction zones. In limit of infinite activation energy, the zones shrink to moving surfaces, (fronts) which must be found during the analysis, so that (moving free boundary problems). The studies are carried out for limiting case with fronts, while the numerical studies are carried out for finite, though large, activation energy. Accurate resolution of the solution in the reaction zones is essential, otherwise false predictions of dynamics are possible. Since the the reaction zones move, adaptive pseudo-spectral methods were developed. The approach is based on a synergism of analytical and computational methods. The numerical computations build on and extend the analytical information. Furthermore, analytical solutions serve as benchmarks for testing the accuracy of the computation. Finally, ideas from analysis (singular perturbation theory) have induced new approaches to computations. The computational results suggest new analysis to be considered. Among the recent interesting results, was spatio-temporal chaos in combustion. One goal is extension of the adaptive pseudo-spectral methods to adaptive domain decomposition methods. Efforts have begun to develop such methods for problems with multiple reaction zones, corresponding to problems with more complex, and more realistic chemistry. Other topics included stochastics, oscillators, Rysteretic Josephson junctions, DC SQUID, Markov jumps, laser with saturable absorber, chemical physics, Brownian movement, combustion synthesis, etc.

  15. The analytic solution of the firm's cost-minimization problem with box constraints and the Cobb-Douglas model

    Science.gov (United States)

    Bayón, L.; Grau, J. M.; Ruiz, M. M.; Suárez, P. M.

    2012-12-01

    One of the most well-known problems in the field of Microeconomics is the Firm's Cost-Minimization Problem. In this paper we establish the analytical expression for the cost function using the Cobb-Douglas model and considering maximum constraints for the inputs. Moreover we prove that it belongs to the class C1.

  16. Nuclear energy centers: Economic and environmental problems

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Bobolovich, V.N.; Emel'yanov, I.Ya.; Kochenov, A.S.; Koryakin, Yu.I.; Stolyarevskij, A.Ya.; Chernyaev, V.A.; Ponomarev-Stepnoj, N.N.; Protsenko, A.M.

    1977-01-01

    The report deals with qualitative and quantitative analysis of factors and problems, which may arise in the nearest future with the dispersion of sites of nuclear and fuel cycle plants. These problems arise with a large increase in the transportation of radioactive nuclear fuel, the necessity in valuable land and water resources, delay in construction and scheduled commercial operation of nuclear power plant, increase in the cost of labour and other economic and environmental factors and limitations. The report has an analysis of one of the ways of decreasing these difficulties, connected with the construction of large nuclear energy centres, consisting of a cluster of reactors on a single reactor site with the combined capacity of 40,000-50,000 MWe. The centres may consist, for example, of a cluster of conventional nuclear power plants that mainly consist of fast breeders and fuel cycle plants. They should be located in regions with a low density population and low value and deficiency of land and water resources. Electricity will be transmitted to consumers. The social-economic functions of such centres as factors that give birth to industrial regions are considered. Also given is the comparative estimate of benefits and problems of these two ways of further development of nuclear power system [ru

  17. Nuclear energy: a key role despite problems

    International Nuclear Information System (INIS)

    Anderson, E.V.

    1977-01-01

    Nuclear energy is projected to be the fastest growing power source and a key to meeting power demands in spite of the many problems facing the nuclear industry in the form of delays, protests, and cancellations. Pressures for a nuclear moratorium will slow the industry, Mr. Anderson feels, but in the long run nuclear reactors will make up an increasing share of the power generating capacity. The Arthur D. Little Co. projects a fourfold increase between 1975 and 1985 on the basis of 10-year lead times for construction of nuclear power plants. Half the new generating capacity after 1985 will be nuclear. Problems besetting every stage of the nuclear fuel cycle result from debates over proliferation, waste disposal, reactor safety, and environmental damage and lead to controversy over regulations and licensing. U.S. utilities are not ordering reactors, but manufacturers are finding markets in other countries. Financial difficulties have kept domestic utilities from undertaking large investment programs until they can resolve problems of fuel costs and rate structures. New construction is inevitable, however, to meet future electrical requirements. Nuclear companies, which number nearly 1300 manufacturers and service providers, need to develop a better public image by working together to demonstrate their ability to manage the risks and uncertainties

  18. Foraging site selection of two subspecies of Bar-tailed Godwit Limosa lapponica: time minimizers accept greater predation danger than energy minimizers

    NARCIS (Netherlands)

    Duijns, S.; Dijk, van J.G.B.; Spaans, B.; Jukema, J.; Boer, de W.F.; Piersma, Th.

    2009-01-01

    Different spatial distributions of food abundance and predators may urge birds to make a trade-off between food intake and danger. Such a trade-off might be solved in different ways in migrant birds that either follow a time-minimizing or energy-minimizing strategy; these strategies have been

  19. Foraging site selection of two subspecies of Bar-tailed Godwit Limosa lapponica : time minimizers accept greater predation danger than energy minimizers

    NARCIS (Netherlands)

    Duijns, Sjoerd; van Dijk, Jacintha G. B.; Spaans, Bernard; Jukema, Joop; de Boer, Willem F.; Piersma, Theunis

    2009-01-01

    Different spatial distributions Of food abundance and predators may urge birds to make a trade-off between food intake and danger. Such a trade-off might be solved in different ways in migrant birds that either follow a time-minimizing or energy-minimizing strategy; these strategies have been

  20. Dark energy and the fifth force problem

    International Nuclear Information System (INIS)

    Guendelman, E I; Kaganovich, A B

    2008-01-01

    Generally accepted explanation of the observed accelerated expansion of the present day universe is based on the idea of the existence of a new entity called dark energy. Resolution of the 'cosmic coincidence' problem implies that dark energy and dark matter follow the same scaling solution during a significant period of evolution. This becomes possible only if there exists a coupling of the dark energy (modeled by a light scalar field) to dark matter. This conclusion following from the observed cosmological data serves for an additional evidence of well-known theoretical predictions of a light scalar coupled to matter. However, according to the results of the fifth force experiments, a similar coupling of the light scalar field to visible (baryonic) matter is strongly suppressed. After a brief review of some models intended for resolution of this 'fifth force problem', we present a model with spontaneously broken scale invariance where the strength of the dilaton-to-matter coupling appears to be dependent on the matter density. This is realized without any special assumptions in the underlying action intended for obtaining such a dependence. As a result the dilaton-to-matter coupling constant measured under conditions of all known fifth force experiments turns out automatically (without any sort of fine tuning) to be so small that, at least in the near future, experiments will not be able to reveal it. On the other hand, if the matter is very diluted (such as galaxy halo dark matter) then its coupling to the dilaton may not be weak. However, the latter situation is realized under conditions not compatible with the design of the fifth force experiments

  1. Three-Dimensional Dirac Oscillator with Minimal Length: Novel Phenomena for Quantized Energy

    Directory of Open Access Journals (Sweden)

    Malika Betrouche

    2013-01-01

    Full Text Available We study quantum features of the Dirac oscillator under the condition that the position and the momentum operators obey generalized commutationrelations that lead to the appearance of minimal length with the order of the Planck length, ∆xmin=ℏ3β+β′, where β and β′ are two positive small parameters. Wave functions of the system and the corresponding energy spectrum are derived rigorously. The presence of the minimal length accompanies a quadratic dependence of the energy spectrum on quantum number n, implying the property of hard confinement of the system. It is shown that the infinite degeneracy of energy levels appearing in the usual Dirac oscillator is vanished by the presence of the minimal length so long as β≠0. Not only in the nonrelativistic limit but also in the limit of the standard case (β=β′=0, our results reduce to well known usual ones.

  2. Molecular mechanics calculations of proteins. Comparison of different energy minimization strategies

    DEFF Research Database (Denmark)

    Christensen, I T; Jørgensen, Flemming Steen

    1997-01-01

    A general strategy for performing energy minimization of proteins using the SYBYL molecular modelling program has been developed. The influence of several variables including energy minimization procedure, solvation, dielectric function and dielectric constant have been investigated in order...... to develop a general method, which is capable of producing high quality protein structures. Avian pancreatic polypeptide (APP) and bovine pancreatic phospholipase A2 (BP PLA2) were selected for the calculations, because high quality X-ray structures exist and because all classes of secondary structure...... for this protein. Energy minimized structures of the trimeric PLA2 from Indian cobra (N.n.n. PLA2) were used for assessing the impact of protein-protein interactions. Based on the above mentioned criteria, it could be concluded that using the following conditions: Dielectric constant epsilon = 4 or 20; a distance...

  3. School education on energy and environment problems

    International Nuclear Information System (INIS)

    Imakita, Manami

    2005-01-01

    In Japanese school, elementary and junior- and senior-high, it is widely agreed that teaching of energy and environment is desirable, as has been adopted in a course of study of the Ministry of Education, Culture, Sports, Science and Technology. This paper reports the present state of affairs on these problems from elementary schools to high schools, describing of each school year or grade and each lessons separately. It contains the results of the author's investigation on curriculum and syllabus including some classroom practices and measurement of natural radioactivity and radiation with the help of adequate measuring instruments and visits to some related facilities. Methods of learning and teaching are also studied together with some future prospect. (S. Ohno)

  4. Selected problems in experimental intermediate energy physics

    International Nuclear Information System (INIS)

    Mayes, B.W.; Hungerford, E.V.; Pinsky, L.S.

    1990-09-01

    The objectives of this research program are to: investigate forefront problems in experimental intermediate energy physics; educate students in this field of research; and, develop the instrumentation necessary to undertake this experimental program. Generally, the research is designed to search for physical processes which cannot be explained by conventional models of elementary interactions. This includes the use of nuclear targets where the nucleus provides a many body environment of strongly perturbation of a known interaction by this environment. Unfortunately, such effects may be masked by the complexity of the many body problem and may be difficult to observe. Therefore, experiments must be carefully chosen and analyzed for deviations from the more conventional models. There were three major thrusts of the program; strange particle physics, where a strange quark is embedded in the nuclear medium; muon electro-weak decay, which involves a search for a violation of the standard model of the electro-weak interaction; and measurement of the spin dependent structure function of the neutron

  5. Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints

    Directory of Open Access Journals (Sweden)

    Jordi Serra

    2014-01-01

    of heating, ventilation, and air conditioning (HVAC systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user’s preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user’s device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.

  6. Sectors of solutions and minimal energies in classical Liouville theories for strings

    International Nuclear Information System (INIS)

    Johansson, L.; Kihlberg, A.; Marnelius, R.

    1984-01-01

    All classical solutions of the Liouville theory for strings having finite stable minimum energies are calculated explicitly together with their minimal energies. Our treatment automatically includes the set of natural solitonlike singularities described by Jorjadze, Pogrebkov, and Polivanov. Since the number of such singularities is preserved in time, a sector of solutions is not only characterized by its boundary conditions but also by its number of singularities. Thus, e.g., the Liouville theory with periodic boundary conditions has three different sectors of solutions with stable minimal energies containing zero, one, and two singularities. (Solutions with more singularities have no stable minimum energy.) It is argued that singular solutions do not make the string singular and therefore may be included in the string quantization

  7. Energy-minimized design in all-optical networks using unicast/multicast traffic grooming

    Science.gov (United States)

    Puche, William S.; Amaya, Ferney O.; Sierra, Javier E.

    2013-09-01

    The increased bandwidth required by applications, tends to raise the amount of optical equipment, for this reason, it is essential to maintain a balance between the wavelength allocation, available capacity and number of optical devices to achieve the lowest power consumption. You could say that we propose a model that minimizes energy consumption, using unicast / multicast traffic grooming in optical networks.

  8. Online Speed Scaling Based on Active Job Count to Minimize Flow Plus Energy

    DEFF Research Database (Denmark)

    Lam, Tak-Wah; Lee, Lap Kei; To, Isaac K. K.

    2013-01-01

    This paper is concerned with online scheduling algorithms that aim at minimizing the total flow time plus energy usage. The results are divided into two parts. First, we consider the well-studied “simple” speed scaling model and show how to analyze a speed scaling algorithm (called AJC) that chan...

  9. Development of a waste minimization plan for a Department of Energy remedial action program: Ideas for minimizing waste in remediation scenarios

    International Nuclear Information System (INIS)

    Hubbard, Linda M.; Galen, Glen R.

    1992-01-01

    Waste minimization has become an important consideration in the management of hazardous waste because of regulatory as well as cost considerations. Waste minimization techniques are often process specific or industry specific and generally are not applicable to site remediation activities. This paper will examine ways in which waste can be minimized in a remediation setting such as the U.S. Department of Energy's Formerly Utilized Sites Remedial Action Program, where the bulk of the waste produced results from remediating existing contamination, not from generating new waste. (author)

  10. COMPUTATIONAL MODELS USED FOR MINIMIZING THE NEGATIVE IMPACT OF ENERGY ON THE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Oprea D.

    2012-04-01

    Full Text Available Optimizing energy system is a problem that is extensively studied for many years by scientists. This problem can be studied from different views and using different computer programs. The work is characterized by one of the following calculation methods used in Europe for modelling, power system optimization. This method shall be based on reduce action of energy system on environment. Computer program used and characterized in this article is GEMIS.

  11. PROBLEMS OF UKRAINIAN ENERGY AND THEIR SOLUTIONS

    Directory of Open Access Journals (Sweden)

    G. Fyliuk

    2016-04-01

    Full Text Available The paper studies current situation at the Ukrainian electric power industry. The problems which prevent development of the industry under current conditions are analyzed. The problems of the cross-subsidization are exposed. The ways of the problems solutions are offered.

  12. A new mathematical model for single machine batch scheduling problem for minimizing maximum lateness with deteriorating jobs

    Directory of Open Access Journals (Sweden)

    Ahmad Zeraatkar Moghaddam

    2012-01-01

    Full Text Available This paper presents a mathematical model for the problem of minimizing the maximum lateness on a single machine when the deteriorated jobs are delivered to each customer in various size batches. In reality, this issue may happen within a supply chain in which delivering goods to customers entails cost. Under such situation, keeping completed jobs to deliver in batches may result in reducing delivery costs. In literature review of batch scheduling, minimizing the maximum lateness is known as NP-Hard problem; therefore the present issue aiming at minimizing the costs of delivering, in addition to the aforementioned objective function, remains an NP-Hard problem. In order to solve the proposed model, a Simulation annealing meta-heuristic is used, where the parameters are calibrated by Taguchi approach and the results are compared to the global optimal values generated by Lingo 10 software. Furthermore, in order to check the efficiency of proposed method to solve larger scales of problem, a lower bound is generated. The results are also analyzed based on the effective factors of the problem. Computational study validates the efficiency and the accuracy of the presented model.

  13. A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems

    Directory of Open Access Journals (Sweden)

    Nader Ghaffari-Nasab

    2010-07-01

    Full Text Available During the past two decades, there have been increasing interests on permutation flow shop with different types of objective functions such as minimizing the makespan, the weighted mean flow-time etc. The permutation flow shop is formulated as a mixed integer programming and it is classified as NP-Hard problem. Therefore, a direct solution is not available and meta-heuristic approaches need to be used to find the near-optimal solutions. In this paper, we present a new discrete firefly meta-heuristic to minimize the makespan for the permutation flow shop scheduling problem. The results of implementation of the proposed method are compared with other existing ant colony optimization technique. The preliminary results indicate that the new proposed method performs better than the ant colony for some well known benchmark problems.

  14. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-02-25

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities.

  15. Minimizing Characterization - Derived Waste at the Department of Energy Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Van Pelt, R. S.; Amidon, M. B.; Reboul, S. H.

    2002-01-01

    Environmental restoration activities at the Department of Energy Savannah River Site (SRS) utilize innovative site characterization approaches and technologies that minimize waste generation. Characterization is typically conducted in phases, first by collecting large quantities of inexpensive data, followed by targeted minimally invasive drilling to collect depth-discrete soil/groundwater data, and concluded with the installation of permanent multi-level groundwater monitoring wells. Waste-reducing characterization methods utilize non-traditional drilling practices (sonic drilling), minimally intrusive (geoprobe, cone penetrometer) and non-intrusive (3-D seismic, ground penetration radar, aerial monitoring) investigative tools. Various types of sensor probes (moisture sensors, gamma spectroscopy, Raman spectroscopy, laser induced and X-ray fluorescence) and hydrophobic membranes (FLUTe) are used in conjunction with depth-discrete sampling techniques to obtain high-resolution 3-D plume profiles. Groundwater monitoring (short/long-term) approaches utilize multi-level sampling technologies (Strata-Sampler, Cone-Sipper, Solinst Waterloo, Westbay) and low-cost diffusion samplers for seepline/surface water sampling. Upon collection of soil and groundwater data, information is portrayed in a Geographic Information Systems (GIS) format for interpretation and planning purposes. At the SRS, the use of non-traditional drilling methods and minimally/non intrusive investigation approaches along with in-situ sampling methods has minimized waste generation and improved the effectiveness and efficiency of characterization activities

  16. Minimizing total weighted tardiness for the single machine scheduling problem with dependent setup time and precedence constraints

    Directory of Open Access Journals (Sweden)

    Hamidreza Haddad

    2012-04-01

    Full Text Available This paper tackles the single machine scheduling problem with dependent setup time and precedence constraints. The primary objective of this paper is minimization of total weighted tardiness. Since the complexity of the resulted problem is NP-hard we use metaheuristics method to solve the resulted model. The proposed model of this paper uses genetic algorithm to solve the problem in reasonable amount of time. Because of high sensitivity of GA to its initial values of parameters, a Taguchi approach is presented to calibrate its parameters. Computational experiments validate the effectiveness and capability of proposed method.

  17. Energy minimization of mobile video devices with a hardware H.264/AVC encoder based on energy-rate-distortion optimization

    Science.gov (United States)

    Kang, Donghun; Lee, Jungeon; Jung, Jongpil; Lee, Chul-Hee; Kyung, Chong-Min

    2014-09-01

    In mobile video systems powered by battery, reducing the encoder's compression energy consumption is critical to prolong its lifetime. Previous Energy-rate-distortion (E-R-D) optimization methods based on a software codec is not suitable for practical mobile camera systems because the energy consumption is too large and encoding rate is too low. In this paper, we propose an E-R-D model for the hardware codec based on the gate-level simulation framework to measure the switching activity and the energy consumption. From the proposed E-R-D model, an energy minimizing algorithm for mobile video camera sensor have been developed with the GOP (Group of Pictures) size and QP(Quantization Parameter) as run-time control variables. Our experimental results show that the proposed algorithm provides up to 31.76% of energy consumption saving while satisfying the rate and distortion constraints.

  18. Deterministic and stochastic algorithms for resolving the flow fields in ducts and networks using energy minimization

    Science.gov (United States)

    Sochi, Taha

    2016-09-01

    Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.

  19. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes

    DEFF Research Database (Denmark)

    Terp, G E; Christensen, I T; Jørgensen, Flemming Steen

    2000-01-01

    Matrix metalloproteinases are extracellular enzymes taking part in the remodeling of extracellular matrix. The structures of the catalytic domain of MMP1, MMP3, MMP7 and MMP8 are known, but structures of enzymes belonging to this family still remain to be determined. A general approach...... to the homology modeling of matrix metalloproteinases, exemplified by the modeling of MMP2, MMP9, MMP12 and MMP14 is described. The models were refined using an energy minimization procedure developed for matrix metalloproteinases. This procedure includes incorporation of parameters for zinc and calcium ions...... in the AMBER 4.1 force field, applying a non-bonded approach and a full ion charge representation. Energy minimization of the apoenzymes yielded structures with distorted active sites, while reliable three-dimensional structures of the enzymes containing a substrate in active site were obtained. The structural...

  20. Market clearing of joint energy and reserves auctions using augmented payment minimization

    International Nuclear Information System (INIS)

    Amjady, N.; Aghaei, J.; Shayanfar, H.A.

    2009-01-01

    This paper presents the market clearing of joint energy and reserves auctions and its mathematical formulation, focusing on a possible implementation of the Payment Cost Minimization (PCM). It also discusses another key point in debate: whether market clearing algorithm should minimize offer costs or payment costs? An aggregated simultaneous market clearing approach is proposed for provision of ancillary services as well as energy, which is in the form of Mixed Integer Nonlinear Programming (MINLP) formulation. In the MINLP formulation of the market clearing process, the objective function (Payment cost or offer cost) are optimized while meeting AC power flow constraints, system reserve requirements and lost opportunity cost (LOC) considerations. The model is applied to the IEEE 24-bus Reliability Test System (IEEE 24-bus RTS), and simulation studies are carried out to examine the effectiveness of each objective function. (author)

  1. Nuclear three-body problem and energy-dependent potentials

    International Nuclear Information System (INIS)

    Abdurakhmanov, A.; Akhmadkhodzhaev, B.; Zubarev, A.L.; Irgaziev, B.F.

    1985-01-01

    Energy-dependent potentials in the three-body problem are being considered. Three-particle equations for the case of pairing energy-dependent potentials are generalized and the problems related to this ambiguous generalization are investigated. In terms of the equations obtained the tritium binding energy and vertex coupling constants (Tdn) and (Tdν) are evaluated. The binding energy and, especially, coupling constants are shown to be sensitive to a shape of the energy-dependent potential

  2. A non-minimally coupled quintom dark energy model on the warped DGP brane

    International Nuclear Information System (INIS)

    Nozari, K; Azizi, T; Setare, M R; Behrouz, N

    2009-01-01

    We construct a quintom dark energy model with two non-minimally coupled scalar fields, one quintessence and the other phantom field, confined to the warped Dvali-Gabadadze-Porrati (DGP) brane. We show that this model accounts for crossing of the phantom divide line in appropriate subspaces of the model parameter space. This crossing occurs for both normal and self-accelerating branches of this DGP-inspired setup.

  3. Some problems of physics of ultrahigh energy cosmic rays

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1999-01-01

    Nearest 15-20 years will be years of flourishing of experimental researches into the energy of cosmic rays at > or ∼ 10 15 eV and of new discoveries in the physics of elementary particles of ultrahigh energies. Unsolved problems of modern physics of ultrahigh energy cosmic rays, which are relevant to the problems of elementary particles physics, are reviewed

  4. Italian energy conservation laws: Implementation problems

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Italian energy conservation Law No. 9 was designed to reduce Italy's worrisome 82% dependency on foreign energy supplies by encouraging the development and use of renewable energy sources, fuel diversification and auto-production/cogeneration by private industry. Law No. 10 was intended to promote energy conservation initiatives especially with regard to the efficient use of energy for space heating in public buildings. Both of these legal incentives have encountered great difficulties in implementation due to the inability of the Government to provide the necessary timely and sufficient start-up funds, as well as, due to the excessive bureaucratism that was built into the administrative procedures

  5. MINIMIZATION OF IMPACTS PERTAINING TO EXTERNAL AND INTERNAL ENERGY SECURITY THREATS OF THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    V. N. Nagornov

    2012-01-01

    Full Text Available The paper contains a classification of internal and external threats for thermal power plants and recommendations on minimization of these risks. A set of concrete measures aimed at ensuring TPP energy security has been presented in the paper. The system comprises preventive measures aimed at reducing the possibilities of emergence and implementation of internal and external threats. The system also presupposes to decrease susceptibility of fuel- and energy supply systems to the threats, and application of liquidation measures that ensure elimination of emergency situation consequences and restoration of the conditions concerning fuel- and power supply to consumers.

  6. Smart HVAC control in IoT: energy consumption minimization with user comfort constraints.

    Science.gov (United States)

    Serra, Jordi; Pubill, David; Antonopoulos, Angelos; Verikoukis, Christos

    2014-01-01

    Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.

  7. Free Energy Minimization Calculation of Complex Chemical Equilibria. Reduction of Silicon Dioxide with Carbon at High Temperature.

    Science.gov (United States)

    Wai, C. M.; Hutchinson, S. G.

    1989-01-01

    Discusses the calculation of free energy in reactions between silicon dioxide and carbon. Describes several computer programs for calculating the free energy minimization and their uses in chemistry classrooms. Lists 16 references. (YP)

  8. New insights gained on mechanisms of low-energy proton-induced SEUs by minimizing energy straggle

    International Nuclear Information System (INIS)

    Dodds, Nathaniel Anson; Dodd, Paul E.; Shaneyfelt, Marty R.; Sexton, Frederick W.; Martinez, Marino J.; Black, Jeffrey D.; Marshall, P. W.; Reed, R. A.; McCurdy, M. W.; Weller, R. A.; Pellish, J. A.; Rodbell, K. P.; Gordon, M. S.

    2015-01-01

    In this study, we present low-energy proton single-event upset (SEU) data on a 65 nm SOI SRAM whose substrate has been completely removed. Since the protons only had to penetrate a very thin buried oxide layer, these measurements were affected by far less energy loss, energy straggle, flux attrition, and angular scattering than previous datasets. The minimization of these common sources of experimental interference allows more direct interpretation of the data and deeper insight into SEU mechanisms. The results show a strong angular dependence, demonstrate that energy straggle, flux attrition, and angular scattering affect the measured SEU cross sections, and prove that proton direct ionization is the dominant mechanism for low-energy proton-induced SEUs in these circuits

  9. Problems of application of wave energy

    International Nuclear Information System (INIS)

    D'yakov, A.F.; Morozkina, M.V.

    1993-01-01

    Technical solutions of using the energy both sea waves and lake ones are analyzed. Mathematical description of wave processes and phenomena as well as techniques of selection and conversion of the wave energy are given. Wave energy electromechanical converters are considered. Great attention is paid to linear generators of electromechanical converters eddy currents in massive sections of these generators and features of their calculation. Techniques for optimization of the linear generator parameters are shown. 60 refs

  10. Soviet energy: current problems and future options

    Energy Technology Data Exchange (ETDEWEB)

    Stein, J B

    1981-12-01

    The connection between Soviet oil and energy resources, their efficient and timely utilization, and politico-military opportunities in the Persian Gulf region offer an inescapable link for analysis. Worsening trends in economic growth, factor productivity, social unrest, and energy production/distribution offset optimistic trends in Soviet military procurement and deployment. A conjunction of geologic, geographic, and systemic factors all point to a mid-1980s energy imbalance which in turn will pose hard questions for the Moscow leadership. 28 references.

  11. Danish economy and the energy problems

    International Nuclear Information System (INIS)

    1980-06-01

    Danish economics in 1980 and the following years is evaluated in relation to the international economic situation. The negative trade balance is mostly due to the unfavorable energy prices. The future trends in energy supplies and distribution of various fossil and other energy resources are discussed. Calculations are made on the economic consequences of introduction of nuclear power in comparison with coal-fired power plants. (EG)

  12. A minimally-resolved immersed boundary model for reaction-diffusion problems

    OpenAIRE

    Pal Singh Bhalla, A; Griffith, BE; Patankar, NA; Donev, A

    2013-01-01

    We develop an immersed boundary approach to modeling reaction-diffusion processes in dispersions of reactive spherical particles, from the diffusion-limited to the reaction-limited setting. We represent each reactive particle with a minimally-resolved "blob" using many fewer degrees of freedom per particle than standard discretization approaches. More complicated or more highly resolved particle shapes can be built out of a collection of reactive blobs. We demonstrate numerically that the blo...

  13. Sculpting proteins interactively: continual energy minimization embedded in a graphical modeling system.

    Science.gov (United States)

    Surles, M C; Richardson, J S; Richardson, D C; Brooks, F P

    1994-02-01

    We describe a new paradigm for modeling proteins in interactive computer graphics systems--continual maintenance of a physically valid representation, combined with direct user control and visualization. This is achieved by a fast algorithm for energy minimization, capable of real-time performance on all atoms of a small protein, plus graphically specified user tugs. The modeling system, called Sculpt, rigidly constrains bond lengths, bond angles, and planar groups (similar to existing interactive modeling programs), while it applies elastic restraints to minimize the potential energy due to torsions, hydrogen bonds, and van der Waals and electrostatic interactions (similar to existing batch minimization programs), and user-specified springs. The graphical interface can show bad and/or favorable contacts, and individual energy terms can be turned on or off to determine their effects and interactions. Sculpt finds a local minimum of the total energy that satisfies all the constraints using an augmented Lagrange-multiplier method; calculation time increases only linearly with the number of atoms because the matrix of constraint gradients is sparse and banded. On a 100-MHz MIPS R4000 processor (Silicon Graphics Indigo), Sculpt achieves 11 updates per second on a 20-residue fragment and 2 updates per second on an 80-residue protein, using all atoms except non-H-bonding hydrogens, and without electrostatic interactions. Applications of Sculpt are described: to reverse the direction of bundle packing in a designed 4-helix bundle protein, to fold up a 2-stranded beta-ribbon into an approximate beta-barrel, and to design the sequence and conformation of a 30-residue peptide that mimics one partner of a protein subunit interaction. Computer models that are both interactive and physically realistic (within the limitations of a given force field) have 2 significant advantages: (1) they make feasible the modeling of very large changes (such as needed for de novo design), and

  14. Convex Minimization with Constraints of Systems of Variational Inequalities, Mixed Equilibrium, Variational Inequality, and Fixed Point Problems

    Directory of Open Access Journals (Sweden)

    Lu-Chuan Ceng

    2014-01-01

    Full Text Available We introduce and analyze one iterative algorithm by hybrid shrinking projection method for finding a solution of the minimization problem for a convex and continuously Fréchet differentiable functional, with constraints of several problems: finitely many generalized mixed equilibrium problems, finitely many variational inequalities, the general system of variational inequalities and the fixed point problem of an asymptotically strict pseudocontractive mapping in the intermediate sense in a real Hilbert space. We prove strong convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another iterative algorithm by hybrid shrinking projection method for finding a fixed point of infinitely many nonexpansive mappings with the same constraints, and derive its strong convergence under mild assumptions.

  15. A new smoothing modified three-term conjugate gradient method for [Formula: see text]-norm minimization problem.

    Science.gov (United States)

    Du, Shouqiang; Chen, Miao

    2018-01-01

    We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.

  16. Bulgarian energy legislation. Status quo and problems

    International Nuclear Information System (INIS)

    Denchev, P.

    1996-01-01

    The author gives a general survey of the present situation and the development tendencies in the Bulgarian nuclear legislation. The latest amendments of the Atomic Energy Act passed by the Bulgarian Parliament are discussed. Special attention is paid to the ratification of the following four groups of international documents: 1) The Convention on Nuclear Safety; 2) The Vienna Convention on Civil Liability for Nuclear Damage and the Joint Protocol on the Application of the Vienna Convention and the Paris Convention on Third Party Liability in the Field of Nuclear Energy; 3) The Convention for the Physical Protection of Nuclear Material, the Convention on Early Notification of a Nuclear Accident and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency; 4) The European Energy Charter and its Protocol on Energy Efficiency. The need of adoption of new legislative documents regulating the supply of radioactive materials according to the EURATOM Treaty is stressed

  17. Energy in developing countries: prospects and problems

    International Nuclear Information System (INIS)

    Baum, V.

    1977-01-01

    This paper analyses requirements for primary energy and electric power in the developing countries in the light of projections of population and economic growth. It evaluates the availability of indigenous energy resources and focuses on input requirements (capital, technology, trained personnel) for accelerated energy development; it reviews possible supplies for such inputs from domestic sources, transnational corporations, multilateral institutions, and through co-operation among the developing countries themselves and between the developing and the developed countries. The paper analyses the findings of the United Nations study ''The Future of the World Economy. A Study on the Impact of the Prospective Economic Issues and Policies on the International Development Strategy'' as far as they relate to energy and the developing countries in the light of the objectives of the Declaration on the Establishment of a New International Economic Order

  18. Waste minimization and control: a review of problems and available technologies

    International Nuclear Information System (INIS)

    Butt, W.M.

    1999-01-01

    A country's environmental problems are affected by the level of its economic development, the availability of national resources, and the socio-economic level of this population. Poverty presents special problems for a heavily populated country with limited resources. environmental problems in Pakistan have become serious and should no longer be neglected. These relate air and water pollution particularly in metropolitan and industrial zones, degradation of common property sources which affect the poor adversely due to the degradation of their life support system, threat to biodiversity, inadequate system of solid waste disposal and sanitation with consequent adverse impact on health, infant mortality, birth rate. These problems impose a serious cost on society although it is impossible to comprehend the extent of these on costs. (author)

  19. Cool energy. Renewal solutions to environmental problems

    International Nuclear Information System (INIS)

    Brower, M.

    1992-01-01

    This book begins with a chapter describing some of the economic and environmental consequences of America's fossil-fuel-based economy. It makes the case that, despite some progress in reducing pollution from fossil fuels, no lasting cure for the deteriorating environment - in particular, the looming threat of global warming - is possible without developing alternative fuel sources. That renewable energy can provide the bulk of the new supplies needed is the theme of the second chapter, which discusses the relative advantages of these resources compared to fossil fuels and nuclear power and evaluates their long-term potential. The bulk of the book considers five broad categories of renewable energy sources: solar, wind, biomass (plant matter), rivers and oceans, and geothermal. For each of these sources, the book describes its current application, discusses its costs, analyzes new technologies under development, and assesses its positive and negative environmental impacts. This book shows the vital role renewable sources can and should play in America's energy future. It cites studies indicating that, with the right policies, renewable energy could provide as much as half of America's energy within 40 years, and an even larger fraction down the road. Such a rapid shift from existing energy sources would be dramatic but not unprecedented. In 1920, coal supplied 70% of US energy, but within 40 years its share had dropped to just 20% as oil and natural gas use increased. Sooner or later, oil and natural gas will also fade in importance. The real question is when. This book makes the case that the time to move decisively toward a renewable energy economy has arrived

  20. Optimized Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics

    International Nuclear Information System (INIS)

    Tselios, Kostas; Simos, T.E.

    2007-01-01

    In this Letter a new explicit fourth-order seven-stage Runge-Kutta method with a combination of minimal dispersion and dissipation error and maximal accuracy and stability limit along the imaginary axes, is developed. This method was produced by a general function that was constructed to satisfy all the above requirements and, from which, all the existing fourth-order six-stage RK methods can be produced. The new method is more efficient than the other optimized methods, for acoustic computations

  1. Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Fay, Stéphane, E-mail: steph.fay@gmail.com [Palais de la Découverte, Astronomy Department, Avenue Franklin Roosevelt, 75008 Paris (France)

    2013-09-01

    We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion.

  2. Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy

    International Nuclear Information System (INIS)

    Fay, Stéphane

    2013-01-01

    We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion

  3. MINIMIZE ENERGY AND COSTS REQUIREMENT OF WEEDING AND FERTILIZING PROCESS FOR FIBER CROPS IN SMALL FARMS

    Directory of Open Access Journals (Sweden)

    Tarek FOUDA

    2015-06-01

    Full Text Available The experimental work was carried out through agricultural summer season of 2014 at the experimental farm of Gemmiza Research Station, Gharbiya governorate to minimize energy and costs in weeding and fertilizing processes for fiber crops (Kenaf and Roselle in small farms. The manufactured multipurpose unit performance was studied as a function of change in machine forward speed (2.2, 2.8, 3.4 and 4 Km/h fertilizing rates (30,45 and 60 Kg.N.fed-1,and constant soil moisture content was 20%(d.b in average. Performance of the manufactured machine was evaluated in terms of fuel consumption, power and energy requirements, effective field capacity, theoretical field capacity, field efficiency, and operational costs as a machine measurements .The experiment results reveled that the manufactured machine decreased energy and increased effective field capacity and efficiency under the following conditions: -machine forward speed 2.2Kmlh. -moisture content average 20%.

  4. Problems and energy choices in Burkina Faso

    International Nuclear Information System (INIS)

    1986-01-01

    This document is about the evaluation of the energy sector in Burkina Faso. It reports about the main issues of energy: poverty of the households, the lack of fund to finance the sector, desertification...The main resources of energy are firewood, fuel and electricity. The energy needs of Burkina Faso are related to the cooking of food, with liquid fuels intended for the railway transport and fuels used in industry and for the production of electricity. With regard to the transport sector, there is currently no possibility of substitution for the fuel, except the use of ethanol diluted in the gasoline. At the industrial level, agro-industrial, bagasse and the other residues constitute right now the independent source of energy for the production of industrial heat as well as for that of electricity. For the public network of electricity supply, the production rests exclusively on diesel power stations. Regarding the immense needs for its populations in energy, Burkina has only very limited resources. The biomass used for domestic needs cannot continuously ensure the households with the necessary energy supply for food cooking. As for the agro-industrial residues, they cannot reduce the industrial consumption of fuels. There are also hydraulic resources whose conscientious exploitation could contribute to decrease the fuel consumption in terms of electricity. In sum, it would be necessary to improve the regulation as regards firewood supply, to promote the use of improved hearths with wood, to plan the fuel supplies and to assist the SONABEL in the electric production capacities reinforcement of its fuel-based power stations [fr

  5. Minimization of energy and surface roughness of the products machined by milling

    Science.gov (United States)

    Belloufi, A.; Abdelkrim, M.; Bouakba, M.; Rezgui, I.

    2017-08-01

    Metal cutting represents a large portion in the manufacturing industries, which makes this process the largest consumer of energy. Energy consumption is an indirect source of carbon footprint, we know that CO2 emissions come from the production of energy. Therefore high energy consumption requires a large production, which leads to high cost and a large amount of CO2 emissions. At this day, a lot of researches done on the Metal cutting, but the environmental problems of the processes are rarely discussed. The right selection of cutting parameters is an effective method to reduce energy consumption because of the direct relationship between energy consumption and cutting parameters in machining processes. Therefore, one of the objectives of this research is to propose an optimization strategy suitable for machining processes (milling) to achieve the optimum cutting conditions based on the criterion of the energy consumed during the milling. In this paper the problem of energy consumed in milling is solved by an optimization method chosen. The optimization is done according to the different requirements in the process of roughing and finishing under various technological constraints.

  6. Potential Evaluation of Energy Supply System in Grid Power System, Commercial, and Residential Sectors by Minimizing Energy Cost

    Science.gov (United States)

    Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao

    If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.

  7. Caffeinated Energy Drinks -- A Growing Problem

    OpenAIRE

    Reissig, Chad J.; Strain, Eric C.; Griffiths, Roland R.

    2008-01-01

    Since the introduction of Red Bull in Austria in 1987 and in the United States in 1997, the energy drink market has grown exponentially. Hundreds of different brands are now marketed, with caffeine content ranging from a modest 50 mg to an alarming 505 mg per can or bottle. Regulation of energy drinks, including content labeling and health warnings differs across countries, with some of the most lax regulatory requirements in the U.S. The absence of regulatory oversight has resulted in aggres...

  8. French energy research problems in relation to national energy goals

    International Nuclear Information System (INIS)

    Ferrari, A.

    1984-01-01

    There is a new view in energy planning: the new Government has firmly decided to enlarge the spectrum of energy technologies, to give more possibilities. Some new technologies if they reach a sufficient economic balance may be better than the ones used presently, and strict economic analysis shall be complemented by including external cost and taking into account the other considerations (political, social, etc.). The energy situation is serious and no technology should be dismissed: nuclear energy which with coal is one of the two sources of energy already abundant, cannot be discarded especially in a country like France, poor in fossil sources. France shall go on using nuclear energy and this means pursuing the development of the Fast Breeder Reactor Technology, because this is a unique insurance against possible future energy scarcity. Under strict nonproliferation conditions they shall also continue the effort to export nuclear units, using the expertise gained while implementing their own program

  9. Some problems of solar-terrestrial energy relations

    International Nuclear Information System (INIS)

    Kovalevskij, I.V.

    1982-01-01

    Energy aspects of relations of phenomena occurring on the Sun, in the interplanetary space, magnetosphere, ionosphere and on the Earth's surface are discussed. Particular attention is given to the energy radiated by the Sun (flares, coronal holes). The problems are considered of the energy transfer and transformation in high-velocity and flare flows of solar wind. Estimates are performed: of densities of various types of energy of the interplanetary space at the Earth's orbit level; energy fluxes incident on the magnetosphere; energy accumulated inside the magnetosphere; a series of energy parameters of magnetic storms. It is pointed out that nowadays one of the main problems of the magnetosphere physics is studying ways of the interplanatary space energy transfer into the magnetosphere. In this connection some problems are investigated: plasma penetration through the dayside magnetopause, solar wind plasma entry into the magnetotail, the electric field effect on transition region plasma penetration into the distant magnetotail

  10. Triple Hierarchical Variational Inequalities with Constraints of Mixed Equilibria, Variational Inequalities, Convex Minimization, and Hierarchical Fixed Point Problems

    Directory of Open Access Journals (Sweden)

    Lu-Chuan Ceng

    2014-01-01

    Full Text Available We introduce and analyze a hybrid iterative algorithm by virtue of Korpelevich's extragradient method, viscosity approximation method, hybrid steepest-descent method, and averaged mapping approach to the gradient-projection algorithm. It is proven that under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of infinitely many nonexpansive mappings, the solution set of finitely many generalized mixed equilibrium problems (GMEPs, the solution set of finitely many variational inequality problems (VIPs, the solution set of general system of variational inequalities (GSVI, and the set of minimizers of convex minimization problem (CMP, which is just a unique solution of a triple hierarchical variational inequality (THVI in a real Hilbert space. In addition, we also consider the application of the proposed algorithm to solve a hierarchical fixed point problem with constraints of finitely many GMEPs, finitely many VIPs, GSVI, and CMP. The results obtained in this paper improve and extend the corresponding results announced by many others.

  11. CVD techniques applied to energy problems

    International Nuclear Information System (INIS)

    McCreary, W.J.; Carroll, D.W.

    1981-01-01

    Some of the applications of chemical vapor deposition in energy related programs will be discussed, and coating parameters will be described. The coatings to be discussed were made at reduced pressures from the hydrogen reduction of metal fluorides, or metal silane and from the pyrolysis of metal carbonyls

  12. Solution for Nonlinear Three-Dimensional Intercept Problem with Minimum Energy

    Directory of Open Access Journals (Sweden)

    Henzeh Leeghim

    2013-01-01

    a minimum-energy application, which then generates both the desired initial interceptor velocity and the TOF for the minimum-energy transfer. The optimization problem is formulated by using the classical Lagrangian f and g coefficients, which map initial position and velocity vectors to future times, and a universal time variable x. A Newton-Raphson iteration algorithm is introduced for iteratively solving the problem. A generalized problem formulation is introduced for minimizing the TOF as part of the optimization problem. Several examples are presented, and the results are compared with the Hohmann transfer solution approaches. The resulting minimum-energy intercept solution algorithm is expected to be broadly useful as a starting iterative for applications spanning: targeting, rendezvous, interplanetary trajectory design, and so on.

  13. The exponentiated Hencky-logarithmic strain energy. Part II: Coercivity, planar polyconvexity and existence of minimizers

    Science.gov (United States)

    Neff, Patrizio; Lankeit, Johannes; Ghiba, Ionel-Dumitrel; Martin, Robert; Steigmann, David

    2015-08-01

    We consider a family of isotropic volumetric-isochoric decoupled strain energies based on the Hencky-logarithmic (true, natural) strain tensor log U, where μ > 0 is the infinitesimal shear modulus, is the infinitesimal bulk modulus with the first Lamé constant, are dimensionless parameters, is the gradient of deformation, is the right stretch tensor and is the deviatoric part (the projection onto the traceless tensors) of the strain tensor log U. For small elastic strains, the energies reduce to first order to the classical quadratic Hencky energy which is known to be not rank-one convex. The main result in this paper is that in plane elastostatics the energies of the family are polyconvex for , extending a previous finding on its rank-one convexity. Our method uses a judicious application of Steigmann's polyconvexity criteria based on the representation of the energy in terms of the principal invariants of the stretch tensor U. These energies also satisfy suitable growth and coercivity conditions. We formulate the equilibrium equations, and we prove the existence of minimizers by the direct methods of the calculus of variations.

  14. The numerical solution of total variation minimization problems in image processing

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, C.R.; Oman, M.E. [Montana State Univ., Bozeman, MT (United States)

    1994-12-31

    Consider the minimization of penalized least squares functionals of the form: f(u) = 1/2 ({parallel}Au {minus} z{parallel}){sup 2} + {alpha}{integral}{sub {Omega}}{vert_bar}{del}u{vert_bar}dx. Here A is a bounded linear operator, z represents data, {parallel} {center_dot} {parallel} is a Hilbert space norm, {alpha} is a positive parameter, {integral}{sub {Omega}}{vert_bar}{del}u{vert_bar} dx represents the total variation (TV) of a function u {element_of} BV ({Omega}), the class of functions of bounded variation on a bounded region {Omega}, and {vert_bar} {center_dot} {vert_bar} denotes Euclidean norm. In image processing, u represents an image which is to be recovered from noisy data z. Certain {open_quotes}blurring processes{close_quotes} may be represented by the action of an operator A on the image u.

  15. Press problem related to nuclear energy news reporting

    International Nuclear Information System (INIS)

    Arai, Mitsuo

    2008-01-01

    Since the event of Niigataken Chuetsu-oki Earthquake in 2007 and the subsequent press reports on damage of nuclear power station after it, a stance of media is being questioned. In order to clear this problem, basic organizational structure of the press related to nuclear energy news was analyzed. Local news department, social news department, science news department and economical news department involve in nuclear energy news the accordance with their own situations and concerns. This structure makes problem of nuclear energy news reporting complicated. Changing this system is required but very difficult. It is concluded that the press problem around nuclear energy news is strange. (author)

  16. Energy from plants: problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Khoshoo, T.N.

    1982-01-01

    This article contains the presidential address to the Section of Botany (VI). After an introduction and a brief account of the process and efficiency of photosynthesis, the address describes terrestrial and aquatic biomass, biological hydrogen production and bioconversion (the conversion of biomass and organic wastes into energy and also into fertilizers, food and chemicals). The section on terrestial biomass is with particular reference to India and examines fuel plantations, the possibility of covered energy farms (such as the growth of alfalfa in greenhouses), the production of agricultural alcohol, the use of vegetable oils as fuel, the production and use of jojoba (Simmondsia chinensis) wax, and hydrocarbon producing plants (rubber, Euphorbia spp., various Leguminosae etc.).

  17. The R-134a energy efficiency problem

    International Nuclear Information System (INIS)

    Behrens, N.; Dekleva, T.W.; Hartley, J.G.; Murphy, F.T.; Powell, R.L.

    1990-01-01

    This paper examines the controversy over the relative energy efficiencies of R-134a and R-12, from a theoretical thermodynamic perspective. In this regard, the authors have used an in-house process flowsheeting program which allows to simulate the complete thermodynamic cycle, and investigate the effects of superheat and subcooling. Special attention is given to the suitable basis for comparing the energy efficiencies of different refrigerants calculated from thermodynamic data. Modelling experiments demonstrate the relative extent to which R-12 and R-134a respond differently to superheat and subcooling. With appropriate superheat and subcooling taken into consideration, such as applied in standard practice in the home appliance industry, R-134a can provide COP values essentially equivalent to that of R-12

  18. Energy conservation-problems and perspectives for developing nations

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, P. R. [National Productivity Council, New Delhi, India; Padrmanabhan, S.

    1980-03-15

    While studies of the past indicated a tight coupling of energy consumption and GNP, longer range indications are that they can be mutually decoupled. Developing nations can move forward towards achieving significant energy savings in their economics without fear of economic stagnation. Conservation policies at the national level are difficult to enunciate and the implementation mechanisms have to be strengthened. Macro-level economics may not be easily apparent as unit level economics. If energy conservation is not practiced, we would require the development of additional energy supply capacity with all of its economic implications. The role of science and technology inputs in industrial processes for minimizing energy consumption is significant. Sufficient funds should be allocated for pursuance of R and D activities in energy conservation and in developing alternative energy resources to supplement and later replace the existing costly transient fuels. A climate to promote conservation of energy should formulate policies which lays emphasis on energy conservation strategies rather than soley on energy growth issues. The effort should be directed towards energy programs that are a judicious mix up of energy and energy conservation strategies for achieving economic growth and a reasonable standard of living commensurate with the aspirations of the people. In capital-scarce economies, an account of the fact that energy conservation requires far less investment than energy capital supplies, conservation policies must play a central role in the overall framework of developing nation's national energy policies.

  19. A Fast and Accurate Algorithm for l1 Minimization Problems in Compressive Sampling (Preprint)

    Science.gov (United States)

    2013-01-22

    However, updating uk+1 via the formulation of Step 2 in Algorithm 1 can be implemented through the use of the component-wise Gauss - Seidel iteration which...may accelerate the rate of convergence of the algorithm and therefore reduce the total CPU-time consumed. The efficiency of component-wise Gauss - Seidel ...Micchelli, L. Shen, and Y. Xu, A proximity algorithm accelerated by Gauss - Seidel iterations for L1/TV denoising models, Inverse Problems, 28 (2012), p

  20. Beyond Group: Multiple Person Tracking via Minimal Topology-Energy-Variation.

    Science.gov (United States)

    Gao, Shan; Ye, Qixiang; Xing, Junliang; Kuijper, Arjan; Han, Zhenjun; Jiao, Jianbin; Ji, Xiangyang

    2017-12-01

    Tracking multiple persons is a challenging task when persons move in groups and occlude each other. Existing group-based methods have extensively investigated how to make group division more accurately in a tracking-by-detection framework; however, few of them quantify the group dynamics from the perspective of targets' spatial topology or consider the group in a dynamic view. Inspired by the sociological properties of pedestrians, we propose a novel socio-topology model with a topology-energy function to factor the group dynamics of moving persons and groups. In this model, minimizing the topology-energy-variance in a two-level energy form is expected to produce smooth topology transitions, stable group tracking, and accurate target association. To search for the strong minimum in energy variation, we design the discrete group-tracklet jump moves embedded in the gradient descent method, which ensures that the moves reduce the energy variation of group and trajectory alternately in the varying topology dimension. Experimental results on both RGB and RGB-D data sets show the superiority of our proposed model for multiple person tracking in crowd scenes.

  1. Minimizing the energy spread within a single bunch by shaping its charge distribution

    International Nuclear Information System (INIS)

    Loew, G.A.; Wang, J.

    1984-06-01

    When electrons or positrons in a bunch pass through the periodic structure of a linear accelerator, they leave behind them energy in the form of longitudinal wake fields. The longitudinal fields left behind by early particles in a bunch decrease the energy of later particles. For a linear collider, the energy spread introduced within the bunches by this beam loading effect must be minimized because it limits the degree to which the particles can be focused to a small spot due to chromatic effects in the final focus system. For example, for the SLC, the allowable energy spread is +-0.5%. It has been known for some time that partial compensation of the longitudinal wake field effects can be obtained for any bunch by placing it ahead of the accelerating crest (in space), thereby letting the positive rising sinusoidal field offset the negative beam loading field. The work presented in this report shows that it is possible to obtain complete compensation, i.e., to reduce the energy spread essentially to zero by properly shaping the longitudinal charge distribution of the bunch and by placing it at the correct position on the wave

  2. Minimizing the magnetohydrodynamic potential energy for the current hole region in tokamaks

    International Nuclear Information System (INIS)

    Chu, M.S.; Parks, P.B.

    2004-01-01

    The current hole region in the tokamak has been observed to arise naturally during the development of internal transport barriers. The magnetohydrodynamic (MHD) potential energy in the current hole region is shown to be determined completely in terms of the displacements at the edge of the current hole. For modes with finite toroidal mode number n≠0, the minimized potential energy is the same as if the current hole region were a vacuum region. For modes with toroidal mode number n=0, the displacement is a superposition of three types of independent displacements: a vertical displacement or displacements that compress only the plasma, or the toroidal field uniformly. Thus for ideal MHD perturbations of plasma with a current hole, the plasma behaves as if it were bordered by an extra ''internal vacuum region.'' The relevance of the present work to computer simulations of plasma with a current hole region is also discussed

  3. MINIMIZING THE MHD POTENTIAL ENERGY FOR THE CURRENT HOLE REGION IN TOKAMAKS

    International Nuclear Information System (INIS)

    CHU, M.S; PARKS, P.B

    2004-01-01

    The current hole region in the tokamak has been observed to arise naturally during the development of internal transport barriers. The magnetohydrodynamic (MHD) potential energy in the current hole region is shown to be determined completely in terms of the displacements at the edge of the current hole. For modes with finite toroidal mode number n ≠ 0, the minimized potential energy is the same as if the current hole region were a vacuum region. For modes with toroidal mode number n = 0, the displacement is a superposition of three types of independent displacements: a vertical displacement or displacements that compress only the plasma or the toroidal field uniformly. Thus for ideal MHD perturbations of plasma with a current hole, the plasma behaves as if it were bordered by an extra ''internal vacuum region''. The relevance of the present work to computer simulations of plasma with a current hole region is also discussed

  4. Minimal surfaces

    CERN Document Server

    Dierkes, Ulrich; Sauvigny, Friedrich; Jakob, Ruben; Kuster, Albrecht

    2010-01-01

    Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently

  5. Minimization of complementary energy to predict shear modulus of laminates with intralaminar cracks

    International Nuclear Information System (INIS)

    Giannadakis, K; Varna, J

    2012-01-01

    The most common damage mode and the one examined in this work is the formation of intralaminar cracks in layers of laminates. These cracks can occur when the composite structure is subjected to mechanical and/or thermal loading and eventually lead to degradation of thermo-elastic properties. In the present work, the shear modulus reduction due to cracking is studied. Mathematical models exist in literature for the simple case of cross-ply laminates. The in-plane shear modulus of a damaged laminate is only considered in a few studies. In the current work, the shear modulus reduction in cross-plies will be analysed based on the principle of minimization of complementary energy. Hashin investigated the in-plane shear modulus reduction of cross-ply laminates with cracks in inside 90-layer using this variational approach and assuming that the in-plane shear stress in layers does not depend on the thickness coordinate. In the present study, a more detailed and accurate approach for stress estimation is followed using shape functions for this dependence with parameters obtained by minimization. The results for complementary energy are then compared with the respective from literature and finally an expression for shear modulus degradation is derived.

  6. Is the climate system an anticipatory system that minimizes free energy?

    Science.gov (United States)

    Rubin, Sergio; Crucifix, Michel

    2017-04-01

    All systems, whether they are alive or not are structured determined systems, i.e. their present states [x (t)] depends of past states [x (t - α)]. However it has been suggested [Rosen, 1985; Friston, 2013] that systems that contain life are capable of anticipation and active inference. The underlying principle is that state changes in living systems are best modelled as a function of past and future states [ x(t) = f (x (t - α), x(t), x (t + β)) ]. The reason for this is that living systems contain a predictive model of their ambiance on which they are active: they appear to model their ambiance to preserve their integrity and homeorhesis. We therefore formulate the following hypothesis: can the climate system be interpreted as an anticipatory system that minimizes free energy? Can its variability (catastrophe, bifurcation and/or tipping points) be interpreted in terms of active inference and anticipation failure? Here we present a mathematical formulation of the climate system as an anticipatory system that minimizes free energy and its possible implication in the future climate predictability. References Rosen, R. (1985). Anticipatory systems. In Anticipatory systems (pp. 313-370). Springer New York. Friston, K. (2013). Life as we know it. Journal of the Royal Society Interface, 10(86), 20130475.

  7. Renewable Energy: An Interdisciplinary Problem Solving Course

    Directory of Open Access Journals (Sweden)

    Alan H Mcgowan

    2013-02-01

    Full Text Available This paper describes a new intermediate course given in the Environmental Studies Program at The New School. It incorporates research activities by the class as a whole, in the process of which the class learns a great deal about the science and technology of non-fossil fuels, their promises and difficulties. Since ameliorating human influenced global climate change, educating and training students in the skills necessary to accomplish the necessary transition is essential. The course embodies a class project on which everyone works, entitled "Fueling America," whose purpose is to determine what technologies deployed in what manner and in what quantities can eliminate the use of fossil fuels in the United States by a date certain. Knowing that it was impossible, we nevertheless chose an early date, 2030, so that it seemed reachable for the students. The project resulted in a technical paper, which included an economic analysis. In addition to alternative energy technologies, the technologies of energy efficiencies were also included.

  8. On the fine-tuning problem in minimal SO(10) SUSY-GUT

    International Nuclear Information System (INIS)

    Hempfling, R.

    1994-05-01

    In grand unified theories (GUT) based on SO(10) all fermions of one generation are embedded in a single representation. As a result, the top quark, the bottom quark, and the τ lepton have the same Yukawa coupling at the GUT scale. This implies a very large ratio of Higgs vacuum expectation values, tanβ≅m t /m b . In this letter we show that GUT threshold correction to the universal Higgs mass parameter can solve the fine-tuning problem associated with such large values of tan β. (orig.)

  9. CONSIDERATIONS ABOVE THE MINI-CONSTITUENT PROPOSAL AND THE PROBLEMS MINIMIZATION (FROM CONSTITUTIONAL DIRIGISME TO THE EXPECTATIONS FRUSTRATION)

    OpenAIRE

    Padua, Átila Andrade

    2015-01-01

    With the June movements of 2013 was fostered the proposal to convene a "mini constituent" as a possibility to minimize the problems experienced by Brazilian society. Considering the constitutional  work  of  the  influx  Portuguese  José  Joaquim  Gomes  Canotilho  this constitutional model and the breaking of paradigms that represented the turgid Brazilian and Portuguese  constitutions,  dedicated  special  attention  to  the  differentiation  of  program standards with the constitutional di...

  10. A Localization-Free Interference and Energy Holes Minimization Routing for Underwater Wireless Sensor Networks.

    Science.gov (United States)

    Khan, Anwar; Ahmedy, Ismail; Anisi, Mohammad Hossein; Javaid, Nadeem; Ali, Ihsan; Khan, Nawsher; Alsaqer, Mohammed; Mahmood, Hasan

    2018-01-09

    Interference and energy holes formation in underwater wireless sensor networks (UWSNs) threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM) routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay.

  11. A Localization-Free Interference and Energy Holes Minimization Routing for Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Anwar Khan

    2018-01-01

    Full Text Available Interference and energy holes formation in underwater wireless sensor networks (UWSNs threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay.

  12. On minimal energy Hartree-Fock states for the 2DEG at fractional fillings

    International Nuclear Information System (INIS)

    Cabo Montes Oca, A. de.

    1995-08-01

    Approximate minimal energy solutions of the previously discussed general class of Hartree-Fock (HF) states of the 2DEG at 1/3 and 2/3 filling factors are determined. Their selfenergy spectrum is evaluated. Wannier states associated to the filled Bloch states are introduced in a lattice having three flux quanta per cell. They allow to rewrite approximately the ν = 1/3 HF Hamiltonian as sum of three independent tight-binding model Hamiltonians, one describing the dynamics in the band of occupied states and the other ones in the tow bands of excited states. The magnitude of the hopping integral indicates the enhanced role which should have the correlation energy in the present situation with respect to the case of the Yoshioka and Lee second order energy calculation for the lowest energy HF state. Finally, the discussion also suggests the Wannier function, which spreads an electron into a three quanta area, as a physical model for the composite fermion mean field one particle state. (author). 11 refs, 5 figs

  13. Crystal Engineering on Industrial Diaryl Pigments Using Lattice Energy Minimizations and X-ray Powder Diffraction

    International Nuclear Information System (INIS)

    Schmidt, M.; Dinnebier, R.; Kalkhof, H.

    2007-01-01

    Diaryl azo pigments play an important role as yellow pigments for printing inks, with an annual pigment production of more than 50,000 t. The crystal structures of Pigment Yellow 12 (PY12), Pigment Yellow 13 (PY13), Pigment Yellow 14 (PY14), and Pigment Yellow 83 (PY83) were determined from X-ray powder data using lattice energy minimizations and subsequent Rietveld refinements. Details of the lattice energy minimization procedure and of the development of a torsion potential for the biphenyl fragment are given. The Rietveld refinements were carried out using rigid bodies, or constraints. It was also possible to refine all atomic positions individually without any constraint or restraint, even for PY12 having 44 independent non-hydrogen atoms per asymmetric unit. For PY14 (23 independent non-hydrogen atoms), additionally all atomic isotropic temperature factors could be refined individually. PY12 crystallized in a herringbone arrangement with twisted biaryl fragments. PY13 and PY14 formed a layer structure of planar molecules. PY83 showed a herringbone structure with planar molecules. According to quantum mechanical calculations, the twisting of the biaryl fragment results in a lower color strength of the pigments, whereas changes in the substitution pattern have almost no influence on the color strength of a single molecule. Hence, the experimentally observed lower color strength of PY12 in comparison with that of PY13 and PY83 can be explained as a pure packing effect. Further lattice energy calculations explained that the four investigated pigments crystallize in three different structures because these structures are the energetically most favorable ones for each compound. For example, for PY13, PY14, or PY83, a PY12-analogous crystal structure would lead to considerably poorer lattice energies and lower densities. In contrast, lattice energy calculations revealed that PY12 could adopt a PY13-type structure with only slightly poorer energy. This structure was

  14. Evaluation of the accuracy of the free-energy-minimization method

    International Nuclear Information System (INIS)

    Najafabadi, R.; Srolovitz, D.J.

    1995-01-01

    We have made a detailed comparison between three competing methods for determining the free energies of solids and their defects: the thermodynamic integration of Monte Carlo (TIMC) data, the quasiharmonic (QH) model, and the free-energy-minimization (FEM) method. The accuracy of these methods decreases from the TIMC to QH to FEM method, while the computational efficiency improves in that order. All three methods yield perfect crystal lattice parameters and free energies at finite temperatures which are in good agreement for three different Cu interatomic potentials [embedded atom method (EAM), Morse and Lennard-Jones]. The FEM error (relative to the TIMC) in the (001) surface free energy and in the vacancy formation energy were found to be much larger for the EAM potential than for the other two potentials. Part of the errors in the FEM determination of the free energies are associated with anharmonicities in the interatomic potentials, with the remainder attributed to decoupling of the atomic vibrations. The anharmonicity of the EAM potential was found to be unphysically large compared with experimental vacancy formation entropy determinations. Based upon these results, we show that the FEM method provides a reasonable compromise between accuracy and computational demands. However, the accuracy of this approach is sensitive to the choice of interatomic potential and the nature of the defect to which it is being applied. The accuracy of the FEM is best in high-symmetry environments (perfect crystal, high-symmetry defects, etc.) and when used to describe materials where the anharmonicity is not too large

  15. The core of the global warming problem: energy

    International Nuclear Information System (INIS)

    Hu, E.

    2005-01-01

    From the thermodynamic point of view, the global warming problem is an 'energy balance' problem. The heat (energy) accumulation in the earth and its atmosphere is the cause of global warming. This accumulation is mainly due to the imbalance of (solar) energy reaching and the energy leaving the earth, caused by 'greenhouse effect' in which the CO 2 and other greenhouse gases play a critical role; so that balance of the energy entering and leaving the earth should be the key to solve the problem. Currently in the battle of tackling the global warming, we mainly focus on the development of CO 2 -related measures, i.e., emission reduction, CO 2 sequestration, and CO 2 recycle technologies. It is right in technical aspect, because they are attempting to thin the CO 2 'blanket' around the earth. However, 'Energy' that is the core of the problem has been overlooked, at least in management/policy aspect. This paper is proposing an 'Energy Credit' i.e., the energy measure concept as an alternative to the 'CO 2 credit' that is currently in place in the proposed emission trading scheme. The proposed energy credit concept has the advantages such as covering broad activities related to the global warming and not just direct emissions. Three examples are given in the paper to demonstrate the concept of the energy measure and its advantages over the CO 2 credit concept. (Author)

  16. Measures for carbon dioxide problem and utilization of energy

    International Nuclear Information System (INIS)

    Kojima, Toshinori

    1992-01-01

    As global environment problems, there are water, expansion of deserts, weather, tropical forests, wild animals, ocean pollution, nuclear waste contamination, acid rain, ozone layer and so on, and population, foods, energy, and resources are the problems surrounding them. It is clear that these origins are attributed to the development and consumption largely dependent on the intention of developed countries and the population problem of developing countries. In this report, the discharge of carbon dioxide that causes greenhouse effect and its relation with energy are discussed. The increase of carbon dioxide concentration, its release from fossil fuel, the destruction of forests, the balance of carbon on the earth, the development of new energy such as solar energy, the transport of new energy, secondary energy system and the role of carbon dioxide, the transfer to low carbon fuel and the carbon reduction treatment of fuel, the utilization of unused energy and energy price, the efficiency of energy utilization, the heightening of efficiency of energy conversion, energy conservation and the breakaway from energy wasteful use culture, and the recovery, preservation and use of discharged carbon dioxide are described. (K.I.)

  17. Does self-help increase rates of help seeking for student mental health problems by minimizing stigma as a barrier?

    Science.gov (United States)

    Levin, Michael E; Krafft, Jennifer; Levin, Crissa

    2018-01-01

    This study examined whether self-help (books, websites, mobile apps) increases help seeking for mental health problems among college students by minimizing stigma as a barrier. A survey was conducted with 200 college students reporting elevated distress from February to April 2017. Intentions to use self-help were low, but a significant portion of students unwilling to see mental health professionals intended to use self-help. Greater self-stigma related to lower intentions to seek professional help, but was unrelated to seeking self-help. Similarly, students who only used self-help in the past reported higher self-stigma than those who sought professional treatment in the past. Although stigma was not a barrier for self-help, alternate barriers were identified. Offering self-help may increase rates of students receiving help for mental health problems, possibly by offering an alternative for students unwilling to seek in-person therapy due to stigma concerns.

  18. Development of a waste minimization plan for the Department of Energy's Naval petroleum reserve No. 3

    International Nuclear Information System (INIS)

    Falconer, K.L.; Lane, T.C.

    1991-01-01

    A Waste Minimization Program Plan for the U.S. Department of Energy's (DOE) Naval Petroleum Reserve No. 3 (NPR-3) was prepared in response to DOE Order 5400.1, open-quotes General Environmental Protection Program close-quote The NPR-3 Waste Minimization Program Plan encompasses all ongoing operations at the Naval Petroleum Reserve and is consistent with the principles set forth in the mission statement for NPR-3. The mission of the NPR-3 is to apply project management, engineering and scientific capabilities to produce oil and gas from subsurface zones at the maximum efficiency rate for the United States Government. NPR-3 generates more than 60 discrete waste streams, many of significant volume. Most of these waste streams are categorized as wastes from the exploration, development and production of oil and gas and, as such, are exempt from Subtitle C of RCRA as indicated in the regulatory determination published in the Federal Register on July 6, 1988. However, because so many of these waste streams contain hazardous substances and because of an increasingly more restrictive regulatory environment, in 1990 an overall effort was made to characterize all waste streams produced and institute the best waste management practice economically practical to reduce the volume and toxicity of the waste generated

  19. Energy consumption during simulated minimal access surgery with and without using an armrest.

    Science.gov (United States)

    Jafri, Mansoor; Brown, Stuart; Arnold, Graham; Abboud, Rami; Wang, Weijie

    2013-03-01

    Minimal access surgery (MAS) can be a lengthy procedure when compared to open surgery and therefore surgeon fatigue becomes an important issue and surgeons may expose themselves to chronic injuries and making errors. There have been few studies on this topic and they have used only questionnaires and electromyography rather than direct measurement of energy expenditure (EE). The aim of this study was to investigate whether the use of an armrest could reduce the EE of surgeons during MAS. Sixteen surgeons performed simulated MAS with and without using an armrest. They were required to perform the time-consuming task of using scissors to cut a rubber glove through its top layer in a triangular fashion with the help of a laparoscopic camera. Energy consumptions were measured using the Oxycon Mobile system during all the procedures. Error rate and duration time for simulated surgery were recorded. After performing the simulated surgery, subjects scored how comfortable they felt using the armrest. It was found that O(2) uptake (VO(2)) was 5 % less when surgeons used the armrest. The error rate when performing the procedure with the armrest was 35 % compared with 42.29 % without the armrest. Additionally, comfort levels with the armrest were higher than without the armrest. 75 % of surgeons indicated a preference for using the armrest during the simulated surgery. The armrest provides support for surgeons and cuts energy consumption during simulated MAS.

  20. Coal consumption minimizing by increasing thermal energy efficiency at ROMAG-PROD Heavy Water Plant

    International Nuclear Information System (INIS)

    Preda, Marius Cristian

    2006-01-01

    ROMAG-PROD Heavy Water Plant is a large thermal energy consumer using almost all the steam output from ROMAG-TERMO Power Plant - the steam cost weight in the total heavy water price is about 40%. The steam consumption minimizing by modernization of isotopic exchange facilities and engineering development in ROMAG-PROD Heavy Water Plant results in an corresponding decrease of coal amount burned at ROMAG-TERMO boilers. This decrease could be achieved mainly by the followings ways: - Facility wrappings integrity; - High performance heat exchangers; - Refurbished heat insulations; - Modified condenser-collecting pipeline routes; - High performance steam traps; - Heat electric wire. When coal is burned in Power Plant burners to obtain thermal energy, toxic emissions results in flue gases, such as: - CO 2 and NO x with impact on climate warming; - SO 2 which results in ozone layer thinning effect and in acid rain falls. From the value of steam output per burned coal: 1 GCal steam = 1.41 tone steam = 0.86 thermal MW = 1.1911 tones burned coal (lignite), it is obvious that by decreasing the thermal energy consumption provided for ROMAG PROD, a coal amount decrease is estimated at about 45 t/h, or about 394,200 t/year coal, which means about 10% of the current coal consumption at ROMAG-TERMO PP. At the same time, by reducing the burned coal amount, an yearly decrease in emissions into air to about 400,000 tones CO 2 is expected

  1. Potential pollution prevention and waste minimization for Department of Energy operations

    International Nuclear Information System (INIS)

    Griffin, J.; Ischay, C.; Kennicott, M.; Pemberton, S.; Tull, D.

    1995-10-01

    With the tightening of budgets and limited resources, it is important to ensure operations are carried out in a cost-effective and productive manner. Implementing an effective Pollution Prevention strategy can help to reduce the costs of waste management and prevent harmful releases to the environment. This document provides an estimate of the Department of Energy's waste reduction potential from the implementation of Pollution Prevention opportunities. A team of Waste Minimization and Pollution Prevention professionals was formed to collect the data and make the estimates. The report includes a list of specific reduction opportunities for various waste generating operations and waste types. A generic set of recommendations to achieve these reduction opportunities is also provided as well as a general discussion of the approach and assumptions made for each waste generating operation

  2. Reduction efficiency prediction of CENIBRA's recovery boiler by direct minimization of gibbs free energy

    Directory of Open Access Journals (Sweden)

    W. L. Silva

    2008-09-01

    Full Text Available The reduction efficiency is an important variable during the black liquor burning process in the Kraft recovery boiler. This variable value is obtained by slow experimental routines and the delay of this measure disturbs the pulp and paper industry customary control. This paper describes an optimization approach for the reduction efficiency determination in the furnace bottom of the recovery boiler based on the minimization of the Gibbs free energy. The industrial data used in this study were directly obtained from CENIBRA's data acquisition system. The resulting approach is able to predict the steady state behavior of the chemical composition of the furnace recovery boiler, - especially the reduction efficiency when different operational conditions are used. This result confirms the potential of this approach in the analysis of the daily operation of the recovery boiler.

  3. Is spontaneous breaking of R-parity feasible in minimal low-energy supergravity

    International Nuclear Information System (INIS)

    Gato, B.; Leon, J.; Perez-Mercader, J.; Quiros, M.

    1985-01-01

    Spontaneous violation of lepton number without breaking Lorentz invariance can, in principle, be incorporated in models with softly broken supersymmetry. We study the situation for minimal low-energy supergravity models coming from a GUT (hence not having hierarchy destabilizing light singlets) and where the SU(2)xU(1) breaking is radiative. It is found that for this type of model, R-parity breaking requires either too heavy a top quark for a realistic superpartner spectrum or too light a superpartner spectrum for a realistic top quark, making the spontaneous violation of lepton number in the third generation incompatible with present experimental data. We do not discard the possibility of having it in a fourth, heavier, generation. (orig.)

  4. Nuclear waste problem: does new Europe need new nuclear energy?

    International Nuclear Information System (INIS)

    Alekseev, P.; Dudnikov, A.; Subbotin, S.

    2003-01-01

    Nuclear Energy for New Europe - what does it mean? New Europe - it means in first order joined Europe. And it is quite clear that also efforts in nuclear energy must be joined. What can be proposed as a target of joint efforts. Improvement of existing plants, technologies, materials? - Certainly, but it is performed already by designers and industry themselves. There exists a problem, which each state using nuclear energy faces alone. It is nuclear waste problem. Nowadays nuclear waste problem is not completely solved in any country. It seems reasonable for joining Europe to join efforts in solving this problem. A satisfactory solution would reduce a risk connected with nuclear waste. In addition to final disposal problem solution it is necessary to reduce total amount of nuclear waste, that means: reducing the rates of accumulation of long-lived dangerous radionuclides; reducing the existing amounts of these radionuclides by transmutation. These conditions can be satisfied in reasonable time by burning of minor actinides and, if possible, by transmutation of long-lived fission products. However we can use this strategy effectively if we will design and construct nuclear energy as a system of which components are united by nuclear fuel cycle as a system-forming factor. The existing structures and approaches may become insufficient for new Europe. Therefore among the initial steps in considering nuclear waste problem must be considering possible promising fuel cycles for European nuclear energy. So, does new Europe need new nuclear energy? It seems, yes. (author)

  5. A Hybrid Metaheuristic Approach for Minimizing the Total Flow Time in A Flow Shop Sequence Dependent Group Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Antonio Costa

    2014-07-01

    Full Text Available Production processes in Cellular Manufacturing Systems (CMS often involve groups of parts sharing the same technological requirements in terms of tooling and setup. The issue of scheduling such parts through a flow-shop production layout is known as the Flow-Shop Group Scheduling (FSGS problem or, whether setup times are sequence-dependent, the Flow-Shop Sequence-Dependent Group Scheduling (FSDGS problem. This paper addresses the FSDGS issue, proposing a hybrid metaheuristic procedure integrating features from Genetic Algorithms (GAs and Biased Random Sampling (BRS search techniques with the aim of minimizing the total flow time, i.e., the sum of completion times of all jobs. A well-known benchmark of test cases, entailing problems with two, three, and six machines, is employed for both tuning the relevant parameters of the developed procedure and assessing its performances against two metaheuristic algorithms recently presented by literature. The obtained results and a properly arranged ANOVA analysis highlight the superiority of the proposed approach in tackling the scheduling problem under investigation.

  6. Some problems of high-energy elementary particle physics

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1995-01-01

    The problems of high-energy elementary particle physics are discussed. It is pointed out that the modern theory of elementary-particle physics has no solutions of some large physical problems: origin of the mass, electric charge, identity of particle masses, change of the mass of elementary particles in time and others. 7 refs

  7. Bilevel programming problems theory, algorithms and applications to energy networks

    CERN Document Server

    Dempe, Stephan; Pérez-Valdés, Gerardo A; Kalashnykova, Nataliya; Kalashnikova, Nataliya

    2015-01-01

    This book describes recent theoretical findings relevant to bilevel programming in general, and in mixed-integer bilevel programming in particular. It describes recent applications in energy problems, such as the stochastic bilevel optimization approaches used in the natural gas industry. New algorithms for solving linear and mixed-integer bilevel programming problems are presented and explained.

  8. Non-minimal derivative coupling scalar field and bulk viscous dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Mostaghel, Behrang [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Moshafi, Hossein [Institute for Advanced Studies in Basic Sciences, Department of Physics, Zanjan (Iran, Islamic Republic of); Movahed, S.M.S. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-08-15

    Inspired by thermodynamical dissipative phenomena, we consider bulk viscosity for dark fluid in a spatially flat two-component Universe. Our viscous dark energy model represents phantom-crossing which avoids big-rip singularity. We propose a non-minimal derivative coupling scalar field with zero potential leading to accelerated expansion of the Universe in the framework of bulk viscous dark energy model. In this approach, the coupling constant, κ, is related to viscosity coefficient, γ, and the present dark energy density, Ω{sub DE}{sup 0}. This coupling is bounded as κ element of [-1/9H{sub 0}{sup 2}(1 - Ω{sub DE}{sup 0}), 0]. We implement recent observational data sets including a joint light-curve analysis (JLA) for SNIa, gamma ray bursts (GRBs) for most luminous astrophysical objects at high redshifts, baryon acoustic oscillations (BAO) from different surveys, Hubble parameter from HST project, Planck CMB power spectrum and lensing to constrain model free parameters. The joint analysis of JLA + GRBs + BAO + HST shows that Ω{sub DE}{sup 0} = 0.696 ± 0.010, γ = 0.1404 ± 0.0014 and H{sub 0} = 68.1 ± 1.3. Planck TT observation provides γ = 0.32{sup +0.31}{sub -0.26} in the 68% confidence limit for the viscosity coefficient. The cosmographic distance ratio indicates that current observed data prefer to increase bulk viscosity. The competition between phantom and quintessence behavior of the viscous dark energy model can accommodate cosmological old objects reported as a sign of age crisis in the ΛCDM model. Finally, tension in the Hubble parameter is alleviated in this model. (orig.)

  9. Problems of future energy market planning and optimization

    International Nuclear Information System (INIS)

    Lelek, V.; Jaluvka, D.

    2007-01-01

    Probable development of energy market is described in the article and special attention is devoted to the nuclear energy, which not only consume, but also produce raw material and how to proceed to avoid crises in supply. Problems of future energy supply of heat, liquid fuel, electricity are described. Expected effect will be jump in prices or regulated supply to equalize supply and use. It can completely change our standard consideration of profit

  10. Pricing and Capacity Planning Problems in Energy Transmission Networks

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer

    strategy. In the Nordic electricity system a market with zonal prices is adopted. We consider the problem of designing zones in an optimal way explicitly considering uncertainty. Finally, we formulate the integrated problem of pipeline capacity expansion planning and transmission pricing in natural gas...... necessitates a radical change in the way we plan and operate energy systems. Another paradigm change which began in the 1990’s for electricity systems is that of deregulation. This has led to a variety of different market structures implemented across the world. In this thesis we discuss capacity planning...... and transmission pricing problems in energy transmission networks. Although the modelling framework applies to energy networks in general, most of the applications discussed concern the transmission of electricity. A number of the problems presented involves transmission switching, which allows the operator...

  11. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol.

    Science.gov (United States)

    Liu, Gang; Bao, Jie

    2017-12-01

    Energy consumption and wastewater generation in cellulosic ethanol production are among the determinant factors on overall cost and technology penetration into fuel ethanol industry. This study analyzed the energy consumption and wastewater generation by the new biorefining process technology, dry acid pretreatment and biodetoxification (DryPB), as well as by the current mainstream technologies. DryPB minimizes the steam consumption to 8.63GJ and wastewater generation to 7.71tons in the core steps of biorefining process for production of one metric ton of ethanol, close to 7.83GJ and 8.33tons in corn ethanol production, respectively. The relatively higher electricity consumption is compensated by large electricity surplus from lignin residue combustion. The minimum ethanol selling price (MESP) by DryPB is below $2/gal and falls into the range of corn ethanol production cost. The work indicates that the technical and economical gap between cellulosic ethanol and corn ethanol has been almost filled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A Singlet Extension of the Minimal Supersymmetric Standard Model: Towards a More Natural Solution to the Little Hierarchy Problem

    Energy Technology Data Exchange (ETDEWEB)

    de la Puente, Alejandro [Univ. of Notre Dame, IN (United States)

    2012-05-01

    In this work, I present a generalization of the Next-to-Minimal Supersymmetric Standard Model (NMSSM), with an explicit μ-term and a supersymmetric mass for the singlet superfield, as a route to alleviating the little hierarchy problem of the Minimal Supersymmetric Standard Model (MSSM). I analyze two limiting cases of the model, characterized by the size of the supersymmetric mass for the singlet superfield. The small and large limits of this mass parameter are studied, and I find that I can generate masses for the lightest neutral Higgs boson up to 140 GeV with top squarks below the TeV scale, all couplings perturbative up to the gauge unification scale, and with no need to fine tune parameters in the scalar potential. This model, which I call the S-MSSM is also embedded in a gauge-mediated supersymmetry breaking scheme. I find that even with a minimal embedding of the S-MSSM into a gauge mediated scheme, the mass for the lightest Higgs boson can easily be above 114 GeV, while keeping the top squarks below the TeV scale. Furthermore, I also study the forward-backward asymmetry in the t¯t system within the framework of the S-MSSM. For this purpose, non-renormalizable couplings between the first and third generation of quarks to scalars are introduced. The two limiting cases of the S-MSSM, characterized by the size of the supersymmetric mass for the singlet superfield is analyzed, and I find that in the region of small singlet supersymmetric mass a large asymmetry can be obtained while being consistent with constraints arising from flavor physics, quark masses and top quark decays.

  13. Problems and perspectives in energy law and environmental law. Documentation; Probleme und Perspektiven im Energieumweltrecht. Dokumentation

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, Wolfram; Pielow, Johann-Christian (eds.)

    2009-07-01

    This book contains the contributions and discussion of the 13th annual meeting of the Institute of Mining Law and Energy Law of the Ruhr University Bochum. The meeting washed on 6 March 2009 under the title ''Problems and Perspectives in Energy Law and Environmental Law''. (orig.)

  14. Energy law - Actual problems 2004/2005; Energierecht - Aktuelle Probleme 2004/2005

    Energy Technology Data Exchange (ETDEWEB)

    Schwintowski, H.P. (ed.)

    2006-07-01

    The book under consideration contains contributions to current problems in the range of energy law which have led to intensive discussions in the years 2005 and 2006. These contributions consider franchise agreements, energy contracting, regional subset distribution systems and long-term supply contracts.

  15. Energy Minimization of Discrete Protein Titration State Models Using Graph Theory

    Science.gov (United States)

    Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A.

    2016-01-01

    There are several applications in computational biophysics which require the optimization of discrete interacting states; e.g., amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial-time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of “maximum flow-minimum cut” graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein, and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial-time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered. PMID:27089174

  16. Energy Minimization of Discrete Protein Titration State Models Using Graph Theory.

    Science.gov (United States)

    Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A

    2016-08-25

    There are several applications in computational biophysics that require the optimization of discrete interacting states, for example, amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of "maximum flow-minimum cut" graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.

  17. [Possible changes in energy-minimizer mechanisms of locomotion due to chronic low back pain - a literature review].

    Science.gov (United States)

    de Carvalho, Alberito Rodrigo; Andrade, Alexandro; Peyré-Tartaruga, Leonardo Alexandre

    2015-01-01

    One goal of the locomotion is to move the body in the space at the most economical way possible. However, little is known about the mechanical and energetic aspects of locomotion that are affected by low back pain. And in case of occurring some damage, little is known about how the mechanical and energetic characteristics of the locomotion are manifested in functional activities, especially with respect to the energy-minimizer mechanisms during locomotion. This study aimed: a) to describe the main energy-minimizer mechanisms of locomotion; b) to check if there are signs of damage on the mechanical and energetic characteristics of the locomotion due to chronic low back pain (CLBP) which may endanger the energy-minimizer mechanisms. This study is characterized as a narrative literature review. The main theory that explains the minimization of energy expenditure during the locomotion is the inverted pendulum mechanism, by which the energy-minimizer mechanism converts kinetic energy into potential energy of the center of mass and vice-versa during the step. This mechanism is strongly influenced by spatio-temporal gait (locomotion) parameters such as step length and preferred walking speed, which, in turn, may be severely altered in patients with chronic low back pain. However, much remains to be understood about the effects of chronic low back pain on the individual's ability to practice an economic locomotion, because functional impairment may compromise the mechanical and energetic characteristics of this type of gait, making it more costly. Thus, there are indications that such changes may compromise the functional energy-minimizer mechanisms. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  18. Optimal replacement of residential air conditioning equipment to minimize energy, greenhouse gas emissions, and consumer cost in the US

    International Nuclear Information System (INIS)

    De Kleine, Robert D.; Keoleian, Gregory A.; Kelly, Jarod C.

    2011-01-01

    A life cycle optimization of the replacement of residential central air conditioners (CACs) was conducted in order to identify replacement schedules that minimized three separate objectives: life cycle energy consumption, greenhouse gas (GHG) emissions, and consumer cost. The analysis was conducted for the time period of 1985-2025 for Ann Arbor, MI and San Antonio, TX. Using annual sales-weighted efficiencies of residential CAC equipment, the tradeoff between potential operational savings and the burdens of producing new, more efficient equipment was evaluated. The optimal replacement schedule for each objective was identified for each location and service scenario. In general, minimizing energy consumption required frequent replacement (4-12 replacements), minimizing GHG required fewer replacements (2-5 replacements), and minimizing cost required the fewest replacements (1-3 replacements) over the time horizon. Scenario analysis of different federal efficiency standards, regional standards, and Energy Star purchases were conducted to quantify each policy's impact. For example, a 16 SEER regional standard in Texas was shown to either reduce primary energy consumption 13%, GHGs emissions by 11%, or cost by 6-7% when performing optimal replacement of CACs from 2005 or before. The results also indicate that proper servicing should be a higher priority than optimal replacement to minimize environmental burdens. - Highlights: → Optimal replacement schedules for residential central air conditioners were found. → Minimizing energy required more frequent replacement than minimizing consumer cost. → Significant variation in optimal replacement was observed for Michigan and Texas. → Rebates for altering replacement patterns are not cost effective for GHG abatement. → Maintenance levels were significant in determining the energy and GHG impacts.

  19. Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.

    Science.gov (United States)

    Marsh, M C David

    2017-01-06

    Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.

  20. Viscous Corrections of the Time Incremental Minimization Scheme and Visco-Energetic Solutions to Rate-Independent Evolution Problems

    Science.gov (United States)

    Minotti, Luca; Savaré, Giuseppe

    2018-02-01

    We propose the new notion of Visco-Energetic solutions to rate-independent systems {(X, E,} d) driven by a time dependent energy E and a dissipation quasi-distance d in a general metric-topological space X. As for the classic Energetic approach, solutions can be obtained by solving a modified time Incremental Minimization Scheme, where at each step the dissipation quasi-distance d is incremented by a viscous correction {δ} (for example proportional to the square of the distance d), which penalizes far distance jumps by inducing a localized version of the stability condition. We prove a general convergence result and a typical characterization by Stability and Energy Balance in a setting comparable to the standard energetic one, thus capable of covering a wide range of applications. The new refined Energy Balance condition compensates for the localized stability and provides a careful description of the jump behavior: at every jump the solution follows an optimal transition, which resembles in a suitable variational sense the discrete scheme that has been implemented for the whole construction.

  1. Cost Minimization for Joint Energy Management and Production Scheduling Using Particle Swarm Optimization

    Science.gov (United States)

    Shah, Rahul H.

    Production costs account for the largest share of the overall cost of manufacturing facilities. With the U.S. industrial sector becoming more and more competitive, manufacturers are looking for more cost and resource efficient working practices. Operations management and production planning have shown their capability to dramatically reduce manufacturing costs and increase system robustness. When implementing operations related decision making and planning, two fields that have shown to be most effective are maintenance and energy. Unfortunately, the current research that integrates both is limited. Additionally, these studies fail to consider parameter domains and optimization on joint energy and maintenance driven production planning. Accordingly, production planning methodology that considers maintenance and energy is investigated. Two models are presented to achieve well-rounded operating strategy. The first is a joint energy and maintenance production scheduling model. The second is a cost per part model considering maintenance, energy, and production. The proposed methodology will involve a Time-of-Use electricity demand response program, buffer and holding capacity, station reliability, production rate, station rated power, and more. In practice, the scheduling problem can be used to determine a joint energy, maintenance, and production schedule. Meanwhile, the cost per part model can be used to: (1) test the sensitivity of the obtained optimal production schedule and its corresponding savings by varying key production system parameters; and (2) to determine optimal system parameter combinations when using the joint energy, maintenance, and production planning model. Additionally, a factor analysis on the system parameters is conducted and the corresponding performance of the production schedule under variable parameter conditions, is evaluated. Also, parameter optimization guidelines that incorporate maintenance and energy parameter decision making in the

  2. Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Cobaugh Christian W

    2004-08-01

    Full Text Available Abstract Background A detailed understanding of an RNA's correct secondary and tertiary structure is crucial to understanding its function and mechanism in the cell. Free energy minimization with energy parameters based on the nearest-neighbor model and comparative analysis are the primary methods for predicting an RNA's secondary structure from its sequence. Version 3.1 of Mfold has been available since 1999. This version contains an expanded sequence dependence of energy parameters and the ability to incorporate coaxial stacking into free energy calculations. We test Mfold 3.1 by performing the largest and most phylogenetically diverse comparison of rRNA and tRNA structures predicted by comparative analysis and Mfold, and we use the results of our tests on 16S and 23S rRNA sequences to assess the improvement between Mfold 2.3 and Mfold 3.1. Results The average prediction accuracy for a 16S or 23S rRNA sequence with Mfold 3.1 is 41%, while the prediction accuracies for the majority of 16S and 23S rRNA structures tested are between 20% and 60%, with some having less than 20% prediction accuracy. The average prediction accuracy was 71% for 5S rRNA and 69% for tRNA. The majority of the 5S rRNA and tRNA sequences have prediction accuracies greater than 60%. The prediction accuracy of 16S rRNA base-pairs decreases exponentially as the number of nucleotides intervening between the 5' and 3' halves of the base-pair increases. Conclusion Our analysis indicates that the current set of nearest-neighbor energy parameters in conjunction with the Mfold folding algorithm are unable to consistently and reliably predict an RNA's correct secondary structure. For 16S or 23S rRNA structure prediction, Mfold 3.1 offers little improvement over Mfold 2.3. However, the nearest-neighbor energy parameters do work well for shorter RNA sequences such as tRNA or 5S rRNA, or for larger rRNAs when the contact distance between the base-pairs is less than 100 nucleotides.

  3. Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Lvjiang Yin

    2016-12-01

    Full Text Available Nowadays, manufacturing enterprises face the challenge of just-in-time (JIT production and energy saving. Therefore, study of JIT production and energy consumption is necessary and important in manufacturing sectors. Moreover, energy saving can be attained by the operational method and turn off/on idle machine method, which also increases the complexity of problem solving. Thus, most researchers still focus on small scale problems with one objective: a single machine environment. However, the scheduling problem is a multi-objective optimization problem in real applications. In this paper, a single machine scheduling model with controllable processing and sequence dependence setup times is developed for minimizing the total earliness/tardiness (E/T, cost, and energy consumption simultaneously. An effective multi-objective evolutionary algorithm called local multi-objective evolutionary algorithm (LMOEA is presented to tackle this multi-objective scheduling problem. To accommodate the characteristic of the problem, a new solution representation is proposed, which can convert discrete combinational problems into continuous problems. Additionally, a multiple local search strategy with self-adaptive mechanism is introduced into the proposed algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by instances with comparison to other multi-objective meta-heuristics such as Nondominated Sorting Genetic Algorithm II (NSGA-II, Strength Pareto Evolutionary Algorithm 2 (SPEA2, Multiobjective Particle Swarm Optimization (OMOPSO, and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D. Experimental results demonstrate that the proposed LMOEA algorithm outperforms its counterparts for this kind of scheduling problems.

  4. Manufacturing of mushroom-shaped structures and its hydrophobic robustness analysis based on energy minimization approach

    Science.gov (United States)

    Wang, Li; Yang, Xiaonan; Wang, Quandai; Yang, Zhiqiang; Duan, Hui; Lu, Bingheng

    2017-07-01

    The construction of stable hydrophobic surfaces has increasingly gained attention owing to its wide range of potential applications. However, these surfaces may become wet and lose their slip effect owing to insufficient hydrophobic stability. Pillars with a mushroom-shaped tip are believed to enhance hydrophobicity stability. This work presents a facile method of manufacturing mushroom-shaped structures, where, compared with the previously used method, the modulation of the cap thickness, cap diameter, and stem height of the structures is more convenient. The effects of the development time on the cap diameter and overhanging angle are investigated and well-defined mushroom-shaped structures are demonstrated. The effect of the microstructure geometry on the contact state of a droplet is predicted by taking an energy minimization approach and is experimentally validated with nonvolatile ultraviolet-curable polymer with a low surface tension by inspecting the profiles of liquid-vapor interface deformation and tracking the trace of the receding contact line after exposure to ultraviolet light. Theoretical and experimental results show that, compared with regular pillar arrays having a vertical sidewall, the mushroom-like structures can effectively enhance hydrophobic stability. The proposed manufacturing method will be useful for fabricating robust hydrophobic surfaces in a cost-effective and convenient manner.

  5. Long-Term Problems of Nuclear Energy, December 1976

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    The Text was written by Enelbert Broda in Oktober 1976. In this report, the physicist and chemist Engelbert Broda discusses various areas of peaceful uses of nuclear energy and concludes that the negative aspects outweigh the positive and that the use of nuclear energy has to be rejected in the long term. In 16 chapters the biggest and most dangerous problems are discussed. Include the unresolved question of disposal, problems of reprocessing and transport of fissile materials, the proliferation of nuclear weapons technology, risks of terrorism, dismantling and decontamination of old nuclear power plants, the toxicity of fissile material, as well as the general unprofitable use of nuclear power plants. As a long-term alternative the author suggests an intensification of the exploitation of solar energy, as well as a deliberate restriction of the rising demand for energy.(roessner)

  6. Long-Term Problems of Nuclear Energy, October 1976

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    The Text was written by Enelbert Broda in Oktober 1976. In this report, the physicist and chemist Engelbert Broda discusses various areas of peaceful uses of nuclear energy and concludes that the negative aspects outweigh the positive and that the use of nuclear energy has to be rejected in the long term. In 16 chapters the biggest and most dangerous problems are discussed. Include the unresolved question of disposal, problems of reprocessing and transport of fissile materials, the proliferation of nuclear weapons technology, risks of terrorism, dismantling and decontamination of old nuclear power plants, the toxicity of fissile material, as well as the general unprofitable use of nuclear power plants. As a long-term alternative the author suggests an intensification of the exploitation of solar energy, as well as a deliberate restriction of the rising demand for energy.(roessner) [de

  7. On the problem of vacuum energy in brane theories

    International Nuclear Information System (INIS)

    Gurwich, Ilya; Rubin, Shimon; Davidson, Aharon

    2009-01-01

    We point out that modern brane theories suffer from a severe vacuum energy problem. To be specific, the Casimir energy associated with the matter fields confined to the brane, is stemming from the one and the same localization mechanism which forms the brane itself, and is thus generically unavoidable. Possible practical solutions are discussed, including in particular spontaneously broken supersymmetry, and quantum mechanically induced brane tension.

  8. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  9. Natural resources damage assessments at Department of Energy facilities - using the CERCLA process to minimize natural resources injuries

    International Nuclear Information System (INIS)

    Bascietto, J.J.; Martin, J.F.; Duke, C.S.; Gray, S.I.

    1991-01-01

    Fifty years of research, development and production in support of national defense have left the Department of Energy (DOE) with numerous radioactive, hazardous and mixed waste sites requiring environmental restoration and remediation. The responsibilities for DOE associated with releases of these wastes into the environment are driving major efforts to characterize contamination problems and identify and implement environmental restoration and remediation alternatives. The subject of this paper is the recently issued DOE guidance to minimize the basis for damage claims for injuries to natural resources on, over and under lands owned or controlled by DOE associated with the releases of hazardous substances from DOE facilities. Depending on the regulatory authority governing the facility, the preferred means of evaluating the possibility of injury to natural resources is the preparation of an ecological risk assessment or an environmental evaluation. As both the natural resource trustee and lead agency at facilities under its control, DOE receives dual responsibility requiring site remediation if necessary, and that any injured natural resources be restored, or that compensation for the injuries is made. Several executive and legislative sources of authority and responsibility with regard to lead agencies and trustees of natural resources will be detailed. Also, ongoing remedial investigation/feasibility study work at the DOE Fernald Environmental Management Project near Fernald, Ohio will be described as an example of how this guidance can be applied

  10. Reflections on the problems concerning the acceptance of nuclear energy

    International Nuclear Information System (INIS)

    Coenen, R.; Frederichs, G.; Loeben, M.

    1977-01-01

    The public's increasingly sceptical attitude towards nuclear energy and the massive opposition against the settlement of nuclear facilities have resulted in an unofficial moratorium and present a danger for the further introduction of nuclear energy. While prevailing attempts to explain the opposition see the behaviour of nuclear opponents mainly as an emotional reaction, thus only giving an insufficient explanation of the outbreak and the course of the conflict, the political dimension of the acceptance problems is dealt with here, and the inadequate efficiency of those mechanisms are analyzed which traditionally take care of political decisions being accepted by the public. The coming into being of a protest movement directed against the utilization of nuclear energy is the result of the integration of risks and problems specific to nuclear energy into a general discontent, widespread amongst the population, concerning the aftereffects of uncontrolled economic growth and coping with the problems by the political-administrative system. The protest movement gains in stability and effectiveness by the interplay of public discussion and protest potential which develops its own dynamic. Furthermore, decisions concerning sites constantly bring the acceptance problems to the fore again. (orig./HP) [de

  11. The three body problem with energy dependent potentials

    International Nuclear Information System (INIS)

    Kim, Y.E.; McKay, C.M.; McKellar, B.H.J.

    1975-10-01

    It is shown how to generalize the three body equations of Faddeev, and of Karlsson and Zeiger, to include the case when the two body potential is energy dependent. Such generalizations will prove useful in the three nucleon problem and in three body models of nuclear reactions. (author)

  12. The Threat of War and the Energy Problem

    International Nuclear Information System (INIS)

    Broda, E.

    1977-01-01

    This document is part of the conference proceedings of the Pugwash conference 1977, held in Munich. The text written by E. Broda is about the threat of war (with a focus on nuclear war) and the prospective, worldwide energy problems. (nowak)

  13. An Improved Crow Search Algorithm Applied to Energy Problems

    Directory of Open Access Journals (Sweden)

    Primitivo Díaz

    2018-03-01

    Full Text Available The efficient use of energy in electrical systems has become a relevant topic due to its environmental impact. Parameter identification in induction motors and capacitor allocation in distribution networks are two representative problems that have strong implications in the massive use of energy. From an optimization perspective, both problems are considered extremely complex due to their non-linearity, discontinuity, and high multi-modality. These characteristics make difficult to solve them by using standard optimization techniques. On the other hand, metaheuristic methods have been widely used as alternative optimization algorithms to solve complex engineering problems. The Crow Search Algorithm (CSA is a recent metaheuristic method based on the intelligent group behavior of crows. Although CSA presents interesting characteristics, its search strategy presents great difficulties when it faces high multi-modal formulations. In this paper, an improved version of the CSA method is presented to solve complex optimization problems of energy. In the new algorithm, two features of the original CSA are modified: (I the awareness probability (AP and (II the random perturbation. With such adaptations, the new approach preserves solution diversity and improves the convergence to difficult high multi-modal optima. In order to evaluate its performance, the proposed algorithm has been tested in a set of four optimization problems which involve induction motors and distribution networks. The results demonstrate the high performance of the proposed method when it is compared with other popular approaches.

  14. The responsibility of industrialized nations in the energy problem

    International Nuclear Information System (INIS)

    Mandel, H.

    1979-01-01

    In view of the fact that some 15% of the world's population today claim some 50% of the world primary energy consumption, while 52% of the world population must be satisfied with 13% of the primary energy consumption, and in view also of an increase in world population of, at present, approx. 2% per annum, the question arises how to meet the increasing energy demand in the world without incurring international crises and grave economic setbacks. This attempt to find a problem solution is made in the light of the studies of the Conservation Commission of the World Energy Conference. The late author of this contribution, Professor Heinrich Mandel, who was an energy expert of international renown, always tried to examine the energy problem from a global point of view. In his last survey paper on the subject he once more dealt with the narrow margin available in the sector of energy policy and with the great responsibility of the industrialized nations towards the developing countries. (orig.) [de

  15. Indoor radon problem in energy efficient multi-storey buildings.

    Science.gov (United States)

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Problems of future energy market planning and optimization

    International Nuclear Information System (INIS)

    Vladimir Lelek; David Jaluvka

    2007-01-01

    Problems of future energy supply in the form, which is demanded - heat, liquid fuel, electricity - are described. There are several factors, which probably could be studied separately: technology and its sustain ability with respect to the raw materials resources, long time for capacity construction, for some form of energy even absence of sufficiently deep technology knowledge and model of prices. Prices are specially peculiar problem - they could be very different from the standard approach (investment, operation and maintenance, fuel, profit), if there are market instabilities and you are not able to supply market by the demanded amount form of energy with the consequences on production. Expected effect will be jump in prices or regulated supply to equalize supply and use. Such situation will be until the new capacities are put into operation or new technologies of production are established - it could be time about ten or more years and this can completely change our standard consideration of profit. The main profit will be to avoid losses and unemployment. Also concept of local or domestic raw material resources could be changed - in the free market your resources will be sold to those paying more. Probable development of energy market is described in the article and special attention is devoted to the nuclear energy, which not only consume, but also produce raw material and how to proceed to avoid crises in supply. Contemporary understanding of the problem does not enable to formulate it strictly as mathematical optimization task (Authors)

  17. Self-organization, free energy minimization, and optimal grip on a field of affordances

    Directory of Open Access Journals (Sweden)

    Jelle eBruineberg

    2014-08-01

    Full Text Available In this paper, we set out to develop a theoretical and conceptual framework for the new field of Radical Embodied Cognitive Neuroscience. This framework should be able to integrate insights from several relevant disciplines: theory on embodied cognition, ecological psychology, phenomenology, dynamical systems theory, and neurodynamics. We suggest that the main task of Radical Embodied Cognitive Neuroscience is to investigate the phenomenon of skilled intentionality from the perspective of the self-organization of the brain-body-environment system, while doing justice to the phenomenology of skilled action. In previous work, we have characterized skilled intentionality as the organism’s tendency towards an optimal grip on multiple relevant affordances simultaneously. Affordances are possibilities for action provided by the environment. In the first part of this paper, we introduce the notion of skilled intentionality and the phenomenon of responsiveness to a field of relevant affordances. Second, we use Friston’s work on neurodynamics, but embed a very minimal version of his Free Energy Principle in the ecological niche of the animal. Thus amended, this principle is helpful for understanding the embeddedness of neurodynamics within the dynamics of the brain-body-environment system. Next, we show how we can use this adjusted principle to understand the neurodynamics of selective openness to the environment: interacting action-readiness patterns at multiple timescales contribute to the organism’s selective openness to relevant affordances. In the final part of the paper, we emphasize the important role of metastable dynamics in both the brain and the brain-body-environment system for adequate affordance-responsiveness. We exemplify our integrative approach by presenting research on the impact of Deep Brain Stimulation on affordance responsiveness of OCD patients.

  18. Self-organization, free energy minimization, and optimal grip on a field of affordances.

    Science.gov (United States)

    Bruineberg, Jelle; Rietveld, Erik

    2014-01-01

    In this paper, we set out to develop a theoretical and conceptual framework for the new field of Radical Embodied Cognitive Neuroscience. This framework should be able to integrate insights from several relevant disciplines: theory on embodied cognition, ecological psychology, phenomenology, dynamical systems theory, and neurodynamics. We suggest that the main task of Radical Embodied Cognitive Neuroscience is to investigate the phenomenon of skilled intentionality from the perspective of the self-organization of the brain-body-environment system, while doing justice to the phenomenology of skilled action. In previous work, we have characterized skilled intentionality as the organism's tendency toward an optimal grip on multiple relevant affordances simultaneously. Affordances are possibilities for action provided by the environment. In the first part of this paper, we introduce the notion of skilled intentionality and the phenomenon of responsiveness to a field of relevant affordances. Second, we use Friston's work on neurodynamics, but embed a very minimal version of his Free Energy Principle in the ecological niche of the animal. Thus amended, this principle is helpful for understanding the embeddedness of neurodynamics within the dynamics of the system "brain-body-landscape of affordances." Next, we show how we can use this adjusted principle to understand the neurodynamics of selective openness to the environment: interacting action-readiness patterns at multiple timescales contribute to the organism's selective openness to relevant affordances. In the final part of the paper, we emphasize the important role of metastable dynamics in both the brain and the brain-body-environment system for adequate affordance-responsiveness. We exemplify our integrative approach by presenting research on the impact of Deep Brain Stimulation on affordance responsiveness of OCD patients.

  19. Constrained energy minimization applied to apparent reflectance and single-scattering albedo spectra: a comparison

    Science.gov (United States)

    Resmini, Ronald G.; Graver, William R.; Kappus, Mary E.; Anderson, Mark E.

    1996-11-01

    Constrained energy minimization (CEM) has been applied to the mapping of the quantitative areal distribution of the mineral alunite in an approximately 1.8 km2 area of the Cuprite mining district, Nevada. CEM is a powerful technique for rapid quantitative mineral mapping which requires only the spectrum of the mineral to be mapped. A priori knowledge of background spectral signatures is not required. Our investigation applies CEM to calibrated radiance data converted to apparent reflectance (AR) and to single scattering albedo (SSA) spectra. The radiance data were acquired by the 210 channel, 0.4 micrometers to 2.5 micrometers airborne Hyperspectral Digital Imagery Collection Experiment sensor. CEM applied to AR spectra assumes linear mixing of the spectra of the materials exposed at the surface. This assumption is likely invalid as surface materials, which are often mixtures of particulates of different substances, are more properly modeled as intimate mixtures and thus spectral mixing analyses must take account of nonlinear effects. One technique for approximating nonlinear mixing requires the conversion of AR spectra to SSA spectra. The results of CEM applied to SSA spectra are compared to those of CEM applied to AR spectra. The occurrence of alunite is similar though not identical to mineral maps produced with both the SSA and AR spectra. Alunite is slightly more widespread based on processing with the SSA spectra. Further, fractional abundances derived from the SSA spectra are, in general, higher than those derived from AR spectra. Implications for the interpretation of quantitative mineral mapping with hyperspectral remote sensing data are discussed.

  20. The uniqueness of the energy security, justice, and governance problem

    International Nuclear Information System (INIS)

    Goldthau, Andreas; Sovacool, Benjamin K.

    2012-01-01

    This article argues that among all policy fields exhibiting externalities of a global scale, energy stands out on four dimensions: vertical complexity, horizontal complexity, higher entailed costs, and stronger path dependency. These structural attributes are at odds with contemporary key challenges of energy security, energy justice, and low carbon energy transition. With regard to the latter, energy governance challenges occur related to unclear levels of authority and weak resilience. This has implications for energy scholarship, specifically relating to the political economy of energy transitions, discussions about common pool resources, systems analysis, and other neighboring disciplines. - Highlights: ► Among all policy fields exhibiting global externalities, energy stands out. ► It is characterized by greater complexity, higher costs, and stronger path dependency. ► This is at odds with key challenges relating to security, justice, and transition. ► Problems are particularly related to unclear levels of authority and weak resilience. ► Energy scholarship needs to focus further on these issues.

  1. Nuclear energy; real problems of the long term development

    International Nuclear Information System (INIS)

    Knapp, V.

    1996-01-01

    Whilst general public accepts the operation of western designed nuclear power stations as safe, waste management and decommission still figure as open problems, although such views are not in agreement with technical and economic status of these operations. A concern with imagined problems can have the effect of neglecting the real ones. In considering the long term development of nuclear energy the real problems can be associated with the wide use of plutonium and multiplication of national reprocessing and enrichment installations. Nuclear proliferation safety could be retained and developed through establishment of international nuclear fuel centres. Their operation would be particularly beneficial for small or medium nuclear countries. Several arguments are given why it is not premature to initiate a study which would identify and analyze the problems of establishing an international nuclear fuel centre. Central Europe could be a region which could be served by one of such nuclear fuel centres. (author)

  2. Holistic virtual machine scheduling in cloud datacenters towards minimizing total energy

    OpenAIRE

    Li, Xiang; Garraghan, Peter; Jiang, Xiaohong; Wu, Zhaohui; Xu, Jie

    2018-01-01

    Energy consumed by Cloud datacenters has dramatically increased, driven by rapid uptake of applications and services globally provisioned through virtualization. By applying energy-aware virtual machine scheduling, Cloud providers are able to achieve enhanced energy efficiency and reduced operation cost. Energy consumption of datacenters consists of computing energy and cooling energy. However, due to the complexity of energy and thermal modeling of realistic Cloud datacenter operation, tradi...

  3. Guaranteed Discrete Energy Optimization on Large Protein Design Problems.

    Science.gov (United States)

    Simoncini, David; Allouche, David; de Givry, Simon; Delmas, Céline; Barbe, Sophie; Schiex, Thomas

    2015-12-08

    In Computational Protein Design (CPD), assuming a rigid backbone and amino-acid rotamer library, the problem of finding a sequence with an optimal conformation is NP-hard. In this paper, using Dunbrack's rotamer library and Talaris2014 decomposable energy function, we use an exact deterministic method combining branch and bound, arc consistency, and tree-decomposition to provenly identify the global minimum energy sequence-conformation on full-redesign problems, defining search spaces of size up to 10(234). This is achieved on a single core of a standard computing server, requiring a maximum of 66GB RAM. A variant of the algorithm is able to exhaustively enumerate all sequence-conformations within an energy threshold of the optimum. These proven optimal solutions are then used to evaluate the frequencies and amplitudes, in energy and sequence, at which an existing CPD-dedicated simulated annealing implementation may miss the optimum on these full redesign problems. The probability of finding an optimum drops close to 0 very quickly. In the worst case, despite 1,000 repeats, the annealing algorithm remained more than 1 Rosetta unit away from the optimum, leading to design sequences that could differ from the optimal sequence by more than 30% of their amino acids.

  4. The role of solar energy in resolving global problems

    International Nuclear Information System (INIS)

    Kendall, H.W.

    1993-01-01

    Solar energy, and other alternate energy sources, including improved energy efficiency, can play a significant role in the solution of the cluster of ''great problems'' that face the present generation. These problems are related to, first, environmental damage, second, management of critical resources, and lastly, spiraling population growth. Some aspects of these linked difficulties are not yet well comprehended, even within the environmental community, though their neglect could prove to be very serious. It was the principal purpose of the paper to address those hidden risks. Seeking prompt and effective solutions to these problems is now a most urgent matter. On November 18, 1992, the Union of Concerned Scientists released a document called ''World Scientists'' ''Warning to Humanity''. The document outlined the most important challenges and set out the principal elements required to deal with them. It was signed by some 1,600 scientists from around the world, including the leaders of a substantial number of national honorary, scientific societies. In what follows, relevant elements of that statement are reviewed to set the stage for a description of solar energy's role in dealing with the situation that the world faces

  5. Optimal Sizing of Energy Storage Systems for the Energy Procurement Problem in Multi-Period Markets under Uncertainties

    Directory of Open Access Journals (Sweden)

    Ryusuke Konishi

    2018-01-01

    Full Text Available In deregulated electricity markets, minimizing the procurement costs of electricity is a critical problem for procurement agencies (PAs. However, uncertainty is inevitable for PAs and includes multiple factors such as market prices, photovoltaic system (PV output and demand. This study focuses on settlements in multi-period markets (a day-ahead market and a real-time market and the installation of energy storage systems (ESSs. ESSs can be utilized for time arbitrage in the day-ahead market and to reduce the purchasing/selling of electricity in the real-time market. However, the high costs of an ESS mean the size of the system needs to be minimized. In addition, when determining the size of an ESS, it is important to identify the size appropriate for each role. Therefore, we employ the concept of a “slow” and a “fast” ESS to quantify the size of a system’s role, based on the values associated with the various uncertainties. Because the problem includes nonlinearity and non-convexity, we solve it within a realistic computational burden by reformulating the problem using reasonable assumptions. Therefore, this study identifies the optimal sizes of ESSs and procurement, taking into account the uncertainties of prices in multi-period markets, PV output and demand.

  6. Legal problems of energy supply within the European Communities

    International Nuclear Information System (INIS)

    Tettinger, P.J.

    1993-01-01

    The report contains two articles; the first one is titled: The Directives on Transit of Gas and Electricity - Considerations regarding the juridical limits of the realisation of the Internal Market in the Energy Sector. It has basic considerations regarding the competences of the EC-legal nature of primary and secondary Community law; it analyzes the network of competences, the legality of the Commission's Proposals concerning the Internal Energy Market and further on the possibilities of legal recourse for enterprises in the Federal Republic of Germany in case the proposal directives are adopted. The second article deals with legal problems of energy supply within the EC-especially under the aspect of British coal mining. It incluses considerations regarding a proposed European Energy Charter, recent developments in EC-law regarding electricity and natural gas, third country imports: dumping, and privatisation. (HSCH)

  7. Criticality problems in energy dependent neutron transport theory

    International Nuclear Information System (INIS)

    Victory, H.D. Jr.

    1979-01-01

    The criticality problem is considered for energy dependent neutron transport in an isotropically scattering, homogeneous slab. Under a positivity assumption on the scattering kernel, an expression can be found relating the thickness of the slab to a parameter characterizing production by fission. This is accomplished by exploiting the Perron-Frobenius-Jentsch characterization of positive operators (i.e. those leaving invariant a normal, reproducing cone in a Banach space). It is pointed out that those techniques work for classes of multigroup problems were the Case singular eigenfunction approach is not as feasible as in the one-group theory, which is also analyzed

  8. Final Technical Report - Advanced Optical Sensors to Minimize Energy Consumption in Polymer Extrusion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Susan J. Foulk

    2012-07-24

    Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systems are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and

  9. Nuclear energy and the public - only an information problem

    International Nuclear Information System (INIS)

    Rudloff, W.

    1976-01-01

    An analysis of the problem 'nuclear energy and the public' leads to the following findings: 1) one has to find out what exactly worries the citizen, because otherwise the information one supplies is not relevant; 2) information, and nothing else, is not enough if the opposition is based on emotion. This where trust is needed and not printed paper; 3) the basis of trust is the relationship between humans. The proponents of nuclear energy act too much as institutions, they are 'not human'. (RW) [de

  10. Cost minimization in a full-scale conventional wastewater treatment plant: associated costs of biological energy consumption versus sludge production.

    Science.gov (United States)

    Sid, S; Volant, A; Lesage, G; Heran, M

    2017-11-01

    Energy consumption and sludge production minimization represent rising challenges for wastewater treatment plants (WWTPs). The goal of this study is to investigate how energy is consumed throughout the whole plant and how operating conditions affect this energy demand. A WWTP based on the activated sludge process was selected as a case study. Simulations were performed using a pre-compiled model implemented in GPS-X simulation software. Model validation was carried out by comparing experimental and modeling data of the dynamic behavior of the mixed liquor suspended solids (MLSS) concentration and nitrogen compounds concentration, energy consumption for aeration, mixing and sludge treatment and annual sludge production over a three year exercise. In this plant, the energy required for bioreactor aeration was calculated at approximately 44% of the total energy demand. A cost optimization strategy was applied by varying the MLSS concentrations (from 1 to 8 gTSS/L) while recording energy consumption, sludge production and effluent quality. An increase of MLSS led to an increase of the oxygen requirement for biomass aeration, but it also reduced total sludge production. Results permit identification of a key MLSS concentration allowing identification of the best compromise between levels of treatment required, biological energy demand and sludge production while minimizing the overall costs.

  11. Comment on "Inference with minimal Gibbs free energy in information field theory".

    Science.gov (United States)

    Iatsenko, D; Stefanovska, A; McClintock, P V E

    2012-03-01

    Enßlin and Weig [Phys. Rev. E 82, 051112 (2010)] have introduced a "minimum Gibbs free energy" (MGFE) approach for estimation of the mean signal and signal uncertainty in Bayesian inference problems: it aims to combine the maximum a posteriori (MAP) and maximum entropy (ME) principles. We point out, however, that there are some important questions to be clarified before the new approach can be considered fully justified, and therefore able to be used with confidence. In particular, after obtaining a Gaussian approximation to the posterior in terms of the MGFE at some temperature T, this approximation should always be raised to the power of T to yield a reliable estimate. In addition, we show explicitly that MGFE indeed incorporates the MAP principle, as well as the MDI (minimum discrimination information) approach, but not the well-known ME principle of Jaynes [E.T. Jaynes, Phys. Rev. 106, 620 (1957)]. We also illuminate some related issues and resolve apparent discrepancies. Finally, we investigate the performance of MGFE estimation for different values of T, and we discuss the advantages and shortcomings of the approach.

  12. Detuning Minimization of Induction Motor Drive System for Alternative Energy Vehicles

    Directory of Open Access Journals (Sweden)

    Habibur Rehman

    2015-08-01

    Full Text Available This paper evaluates different types of AC machines and various control techniques for their suitability for the drive system of Alternative Energy Vehicles (AEV. An Indirect Field Oriented (IFO drive system for the AEV application is chosen and its major problem of detuning is addressed by designing an offline and an online rotor resistance adaptation technique. The offline scheme sets the slip gain at various operating conditions based on the fact that if the rotor resistance is set correctly and field orientation is achieved, then there should be a linear relationship between the torque current and the output torque. The online technique is designed using Model Reference Adaptive System (MRAS for the rotor resistance adaptation. For an ideal field oriented machine, the rotor flux along the q-axis should be zero. This condition acts as a reference model for the proposed MRAS scheme. The current model flux observer in the synchronous frame of reference is selected as an adjustable model and its rotor resistance is tuned so that the flux along the q-axis becomes zero. The effectiveness of the offline tuning scheme is evident through performance validation of the drive system, which is implemented in a real Ford vehicle. The experimental results obtained while driving the test vehicle are included in the paper while the proposed online scheme is validated on a 3.75 kW prototype induction motor.

  13. Energy and the environment as an optimization problem

    International Nuclear Information System (INIS)

    Walbeck, M.; Wagner, H.J.; Martinsen, D.; Bundschuh, V.

    1988-01-01

    The authors develop approaches and outline solutions leading to a more ecologically oriented strategy of energy utilisation, including outline solutions envisaging a possible change-over to a novel energy system. The frame of the study is set by the following conditions: Represent the energy systems as a combination of technologies; geographic area under review is the Federal Republic of Germany; the time period to be considered is 50 years; consider rates of change; compare currently available and novel energy systems to be set out and defined; cost (market criteria) and emissions (environmental criteria) are the criteria of comparison; energy supply and energy utilisation are the functions of the technology combinations of energy systems to be described. The book almost like a textbook explains the path from problem definition to model establishment and finally to description of possible applications, using as the leading example the MARNES model developed by the systems analysis project group of KfA Juelich. (orig./HSCH) With 52 figs., 27 tabs [de

  14. New energy technology cope with global environmental problems

    International Nuclear Information System (INIS)

    Tsuchimoto, Tatsuya

    1991-01-01

    At present, the national and private storage of oil is the quantity for about 140 days in total, and it can cope with the temporary fear of oil supply, but if the Gulf War was prolonged, the large effect should be exerted to the energy supply. The reduction of the degree of oil dependence and the increase of the dependence on nonfossil fuel are taken up as the basic idea of the long term energy demand and supply in Japan. Also in the action plan for preventing global warming, the further promotion of energy conservation and the adoption of clean energy were decided to be carried out for decreasing carbon dioxide. In this report, among clean energies, the technology of electric power generation by sun beam, wind force and geotherm is described. The power generation by sun beam has many features, but the energy density is low, and the area for installation becomes large. The cost of power generation is relatively high. The power generation by wind force is superior in its environmental characteristics, and has been already put in practical use in USA and Europe. The problem is the reliability of the system. The geothermal power generation is available also in Japan, and is important for the energy security. The plants of about 270 MW are installed in Japan. (K.I.)

  15. Statistics and predictions of population, energy and environment problems

    International Nuclear Information System (INIS)

    Sobajima, Makoto

    1999-03-01

    In the situation that world's population, especially in developing countries, is rapidly growing, humankind is facing to global problems that they cannot steadily live unless they find individual places to live, obtain foods, and peacefully get energy necessary for living for centuries. For this purpose, humankind has to think what behavior they should take in the finite environment, talk, agree and execute. Though energy has been long respected as a symbol for improving living, demanded and used, they have come to limit the use making the global environment more serious. If there is sufficient energy not loading cost to the environment. If nuclear energy regarded as such one sustain the resource for long and has market competitiveness. What situation of realization of compensating new energy is now in the case the use of nuclear energy is restricted by the society fearing radioactivity. If there are promising ones for the future. One concerning with the study of energy cannot go without knowing these. The statistical materials compiled here are thought to be useful for that purpose, and are collected mainly from ones viewing future prediction based on past practices. Studies on the prediction is so important to have future measures that these data bases are expected to be improved for better accuracy. (author)

  16. Radiation protection and dosimetry problems around medium energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, R; Pavlovic, S; Markovic, S [Inst. of Nuclear Sciences Vinca, Belgrade (Yugoslavia); Boreli, F [Fac. of Electrical Engineering, Belgrade (Yugoslavia)

    1996-12-31

    In the Institute of Nuclear Sciences `VINCA`, the Accelerator Installation `TESLA`, which is an ion accelerator facility consisting of an isochronous cyclotron `VINCY`, a heavy ion source, a D{sup -} / H{sup -} ion source, three low energy and five high energy experimental channels is now under construction. The Tesla Accelerator Installation should by the principal facility for basic and applied research in physics, chemistry, biology, and material science, as well as for production of radioisotopes, medical diagnostics and therapy with radioisotopes and accelerated particle beams. Some problems in defining radiation protection and safety programme, particularly problems in construction appropriate shielding barriers at the Accelerator Installation `TESLA` are discussed in this paper. (author) 1 fig., 9 refs.

  17. Radio frequency energy for non-invasive and minimally invasive skin tightening.

    Science.gov (United States)

    Mulholland, R Stephen

    2011-07-01

    This article reviews the non-invasive and minimally invasive options for skin tightening, focusing on peer-reviewed articles and presentations and those technologies with the most proven or promising RF non-excisional skin-tightening results for excisional surgeons. RF has been the mainstay of non-invasive skin tightening and has emerged as the "cutting edge" technology in the minimally invasive skin-tightening field. Because these RF skin-tightening technologies are capital equipment purchases with a significant cost associated, this article also discusses some business issues and models that have proven to work in the plastic surgeon's office for non-invasive and minimally invasive skin-tightening technologies. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Measures for simultaneous minimization of alkali related operating problems, Phase 2; Aatgaerder foer samtidig minimering av alkalirelaterade driftproblem, Etapp 2. Ramprogram

    Energy Technology Data Exchange (ETDEWEB)

    Gyllenhammar, Marianne; Herstad Svaerd, Solvie; Davidsson, Kent; Aamand, Lars-Erik; Steenari, Britt-Marie; Folkeson, Nicklas; Pettersson, Jesper; Svensson, Jan-Erik; Boss, Anna; Johansson, Linda; Kassman, Haakan

    2007-12-15

    Combustion of an increasing amount of biofuel and waste woods has resulted in certain environmental advantages, including decreased emissions of fossil CO{sub 2}, SO{sub 2} and metals. On the other hand, a number of chloride and alkali related operational problems have occurred which are related to combustion of these fuels. Alkali related operational problems have been studied in a project consisting of two parts. The overall scope has been to characterise the operational problems and to study measures to minimise them. The first part was reported in Vaermeforsk report 997. In part two, additional measures have been included in the test plan and initial corrosion has been studied linked to the different measures. The tests have also in part two been carried out at the 12 MW CFB boiler at Chalmers. The effect of the selected measures has been investigated concerning both deposit formation and bed agglomeration, and at the same time emissions and other operational conditions were characterised. The second part of the project has among other things focused on: To investigate measures which decrease the content of alkali and chloride in the deposits, and consequently decrease the risk for corrosion (by investigating the initial corrosion). Focus was also on trying to explain favourable effects. To investigate if it is possible to combine a rather low dosage of kaolin and injection of ammonium sulphate. This was done in order to reduce both bed agglomeration and problems from deposits during combustion of fuels rich in chlorine. To investigate if co-combustion with sewage sludge, de-inking sludge or peat with high ash content, could give similar advantages as conventional additives. Investigate if ash from PFBC (coal ash and dolomite) is possible to use as an alternative bed material. In the reference case, straw pellets were co-combusted together with wood pellets. This fuel mixture gave high alkali and chlorine contents. Alkali was in surplus of chlorine. The

  19. Minimizing Total Busy Time with Application to Energy-efficient Scheduling of Virtual Machines in IaaS clouds

    OpenAIRE

    Quang-Hung, Nguyen; Thoai, Nam

    2016-01-01

    Infrastructure-as-a-Service (IaaS) clouds have become more popular enabling users to run applications under virtual machines. Energy efficiency for IaaS clouds is still challenge. This paper investigates the energy-efficient scheduling problems of virtual machines (VMs) onto physical machines (PMs) in IaaS clouds along characteristics: multiple resources, fixed intervals and non-preemption of virtual machines. The scheduling problems are NP-hard. Most of existing works on VM placement reduce ...

  20. Energy Analysis in the Elliptic Restricted Three-body Problem

    Science.gov (United States)

    Qi, Yi; de Ruiter, Anton

    2018-05-01

    The gravity assist or flyby is investigated by analyzing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. Firstly, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighborhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.

  1. Can passive house be the solution to our energy problems, and particularly with solar energy?

    OpenAIRE

    Merciadri, Luca

    2007-01-01

    A description about the main characteristics of the passive house concept. The aim of this document is to answer to the question ``Can passive house be the solution to our energy problems, and particularly with solar energy ?'' in an objective way.

  2. Problem of energy-momentum and theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of geometrised theories of gravitation are considered. Covariant formulation of conservation laws in arbitrary riemannian space-time is given. In the Einstein theory the symmetric as well as canonical energy-momentum tensor of the system ''matter plus gravitational field'' and in particular, the energy-momentum of free gravitational waves, turns out to be equal to zero. To understand the origin of the problems and difficulties concerning the energy-momentum in the Einstein theory, the gravitational filed is considered in the usual framework of the Lorentz invariant field theory, just like any other physical field. Combination of the approach proposed with the Einstein's idea of geometrization makes it possible to formulate the geometrised gravitation theory, in which there are no inner contradictions, the energy-momentum of gravitational field is defined precisely and all the known experimental facts are described successfully. For strong gravitational fields the predictions of the quasilinear geometrised theory under consideration are different from those of the gravitational theory in the Einstein formulation. Black holes are absent in the theory. Evaluation of the energy-flux of gravitational waves leads to unambiguous results and shows that the gravitational waves transfer the positive-definite energy

  3. Energy use and related risk management problems in CEE countries

    International Nuclear Information System (INIS)

    Ney, R.; Michna, J.; Ekmanis, J.; Zeltins, N.; Zebergs, V.

    2008-01-01

    Nowadays, the efficiency of energy use in the Central and East-European (CEE) countries is insufficient, being much lower than in the 'Old Europe'. The problem becomes increasingly pressing due to non-stop increasing prices of energy carriers (especially of crude oil). The authors trace the development of research activities in this sphere, classifying the revealed changes in parameters of energy consumption processes in particular time intervals into deterministic, probabilistic, and fuzzy. The paper presents a thorough analysis of decision-making in the energy management at its different levels normative, strategic, and operative. Particular attention is given to the management under uncertainty conditions - i.e. to the risk management. The most wanted research directions in this area proposed by the energy and environment policy (EEP) Center specially created for CEE countries concern management under risk connected with innovations, international activities, loss of reputation, etc.. The authors consider in detail the risk management with insufficient knowledge (non-knowledge) and under chaos. Much consideration is given to the scenario management and the game theory principles as related to the sphere of energy use. (Authors)

  4. Possibilities of using solar energy for solving environmental problems

    International Nuclear Information System (INIS)

    Allouache, A.; Brakeni, A.; Skrabalek, P.; Ornst, J.

    2012-01-01

    In this paper there are discussed the possibilities of using solar energy to power supply of electron accelerators that can be used to solve environmental problems, such as sewage treatment and radiation sterilization. Algeria, due to geographical location, has one of the largest 'solar deposits' around the world. Insolation time exceeds 2,000 hours per year and may reach up to 3,900 hours per year on the High Plains and the Sahara. Daily energy that falls on a horizontal surface one square meter is about 5 KWh on the most territory of Algeria, i.e. approximately 1,700 kWh per m 2 per year in the North and 2,263 kWh per m 2 per year in the south. Independent energy sources from the Sun can also bring economic development of the Sahara region.

  5. Our responsibility with regard to the energy problems

    International Nuclear Information System (INIS)

    1988-01-01

    The working groups of the Students' Mission in Germany (SMD) intend among others to initiate and to foster among the students and their Christian associations interest in and discussions on current topics of the society, based on the scientific and the Christian approach. So the information brochure in hand presents subject-related information together with and discussed with a view to Christian duty, to fulfil the task given to man by the Creator, namely to understand the earth and nature as companions. The contributions are written by three natural scientists and a theologian, the subjects include: The ecologic crisis - a substantial challenge to our idea of life and our way of life; belief in the word of God and technical and scientific knowledge; energy scenario for the Federal Republic of Germany; about energy conservation; ecologic aspects of the energy problem; economic aspects illustrated by the example of the district heat supply. (HSCH) [de

  6. Energy policy of the Kyrgyz Republic: results and problems

    Directory of Open Access Journals (Sweden)

    Aidana M. Makilova

    2017-01-01

    Full Text Available The article analyzes the situation in the fuel and energy sector that developed in the Kyrgyz Republic after the collapse of the USSR. The independence was accompanied by the disintegration of a unified system, in accordance with which the supply of electricity and hydrocarbon resources was rigidly linked with the use of water and energy potential. The termination of the mechanism, which took into account the energy interests of all countries of Central Asia, had a negative impact on the situation in Kyrgyzstan. As a result, the problem of supplying the republic with energy resources was acute before Kyrgyzstan. First of all, it concerned the provision of fuel resources to the population.Particular attention is paid to researching the factors that influence the formation and implementation of the modern energy policy of the Kyrgyz Republic. Emphasis is placed on the development of water and energy potential. A solution to ensure energy security is closely related to the solution of this problem.Minor reserves of oil, coal and gas, which are concentrated in hard-to-reach mountainous areas with complex climatic and geological conditions of occurrence and lack of the necessary means to develop these deposits, increase the interest of Kyrgyzstan in the use of water and energy potential. With the use of the potential of cross-border rivers in Kyrgyzstan bind hopes for the economic development of the country, the solution of socio-economic issues.To this end, Kyrgyzstan has all the conditions, since the country has facilities that were built during the USSR. However, the deterioration of the infrastructure and the shortage of Hydroelectric power station capacity prevented the stable provision of electricity to the entire population and negatively affects the development of industry. However, Kyrgyzstan's difficult interstate relations with the neighboring countries of the region have a negative impact on this issue. As a result, the crisis in the

  7. Energy in rural Ethiopia: consumption patterns, associated problems, and prospects for a sustainable energy strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mulugetta, Y.

    1999-07-01

    This paper provides a picture of energy resources and their current use in rural Ethiopia and presents an analysis of energy supply patterns and consumption trends. This exercise aims to build an empirical knowledge of ''real'' energy systems in the country and also to synthesize and analyze the general and specific problems that exist within the current energy system. Based on these lines of analysis, a series of technical and policy-oriented recommendations for rural energy development are discussed. (author)

  8. Some opinion polls of students concerning energy problems

    International Nuclear Information System (INIS)

    Okamoto, Kazuto; Koyanagi, Masae; Miura, Michiko

    1986-01-01

    Opinions of students of Tokyo Gakugei University concerning the energy problems are investigated. Comparison is made between the natural science group (231 students) and the nonnatural science group (162 students: about 1/4 mathematics, about 3/4 literature, art etc.). The majority choose nuclear fission, nuclear fusion and solar energy as future energy. About half of them are in favour of development of nuclear fission, but about 1/3 wants keeping nuclear fission at the present level or abolishing it. The science group is more favourable to nuclear fission. Oil depletion is the strongest reason for development of nuclear fission, while the problem of radioactive wastes is the strongest reason for opposition, major accidents being the second. Most of the students oppose construction of nuclear power plants in their neighbourhood, but the science group is more favourable to the construction than the non-science group. Knowledge about natural radiations is very poor, but about 1/4 ∼ 1/5 knows the release of radioactivities from thermal power plants. Knowledge about the greenhouse effect is unexpectedly high. Especially 81 % of male students in the science group knows it. The majority do not understand the energy balance of nuclear energy, but those who answer that the energy balance holds is more than those who answer that it does not. In general the science group and males answer more correctly and are more favourable to nuclear fission. Comparison with other opinion polls is made and it is found that their general tendencies are in agreement. (author)

  9. Urgent problems of radioecology concerned with the problems of the Atomic Energy production

    International Nuclear Information System (INIS)

    Aleksakhin, R.M.; Polikarpov, G.G.

    1982-11-01

    Fundamentals tasks of contemporary radioecology concerning migration of natural and artificial radionuclides and the effect of ionizing radiation on natural biogeocenosis are expounded which arose from the developing production and uses of atomic energy. The authors discuss the problems of ecological control over radiation affection of ecosystems and present the classification of natural areas according to their ecological condition. The authors also stress the urgency of studies of migration in the biosphere of radionuclides of the complete nuclear fuel turnover [fr

  10. The question of energy reduction: The problem(s) with feedback

    International Nuclear Information System (INIS)

    Buchanan, Kathryn; Russo, Riccardo; Anderson, Ben

    2015-01-01

    With smart metering initiatives gaining increasing global popularity, the present paper seeks to challenge the increasingly entrenched view that providing householders with feedback about their energy usage, via an in-home-display, will lead them to substantially reduce their energy consumption. Specifically, we draw on existing quantitative and qualitative evidence to outline three key problems with feedback, namely: (a) the limited evidence of efficacy, (b) the need for user engagement, and (c) the potential for unintended consequences. We conclude by noting that, in their current form, existing in-home-displays may not induce the desired energy-reduction response anticipated by smart metering initiatives. Instead, if smart metering is to effectively reduce energy consumption there is a clear need to develop and test innovative new feedback devices that have been designed with user engagement in mind. - Highlights: • We provide a comprehensive critique of feedback and in-home-displays (IHDs). • We find limited evidence of the efficacy of feedback in reducing energy consumption. • Problematically the success of IHDs depends entirely on user engagement. • The unintended consequence of IHDs may undermine their energy reduction capabilities. • We call for new IHDs to be developed and evaluated with user engagement in mind

  11. The thermodynamic approach to boron chemical vapour deposition based on a computer minimization of the total Gibbs free energy

    International Nuclear Information System (INIS)

    Naslain, R.; Thebault, J.; Hagenmuller, P.; Bernard, C.

    1979-01-01

    A thermodynamic approach based on the minimization of the total Gibbs free energy of the system is used to study the chemical vapour deposition (CVD) of boron from BCl 3 -H 2 or BBr 3 -H 2 mixtures on various types of substrates (at 1000 < T< 1900 K and 1 atm). In this approach it is assumed that states close to equilibrium are reached in the boron CVD apparatus. (Auth.)

  12. Evaluation of the carotid artery stenosis based on minimization of mechanical energy loss of the blood flow.

    Science.gov (United States)

    Sia, Sheau Fung; Zhao, Xihai; Li, Rui; Zhang, Yu; Chong, Winston; He, Le; Chen, Yu

    2016-11-01

    Internal carotid artery stenosis requires an accurate risk assessment for the prevention of stroke. Although the internal carotid artery area stenosis ratio at the common carotid artery bifurcation can be used as one of the diagnostic methods of internal carotid artery stenosis, the accuracy of results would still depend on the measurement techniques. The purpose of this study is to propose a novel method to estimate the effect of internal carotid artery stenosis on the blood flow based on the concept of minimization of energy loss. Eight internal carotid arteries from different medical centers were diagnosed as stenosed internal carotid arteries, as plaques were found at different locations on the vessel. A computational fluid dynamics solver was developed based on an open-source code (OpenFOAM) to test the flow ratio and energy loss of those stenosed internal carotid arteries. For comparison, a healthy internal carotid artery and an idealized internal carotid artery model have also been tested and compared with stenosed internal carotid artery in terms of flow ratio and energy loss. We found that at a given common carotid artery bifurcation, there must be a certain flow distribution in the internal carotid artery and external carotid artery, for which the total energy loss at the bifurcation is at a minimum; for a given common carotid artery flow rate, an irregular shaped plaque at the bifurcation constantly resulted in a large value of minimization of energy loss. Thus, minimization of energy loss can be used as an indicator for the estimation of internal carotid artery stenosis.

  13. Thermodynamic free-energy minimization for unsupervised fusion of dual-color infrared breast images

    Science.gov (United States)

    Szu, Harold; Miao, Lidan; Qi, Hairong

    2006-04-01

    This paper presents algorithmic details of an unsupervised neural network and unbiased diagnostic methodology, that is, no lookup table is needed that labels the input training data with desired outputs. We deploy the smart algorithm on two satellite-grade infrared (IR) cameras. Although an early malignant tumor must be small in size and cannot be resolved by a single pixel that images about hundreds cells, these cells reveal themselves physiologically by emitting spontaneously thermal radiation due to the rapid cell growth angiogenesis effect (In Greek: vessels generation for increasing tumor blood supply), shifting toward, according to physics, a shorter IR wavelengths emission band. If we use those exceedingly sensitive IR spectral band cameras, we can in principle detect whether or not the breast tumor is perhaps malignant through a thin blouse in a close-up dark room. If this protocol turns out to be reliable in a large scale follow-on Vatican experiment in 2006, which might generate business investment interests of nano-engineering manufacture of nano-camera made of 1-D Carbon Nano-Tubes without traditional liquid Nitrogen coolant for Mid IR camera, then one can accumulate the probability of any type of malignant tumor at every pixel over time in the comfort of privacy without religious or other concerns. Such a non-intrusive protocol alone may not have enough information to make the decision, but the changes tracked over time will be surely becoming significant. Such an ill-posed inverse heat source transfer problem can be solved because of the universal constraint of equilibrium physics governing the blackbody Planck radiation distribution, to be spatio-temporally sampled. Thus, we must gather two snapshots with two IR cameras to form a vector data X(t) per pixel to invert the matrix-vector equation X=[A]S pixel-by-pixel independently, known as a single-pixel blind sources separation (BSS). Because the unknown heat transfer matrix or the impulse response

  14. Low-dose dual-energy cone-beam CT using a total-variation minimization algorithm

    International Nuclear Information System (INIS)

    Min, Jong Hwan

    2011-02-01

    Dual-energy cone-beam CT is an important imaging modality in diagnostic applications, and may also find its use in other application such as therapeutic image guidance. Despite of its clinical values, relatively high radiation dose of dual-energy scan may pose a challenge to its wide use. In this work, we investigated a low-dose, pre-reconstruction type of dual-energy cone-beam CT (CBCT) using a total-variation minimization algorithm for image reconstruction. An empirical dual-energy calibration method was used to prepare material-specific projection data. Raw data at high and low tube voltages are converted into a set of basis functions which can be linearly combined to produce material-specific data using the coefficients obtained through the calibration process. From much fewer views than are conventionally used, material specific images are reconstructed by use of the total-variation minimization algorithm. An experimental study was performed to demonstrate the feasibility of the proposed method using a micro-CT system. We have reconstructed images of the phantoms from only 90 projections acquired at tube voltages of 40 kVp and 90 kVp each. Aluminum-only and acryl-only images were successfully decomposed. We evaluated the quality of the reconstructed images by use of contrast-to-noise ratio and detectability. A low-dose dual-energy CBCT can be realized via the proposed method by greatly reducing the number of projections

  15. High-energy pion beams: Problems and prospects

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1992-01-01

    The investigation of relatively unexplored research areas with high energy pion beams requires new facilities. Presently existing meson factories such as LAMPF, TRIUMF and PSI provide insufficient pion fluxes above the 3,3 resonance region for access to topics such as strangeness production with the (π, K) reaction, baryon resonances, rare meson decays, and nuclear studies with penetrating pion beams. The problems and prospects of useful beams for these studies will be reviewed, both for existing facilities such as the AGS and KEK, and for possible future facilities like KAON and PILAC

  16. Energy management and effective energy use in Ukraine: basic problems and ways to solve them

    International Nuclear Information System (INIS)

    Gnedoy, M.V.

    2003-01-01

    In this paper, barriers in the way of energy efficiency are considered and classified. The classification is made in six blocks: financial, sociological, manufacturing, management-organisational, legal and market. A strategy to overcome these barriers and the achievement of more effective energetics in Ukraine are proposed. On the basis of the strategy, five indissoluble tasks are considered: energy supply reliability, pricing and tariff policy, the legislative and normative base, energy use efficiency, environmental protection and decrease in influence on climate change. Solving these problems will allow the construction of an effective system of energy management in Ukraine. (author)

  17. Minimizing the Levelized Cost of Energy in Single-Phase Photovoltaic Systems with an Absolute Active Power Control

    DEFF Research Database (Denmark)

    Yang, Yongheng; Koutroulis, Eftichios; Sangwongwanich, Ariya

    2015-01-01

    . An increase of the inverter lifetime and a reduction of the energy yield can alter the cost of energy, demanding an optimization of the power limitation. Therefore, aiming at minimizing the Levelized Cost of Energy (LCOE), the power limit is optimized for the AAPC strategy in this paper. The optimization...... control strategy, the Absolute Active Power Control (AAPC) can effectively solve the overloading issues by limiting the maximum possible PV power to a certain level (i.e., the power limitation), and also benefit the inverter reliability. However, its feasibility is challenged by the energy loss......, compared to the conventional PV inverter operating only in the maximum power point tracking mode. In the presented case study, the minimum of LCOE is achieved for the system when the power limit is optimized to a certain level of the designed maximum feed-in power (i.e., 3 kW). In addition, the proposed...

  18. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S. F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  19. Strategic planning for minimizing CO2 emissions using LP model based on forecasted energy demand by PSO Algorithm and ANN

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, Sh. [Department of Agricultural Machinery Engineering, University of Tehran, Karaj (Iran, Islamic Republic of); Ghaderi, S.F. [Department of Industrial Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Iran's primary energy consumption (PEC) was modeled as a linear function of five socioeconomic and meteorological explanatory variables using particle swarm optimization (PSO) and artificial neural networks (ANNs) techniques. Results revealed that ANN outperforms PSO model to predict test data. However, PSO technique is simple and provided us with a closed form expression to forecast PEC. Energy demand was forecasted by PSO and ANN using represented scenario. Finally, adapting about 10% renewable energy revealed that based on the developed linear programming (LP) model under minimum CO2 emissions, Iran will emit about 2520 million metric tons CO2 in 2025. The LP model indicated that maximum possible development of hydropower, geothermal and wind energy resources will satisfy the aim of minimization of CO2 emissions. Therefore, the main strategic policy in order to reduce CO2 emissions would be exploitation of these resources.

  20. Energy in Italy: Problems and perspectives (1990-2020)

    International Nuclear Information System (INIS)

    Bassani, G.F.; Bianucci, M.; Carra, S.; Cifarelli, L.

    2009-01-01

    Given the importance and up-to-dateness of the subject, the Italian Physical Society-SIF has decided to reprint its White Book, Energy in Italy: problems and perspectives (1990-2020), as a special issue of Il Nuovo Cimento B. This issue is in honour of the late SIF President Giuseppe Franco Bassani, to recall his leading role in establishing a very active and authoritative Sif Energy Commission, bringing together a number of distinguished experts in the various fields. The Sif Energy Commission was able to produce this White Book, as a comprehensive study on the subject, in just one year time. It was successfully presented at the international meeting on Energy perspectives in Europe, jointly organized by the European Physical Society (Eps) and Sif. The meeting was held in Varenna, Italy, on 7-8 April 2008: it was the second of a series that eventually led to the creation in 2010 of a dedicated Eps Energy Group, budded from the existing Eps Technology Group. First printed in Italian, the White Book was than translated into English and widely circulated within the Eps. It can be downloaded in open access from the SIF web site (http://www.sif.it). In its present updated version, it is made available to the readers of Il Nuovo Cimento B. Last but not least, the White Book has inspired the so-called Energy at School set of booklets targeting Italian high-school teachers and pupils, that will shortly appear as addenda to the Sif journal Giornale di Fisica and will be freely distributed both in paper and electronic versions.

  1. A hydrogen economy - an answer to future energy problems

    International Nuclear Information System (INIS)

    Seifritz, W.

    1975-01-01

    ''The Theme was THEME''. This was the headline of The Hydrogen Economy Miami Energy Conference which was the first international conference of this type and which took place in Miami, March 18-20, 1974. For the first time, about 700 participants from all over the western world discussed all the ramifications and aspects of a hydrogen based economy. Non-fossil hydrogen, produced from water by either electrolysis or by direct use of process heat from a nuclear source is a clean, all-synthetic, automatically recyclable, and inexhaustible fuel. It may support the World's future energy requirements beyond the present self limited fossil-fuel era. A large number of papers and news were presented on this conference reflecting this effort. The following article is intended to report on the highlights of the conference and to give a survey on the present state of the art in the hydrogen field. Furthermore, the author includes his own ideas and conclusions predominantly by taking into account the trends in the development of future nuclear reactor systems and symbiotic high-temperature-reactor/breeder strategies being the primary energy input of a hydrogen economy and providing a most promising avenue for solving both the World's energy and environmental (entropy) problems. (Auth.)

  2. Hand-to-hand coupling and strategies to minimize unintentional energy transfer during laparoscopic surgery.

    Science.gov (United States)

    Overbey, Douglas M; Hilton, Sarah A; Chapman, Brandon C; Townsend, Nicole T; Barnett, Carlton C; Robinson, Thomas N; Jones, Edward L

    2017-11-01

    Energy-based devices are used in nearly every laparoscopic operation. Radiofrequency energy can transfer to nearby instruments via antenna and capacitive coupling without direct contact. Previous studies have described inadvertent energy transfer through bundled cords and nonelectrically active wires. The purpose of this study was to describe a new mechanism of stray energy transfer from the monopolar instrument through the operating surgeon to the laparoscopic telescope and propose practical measures to decrease the risk of injury. Radiofrequency energy was delivered to a laparoscopic L-hook (monopolar "bovie"), an advanced bipolar device, and an ultrasonic device in a laparoscopic simulator. The tip of a 10-mm telescope was placed adjacent but not touching bovine liver in a standard four-port laparoscopic cholecystectomy setup. Temperature increase was measured as tissue temperature from baseline nearest the tip of the telescope which was never in contact with the energy-based device after a 5-s open-air activation. The monopolar L-hook increased tissue temperature adjacent to the camera/telescope tip by 47 ± 8°C from baseline (P energy devices significantly reduced temperature change in comparison to the monopolar instrument (47 ± 8°C) for both the advanced bipolar (1.2 ± 0.5°C; P energy transfers from the monopolar "bovie" instrument through the operating surgeon to standard electrically inactive laparoscopic instruments. Hand-to-hand coupling describes a new form of capacitive coupling where the surgeon's body acts as an electrical conductor to transmit energy. Strategies to reduce stray energy transfer include avoiding the same surgeon holding the active electrode and laparoscopic camera or using alternative energy devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The importance of regret minimization in the choice for renewable energy programmes: Evidence from a discrete choice experiment

    International Nuclear Information System (INIS)

    Boeri, Marco; Longo, Alberto

    2017-01-01

    This study provides a methodologically rigorous attempt to disentangle the impact of various factors – unobserved heterogeneity, information and environmental attitudes – on the inclination of individuals to exhibit either a utility maximization or a regret minimization behaviour in a discrete choice experiment for renewable energy programmes described by four attributes: greenhouse gas emissions, power outages, employment in the energy sector, and electricity bill. We explore the ability of different models – multinomial logit, random parameters logit, and hybrid latent class – and of different choice paradigms – utility maximization and regret minimization – in explaining people's choices for renewable energy programmes. The “pure” random regret random parameters logit model explains the choices of our respondents better than other models, indicating that regret is an important choice paradigm, and that choices for renewable energy programmes are mostly driven by regret, rather than by rejoice. In particular, we find that our respondents' choices are driven more by changes in greenhouse gas emissions than by reductions in power outages. Finally, we find that changing the level of information to one attribute has no effect on choices, and that being a member of an environmental organization makes a respondent more likely to be associated with the utility maximization choice framework. - Highlights: • The first paper to use the Random Regret Minimization choice paradigm in energy economics • With a hybrid latent class model, choices conform to either utility or pure random regret. • The pure random regret random parameters logit model outperforms other models. • Reducing greenhouse gas emissions is more important than reducing power outages.

  4. Proceedings of the 11th forum: Croatian Energy Day: Regulation problems relating to energy service markets

    International Nuclear Information System (INIS)

    2002-01-01

    The main goals of the majority of processes and developments relating to energy sectors of today present the enhancement of energy sector efficiency, ensuring of stable financial sources and safe return of the means invested through practice of activities at the market of energy and energy services, i.e. public services or monopoly. This is to be achieved by means of energy sector restructuring and liberalisation, pluralism of ownership and transparency of the organisational and management scheme. Thereby, an important role and significance for the realisation of these aims, for the development and energy market functioning on the national level, as well as for the achievement of reciprocity and complementarity of national markets with regional and multi-national energy markets, is held by models and forms of energy activity regulation. In a limited sense, the regulation itself should constitute an adequate stimulating framework for free energy flows, transparent and non- discriminating conditions for the utilisation of transmission and transportation systems and networks, protection of supplier choice rights, pluralism of ownership and ownership rights, protection of energy and energy services' quality, environmental protection, protection of purchasers and consumers and protection of energy subjects. For all these reasons, aspects and problems appertaining to energy sector and energy activities' regulation have been chosen as the theme and contents of the 11th Forum. Various countries have undertaken and implemented or are in the process of implementation of different models and contents referring to energy sector and energy activity regulation. Experience and legislative practice are quoted as the main criteria. The aim of this Forum is to set forth and clarify experiences and solutions connected to the regulation of energy activities in numerous European countries or in the world

  5. IMPROVING THE TRANSMISSION PERFORMANCE BASED ON MINIMIZING ENERGY IN MOBILE ADHOC NETWORKS

    Directory of Open Access Journals (Sweden)

    Gundala Swathi

    2015-06-01

    Full Text Available Networking is collectively no of mobile nodes allocate users to correctly detect a distant environment. These wireless mobile networks want strong but simple, scalable, energy efficient and also self organize routing algorithms. In Mobile technology small quantity of power electronics and less power radio frequency have permit the expansion of small, comparatively economical and less power nodes, are associated in a wireless mobile networkIn this study we proposed method are: energy effectiveness, energetic occurrence zone and multiple hop TRANSMIT, taking into concern between the energy of transmit nodes and distance from the transmit node to the trusted neighbor node, link weight energy utilization and distance are measured as most important constraint for decide on greatest possible path from Zone Head (ZH to the neighbor node. In this we use the different constraints and lessen the quantity of distribution messages during the Transmit node choice point to decrease the energy utilization of the complete network.

  6. Communication on climate, energy, natural gas and forests as a problem for energy planning

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    Danish energy planning has since its inception in the end of the 1970s been politically controversial, which led to language problems of communicating on alternatives (natural gas, nuclear energy). But previously alternative scenarios were in the 1990s successfully transformed into law...... that it can happen on the ground of wrong premises (on CO2 neutrality e.g.) that a shift say from natural gas to wood combustion can be interpreted as a solution to climate problems, whereas this in reality aggravates them. Not the least because forests because of continuously high emissions of CO2...

  7. Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method

    International Nuclear Information System (INIS)

    Kusiak, Andrew; Xu, Guanglin; Zhang, Zijun

    2014-01-01

    Highlights: • We study the energy saving of HVAC systems with a data-driven approach. • We conduct an in-depth analysis of the topology of developed Neural Network based HVAC model. • We apply interior-point method to solving a Neural Network based HVAC optimization model. • The uncertain building occupancy is incorporated in the minimization of HVAC energy consumption. • A significant potential of saving HVAC energy is discovered. - Abstract: In this paper, a data-driven approach is applied to minimize energy consumption of a heating, ventilating, and air conditioning (HVAC) system while maintaining the thermal comfort of a building with uncertain occupancy level. The uncertainty of arrival and departure rate of occupants is modeled by the Poisson and uniform distributions, respectively. The internal heating gain is calculated from the stochastic process of the building occupancy. Based on the observed and simulated data, a multilayer perceptron algorithm is employed to model and simulate the HVAC system. The data-driven models accurately predict future performance of the HVAC system based on the control settings and the observed historical information. An optimization model is formulated and solved with the interior-point method. The optimization results are compared with the results produced by the simulation models

  8. Non-minimally coupled quintessence dark energy model with a cubic galileon term: a dynamical system analysis

    Science.gov (United States)

    Bhattacharya, Somnath; Mukherjee, Pradip; Roy, Amit Singha; Saha, Anirban

    2018-03-01

    We consider a scalar field which is generally non-minimally coupled to gravity and has a characteristic cubic Galilean-like term and a generic self-interaction, as a candidate of a Dark Energy model. The system is dynamically analyzed and novel fixed points with perturbative stability are demonstrated. Evolution of the system is numerically studied near a novel fixed point which owes its existence to the Galileon character of the model. It turns out that demanding the stability of this novel fixed point puts a strong restriction on the allowed non-minimal coupling and the choice of the self-interaction. The evolution of the equation of state parameter is studied, which shows that our model predicts an accelerated universe throughout and the phantom limit is only approached closely but never crossed. Our result thus extends the findings of Coley, Dynamical systems and cosmology. Kluwer Academic Publishers, Boston (2013) for more general NMC than linear and quadratic couplings.

  9. Stars of bosons with non-minimal energy-momentum tensor

    International Nuclear Information System (INIS)

    van der Bij, J.J.; Gleiser, M.

    1987-02-01

    We obtain spherically symmetric solutions for scalar fields with a non-minimal coupling ξ absolute value of phi 2 R to gravity. We find, for fields of mass m, maximum masses and number of particles of order M/sub max/ ∼ 0.73ξ/sup 1/2/ M/sub Planck/ 2 /m, and N/sub max/ ∼ 0.88ξ/sup 1/2/ M/sub Planck/ 2 /m 2 respectively, for large positive ξ. For large negative ξ we find, M/sub max/ ∼ 0.66 absolute value of ξ/sup 1/2/ M/sub Planck/ 2 /m, and N/sub max/ ∼ 0.72 absolute value of ξ/sup 1/2/ M/sub Planck/ 2 /m 2

  10. Stars of bosons with non-minimal energy-momentum tensor

    International Nuclear Information System (INIS)

    Van der Bij, J.J.; Gleiser, M.

    1987-01-01

    We obtain spherically symmetric solutions for scalar fields with a non-minimal coupling ξvertical strokeφvertical stroke 2 R to gravity. We find, for zeronode fields of mass m, maximum masses and number of particles of order M max ≅ 0.73ξ 1/2 M Planck 2 /m, and N max ≅ 0.88ξ 1/2 x M Planck 2 /m 2 respectively, for large positive ξ. For large negative ξ we find M max ≅ 0.66vertical strokeξvertical stroke 1/2 M Planck 2 /m, and N max ≅ 0.72vertical strokeξvertical stroke 1/2 x M Planck 2 /m 2 . We also calculate the critical mass and particle number for higher radial nodes of the scalar field and find that both quantities grow approximately linearly for large node number n. (orig.)

  11. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.

    Science.gov (United States)

    Donelan, J M; Li, Q; Naing, V; Hoffer, J A; Weber, D J; Kuo, A D

    2008-02-08

    We have developed a biomechanical energy harvester that generates electricity during human walking with little extra effort. Unlike conventional human-powered generators that use positive muscle work, our technology assists muscles in performing negative work, analogous to regenerative braking in hybrid cars, where energy normally dissipated during braking drives a generator instead. The energy harvester mounts at the knee and selectively engages power generation at the end of the swing phase, thus assisting deceleration of the joint. Test subjects walking with one device on each leg produced an average of 5 watts of electricity, which is about 10 times that of shoe-mounted devices. The cost of harvesting-the additional metabolic power required to produce 1 watt of electricity-is less than one-eighth of that for conventional human power generation. Producing substantial electricity with little extra effort makes this method well-suited for charging powered prosthetic limbs and other portable medical devices.

  12. Energy and environment in the 21st century : minimizing climate change.

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    Energy demand and economic output are coupled. Both are expected to vastly increase in this century, driven primarily by the economic and population growth of the developing world. If the present reliance on carbon-based fuels as primary energy sources continues, average global temperatures are projected to rise between 3° C and 6° C. Limiting climate change will require reduction in greenhouse gas emissions far beyond the Kyoto commitments. Time scales and options, including nuclear, will be reviewed.

  13. Overuse of helicopter transport in the minimally injured: A health care system problem that should be corrected.

    Science.gov (United States)

    Vercruysse, Gary A; Friese, Randall S; Khalil, Mazhar; Ibrahim-Zada, Irada; Zangbar, Bardiya; Hashmi, Ammar; Tang, Andrew; O'Keeffe, Terrence; Kulvatunyou, Narong; Green, Donald J; Gries, Lynn; Joseph, Bellal; Rhee, Peter M

    2015-03-01

    Mortality benefit has been demonstrated for trauma patients transported via helicopter but at great cost. This study identified patients who did not benefit from helicopter transport to our facility and demonstrates potential cost savings when transported instead by ground. We performed a 6-year (2007-2013) retrospective analysis of all trauma patients presenting to our center. Patients with a known mode of transfer were included in the study. Patients with missing data and those who were dead on arrival were excluded from the study. Patients were then dichotomized into helicopter transfer and ground transfer groups. A subanalysis was performed between minimally injured patients (ISS helicopter and 76.7% (3,992) were transferred via ground transport. Helicopter-transferred patients had longer hospital (p = 0.001) and intensive care unit (p = 0.001) stays. There was no difference in mortality between the groups (p = 0.6).On subanalysis of minimally injured patients there was no difference in hospital length of stay (p = 0.1) and early discharge (p = 0.6) between the helicopter transfer and ground transfer group. Average helicopter transfer cost at our center was $18,000, totaling $4,860,000 for 270 minimally injured helicopter-transferred patients. Nearly one third of patients transported by helicopter were minimally injured. Policies to identify patients who do not benefit from helicopter transport should be developed. Significant reduction in transport cost can be made by judicious selection of patients. Education to physicians calling for transport and identification of alternate means of transportation would be both safe and financially beneficial to our system. Epidemiologic study, level III. Therapeutic study, level IV.

  14. Global measure for energy + environmental problems by thorium molten-salt nuclear energy synergetics

    International Nuclear Information System (INIS)

    Furukawa, K.; Lecocq, A.; Mitachi, K.; Kato, Y.

    1991-01-01

    The new global fission industry as a measure for energy and environmental problems of the next century should keep a strong public acceptance, which means to ensure an enough rational safety feature not only in the engineering issue but also in the all issues of integral fuel-cycle system. In these sense, the rational characteristics of the Thorium Molten-Salt Nuclear Energy Synergetic System (THORIMS-NES) is widely explained relating with a) resources and environmental problems, b) safety, c) nuclear-proliferation and -terrorism, d) breeding fuel-cycle, chemical processing and radio-wastes, and e) social acceptability and economy, including 'North-South' problems. The basic technology of Molten-Salt Reactor system has been established, and the practical and economical development program of THORIMS-NES is also proposed. (author) 3 figs., 1 tab., 16 refs

  15. Problems of Technology of Energy-Saving Buildings and Their Impact on Energy Efficiency in Buildings

    Science.gov (United States)

    Kwasnowski, Pawel; Fedorczak-Cisak, Malgorzata; Knap, Katarzyna

    2017-10-01

    Introduction of EPBD in legislation of the EU member states caused that buildings must meet very stringent requirements of thermal protection and energy efficiency. On the basis of EPBD provisions, EU Member States introduce standard of NZEB (Nearly Zero-Energy Buildings). Such activities cause a need for new, innovative materials and technologies, and new approaches to design, construction and retrofitting of buildings. Indispensable is the precise coordination of the design of structure and technical installations of building, which may be provided in an integrated design process in the system BIM. Good coordination and cooperation of all contractors during the construction phase is also necessary. The article presents the problems and the new methodology for the design, construction and use of energy efficient buildings in terms of energy saving technologies, including discussion of the significant impact of the automation of technical installations on the building energy efficiency.

  16. Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    Historically thermal comfort in buildings has been controlled by simple dry bulb temperature settings. As we move into more sophisticated low energy building systems that make use of alternate systems such as natural ventilation, mixed mode system and radiant thermal conditioning strategies, a more complete understanding of human comfort is needed for both design and control. This guide will support building designers, owners, operators and other stakeholders in defining quantifiable thermal comfort parameters?these can be used to support design, energy analysis and the evaluation of the thermal comfort benefits of design strategies. This guide also contains information that building owners and operators will find helpful for understanding the core concepts of thermal comfort. Whether for one building, or for a portfolio of buildings, this guide will also assist owners and designers in how to identify the mechanisms of thermal comfort and space conditioning strategies most important for their building and climate, and provide guidance towards low energy design options and operations that can successfully address thermal comfort. An example of low energy design options for thermal comfort is presented in some detail for cooling, while the fundamentals to follow a similar approach for heating are presented.

  17. How much energy in energy policy? The media on energy problems in developing countries (with the example of Poland)

    International Nuclear Information System (INIS)

    Świątkiewicz-Mośny, Maria; Wagner, Aleksandra

    2012-01-01

    This paper reviews the media discussion of the energy crisis with a focus on presentation of energy policy in Poland. The results of the research presented in the paper illustrate how the media in developing countries legitimate energy policy and the activities of politicians and other decision makers in the energy sector. The topic of environmental impact or renewable resources is hardly presented in the analysed media coverage, and information about national energy pricing is spread widely. At the same time, the nationwide mass media do not refer to the domestic sector presenting energy problems at an abstract macro social level. Instead of shaping social knowledge, and conscious of such issues as energy supply and efficiency potential in households, the media construct self-referential communication in each of the fields (politics, technology, the economy). Based on Habermas’s distinction between the system and lifeworld, and the assumption that the media both construct and reproduce knowledge about the world, we have attempted to reconstruct the media discourse in the chosen area. Quantitative and qualitative analyses of Polish press allowed us to reconstruct the narrative on the subject of the energy crisis. The results could be the basis for critical revision of communication strategies in the energy sector, especially questioning the problem of its efficiency and mutual understanding between different actors. - Highlights: ► We present the results of media discourse analyses on energy crisis in Poland. ► We find supremacy of political and economical perspectives.► Nationwide mass media present energy problem on abstractive macro- social level. ► There are no reference to domestic sector and renewable energy topic is hardly presented. ► Self- referential discourse generates risk of mutual misunderstanding between different actors of social life.

  18. Usefulness and problems of film dosimetry in high energy radiotherapy

    International Nuclear Information System (INIS)

    Hirabayashi, Hisae

    1995-01-01

    Film dosimetry is a convenient and quick method of obtaining a set of high energy radiation isodose curves in the plane of the film, but it is an empirical method which presents some problems. Many authors have reported on film dosimetry for industrial films. Recently, the development of computerized densitometer systems, ready-pack films for radiotherapy and automatic film processors has helped improve the procedure. This paper reports our experiences regarding film dosimetry using the new materials, its usefulness in radiotherapy and some of technical problems encountered. The optical density value corresponding to a given dose depends upon the processing conditions, for XV-2 film, variation is about 4% when an automatic processor is used under controlled conditions. The Off-axis-ratios and the PDD in the perpendicular film plane agree well with the ion-chamber for photon and electron beams; by contrast, the PDD in the parallel film plane is significantly affected by variations in the phantom thickness, the type of film package and misalignment in phantom. But, bare films inserted into a cassette made of phantom material agree well for electron beams. Film dosimetry is effective and accurate at the edges of the field and for small fields, due to its high spatial resolution and rapid method. In addition, it is useful for electron beams OCR beam data input; for evaluating the input parameters for treatment planning systems; for quality assurance of the treatment equipment; and for preliminary clinical studies. Even when modern materials are used for film dosimetry, some technical problems will arise. Thus, to ensure the accuracy, certain precautions are required when setting conditions of film exposure and for quality control of the film processor. (author)

  19. Optimal Intra-Urban Hierarchy of Activity Centers—A Minimized Household Travel Energy Consumption Approach

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2015-08-01

    Full Text Available An intra-urban hierarchy of activity centers interconnected by non-motorized and public transportation is broadly believed to be the ideal urban spatial structure for sustainable cities. However, the proper hinterland area for centers at each level lacks empirical study. Based on the concentric structure of everyday travel distances, working centers, shopping centers, and neighborhood centers are extracted from corresponding types of POIs in 286 Chinese cities at the prefectural level and above. A U-shaped curve between Household Transportation Energy Consumption (HTEC per capita and center density at each of the three levels has been found through regression analysis. An optimal intra-urban hierarchy of activity centers is suggested to construct energy-efficient cities.

  20. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  1. A Method for Online Steady State Energy Minimization with Application to Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Slot; Thybo, Claus; Stoustrup, Jakob

    2004-01-01

    Energy efficiency of refrigeration systems has gradually been improved with the help of control schemes utilizing the more flexible components; the efficiency is though yet far from optimal. The flexibility initiates a higher degree of freedom in choosing the operating set points while obtaining...... applies to a broader range of process systems where the lower level set-points (in the control hierarchy) can be chosen within a degree of freedom allowing an optimization of a steady state performance index....

  2. Energy supply problems seen persisting in former Soviet Union

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the former Soviet Union's energy crisis likely will persist through the end of the 1990s. However, rising natural gas and coal production may marginally ease the nation's fuel shortage at least by 1994. Especially important in easing energy problems in the new Commonwealth of Independent States will be conservation in industrial and domestic sectors, says a study published by the Moscow weekly Ekonomika i Zhizn (Economics and Life). C.I.S. oil flow is expected to fall again this year. But the study shows higher capital investment including foreign funds, improved technology, replacement of worn out equipment, better management, and market oriented prices could enable crude and condensate production to hold virtually steady at about 10 million b/d during 1995-2000. Without required changes, C.I.S. oil production could fall to about 9.2 million b/d by 1995 before recovering slightly to about 9.5 million b/d in 2000, the study shows

  3. Study on multi-objective flexible job-shop scheduling problem considering energy consumption

    Directory of Open Access Journals (Sweden)

    Zengqiang Jiang

    2014-06-01

    Full Text Available Purpose: Build a multi-objective Flexible Job-shop Scheduling Problem(FJSP optimization model, in which the makespan, processing cost, energy consumption and cost-weighted processing quality are considered, then Design a Modified Non-dominated Sorting Genetic Algorithm (NSGA-II based on blood variation for above scheduling model.Design/methodology/approach: A multi-objective optimization theory based on Pareto optimal method is used in carrying out the optimization model. NSGA-II is used to solve the model.Findings: By analyzing the research status and insufficiency of multi-objective FJSP, Find that the difference in scheduling will also have an effect on energy consumption in machining process and environmental emissions. Therefore, job-shop scheduling requires not only guaranteeing the processing quality, time and cost, but also optimizing operation plan of machines and minimizing energy consumption.Originality/value: A multi-objective FJSP optimization model is put forward, in which the makespan, processing cost, energy consumption and cost-weighted processing quality are considered. According to above model, Blood-Variation-based NSGA-II (BVNSGA-II is designed. In which, the chromosome mutation rate is determined after calculating the blood relationship between two cross chromosomes, crossover and mutation strategy of NSGA-II is optimized and the prematurity of population is overcome. Finally, the performance of the proposed model and algorithm is evaluated through a case study, and the results proved the efficiency and feasibility of the proposed model and algorithm.

  4. Economic and energy assessment of minimalized soil tillage methods in maize cultivation

    OpenAIRE

    Piotr Szulc; Andrzej Dubas

    2014-01-01

    Grain yield of maize cultivated in the years 1997-2009 in monoculture and with annual tillage simplifications was assessed in energy and economy terms. Effects of no-tillage system and direct sowing (D) with cultivation with autumn deep (A) and shallow (B) ploughing and cultivation with spring pre-sowing ploughing (C) were compared. It was demonstrated that the 13-year maize grain yield in no-tillage system and direct sowing was lower by 10.4% than the yield obtained in conventional tillage s...

  5. Minimizing the energy spread within a single bunch by shaping its charge distribution

    International Nuclear Information System (INIS)

    Loew, G.A.; Wang, J.W.

    1985-03-01

    It has been known for some time that partial compensation of the longitudinal wake field effects can be obtained for any bunch by placing it ahead of the accelerating crest (in space), thereby letting the positive rising sinusoidal field offset the negative beam loading field. The work presented in this paper shows that it is possible to obtain complete compensation, i.e., to reduce the energy spread essentially to zero by properly shaping the longitudinal charge distribution of the bunch and by placing it at the correct position on the wave. 3 refs., 5 figs., 3 tabs

  6. Integrating Solar Heating into an Air Handling Unit to Minimize Energy Consumption

    OpenAIRE

    Wilson, Scott A

    2010-01-01

    The purpose of this project was to test a method of integrating solar heating with a small commercial air handling unit (AHU). In order to accomplish this a heat exchanger was placed in the reheat position of the AHU and piped to the solar heating system. This heat exchanger is used to supplement or replace the existing electric reheat. This method was chosen for its ability to utilize solar energy on a more year round basis when compared to a traditional heating system. It allows solar h...

  7. Design and Validation of Real-Time Optimal Control with ECMS to Minimize Energy Consumption for Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiyun Gao

    2017-01-01

    Full Text Available A real-time optimal control of parallel hybrid electric vehicles (PHEVs with the equivalent consumption minimization strategy (ECMS is presented in this paper, whose purpose is to achieve the total equivalent fuel consumption minimization and to maintain the battery state of charge (SOC within its operation range at all times simultaneously. Vehicle and assembly models of PHEVs are established, which provide the foundation for the following calculations. The ECMS is described in detail, in which an instantaneous cost function including the fuel energy and the electrical energy is proposed, whose emphasis is the computation of the equivalent factor. The real-time optimal control strategy is designed through regarding the minimum of the total equivalent fuel consumption as the control objective and the torque split factor as the control variable. The validation of the control strategy proposed is demonstrated both in the MATLAB/Simulink/Advisor environment and under actual transportation conditions by comparing the fuel economy, the charge sustainability, and parts performance with other three control strategies under different driving cycles including standard, actual, and real-time road conditions. Through numerical simulations and real vehicle tests, the accuracy of the approach used for the evaluation of the equivalent factor is confirmed, and the potential of the proposed control strategy in terms of fuel economy and keeping the deviations of SOC at a low level is illustrated.

  8. Use of Binary Partition Tree and energy minimization for object-based classification of urban land cover

    Science.gov (United States)

    Li, Mengmeng; Bijker, Wietske; Stein, Alfred

    2015-04-01

    Two main challenges are faced when classifying urban land cover from very high resolution satellite images: obtaining an optimal image segmentation and distinguishing buildings from other man-made objects. For optimal segmentation, this work proposes a hierarchical representation of an image by means of a Binary Partition Tree (BPT) and an unsupervised evaluation of image segmentations by energy minimization. For building extraction, we apply fuzzy sets to create a fuzzy landscape of shadows which in turn involves a two-step procedure. The first step is a preliminarily image classification at a fine segmentation level to generate vegetation and shadow information. The second step models the directional relationship between building and shadow objects to extract building information at the optimal segmentation level. We conducted the experiments on two datasets of Pléiades images from Wuhan City, China. To demonstrate its performance, the proposed classification is compared at the optimal segmentation level with Maximum Likelihood Classification and Support Vector Machine classification. The results show that the proposed classification produced the highest overall accuracies and kappa coefficients, and the smallest over-classification and under-classification geometric errors. We conclude first that integrating BPT with energy minimization offers an effective means for image segmentation. Second, we conclude that the directional relationship between building and shadow objects represented by a fuzzy landscape is important for building extraction.

  9. Sustainable energy from biomass: Biomethane manufacturing plant location and distribution problem

    International Nuclear Information System (INIS)

    Wu, Bingqing; Sarker, Bhaba R.; Paudel, Krishna P.

    2015-01-01

    Highlights: • Optimal strategy to locate biogas reactor and allocating feedstock. • Nonlinear mixed integer programming problem structure. • Real world supply chain of biogas production system. • Considers construction cost, transportation and labor costs. • Novel heuristic improves efficiency to obtain optimal solution. - Abstract: As an environment-friendly and renewable energy source, biomethane plays a significant role in the supply of sustainable energy. To facilitate the decision-making process of where to build a biomethane production system (BMPS) and how to allocate the resources for the BMPS, this paper develops an analytical method to find the solutions to location and allocation problems by minimizing the supply chain cost of the BMPS. The BMPS consists of the local farms for providing feedstock, the hubs for collecting and storing feedstock from farms, and the reactors for producing biomethane from feedstock. A mixed integer nonlinear programming (MINLP) is introduced to model the supply chain by considering building, transportation, and labor costs. An alternative heuristic is proposed to obtain an optimal/sub-optimal solution from the MINLP. The validity of the proposed heuristic is proven by numerical examples that are abstracted from practical scenarios.

  10. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building

    International Nuclear Information System (INIS)

    Ogunjuyigbe, A.S.O.; Ayodele, T.R.; Akinola, O.A.

    2016-01-01

    Highlights: • Genetic Algorithm is used for tri-objective design of hybrid energy system. • The objective is minimizing the Life Cycle Cost, CO_2 emissions and dump energy. • Small split diesel generators are used in place of big single diesel generator. • The split diesel generators are aggregable based on certain set of rules. • The proposed algorithm achieves the set objectives (LCC, CO_2 emission and dump). - Abstract: In this paper, a Genetic Algorithm (GA) is utilized to implement a tri-objective design of a grid independent PV/Wind/Split-diesel/Battery hybrid energy system for a typical residential building with the objective of minimizing the Life Cycle Cost (LCC), CO_2 emissions and dump energy. To achieve some of these objectives, small split Diesel generators are used in place of single big Diesel generator and are aggregable based on certain set of rules depending on available renewable energy resources and state of charge of the battery. The algorithm was utilized to study five scenarios (PV/Battery, Wind/Battery, Single big Diesel generator, aggregable 3-split Diesel generators, PV/Wind/Split-diesel/Battery) for a typical load profile of a residential house using typical wind and solar radiation data. The results obtained revealed that the PV/Wind/Split-diesel/Battery is the most attractive scenario (optimal) having LCC of $11,273, COE of 0.13 ($/kW h), net dump energy of 3 MW h, and net CO_2 emission of 13,273 kg. It offers 46%, 28%, 82% and 94% reduction in LCC, COE, CO_2 emission and dump energy respectively when compared to a single big Diesel generator scenario.

  11. Fast online generalized multiscale finite element method using constraint energy minimization

    Science.gov (United States)

    Chung, Eric T.; Efendiev, Yalchin; Leung, Wing Tat

    2018-02-01

    Local multiscale methods often construct multiscale basis functions in the offline stage without taking into account input parameters, such as source terms, boundary conditions, and so on. These basis functions are then used in the online stage with a specific input parameter to solve the global problem at a reduced computational cost. Recently, online approaches have been introduced, where multiscale basis functions are adaptively constructed in some regions to reduce the error significantly. In multiscale methods, it is desired to have only 1-2 iterations to reduce the error to a desired threshold. Using Generalized Multiscale Finite Element Framework [10], it was shown that by choosing sufficient number of offline basis functions, the error reduction can be made independent of physical parameters, such as scales and contrast. In this paper, our goal is to improve this. Using our recently proposed approach [4] and special online basis construction in oversampled regions, we show that the error reduction can be made sufficiently large by appropriately selecting oversampling regions. Our numerical results show that one can achieve a three order of magnitude error reduction, which is better than our previous methods. We also develop an adaptive algorithm and enrich in selected regions with large residuals. In our adaptive method, we show that the convergence rate can be determined by a user-defined parameter and we confirm this by numerical simulations. The analysis of the method is presented.

  12. Minimal Paths in the City Block: Human Performance on Euclidean and Non-Euclidean Traveling Salesperson Problems

    Science.gov (United States)

    Walwyn, Amy L.; Navarro, Daniel J.

    2010-01-01

    An experiment is reported comparing human performance on two kinds of visually presented traveling salesperson problems (TSPs), those reliant on Euclidean geometry and those reliant on city block geometry. Across multiple array sizes, human performance was near-optimal in both geometries, but was slightly better in the Euclidean format. Even so,…

  13. A Gibbs Energy Minimization Approach for Modeling of Chemical Reactions in a Basic Oxygen Furnace

    Science.gov (United States)

    Kruskopf, Ari; Visuri, Ville-Valtteri

    2017-12-01

    In modern steelmaking, the decarburization of hot metal is converted into steel primarily in converter processes, such as the basic oxygen furnace. The objective of this work was to develop a new mathematical model for top blown steel converter, which accounts for the complex reaction equilibria in the impact zone, also known as the hot spot, as well as the associated mass and heat transport. An in-house computer code of the model has been developed in Matlab. The main assumption of the model is that all reactions take place in a specified reaction zone. The mass transfer between the reaction volume, bulk slag, and metal determine the reaction rates for the species. The thermodynamic equilibrium is calculated using the partitioning of Gibbs energy (PGE) method. The activity model for the liquid metal is the unified interaction parameter model and for the liquid slag the modified quasichemical model (MQM). The MQM was validated by calculating iso-activity lines for the liquid slag components. The PGE method together with the MQM was validated by calculating liquidus lines for solid components. The results were compared with measurements from literature. The full chemical reaction model was validated by comparing the metal and slag compositions to measurements from industrial scale converter. The predictions were found to be in good agreement with the measured values. Furthermore, the accuracy of the model was found to compare favorably with the models proposed in the literature. The real-time capability of the proposed model was confirmed in test calculations.

  14. Integer batch scheduling problems for a single-machine with simultaneous effect of learning and forgetting to minimize total actual flow time

    Directory of Open Access Journals (Sweden)

    Rinto Yusriski

    2015-09-01

    Full Text Available This research discusses an integer batch scheduling problems for a single-machine with position-dependent batch processing time due to the simultaneous effect of learning and forgetting. The decision variables are the number of batches, batch sizes, and the sequence of the resulting batches. The objective is to minimize total actual flow time, defined as total interval time between the arrival times of parts in all respective batches and their common due date. There are two proposed algorithms to solve the problems. The first is developed by using the Integer Composition method, and it produces an optimal solution. Since the problems can be solved by the first algorithm in a worst-case time complexity O(n2n-1, this research proposes the second algorithm. It is a heuristic algorithm based on the Lagrange Relaxation method. Numerical experiments show that the heuristic algorithm gives outstanding results.

  15. Extension of Modified Polak-Ribière-Polyak Conjugate Gradient Method to Linear Equality Constraints Minimization Problems

    Directory of Open Access Journals (Sweden)

    Zhifeng Dai

    2014-01-01

    Full Text Available Combining the Rosen gradient projection method with the two-term Polak-Ribière-Polyak (PRP conjugate gradient method, we propose a two-term Polak-Ribière-Polyak (PRP conjugate gradient projection method for solving linear equality constraints optimization problems. The proposed method possesses some attractive properties: (1 search direction generated by the proposed method is a feasible descent direction; consequently the generated iterates are feasible points; (2 the sequences of function are decreasing. Under some mild conditions, we show that it is globally convergent with Armijio-type line search. Preliminary numerical results show that the proposed method is promising.

  16. Cost-Effective Method for Free-Energy Minimization in Complex Systems with Elaborated Ab Initio Potentials.

    Science.gov (United States)

    Bistafa, Carlos; Kitamura, Yukichi; Martins-Costa, Marilia T C; Nagaoka, Masataka; Ruiz-López, Manuel F

    2018-05-22

    We describe a method to locate stationary points in the free-energy hypersurface of complex molecular systems using high-level correlated ab initio potentials. In this work, we assume a combined QM/MM description of the system although generalization to full ab initio potentials or other theoretical schemes is straightforward. The free-energy gradient (FEG) is obtained as the mean force acting on relevant nuclei using a dual level strategy. First, a statistical simulation is carried out using an appropriate, low-level quantum mechanical force-field. Free-energy perturbation (FEP) theory is then used to obtain the free-energy derivatives for the target, high-level quantum mechanical force-field. We show that this composite FEG-FEP approach is able to reproduce the results of a standard free-energy minimization procedure with high accuracy, while simultaneously allowing for a drastic reduction of both computational and wall-clock time. The method has been applied to study the structure of the water molecule in liquid water at the QCISD/aug-cc-pVTZ level of theory, using the sampling from QM/MM molecular dynamics simulations at the B3LYP/6-311+G(d,p) level. The obtained values for the geometrical parameters and for the dipole moment of the water molecule are within the experimental error, and they also display an excellent agreement when compared to other theoretical estimations. The developed methodology represents therefore an important step toward the accurate determination of the mechanism, kinetics, and thermodynamic properties of processes in solution, in enzymes, and in other disordered chemical systems using state-of-the-art ab initio potentials.

  17. Intermixing in heteroepitaxial islands: fast, self-consistent calculation of the concentration profile minimizing the elastic energy

    International Nuclear Information System (INIS)

    Gatti, R; UhlIk, F; Montalenti, F

    2008-01-01

    We present a novel computational method for finding the concentration profile which minimizes the elastic energy stored in heteroepitaxial islands. Based on a suitable combination of continuum elasticity theory and configurational Monte Carlo, we show that such profiles can be readily found by a simple, yet fully self-consistent, iterative procedure. We apply the method to SiGe/Si islands, considering realistic three-dimensional shapes (pyramids, domes and barns), finding strongly non-uniform distributions of Si and Ge atoms, in qualitative agreement with several experiments. Moreover, our simulated selective-etching profiles display, in some cases, a remarkable resemblance to the experimental ones, opening intriguing questions on the interplay between kinetic, entropic and elastic effects

  18. Measures for simultaneous minimisation of alkali related operating problems; Aatgaerder foer samtidig minimering av alkalirelaterade driftproblem. Ramprogram

    Energy Technology Data Exchange (ETDEWEB)

    Davidsson, Kent; Eskilsson, David; Gyllenhammar, Marianne; Herstad Svaerd, Solvie; Kassman, Haakan; Steenari, Britt-Marie; Aamand, Lars-Erik

    2006-12-15

    Combustion of biofuel and waste wood is often accompanied by chlorine and alkali related operating problems such as slagging, deposit formation and corrosion on heat exchanger surfaces and bed agglomeration in fluidised bed boilers. In order to gain a greater insight into possible measures to overcome alkali related operating problems studies were carried out during 2005-2006. The results of the studies are presented in this report which includes work performed in the two following projects: 1 A5-509 Frame work - measures for simultaneous minimisation of alkali related operating problems 2 A5-505 Bed agglomeration risk related to combustion of cultivated fuels (wheat straw, red canary grass, industrial hemp) in commercial bed materials Full-scale experiments were carried out at Chalmers 12 MW{sub th} CFB boiler within the project A5-509. The purpose was to study the effect of various measures on bed agglomeration and deposit formation in connection with co-combustion of wood and straw pellets. The various measures included changing the bed material (blast furnace sand and olivine sand), adding various additives (kaolin, ammonium sulphate, elemental sulphur) and also co-combustion with sewage sludge. Furthermore results from kaolin experiments at the 26 MWth CFB boiler owned by Naessjoe Affaersverk were made available during the project and are also presented in this report. The results from the experiments at Chalmers revealed that, already at the lowest dosage of kaolin, approx. 2 kg/MWh, the bed material agglomeration temperatures increased significantly. The dosage of kaolin can presumably be reduced somewhat further while still maintaining the high agglomeration temperature. Experiments with a higher dosage of kaolin, 7 kg/MWh, proved that kaolin could also reduce the risk of deposit problems. The experiments at Naessjoe showed also that addition of kaolin increased the agglomeration temperature of the bed material. Addition of sulphur in any form resulted in a

  19. Air transport and energy: a problem still seeking solution

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R R

    1975-06-01

    A brief review is given of: the effects of recent increases in oil prices on international civil aviation; and the action taken by the international scheduled carriers to minimize the effects of these increases on the service offered. It is felt that governments should take a more active role in helping to control aviation fuel prices. (PMA)

  20. Generalized bi-quasi-variational inequalities for quasi-semi-monotone and bi-quasi-semi-monotone operators with applications in non-compact settings and minimization problems

    Directory of Open Access Journals (Sweden)

    Chowdhury Molhammad SR

    2000-01-01

    Full Text Available Results are obtained on existence theorems of generalized bi-quasi-variational inequalities for quasi-semi-monotone and bi-quasi-semi-monotone operators in both compact and non-compact settings. We shall use the concept of escaping sequences introduced by Border (Fixed Point Theorem with Applications to Economics and Game Theory, Cambridge University Press, Cambridge, 1985 to obtain results in non-compact settings. Existence theorems on non-compact generalized bi-complementarity problems for quasi-semi-monotone and bi-quasi-semi-monotone operators are also obtained. Moreover, as applications of some results of this paper on generalized bi-quasi-variational inequalities, we shall obtain existence of solutions for some kind of minimization problems with quasi- semi-monotone and bi-quasi-semi-monotone operators.

  1. Energy Security of Russia and the EU: Current Legal Problems

    Energy Technology Data Exchange (ETDEWEB)

    Seliverstov, S.

    2009-07-01

    Security of energy supply is a cornerstone of European energy policy. It receives specific mention both in the Constitution Treaty and in the Lisbon Treaty. Of course, energy and energy-generated revenues are vital for Russia as well. It is a common understanding that Russia and the EU are extremely interdependent in terms of energy. On the one hand, Russia is the strategic energy supplier to the EU as a whole; for some member states Russian supplies represent the only source of the external energy flows. On the other hand, the revenues generated from the west-bound supplies of oil and gas constitute a significant share of the overall export income and of the budget of Russian Federation. Taking the interdependency as a point of departure the present article answers the following questions: What are the differences and the similarities in the European and the Russian approaches towards security of energy supply? Is their understanding of energy security so different? What are the current legal instruments guiding interaction in this sphere? What are the actual trends that could give some indication of how the situation may develop in the future? - While the concepts of 'security of energy supplies' or of 'energy security' are theoretical in nature, the ways the concepts are understood and the legal framework for them directly influences the way they are applied in practice. (author)

  2. Energy Security of Russia and the EU: Current Legal Problems

    International Nuclear Information System (INIS)

    Seliverstov, S.

    2009-01-01

    Security of energy supply is a cornerstone of European energy policy. It receives specific mention both in the Constitution Treaty and in the Lisbon Treaty. Of course, energy and energy-generated revenues are vital for Russia as well. It is a common understanding that Russia and the EU are extremely interdependent in terms of energy. On the one hand, Russia is the strategic energy supplier to the EU as a whole; for some member states Russian supplies represent the only source of the external energy flows. On the other hand, the revenues generated from the west-bound supplies of oil and gas constitute a significant share of the overall export income and of the budget of Russian Federation. Taking the interdependency as a point of departure the present article answers the following questions: What are the differences and the similarities in the European and the Russian approaches towards security of energy supply? Is their understanding of energy security so different? What are the current legal instruments guiding interaction in this sphere? What are the actual trends that could give some indication of how the situation may develop in the future? - While the concepts of 'security of energy supplies' or of 'energy security' are theoretical in nature, the ways the concepts are understood and the legal framework for them directly influences the way they are applied in practice. (author)

  3. Africa takes a look at its energy problems and projects

    Energy Technology Data Exchange (ETDEWEB)

    Arungu Olende, S

    1977-07-01

    An intergovernmental meeting in 1963, organized by the U.N. Economic Commission for Africa and held in Addis Ababa, had concentrated on electricity development in the Continent. A second such meeting, held in Accra in November 1976 had wider objectives. These included appraisal of the present energy situation and future prospects, an analysis of trends in energy resources, supplies and marketing, cooperation among Member States, information exchange, training, and the coordination of energy policies. The meeting considered papers which dealt with a wide range of subjects in conventional energy sources (coal, petroleum, natural gas, electricity), non-conventional sources (solar, nuclear and geothermal energy) and non-commercial sources such as wood and wood products. There were presentations covering cooperation, training of the skilled manpower needed in the field of energy in the region, and the environmental impact of energy development and utilization in Africa. Recommendations and general observations made at the meeting are summarized.

  4. Energy efficiency: Key to solving economic, environmental problems

    International Nuclear Information System (INIS)

    Flanigan, T.

    1991-01-01

    Energy efficiency can boost economic development and competitiveness, maximize capital productivity, improve environmental quality, and guarantee lasting energy security. Each of these benefits is reason enough, but collectively they form an imperative for action. The energy future must be based on cultural development, not the wanton growth that has served as an indicator of success in the past. Energy efficiency provides not only technical fixes, regulatory innovation, and a host of new financing methods, it also provides a template - a model - for a resource-efficiency ethic congruent with the notion of respecting the rights of future citizens. The good news is that the authors now know how to check environmental despoliation caused by an unquenchable thirst for energy resources. Existing energy-efficiency opportunities allow them to redefine the national energy strategy and take account of the environment and the future

  5. Young people's awareness of energy problems - a contents analysis of students' essays

    International Nuclear Information System (INIS)

    Peters, H.P.

    1984-03-01

    A content analysis of 79 essays on energy topics written by students of 16 to 19 years was conducted to describe the representation of the energy problem in the mind of young people. Although energy conservation is highly appreciated most students associate the solution of the energy problem with an increase of the energy supply. On the long run they expect nuclear fusion and solar energy to be the most important energy sources. Fossile energies are discredited because of the limited ressources and environmental pollution. Even those students who accept the use of nuclear energy have an ambitious point of view because of the possible catastrophical consequences of nuclear accidents and the nuclear waste problem. Therefore they forecast the use of nuclear energy for only a limited time - until other technological options are developed. At last students have - regardless whether they are pro or contra nuclear energy - high expectations in technological progress. (orig.) [de

  6. An Energy Based Numerical Approach to Phase Change Problems

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Anders Boe; Damkilde, Lars; Krenk, Steen

    1996-01-01

    Phase change problems, occurring e.g. in melting, casting and freezing processes, are often characterized by a very narrow transition zone with very lareg changes in heat capacity and conductivity. This leads to problems in numerical procedures, where the transition zone propagates through a mesh...

  7. Energy - the problem and the transition in physics, technics, and environment; Energie - das Problem und die Wende in Physik, Technik und Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Stierstadt, Klaus

    2015-11-01

    What existed first, the energy problem or the energy transition? For the clarification of this question the author gives a survey about the actual situation of our energy demand and the means and ways to its satisfaction. The reader learns to know the function of numerous energy transformers, from the wind mill via the automobile motor until the solar cell. The advantages and disadvantages of the different transformers are explained, just so their efficiencies and cost as well as the physical natural laws, which they must obey. A perpetuum mobile doesn't exist, but indeed an almost inexhaustible energy source, the sun, which can meet many thousandfold our demand, if we use it intelligently. Who has read this book can go confidently in each discussion about the energy problem and the energy transition.

  8. Environmental problems connected to the use of renewable energy sources

    International Nuclear Information System (INIS)

    Mottana, A.; Pignotti, S.

    2000-01-01

    The development of FER (renewable energy sources) can represent a fundamental answer to the growing energy need and the requirement for a new environmental quality. Also the renewable sources, however, have an environmental cost, whose amount can be considered of little importance at a world balance, but can have a large impact at a local level. Among FER the author has chosen hydroelectric source, biomass and wind energy, since they are most effective according to the aims of this discussion [it

  9. Energy-weighted moments in the problems of fragmentation

    International Nuclear Information System (INIS)

    Kuz'min, V.A.

    1986-01-01

    The problem of fragmentation of simple nuclear states on the complex ones is reduced to real symmetrical matrix eigenvectors and eigenvalue problem. Based on spectral decomposition of this matrix the simple and economical from computing point of view algorithm to calculate energetically-weighted strength function moments is obtained. This permitted one to investigate the sensitivity of solving the fragmentation problem to reducing the basis of complex states. It is shown that the full width of strength function is determined only by the complex states connected directly with the simple ones

  10. Minimizing waste (off-cuts using cutting stock model: The case of one dimensional cutting stock problem in wood working industry

    Directory of Open Access Journals (Sweden)

    Gbemileke A. Ogunranti

    2016-09-01

    Full Text Available Purpose: The main objective of this study is to develop a model for solving the one dimensional cutting stock problem in the wood working industry, and develop a program for its implementation. Design/methodology/approach: This study adopts the pattern oriented approach in the formulation of the cutting stock model. A pattern generation algorithm was developed and coded using Visual basic.NET language. The cutting stock model developed is a Linear Programming (LP Model constrained by numerous feasible patterns. A LP solver was integrated with the pattern generation algorithm program to develop a one - dimensional cutting stock model application named GB Cutting Stock Program. Findings and Originality/value: Applying the model to a real life optimization problem significantly reduces material waste (off-cuts and minimizes the total stock used. The result yielded about 30.7% cost savings for company-I when the total stock materials used is compared with the former cutting plan. Also, to evaluate the efficiency of the application, Case I problem was solved using two top commercial 1D-cutting stock software.  The results show that the GB program performs better when related results were compared. Research limitations/implications: This study round up the linear programming solution for the number of pattern to cut. Practical implications: From Managerial perspective, implementing optimized cutting plans increases productivity by eliminating calculating errors and drastically reducing operator mistakes. Also, financial benefits that can annually amount to millions in cost savings can be achieved through significant material waste reduction. Originality/value: This paper developed a linear programming one dimensional cutting stock model based on a pattern generation algorithm to minimize waste in the wood working industry. To implement the model, the algorithm was coded using VisualBasic.net and linear programming solver called lpsolvedll (dynamic

  11. Potential utilization of renewable energy sources and the related problems

    International Nuclear Information System (INIS)

    Roos, I.; Selg, V.

    1996-01-01

    Estonia's most promising resource of renewable energy is the natural biomass. In 1994 the use of wood and waste wood formed about 4.9% of the primary energy supply, the available resource will provide for a much higher share of biomass in the future primary energy supply, reaching 9-14%. Along with the biomass, wind energy can be considered the largest resource. On the western and northern coast of Estonia, in particular, on the islands, over several years, the average wind speed has been 5 m/s. Based on the assumption that the wind speed exceeds 6 m/s in the area that forms ca 1.5% of the Estonian territory (the total area of Estonia is about 45,000 km 2 ) and is 5 - 6 m/s on about 15% of the total area, using 0.5 MW/km 2 for the installation density, very approximate estimates permit to state that the maximum hypothetical installed capacity could be 3750 MW. It might be useful to make use of the current maximum 50 MW, which could enable the generation of approximately 70 - 100 GW h of energy per year. Although the solar energy currently has no practical use in Estonia and the resource of hydro power is also insignificant (only ca 1% of the electricity consumption), these two resources of renewable energy hold future promise in view of the use of local resources and that of environmental protection. It is not reasonable to regard renewable energy sources as a substitute for the traditional oil shale-based power engineering in Estonia. But, to some extent, local energy demand can be covered by renewable energy sources. Thus, they can contribute to the reduction of the greenhouse gases emissions in Estonia

  12. New and renewable energy sources and the ecological problem. Developments from the Republic of Argentina

    International Nuclear Information System (INIS)

    Moragues, Jaime A.

    1992-01-01

    This paper focuses the renewable energy sources developments in Argentina. Every one of sources are described in details, including environmental aspects. The problems with energy demand, mainly in rural areas, are also presented. 9 figs., 3 tabs

  13. Development of Bi-phase sodium-oxygen-hydrogen chemical equilibrium calculation program (BISHOP) using Gibbs free energy minimization method

    International Nuclear Information System (INIS)

    Okano, Yasushi

    1999-08-01

    In order to analyze the reaction heat and compounds due to sodium combustion, the multiphase chemical equilibrium calculation program for chemical reaction among sodium, oxygen and hydrogen is developed in this study. The developed numerical program is named BISHOP; which denotes Bi-Phase, Sodium - Oxygen - Hydrogen, Chemical Equilibrium Calculation Program'. Gibbs free energy minimization method is used because of the special merits that easily add and change chemical species, and generally deal many thermochemical reaction systems in addition to constant temperature and pressure one. Three new methods are developed for solving multi-phase sodium reaction system in this study. One is to construct equation system by simplifying phase, and the other is to expand the Gibbs free energy minimization method into multi-phase system, and the last is to establish the effective searching method for the minimum value. Chemical compounds by the combustion of sodium in the air are calculated using BISHOP. The Calculated temperature and moisture conditions where sodium-oxide and hydroxide are formed qualitatively agree with the experiments. Deformation of sodium hydride is calculated by the program. The estimated result of the relationship between the deformation temperature and pressure closely agree with the well known experimental equation of Roy and Rodgers. It is concluded that BISHOP can be used for evaluated the combustion and deformation behaviors of sodium and its compounds. Hydrogen formation condition of the dump-tank room at the sodium leak event of FBR is quantitatively evaluated by BISHOP. It can be concluded that to keep the temperature of dump-tank room lower is effective method to suppress the formation of hydrogen. In case of choosing the lower inflammability limit of 4.1 mol% as the hydrogen concentration criterion, formation reaction of sodium hydride from sodium and hydrogen is facilitated below the room temperature of 800 K, and concentration of hydrogen

  14. Dark energy and the accelerating universe: progress, problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.A.S. [Universidade de Sao Paulo (IAG/USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas

    2012-07-01

    Full text: A large number of recent observational data strongly suggest that we live in a flat, accelerating Universe composed by nearly 1/3 of matter (baryonic + dark) and 2/3 of an exotic component with large negative pressure, usually named Dark Energy. The basic set of experiments includes: observations from SNe Ia, CMB anisotropies, baryon acoustic oscillations (BAO) and X-ray data from galaxy clusters. Within the general relativity, the simplest explanation for dark energy is the cosmological constant associated with the zero-point energy density of all quantum fields present in the Universe. However, all estimates for its value are many orders-of-magnitude too large. Many alternative ideas include more exotic candidates for dark energy among them an extremely light scalar field. However, some possible explanations for the present accelerating stage also invokes gravitational physics beyond general relativity. In this way, several observations using satellites and ground-based telescopes are in operation or being planned to test whether dark energy is the cosmological constant or something more exotic, as well as to decide whether or not the standard general relativity can explain cosmic acceleration. In the current view, dark energy is an interesting example of new physics, and, certainly, its possible existence is one of the most profound mysteries of modern physics. In this talk we present a simplified picture of the main results and discuss briefly the difficulties underlying the dark energy paradigm and some of its possible alternatives. (author)

  15. A Survey on Renewable Energy Development in Malaysia: Current Status, Problems and Prospects

    OpenAIRE

    Alam Syed Shah; Nor Nor Fariza Mohd; Ahmad Maisarah; Hashim Nik Hazrul Nik

    2016-01-01

    Energy demand in Malaysia is increasing over seven per cent a year, while forty per cent of the energy is supplied from conventional fossil fuel. However, a number of social barriers have mired the social acceptance of renewable energy among the users. This study investigates the current status of renewable energy, problems and future outlook of renewable energy in Malaysia. A total of 200 respondents were surveyed from Klang Valley in Malaysia. Majority of the respondents use energy to gener...

  16. Issues and problems raised by a world energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Lantzke, U

    1983-07-14

    The author begins by welcoming the participants to the occupational group of conference and then proceeds to examine the current situation affecting the oil market. He presents the oil consumption figures for OECD countries and explains the industrial causes behind the decline in oil consumption. The effects are investigated of the dramatic oil price increase of 1973/74, i.e. the balance of payments, economic growth, inflation and unemployment. The author then discusses future energy prospects and examines the technical and economic assumptions on which these forecasts are based. The paper deals with those measures aimed at safeguarding energy supplies (oil, gas, coal and uranium) and examines the situation in western Europe with regard to energy self-sufficiency. The creation of the IEA and the resolve of the industrial nations to develop the 3 other energy sources - coal, nuclear power and gas is described. The paper concludes with a brief assessment of the way ahead.

  17. Thermodynamic analysis of ethanol/water system in a fuel cell reformer with the Gibbs energy minimization method

    International Nuclear Information System (INIS)

    Lima da Silva, Aline; De Fraga Malfatti, Celia; Heck, Nestor Cesar

    2003-01-01

    The use of fuel cells is a promising technology in the conversion of chemical to electrical energy. Due to environmental concerns related to the reduction of atmospheric pollution and greenhouse gases emissions such as CO 2 , NO x and hydrocarbons, there have been many researches about fuel cells using hydrogen as fuel. Hydrogen gas can be produced by several routes; a promising one is the steam reforming of ethanol. This route may become an important industrial process, especially for sugarcane producing countries. Ethanol is renewable energy and presents several advantages over other sources related to natural availability, storage and handling safety. In order to contribute to the understanding of the steam reforming of ethanol inside the reformer, this work displays a detailed thermodynamic analysis of the ethanol/water system, in the temperature range of 500-1200K, considering different H 2 O/ethanol reforming ratios. The equilibrium determinations were done with the help of the Gibbs energy minimization method using the Generalized Reduced Gradient algorithm (GRG). Based on literature data, the species considered in calculations were: H 2 , H 2 O, CO, CO 2 , CH 4 , C 2 H 4 , CH 3 CHO, C 2 H 5 OH (gas phase) and C gr . (graphite phase). The thermodynamic conditions for carbon deposition (probably soot) on catalyst during gas reforming were analyzed, in order to establish temperature ranges and H 2 O/ethanol ratios where carbon precipitation is not thermodynamically feasible. Experimental results from literature show that carbon deposition causes catalyst deactivation during reforming. This deactivation is due to encapsulating carbon that covers active phases on a catalyst substrate, e.g. Ni over Al 2 O 3 . In the present study, a mathematical relationship between Lagrange multipliers and the carbon activity (with reference to the graphite phase) was deduced, unveiling the carbon activity in the reformer atmosphere. From this, it is possible to foreseen if soot

  18. Some solutions to the Central Asian region's energy cooperation problems

    OpenAIRE

    Rakhmatulina, Gulnur

    2007-01-01

    It stands to reason that the resource-rich Central Asian Region (CAR), which is located at the crossroads between the Near and Middle East, South Asia, China, and Russia and is also in direct proximity to the countries experiencing "energy starvation," is of important geostrategic significance. It is a well-known fact that CAR has vast energy potential. Kazakhstan, Turkmenistan, and Uzbekistan have large supplies of oil and gas resources, which enjoy demand on the world market. In particular,...

  19. THE PREDICTION OF pH BY GIBBS FREE ENERGY MINIMIZATION IN THE SUMP SOLUTION UNDER LOCA CONDITION OF PWR

    Directory of Open Access Journals (Sweden)

    HYOUNGJU YOON

    2013-02-01

    Full Text Available It is required that the pH of the sump solution should be above 7.0 to retain iodine in a liquid phase and be within the material compatibility constraints under LOCA condition of PWR. The pH of the sump solution can be determined by conventional chemical equilibrium constants or by the minimization of Gibbs free energy. The latter method developed as a computer code called SOLGASMIX-PV is more convenient than the former since various chemical components can be easily treated under LOCA conditions. In this study, SOLGASMIX-PV code was modified to accommodate the acidic and basic materials produced by radiolysis reactions and to calculate the pH of the sump solution. When the computed pH was compared with measured by the ORNL experiment to verify the reliability of the modified code, the error between two values was within 0.3 pH. Finally, two cases of calculation were performed for the SKN 3&4 and UCN 1&2. As results, pH of the sump solution for the SKN 3&4 was between 7.02 and 7.45, and for the UCN 1&2 plant between 8.07 and 9.41. Furthermore, it was found that the radiolysis reactions have insignificant effects on pH because the relative concentrations of HCl, HNO3, and Cs are very low.

  20. Generalised teleparallel quintom dark energy non-minimally coupled with the scalar torsion and a boundary term

    Science.gov (United States)

    Bahamonde, Sebastian; Marciu, Mihai; Rudra, Prabir

    2018-04-01

    Within this work, we propose a new generalised quintom dark energy model in the teleparallel alternative of general relativity theory, by considering a non-minimal coupling between the scalar fields of a quintom model with the scalar torsion component T and the boundary term B. In the teleparallel alternative of general relativity theory, the boundary term represents the divergence of the torsion vector, B=2∇μTμ, and is related to the Ricci scalar R and the torsion scalar T, by the fundamental relation: R=‑T+B. We have investigated the dynamical properties of the present quintom scenario in the teleparallel alternative of general relativity theory by performing a dynamical system analysis in the case of decomposable exponential potentials. The study analysed the structure of the phase space, revealing the fundamental dynamical effects of the scalar torsion and boundary couplings in the case of a more general quintom scenario. Additionally, a numerical approach to the model is presented to analyse the cosmological evolution of the system.

  1. Minimizing the Makespan for a Two-Stage Three-Machine Assembly Flow Shop Problem with the Sum-of-Processing-Time Based Learning Effect

    Directory of Open Access Journals (Sweden)

    Win-Chin Lin

    2018-01-01

    Full Text Available Two-stage production process and its applications appear in many production environments. Job processing times are usually assumed to be constant throughout the process. In fact, the learning effect accrued from repetitive work experiences, which leads to the reduction of actual job processing times, indeed exists in many production environments. However, the issue of learning effect is rarely addressed in solving a two-stage assembly scheduling problem. Motivated by this observation, the author studies a two-stage three-machine assembly flow shop problem with a learning effect based on sum of the processing times of already processed jobs to minimize the makespan criterion. Because this problem is proved to be NP-hard, a branch-and-bound method embedded with some developed dominance propositions and a lower bound is employed to search for optimal solutions. A cloud theory-based simulated annealing (CSA algorithm and an iterated greedy (IG algorithm with four different local search methods are used to find near-optimal solutions for small and large number of jobs. The performances of adopted algorithms are subsequently compared through computational experiments and nonparametric statistical analyses, including the Kruskal–Wallis test and a multiple comparison procedure.

  2. Regularity of Minimal Surfaces

    CERN Document Server

    Dierkes, Ulrich; Tromba, Anthony J; Kuster, Albrecht

    2010-01-01

    "Regularity of Minimal Surfaces" begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is t

  3. U.S. energy security: problems and policies

    Energy Technology Data Exchange (ETDEWEB)

    Toman, M.A

    2002-12-15

    The reemergence of concern about energy security in the wake of the September 2001 terror attacks amplified a theme that was already present in U.S. energy policy debates. Energy security was a central theme in the Bush administration energy policy report released by Vice President Cheney in the spring of 2001. World oil prices rose from about 10 dollar a barrel in 1998 to more than 30 dollar a barrel in late 2000. Prices trended down through most of 2001 to below 20 dollar a barrel, although the combined effect of improving economic conditions, OPEC supply cuts, and Middle East conflict (both actual and potential) have recently brought prices back into the dollar 25 per barrel neighborhood. In 2000 the United States imported almost 60 percent of the petroleum it consumed; imports from the Organization of Petroleum Exporting Countries (OPEC) made up about a quarter of total U.S. consumption. In previous energy security debates in the U.S., most of the attention has been on international oil markets and geopolitics. This time, even before September 11, the energy security debate had a much larger domestic component. The 2001 ''electricity market meltdown'' in California raised large concerns there and nationwide about the causes and consequences of electricity shortages and price volatility. The concerns run so deep that they are likely to have a significant effect on the ongoing debate about restructuring of the power sector though the nature of that effect remains to be determined. Similarly, periods of sharply rising motor fuels prices over the past few years increases well beyond what would be implied just by crude oil price volatility have led to concerns about the effects on households and commerce. All of these concerns are only amplified by worries about attacks on critical energy infrastructure. (author)

  4. U.S. energy security: problems and policies

    International Nuclear Information System (INIS)

    Toman, M.A.

    2002-12-01

    The reemergence of concern about energy security in the wake of the September 2001 terror attacks amplified a theme that was already present in U.S. energy policy debates. Energy security was a central theme in the Bush administration energy policy report released by Vice President Cheney in the spring of 2001. World oil prices rose from about 10 dollar a barrel in 1998 to more than 30 dollar a barrel in late 2000. Prices trended down through most of 2001 to below 20 dollar a barrel, although the combined effect of improving economic conditions, OPEC supply cuts, and Middle East conflict (both actual and potential) have recently brought prices back into the dollar 25 per barrel neighborhood. In 2000 the United States imported almost 60 percent of the petroleum it consumed; imports from the Organization of Petroleum Exporting Countries (OPEC) made up about a quarter of total U.S. consumption. In previous energy security debates in the U.S., most of the attention has been on international oil markets and geopolitics. This time, even before September 11, the energy security debate had a much larger domestic component. The 2001 ''electricity market meltdown'' in California raised large concerns there and nationwide about the causes and consequences of electricity shortages and price volatility. The concerns run so deep that they are likely to have a significant effect on the ongoing debate about restructuring of the power sector though the nature of that effect remains to be determined. Similarly, periods of sharply rising motor fuels prices over the past few years increases well beyond what would be implied just by crude oil price volatility have led to concerns about the effects on households and commerce. All of these concerns are only amplified by worries about attacks on critical energy infrastructure. (author)

  5. Energy Choices. Global Energy Trends and Problems to Supply the Energy Demand; Vaegval Energi. Globala energitrender och problem att tillgodose energibehoven

    Energy Technology Data Exchange (ETDEWEB)

    Radetzki, Marian (Luleaa Univ. of Technology, Luleaa (Sweden))

    2008-09-15

    Although the use of renewable fuels is increasing, oil and other fossil fuels still dominate the global energy supply the next decades, as shown by a review of energy sector development from 1990 to today and projections up to 2030. Nothing indicates that the supplies of oil or any other fossil fuel will be depleted during the coming decades. Resource Nationalism has long characterized the oil market. OPEC has since 1970 successfully controlled the supply and price of oil for its producing member countries. The cartel's grip on the oil market has been strengthened in the 2000s commodity boom, not least as a result of improved production discipline among member countries. At the same time, the long-term trend in the world's great centers of consumption is towards a lower degree of self-sufficiency in energy. The EU dependence on import of oil is expected to rise to over ninety per cent by year 2030. In order to secure a stable energy supply, clear strategies in the oil-importing countries are needed. Tools include diversified import, storage and securing supplies through futures trading on commodity exchanges. Energy policy has long been focused on supply. But the environmental aspects of energy production and use has grown in importance and now the climate issue dominates the energy policy. So far, however, the policy measures to curb the effects of climate change has been both limited and cost-ineffective. The cost to seriously limit emissions of greenhouse gases will be high. To carry out serious climate measures will annually take at least one percent of global GDP, according to an estimate by the British economist Nicholas Stern. This can be compared to the additional cost of approximately five percent of global GDP as energy consumers had to absorb between 2005 and 2008 because of rising prices for fossil fuels

  6. Energy-momentum distribution: A crucial problem in general relativity

    NARCIS (Netherlands)

    Sharif, M.; Fatima, T.

    2005-01-01

    This paper is aimed to elaborate the problem of energy–momentum in general relativity. In this connection, we use the prescriptions of Einstein, Landau–Lifshitz, Papapetrou and Möller to compute the energy–momentum densities for two exact solutions of Einstein field equations. The space–times under

  7. Problems associated with nuclear energy utilization in developing countries

    International Nuclear Information System (INIS)

    Aybers, N.

    1975-01-01

    The special problems of integrating nuclear power into the overall national power system of a developing country are reviewed. Topics such as optimal size selection, policy for nuclear fuel cycle, and choice of reactor type are examined. The results of these analyses as applied to Turkey are presented. The impact of safety and regulatory matters are discussed

  8. The nuclear energy conflict: A scientific solvable problem?

    International Nuclear Information System (INIS)

    Arts, Fieke.

    1993-01-01

    The aim of the study on the title subject is to inventorize opinions and changes of opinions of a group involved scientists and technicians on the subject of nuclear energy and to determine the underlying attitudes that cause the changes of opinion. Quantitative data are compiled from postal surveys and qualitative data from in-depth interviews. In part 1 of this report a general and overall introduction is given on the subject nuclear energy. In part 2 the discussions that have taken place on three nuclear energy subjects (radiation dose standards and risks, the energetic efficiency of a light water reactor, and the costs of nuclear energy are summarized. Examples of conflicting information and opinions are given. In the last chapter of part 2 the theoretical framework and research method for this study are outlined. In part 3 the actual survey is described: in chapter 11 the research method, in chapter 12 the results of the surveys and interviews and the conclusions. In chapter 13 the complete texts of the in-depth interviews with 16 nuclear energy experts are presented. 10 figs., 32 tabs., 1 appendix

  9. The energy-momentum problem and gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of geometrized gravitation theories are considered. A covariant formulation of conservation laws in an arbitrary Riemann space-time is presented. In the Einstein theory both symmetric and canonical energy-momentum tensors of the matter and gravitational field system and, in particular, energy-momentum of free gravitational waves prove to be equal to zero. Since gravitational waves carry the curvature and, consequently, affect the detector, this bears witness to an intrinsic contradiction of the Einstein theory. To realize the sources of difficulties concerning energy-momentum in the Einstein theory the gravitational field is treated in the same way as all the other physical fields, i.e. in terms of usual Lorentz-invariant field theory. Unification of this approach with the Einstein idea of geometrization enables to construct the geometrized theory, which is free from contradictions, has clearly defined the notions of gravitation field energy-momentum and satisfactorily describes all known experimental facts. To construct a logically consistent theory one should geometrize only the density of the matter Lagrangian. The gravitation field equations are formulated in terms of the Euclidean space-time with a metric tensor γsub(ik), while the matter motion may be completely described in terms of the non-Euclidean space-time with a metric tensor gsub(ik). For strong gravitational fields the predictions of the quasi-linear theory under consideration appriciably differ from those of the Einstein formulation of the gravitation theory. No black holes are present in the theory. The results of the calculation for the energy flow of gravitational waves are rigorously unambiguous and show that gravitational waves carry positively definite energy

  10. Nuclear energy in Armenia history problems possibilities and outlook

    International Nuclear Information System (INIS)

    Sevikyan, G.; Vardanyan, M.; Apikyan, S.

    2010-01-01

    The structure of the Armenian electric energy system is presently well balanced. The production capacity mix consists of about H42% nuclear, of about H40% gas, and HI8% hydropower capacities. Before 2012, almost exclusively, new gas fired power plants are expected to be constructed, and some old gas fired ones are predicted to be closed down. A significant change in the structure of energy-production would occur after 2016, if the ANPP unit was shut down with the expiry of its operational license limited recently by the design lifetime. For Armenia which is taking place in a rather complex geopolitical situation, and at absence of own natural power resources, ANPP today is sole guarantor of power and general independence and safety of our country. It has been realized it fully when our plant was shut down after the 1988 destructive earthquake and when the entrance of fuel for thermal power plants became impossible. This hardest energy crisis 1991-1995 has forced to accept the decision on renewal of ANPP operation. Naturally, in order to prevent recurrence of a similar situation, we are aimed on continuation of operation of our unit down to creation of compensative capacities. Based on the present tendencies and market conditions, the industry is either predicted to cover the lack of electricity and the growth of demand with gas fired power plants that produce energy more expensively compared to the nuclear power plants, or would import the electric energy itself increasing the import-dependency. This way between 2012 and 2019 the import gas consumption of electric energy production, as well as its carbon-dioxide emission would grow dramatically compared to its present values (even in case of an intensive utilization of renewable energy sources). The electric energy import would, in the long run, be an expensive and obviously import-dependence-increasing solution. For the compensation of the production of ANPP it is rather difficult to find a green alternative. In

  11. Sustainable utilisation of forest biomass for energy - Possibilities and problems

    DEFF Research Database (Denmark)

    Stupak, I.; Asikainen, A.; Jonsell, M.

    2007-01-01

    The substitution of biomass for fossil fuels in energy consumption is a measure to mitigate global warming, as well as having other advantages. Political action plans for increased use exist at both European and national levels. This paper briefly reviews the contents of recommendations. guidelines....... and other synthesis publications on Sustainable use of forest biomass for energy. Topics are listed and an overview of advantages. disadvantages, and trade-offs between them is given, from the viewpoint of society in general and the forestry or the Nordic and Baltic countries, the paper also identifies...

  12. Problems and perspectives of renewable energy in Italy; Probleme und Perspektiven der erneuerbaren Energien in Italien

    Energy Technology Data Exchange (ETDEWEB)

    Nucci, M.R. di [Freie Univ. Berlin (Germany). Forschungsstelle fuer Umweltpolitik, EU-Projekt REALISE-Forum

    2005-11-15

    Deregulation of the Italian power market and structural adaptations of the energy sector had their effects on renewable energy sources. In accordance with the so-called 'Bersani Decree', the existing fixed rates for renewable energy sources was changed into a volume-controlled system, with the intention of combining reliability of supply with environmental protection and implementing both of these goals in a market-oriented funding model. In spite of this, the situation of renewable energy sources in Italy is difficult. Although market prospects are good and many preconditions are met, Italian providers in this field are faced with a situation of uncertainty in which measures are announced but never carried out. (orig.)

  13. Public opinion confronted by the safety problems associated with different energy source

    Energy Technology Data Exchange (ETDEWEB)

    Otway, H J; Thomas, K

    1978-09-01

    Model study of public opinion 'for' and 'against' the various energy sources - oil, coal, solar and nuclear power. Attitudes are examined from four aspects: psychology - economic advantages, sociopolitical problems, environmental problems and safety. The investigation focuses on nuclear energy. (13 refs.) (In French)

  14. Topical problems in the implementation of Atomic Energy Law

    International Nuclear Information System (INIS)

    Basse, H.

    1983-01-01

    The German Symposium on Atomic Energylaw, a discussion circle of law and various opinious in the field of nuclear energy, is 10 years old and has in the meanwhile become an institution. The 7th meeting again had an impressive scientific level as far as the speeches, and discussions were concerned. (orig.) [de

  15. Present problems with atomic energy laws and regulations. 2. ed.

    International Nuclear Information System (INIS)

    Bluemel, W.

    1993-01-01

    The report includes two speeches held by the author on the 3rd Japanese-German Atomic Law Symposion in Tokio on 5-7 Oct. 1992. The titles are: 1) Recent developments in the German Laws and regulations ruling atomic energy; 2) Legal aspects of stopping and eliminating nuclear plants in Germany. Both speeches were translated into Japanese. (HP) [de

  16. Cosmological measure with volume averaging and the vacuum energy problem

    Science.gov (United States)

    Astashenok, Artyom V.; del Popolo, Antonino

    2012-04-01

    In this paper, we give a possible solution to the cosmological constant problem. It is shown that the traditional approach, based on volume weighting of probabilities, leads to an incoherent conclusion: the probability that a randomly chosen observer measures Λ = 0 is exactly equal to 1. Using an alternative, volume averaging measure, instead of volume weighting can explain why the cosmological constant is non-zero.

  17. Cosmological measure with volume averaging and the vacuum energy problem

    International Nuclear Information System (INIS)

    Astashenok, Artyom V; Del Popolo, Antonino

    2012-01-01

    In this paper, we give a possible solution to the cosmological constant problem. It is shown that the traditional approach, based on volume weighting of probabilities, leads to an incoherent conclusion: the probability that a randomly chosen observer measures Λ = 0 is exactly equal to 1. Using an alternative, volume averaging measure, instead of volume weighting can explain why the cosmological constant is non-zero. (paper)

  18. Moisture and Home Energy Conservation: How to Detect, Solve and Avoid Related Problems.

    Science.gov (United States)

    National Center for Appropriate Technology, Butte, MT.

    Moisture problems are identified as an important element in home energy conservation programs. A systematic approach to understanding, recognizing, solving, and preventing moisture-related problems is offered in this four-section report. Section I examines the root of moisture problems. Section II discusses symptoms and causes of excess moisture…

  19. Mind the gap. Quantifying principal-agent problems in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    Energy efficiency presents a unique opportunity to address three energy-related challenges in IEA member countries: energy security, climate change, and economic development. Yet an energy-efficiency gap exists between actual and optimal energy use. That is, significant cost-effective energy efficiency potential is wasted because market barriers prevent countries from achieving optimal levels. Market barriers take many forms, from inadequate access to capital, isolation from price signals, information asymmetry, and split-incentives. Though many studies have reported the existence of such market barriers, none so far have attempted to quantify the magnitude of their effect on energy use and efficiency. This publication is an unprecedented attempt to quantify the size of one of the most pervasive barriers to energy efficiency - principal-agent problems, or in common parlance, variations on the 'landlord-tenant' problem. In doing so, the book provides energy analysts and economists with unique insights into the amount of energy affected by principal-agent problems. Using an innovative methodology applied to eight case studies (covering commercial and residential sectors, and end-use appliances) from five different IEA countries, the analysis identifies over 3,800 PJ/year of affected energy use - that is, around 85% of the annual energy use of a country the size of Spain. The book builds on these findings to suggest a range of possible policy solutions that can reduce the impact of principal-agent problems and help policy makers mind the energy efficiency gap.

  20. Cogenerational sources of energies and their allocating problem

    Directory of Open Access Journals (Sweden)

    Badida Miroslav

    1997-12-01

    Full Text Available Energy production in industrial communities consume a main part of primary raw materials and it is one of the sources of ecologicall impact. Electric power plants and warm produce plants are mostly important investment – consuming establishments with a long time of return, what stress along with the economical, predictional, logistical and environmental decision making aspect of their allocating. Already input of the mentioned aspects along with the price movement after the energy depression motivate a formation of new conception of combinated so-called items, which are able to use the energetic potential of fuels with a higher concurrent efficiency and, on the other hand, can reduce ecologic impacts of fossil combustion.

  1. Evolving Resilient Back-Propagation Algorithm for Energy Efficiency Problem

    Directory of Open Access Journals (Sweden)

    Yang Fei

    2016-01-01

    Full Text Available Energy efficiency is one of our most economical sources of new energy. When it comes to efficient building design, the computation of the heating load (HL and cooling load (CL is required to determine the specifications of the heating and cooling equipment. The objective of this paper is to model heating load and cooling load buildings using neural networks in order to predict HL load and CL load. Rprop with genetic algorithm was proposed to increase the global convergence capability of Rprop by modifying a corresponding weight. Comparison results show that Rprop with GA can successfully improve the global convergence capability of Rprop and achieve lower MSE than other perceptron training algorithms, such as Back-Propagation or original Rprop. In addition, the trained network has better generalization ability and stabilization performance.

  2. The nuclear contribution to the solution of Brazilian energy problem

    International Nuclear Information System (INIS)

    1995-01-01

    This report presents the justifying of Brazilian Nuclear Programme. Due to the demand increasing of electric energy in Brazil, the government decided to an alternative source. Although the brazilian electric power program continue basically hydroelectric, the nuclear power plants began to be constructed. The strategy adopted, the prospection of uranium enrichment, the project and construction of nuclear power plants, the responsibilities of Nuclebras and Nuclen and several stages of this program are described. (C.M.)

  3. Energy Consumption of Lactating Mothers: Current Situation and Problems

    Directory of Open Access Journals (Sweden)

    Sandra Fikawati

    2014-08-01

    Full Text Available Recommendations on the adequacy of nutrient intake indicate that lactating mothers have higher nutritional needs than do pregnant mothers. High nutrient intake is necessary to help mothers recover after childbirth, produce milk, and maintain the quantity and quality of breast milk. It also prevents maternal malnutrition. Research has shown, however, that the dietary energy consumption of mothers during lactation was significantly lower than that during pregnancy. The current study explored the factors associated with decreased nutritional intake during maternal lactation. The study was conducted in March–April 2013, and the subjects were mothers with infants aged >6 months. Results revealed that the factors causing low dietary energy consumption among breastfeeding mothers were poor nutritional knowledge and attitude toward high energy intake requirements during lactation, lack of time to cook and eat because of infant care, reduced consumption of milk and supplements, dietary restrictions and prohibitions, and suboptimal advice from midwives/health personnel. Beginning from the antenatal care visit, health personnel should conduct effective counseling on the importance of nutrient intake during lactation. Advice should be provided not only to mothers, but also to their families to enable them to thoroughly support the mothers as they breastfeed their infants.

  4. A solution approach based on Benders decomposition for the preventive maintenance scheduling problem of a stochastic large-scale energy system

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Muller, Laurent Flindt; Petersen, Bjørn

    2013-01-01

    This paper describes a Benders decomposition-based framework for solving the large scale energy management problem that was posed for the ROADEF 2010 challenge. The problem was taken from the power industry and entailed scheduling the outage dates for a set of nuclear power plants, which need...... to be regularly taken down for refueling and maintenance, in such away that the expected cost of meeting the power demand in a number of potential scenarios is minimized. We show that the problem structure naturally lends itself to Benders decomposition; however, not all constraints can be included in the mixed...

  5. Zero-energy eigenstates for the Dirac boundary problem

    International Nuclear Information System (INIS)

    Hortacsu, M.; Rothe, K.D.; Schroer, B.

    1980-01-01

    As an alternative to the method of spherical compactification for the Dirac operator in instanton background fields we study the correct method of 'box-quantization': the Atiyah-Patodi-Singer spectral boundary condition. This is the only self-adjoint boundary condition which respects the charge conjugation property and the γ 5 symmetry, apart form the usual breaking due to zero modes. We point out the relevance of this approach to the computation of instanton determinants and other problems involving Dirac spinors. (orig.)

  6. Testing the Cosmic Coincidence Problem and the Nature of Dark Energy

    International Nuclear Information System (INIS)

    Dalal, Neal; Abazajian, Kevork; Jenkins, Elizabeth; Manohar, Aneesh V.

    2001-01-01

    Dark energy models which alter the relative scaling behavior of dark energy and matter could provide a natural solution to the cosmic coincidence problem -- why the densities of dark energy and dark matter are comparable today. A generalized class of dark energy models is introduced which allows noncanonical scaling of the ratio of dark matter and dark energy with the Robertson-Walker scale factor a(t) . We show that determining whether there is a coincidence problem, and the extent of cosmic coincidence, can be addressed by several forthcoming experiments

  7. Transmutor demo unit and thermal into electrical energy transformation problems

    International Nuclear Information System (INIS)

    Matal, O.; Fiedler, J.

    1999-01-01

    In the three circuits layout of the transmutor the heat is transferred from the primary through the secondary circuits by a favourable heat carrier into the tertiary circuit where the thermal into electrical energy transformation in turbo-generator comes into force. Properties as well as parameters of the heat carrier in the secondary circuit affect basically both the conceptual layout of the tertiary circuit and consequently investments costs for its realization and the effectiveness of the transformation of thermal into electrical energy. For several heat carriers considered for the transmutor secondary circuit particular tertiary circuit concepts for the demonstration transmutor unit of approx. 15 W thermal power rate are analyzed, layout features and possibilities of turbogenerator selection are commented and investment costs as well as effectiveness of thermal into electrical energy transformation are estimated. Some of the results are as follows: (i) Heat carrier properties influence thermodynamics of the TDU water/steam cycle substantially. One of the dominant parameters is the melting (freezing) temperature of the heat carrier. (ii) Heat carrier properties influence investment costs of components of the TDU tertiary circuit substantially. Dominantly influenced are costs of the steam generator, steam turbine and high pressure regeneration system. (iii) If the heat carrier has to be a molten salt than a salt with a low melting temperature is recommended to be selected, for example KHF2. (iv) Eutectic alloy Pb-Bi as the heat carrier serves changes to design the TDU with efficient thermodynamics, with acceptable low investment costs of the tertiary as well as secondary circuit components and with an acceptable level of the nuclear safety

  8. Positive energy Weinberg states for the solution of scattering problems

    International Nuclear Information System (INIS)

    Rawitscher, G.

    1982-01-01

    Positive energy Weinberg states are defined and numerically calculated in the presence of a general complex Woods-Saxon potential. The numerical procedure is checked for the limit of a square well potential for which the Weinberg states and the corresponding eigenvalues are known. A finite number M of these (auxiliary) positive energy Weinberg states are then use as a set of basis functions in order to provide a separable approximation of rank M, V/sub M/, to a potential V, and also to the scattering matrix element S which obtains as a result of the presence of V, S/sub M/. Both V/sub M/ and S/sub M/ are obtained by means of algebraic manipulations which involve the matrix elements of V calculated in terms of the auxiliary postive energy Weinberg states Next, expressions are derived which enable one to iteratively correct for the error in V--V/sub M/. These expressions are a modified version of the quasi-particle method of Weinberg. The convergence of S/sub M/ to S, as well as the first order interation of the error in S/sub M/ is examined as a function M for a numerical example which uses a complex Woods-Saxon potential for V and assumes zero angular momentum. With M = 5 and one iteration an error of less than 10% in S is achieved; for M = 8 the error is less than 1%. The method is expected to be useful for the solution of large systems of coupled equations by matrix techniques or when a part of the potential is non-local

  9. Conclusions and recommendations. [for problems in energy situation, air transportation, and hydrogen fuel

    Science.gov (United States)

    1973-01-01

    Conclusions and recommendations are presented for an analysis of the total energy situation; the effect of the energy problem on air transportation; and hydrogen fuel for aircraft. Properties and production costs of fuels, future prediction for energy and transportation, and economic aspects of hydrogen production are appended.

  10. Methods for the integral assessment of energy-related problems

    International Nuclear Information System (INIS)

    Hirschberg, S.; Suter, P.

    1995-01-01

    The present paper presents a number of methods for a comprehensive assessment of energy systems, discusses their merits and limitations, and provides some result examples. The areas addressed include environmental impacts, risks and economic aspects. Three step Life Cycle Analysis (LCA) has been used to analyse environmental impacts. Transparent and consistent inventories were developed for electricity generation (nine fuel cycles) and for heating systems. The results, which include gaseous and liquid emissions as well as non-energetic resources such as land depreciation, cover average, currently operating systems in the UCPTE network and in Switzerland. Examples of comparisons of heating systems and electricity generation systems, with respect to their contributions to such impact classes as greenhouse effect, acidification and photosmog, are provided. Major gaps exist with respect to the assessment of the severe accidents potential within the different energy systems. When analysing the objective risks due to severe accidents two approaches are employed, i.e. direct use of past experience and applications of Probabilistic Safety Assessment (PSA). Progress with respect to extended knowledge about accidents that occurred in the past and in the context of uses of PSA for external costs calculations is reported. Limitations of historical data and modelling issues are discussed along with the role of risk aversion and current attempts to account for it. (author) 10 figs., 1 tab

  11. Problems of valuation and organization in energy markets

    International Nuclear Information System (INIS)

    Porchet, A.

    2008-01-01

    In the past thirty years, the electricity industry has experienced significant structural changes in its organization all over the world. Traditionally centralized and organized in monopolies, at least locally, and often publicly owned, the activities of electricity production and retail have moved towards a market-based organization. Nowadays, a significant number of countries host electricity wholesale markets where producers and retailers exchange electricity to satisfy the demand of end consumers. These markets are not strictly national and the volume of cross-border exchanges is increasing. The question of the organization of these markets is crucial with regards to the direct consequences in cases of failure (we refer for example to the California crisis or the Enron scandal in 2001). The whole set of energy markets has been transformed in a broader context of demand growth, threat of exhaustion of fossil energies, environmental awareness and political tensions for the access to natural resources. Beside an oil market under pressure, the gas and coal markets have seen their volumes increasing. The ratification of the Kyoto protocol and the enforcement of a greenhouse gases reduction policy have lead to the creation of markets for emissions permits and stimulated the use of renewable and nuclear energies and biofuels. The increasing exposure of the world economy to energy prices incited the financial markets to develop new commodity risk management products (energy, agriculturals, metals). These are price risk and also volume risk management products, in order to hedge the risk of fluctuating demand. These are also derivatives or insurance products against weather risk. This PhD dissertation keeps within this context. It is composed of four chapters that are independent of each other. The first chapter concerns the valuation of physical assets such as thermal power plants. This Real Option valuation method is based on a utility indifference analysis and

  12. Research on energy transmission calculation problem on laser detecting submarine

    Science.gov (United States)

    Fu, Qiang; Li, Yingchao; Zhang, Lizhong; Wang, Chao; An, Yan

    2014-12-01

    The laser detection and identification is based on the method of using laser as the source of signal to scan the surface of ocean. If the laser detection equipment finds out the target, it will immediately reflect the returning signal, and then through receiving and disposing the returning signal by the receiving system, to realize the function of detection and identification. Two mediums channels should be though in the process of laser detection transmission, which are the atmosphere and the seawater. The energy loss in the process of water transport, mainly considering the surface reflection and scattering attenuation and internal attenuation factors such as seawater. The energy consumption though atmospheric transmission, mainly considering the absorption of atmospheric and the attenuation causing by scattering, the energy consumption though seawater transmission, mainly considering the element such as surface reflection, the attenuation of scattering and internal attenuation of seawater. On the basis of the analysis and research, through the mode of establishment of atmospheric scattering, the model of sea surface reflection and the model of internal attenuation of seawater, determine the power dissipation of emitting lasers system, calculates the signal strength that reaches the receiver. Under certain conditions, the total attenuation of -98.92 dB by calculation, and put forward the related experiment scheme by the use of Atmospheric analog channel, seawater analog channel. In the experiment of the theory, we use the simulation pool of the atmosphere and the sea to replace the real environment where the laser detection system works in this kind of situation. To start with, we need to put the target in the simulating seawater pool of 10 meters large and then control the depth of the target in the sea level. We, putting the laser detection system in position where it is 2 kilometers far from one side, secondly use the equipment to aim at the target in some

  13. Proceedings of the Department of Energy Defense Programs hazardous and mixed waste minimization workshop: Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    1988-09-01

    The first workshop on hazardous and mixed waste minimization was held in Las Vegas, Nevada, on July 26--28, 1988. The objective of this workshop was to establish an interchange between DOE headquarters (DOE-HQ) DP, Operations Offices, and contractors of waste minimization strategies and successes. The first day of the workshop began with presentations stressing the importance of establishing a waste minimization program at each site as required by RCRA, the land ban restrictions, and the decrease in potential liabilities associated with waste disposal. Discussions were also centered on pending legislation which would create an Office of Waste Reduction in the Environmental Protection Agency (EPA). The Waste Minimization and Avoidance Study was initiated by DOE as an addition to the long-term productivity study to address the issues of evolving requirements facing RCRA waste management activities at the DP sites, to determine how major operations will be affected by these requirements, and to determine the available strategies and options for waste minimization and avoidance. Waste minimization was defined in this study as source reduction and recycling

  14. A chord error conforming tool path B-spline fitting method for NC machining based on energy minimization and LSPIA

    Directory of Open Access Journals (Sweden)

    Shanshan He

    2015-10-01

    Full Text Available Piecewise linear (G01-based tool paths generated by CAM systems lack G1 and G2 continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical instability, lack of chord error constraint, and lack of assurance of a usable result. Progressive and Iterative Approximation for Least Squares (LSPIA is an efficient method for data fitting that solves the numerical instability problem. However, it does not consider chord errors and needs more work to ensure ironclad results for commercial applications. In this paper, we use LSPIA method incorporating Energy term (ELSPIA to avoid the numerical instability, and lower chord errors by using stretching energy term. We implement several algorithm improvements, including (1 an improved technique for initial control point determination over Dominant Point Method, (2 an algorithm that updates foot point parameters as needed, (3 analysis of the degrees of freedom of control points to insert new control points only when needed, (4 chord error refinement using a similar ELSPIA method with the above enhancements. The proposed approach can generate a shape-preserving B-spline curve. Experiments with data analysis and machining tests are presented for verification of quality and efficiency. Comparisons with other known solutions are included to evaluate the worthiness of the proposed solution.

  15. Legal problems of waste treatment in German atomic energy facilities

    International Nuclear Information System (INIS)

    Pfaffelhuber, J.K.

    1980-01-01

    The execution of the strategies of waste treatment and disposal calls for the laws and regulations on the obligations of the owners of equipments and facilities and of the state for securing safety and the final elimination of radioactive wastes, which are defined mainly in Article 9 of Atomgesetz and Section 2 (Article 44 - 48) of the order on protection from radiation. The owners of equipments and facilities of atomic energy technology shall limit the emission of radiation to about 6% of internationally permissible values, avoid uncontrolled emission without fail, inspect emission and submit reports yearly to government offices. The owners have attention obligations to utilize harmlessly produced radioactive residues and the expanded or dismantled parts of radioactive equipments or to eliminate orderly such things as radioactive wastes, only when such utilization is unable technically or economically, or not adequate under the protection aims of Atomgesetz. The possessors of radioactive wastes shall deliver the wastes to the accumulation places of provinces for intermediate storage, to the facilities of the Federal Republic for securing safety or final storage, or the facilities authorized by government offices for the elimination of radioactive wastes. Provinces shall install the accumulation places for the intermediate storage of radioactive wastes produced in their territories, and the Federal Republic shall set up the facilities for securing safety and the final elimination of radioactive wastes (Article 9, Atomgesetz). (Okada, K.)

  16. Energy expenditure, aerodynamics and medical problems in cycling. An update.

    Science.gov (United States)

    Faria, I E

    1992-07-01

    The cyclist's ability to maintain an extremely high rate of energy expenditure for long durations at a high economy of effort is dependent upon such factors as the individual's anaerobic threshold, muscle fibre type, muscle myoglobin concentration, muscle capillary density and certain anthropometric dimensions. Although laboratory tests have had some success predicting cycling potential, their validity has yet to be established for trained cyclists. Even in analysing the forces producing propulsive torque, cycling effectiveness cannot be based solely on the orientation of applied forces. Innovations of shoe and pedal design continue to have a positive influence on the biomechanics of pedalling. Although muscle involvement during a complete pedal revolution may be similar, economical pedalling rate appears to differ significantly between the novice and racing cyclist. This difference emanates, perhaps, from long term adaptation. Air resistance is by far the greatest retarding force affecting cycling. The aerodynamics of the rider and the bicycle and its components are major contributors to cycling economy. Correct body posture and spacing between riders can significantly enhance speed and efficiency. Acute and chronic responses to cycling and training are complex. To protect the safety and health of the cyclist there must be close monitoring and cooperation between the cyclist, coach, exercise scientist and physician.

  17. A Multiple Period Problem in Distributed Energy Management Systems Considering CO2 Emissions

    Science.gov (United States)

    Muroda, Yuki; Miyamoto, Toshiyuki; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya

    Consider a special district (group) which is composed of multiple companies (agents), and where each agent responds to an energy demand and has a CO2 emission allowance imposed. A distributed energy management system (DEMS) optimizes energy consumption of a group through energy trading in the group. In this paper, we extended the energy distribution decision and optimal planning problem in DEMSs from a single period problem to a multiple periods one. The extension enabled us to consider more realistic constraints such as demand patterns, the start-up cost, and minimum running/outage times of equipment. At first, we extended the market-oriented programming (MOP) method for deciding energy distribution to the multiple periods problem. The bidding strategy of each agent is formulated by a 0-1 mixed non-linear programming problem. Secondly, we proposed decomposing the problem into a set of single period problems in order to solve it faster. In order to decompose the problem, we proposed a CO2 emission allowance distribution method, called an EP method. We confirmed that the proposed method was able to produce solutions whose group costs were close to lower-bound group costs by computational experiments. In addition, we verified that reduction in computational time was achieved without losing the quality of solutions by using the EP method.

  18. ENVIRONMENTAL MANAGEMENT OF ELECTRICAL ENERGY SYSTEMS: PROBLEMS AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Francisco José Costa Araujo

    2001-09-01

    Full Text Available

    En la pasada década, el modelo de desarrollo brasileño fue caracterizado por el crecimiento económico a través de una fuerte industrialización. Una de las principales estrategias del gobierno en ese período, consistió en proveer la necesaria infraestructura a la actividad industrial, principalmente en los sectores del transporte, telecomunicaciones y energía. Los sistemas de transmisión tuvieron una parte fundamental en ese proceso, como elementos distribuidores de electricidad para la atención de necesidades de la industria y la urbanización. Atenuar los eventuales efectos medioambientales y sociales negativos de empresas del sector eléctrico, constituye ahora algo concerniente al gobierno, como lo indica la demanda legal de la evaluación del impacto medioambiental (EIM para el cumplimiento de este tipo de actividad.

    Abstract

    In the last decades, the model of brazilian development was characterized by the economic growth through a fast industrialization. One of the main government strategies, in that period, consisted on the supply of necessary infrastructure to the industrial activity, mainly in the transport sections, telecommunication and energy. The transmission systems had a fundamental part in that process, as elements distributors of electricity for the attending to the needs of the industry and the urbanization. The attenuation of the eventual environmental effects and social negatives of enterprises of the electric section are constituted, now, in a government concern, as it indicates the legal demand of the environmental impact assessment (EIA for the accomplishment of this type activity

  19. A Practical and Robust Execution Time-Frame Procedure for the Multi-Mode Resource-Constrained Project Scheduling Problem with Minimal and Maximal Time Lags

    Directory of Open Access Journals (Sweden)

    Angela Hsiang-Ling Chen

    2016-09-01

    Full Text Available Modeling and optimizing organizational processes, such as the one represented by the Resource-Constrained Project Scheduling Problem (RCPSP, improve outcomes. Based on assumptions and simplification, this model tackles the allocation of resources so that organizations can continue to generate profits and reinvest in future growth. Nonetheless, despite all of the research dedicated to solving the RCPSP and its multi-mode variations, there is no standardized procedure that can guide project management practitioners in their scheduling tasks. This is mainly because many of the proposed approaches are either based on unrealistic/oversimplified scenarios or they propose solution procedures not easily applicable or even feasible in real-life situations. In this study, we solve a more true-to-life and complex model, Multimode RCPSP with minimal and maximal time lags (MRCPSP/max. The complexity of the model solved is presented, and the practicality of the proposed approach is justified depending on only information that is available for every project regardless of its industrial context. The results confirm that it is possible to determine a robust makespan and to calculate an execution time-frame with gaps lower than 11% between their lower and upper bounds. In addition, in many instances, the solved lower bound obtained was equal to the best-known optimum.

  20. Review of the inverse scattering problem at fixed energy in quantum mechanics

    Science.gov (United States)

    Sabatier, P. C.

    1972-01-01

    Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.

  1. Entropy in the Present and Early Universe: New Small Parameters and Dark Energy Problem

    Directory of Open Access Journals (Sweden)

    Alexander Shalyt-Margolin

    2010-04-01

    Full Text Available It is demonstrated that entropy and its density play a significant role in solving the problem of the vacuum energy density (cosmological constant of the Universe and hence the dark energy problem. Taking this in mind, two most popular models for dark energy—Holographic Dark Energy Model and Agegraphic Dark Energy Model—are analysed. It is shown that the fundamental quantities in the first of these models may be expressed in terms of a new small dimensionless parameter that is naturally occurring in High Energy Gravitational Thermodynamics and Gravitational Holography (UV-limit. On this basis, the possibility of a new approach to the problem of Quantum Gravity is discussed. Besides, the results obtained on the uncertainty relation of the pair “cosmological constant–volume of space-time”, where the cosmological constant is a dynamic quantity, are reconsidered and generalized up to the Generalized Uncertainty Relation.

  2. To the Problem of Energy Security and Energy Objects Control Optimization

    International Nuclear Information System (INIS)

    Gotsiridze, A.; Abzianidze, D.

    2004-01-01

    One of the method of studying energy security of energy objects is evaluation of character and range of main safety risk influence with the help of indicator analysis. In the work is also reviewed an example of applying modern management theory to the group of tasks, connected with the optimal management of energy objects, which is the basis of their secure functioning. (authors)

  3. Departure fuel loads in time-minimizing migrating birds can be explained by the energy costs of being heavy

    NARCIS (Netherlands)

    Klaassen, M.R.J.; Lindstrom, A.

    1996-01-01

    Lindstrom & Alerstam (1992 Am. Nat. 140, 477-491) presented a model that predicts optimal departure fuel loads as a function of the rate of fuel deposition in time-minimizing migrants. The basis of the model is that the coverable distance per unit of fuel deposited, diminishes with increasing fuel

  4. Current problems of the Bulgarian energy industry against the background of global short-term energy demand

    International Nuclear Information System (INIS)

    Batov, S.

    1999-01-01

    The energy demand during the next century due first of all to the expected growth of population necessitates more efficient technologies and huge investments. The production of nuclear energy requires higher safety as well as reduction of costs. A new form of partnership between the developed and developing countries is needed for transferring capital and technologies at special framework terms in order to avoid errors in the process of transition. The Energy Forum'99 highlights the current problems of Bulgarian energy branch and the projects for its future including better utilization of the existing energy resources, for development of new or renewable energy sources, not well utilized at present, and to harmonize the sector with better environmental protection. The most important problems discussed are: 1. Structure and restructuring strategy of the energy sector. Prices and tariffs. Privatization aspects. Construction of new replacement generating capacities; 2. Thermal power plants; 3. Nuclear power plants; 4. District heating and natural gas supply; 5. Efficient energy utilization; 6. Renewable energy sources; 7. Environmental protection and 8. Education

  5. Regard d'un physicien sur le probleme de l'energie

    CERN Document Server

    Revol, Jean Pierre Charles

    2003-01-01

    The energy problem is one of the most serious challenges facing our civilization. The issue is not whether there are sufficient energy resources in the short - or medium-term, even though world consumption is already considerable, but rather how can we satisfy the world's current and future energy requirements without compromising the planet's ecological balance and how can we ensure an equitable distribution of an acceptable level of energy resources between all countries, including developing countries? The problem has now become a worldwide one with consequences that are also world- wide. The developed countries have lost control of the Earth's ecological future. In 1990 the developing countries consumed only a quarter of the world's energy resources. By 2020 they will already be consuming 60 %. New environmentally friendly technologies will have to be invented to produce sufficient energy at competitive prices. It is not just in the interests of the developed countries to help developing countries to acqu...

  6. A Unique Climate and Energy Policy - Key Problems and Possible Solutions

    International Nuclear Information System (INIS)

    Granic, G.

    2016-01-01

    This paper analyses problems of independent application of climate and energy policy. In order to accomplish the goals from The Paris Climate Agreement, an agreement about the goals and measures for climate preservation from 2015, a unique climate and energy policy is suggested, as well as the measures for the implementation of it. To achieve no CO2 and GHG emissions in the energy sector, to have it be completely market based, energy efficient and technologically approved, a unique climate and energy policy is a necessary option and the only viable option to accomplish previously agreed climate goals.(author).

  7. Determining the Optimal Solution for Quadratically Constrained Quadratic Programming (QCQP) on Energy-Saving Generation Dispatch Problem

    Science.gov (United States)

    Lesmana, E.; Chaerani, D.; Khansa, H. N.

    2018-03-01

    Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method

  8. Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction.

    Science.gov (United States)

    Xiang, Zhexin; Soto, Cinque S; Honig, Barry

    2002-05-28

    In this paper, we introduce a method to account for the shape of the potential energy curve in the evaluation of conformational free energies. The method is based on a procedure that generates a set of conformations, each with its own force-field energy, but adds a term to this energy that favors conformations that are close in structure (have a low rmsd) to other conformations. The sum of the force-field energy and rmsd-dependent term is defined here as the "colony energy" of a given conformation, because each conformation that is generated is viewed as representing a colony of points. The use of the colony energy tends to select conformations that are located in broad energy basins. The approach is applied to the ab initio prediction of the conformations of all of the loops in a dataset of 135 nonredundant proteins. By using an rmsd from a native criterion based on the superposition of loop stems, the average rmsd of 5-, 6-, 7-, and 8-residue long loops is 0.85, 0.92, 1.23, and 1.45 A, respectively. For 8-residue loops, 60 of 61 predictions have an rmsd of less than 3.0 A. The use of the colony energy is found to improve significantly the results obtained from the potential function alone. (The loop prediction program, "Loopy," can be downloaded at http://trantor.bioc.columbia.edu.)

  9. Solar energy and nuclear power. Energy sources, environmental pollution and CO{sub 2} - problem; Solarenergie und Atomstrom. Energiequellen, Umweltbelastung und das CO{sub 2}-Problem

    Energy Technology Data Exchange (ETDEWEB)

    Metzner, H.

    1999-07-01

    In this volume the energy sources used today and possible alternatives like solar-, wind-, and hydro power, geothermal energy and renewable fuels are presented. The environmental pollution due to fossil fuel application (e.g. sulfur- and nitrogen oxides) as the use of nuclear power are discussed in detail. An extra chapter covers the CO2 problem (greenhouse effect, ice cover on earth, sea level, influence on plant growth and agricultural crop) as climatic forecasting. [German] In diesem Band werden die heute nutzbaren Energiequellen und die dazu moeglichen Alternativen wie Solarenergie, Wind-, und Wasserkraft, Erdwaerme und nachwachsende Rohstoffe aufgezeigt. Die Umweltbelastungen aus der Nutzung fossiler Brennstoffe (z.B. Schwefel- und Stickoxide) sowie der Kernenergie sind ausfuehrlich besprochen. Dem CO2-Problem (Treibhauseffekt, Eisbedeckung der Erde, Hoehe des Meeresspiegels, Auswirkungen auf Pflanzenwuchs und Agrarertraege) sowie den Klimaprognosen ist ein eigenes Kapitel gewidmet.

  10. Energy spectrum inverse problem of q -deformed harmonic oscillator and WBK approximation

    International Nuclear Information System (INIS)

    Sang, Nguyen Anh; Thuy, Do Thi Thu; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai

    2016-01-01

    Using the connection between q-deformed harmonic oscillator and Morse-like anharmonic potential we investigate the energy spectrum inverse problem. Consider some energy levels of energy spectrum of q -deformed harmonic oscillator are known, we construct the corresponding Morse-like potential then find out the deform parameter q . The application possibility of using the WKB approximation in the energy spectrum inverse problem was discussed for the cases of parabolic potential (harmonic oscillator), Morse-like potential ( q -deformed harmonic oscillator). so we consider our deformed-three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. For practical problems, we propose the deformed- three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. (paper)

  11. Energy problems of developing countries and the development co-operation

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K; Sahrman, K

    1984-12-15

    The technology, economy and problems of energy sector in developing countries are presented as well as the possibilities of solving energy problems, with special emphasis on how to adapt Finnish energy know-how to the conditions existing in the developing countries. The population in the developing countries has grown explosively. The worst energy problem due to this growth is the shortage of firewood. The fact that wood is used for burning is one reason for the formation of deserts. Today already about one hundred million people in developing countries suffer from shortage of energy. In the following 20-30 years it will threaten already about one billion people. Poverty in the developing countries prevents the use of fossil fuels like oil. It is likely that the developing countries already in the coming decades will have to start to use new and renewable sources of energy, like these are solar and wind energy as well as hydroelectric power. The efficiency of burning fire wood should rapidly be improved. On the other hand reforestration should be increased. Also fossil fuels are needed before new sources of energy can be used. All over the world there has been interest in the energy problems of the developing countries. The World Bank and other financing bodies are increasing their financial aid for different kinds of energy projects. The Finnish development aid is primarily bilateral and concentrated in certain countries. In the 1980's the energy sector will be one of the main fields in our development aid, at the same time as the portion of our development aid from gross national income is increasing.

  12. A Survey on Renewable Energy Development in Malaysia: Current Status, Problems and Prospects

    Directory of Open Access Journals (Sweden)

    Alam Syed Shah

    2016-05-01

    Full Text Available Energy demand in Malaysia is increasing over seven per cent a year, while forty per cent of the energy is supplied from conventional fossil fuel. However, a number of social barriers have mired the social acceptance of renewable energy among the users. This study investigates the current status of renewable energy, problems and future outlook of renewable energy in Malaysia. A total of 200 respondents were surveyed from Klang Valley in Malaysia. Majority of the respondents use energy to generate electricity. Although some respondents reported using solar energy, there is lack of retail availability for solar energy. The findings show that limited information on renewable energy technologies, lack of awareness, and limited private sector engagement emerged as major barriers to sustainable renewable energy development. In addition, the respondents suggest for increasing policy support from the government to make information more accessible to mass users, provide economic incentives to investors and users, and promote small-community based renewable energy projects. The study suggests that the government begin small scale projects to build awareness on renewable energy, while academically, higher learning institutions include renewable energy syllabus in their academic curriculum. The study concluded that to have sustainable renewable energy development, government’s initiative, private sector engagement and users awareness must be given priority.

  13. A Survey on Renewable Energy Development in Malaysia: Current Status, Problems and Prospects

    Science.gov (United States)

    Alam, Syed Shah; Nor, Nor Fariza Mohd; Ahmad, Maisarah; Hashim, Nik Hazrul Nik

    2016-05-01

    Energy demand in Malaysia is increasing over seven per cent a year, while forty per cent of the energy is supplied from conventional fossil fuel. However, a number of social barriers have mired the social acceptance of renewable energy among the users. This study investigates the current status of renewable energy, problems and future outlook of renewable energy in Malaysia. A total of 200 respondents were surveyed from Klang Valley in Malaysia. Majority of the respondents use energy to generate electricity. Although some respondents reported using solar energy, there is lack of retail availability for solar energy. The findings show that limited information on renewable energy technologies, lack of awareness, and limited private sector engagement emerged as major barriers to sustainable renewable energy development. In addition, the respondents suggest for increasing policy support from the government to make information more accessible to mass users, provide economic incentives to investors and users, and promote small-community based renewable energy projects. The study suggests that the government begin small scale projects to build awareness on renewable energy, while academically, higher learning institutions include renewable energy syllabus in their academic curriculum. The study concluded that to have sustainable renewable energy development, government's initiative, private sector engagement and users awareness must be given priority.

  14. Present Scenario of Renewable Energy in Bangladesh and a Proposed Hybrid System to Minimize Power Crisis in Remote Areas

    OpenAIRE

    Chowdhury, Nahid -UR-Rahman; Reza, Syed Enam; Nitol, Tofaeel Ahamed; Mahabub, Abd-Al-Fattah IBNE

    2016-01-01

    Abstract- Bangladesh is a densely populated country located at the South-East corner of Asia. Only 48.5% of people here have access to the grid electricity. This paper provides a comprehensive study of the contemporary renewable energy scenario in Bangladesh in terms of distribution, research and infrastructural development in the country. Renewable energy is the smartest solution of increasing energy crisis caused by using fossil fuels. But sometimes it faces question of reliability which ca...

  15. Nuclear energy as a contribution to the solution of energetic and environmental global problems

    International Nuclear Information System (INIS)

    Huttl, A.

    1993-01-01

    The sharp population growth has turned energy and environment problems into global problems. The yearly consumption of primary energy in the world is currently 11 billion TCE (Tons of Coal Equivalent). At the present time 88.1% of energy supply is produced by fossil fuels and nuclear only 5.2%. Fossil fuels are responsible for air pollutants like SO 2 , NO, NO 2 , CO 2 , and VOC. Most of them are responsible of the Greenhouse effect and global warming. Only two solutions may avoid this situation: Renewable energies (sun, water and wind) and Nuclear Energy. At the end of 1990 there were 424 nuclear power plants in the world with 1800 million Tu/year of CO 2 avoided (8% of the total emitted). New future scenarios of CO 2 avoided may only be reached with nuclear power contribution

  16. Energy information needs for U. S. state-level policy making: Minimal data requirements during normal and emergency periods

    Energy Technology Data Exchange (ETDEWEB)

    Barkenbus, J.N.; Leff, H.S.

    1983-01-01

    Since the oil embargo of 1973, state governments have increased their efforts to track and understand energy flows within their boundaries. There is a commonly perceived need to comprehend the status of present and expected future energy availability, demand, and price and to be prepared to exercise responsible and effective management during energy emergencies. This responsibility has brought with it new needs for accurate and timely state-level information on energy transactions and the external parameters that effect energy availability and disposition. What energy data are needed by a state, regardless of its idiosyncracies, during both normal and energy emergency periods, and to what extent are these data available now. The authors find that needed ongoing (core) data are only partially available at present, and that emergency data can be obtained only with a carefully planned monitoring program that can be fitted to specific emergency conditions. Overall, this paper provides a realistic assessment of the state-level energy data needed to provide state policy makers with sufficient information to make considered judgments.

  17. Energy-information needs for US state-level policy making: minimal data requirements during normal and emergency periods

    Energy Technology Data Exchange (ETDEWEB)

    Barkenbus, J.N.; Leff, H.S.

    1983-01-01

    Since the oil embargo of 1973, state governments have increased their efforts to track and understand energy flows within their boundaries. There is a commonly perceived need to comprehend the status of present and expected future energy availability, demand, and price and to be prepared to exercise responsible and effective management during energy emergencies. This responsibility has brought with it new needs for accurate and timely state-level information on energy transactions and the external parameters that effect energy availability and disposition. Hence, we ask: what energy data are needed by a state, regardless of its idiosyncracies, during both normal and energy emergency periods, and to what extent are these data available now. We find that needed ongoing (core) data are only partially available at present, and that emergency data can be obtained only with a carefully planned monitoring program that can be fitted to specific emergency conditions. Overall, this paper provides a realistic assessment of the state-level energy data needed to provide state policy makers with sufficient information to make considered judgments. 7 references, 6 tables.

  18. Proposed actions for the US Food and Drug Administration to implement to minimize adverse effects associated with energy drink consumption.

    Science.gov (United States)

    Thorlton, Janet; Colby, David A; Devine, Paige

    2014-07-01

    Energy drink sales are expected to reach $52 billion by 2016. These products, often sold as dietary supplements, typically contain stimulants. The Dietary Supplement Protection Act claims an exemplary public health safety record. However, in 2011 the number of emergency department visits related to consumption of energy drinks exceeded 20,000. Nearly half of these visits involved adverse effects occurring from product misuse. Political, social, economic, practical, and legal factors shape the landscape surrounding this issue. In this policy analysis, we examine 3 options: capping energy drink caffeine levels, creating a public education campaign, and increasing regulatory scrutiny regarding the manufacture and labeling of energy drinks. Increased regulatory scrutiny may be in order, especially in light of wrongful death lawsuits related to caffeine toxicity resulting from energy drink consumption.

  19. Evolution, opportunity and challenges of transboundary water and energy problems in Central Asia.

    Science.gov (United States)

    Guo, Lidan; Zhou, Haiwei; Xia, Ziqiang; Huang, Feng

    2016-01-01

    Central Asia is one of the regions that suffer the most prominent transboundary water and energy problems in the world. Effective transboundary water-energy resource management and cooperation are closely related with socioeconomic development and stability in the entire Central Asia. Similar to Central Asia, Northwest China has an arid climate and is experiencing a water shortage. It is now facing imbalanced supply-demand relations of water and energy resources. These issues in Northwest China and Central Asia pose severe challenges in the implementation of the Silk Road Economic Belt strategy. Based on the analysis of water and energy distribution characteristics in Central Asia as well as demand characteristics of different countries, the complexity of local transboundary water problems was explored by reviewing corresponding historical problems of involved countries, correlated energy issues, and the evolution of inter-country water-energy cooperation. With references to experiences and lessons of five countries, contradictions, opportunities, challenges and strategies for transboundary water-energy cooperation between China and Central Asia were discussed under the promotion of the Silk Road Economic Belt construction based on current cooperation conditions.

  20. Application of wavelet scaling function expansion continuous-energy resonance calculation method to MOX fuel problem

    International Nuclear Information System (INIS)

    Yang, W.; Wu, H.; Cao, L.

    2012-01-01

    More and more MOX fuels are used in all over the world in the past several decades. Compared with UO 2 fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for 240 Pu and 242 Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)

  1. Validation of five minimally obstructive methods to estimate physical activity energy expenditure in young adults in semi-standardized settings

    DEFF Research Database (Denmark)

    Schneller, Mikkel Bo; Pedersen, Mogens Theisen; Gupta, Nidhi

    2015-01-01

    We compared the accuracy of five objective methods, including two newly developed methods combining accelerometry and activity type recognition (Acti4), against indirect calorimetry, to estimate total energy expenditure (EE) of different activities in semi-standardized settings. Fourteen particip...

  2. Variational minimization of atomic and molecular ground-state energies via the two-particle reduced density matrix

    International Nuclear Information System (INIS)

    Mazziotti, David A.

    2002-01-01

    Atomic and molecular ground-state energies are variationally determined by constraining the two-particle reduced density matrix (2-RDM) to satisfy positivity conditions. Because each positivity condition corresponds to correcting the ground-state energies for a class of Hamiltonians with two-particle interactions, these conditions collectively provide a new approach to many-body theory that, unlike perturbation theory, can capture significantly correlated phenomena including the multireference effects of potential-energy surfaces. The D, Q, and G conditions for the 2-RDM are extended through generalized lifting operators inspired from the formal solution of N-representability. These lifted conditions agree with the hierarchy of positivity conditions presented by Mazziotti and Erdahl [Phys. Rev. A 63, 042113 (2001)]. The connection between positivity and the formal solution explains how constraining higher RDMs to be positive semidefinite improves the N representability of the 2-RDM and suggests using pieces of higher positivity conditions that computationally scale like the D condition. With the D, Q, and G conditions as well as pieces of higher positivity the electronic energies for Be, LiH, H 2 O, and BH are computed through a primal-dual interior-point algorithm for positive semidefinite programming. The variational method produces potential-energy surfaces that are highly accurate even far from the equilibrium geometry where single-reference perturbation-based methods often fail to produce realistic energies

  3. The problem of intermittency of renewable energies: solar and wind energy

    International Nuclear Information System (INIS)

    Livet, Frederic

    2011-01-01

    As solar and wind energies are to be intensively developed but are intermittent, more or less regular and unpredictable, the author first discusses methods which are presently used to manage this intermittency in various European countries. He also discusses the various methods which are proposed to compensate this intermittency: hydraulic storage, hydrogen-based storage, batteries, and large scale interconnections. He gives and comments cost assessments of the various proposed methods and of capacities. He shows that various measures which are discussed at the European level to promote renewable energies and to promote electricity exchanges will in fact result in a three times higher price of electricity for individuals

  4. Modelling of hybrid energy system - Part I: Problem formulation and model development

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ajai; Saini, R.P.; Sharma, M.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India)

    2011-02-15

    A well designed hybrid energy system can be cost effective, has a high reliability and can improve the quality of life in remote rural areas. The economic constraints can be met, if these systems are fundamentally well designed, use appropriate technology and make use effective dispatch control techniques. The first paper of this tri-series paper, presents the analysis and design of a mixed integer linear mathematical programming model (time series) to determine the optimal operation and cost optimization for a hybrid energy generation system consisting of a photovoltaic array, biomass (fuelwood), biogas, small/micro-hydro, a battery bank and a fossil fuel generator. The optimization is aimed at minimizing the cost function based on demand and potential constraints. Further, mathematical models of all other components of hybrid energy system are also developed. This is the generation mix of the remote rural of India; it may be applied to other rural areas also. (author)

  5. Decentralized Energy Management with Profile Steering : Resource Allocation Problems in Energy Management

    NARCIS (Netherlands)

    van der Klauw, Thijs

    2017-01-01

    Our energy supply chain is changing rapidly, driven by a societal push towards clean and renewable resources. However, these resources are often uncontrollable (e.g., wind and sun) and are increasingly being exploited on smaller scales (e.g., rooftop photovoltaic). This poses a reliability challenge

  6. Problems of nuclear energy - chances, risks and perspectives in a changing energy economy

    International Nuclear Information System (INIS)

    Schlutter, A.

    1977-01-01

    Report on the international congress of the Friedrich Ebert Foundation on Oct. 3/4, 1977 in Bad Godesberg. The aim of the meeting was to satisfy the population's interest in nuclear energy by presenting the situation without polemic and agression. (HP) [de

  7. Problems and tasks of energy efficiency connected with expenditures of power supply

    International Nuclear Information System (INIS)

    Gyurov, P.

    1994-01-01

    The problems of technological and economical management of the energy system in conditions of free market economy are discussed. The assessment, analysis, control and forecasting of costs in the energy system as a whole and in large thermal facilities are outlined. The main quantitative and qualitative indices of power supply are also discussed. The principle tasks of current and periodical accounting, control and forecasting of the costs and their information support are listed. (orig.)

  8. Is there an Ay problem in low-energy neutron-proton scattering?

    International Nuclear Information System (INIS)

    Gross, Franz; Stadler, Alfred

    2008-01-01

    We calculate Ay in neutron-proton scattering for the interactions models WJC-1 and WJC-2 in the Covariant Spectator Theory. We find that the recent 12 MeV measurements performed at TUNL are in better agreement with our results than with the Nijmegen Phase Shift Analysis of 1993, and after reviewing the low energy data, conclude that there is no Ay problem in low-energy np scattering.

  9. Taxonomic minimalism.

    Science.gov (United States)

    Beattle, A J; Oliver, I

    1994-12-01

    Biological surveys are in increasing demand while taxonomic resources continue to decline. How much formal taxonomy is required to get the job done? The answer depends on the kind of job but it is possible that taxonomic minimalism, especially (1) the use of higher taxonomic ranks, (2) the use of morphospecies rather than species (as identified by Latin binomials), and (3) the involvement of taxonomic specialists only for training and verification, may offer advantages for biodiversity assessment, environmental monitoring and ecological research. As such, formal taxonomy remains central to the process of biological inventory and survey but resources may be allocated more efficiently. For example, if formal Identification is not required, resources may be concentrated on replication and increasing sample sizes. Taxonomic minimalism may also facilitate the inclusion in these activities of important but neglected groups, especially among the invertebrates, and perhaps even microorganisms. Copyright © 1994. Published by Elsevier Ltd.

  10. City and mobility: towards an integrated approach to resolve energy problems

    Directory of Open Access Journals (Sweden)

    Carmela Gargiulo

    2012-07-01

    Full Text Available The issue of integration between city, mobility and energy plays a central role in the current EU policies, aimed at achieving energy saving targets, independence from fossil fuels and enhance of the urban systems resilience, but the strategies of the single states are, however, still far from its implementation. This paper proposes a reading of the current policies and of the recent initiatives aimed at improving the energy efficiency of settlements, implemented at both Community and national level, aimed at laying the groundwork for the definition of an integrated approach between city and mobility to resolve energy problem. Therefore, the paper is divided into six parts. The first part describes the transition from the concept of sustainability to the concept of resilience and illustrates the central role played by this one in the current urban and territorial research; the second part briefly analyzes the main and more recent European directives related to city, mobility and energy, while the third part describes how the energy problem is afforded in the current programming and planning tools. The fourth and fifth parts, are intended to describe the innovative practices promoted in some European and Italian cities concerning energy efficiency aimed at the integration between urban and transport systems. The last part of the paper, finally, deals with the definition of a new systemic approach for achieving objectives of energy sustainability. This approach aims at integrating strategies and actions for strategies of mobility governance, based on the certain assumption that the core for the most part of energy problems is mainly represented in medium and large cities. 

  11. HEAT PUMP TECHNOLOGY – POTENTIAL IMPACT ON ENERGY EFFICIENCY PROBLEM AND CLIMATE ACTION GOALS WITHIN UKRAINIAN ENERGY SECTOR

    Directory of Open Access Journals (Sweden)

    O. Ostapenko

    2015-12-01

    Full Text Available The increasing demand of energy sources for urban, household and industrial facilities requires strategies development for seeking new energy sources. In recent years an important problem is to have energy storage, energy production and energy consumption which fulfill the environment friendly expectations. A lot of attention is devoted to renewable energy sources. One of the most attracting among them is energy production form geothermal sources. At a few meters below the earth’s surface the underground maintains a constant temperature in an approximation through the year allowing to withdraw heat in winter for heating needs and to surrender heat during summer for air-conditioning purposes. Heat pump is a rapidly developing technology for heating and domestic hot water production. Using ground as a heat source, heat exchange is carried out with heat pumps compound to vertical ground heat exchanger tubes that allows the heating and cooling of the buildings utilizing a single unit installation. Heat pump unit provides a high degree of productivity with moderate electric power consumption. In this paper a theoretical performance study of a vapor compression heat pump system with various natural and synthetic refrigerants (HFCs is presented. Operation mode of the heat pump unit was chosen according to European Standard EN14511-2:2007 and EN255-2. An influence of discharge temperature on system performance was evaluated at different boiling temperatures. The comparison of mass flow rate and coefficient of performance for considered refrigerants at constant cooling capacity and condensation temperature was performed.

  12. Nuclear system for problems of environment, economy, and energy. (1) Nuclear energy role and potential for energy system in Asia

    International Nuclear Information System (INIS)

    Ujita, Hiroshi; Matsui, Kazuaki; Sekimoto, Hiroshi

    2005-01-01

    Role and potential of nuclear energy system in the energy options is discussed from the viewpoint of sustainable development with protecting from global warming. It is important for mitigation of global warming that the developing countries will use nuclear power effectively. The policy that nuclear power is considered as Clean Development Mechanism would be the good measure for that. (author)

  13. Economic chances and problems of the peaceful uses of nuclear energy in an evolutionary context

    International Nuclear Information System (INIS)

    Hohn, B.

    1992-01-01

    To organize and ensure energy supply is of pivotal importance for social development. Therefore, the paper focuses on the issue of nuclear energy within the stress field of society, technology, energy and evolution. Nuclear energy use is studied with regard to its evolutionary fit, on the basis of an integrating analysis overriding economic considerations. So the criterion of customary economics is expanded by the evaluation criterion of evolutionary principles. After considering the theoretical structure of environment and resource economy and its limits, the evolutionary background of energy and energy use is examined. Evolution strategies are outlined to show how structures and orders are formed in the course of evolution and how energy resources are exploited. In view of the global ecological crisis, solution strategies require a solid concept of an evolutionary fitting energy system the requirement profile of which can be obtained, by means of fitting criteria, from a synthesis of economic theory and the outlined evolution strategies. In order to sound the evolutionary fit of nuclear energy use on the basis of the theoretical foundations of economics and evolution and of the fitting criteria obtained from their synthesis, the status of the problem and its multifacetted interconnections are structured. Critical analysis of the peaceful use of nuclear energy is performed by means of a systematics which is to ensure that the mental order gradually approaches the evaluation of the evolutionary fit of nuclear power. (orig./HSCH) [de

  14. New light on an old problem: Reflections on barriers and enablers of distributed energy

    International Nuclear Information System (INIS)

    Szatow, Anthony; Quezada, George; Lilley, Bill

    2012-01-01

    This viewpoint article, New light on an Old Problem, aims to stimulate thought and discussion on pathways to rapid emission reduction trajectories. It considers briefly the history of the Australian energy system and recent attempts to support emerging, distributed energy supply systems, before exploring the importance of new energy supply models and how they may emerge organically, ahead of further policy and regulatory shifts in Australia. The article is shaped by extensive primary research, literature review and engagement with policy makers, industry and community organisations, energy market institutions, colleagues and others over a period of four years. It outlines how new business models may reduce emissions ahead of policy and regulation, and the importance of keeping an open mind when considering ‘barriers’ to distributed energy. We hope this article will spark interest and dialogue with colleagues who may be experiencing and grappling with similar challenges. - Research highlights: ► We discuss documented barriers to distributed energy. ► We draw on socio-technical system literature and our research experience to outline a possible solution to distributed energy barriers. ► We describe a hypothetical energy service business model, led by the property sector, as a catalyst for energy market change. ► We outline reasons for our confidence in this property sector led energy services model.

  15. The Main Problems in the Development of Geothermal Energy Industry in China

    Science.gov (United States)

    Yan, Jiahong; Wang, Shejiao; Li, Feng

    2017-04-01

    As early as 1980-1985, the geothermal energy research group of the Institute of Geology and Geophisics (Chinese Academy of Sciences) has proposed to pay attention to geothermal energy resources in oil fields. PetroChina began to study the geothermal energy resources in the region of Beijing-Tianjin-Hebei from 1995. Subsequently, the geothermal resources in the Huabei, Daqing and Liaohe oil regions were evaluated. The total recoverable hot water of the three oilfields reached 19.3 × 1011m3. PetroChina and Kenya have carried out geothermal energy development and utilization projects, with some relevant technical achievements.On the basis of many years' research on geothermal energy, we summarized the main problems in the formation and development of geothermal energy in China. First of all, China's geothermal resources research is still unable to meet the needs of the geothermal energy industry. Secondly, the development and utilization of geothermal energy requires multi-disciplinary cooperation. Thirdly, the development and utilization of geothermal energy needs consideration of local conditions. Finally, the development and utilization of geothermal energy resources requires the effective management of local government.

  16. Interactions Between Energy Drink Consumption and Sleep Problems: Associations with Alcohol Use Among Young Adolescents.

    Science.gov (United States)

    Marmorstein, Naomi R

    2017-09-01

    Background: Energy drink consumption and sleep problems are both associated with alcohol use among adolescents. In addition, caffeine consumption (including energy drinks) is associated with sleep problems. However, information about how these three constructs may interact is limited. The goal of this study was to examine potential interactions between energy drink consumption and sleep problems in the concurrent prediction of alcohol use among young adolescents. Coffee and soda consumption were also examined for comparison. Methods: Participants from the Camden Youth Development Study were included ( n  = 127; mean age = 13.1; 68% Hispanic, 29% African American) and questionnaire measures of frequency of caffeinated beverage consumption (energy drinks, coffee, and soda), sleep (initial insomnia, sleep disturbances, daytime fatigue, and sleep duration), and alcohol consumption were used. Regression analyses were conducted to examine interactions between caffeinated beverage consumption and sleep in the concurrent prediction of alcohol use. Results: Energy drink consumption interacted with initial insomnia and daytime fatigue to concurrently predict particularly frequent alcohol use among those with either of these sleep-related problems and energy drink consumption. The pattern of results for coffee consumption was similar for insomnia but reached only a trend level of significance. Results of analyses examining soda consumption were nonsignificant. Conclusions: Young adolescents who both consume energy drinks and experience initial insomnia and/or daytime fatigue are at particularly high risk for alcohol use. Coffee consumption appears to be associated with similar patterns. Longitudinal research is needed to explain the developmental pathways by which these associations emerge, as well as mediators and moderators of these associations.

  17. Triple Value System Dynamics Modeling to Help Stakeholders Engage with Food-Energy-Water Problems

    Science.gov (United States)

    Triple Value (3V) Community scoping projects and Triple Value Simulation (3VS) models help decision makers and stakeholders apply systems-analysis methodology to complex problems related to food production, water quality, and energy use. 3VS models are decision support tools that...

  18. PIME '89 (Public Information Materials Exchange): International workshop on public information problems of nuclear energy

    International Nuclear Information System (INIS)

    1989-01-01

    Presentations included in this proceedings are describing the following; Mass media and public information on nuclear energy and radiation: striving for two-way confidence and understanding; case studies of different countries having developed nuclear programs, problems of communication between nuclear promoters and/or operators and its adversaries; public attitude concerning nuclear power; different attitudes of men and women

  19. Regular energy drink consumption is associated with the risk of health and behavioural problems in adolescents

    NARCIS (Netherlands)

    Holubcikova, Jana; Kolarcik, Peter; Geckova, Andrea Madarasova; Reijneveld, Sijmen A.; van Dijk, Jitse P.

    Consumption of energy drinks has become popular and frequent among adolescents across Europe. Previous research showed that regular consumption of these drinks was associated with several health and behavioural problems. The aim of the present study was to determine the socio-demographic groups at

  20. The energy supply problems for ICT businesses; Energievoorziening ICT-bedrijven vormt knelpunt

    Energy Technology Data Exchange (ETDEWEB)

    Koevoet, H. [ed.

    2000-11-01

    Many businesses in the field of information and communication technology in the Amsterdam area (Netherlands) are on the waiting list to be connected to the electric power grid. The related problems were discussed at the conference 'Energy consumption of data hotels and telecom switches', which was held in Amsterdam, 2-3 November 2000.

  1. PIME '89 (Public Information Materials Exchange): International workshop on public information problems of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    Presentations included in this proceedings are describing the following; Mass media and public information on nuclear energy and radiation: striving for two-way confidence and understanding; case studies of different countries having developed nuclear programs, problems of communication between nuclear promoters and/or operators and its adversaries; public attitude concerning nuclear power; different attitudes of men and women.

  2. Divergence identities in curved space-time. A resolution of the stress-energy problem

    International Nuclear Information System (INIS)

    Yilmaz, H.; Tufts Univ., Medford, MA

    1989-01-01

    It is noted that the joint use of two basic differential identities in curved space-time, namely. 1) the Einstein-Hilbert identity (1915), and 2) the identity of P. Freud (1939), permits a viable alternative to general relativity and a resolution of the field stress-energy' problem of the gravitational theory. (orig.)

  3. Problem-Based Learning in Wind Energy Using Virtual and Real Setups

    Science.gov (United States)

    Santos-Martin, D.; Alonso-Martinez, J.; Eloy-Garcia Carrasco, J.; Arnaltes, S.

    2012-01-01

    The use of wind energy is now an established fact, and many educational institutions are introducing this topic into their engineering studies. Problem-based learning (PBL), as a student-centered instructional approach, has contributed to important developments in engineering education over the last few years. This paper presents the experience of…

  4. Problems in accounting for the soft and hard components in transverse energy triggers

    International Nuclear Information System (INIS)

    Anjos, J.C.; Santoro, A.F.S.; Souza, M.H.G.; Escobar, C.O.

    1983-01-01

    It is argued that for a transverse energy trigger, the cancellation theorem of DeTar, Ellis and Landshoff is not valid. As a consequence, the problem of accounting for soft and hard components in this kind of trigger becomes complicated and no simple separation between them is expected. (Author) [pt

  5. The new framework for resolving the energy problem and its application to the utilization of nuclear technology

    International Nuclear Information System (INIS)

    Kurata, Kenji

    2002-01-01

    Until recently, the energy problem in Japan had been the problem of how enough energy could be supplied to various sectors in society under Japan's conditions of only a few energy resources existing within its territory. However, recently new environmental and social conditions are arising. These new conditions strongly affect not only concrete measures for solving the energy problem but also the characteristics of the energy problem itself. Nowadays, it seems to be impossible to resolve the energy problem without taking these conditions into consideration. For this reason, a new framework, which enables various social values to be reflected in concrete measures, is urgently needed to resolve the energy problem. This thesis uses the ISO14001 framework to consider a possible solution over the energy problem. In the first part of this thesis, an examination shows that the ISO14001 framework should be generalized beyond the original objective of dealing with environmental problems to accommodate any kind of problems caused by newly arising social values. This generalized framework is defined as a 'Social measure' and expected to enhance the resolution of the problem in socially appropriate manner. In the second part, this paper uses the idea of the Social measure to consider a possible solution to recover public trust on the utilization of nuclear technology, which is regarded as a typical energy problem under the social condition. (author)

  6. Barriers to energy efficiency in shipping: A triangulated approach to investigate the principal agent problem

    International Nuclear Information System (INIS)

    Rehmatulla, Nishatabbas; Smith, Tristan

    2015-01-01

    Energy efficiency is a key policy strategy to meet some of the challenges being faced today and to plan for a sustainable future. Numerous empirical studies in various sectors suggest that there are cost-effective measures that are available but not always implemented due to existence of barriers to energy efficiency. Several cost-effective energy efficient options (technologies for new and existing ships and operations) have also been identified for improving energy efficiency of ships. This paper is one of the first to empirically investigate barriers to energy efficiency in the shipping industry using a novel framework and multidisciplinary methods to gauge implementation of cost-effective measures, perception on barriers and observations of barriers. It draws on findings of a survey conducted of shipping companies, content analysis of shipping contracts and analysis of energy efficiency data. Initial results from these methods suggest the existence of the principal agent problem and other market failures and barriers that have also been suggested in other sectors and industries. Given this finding, policies to improve implementation of energy efficiency in shipping need to be carefully considered to improve their efficacy and avoid unintended consequences. -- Highlights: •We provide the first analysis of the principal agent problem in shipping. •We develop a framework that incorporates methodological triangulation. •Our results show the extent to which this barrier is observed and perceived. •The presence of the barrier has implications on the policy most suited to shipping

  7. Minimization of green house gases emission by using hybrid energy system for telephony base station site application

    International Nuclear Information System (INIS)

    Nema, Pragya; Rangnekar, Saroj; Nema, R.K.

    2010-01-01

    Cellular mobile service is a rapidly expanding and a very competitive business worldwide, including developing countries. This paper proposes that the suitable alternative solution of grid power is the stand-alone PV/wind hybrid energy system with diesel generator as a backup for cellular mobile telephony base station site in isolated areas. It is expected that the newly developed and installed system would provide very good opportunities for mobile telephony base station in near future. In addition, protecting the environment and combating climate change are two of the most pressing challenges facing humankind. As energy prices soar, network operators are increasingly scrutinizing their environmental and social responsibilities. This system will be more cost effective and environmental friendly over the conventional diesel generator. Approximately 70-80% fuel cost over conventional diesel generator and the emission of CO 2 and other harmful gasses in environments were reduced. (author)

  8. Strategies to enhance waste minimization and energy conservation within organizations: a case study from the UK construction sector.

    Science.gov (United States)

    Jones, Jo; Jackson, Janet; Tudor, Terry; Bates, Margaret

    2012-09-01

    Strategies for enhancing environmental management are a key focus for the government in the UK. Using a manufacturing company from the construction sector as a case study, this paper evaluates selected interventionist techniques, including environmental teams, awareness raising and staff training to improve environmental performance. The study employed a range of methods including questionnaire surveys and audits of energy consumption and generation of waste to examine the outcomes of the selected techniques. The results suggest that initially environmental management was not a focus for either the employees or the company. However, as a result of employing the techniques, the company was able to reduce energy consumption, increase recycling rates and achieve costs savings in excess of £132,000.

  9. Mean-field approximation minimizes relative entropy

    International Nuclear Information System (INIS)

    Bilbro, G.L.; Snyder, W.E.; Mann, R.C.

    1991-01-01

    The authors derive the mean-field approximation from the information-theoretic principle of minimum relative entropy instead of by minimizing Peierls's inequality for the Weiss free energy of statistical physics theory. They show that information theory leads to the statistical mechanics procedure. As an example, they consider a problem in binary image restoration. They find that mean-field annealing compares favorably with the stochastic approach

  10. Energy spectrum inverse problem of q-deformed harmonic oscillator and entanglement of composite bosons

    Science.gov (United States)

    Sang, Nguyen Anh; Thu Thuy, Do Thi; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai

    2017-06-01

    Using the simple deformed three-level model (D3L model) proposed in our early work, we study the entanglement problem of composite bosons. Consider three first energy levels are known, we can get two energy separations, and can define the level deformation parameter δ. Using connection between q-deformed harmonic oscillator and Morse-like anharmonic potential, the deform parameter q also can be derived explicitly. Like the Einstein’s theory of special relativity, we introduce the observer e˙ects: out side observer (looking from outside the studying system) and inside observer (looking inside the studying system). Corresponding to those observers, the outside entanglement entropy and inside entanglement entropy will be defined.. Like the case of Foucault pendulum in the problem of Earth rotation, our deformation energy level investigation might be useful in prediction the environment e˙ect outside a confined box.

  11. Status of emission release and associated problems in energy systems analysis

    International Nuclear Information System (INIS)

    Yasukawa, Shigeru; Mankin, Shuichi; Sato, Osamu; Koyama, Shigeo; Ihara, Seijiro.

    1987-11-01

    OECD/IEA/ETSAP (Energy Technology System Analysis Project) has been started in March 1976. Since initiation of the projects, JAERI and ETL (Electrotechnical Laboratory) have been participating in the projects as operating agent of Japan. From last October, the ETSAP has initiated its Annex III programme, which pursues the problems laid down in energy-environment relationships. Main research objective of the programme is to investigate through the systems analysis ''how various environmental constrains would affect the pattern of fuel and technology use and the choice and timing of implementation of abatement technologies''. In this report, we describe the status of emission release in Japan and associated problems in energy system analysis which has been investigated at the start of these research programme mentioned above. (author)

  12. Dark matter and dark energy from the solution of the strong CP problem.

    Science.gov (United States)

    Mainini, Roberto; Bonometto, Silvio A

    2004-09-17

    The Peccei-Quinn (PQ) solution of the strong CP problem requires the existence of axions, which are viable candidates for dark matter. If the Nambu-Goldstone potential of the PQ model is replaced by a potential V(|Phi|) admitting a tracker solution, the scalar field |Phi| can account for dark energy, while the phase of Phi yields axion dark matter. If V is a supergravity (SUGRA) potential, the model essentially depends on a single parameter, the energy scale Lambda. Once we set Lambda approximately equal to 10(10) GeV at the quark-hadron transition, |Phi| naturally passes through values suitable to solve the strong CP problem, later growing to values providing fair amounts of dark matter and dark energy.

  13. Interacting dark energy models as an approach for solving Cosmic Coincidence Problem

    Science.gov (United States)

    Shojaei, Hamed

    Understanding the dark side of the Universe is one of the main tasks of physicists. As there is no thorough understanding of nature of the dark energy, this area is full of new ideas and there may be several discoveries, theoretical or experimental, in the near future. We know that dark energy, though not detected directly, exists and it is not just an exotic idea. The presence of dark energy is required by the observation of the acceleration of the universe. There are several questions regarding dark energy. What is the nature of dark energy? How does it interact with matter, baryonic or dark? Why is the density of dark energy so tiny, i.e. why rhoΛ ≈ 10--120 M4Pl ? And finally why does its density have the same order of magnitude as the density of matter does at the present time? The last question is one form of what is known as the "Cosmic Coincidence Problem" and in this work, I have been investigating one way to resolve this issue. Observations of Type Ia supernovae indicate that we are in an accelerating universe. A matter-dominated universe cannot be accelerating. A good fit is obtained if we assume that energy density parameters are O Λ = 0.7 and Om = 0.3. Here O Λ is related to dark energy, or cosmological constant in ΛCDM model. At the same time data from Wilkinson Microwave Anisotropy Probe (WMAP) satellite and supernova surveys have placed a constraint on w, the equation of state for dark energy, which is actually the ratio of pressure and energy density. Any good theory needs to explain this coincidence problem and yields a value for w between -1.1 and -0.9. I have employed an interesting approach to solve this problem by assuming that there exists an interaction between dark energy and matter in the context of holographic dark energy. This interaction converts dark energy to matter or vice versa without violating the local conservation of energy in the universe. Holographic dark energy by itself indicates that the value of dark energy is related

  14. Problems in the implementation of energy conservation measures. II. Consumer motivation

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, P. H.

    1977-10-15

    During the course of 1975 a national survey of household attitudes to energy use and conservation was undertaken. The study suggested that while the public are generally in favor of energy conservation, they do not practice it. The study highlighted the need to do more than merely raise the level of awareness of the need for energy conservation. The energy intensive nature of our life-style was identified as a critical constraint on the implementations of effective voluntary energy conservation programs. It was suggested that our pattern of energy use is so deeply embedded in our everyday behaviors that it would take more than the presentation of information to produce the necessary changes in behavior. Some of the problems involved in attempting to motivate the consumer to conserve energy using either an extrinsic or instrinsic motivational approach are explored. A general model of the energy system is employed to illustrate that changes in the informational environment must be accompanied by changes in the institutional environment if pro-conservation attitudes are to be converted into conserving behavior. The case of personal transportation is used to indicate the need for a comprehensive package of measures which not only motivate the consumer but also facilitate and reinforce positive behavior if the dual goals of satisfying personal mobility needs and energy conservation are to be satisfied.

  15. Quantifying the Effect of the Principal-Agent Problem on USResidential Energy Use

    Energy Technology Data Exchange (ETDEWEB)

    Murtishaw, Scott; Sathaye, Jayant

    2006-08-12

    The International Energy Agency (IEA) initiated andcoordinated this project to investigate the effects of market failures inthe end-use of energy that may isolate some markets or portions thereoffrom energy price signals in five member countries. Quantifying theamount of energy associated with market failures helps to demonstrate thesignificance of energy efficiency policies beyond price signals. In thisreport we investigate the magnitude of the principal-agent (PA) problemaffecting four of the major energy end uses in the U.S. residentialsector: refrigeration, water heating, space heating, and lighting. Usingdata from the American Housing Survey, we develop a novel approach toclassifying households into a PA matrix for each end use. End use energyvalues differentiated by housing unit type from the Residential EnergyConsumption Survey were used to estimate the final and primary energy useassociated with the PA problem. We find that the 2003 associated siteenergy use from these four end uses totaled over 3,400 trillion Btu,equal to 35 percent of the site energy consumed by the residentialsector.

  16. Report of the Energy Field Institute V on western energy opportunities, problems, and policy issues

    International Nuclear Information System (INIS)

    Hepworth, J.C.; Foss, M.M.

    1982-12-01

    The fifth Energy and Minerals Field Institute program for Washington, D.C. Congressional and Executive Aides was held during August 15-21, 1982. The five-and-one-half day program was conducted through Wyoming, Colorado and Utah and consisted of visits to: an R and D tertiary petroleum production facility; an historic oil field entering secondary production; a surface uranium mine; a petroleum exploration drilling rig; a surface coal mine; an air cooled, coal-fired power plant; an oil shale site; a geothermal-electrical generating facility; and open pit copper mine and associated smelter and refinery; a petroleum refinery and an oil shale semi-works retort. During the field program, participants had opportunities to view communities affected by these activities, such as Wright City and Gillette, Wyoming, Parachute, Colorado and Milford and Cedar City, Utah. Throughout the program, aides met with local, state and industry officials and citizen leaders during bus rides, meals and site visits

  17. Report of the Energy Field Institute V on western energy opportunities, problems, and policy issues

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, J.C.; Foss, M.M.

    1982-12-01

    The fifth Energy and Minerals Field Institute program for Washington, D.C. Congressional and Executive Aides was held during August 15-21, 1982. The five-and-one-half day program was conducted through Wyoming, Colorado and Utah and consisted of visits to: an R and D tertiary petroleum production facility; an historic oil field entering secondary production; a surface uranium mine; a petroleum exploration drilling rig; a surface coal mine; an air cooled, coal-fired power plant; an oil shale site; a geothermal-electrical generating facility; and open pit copper mine and associated smelter and refinery; a petroleum refinery and an oil shale semi-works retort. During the field program, participants had opportunities to view communities affected by these activities, such as Wright City and Gillette, Wyoming, Parachute, Colorado and Milford and Cedar City, Utah. Throughout the program, aides met with local, state and industry officials and citizen leaders during bus rides, meals and site visits.

  18. The Fractional Fourier Transform and Its Application to Energy Localization Problems

    Directory of Open Access Journals (Sweden)

    ter Morsche Hennie G

    2003-01-01

    Full Text Available Applying the fractional Fourier transform (FRFT and the Wigner distribution on a signal in a cascade fashion is equivalent to a rotation of the time and frequency parameters of the Wigner distribution. We presented in ter Morsche and Oonincx, 2002, an integral representation formula that yields affine transformations on the spatial and frequency parameters of the -dimensional Wigner distribution if it is applied on a signal with the Wigner distribution as for the FRFT. In this paper, we show how this representation formula can be used to solve certain energy localization problems in phase space. Examples of such problems are given by means of some classical results. Although the results on localization problems are classical, the application of generalized Fourier transform enlarges the class of problems that can be solved with traditional techniques.

  19. SLC summer 2010 university - The ocean in the climate-energy problem, urban policies. Proceedings

    International Nuclear Information System (INIS)

    2010-09-01

    This document brings together the available presentations given at the summer 2010 university of the SLC (save the climate) organization on the topics of the ocean in the climate-energy problem, and of the urban policies. Nine presentations (slides) are compiled in this document and deal with: 1 - Biofuels made from micro-algae: stakes and challenges (Olivier Bernard, Comore - INRIA /CNRS/UPMC); 2 - The energy of waves (Alain Clement, Ecole Centrale de Nantes); 3 - The sea, new source of renewable energies? (J.J. Herou, EDF CIH); 4 - Oceans acidification: the other CO 2 problem (James Orr, Pierre Simon Laplace Institute - IPSL, Laboratory of climate and environmental Sciences - LSCE, CEA-CNRS-UVSQ); 5 - Oceans and carbon cycle (Laurent Bopp, IPSL/LSCE); 6 - Renewable marine energies (Yann-Herve De Roeck, France Energies Marines); 7 - Energy renovation of buildings (Jean-Claude Terrier, Mesac Europe); 8 - Modevur research project - Modeling of urban development, sketch of a development typology of chinese cities (Clement-Noel Douady); 9 - Urban areas in the fight against climate change: stakes, knowledge and controversies (Francois Menard, PUCA)

  20. Decision support system on line to minimize the NO{sub x} emission. Results from Oerebro Energi; Beslutsstoed on line foer minimering av NO{sub x}. Resultat fraan Oerebro Energi

    Energy Technology Data Exchange (ETDEWEB)

    Bergdahl, B G; Liao, B; Sieurin, J [EuroSim AB, Nykoeping (Sweden)

    1996-05-01

    A Decision Support System to reduce NO{sub x} emission from combustion processes with SNCR system have been developed and tested in full scale at Oerebro Energy. The boiler is a 165 MWh{sub th} CFB and have been fired with a mixture of biomass, peat and coal. The results proves that the EuroSim method works to calculate the derivative included in the Decision Support System. The Decision Support System is a tool for the operator of the plant, he will be informed of the advantage of making an increase or decrease of the ammonia flow or excess air. The trend curves that are presented to the operator includes information about the economic value to make an adjustment of the ammonia flow. The derivative dNO{sub x}/dO{sub 2} shows the advantage of making a reduction in the excess air level, concerning the fee for NO{sub x}. In this case it is important to take into consideration the risk for understoichiometric combustion and corrosion. The results from the full scale test in the Oerebro Plant shows that during some time periods it is economical to shut off the ammonia flow. The derivative dNO{sub x}/dAF is under the profitability limit. This indicate that the cost for the ammonia is higher than the fee for the NO{sub x} emission. If the ammonia flow is added in excess, the emission of ammonia and N{sub 2}O will increase. During other time periods the Decision Support System shows that it is profitable to increase the ammonia flow, the derivative is lower than -0,2. The derivative dNO{sub x}/dO{sub 2} is normally between 10 and 20 (ppm/%). This indicate that it is a great potential to reduce the NO{sub x} fee by decreasing the excess air level in the boiler. 3 refs, 23 figs

  1. Subspace Correction Methods for Total Variation and $\\ell_1$-Minimization

    KAUST Repository

    Fornasier, Massimo

    2009-01-01

    This paper is concerned with the numerical minimization of energy functionals in Hilbert spaces involving convex constraints coinciding with a seminorm for a subspace. The optimization is realized by alternating minimizations of the functional on a sequence of orthogonal subspaces. On each subspace an iterative proximity-map algorithm is implemented via oblique thresholding, which is the main new tool introduced in this work. We provide convergence conditions for the algorithm in order to compute minimizers of the target energy. Analogous results are derived for a parallel variant of the algorithm. Applications are presented in domain decomposition methods for degenerate elliptic PDEs arising in total variation minimization and in accelerated sparse recovery algorithms based on 1-minimization. We include numerical examples which show e.cient solutions to classical problems in signal and image processing. © 2009 Society for Industrial and Applied Physics.

  2. The graph-theoretic minimum energy path problem for ionic conduction

    Directory of Open Access Journals (Sweden)

    Ippei Kishida

    2015-10-01

    Full Text Available A new computational method was developed to analyze the ionic conduction mechanism in crystals through graph theory. The graph was organized into nodes, which represent the crystal structures modeled by ionic site occupation, and edges, which represent structure transitions via ionic jumps. We proposed a minimum energy path problem, which is similar to the shortest path problem. An effective algorithm to solve the problem was established. Since our method does not use randomized algorithm and time parameters, the computational cost to analyze conduction paths and a migration energy is very low. The power of the method was verified by applying it to α-AgI and the ionic conduction mechanism in α-AgI was revealed. The analysis using single point calculations found the minimum energy path for long-distance ionic conduction, which consists of 12 steps of ionic jumps in a unit cell. From the results, the detailed theoretical migration energy was calculated as 0.11 eV by geometry optimization and nudged elastic band method. Our method can refine candidates for possible jumps in crystals and it can be adapted to other computational methods, such as the nudged elastic band method. We expect that our method will be a powerful tool for analyzing ionic conduction mechanisms, even for large complex crystals.

  3. Optimal Control Method for Wind Farm to Support Temporary Primary Frequency Control with Minimized Wind Energy Cost

    DEFF Research Database (Denmark)

    Wang, Haijiao; Chen, Zhe; Jiang, Quanyuan

    2015-01-01

    This study proposes an optimal control method for variable speed wind turbines (VSWTs) based wind farm (WF) to support temporary primary frequency control. This control method consists of two layers: temporary frequency support control (TFSC) of the VSWT, and temporary support power optimal...... dispatch (TSPOD) of the WF. With TFSC, the VSWT could temporarily provide extra power to support system frequency under varying and wide-range wind speed. In the WF control centre, TSPOD optimally dispatches the frequency support power orders to the VSWTs that operate under different wind speeds, minimises...... the wind energy cost of frequency support, and satisfies the support capabilities of the VSWTs. The effectiveness of the whole control method is verified in the IEEE-RTS built in MATLABSimulink, and compared with a published de-loading method....

  4. Living systems do not minimize free energy. Comment on "Answering Schrödinger's question: A free-energy formulation" by Maxwell James Dèsormeau Ramstead et al.

    Science.gov (United States)

    Martyushev, Leonid M.

    2018-03-01

    The paper [1] is certainly very useful and important for understanding living systems (e.g. brain) as adaptive, self-organizing patterns. There is no need to enumerate all advantages of the paper, they are obvious. The purpose of my brief comment is to discuss one issue which, as I see it, was not thought out by the authors well enough. As a consequence, their ideas do not find as wide distribution as they otherwise could have found. This issue is related to the name selected for the principle forming the basis of their approach: free-energy principle (FEP). According to the sec. 2.1 [1]: "It asserts that all biological systems maintain their integrity by actively reducing the disorder or dispersion (i.e., entropy) of their sensory and physiological states by minimizing their variational free energy." Let us note that the authors suggested different names for the principle in their earlier works (an objective function, a function of the ensemble density encoded by the organism's configuration and the sensory data to which it is exposed, etc.), and explicitly and correctly mentioned that the free energy and entropy considered by them had nothing in common with the quantities employed in physics [2,3]. It is also obvious that a purely information-theoretic approach used by the authors with regard to the problems under study allows many other wordings and interpretations. However, in spite of this fact, in their last papers as well as in the present paper, the authors choose specifically FEP. Apparently, it may be explained by the intent to additionally base their approach on the foundation of statistical thermodynamics and therefore to demonstrate the universality of the described method. However, this is exactly what might cause misunderstandings specifically among physicists and consequently in their rejection and ignoring of FEP. The physical analogy employed by the authors has the following fundamental inconsistencies: In physics, free energy is used to describe

  5. Non-local energy deposition: A problem in regional RF hyperthermia

    International Nuclear Information System (INIS)

    Hagmann, M.J.; Levin, R.L.

    1984-01-01

    As the frequency is decreased below 1 GHz, RF applicators can cause deep heating of tissues. However, there is a concomitant problem in that significant energy deposition may occur well beyond the dimensions of the applicator. The BSD Medical Corporation has described to the authors tests with a phantom manequin in which SAR in the neck was significantly greater than that in the abdomen when an Annular Phased Array System (APAS) was positioned for abdominal heating. The authors have obtained numerical solutions for the SAR distribution in a 180-cell inhomogeneous block model of man subjected to r-f irradiation approximating that emanating from various applicators. The solutions agree with the reports of BSD that significant heating in the neck, inner thighs, and back will occur with an abdominally-placed APAS. They suggest that a similar problem will occur with a helical-coil or other applicator for which the electric field is predominantly parallel to the axis of the body. Typically, 70% or more of the total energy will be deposited outside the bounds of an axial applicator when it is placed around the chest or abdomen. The problem is most severe at frequencies for which body parts such as the arm or head may resonate. In such cases, over 90% of the energy may be deposited outside the bounds of applicator. The problem of non-local energy deposition appears to be substantially reduced for non-axial applicators. If the arm extends outward from the side of the body, an axial applicator around it will cause negligible energy deposition in the rest of the body

  6. Extension of portfolio theory application to energy planning problem – The Italian case

    International Nuclear Information System (INIS)

    Arnesano, M.; Carlucci, A.P.; Laforgia, D.

    2012-01-01

    Energy procurement is a necessity which needs a deep study of both the demand and the generation sources, referred to consumers territorial localization. The study presented in this paper extends and consolidate the Shimon Awerbuch’s study on portfolio theory applied to the energy planning, in order to define a broad generating mix which optimizes one or more objective functions defined for a determined contest. For this purpose the computation model was specialized in energy generation problem and extended with the addition of new cost-risk settings, like renewable energy availability, and Black–Litterman model, which extends Markowitz theory. Energy planning was then contextualized to the territory: the introduction of geographic and climatic features allows to plan energy infrastructures on both global and local (regional, provincial, municipal) scale. The result is an efficient decision making tool to drive the investment on typical energy policy assets. In general the tool allows to analyze several scenarios in support of renewable energy sources, environmental sustainability, costs and risks reduction. In this paper the model was applied to the energy generation in Italy, and the analysis was done: on the actual energy mix; assuming the use of nuclear technology; assuming the verisimilar improvement of several technologies in the future. -- Highlights: ► Extension and consolidation of Shimon Awerbuch’s studies. ► Introduction of aspects connected to realization and utilization of power plants. ► Application of the model on a national, provincial, municipal scale. ► Modification of Energy Portfolio based on subjective previsions (Black–Litterman).

  7. Problems and energy choices in Burkina Faso[Energie ; Economie domestique ; Bois de feu ; Produits petroliers ; Legislation fonciere ; Electricite]; Burkina : Problemes et choix energetiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-01-15

    This document is about the evaluation of the energy sector in Burkina Faso. It reports about the main issues of energy: poverty of the households, the lack of fund to finance the sector, desertification...The main resources of energy are firewood, fuel and electricity. The energy needs of Burkina Faso are related to the cooking of food, with liquid fuels intended for the railway transport and fuels used in industry and for the production of electricity. With regard to the transport sector, there is currently no possibility of substitution for the fuel, except the use of ethanol diluted in the gasoline. At the industrial level, agro-industrial, bagasse and the other residues constitute right now the independent source of energy for the production of industrial heat as well as for that of electricity. For the public network of electricity supply, the production rests exclusively on diesel power stations. Regarding the immense needs for its populations in energy, Burkina has only very limited resources. The biomass used for domestic needs cannot continuously ensure the households with the necessary energy supply for food cooking. As for the agro-industrial residues, they cannot reduce the industrial consumption of fuels. There are also hydraulic resources whose conscientious exploitation could contribute to decrease the fuel consumption in terms of electricity. In sum, it would be necessary to improve the regulation as regards firewood supply, to promote the use of improved hearths with wood, to plan the fuel supplies and to assist the SONABEL in the electric production capacities reinforcement of its fuel-based power stations. [French] Ce document traite de l evaluation du secteur de l energie au Burkina. Il fait etat des principaux problemes energetiques : pauvrete des menages, manque de financement dans le secteur, desertification... Les principales ressources energetiques sont le bois de feu, les produits petroliers et l electricite. Les besoins energetiques du

  8. Minimal quantization and confinement

    International Nuclear Information System (INIS)

    Ilieva, N.P.; Kalinowskij, Yu.L.; Nguyen Suan Han; Pervushin, V.N.

    1987-01-01

    A ''minimal'' version of the Hamiltonian quantization based on the explicit solution of the Gauss equation and on the gauge-invariance principle is considered. By the example of the one-particle Green function we show that the requirement for gauge invariance leads to relativistic covariance of the theory and to more proper definition of the Faddeev - Popov integral that does not depend on the gauge choice. The ''minimal'' quantization is applied to consider the gauge-ambiguity problem and a new topological mechanism of confinement

  9. A note on the local cosmological constant and the dark energy coincidence problem

    International Nuclear Information System (INIS)

    Tajmar, M

    2006-01-01

    It has been suggested that the dark energy coincidence problem could be interpreted as a possible link between the cosmological constant and a massive graviton. We show that by using this link and models for the graviton mass, a dark energy density can be obtained that is indeed very close to measurements by WMAP. As a consequence of the models, the cosmological constant was found to depend on the density of matter. A brief outline of the cosmological consequences such as the effect on the black hole solution is given. (comments, replies and notes)

  10. Phantom dark energy with varying-mass dark matter particles: Acceleration and cosmic coincidence problem

    International Nuclear Information System (INIS)

    Leon, Genly; Saridakis, Emmanuel N.

    2010-01-01

    We investigate several varying-mass dark matter particle models in the framework of phantom cosmology. We examine whether there exist late-time cosmological solutions, corresponding to an accelerating universe and possessing dark energy and dark matter densities of the same order. Imposing exponential or power-law potentials and exponential or power-law mass dependence, we conclude that the coincidence problem cannot be solved or even alleviated. Thus, if dark energy is attributed to the phantom paradigm, varying-mass dark matter models cannot fulfill the basic requirement that led to their construction.

  11. Inverse problem for extragalactic transport of ultra-high energy cosmic rays

    International Nuclear Information System (INIS)

    Ptuskin, V.S.; Rogovaya, S.I.; Zirakashvili, V.N.

    2015-01-01

    The energy spectra and composition of ultra-high energy cosmic rays are changing in a course of propagation in the expanding Universe filled with background radiation. We developed a numerical code for solution of inverse problem for cosmic-ray transport equations that allows the determination of average source spectra of different nuclei from the cosmic ray spectra observed at the Earth. Employing this approach, the injection spectra of protons and Iron nuclei in extragalactic sources are found assuming that only these species are accelerated at the source. The data from the Auger experiment and the combined data from the Telescope Array + HiRes experiments are used to illustrate the method

  12. Inverse problem for extragalactic transport of ultra-high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Ptuskin, V.S.; Rogovaya, S.I.; Zirakashvili, V.N., E-mail: vptuskin@izmiran.ru, E-mail: rogovaya@izmiran.ru, E-mail: zirak@izmiran.ru [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Troitsk, Moscow, 142190 (Russian Federation)

    2015-03-01

    The energy spectra and composition of ultra-high energy cosmic rays are changing in a course of propagation in the expanding Universe filled with background radiation. We developed a numerical code for solution of inverse problem for cosmic-ray transport equations that allows the determination of average source spectra of different nuclei from the cosmic ray spectra observed at the Earth. Employing this approach, the injection spectra of protons and Iron nuclei in extragalactic sources are found assuming that only these species are accelerated at the source. The data from the Auger experiment and the combined data from the Telescope Array + HiRes experiments are used to illustrate the method.

  13. Positive solutions with changing sign energy to a nonhomogeneous elliptic problem of fourth order

    Directory of Open Access Journals (Sweden)

    M.Talbi

    2011-01-01

    Full Text Available In this paper, we study the existence for two positive solutions toa nonhomogeneous elliptic equation of fourth order with a parameter lambda such tha 0 < lambda < lambda^. The first solution has a negative energy while the energy of the second one is positive for 0 < lambda < lambda_0 and negative for lambda_0 < lambda < lambda^. The values lambda_0 and lambda^ are given under variational form and we show that every corresponding critical point is solution of the nonlinear elliptic problem (with a suitable multiplicative term.

  14. Heuristic for solving capacitor allocation problems in electric energy radial distribution networks

    Directory of Open Access Journals (Sweden)

    Maria A. Biagio

    2012-04-01

    Full Text Available The goal of the capacitor allocation problem in radial distribution networks is to minimize technical losses with consequential positive impacts on economic and environmental areas. The main objective is to define the size and location of the capacitors while considering load variations in a given horizon. The mathematical formulation for this planning problem is given by an integer nonlinear mathematical programming model that demands great computational effort to be solved. With the goal of solving this problem, this paper proposes a methodology that is composed of heuristics and Tabu Search procedures. The methodology presented explores network system characteristics of the network system reactive loads for identifying regions where procedures of local and intensive searches should be performed. A description of the proposed methodology and an analysis of computational results obtained which are based on several test systems including actual systems are presented. The solutions reached are as good as or better than those indicated by well referenced methodologies. The technique proposed is simple in its use and does not require calibrating an excessive amount of parameters, making it an attractive alternative for companies involved in the planning of radial distribution networks.

  15. Biogas - a contribution to the solution of the problem of energy supply for cheese factories

    Energy Technology Data Exchange (ETDEWEB)

    Favre, R; Bachmann, M

    1985-01-01

    During a two years period the energy consumption of four different cheese factories has been analysed. The whey of the four cheese factories is used for fattening pigs in an attached piggery. All four factories are equipped with biogas-digesters which use the slurry from the piggeries for methane production. The overall energy consumption per ton of milk transformed varies from 600 and 885 MJ. This includes the energy used for heating the fermentation rooms and the cheese maker's flat as well as the energy used for the piggery. 10 to 40% of the total energy is being consumed in form of electricity. Three of the four digesters are working at temperatures of 30 to 35/sup 0/C. One is run in the psychrophilic range, i.e. without heating system. The heated systems use 20 to 40% of the total gas production for heating the digesters. The net gas production of all four systems is of the same order of magnitude. The necessary energy for milk transformation depends on the type of installation used and on the skill of the cheese maker to use his installation economically. Between 30 and 60% of the total energy demand of the four factories has been covered by biogas. Economic problems regarding the use of biogas in cheese factories are discussed.

  16. Multi-Objective Flexible Flow Shop Scheduling Problem Considering Variable Processing Time due to Renewable Energy

    Directory of Open Access Journals (Sweden)

    Xiuli Wu

    2018-03-01

    Full Text Available Renewable energy is an alternative to non-renewable energy to reduce the carbon footprint of manufacturing systems. Finding out how to make an alternative energy-efficient scheduling solution when renewable and non-renewable energy drives production is of great importance. In this paper, a multi-objective flexible flow shop scheduling problem that considers variable processing time due to renewable energy (MFFSP-VPTRE is studied. First, the optimization model of the MFFSP-VPTRE is formulated considering the periodicity of renewable energy and the limitations of energy storage capacity. Then, a hybrid non-dominated sorting genetic algorithm with variable local search (HNSGA-II is proposed to solve the MFFSP-VPTRE. An operation and machine-based encoding method is employed. A low-carbon scheduling algorithm is presented. Besides the crossover and mutation, a variable local search is used to improve the offspring’s Pareto set. The offspring and the parents are combined and those that dominate more are selected to continue evolving. Finally, two groups of experiments are carried out. The results show that the low-carbon scheduling algorithm can effectively reduce the carbon footprint under the premise of makespan optimization and the HNSGA-II outperforms the traditional NSGA-II and can solve the MFFSP-VPTRE effectively and efficiently.

  17. COMPARISONS OF THE FINITE-ELEMENT-WITH-DISCONTIGUOUS-SUPPORT METHOD TO CONTINUOUS-ENERGY MONTE CARLO FOR PIN-CELL PROBLEMS

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Till; M. Hanuš; J. Lou; J. E. Morel; M. L. Adams

    2016-05-01

    The standard multigroup (MG) method for energy discretization of the transport equation can be sensitive to approximations in the weighting spectrum chosen for cross-section averaging. As a result, MG often inaccurately treats important phenomena such as self-shielding variations across a material. From a finite-element viewpoint, MG uses a single fixed basis function (the pre-selected spectrum) within each group, with no mechanism to adapt to local solution behavior. In this work, we introduce the Finite-Element-with-Discontiguous-Support (FEDS) method, whose only approximation with respect to energy is that the angular flux is a linear combination of unknowns multiplied by basis functions. A basis function is non-zero only in the discontiguous set of energy intervals associated with its energy element. Discontiguous energy elements are generalizations of bands and are determined by minimizing a norm of the difference between snapshot spectra and their averages over the energy elements. We begin by presenting the theory of the FEDS method. We then compare to continuous-energy Monte Carlo for one-dimensional slab and two-dimensional pin-cell problem. We find FEDS to be accurate and efficient at producing quantities of interest such as reaction rates and eigenvalues. Results show that FEDS converges at a rate that is approximately first-order in the number of energy elements and that FEDS is less sensitive to weighting spectrum than standard MG.

  18. Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies

    International Nuclear Information System (INIS)

    Beck, F.A.

    1993-01-01

    Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.)

  19. USING A PHENOMENOLOGICAL MODEL TO TEST THE COINCIDENCE PROBLEM OF DARK ENERGY

    International Nuclear Information System (INIS)

    Chen Yun; Zhu Zonghong; Alcaniz, J. S.; Gong Yungui

    2010-01-01

    By assuming a phenomenological form for the ratio of the dark energy and matter densities ρ X ∝ ρ m a ξ , we discuss the cosmic coincidence problem in light of current observational data. Here, ξ is a key parameter to denote the severity of the coincidence problem. In this scenario, ξ = 3 and ξ = 0 correspond to ΛCDM and the self-similar solution without the coincidence problem, respectively. Hence, any solution with a scaling parameter 0 X = 0, where ω X is the equation of state of the dark energy component, whereas the inequality ξ + 3ω X ≠ 0 represents non-standard cosmology. We place observational constraints on the parameters (Ω X,0 , ω X , ξ) of this model, where Ω X,0 is the present value of density parameter of dark energy Ω X , by using the Constitution Set (397 supernovae of type Ia data, hereafter SNeIa), the cosmic microwave background shift parameter from the five-year Wilkinson Microwave Anisotropy Probe and the Sloan Digital Sky Survey baryon acoustic peak. Combining the three samples, we get Ω X,0 = 0.72 ± 0.02, ω X = -0.98 ± 0.07, and ξ = 3.06 ± 0.35 at 68.3% confidence level. The result shows that the ΛCDM model still remains a good fit to the recent observational data, and the coincidence problem indeed exists and is quite severe, in the framework of this simple phenomenological model. We further constrain the model with the transition redshift (deceleration/acceleration). It shows that if the transition from deceleration to acceleration happens at the redshift z > 0.73, within the framework of this model, we can conclude that the interaction between dark energy and dark matter is necessary.

  20. Topical problems connected with the German act on electricity from renewable energy sources (StrEG)

    International Nuclear Information System (INIS)

    Pohlmann, M.

    1998-01-01

    The German act (StrEG) intended to enhance the use of renewable energy sources for electricity generation and to promote the relevant technologies raises some problems in connection with constitutional law that still await judicial review by the German Federal Constitutional Court. In addition, doubts as to the lawfulness of provisions of the act have been emerging in connection with EC laws governing the regime of subsidies and state aid. The article here summarizes the current situation. (orig./CB) [de

  1. Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F. A.

    1993-07-01

    Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.).

  2. Contribution to the actual discussion on the technological problems of nuclear fusion energy exploitation

    International Nuclear Information System (INIS)

    Seifritz, W.

    1982-02-01

    Recently increased criticism has been raised from many sides as to the technical realization of fusion reactors. The basic argument is continually stated whether it is really sensible to invest the enormous sums of money in order to produce a commercial fusion reactor. In this article, the principle problems facing nuclear fusion are presented and it is outlined which priorities should be set for the realization of fusion energy in the near future. (Auth.)

  3. Computational issues in complex water-energy optimization problems: Time scales, parameterizations, objectives and algorithms

    Science.gov (United States)

    Efstratiadis, Andreas; Tsoukalas, Ioannis; Kossieris, Panayiotis; Karavokiros, George; Christofides, Antonis; Siskos, Alexandros; Mamassis, Nikos; Koutsoyiannis, Demetris

    2015-04-01

    Modelling of large-scale hybrid renewable energy systems (HRES) is a challenging task, for which several open computational issues exist. HRES comprise typical components of hydrosystems (reservoirs, boreholes, conveyance networks, hydropower stations, pumps, water demand nodes, etc.), which are dynamically linked with renewables (e.g., wind turbines, solar parks) and energy demand nodes. In such systems, apart from the well-known shortcomings of water resources modelling (nonlinear dynamics, unknown future inflows, large number of variables and constraints, conflicting criteria, etc.), additional complexities and uncertainties arise due to the introduction of energy components and associated fluxes. A major difficulty is the need for coupling two different temporal scales, given that in hydrosystem modeling, monthly simulation steps are typically adopted, yet for a faithful representation of the energy balance (i.e. energy production vs. demand) a much finer resolution (e.g. hourly) is required. Another drawback is the increase of control variables, constraints and objectives, due to the simultaneous modelling of the two parallel fluxes (i.e. water and energy) and their interactions. Finally, since the driving hydrometeorological processes of the integrated system are inherently uncertain, it is often essential to use synthetically generated input time series of large length, in order to assess the system performance in terms of reliability and risk, with satisfactory accuracy. To address these issues, we propose an effective and efficient modeling framework, key objectives of which are: (a) the substantial reduction of control variables, through parsimonious yet consistent parameterizations; (b) the substantial decrease of computational burden of simulation, by linearizing the combined water and energy allocation problem of each individual time step, and solve each local sub-problem through very fast linear network programming algorithms, and (c) the substantial

  4. Trends in the development of industrially assimilated renewable energy: the problem of resource restrictions

    Science.gov (United States)

    Nizhegorodtsev, R. M.; Ratner, S. V.

    2016-03-01

    An analysis of the dynamics of the development of wind and solar energy and potential resource restrictions of the dissemination of these technologies of energy generation associated with intensive use of rare earth metals and some other mineral resources are presented. The technological prospects of various directions of decisions of the problem of resource restrictions, including escalating of volumes of extraction and production of necessary mineral components, creating substitutes of scarce materials and development of recycling are considered. The bottlenecks of each of the above-mentioned decisions were founded. Conclusions are drawn on the prospects of development of the Russian high-tech sectors of the economy in the context of the most probable decisions of the problem of resource restrictions of wind and solar energy. An increase in extraction and production of rare earth metals and some other materials, stimulation of domestic research and development (R&D) to create the permanent magnets of new types and new technologies of wind-powered generation, and reduction of the resource-demand and technology development of recycling the components of power equipment are the most prospective directions of progress. The innovations in these directions will be in demand on the European, Chinese, and North American markets in the near decades due to the end of the life cycle (approximately 30 years) of wind and solar energy projects started at the turn of the 20th-21st centuries (the beginning of exponential growth in plants). The private investors and relevant regional and federal government agencies can use the qualitative characteristics of the dynamics of industrially assimilated renewable energy to choose the most promising investment orientations in energy projects and selection of the most economically sound development methods of energy and related industries.

  5. Climate is the real challenge, not shortage. New problems arising for global energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Pestel, E.

    1988-11-01

    The author of the article is Professor E. Pestel who, as an executive member of the Club of Rome, belongs to the group of experts who first gave impetus to start thinking about the global problems of mankind. In his publications on the problems linked with CO/sub 2/ emission he explains the unavoidable dilemma created by the growing world population and the growing demand for energy on the one hand, and the resulting hazards to the global climate on the other. His analyses take away the soft cushion of hopeful make-believe still widespread in the Western World, and in his capacity as an expert and realist he decidedly calls for decisions and measures to tackle the problem.

  6. Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

    International Nuclear Information System (INIS)

    Downar, T.

    2009-01-01

    The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multidimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. Specifically, the methods here utilize the existing continuous energy SCALE5 module, CENTRM, and the multi-dimensional discrete ordinates solver, NEWT to develop a new code, CENTRM( ) NEWT. The work here addresses specific theoretical limitations in existing CENTRM resonance treatment, as well as investigates advanced numerical and parallel computing algorithms for CENTRM and NEWT in order to reduce the computational burden. The result of the work here will be a new computer code capable of performing problem dependent self-shielding analysis for both existing and proposed GENIV fuel designs. The objective of the work was to have an immediate impact on the safety analysis of existing reactors through improvements in the calculation of fuel temperature effects, as well as on the analysis of more sophisticated GENIV/NGNP systems through improvements in the depletion/transmutation of actinides for Advanced Fuel Cycle Initiatives.

  7. BES-HEP Connections: Common Problems in Condensed Matter and High Energy Physics, Round Table Discussion

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, Eduardo [Univ. of Illinois, Urbana, IL (United States); Maldacena, Juan [Inst. for Advanced Study, Princeton, NJ (United States); Chatterjee, Lali [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of High Energy Physics; Davenport, James W [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of Basic Energy Sciences

    2015-02-02

    On February 2, 2015 the Offices of High Energy Physics (HEP) and Basic Energy Sciences (BES) convened a Round Table discussion among a group of physicists on ‘Common Problems in Condensed Matter and High Energy Physics’. This was motivated by the realization that both fields deal with quantum many body problems, share many of the same challenges, use quantum field theoretical approaches and have productively interacted in the past. The meeting brought together physicists with intersecting interests to explore recent developments and identify possible areas of collaboration.... Several topics were identified as offering great opportunity for discovery and advancement in both condensed matter physics and particle physics research. These included topological phases of matter, the use of entanglement as a tool to study nontrivial quantum systems in condensed matter and gravity, the gauge-gravity duality, non-Fermi liquids, the interplay of transport and anomalies, and strongly interacting disordered systems. Many of the condensed matter problems are realizable in laboratory experiments, where new methods beyond the usual quasi-particle approximation are needed to explain the observed exotic and anomalous results. Tools and techniques such as lattice gauge theories, numerical simulations of many-body systems, and tensor networks are seen as valuable to both communities and will likely benefit from collaborative development.

  8. Energy drink use, problem drinking and drinking motives in a diverse sample of Alaskan college students

    Directory of Open Access Journals (Sweden)

    Monica C. Skewes

    2013-08-01

    Full Text Available Background. Recent research has identified the use of caffeinated energy drinks as a common, potentially risky behaviour among college students that is linked to alcohol misuse and consequences. Research also suggests that energy drink consumption is related to other risky behaviours such as tobacco use, marijuana use and risky sexual activity. Objective. This research sought to examine the associations between frequency of energy drink consumption and problematic alcohol use, alcohol-related consequences, symptoms of alcohol dependence and drinking motives in an ethnically diverse sample of college students in Alaska. We also sought to examine whether ethnic group moderated these associations in the present sample of White, Alaska Native/American Indian and other ethnic minority college students. Design. A paper-and-pencil self-report questionnaire was completed by a sample of 298 college students. Analysis of covariance (ANCOVA was used to examine the effects of energy drink use, ethnic group and energy drink by ethnic group interactions on alcohol outcomes after controlling for variance attributed to gender, age and frequency of binge drinking. Results. Greater energy drink consumption was significantly associated with greater hazardous drinking, alcohol consequences, alcohol dependence symptoms, drinking for enhancement motives and drinking to cope. There were no main effects of ethnic group, and there were no significant energy drink by ethnic group interactions. Conclusion. These findings replicate those of other studies examining the associations between energy drink use and alcohol problems, but contrary to previous research we did not find ethnic minority status to be protective. It is possible that energy drink consumption may serve as a marker for other health risk behaviours among students of various ethnic groups.

  9. δ-hydride habit plane determination in α-zirconium by strain energy minimization technique at 25 and 300 deg C

    International Nuclear Information System (INIS)

    Singh, R.N.; Stahle, P.; Sairam, K.; Ristmana, Matti; Banerjee, S.

    2008-01-01

    The objective of the present investigation is to predict the habit plane of δ-hydride precipitating in α-Zr at 25 and 300 deg C using strain energy minimization technique. The δ-hydride phase is modeled to undergo isotropic elastic and plastic deformation. The α-Zr phase was modeled to undergo transverse isotropic elastic deformation. Both isotropic plastic and transverse isotropic plastic deformations of α-Zr were considered. Further, both perfect and linear work-hardening plastic behaviors of zirconium and its hydride were considered. Accommodation strain energy of δ-hydrides forming in α-Zr crystal was computed using initial strain method as a function of hydride nuclei orientation. Hydride was modeled as disk with circular edge. The simulation was carried out using materials properties reported at 25 and 300 deg C. Contrary to several habit planes reported in literature for δ-hydrides precipitating in α-Zr crystal the total accommodation energy minima suggests only basal plane i.e. (0001) as the habit plane. (author)

  10. Risk management of energy system for identifying optimal power mix with financial-cost minimization and environmental-impact mitigation under uncertainty

    International Nuclear Information System (INIS)

    Nie, S.; Li, Y.P.; Liu, J.; Huang, Charley Z.

    2017-01-01

    An interval-stochastic risk management (ISRM) method is launched to control the variability of the recourse cost as well as to capture the notion of risk in stochastic programming. The ISRM method can examine various policy scenarios that are associated with economic penalties under uncertainties presented as probability distributions and interval values. An ISRM model is then formulated to identify the optimal power mix for the Beijing's energy system. Tradeoffs between risk and cost are evaluated, indicating any change in targeted cost and risk level would yield different expected costs. Results reveal that the inherent uncertainty of system components and risk attitude of decision makers have significant effects on the city's energy-supply and electricity-generation schemes as well as system cost and probabilistic penalty. Results also disclose that import electricity as a recourse action to compensate the local shortage would be enforced. The import electricity would increase with a reduced risk level; under every risk level, more electricity would be imported with an increased demand. The findings can facilitate the local authority in identifying desired strategies for the city's energy planning and management in association with financial-cost minimization and environmental-impact mitigation. - Highlights: • Interval-stochastic risk management method is launched to identify optimal power mix. • It is advantageous in capturing the notion of risk in stochastic programming. • Results reveal that risk attitudes can affect optimal power mix and financial cost. • Developing renewable energies would enhance the sustainability of energy management. • Import electricity as an action to compensate the local shortage would be enforced.

  11. Cosmological constant problem and renormalized vacuum energy density in curved background

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori [Theory Center, IPNS, KEK, Tsukuba 305-0801, Ibaraki (Japan); Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp [The Graduate University of Advanced Studies (Sokendai), Tsukuba 305-0801, Ibaraki (Japan)

    2017-06-01

    The current vacuum energy density observed as dark energy ρ{sub dark}≅ 2.5×10{sup −47} GeV{sup 4} is unacceptably small compared with any other scales. Therefore, we encounter serious fine-tuning problem and theoretical difficulty to derive the dark energy. However, the theoretically attractive scenario has been proposed and discussed in literature: in terms of the renormalization-group (RG) running of the cosmological constant, the vacuum energy density can be expressed as ρ{sub vacuum}≅ m {sup 2} H {sup 2} where m is the mass of the scalar field and rather dynamical in curved spacetime. However, there has been no rigorous proof to derive this expression and there are some criticisms about the physical interpretation of the RG running cosmological constant. In the present paper, we revisit the RG running effects of the cosmological constant and investigate the renormalized vacuum energy density in curved spacetime. We demonstrate that the vacuum energy density described by ρ{sub vacuum}≅ m {sup 2} H {sup 2} appears as quantum effects of the curved background rather than the running effects of cosmological constant. Comparing to cosmological observational data, we obtain an upper bound on the mass of the scalar fields to be smaller than the Planck mass, m ∼< M {sub Pl}.

  12. Proceedings of the meeting on few-body problems in high and medium energy physics

    International Nuclear Information System (INIS)

    Yukawa, T.

    1985-12-01

    The study meeting on few-body problems in high and medium energy physics was held from October 3 to 5, 1985, at National Laboratory for High Energy Physics. Two meetings were held already concerning few body physics, but most of the participants were theorists. In this meeting, high priority was put on the attendance of experimental physicists. As a bridge between particle and nuclear physics, the few body physics in an intermediate energy region has become important recently. The topics in this meeting were meson spectroscopy, baryonium, kaon physics, muonic fusion, dibaryon, φNN system, quarks and skyrmions, NN correlation, and symmetry test in few-body system. The gists of the papers presented are collected in this book. (Kako, I.)

  13. Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times.

    Science.gov (United States)

    Yang, Xin; Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan

    2016-01-01

    This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems.

  14. Improved method for solving the neutron transport problem by discretization of space and energy variables

    International Nuclear Information System (INIS)

    Bosevski, T.

    1971-01-01

    The polynomial interpolation of neutron flux between the chosen space and energy variables enabled transformation of the integral transport equation into a system of linear equations with constant coefficients. Solutions of this system are the needed values of flux for chosen values of space and energy variables. The proposed improved method for solving the neutron transport problem including the mathematical formalism is simple and efficient since the number of needed input data is decreased both in treating the spatial and energy variables. Mathematical method based on this approach gives more stable solutions with significantly decreased probability of numerical errors. Computer code based on the proposed method was used for calculations of one heavy water and one light water reactor cell, and the results were compared to results of other very precise calculations. The proposed method was better concerning convergence rate, decreased computing time and needed computer memory. Discretization of variables enabled direct comparison of theoretical and experimental results

  15. Minimizing risks

    International Nuclear Information System (INIS)

    Thompson, P.

    1991-01-01

    This article discusses ways to reduce the economic risk of independent energy projects. The topics of the article include risk categorization into areas of property, boiler and machinery, business income, and general liability, choosing a broker, choosing an insurer, and helping an insurer develop the best portfolio for the project. The author feels that attention to the guidelines for the right insurance coverage is as vital to a plant's economic stability as attention to the details of the blueprints is to its physical stability

  16. Energy resources of the Denver and Cheyenne Basins, Colorado - resource characteristics, development potential, and environmental problems. Environmental Geology 12

    International Nuclear Information System (INIS)

    Kirkham, R.M.; Ladwig, L.R.

    1980-01-01

    The geological characteristics, development potential, and environmental problems related to the exploration for and development of energy resources in the Denver and Cheyenne Basins of Colorado were investigated. Coal, lignite, uranium, oil and natural gas were evaluated. Emphasis is placed on environmental problems that may develop from the exploration for an extraction of these energy resources

  17. The principal–agent problem and transport energy use: case study of company lease cars in the Netherlands

    NARCIS (Netherlands)

    Graus, W.; Worrell, E.

    2008-01-01

    Barriers exist for improvement of energy efficiency, of which the principal–agent problem is considered an important one. The principal–agent problem is a potential barrier for energy policies based on economic instruments, as the decision maker may be partially insulated from the price signal given

  18. A perturbation technique for shield weight minimization

    International Nuclear Information System (INIS)

    Watkins, E.F.; Greenspan, E.

    1993-01-01

    The radiation shield optimization code SWAN (Ref. 1) was originally developed for minimizing the thickness of a shield that will meet a given dose (or another) constraint or for extremizing a performance parameter of interest (e.g., maximizing energy multiplication or minimizing dose) while maintaining the shield volume constraint. The SWAN optimization process proved to be highly effective (e.g., see Refs. 2, 3, and 4). The purpose of this work is to investigate the applicability of the SWAN methodology to problems in which the weight rather than the volume is the relevant shield characteristic. Such problems are encountered in shield design for space nuclear power systems. The investigation is carried out using SWAN with the coupled neutron-photon cross-section library FLUNG (Ref. 5)

  19. A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems

    NARCIS (Netherlands)

    Hamdy, M.; Nguyen, A.T. (Anh Tuan); Hensen, J.L.M.

    2016-01-01

    Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently. Many multi-objective optimization algorithms have been developed; however few of them are tested in solving building design

  20. The problems of simulating electrical power systems within the energy economy

    International Nuclear Information System (INIS)

    Tuma, I.

    1984-01-01

    The article examines the problems of developing an electrical power system within the framework of the energy economy as a whole and an energy complex. Whereas in the past it was possible to forecast the development of such a system relatively accurately for ten years or more, the situation is now much more difficult. For the purposes of making forecasts, formalized mathematical methods have been developed and used systematically for many years both in research and in forecasting. For electricity demand, these include balance methods, methods of direct and indirect extrapolation, methods of simple and multiple correlation, methods of international comparison, multicomponent combined models of consumption and so on. The main problem in using them lies in the extremely limited validity of statistically compared interrelationships between a limited number of values in the context of explicitly step-wise changes in the domestic and world economy, in the power production of a country and so forth, which means that these methods do not produce good results. The report analyses the importance of the interrelationship between forecasts of the direction of electrical power development and the power complex as a whole and stresses that the main problem of forecasting the development of electrical power and its individual elements lies in selecting the right approach and deciding how to organize the use of methods in a situation where complex economic conditions operate simultaneously. The article also examines one of the possible ways of improving methods for forecasting energy consumption for the period considered. This consists in using data obtained from the analysis and consideration of factors affecting energy consumption in individual major areas of the economy