WorldWideScience

Sample records for energy metabolism validating

  1. Validated Predictions of Metabolic Energy Consumption for Submaximal Effort Movement

    OpenAIRE

    Tsianos, George A.; MacFadden, Lisa N.

    2016-01-01

    Author Summary Muscles consume metabolic energy to generate movement. Performing a movement over a long period of time or at a high intensity strains the respiratory and cardiovascular systems that need to replenish the energy reserves in muscle. Furthermore, consuming and replenishing metabolic energy involves biochemical reactions with byproducts that cause muscle fatigue. These biochemical reactions also produce heat that increases body temperature, potentially causing central fatigue. A m...

  2. Astrocytes and energy metabolism.

    Science.gov (United States)

    Prebil, Mateja; Jensen, Jørgen; Zorec, Robert; Kreft, Marko

    2011-05-01

    Astrocytes are glial cells, which play a significant role in a number of processes, including the brain energy metabolism. Their anatomical position between blood vessels and neurons make them an interface for effective glucose uptake from blood. After entering astrocytes, glucose can be involved in different metabolic pathways, e.g. in glycogen production. Glycogen in the brain is localized mainly in astrocytes and is an important energy source in hypoxic conditions and normal brain functioning. The portion of glucose metabolized into glycogen molecules in astrocytes is as high as 40%. It is thought that the release of gliotransmitters (such as glutamate, neuroactive peptides and ATP) into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. On the other hand, neurotransmitter action on astrocytes has a significant role in brain energy metabolism. Therefore, understanding the astrocytes energy metabolism may help understanding neuron-astrocyte interactions.

  3. Epilepsy and astrocyte energy metabolism.

    Science.gov (United States)

    Boison, Detlev; Steinhäuser, Christian

    2018-06-01

    Epilepsy is a complex neurological syndrome characterized by neuronal hyperexcitability and sudden, synchronized electrical discharges that can manifest as seizures. It is now increasingly recognized that impaired astrocyte function and energy homeostasis play key roles in the pathogenesis of epilepsy. Excessive neuronal discharges can only happen, if adequate energy sources are made available to neurons. Conversely, energy depletion during seizures is an endogenous mechanism of seizure termination. Astrocytes control neuronal energy homeostasis through neurometabolic coupling. In this review, we will discuss how astrocyte dysfunction in epilepsy leads to distortion of key metabolic and biochemical mechanisms. Dysfunctional glutamate metabolism in astrocytes can directly contribute to neuronal hyperexcitability. Closure of astrocyte intercellular gap junction coupling as observed early during epileptogenesis limits activity-dependent trafficking of energy metabolites, but also impairs clearance of the extracellular space from accumulation of K + and glutamate. Dysfunctional astrocytes also increase the metabolism of adenosine, a metabolic product of ATP degradation that broadly inhibits energy-consuming processes as an evolutionary adaptation to conserve energy. Due to the critical role of astroglial energy homeostasis in the control of neuronal excitability, metabolic therapeutic approaches that prevent the utilization of glucose might represent a potent antiepileptic strategy. In particular, high fat low carbohydrate "ketogenic diets" as well as inhibitors of glycolysis and lactate metabolism are of growing interest for the therapy of epilepsy. © 2017 Wiley Periodicals, Inc.

  4. Energy Metabolism Impairment in Migraine.

    Science.gov (United States)

    Cevoli, Sabina; Favoni, Valentina; Cortelli, Pietro

    2018-06-22

    Migraine is a common disabling neurological disorder which is characterised by recurring headache associated with a variety of sensory and autonomic symptoms. The pathophysiology of migraine remains not entirely understood, although many mechanisms involving the central and peripheral nervous system are now becoming clear. In particular, it is widely accepted that migraine is associated with energy metabolic impairment of the brain. The purpose of this review is to present an update overview of the energy metabolism involvement in the migraine pathophysiology. Several biochemical, morphological and magnetic resonance spectroscopy studies have confirmed the presence of energy production deficiency together with an increment of energy consumption in migraine patients. An increment of energy demand over a certain threshold create metabolic and biochemical preconditions for the onset of the migraine attack. The defect of oxidative energy metabolism in migraine is generalized. It remains to be determined if the mitochondrial deficit in migraine is primary or secondary. Riboflavin and Co-Enzyme Q10, both physiologically implicated in mitochondrial respiratory chain functioning, are effective in migraine prophylaxis, supporting the hypothesis that improving brain energy metabolism may reduce the susceptibility to migraine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. The energy metabolism of megacities

    International Nuclear Information System (INIS)

    Facchini, Angelo; Kennedy, Chris; Stewart, Iain; Mele, Renata

    2017-01-01

    Highlights: • Energy metabolism leads to a better management of energy use in megacities. • Insights on strategies to improve energy efficiency and reduce resource consumption. • We find a regionalization of energy flows and sectoral energy use. • Scaling law for energy Vs density suggests strategies for compact cities planning. • Supports development of models to reduce GHG emissions and increase resilience. - Abstract: Due to their sheer size and complexity, megacities are extreme examples in which both negative and positive aspects of urbanization co-exist and are amplified. Especially in emerging countries they are becoming the dominant paradigm of the future urbanization, representing a sustainability challenge both from the point of view of energy and resource consumption, and from the point of view of climate change adaptation and mitigation. In this paper we compare the energy metabolism in 27 of the world’s megacities including details of mobile and stationary energy consumption patterns, fuels used, as well as end-use patterns and electricity generation mix. Our results show that per capita total energy consumption scales with urban population density according to a power law characterized by the universal −3/4 scaling, pointing out that compact cities are more energy efficient with respect to dispersed cities. By comparing energy sources and sectoral end use, also focusing on electricity use and generation source, we found a significant regionalization of energy metabolism, and we discuss the implication for resilience, infrastructure planning, GHG emissions, and policies for infrastructure decarbonization. The comparison of the energy metabolism can lead to a more appropriate management of energy use patterns and electricity generation mix in megacities, giving insights on strategies to improve urban energy efficiency and reducing environmental pressure of megacities.

  6. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects.

    Science.gov (United States)

    Martin, Francois-Pierre J; Rezzi, Serge; Peré-Trepat, Emma; Kamlage, Beate; Collino, Sebastiano; Leibold, Edgar; Kastler, Jürgen; Rein, Dietrich; Fay, Laurent B; Kochhar, Sunil

    2009-12-01

    Dietary preferences influence basal human metabolism and gut microbiome activity that in turn may have long-term health consequences. The present study reports the metabolic responses of free living subjects to a daily consumption of 40 g of dark chocolate for up to 14 days. A clinical trial was performed on a population of 30 human subjects, who were classified in low and high anxiety traits using validated psychological questionnaires. Biological fluids (urine and blood plasma) were collected during 3 test days at the beginning, midtime and at the end of a 2 week study. NMR and MS-based metabonomics were employed to study global changes in metabolism due to the chocolate consumption. Human subjects with higher anxiety trait showed a distinct metabolic profile indicative of a different energy homeostasis (lactate, citrate, succinate, trans-aconitate, urea, proline), hormonal metabolism (adrenaline, DOPA, 3-methoxy-tyrosine) and gut microbial activity (methylamines, p-cresol sulfate, hippurate). Dark chocolate reduced the urinary excretion of the stress hormone cortisol and catecholamines and partially normalized stress-related differences in energy metabolism (glycine, citrate, trans-aconitate, proline, beta-alanine) and gut microbial activities (hippurate and p-cresol sulfate). The study provides strong evidence that a daily consumption of 40 g of dark chocolate during a period of 2 weeks is sufficient to modify the metabolism of free living and healthy human subjects, as per variation of both host and gut microbial metabolism.

  7. Energy metabolism in the liver.

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases. © 2014 American Physiological Society.

  8. Validation of the doubly-labeled water (H3H18O) method for measuring water flux and energy metabolism in tenebrionid beetles

    International Nuclear Information System (INIS)

    Cooper, P.D.

    1981-01-01

    Doubly-labeled water (H 3 H 18 O) has been used to determine water flux and energy metabolism in a variety of vertebrates. This study examines the applicability of this technique to arthropods. The theory of the technique depends upon the assumption that doubly-labeled water introduced into the animal's body water equilibrates with water and carbon dioxide by the action of carbonic anhydrase. Tritium ( 3 H) is lost from the animal only with water while oxygen-18 is lost with both water and carbon dioxide. The difference bwtween the rates of loss of the two isotopes is proportional to CO 2 loss rate. Validation of the use of tritiated water for measuring water flux was accomplished by comparing gravimetric measurements of water gain with flux rates determined by loss of tritiated water. At room humidity, an overestimate for influx calculated from labeled water calculations was found, averaging 12 mg H 2 O (g.d) -1 . Comparison of CO 2 loss rate determined isotopically with rates of CO 2 loss determined by standard metabolic rates also yielded overestimates for the isotopic technique, overestimates ranging between 20 and 30%. The relevance of this for studies using labeled water for studying water fluxes and free metabolism of free-ranging arthropods is discussed

  9. Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR).

    Science.gov (United States)

    Meyer, Carola W; Reitmeir, Peter; Tschöp, Matthias H

    2015-09-01

    Current comprehensive mouse metabolic phenotyping involves studying energy balance in cohorts of mice via indirect calorimetry, which determines heat release from changes in respiratory air composition. Here, we describe the measurement of daily energy expenditure (DEE) and basal metabolic rate (BMR) in mice. These well-defined metabolic descriptors serve as meaningful first-line read-outs for metabolic phenotyping and should be reported when exploring energy expenditure in mice. For further guidance, the issue of appropriate sample sizes and the frequency of sampling of metabolic measurements is also discussed. Copyright © 2015 John Wiley & Sons, Inc.

  10. Energy Metabolism in the Liver

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and cholesterol esters in hepatocytes, and these complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as VLDL particles. In the fasted state, the liver secretes glucose through both breakdown of glycogen (glycogenolysis) and de novo glucose synthesis (gluconeogenesis). During pronged fasting, hepatic gluconeogenesis is the primary source of endogenous glucose production. Fasting also promotes lipolysis in adipose tissue to release nonesterified fatty acids which are converted into ketone bodies in the liver though mitochondrial β oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver metabolic processes are tightly regulated by neuronal and hormonal systems. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis, but suppresses gluconeogenesis; glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze the rate-limiting steps of liver metabolic processes, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases (NAFLD). PMID:24692138

  11. Influence of anaesthesia on energy metabolism in surgery

    Directory of Open Access Journals (Sweden)

    Prigorodov М.V.

    2013-03-01

    Full Text Available The purpose of the article is to establish adequacy of protection of energy metabolism in a patient under anaes-thesiology in cholecystectomy from mini-access. Material et methods: 122 patients subjected to cholecystectomy from mini access have been surveyed. Among them 92 patients have got intravenous general anaesthesia with AVL, 30 patients have got prolonged epidural anaesthesia on spontaneous breath with insufflations of oxygen through an obverse mask with sedatations. Monitoring of energy-plastic metabolism has been carried out in all patients. Results: Groups of patients have been compared by anthropometrical data, traumatic interventions. In both groups of patients loss of energy to traumatic to an operation stage has insignificantly increased, but after the anaesthesia termination in the group of patients with intravenous anaesthesia loss of energy continued to rise, and in the group of patients with prolonged epidural blockade it has returned to the initial level. After the anaesthesia termination the energy metabolism became essential higher in the first group of patients in comparison with the second one (p <0,01. The energy-plastic metabolism increased in the first group of patients and decreased in the second. PEA during cholecystectomy from mini access provided a stable condition of energy and energy-plastic metabolism. The conclusion: The inspection of 122 patients subjected to cholecystectomy from mini access has established the following data: PEA on spontaneous breath with insufflations of oxygen through an obverse mask in comparison with intravenous general anaesthesia and AVL allows keeping on an optimum level of energy and energy-plastic metabolism.

  12. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves; Magistretti, Pierre J.; Barros, L. Felipe

    2016-01-01

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  13. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves

    2016-03-31

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  14. Construct validity of a continuous metabolic syndrome score in children

    Directory of Open Access Journals (Sweden)

    Eisenmann Joey C

    2010-01-01

    Full Text Available Abstract Objective The primary purpose of this study was to examine the construct validity of a continuous metabolic syndrome score (cMetS in children. The secondary purpose was to identify a cutpoint value(s for an adverse cMetS based on receiver operating characteristic (ROC curve analysis. Methods 378 children aged 7 to 9 years were assessed for the metabolic syndrome which was determined by age-modified cutpoints. High-density-lipoprotein cholesterol, triglycerides, the homeostasis assessment model of insulin resistance, mean arterial pressure, and waist circumference were used to create a cMetS for each subject. Results About half of the subjects did not possess any risk factors while about 5% possessed the metabolic syndrome. There was a graded relationship between the cMetS and the number of adverse risk factors. The cMetS was lowest in the group with no adverse risk factors (-1.59 ± 1.76 and highest in those possessing the metabolic syndrome (≥3 risk factors (7.05 ± 2.73. The cutoff level yielding the maximal sensitivity and specificity for predicting the presence of the metabolic syndrome was a cMetS of 3.72 (sensitivity = 100%, specificity = 93.9%, and the area of the curve = 0.978 (0.957-0.990, 95% confidence intervals. Conclusion The results demonstrate the construct validity for the cMetS in children. Since there are several drawbacks to identifying a single cut-point value for the cMetS based on this sample, we urge researchers to use the approach herein to validate and create a cMetS that is specific to their study population.

  15. Estimating activity energy expenditure: how valid are physical activity questionnaires?

    Science.gov (United States)

    Neilson, Heather K; Robson, Paula J; Friedenreich, Christine M; Csizmadi, Ilona

    2008-02-01

    Activity energy expenditure (AEE) is the modifiable component of total energy expenditure (TEE) derived from all activities, both volitional and nonvolitional. Because AEE may affect health, there is interest in its estimation in free-living people. Physical activity questionnaires (PAQs) could be a feasible approach to AEE estimation in large populations, but it is unclear whether or not any PAQ is valid for this purpose. Our aim was to explore the validity of existing PAQs for estimating usual AEE in adults, using doubly labeled water (DLW) as a criterion measure. We reviewed 20 publications that described PAQ-to-DLW comparisons, summarized study design factors, and appraised criterion validity using mean differences (AEE(PAQ) - AEE(DLW), or TEE(PAQ) - TEE(DLW)), 95% limits of agreement, and correlation coefficients (AEE(PAQ) versus AEE(DLW) or TEE(PAQ) versus TEE(DLW)). Only 2 of 23 PAQs assessed most types of activity over the past year and indicated acceptable criterion validity, with mean differences (TEE(PAQ) - TEE(DLW)) of 10% and 2% and correlation coefficients of 0.62 and 0.63, respectively. At the group level, neither overreporting nor underreporting was more prevalent across studies. We speculate that, aside from reporting error, discrepancies between PAQ and DLW estimates may be partly attributable to 1) PAQs not including key activities related to AEE, 2) PAQs and DLW ascertaining different time periods, or 3) inaccurate assignment of metabolic equivalents to self-reported activities. Small sample sizes, use of correlation coefficients, and limited information on individual validity were problematic. Future research should address these issues to clarify the true validity of PAQs for estimating AEE.

  16. Microalgal bioengineering for sustainable energy development: Recent transgenesis and metabolic engineering strategies.

    Science.gov (United States)

    Banerjee, Chiranjib; Singh, Puneet Kumar; Shukla, Pratyoosh

    2016-03-01

    Exploring the efficiency of algae to produce remarkable products can be directly benefitted by studying its mechanism at systems level. Recent advents in biotechnology like flux balance analysis (FBA), genomics and in silico proteomics minimize the wet lab exertion. It is understood that FBA predicts the metabolic products, metabolic pathways and alternative pathway to maximize the desired product, and these are key components for microalgae bio-engineering. This review encompasses recent transgenesis techniques and metabolic engineering strategies applied to different microalgae for improving different traits. Further it also throws light on RNAi and riboswitch engineering based methods which may be advantageous for high throughput microalgal research. A valid and optimally designed microalga can be developed where every engineering strategies meet each other successfully and will definitely fulfill the market needs. It is also to be noted that Omics (viz. genetic and metabolic manipulation with bioinformatics) should be integrated to develop a strain which could prove to be a futuristic solution for sustainable development for energy. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cellular energy metabolism in T-lymphocytes.

    Science.gov (United States)

    Gaber, Timo; Strehl, Cindy; Sawitzki, Birgit; Hoff, Paula; Buttgereit, Frank

    2015-01-01

    Energy homeostasis is a hallmark of cell survival and maintenance of cell function. Here we focus on the impact of cellular energy metabolism on T-lymphocyte differentiation, activation, and function in health and disease. We describe the role of transcriptional and posttranscriptional regulation of lymphocyte metabolism on immune functions of T cells. We also summarize the current knowledge about T-lymphocyte adaptations to inflammation and hypoxia, and the impact on T-cell behavior of pathophysiological hypoxia (as found in tumor tissue, chronically inflamed joints in rheumatoid arthritis and during bone regeneration). A better understanding of the underlying mechanisms that control immune cell metabolism and immune response may provide therapeutic opportunities to alter the immune response under conditions of either immunosuppression or inflammation, potentially targeting infections, vaccine response, tumor surveillance, autoimmunity, and inflammatory disorders.

  18. Microglia energy metabolism in metabolic disorder.

    Science.gov (United States)

    Kalsbeek, Martin J T; Mulder, Laurie; Yi, Chun-Xia

    2016-12-15

    Microglia are the resident macrophages of the CNS, and are in charge of maintaining a healthy microenvironment to ensure neuronal survival. Microglia carry out a non-stop patrol of the CNS, make contact with neurons and look for abnormalities, all of which requires a vast amount of energy. This non-signaling energy demand increases after activation by pathogens, neuronal damage or other kinds of stimulation. Of the three major energy substrates - glucose, fatty acids and glutamine - glucose is crucial for microglia survival and several glucose transporters are expressed to supply sufficient glucose influx. Fatty acids are another source of energy for microglia and have also been shown to strongly influence microglial immune activity. Glutamine, although possibly suitable for use as an energy substrate by microglia, has been shown to have neurotoxic effects when overloaded. Microglial fuel metabolism might be associated with microglial reactivity under different pathophysiological conditions and a microglial fuel switch may thus be the underlying cause of hypothalamic dysregulation, which is associated with obesity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  20. Cerebral energy metabolism during induced mitochondrial dysfunction

    DEFF Research Database (Denmark)

    Nielsen, T H; Bindslev, TT; Pedersen, S M

    2013-01-01

    In patients with traumatic brain injury as well as stroke, impaired cerebral oxidative energy metabolism may be an important factor contributing to the ultimate degree of tissue damage. We hypothesize that mitochondrial dysfunction can be diagnosed bedside by comparing the simultaneous changes...... in brain tissue oxygen tension (PbtO(2)) and cerebral cytoplasmatic redox state. The study describes cerebral energy metabolism during mitochondrial dysfunction induced by sevoflurane in piglets....

  1. Hypothalamic control of energy and glucose metabolism.

    Science.gov (United States)

    Sisley, Stephanie; Sandoval, Darleen

    2011-09-01

    The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM.

  2. Pareto optimality in organelle energy metabolism analysis.

    Science.gov (United States)

    Angione, Claudio; Carapezza, Giovanni; Costanza, Jole; Lió, Pietro; Nicosia, Giuseppe

    2013-01-01

    In low and high eukaryotes, energy is collected or transformed in compartments, the organelles. The rich variety of size, characteristics, and density of the organelles makes it difficult to build a general picture. In this paper, we make use of the Pareto-front analysis to investigate the optimization of energy metabolism in mitochondria and chloroplasts. Using the Pareto optimality principle, we compare models of organelle metabolism on the basis of single- and multiobjective optimization, approximation techniques (the Bayesian Automatic Relevance Determination), robustness, and pathway sensitivity analysis. Finally, we report the first analysis of the metabolic model for the hydrogenosome of Trichomonas vaginalis, which is found in several protozoan parasites. Our analysis has shown the importance of the Pareto optimality for such comparison and for insights into the evolution of the metabolism from cytoplasmic to organelle bound, involving a model order reduction. We report that Pareto fronts represent an asymptotic analysis useful to describe the metabolism of an organism aimed at maximizing concurrently two or more metabolite concentrations.

  3. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation....

  4. Weight Management, Energy Metabolism, and Endocrine Hor¬mones- Review Article

    OpenAIRE

    Seyed-Ali MOSTAFAVI; Saeed HOSSEINI

    2015-01-01

    Energy expenditure is determined by basal metabolic rate, physical activity, and Thermic Effect of Foods (TEF). Some endocrine hormones have role in basal metabolism and hence in human energy expenditure. And some foods pose more thermic effects on the total body energy expenditure and therefore can influence body weight. This review was performed to discuss factors which may affect body metabolism and body weight. Latest medical databases and nutrition and metabolism books were reviewed. We ...

  5. Construction and analysis of the model of energy metabolism in E. coli.

    Directory of Open Access Journals (Sweden)

    Zixiang Xu

    Full Text Available Genome-scale models of metabolism have only been analyzed with the constraint-based modelling philosophy and there have been several genome-scale gene-protein-reaction models. But research on the modelling for energy metabolism of organisms just began in recent years and research on metabolic weighted complex network are rare in literature. We have made three research based on the complete model of E. coli's energy metabolism. We first constructed a metabolic weighted network using the rates of free energy consumption within metabolic reactions as the weights. We then analyzed some structural characters of the metabolic weighted network that we constructed. We found that the distribution of the weight values was uneven, that most of the weight values were zero while reactions with abstract large weight values were rare and that the relationship between w (weight values and v (flux values was not of linear correlation. At last, we have done some research on the equilibrium of free energy for the energy metabolism system of E. coli. We found that E(out (free energy rate input from the environment can meet the demand of E(ch(in (free energy rate dissipated by chemical process and that chemical process plays a great role in the dissipation of free energy in cells. By these research and to a certain extend, we can understand more about the energy metabolism of E. coli.

  6. A20 modulates lipid metabolism and energy production to promote liver regeneration.

    Directory of Open Access Journals (Sweden)

    Scott M Damrauer

    2011-03-01

    Full Text Available Liver regeneration is clinically of major importance in the setting of liver injury, resection or transplantation. We have demonstrated that the NF-κB inhibitory protein A20 significantly improves recovery of liver function and mass following extended liver resection (LR in mice. In this study, we explored the Systems Biology modulated by A20 following extended LR in mice.We performed transcriptional profiling using Affymetrix-Mouse 430.2 arrays on liver mRNA retrieved from recombinant adenovirus A20 (rAd.A20 and rAd.βgalactosidase treated livers, before and 24 hours after 78% LR. A20 overexpression impacted 1595 genes that were enriched for biological processes related to inflammatory and immune responses, cellular proliferation, energy production, oxidoreductase activity, and lipid and fatty acid metabolism. These pathways were modulated by A20 in a manner that favored decreased inflammation, heightened proliferation, and optimized metabolic control and energy production. Promoter analysis identified several transcriptional factors that implemented the effects of A20, including NF-κB, CEBPA, OCT-1, OCT-4 and EGR1. Interactive scale-free network analysis captured the key genes that delivered the specific functions of A20. Most of these genes were affected at basal level and after resection. We validated a number of A20's target genes by real-time PCR, including p21, the mitochondrial solute carriers SLC25a10 and SLC25a13, and the fatty acid metabolism regulator, peroxisome proliferator activated receptor alpha. This resulted in greater energy production in A20-expressing livers following LR, as demonstrated by increased enzymatic activity of cytochrome c oxidase, or mitochondrial complex IV.This Systems Biology-based analysis unravels novel mechanisms supporting the pro-regenerative function of A20 in the liver, by optimizing energy production through improved lipid/fatty acid metabolism, and down-regulated inflammation. These findings

  7. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders

    Directory of Open Access Journals (Sweden)

    Sung Sik eChoe

    2016-04-01

    Full Text Available The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue (WAT functions as a key energy reservoir for other organs, whereas the brown adipose tissue (BAT accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secret various hormones, cytokines, and metabolites (termed as adipokines that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic over-nutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  8. Metabolic regulation of neuronal plasticity by the energy sensor AMPK.

    Directory of Open Access Journals (Sweden)

    Wyatt B Potter

    Full Text Available Long Term Potentiation (LTP is a leading candidate mechanism for learning and memory and is also thought to play a role in the progression of seizures to intractable epilepsy. Maintenance of LTP requires RNA transcription, protein translation and signaling through the mammalian Target of Rapamycin (mTOR pathway. In peripheral tissue, the energy sensor AMP-activated Protein Kinase (AMPK negatively regulates the mTOR cascade upon glycolytic inhibition and cellular energy stress. We recently demonstrated that the glycolytic inhibitor 2-deoxy-D-glucose (2DG alters plasticity to retard epileptogenesis in the kindling model of epilepsy. Reduced kindling progression was associated with increased recruitment of the nuclear metabolic sensor CtBP to NRSF at the BDNF promoter. Given that energy metabolism controls mTOR through AMPK in peripheral tissue and the role of mTOR in LTP in neurons, we asked whether energy metabolism and AMPK control LTP. Using a combination of biochemical approaches and field-recordings in mouse hippocampal slices, we show that the master regulator of energy homeostasis, AMPK couples energy metabolism to LTP expression. Administration of the glycolytic inhibitor 2-deoxy-D-glucose (2DG or the mitochondrial toxin and anti-Type II Diabetes drug, metformin, or AMP mimetic AICAR results in activation of AMPK, repression of the mTOR pathway and prevents maintenance of Late-Phase LTP (L-LTP. Inhibition of AMPK by either compound-C or the ATP mimetic ara-A rescues the suppression of L-LTP by energy stress. We also show that enhanced LTP via AMPK inhibition requires mTOR signaling. These results directly link energy metabolism to plasticity in the mammalian brain and demonstrate that AMPK is a modulator of LTP. Our work opens up the possibility of using modulators of energy metabolism to control neuronal plasticity in diseases and conditions of aberrant plasticity such as epilepsy.

  9. Timing of potential and metabolic brain energy

    DEFF Research Database (Denmark)

    Korf, Jakob; Gramsbergen, Jan Bert

    2007-01-01

    functions. We introduce the concepts of potential and metabolic brain energy to distinguish trans-membrane gradients of ions or neurotransmitters and the capacity to generate energy from intra- or extra-cerebral substrates, respectively. Higher brain functions, such as memory retrieval, speaking......The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho......-physiological tasks within 50 to 200 ms, and perception of conscious experience requires 0.5 to 2 s. Activation of cerebral oxygen consumption starts after at least 100 ms and increases of local blood flow become maximal after about 1 s. Current imaging technologies are unable to detect rapid physiological brain...

  10. Insulin resistance and protein energy metabolism in patients with advanced chronic kidney disease.

    Science.gov (United States)

    Siew, Edward D; Ikizler, Talat Alp

    2010-01-01

    Insulin resistance (IR), the reciprocal of insulin sensitivity is a known complication of advanced chronic kidney disease (CKD) and is associated with a number of metabolic derangements. The complex metabolic abnormalities observed in CKD such as vitamin D deficiency, obesity, metabolic acidosis, inflammation, and accumulation of "uremic toxins" are believed to contribute to the etiology of IR and acquired defects in the insulin-receptor signaling pathway in this patient population. Only a few investigations have explored the validity of commonly used assessment methods in comparison to gold standard hyperinsulinemic hyperglycemic clamp technique in CKD patients. An important consequence of insulin resistance is its role in the pathogenesis of protein energy wasting, a state of metabolic derangement characterized by loss of somatic and visceral protein stores not entirely accounted for by inadequate nutrient intake. In the general population, insulin resistance has been associated with accelerated protein catabolism. Among end-stage renal disease (ESRD) patients, enhanced muscle protein breakdown has been observed in patients with Type II diabetes compared to ESRD patients without diabetes. In the absence of diabetes mellitus (DM) or severe obesity, insulin resistance is detectable in dialysis patients and strongly associated with increased muscle protein breakdown, primarily mediated by the ubiquitin-proteasome pathway. Recent epidemiological data indicate a survival advantage and better nutritional status in insulin-free Type II DM patients treated with insulin sensitizer thiazolidinediones. Given the high prevalence of protein energy wasting in ESRD and its unequivocal association with adverse clinical outcomes, insulin resistance may represent an important modifiable target for intervention in the ESRD population.

  11. Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis.

    Science.gov (United States)

    Zwingmann, Claudia; Leibfritz, Dieter; Hazell, Alan S

    2003-06-01

    A central question in manganese neurotoxicity concerns mitochondrial dysfunction leading to cerebral energy failure. To obtain insight into the underlying mechanism(s), the authors investigated cell-specific pathways of [1-13C]glucose metabolism by high-resolution multinuclear NMR-spectroscopy. Five-day treatment of neurons with 100-micro mol/L MnCl(2) led to 50% and 70% decreases of ATP/ADP and phosphocreatine-creatine ratios, respectively. An impaired flux of [1-13C]glucose through pyruvate dehydrogenase, which was associated with Krebs cycle inhibition and hence depletion of [4-13C]glutamate, [2-13C]GABA, and [13C]glutathione, hindered the ability of neurons to compensate for mitochondrial dysfunction by oxidative glucose metabolism and further aggravated neuronal energy failure. Stimulated glycolysis and oxidative glucose metabolism protected astrocytes against energy failure and oxidative stress, leading to twofold increased de novo synthesis of [3-13C]lactate and fourfold elevated [4-13C]glutamate and [13C]glutathione levels. Manganese, however, inhibited the synthesis and release of glutamine. Comparative NMR data obtained from cocultures showed disturbed astrocytic function and a failure of astrocytes to provide neurons with substrates for energy and neurotransmitter metabolism, leading to deterioration of neuronal antioxidant capacity (decreased glutathione levels) and energy metabolism. The results suggest that, concomitant to impaired neuronal glucose oxidation, changes in astrocytic metabolism may cause a loss of intercellular homeostatic equilibrium, contributing to neuronal dysfunction in manganese neurotoxicity.

  12. Tributyltin disrupts feeding and energy metabolism in the goldfish (Carassius auratus).

    Science.gov (United States)

    Zhang, Jiliang; Sun, Ping; Yang, Fan; Kong, Tao; Zhang, Ruichen

    2016-06-01

    Tributyltin (TBT) can induce obesogen response. However, little is known about the adverse effects of TBT on food intake and energy metabolism. The present study was designed to investigate the effects of TBT, at environmental concentrations of 2.44 and 24.4 ng/L (1 and 10 ng/L as Sn), on feeding and energy metabolism in goldfish (Carassius auratus). After exposure for 54 d, TBT increased the weight gain and food intake in fish. The patterns of brain neuropeptide genes expression were in line with potential orexigenic effects, with increased expression of neuropeptide Y and apelin, and decreased expression of pro-opiomelanocortin, ghrelin, cocaine and amphetamine-regulated transcript, and corticotropin-releasing factor. Interestingly, the energy metabolism indicators (oxygen consumption, ammonia exertion and swimming activity) and the serum thyroid hormones were all significantly increased at the 2.44 ng/L TBT group in fish. However, no changes of energy metabolism indicators or a decrease of thyroid hormones was found at the 24.4 ng/L TBT group, which indicated a complex disrupting effect on metabolism of TBT. In short, TBT can alter feeding and energy metabolism in fish, which might promote the obesogenic responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Energy metabolism and nutritional status in hospitalized patients with lung cancer.

    Science.gov (United States)

    Takemura, Yumi; Sasaki, Masaya; Goto, Kenichi; Takaoka, Azusa; Ohi, Akiko; Kurihara, Mika; Nakanishi, Naoko; Nakano, Yasutaka; Hanaoka, Jun

    2016-09-01

    This study aimed to investigate the energy metabolism of patients with lung cancer and the relationship between energy metabolism and proinflammatory cytokines. Twenty-eight patients with lung cancer and 18 healthy controls were enrolled in this study. The nutritional status upon admission was analyzed using nutritional screening tools and laboratory tests. The resting energy expenditure and respiratory quotient were measured using indirect calorimetry, and the predicted resting energy expenditure was calculated using the Harris-Benedict equation. Energy expenditure was increased in patients with advanced stage disease, and there were positive correlations between measured resting energy expenditure/body weight and interleukin-6 levels and between measured resting energy expenditure/predicted resting energy expenditure and interleukin-6 levels. There were significant relationships between body mass index and plasma leptin or acylated ghrelin levels. However, the level of appetite controlling hormones did not affect dietary intake. There was a negative correlation between plasma interleukin-6 levels and dietary intake, suggesting that interleukin-6 plays a role in reducing dietary intake. These results indicate that energy expenditure changes significantly with lung cancer stage and that plasma interleukin-6 levels affect energy metabolism and dietary intake. Thus, nutritional management that considers the changes in energy metabolism is important in patients with lung cancer.

  14. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.

    Science.gov (United States)

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

  15. Advanced Energy Validated Photovoltaic Inverter Technology at NREL | Energy

    Science.gov (United States)

    Inverter Technology at NREL Advanced Energy Industries-NREL's first partner at the Energy Systems Integration Facility (ESIF)-validated its advanced photovoltaic (PV) inverter technology using the ESIF's computer screen in a laboratory, with power inverter hardware in the background Photo by Dennis Schroeder

  16. Environmental effects on energy metabolism and 86Rb elimination rates of fishes

    International Nuclear Information System (INIS)

    Peters, E.L.

    1994-01-01

    Relationships between energy metabolism and the turnover rates of number of important chemical and radiological elements (particularly the Group IA alkali metals: K, Rb, and Cs) have been observed in fishes. Using response surface statistics and fractional factorial ANOVA, the author examined the relative influences of temperature, salinity, food intake rate, mass, and their first order interactions on routine energy metabolism and 86 Rb elimination rates. Routine metabolic rates were increased primarily by increased temperature and salinity, with a strong body mass effect and a significant effect of food intake. 86 Rb elimination rates were increased primarily by increased temperature and salinity. There were no interactive effects between mass and either temperature or salinity for either routine energy metabolism or 86 Rb elimination rates. There was a significant interaction effect between temperature and salinity on routine energy metabolism rates, but not on 86 Rb elimination. The authors also observed a relationship between routine energy metabolism and 86 Rb elimination rates that may possibly be exploited as a means of estimating energy metabolic rates of fishes in the field. The statistical techniques used in this experiment have broad potential applications in assessing the contributions of combinations of environmental variables on contaminant kinetics, as well as in multiple toxicity testing, in that they greatly simplify experimental designs compared with traditional full-factorial methods

  17. Islet transplantation in diabetic rats normalizes basal and exercise-induced energy metabolism

    NARCIS (Netherlands)

    Houwing, Harmina; Benthem, L.; Suylichem, P.T.R. van; Leest, J. van der; Strubbe, J.H.; Steffens, A.B.

    Transplantation of islets of Langerhans in diabetic rats normalizes resting glucose and insulin levels, but it remains unclear whether islet transplantation restores resting and exercise-induced energy metabolism. Therefore, we compared energy metabolism in islet transplanted rats with energy

  18. Methodology for Validating Building Energy Analysis Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Wortman, D.; O' Doherty, B.; Burch, J.

    2008-04-01

    The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

  19. Metabolic Adaptation to Muscle Ischemia

    Science.gov (United States)

    Cabrera, Marco E.; Coon, Jennifer E.; Kalhan, Satish C.; Radhakrishnan, Krishnan; Saidel, Gerald M.; Stanley, William C.

    2000-01-01

    Although all tissues in the body can adapt to varying physiological/pathological conditions, muscle is the most adaptable. To understand the significance of cellular events and their role in controlling metabolic adaptations in complex physiological systems, it is necessary to link cellular and system levels by means of mechanistic computational models. The main objective of this work is to improve understanding of the regulation of energy metabolism during skeletal/cardiac muscle ischemia by combining in vivo experiments and quantitative models of metabolism. Our main focus is to investigate factors affecting lactate metabolism (e.g., NADH/NAD) and the inter-regulation between carbohydrate and fatty acid metabolism during a reduction in regional blood flow. A mechanistic mathematical model of energy metabolism has been developed to link cellular metabolic processes and their control mechanisms to tissue (skeletal muscle) and organ (heart) physiological responses. We applied this model to simulate the relationship between tissue oxygenation, redox state, and lactate metabolism in skeletal muscle. The model was validated using human data from published occlusion studies. Currently, we are investigating the difference in the responses to sudden vs. gradual onset ischemia in swine by combining in vivo experimental studies with computational models of myocardial energy metabolism during normal and ischemic conditions.

  20. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    Science.gov (United States)

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  1. Fatty acids in energy metabolism of the central nervous system.

    Science.gov (United States)

    Panov, Alexander; Orynbayeva, Zulfiya; Vavilin, Valentin; Lyakhovich, Vyacheslav

    2014-01-01

    In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups.

  2. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism

    OpenAIRE

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pha...

  3. Ontogeny of hepatic energy metabolism genes in mice as revealed by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    Helen J Renaud

    Full Text Available The liver plays a central role in metabolic homeostasis by coordinating synthesis, storage, breakdown, and redistribution of nutrients. Hepatic energy metabolism is dynamically regulated throughout different life stages due to different demands for energy during growth and development. However, changes in gene expression patterns throughout ontogeny for factors important in hepatic energy metabolism are not well understood. We performed detailed transcript analysis of energy metabolism genes during various stages of liver development in mice. Livers from male C57BL/6J mice were collected at twelve ages, including perinatal and postnatal time points (n = 3/age. The mRNA was quantified by RNA-Sequencing, with transcript abundance estimated by Cufflinks. One thousand sixty energy metabolism genes were examined; 794 were above detection, of which 627 were significantly changed during at least one developmental age compared to adult liver. Two-way hierarchical clustering revealed three major clusters dependent on age: GD17.5-Day 5 (perinatal-enriched, Day 10-Day 20 (pre-weaning-enriched, and Day 25-Day 60 (adolescence/adulthood-enriched. Clustering analysis of cumulative mRNA expression values for individual pathways of energy metabolism revealed three patterns of enrichment: glycolysis, ketogenesis, and glycogenesis were all perinatally-enriched; glycogenolysis was the only pathway enriched during pre-weaning ages; whereas lipid droplet metabolism, cholesterol and bile acid metabolism, gluconeogenesis, and lipid metabolism were all enriched in adolescence/adulthood. This study reveals novel findings such as the divergent expression of the fatty acid β-oxidation enzymes Acyl-CoA oxidase 1 and Carnitine palmitoyltransferase 1a, indicating a switch from mitochondrial to peroxisomal β-oxidation after weaning; as well as the dynamic ontogeny of genes implicated in obesity such as Stearoyl-CoA desaturase 1 and Elongation of very long chain fatty

  4. Thermodynamics of the living organisms. Allometric relationship between the total metabolic energy, chemical energy and body temperature in mammals

    Science.gov (United States)

    Atanasov, Atanas Todorov

    2017-11-01

    The study present relationship between the total metabolic energy (ETME(c), J) derived as a function of body chemical energy (Gchem, J) and absolute temperature (Tb, K) in mammals: ETME(c) =Gchem (Tb/Tn). In formula the temperature Tn =2.73K appears normalization temperature. The calculated total metabolic energy ETME(c) differs negligible from the total metabolic energy ETME(J), received as a product between the basal metabolic rate (Pm, J/s) and the lifespan (Tls, s) of mammals: ETME = Pm×Tls. The physical nature and biological mean of the normalization temperature (Tn, K) is unclear. It is made the hypothesis that the kTn energy (where k= 1.3806×10-23 J/K -Boltzmann constant) presents energy of excitation states (modes) in biomolecules and body structures that could be in equilibrium with chemical energy accumulated in body. This means that the accumulated chemical energy allows trough all body molecules and structures to propagate excitations states with kTn energy with wavelength in the rage of width of biological membranes. The accumulated in biomolecules chemical energy maintains spread of the excited states through biomolecules without loss of energy.

  5. Urinary 1H Nuclear Magnetic Resonance Metabolomic Fingerprinting Reveals Biomarkers of Pulse Consumption Related to Energy-Metabolism Modulation in a Subcohort from the PREDIMED study.

    Science.gov (United States)

    Madrid-Gambin, Francisco; Llorach, Rafael; Vázquez-Fresno, Rosa; Urpi-Sarda, Mireia; Almanza-Aguilera, Enrique; Garcia-Aloy, Mar; Estruch, Ramon; Corella, Dolores; Andres-Lacueva, Cristina

    2017-04-07

    Little is known about the metabolome fingerprint of pulse consumption. The study of robust and accurate biomarkers for pulse dietary assessment has great value for nutritional epidemiology regarding health benefits and their mechanisms. To characterize the fingerprinting of dietary pulses (chickpeas, lentils, and beans), spot urine samples from a subcohort from the PREDIMED study were stratified using a validated food frequency questionnaire. Urine samples of nonpulse consumers (≤4 g/day of pulse intake) and habitual pulse consumers (≥25 g/day of pulse intake) were analyzed using a 1 H nuclear magnetic resonance (NMR) metabolomics approach combined with multi- and univariate data analysis. Pulse consumption showed differences through 16 metabolites coming from (i) choline metabolism, (ii) protein-related compounds, and (iii) energy metabolism (including lower urinary glucose). Stepwise logistic regression analysis was applied to design a combined model of pulse exposure, which resulted in glutamine, dimethylamine, and 3-methylhistidine. This model was evaluated by a receiver operating characteristic curve (AUC > 90% in both training and validation sets). The application of NMR-based metabolomics to reported pulse exposure highlighted new candidates for biomarkers of pulse consumption and the impact on energy metabolism, generating new hypotheses on energy modulation. Further intervention studies will confirm these findings.

  6. Brain Ceramide Metabolism in the Control of Energy Balance

    Directory of Open Access Journals (Sweden)

    Céline Cruciani-Guglielmacci

    2017-10-01

    Full Text Available The regulation of energy balance by the central nervous system (CNS is a key actor of energy homeostasis in mammals, and deregulations of the fine mechanisms of nutrient sensing in the brain could lead to several metabolic diseases such as obesity and type 2 diabetes (T2D. Indeed, while neuronal activity primarily relies on glucose (lactate, pyruvate, the brain expresses at high level enzymes responsible for the transport, utilization and storage of lipids. It has been demonstrated that discrete neuronal networks in the hypothalamus have the ability to detect variation of circulating long chain fatty acids (FA to regulate food intake and peripheral glucose metabolism. During a chronic lipid excess situation, this physiological lipid sensing is impaired contributing to type 2 diabetes in predisposed subjects. Recently, different studies suggested that ceramides levels could be involved in the regulation of energy balance in both hypothalamic and extra-hypothalamic areas. Moreover, under lipotoxic conditions, these ceramides could play a role in the dysregulation of glucose homeostasis. In this review we aimed at describing the potential role of ceramides metabolism in the brain in the physiological and pathophysiological control of energy balance.

  7. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    Science.gov (United States)

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    Science.gov (United States)

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-03-11

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism.

  9. Ammonia-induced energy disorders interfere with bilirubin metabolism in hepatocytes.

    Science.gov (United States)

    Wang, Qiongye; Wang, Yanfang; Yu, Zujiang; Li, Duolu; Jia, Bin; Li, Jingjing; Guan, Kelei; Zhou, Yubing; Chen, Yanling; Kan, Quancheng

    2014-08-01

    Hyperammonemia and jaundice are the most common clinical symptoms of hepatic failure. Decreasing the level of ammonia in the blood is often accompanied by a reduction in bilirubin in patients with hepatic failure. Previous studies have shown that hyperammonemia can cause bilirubin metabolism disorders, however it is unclear exactly how hyperammonemia interferes with bilirubin metabolism in hepatocytes. The purpose of the current study was to determine the mechanism or mechanisms by which hyperammonemia interferes with bilirubin metabolism in hepatocytes. Cell viability and apoptosis were analyzed in primary hepatocytes that had been exposed to ammonium chloride. Mitochondrial morphology and permeability were observed and analyzed, intermediates of the tricarboxylic acid (TCA) cycle were determined and changes in the expression of enzymes related to bilirubin metabolism were analyzed after ammonia exposure. Hyperammonemia inhibited cell growth, induced apoptosis, damaged the mitochondria and hindered the TCA cycle in hepatocytes. This led to a reduction in energy synthesis, eventually affecting the expression of enzymes related to bilirubin metabolism, which then caused further problems with bilirubin metabolism. These effects were significant, but could be reversed with the addition of adenosine triphosphate (ATP). This study demonstrates that ammonia can cause problems with bilirubin metabolism by interfering with energy synthesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Effect of hemoglobin and immunization status on energy metabolism of weanling pigs.

    Science.gov (United States)

    Gentry, J L; Swinkels, J W; Lindemann, M D; Schrama, J W

    1997-04-01

    We investigated the effect of (Hb) and immunization status on energy metabolism of newly weaned pigs. An additional focus of the study was to determine the development of circadian rhythms as evidenced by heat production patterns. Twenty-four 4-wk-old crossbred weanling barrows were placed into groups of three based on weight and litter origin, and the groups were allotted to one of four treatments. Treatments were arranged as a 2 x 2 factorial. The factors included 1) Hb status (low vs high) and 2) immunization status (antigen vs placebo). Hemoglobin status was obtained by injecting 3-d-old barrows with 100 (low) or 200 mg (high) of Fe. At 4 wk, initial blood Hb concentrations were 6.0 mM for the low group and 7.8 mM for the high group. Energy metabolism was measured using two weekly total energy and nitrogen balance collections. Energy intake and retention were higher (P Energy metabolism was not affected (P > .10) by immunization status, and heat production was not affected (P > .10) by either Hb or immunization status. Total heat production (HTOT) increased (P light period compared with the dark period over the total experimental period but a decrease (P dark period was approximately half of that measured during the light period. In conclusion, Hb status affected energy metabolism; pigs having a high Hb status had a higher energy retention. Immunization status had minimal effects on energy metabolism and heat production. Additionally, the diurnal circadian rhythm seen in older pigs had not been established by 2 wk after weaning.

  11. Mechanistic modeling of aberrant energy metabolism in human disease

    Directory of Open Access Journals (Sweden)

    Vineet eSangar

    2012-10-01

    Full Text Available Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

  12. Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants.

    Science.gov (United States)

    Hay, William W; Brown, Laura D; Denne, Scott C

    2014-01-01

    Energy is necessary for all vital functions of the body at molecular, cellular, organ, and systemic levels. Preterm infants have minimum energy requirements for basal metabolism and growth, but also have requirements for unique physiology and metabolism that influence energy expenditure. These include body size, postnatal age, physical activity, dietary intake, environmental temperatures, energy losses in the stool and urine, and clinical conditions and diseases, as well as changes in body composition. Both energy and protein are necessary to produce normal rates of growth. Carbohydrates (primarily glucose) are principle sources of energy for the brain and heart until lipid oxidation develops over several days to weeks after birth. A higher protein/energy ratio is necessary in most preterm infants to approximate normal intrauterine growth rates. Lean tissue is predominantly produced during early gestation, which continues through to term. During later gestation, fat accretion in adipose tissue adds increasingly large caloric requirements to the lean tissue growth. Once protein intake is sufficient to promote net lean body accretion, additional energy primarily produces more body fat, which increases almost linearly at energy intakes >80-90 kcal/kg/day in normal, healthy preterm infants. Rapid gains in adiposity have the potential to produce later life obesity, an increasingly recognized risk of excessive energy intake. In addition to fundamental requirements for glucose, protein, and fat, a variety of non-glucose carbohydrates found in human milk may have important roles in promoting growth and development, as well as production of a gut microbiome that could protect against necrotizing enterocolitis. © 2014 S. Karger AG, Basel.

  13. Adaptations of energy metabolism during cerebellar neurogenesis are co-opted in medulloblastoma.

    Science.gov (United States)

    Tech, Katherine; Deshmukh, Mohanish; Gershon, Timothy R

    2015-01-28

    Recent studies show that metabolic patterns typical of cancer cells, including aerobic glycolysis and increased lipogenesis, are not unique to malignancy, but rather originate in physiologic development. In the postnatal brain, where sufficient oxygen for energy metabolism is scrupulously maintained, neural progenitors nevertheless metabolize glucose to lactate and prioritize lipid synthesis over fatty acid oxidation. Medulloblastoma, a cancer of neural progenitors that is the most common malignant brain tumor in children, recapitulates the metabolic phenotype of brain progenitor cells. During the physiologic proliferation of neural progenitors, metabolic enzymes generally associated with malignancy, including Hexokinase 2 (Hk2) and Pyruvate kinase M2 (PkM2) configure energy metabolism to support growth. In these non-malignant cells, expression of Hk2 and PkM2 is driven by transcriptional regulators that are typically identified as oncogenes, including N-myc. Importantly, N-myc continues to drive Hk2 and PkM2 in medulloblastoma. Similarly E2F transcription factors and PPARγ function in both progenitors and medulloblastoma to optimize energy metabolism to support proliferation. These findings show that the "metabolic transformation" that is a hallmark of cancer is not specifically limited to cancer. Rather, metabolic transformation represents a co-opting of developmental programs integral to physiologic growth. Despite their physiologic origins, the molecular mechanisms that mediate metabolic transformation may nevertheless present ideal targets for novel anti-tumor therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Linking neuronal brain activity to the glucose metabolism.

    Science.gov (United States)

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-08-29

    Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported.

  15. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  16. [Modifications in myocardial energy metabolism in diabetic patients

    Science.gov (United States)

    Grynberg, A

    2001-11-01

    The capacity of cardiac myocyte to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. Because FA is the main heart fuel (although the most expensive one in oxygen, and prompt to induce deleterious effects), this process is based on a balanced fatty acid (FA) metabolism. Several pathological situations are associated with an accumulation of FA or derivatives, or with an excessive b-oxidation. The diabetic cardiomyocyte is characterised by an over consumption of FA. The control of the FA/glucose balance clearly appears as a new strategy for cytoprotection, particularly in diabetes and requires a reduced FA contribution to ATP production. Cardiac myocytes can control FA mitochondrial entry, but display weak ability to control FA uptake, thus the fate of non beta-oxidized FA appear as a new impairment for the cell. Both the trigger and the regulation of cardiac contraction result from membrane activity, and the other major FA function in the myocardium is their role in membrane homeostasis, through the phospholipid synthesis and remodeling pathways. Sudden death, hypercatecholaminemia, diabetes and heart failure have been associated with an altered PUFA content in cardiac membranes. Experimental data suggest that the 2 metabolic pathways involved in membrane homeostasis may represent therapeutic targets for cytoprotection. The drugs that increase cardiac phospholipid turnover (trimétazidine, ranolazine,...) display anti-ischemic non hemodynamic effect. This effect is based on a redirection of FA utilization towards phospholipid synthesis, which decrease their availability for energy production. A nutritional approach gave also promising results. Besides its anti-arrhythmic effect, the dietary docosahexaenoic acid is able to reduce FA energy consumption and hence oxygen demand. The cardiac metabolic pathways involving FA should be considered as a whole, precariously balanced. The diabetic heart being characterised by

  17. Therapeutic Approaches Using Riboflavin in Mitochondrial Energy Metabolism Disorders.

    Science.gov (United States)

    Henriques, Bárbara J; Lucas, Tânia G; Gomes, Cláudio M

    2016-01-01

    Riboflavin, or vitamin B2, plays an important role in the cell as biological precursor of FAD and FMN, two important flavin cofactors which are essential for the structure and function of flavoproteins. Riboflavin has been used in therapeutic approaches of various inborn errors of metabolism, notably in metabolic disorders resulting either from defects in proteins involved in riboflavin metabolism and transport or from defects in flavoenzymes. The scope of this review is to provide an updated perspective of clinical cases in which riboflavin was used as a potential therapeutic agent in disorders affecting mitochondrial energy metabolism. In particular, we discuss available mechanistic insights on the role of riboflavin as a pharmacological chaperone for the recovery of misfolded metabolic flavoenzymes.

  18. Studies on growth, nitrogen and energy metabolism in rats

    DEFF Research Database (Denmark)

    Thorbek, G; Chwalibog, André; Eggum, B O

    1982-01-01

    Feed intake, growth, nitrogen retention and energy metabolism were measured in 12 male Wistar rats fed ad lib. for 14 weeks with non-purified diets. The feed intake increased rapidly in 4 weeks time from 16 g/d to 25 g/d, and then it was constant in the following 10 weeks. In relation to metabolic...

  19. Sex differences of human cortical blood flow and energy metabolism.

    Science.gov (United States)

    Aanerud, Joel; Borghammer, Per; Rodell, Anders; Jónsdottir, Kristjana Y; Gjedde, Albert

    2017-07-01

    Brain energy metabolism is held to reflect energy demanding processes in neuropil related to the density and activity of synapses. There is recent evidence that men have higher density of synapses in temporal cortex than women. One consequence of these differences would be different rates of cortical energy turnover and blood flow in men and women. To test the hypotheses that rates of oxygen consumption (CMRO 2 ) and cerebral blood flow are higher in men than in women in regions of cerebral cortex, and that the differences persist with aging, we used positron emission tomography to determine cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity.

  20. Cellular energy metabolism maintains young status in old queen honey bees (Apis mellifera).

    Science.gov (United States)

    Lu, Cheng-Yen; Qiu, Jiantai Timothy; Hsu, Chin-Yuan

    2018-05-02

    Trophocytes and oenocytes of queen honey bees are used in studies of cellular longevity, but their cellular energy metabolism with age is poorly understood. In this study, the molecules involved in cellular energy metabolism were evaluated in the trophocytes and oenocytes of young and old queen bees. The findings indicated that there were no significant differences between young and old queen bees in β-oxidation, glycolysis, and protein synthesis. These results indicate that the cellular energy metabolism of trophocytes and oenocytes in old queen bees is similar to young queen bees and suggests that maintaining cellular energy metabolism in a young status may be associated with the longevity of queen bees. Fat and glycogen accumulation increased with age indicating that old queen bees are older than young queen bees. © 2018 Wiley Periodicals, Inc.

  1. Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering.

    Science.gov (United States)

    Fehér, Tamás; Planson, Anne-Gaëlle; Carbonell, Pablo; Fernández-Castané, Alfred; Grigoras, Ioana; Dariy, Ekaterina; Perret, Alain; Faulon, Jean-Loup

    2014-11-01

    Metabolic engineering has succeeded in biosynthesis of numerous commodity or high value compounds. However, the choice of pathways and enzymes used for production was many times made ad hoc, or required expert knowledge of the specific biochemical reactions. In order to rationalize the process of engineering producer strains, we developed the computer-aided design (CAD) tool RetroPath that explores and enumerates metabolic pathways connecting the endogenous metabolites of a chassis cell to the target compound. To experimentally validate our tool, we constructed 12 top-ranked enzyme combinations producing the flavonoid pinocembrin, four of which displayed significant yields. Namely, our tool queried the enzymes found in metabolic databases based on their annotated and predicted activities. Next, it ranked pathways based on the predicted efficiency of the available enzymes, the toxicity of the intermediate metabolites and the calculated maximum product flux. To implement the top-ranking pathway, our procedure narrowed down a list of nine million possible enzyme combinations to 12, a number easily assembled and tested. One round of metabolic network optimization based on RetroPath output further increased pinocembrin titers 17-fold. In total, 12 out of the 13 enzymes tested in this work displayed a relative performance that was in accordance with its predicted score. These results validate the ranking function of our CAD tool, and open the way to its utilization in the biosynthesis of novel compounds. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Circulating follistatin in relation to energy metabolism

    DEFF Research Database (Denmark)

    Hansen, Jakob Schiøler; Plomgaard, Peter

    2016-01-01

    a relation to energy metabolism. In this narrative review, we attempt to reconcile the existing findings on circulating follistatin with the novel concept that circulating follistatin is a liver-derived molecule regulated by the glucagon-to-insulin ratio. The picture emerging is that conditions associated...

  3. Bedside Evaluation of Cerebral Energy Metabolism in Severe Community-Acquired Bacterial Meningitis

    DEFF Research Database (Denmark)

    Rom Poulsen, Frantz; Schulz, Mette; Jacobsen, Anne

    2015-01-01

    BACKGROUND: Mortality and morbidity have remained high in bacterial meningitis. Impairment of cerebral energy metabolism probably contributes to unfavorable outcome. Intracerebral microdialysis is routinely used to monitor cerebral energy metabolism, and recent experimental studies indicate...... that this technique may separate ischemia and non-ischemic mitochondrial dysfunction. The present study is a retrospective interpretation of biochemical data obtained in a series of patients with severe community-acquired meningitis. METHODS: Cerebral energy metabolism was monitored in 15 patients with severe...... community-acquired meningitis utilizing intracerebral microdialysis and bedside biochemical analysis. According to previous studies, cerebral ischemia was defined as lactate/pyruvate (LP) ratio >30 with intracerebral pyruvate level

  4. Metabolic sensing neurons and the control of energy homeostasis.

    Science.gov (United States)

    Levin, Barry E

    2006-11-30

    The brain and periphery carry on a constant conversation; the periphery informs the brain about its metabolic needs and the brain provides for these needs through its control of somatomotor, autonomic and neurohumoral pathways involved in energy intake, expenditure and storage. Metabolic sensing neurons are the integrators of a variety of metabolic, humoral and neural inputs from the periphery. Such neurons, originally called "glucosensing", also respond to fatty acids, hormones and metabolites from the periphery. They are integrated within neural pathways involved in the regulation of energy homeostasis. Unlike most neurons, they utilize glucose and other metabolites as signaling molecules to regulate their membrane potential and firing rate. For glucosensing neurons, glucokinase acts as the rate-limiting step in glucosensing while the pathways that mediate responses to metabolites like lactate, ketone bodies and fatty acids are less well characterized. Many metabolic sensing neurons also respond to insulin and leptin and other peripheral hormones and receive neural inputs from peripheral organs. Each set of afferent signals arrives with different temporal profiles and by different routes and these inputs are summated at the level of the membrane potential to produce a given neural firing pattern. In some obese individuals, the relative sensitivity of metabolic sensing neurons to various peripheral inputs is genetically reduced. This may provide one mechanism underlying their propensity to become obese when exposed to diets high in fat and caloric density. Thus, metabolic sensing neurons may provide a potential therapeutic target for the treatment of obesity.

  5. Therapeutic Implications of Targeting Energy Metabolism in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Meena K. Sakharkar

    2013-01-01

    Full Text Available PPARs are ligand activated transcription factors. PPARγ agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPARγ. The use of synthetic PPARγ ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor signalling mechanisms. This paper will discuss the function and role of PPARγ in energy metabolism and cancer biology in general and its emergence as a promising therapeutic target in breast cancer.

  6. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    Energy Technology Data Exchange (ETDEWEB)

    Camporeale, Annalisa, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Demaria, Marco [Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945 (United States); Monteleone, Emanuele [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Giorgi, Carlotta [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Wieckowski, Mariusz R. [Nencki Institute of Experimental Biology, Department of Biochemistry, Pasteur Str. 3, Warsaw 02-093 (Poland); Pinton, Paolo [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Poli, Valeria, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy)

    2014-07-31

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3{sup C/C}) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3{sup C/C} MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3{sup C/C} MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms.

  7. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    International Nuclear Information System (INIS)

    Camporeale, Annalisa; Demaria, Marco; Monteleone, Emanuele; Giorgi, Carlotta; Wieckowski, Mariusz R.; Pinton, Paolo; Poli, Valeria

    2014-01-01

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3 C/C ) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3 C/C MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3 C/C MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms

  8. Mitochondrial uncoupling proteins and energy metabolism

    Directory of Open Access Journals (Sweden)

    Rosa Anna Busiello

    2015-02-01

    Full Text Available Understanding the metabolic factors that contribute to energy metabolism (EM is critical for the development of new treatments for obesity and related diseases. Mitochondrial oxidative phosphorylation is not perfectly coupled to ATP synthesis, and the process of proton-leak plays a crucial role. Proton-leak accounts for a significant part of the resting metabolic rate and therefore enhancement of this process represents a potential target for obesity treatment. Since their discovery, uncoupling proteins have stimulated great interest due to their involvement in mitochondrial-inducible proton-leak. Despite the widely accepted uncoupling/thermogenic effect of uncoupling protein one (UCP1, which was the first in this family to be discovered, the reactions catalyzed by its homologue UCP3 and the physiological role remain under debate.This review provides an overview of the role played by UCP1 and UCP3 in mitochondrial uncoupling/functionality as well as EM and suggests that they are a potential therapeutic target for treating obesity and its related diseases such as type II diabetes mellitus.

  9. Effects of photoperiod on energy metabolism and thermogenesis in ...

    African Journals Online (AJOL)

    The plasticity in energy intake, basal metabolic rate (BMR) and nonshivering thermogenesis (NST) was very important for the regulations in energy balance and thermogenesis in Melano-bellied oriental vole exposed to different photoperiod. Change in brown adipose tissue (BAT) cytochrome c oxidase (COX) activity and ...

  10. Performance and Energy Metabolism by Broiler Chickens Fed Maize ...

    African Journals Online (AJOL)

    Studies were conducted to evaluate the effect of replacing maize grain with different dietary levels of maize and millet offals on performance and energy metabolism in broiler chickens. Proximate composition and metabolizable energy (ME) values were determined. Feeding trial was also conducted to comparemaize and ...

  11. Validating Savings Claims of Cold Climate Zero Energy Ready Homes

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, J. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, S. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-06-05

    This study was intended to validate actual performance of three ZERHs in the Northeast to energy models created in REM/Rate v14.5 (one of the certified software programs used to generate a HERS Index) and the National Renewable Energy Laboratory’s Building Energy Optimization (BEopt™) v2.3 E+ (a more sophisticated hourly energy simulation software). This report details the validation methods used to analyze energy consumption at each home.

  12. Basal Metabolic Rate and Energy Expenditure of Rural Farmers in ...

    African Journals Online (AJOL)

    Measurement of basal metabolic rate (BMR) provides an important baseline for the determination of an individual's total energy requirement. The study sought to establish human energy expenditure of rural farmers in Magubike village in Tanzania, through determination of BMR, physical activity level (PAL) and total energy ...

  13. Energy metabolism in mobile, wild-sampled sharks inferred by plasma lipids.

    Science.gov (United States)

    Gallagher, Austin J; Skubel, Rachel A; Pethybridge, Heidi R; Hammerschlag, Neil

    2017-01-01

    Evaluating how predators metabolize energy is increasingly useful for conservation physiology, as it can provide information on their current nutritional condition. However, obtaining metabolic information from mobile marine predators is inherently challenging owing to their relative rarity, cryptic nature and often wide-ranging underwater movements. Here, we investigate aspects of energy metabolism in four free-ranging shark species ( n  = 281; blacktip, bull, nurse, and tiger) by measuring three metabolic parameters [plasma triglycerides (TAG), free fatty acids (FFA) and cholesterol (CHOL)] via non-lethal biopsy sampling. Plasma TAG, FFA and total CHOL concentrations (in millimoles per litre) varied inter-specifically and with season, year, and shark length varied within a species. The TAG were highest in the plasma of less active species (nurse and tiger sharks), whereas FFA were highest among species with relatively high energetic demands (blacktip and bull sharks), and CHOL concentrations were highest in bull sharks. Although temporal patterns in all metabolites were varied among species, there appeared to be peaks in the spring and summer, with ratios of TAG/CHOL (a proxy for condition) in all species displaying a notable peak in summer. These results provide baseline information of energy metabolism in large sharks and are an important step in understanding how the metabolic parameters can be assessed through non-lethal sampling in the future. In particular, this study emphasizes the importance of accounting for intra-specific and temporal variability in sampling designs seeking to monitor the nutritional condition and metabolic responses of shark populations.

  14. Effect of alternate energy substrates on mammalian brain metabolism during ischemic events.

    Science.gov (United States)

    Koppaka, S S; Puchowicz; LaManna, J C; Gatica, J E

    2008-01-01

    Regulation of brain metabolism and cerebral blood flow involves complex control systems with several interacting variables at both cellular and organ levels. Quantitative understanding of the spatially and temporally heterogeneous brain control mechanisms during internal and external stimuli requires the development and validation of a computational (mathematical) model of metabolic processes in brain. This paper describes a computational model of cellular metabolism in blood-perfused brain tissue, which considers the astrocyte-neuron lactate-shuttle (ANLS) hypothesis. The model structure consists of neurons, astrocytes, extra-cellular space, and a surrounding capillary network. Each cell is further compartmentalized into cytosol and mitochondria. Inter-compartment interaction is accounted in the form of passive and carrier-mediated transport. Our model was validated against experimental data reported by Crumrine and LaManna, who studied the effect of ischemia and its recovery on various intra-cellular tissue substrates under standard diet conditions. The effect of ketone bodies on brain metabolism was also examined under ischemic conditions following cardiac resuscitation through our model simulations. The influence of ketone bodies on lactate dynamics on mammalian brain following ischemia is studied incorporating experimental data.

  15. LKB1 promotes metabolic flexibility in response to energy stress.

    Science.gov (United States)

    Parker, Seth J; Svensson, Robert U; Divakaruni, Ajit S; Lefebvre, Austin E; Murphy, Anne N; Shaw, Reuben J; Metallo, Christian M

    2017-09-01

    The Liver Kinase B1 (LKB1) tumor suppressor acts as a metabolic energy sensor to regulate AMP-activated protein kinase (AMPK) signaling and is commonly mutated in various cancers, including non-small cell lung cancer (NSCLC). Tumor cells deficient in LKB1 may be uniquely sensitized to metabolic stresses, which may offer a therapeutic window in oncology. To address this question we have explored how functional LKB1 impacts the metabolism of NSCLC cells using 13 C metabolic flux analysis. Isogenic NSCLC cells expressing functional LKB1 exhibited higher flux through oxidative mitochondrial pathways compared to those deficient in LKB1. Re-expression of LKB1 also increased the capacity of cells to oxidize major mitochondrial substrates, including pyruvate, fatty acids, and glutamine. Furthermore, LKB1 expression promoted an adaptive response to energy stress induced by anchorage-independent growth. Finally, this diminished adaptability sensitized LKB1-deficient cells to combinatorial inhibition of mitochondrial complex I and glutaminase. Together, our data implicate LKB1 as a major regulator of adaptive metabolic reprogramming and suggest synergistic pharmacological strategies for mitigating LKB1-deficient NSCLC tumor growth. Copyright © 2016. Published by Elsevier Inc.

  16. Processing and validation of intermediate energy evaluated data files

    International Nuclear Information System (INIS)

    2000-01-01

    Current accelerator-driven and other intermediate energy technologies require accurate nuclear data to model the performance of the target/blanket assembly, neutron production, activation, heating and damage. In a previous WPEC subgroup, SG13 on intermediate energy nuclear data, various aspects of intermediate energy data, such as nuclear data needs, experiments, model calculations and file formatting issues were investigated and categorized to come to a joint evaluation effort. The successor of SG13, SG14 on the processing and validation of intermediate energy evaluated data files, goes one step further. The nuclear data files that have been created with the aforementioned information need to be processed and validated in order to be applicable in realistic intermediate energy simulations. We emphasize that the work of SG14 excludes the 0-20 MeV data part of the neutron evaluations, which is supposed to be covered elsewhere. This final report contains the following sections: section 2: a survey of the data files above 20 MeV that have been considered for validation in SG14; section 3: a summary of the review of the 150 MeV intermediate energy data files for ENDF/B-VI and, more briefly, the other libraries; section 4: validation of the data library against an integral experiment with MCNPX; section 5: conclusions. (author)

  17. Mind your step: metabolic energy cost while walking an enforced gait pattern.

    Science.gov (United States)

    Wezenberg, D; de Haan, A; van Bennekom, C A M; Houdijk, H

    2011-04-01

    The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement is preserved. Nine healthy subjects walked three times at comfortable walking speed on an instrumented treadmill. The first trial consisted of unconstrained walking. In the next two trials, subject walked while following a step pattern projected on the treadmill. The steps projected were either composed of the averaged step characteristics (periodic trial), or were an exact copy including the variability of the steps taken while walking unconstrained (variable trial). Metabolic energy cost was assessed and center of pressure profiles were analyzed to determine task performance, and to gain insight into the balance control strategies applied. Results showed that the metabolic energy cost was significantly higher in both the periodic and variable trial (8% and 13%, respectively) compared to unconstrained walking. The variation in center of pressure trajectories during single limb support was higher when a gait pattern was enforced, indicating a more active ankle strategy. The increased metabolic energy cost could originate from increased preparatory muscle activation to ensure proper foot placement and a more active ankle strategy to control for lateral balance. These results entail that metabolic energy cost of walking can be influenced significantly by control strategies that do not necessary alter global gait characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Patricia M.; He, Qiang; Valente, Filipa M.A.; Xavier, Antonio V.; Zhou, Jizhong; Pereira, Ines A.C.; Louro, Ricardo O.

    2007-11-01

    Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressed genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe]hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energymetabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.

  19. Thermodynamic Aspects and Reprogramming Cellular Energy Metabolism during the Fibrosis Process

    Directory of Open Access Journals (Sweden)

    Alexandre Vallée

    2017-11-01

    Full Text Available Fibrosis is characterized by fibroblast proliferation and fibroblast differentiation into myofibroblasts, which generate a relaxation-free contraction mechanism associated with excessive collagen synthesis in the extracellular matrix, which promotes irreversible tissue retraction evolving towards fibrosis. From a thermodynamic point of view, the mechanisms leading to fibrosis are irreversible processes that can occur through changing the entropy production rate. The thermodynamic behaviors of metabolic enzymes involved in fibrosis are modified by the dysregulation of both transforming growth factor β (TGF-β signaling and the canonical WNT/β-catenin pathway, leading to aerobic glycolysis, called the Warburg effect. Molecular signaling pathways leading to fibrosis are considered dissipative structures that exchange energy or matter with their environment far from the thermodynamic equilibrium. The myofibroblastic cells arise from exergonic processes by switching the core metabolism from oxidative phosphorylation to glycolysis, which generates energy and reprograms cellular energy metabolism to induce the process of myofibroblast differentiation. Circadian rhythms are far-from-equilibrium thermodynamic processes. They directly participate in regulating the TGF-β and WNT/β-catenin pathways involved in energetic dysregulation and enabling fibrosis. The present review focusses on the thermodynamic implications of the reprogramming of cellular energy metabolism, leading to fibroblast differentiation into myofibroblasts through the positive interplay between TGF-β and WNT/β-catenin pathways underlying in fibrosis.

  20. Designing and determining validity and reliability of a questionnaire to identify factors affecting nutritional behavior among patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Naseh Esmaeili

    2017-06-01

    Full Text Available Background : A number of studies have shown a clear relationship between diet and component of metabolic syndrome. Based on the Theory of Reasoned Action (TRA, attitude and subjective norm are factors affecting behavioral intention and subsequently behavior. The aim of the present study is to design a valid questionnaire identifying factors affecting nutritional behavior among patients with metabolic syndrome. Materials and Methods: Via literature review, six focus group discussion and interview with nutrition specialists were performed to develop an instrument based on the theory of reasoned action. To determine validity of the instrument, content and face validity analyses with 15 expert panels conducted and also to determine reliability, Cronbach’s Alpha coefficient performed. Results: A draft of 100 items questionnaire was developed and after evaluation of validity and reliability, final questionnaire included 46 items: 17 items for attitude, 13 items for subjective norms and 16 items for behavioral intention. For the final questionnaire average of content validity index was 0/92 and Cronbach’s Alpha coefficient was 0/85. Conclusion: Based on the results of the current study the developed questionnaire is a valid and reliable instrument and it can be used to identify factors affecting nutritional behavior among people with metabolic syndrome based on the theory of reasoned action.

  1. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nielsen, Kim [Ramboll, Copenhagen (Denmark); Ruehl, Kelley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bunnik, Tim [MARIN (Netherlands); Touzon, Imanol [Tecnalia (Spain); Nam, Bo Woo [KRISO (Korea, Rep. of); Kim, Jeong Seok [KRISO (Korea, Rep. of); Janson, Carl Erik [Chalmers University (Sweden); Jakobsen, Ken-Robert [EDRMedeso (Norway); Crowley, Sarah [WavEC (Portugal); Vega, Luis [Hawaii Natural Energy Institute (United States); Rajagopalan, Krishnakimar [Hawaii Natural Energy Institute (United States); Mathai, Thomas [Glosten (United States); Greaves, Deborah [Plymouth University (United Kingdom); Ransley, Edward [Plymouth University (United Kingdom); Lamont-Kane, Paul [Queen' s University Belfast (United Kingdom); Sheng, Wanan [University College Cork (Ireland); Costello, Ronan [Wave Venture (United Kingdom); Kennedy, Ben [Wave Venture (United Kingdom); Thomas, Sarah [Floating Power Plant (Denmark); Heras, Pilar [Floating Power Plant (Denmark); Bingham, Harry [Technical University of Denmark (Denmark); Kurniawan, Adi [Aalborg University (Denmark); Kramer, Morten Mejlhede [Aalborg University (Denmark); Ogden, David [INNOSEA (France); Girardin, Samuel [INNOSEA (France); Babarit, Aurelien [EC Nantes (France); Wuillaume, Pierre-Yves [EC Nantes (France); Steinke, Dean [Dynamic Systems Analysis (Canada); Roy, Andre [Dynamic Systems Analysis (Canada); Beatty, Scott [Cascadia Coast Research (Canada); Schofield, Paul [ANSYS (United States); Kim, Kyong-Hwan [KRISO (Korea, Rep. of); Jansson, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden); BCAM (Spain); Hoffman, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2017-10-16

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 was proposed by Bob Thresher (National Renewable Energy Laboratory) in 2015 and approved by the OES Executive Committee EXCO in 2016. The kickoff workshop took place in September 2016, wherein the initial baseline task was defined. Experience from similar offshore wind validation/verification projects (OC3-OC5 conducted within the International Energy Agency Wind Task 30) [1], [2] showed that a simple test case would help the initial cooperation to present results in a comparable way. A heaving sphere was chosen as the first test case. The team of project participants simulated different numerical experiments, such as heave decay tests and regular and irregular wave cases. The simulation results are presented and discussed in this paper.

  2. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.

    Science.gov (United States)

    Amoedo, N D; Obre, E; Rossignol, R

    2017-08-01

    metabolism and to follow the efficiency of a treatment at a preclinical or clinical stage. Relevant descriptors of tumor metabolism are now required to better stratify patients for the development of personalized metabolic medicine. In this review, we discuss the current limitations in basic research and drug discovery in the field of cancer metabolism to foster the need for more clinically relevant target identification and validation. We discuss the design of adapted drug screening assays and compound efficacy evaluation methods for the discovery of innovative anti-cancer therapeutic approaches at the level of tumor energetics. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Report of a consultants meeting on impact of ageing on human energy, macro- and micronutrient metabolism and requirements

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency (IAEA) in Vienna convened a Consultants' Meeting from 9-13 December, 2002, to provide the Agency with current insights into the application of nuclear and isotopic techniques as a means to support research on the impact of ageing on human energy and macro-nutrient metabolism and requirements. The Consultants were: Dr. Anura Kurpad, Dr. Victoria Lambert, Dr. June Stevens, Dr. Benjamin Torun and Dr. Mauro Valencia-Juillerat. Dr. Pirjo Pietinen, from the World Health Organization, and Dr. Barry Popkin, from the University of North Carolina at Chapel Hill, were present as Observers during the initial part of the Meeting. Given the Consultants' areas of expertise and the topics covered in the discussions, the scope of the Meeting was modified as 'The Application of Nuclear and Isotopic Techniques to improve Research on Body Composition, Energy Expenditure, Non-communicable Chronic Diseases, and the Ageing Process, with particular emphasis on Developing Countries'. The objectives of the Meeting were to: i) Evaluate the overall scope of a new Co-ordinated Research Project (CRP) and suggest options for specific areas of research within that scope; ii) Suggest approaches to improve the use of nuclear and isotopic techniques for the evaluation of energy and macro-nutrient requirements of older adults in diverse populations of the developing world; iii) Discuss and make recommendations for the use of these techniques in the measurement of energy expenditure, physical activity, total body fat and body fat distribution; and, iv) Propose a harmonization of methods for direct use or for validation of field measurements aimed at obtaining a better understanding of the ageing process and its relation to the incidence of obesity and non-communicable chronic diseases in communities in transition. This meeting benefited from the broad areas of experience of scientists from both developed and developing countries. Their expertise in the use of

  4. Association Between Energy Balance and Metabolic Hormone Suppression During Ultraendurance Exercise.

    Science.gov (United States)

    Geesmann, Bjoern; Gibbs, Jenna C; Mester, Joachim; Koehler, Karsten

    2017-08-01

    Ultraendurance athletes often accumulate an energy deficit when engaging in ultraendurance exercise, and on completion of the exercise, they exhibit endocrine changes that are reminiscent of starvation. However, it remains unclear whether these endocrine changes are a result of the exercise per se or secondary to the energy deficit and, more important, whether these changes can be attenuated by increased dietary intake. The goal of the study was to assess the relationship between changes in key metabolic hormones after ultraendurance exercise and measures of energy balance. Metabolic hormones, as well as energy intake and expenditure, were assessed in 14 well-trained male cyclists who completed a 1230-km ultraendurance cycling event. After completion of the event, serum testosterone (-67% ± 18%), insulin-like growth factor-1 (IGF-1) (-45% ± 8%), and leptin (-79% ± 9%) were significantly suppressed (P deficit to a 3593-kcal surplus. The marked suppression of testosterone, IGF-1, and leptin after ultraendurance exercise is comparable to changes occurring during acute starvation. The suppression of IGF-1, but not that of other metabolic hormones, was strongly associated with the magnitude of the energy deficit, indicating that athletes who attained a greater energy deficit exhibited a more pronounced drop in IGF-1. Future studies are needed to determine whether increased dietary intake can attenuate the endocrine response to ultraendurance exercise.

  5. Validity and reliability of Nike + Fuelband for estimating physical activity energy expenditure.

    Science.gov (United States)

    Tucker, Wesley J; Bhammar, Dharini M; Sawyer, Brandon J; Buman, Matthew P; Gaesser, Glenn A

    2015-01-01

    The Nike + Fuelband is a commercially available, wrist-worn accelerometer used to track physical activity energy expenditure (PAEE) during exercise. However, validation studies assessing the accuracy of this device for estimating PAEE are lacking. Therefore, this study examined the validity and reliability of the Nike + Fuelband for estimating PAEE during physical activity in young adults. Secondarily, we compared PAEE estimation of the Nike + Fuelband with the previously validated SenseWear Armband (SWA). Twenty-four participants (n = 24) completed two, 60-min semi-structured routines consisting of sedentary/light-intensity, moderate-intensity, and vigorous-intensity physical activity. Participants wore a Nike + Fuelband and SWA, while oxygen uptake was measured continuously with an Oxycon Mobile (OM) metabolic measurement system (criterion). The Nike + Fuelband (ICC = 0.77) and SWA (ICC = 0.61) both demonstrated moderate to good validity. PAEE estimates provided by the Nike + Fuelband (246 ± 67 kcal) and SWA (238 ± 57 kcal) were not statistically different than OM (243 ± 67 kcal). Both devices also displayed similar mean absolute percent errors for PAEE estimates (Nike + Fuelband = 16 ± 13 %; SWA = 18 ± 18 %). Test-retest reliability for PAEE indicated good stability for Nike + Fuelband (ICC = 0.96) and SWA (ICC = 0.90). The Nike + Fuelband provided valid and reliable estimates of PAEE, that are similar to the previously validated SWA, during a routine that included approximately equal amounts of sedentary/light-, moderate- and vigorous-intensity physical activity.

  6. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease.

    Science.gov (United States)

    Smith, Reuben L; Soeters, Maarten R; Wüst, Rob C I; Houtkooper, Riekelt H

    2018-04-24

    The ability to efficiently adapt metabolism by substrate sensing, trafficking, storage and utilization, dependent on availability and requirement is known as metabolic flexibility. In this review, we discuss the breadth and depth of metabolic flexibility and its impact on health and disease. Metabolic flexibility is essential to maintain energy homeostasis in times of either caloric excess or caloric restriction, and in times of either low or high energy demand, such as during exercise. The liver, adipose tissue and muscle govern systemic metabolic flexibility and manage nutrient sensing, uptake, transport, storage and expenditure by communication via endocrine cues. At a molecular level, metabolic flexibility relies on the configuration of metabolic pathways which is regulated by key metabolic enzymes and transcription factors, many of which interact closely with the mitochondria. Disrupted metabolic flexibility, or metabolic inflexibility, however, is associated with many pathological conditions including metabolic syndrome, type 2 diabetes mellitus, and cancer. Multiple factors like dietary composition and feeding frequency, exercise training, and use of pharmacological compounds influence metabolic flexibility and will be discussed here. Lastly, we outline important advances in metabolic flexibility research and discuss medical horizons and translational aspects.

  7. Mitofusin 2 as a driver that controls energy metabolism and insulin signaling.

    Science.gov (United States)

    Zorzano, Antonio; Hernández-Alvarez, María Isabel; Sebastián, David; Muñoz, Juan Pablo

    2015-04-20

    Mitochondrial dynamics is a complex process that impacts on mitochondrial biology. Recent evidence indicates that proteins participating in mitochondrial dynamics have additional cellular roles. Mitofusin 2 (Mfn2) is a potent modulator of mitochondrial metabolism with an impact on energy metabolism in muscle, liver, and hypothalamic neurons. In addition, Mfn2 is subjected to tight regulation. Hence, factors such as proinflammatory cytokines, lipid availability, or glucocorticoids block its expression, whereas exercise and increased energy expenditure promote its upregulation. Importantly, Mfn2 controls cell metabolism and insulin signaling by limiting reactive oxygen species production and by modulation of endoplasmic reticulum stress. In this connection, it is critical to understand precisely the molecular mechanisms involved in the global actions of Mfn2. Future directions should concentrate into the analysis of those mechanisms, and to fully demonstrate that Mfn2 represents a cellular hub that senses the metabolic and hormonal milieu and drives the control of metabolic homeostasis.

  8. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators.

    Science.gov (United States)

    Roa, Juan; Tena-Sempere, Manuel

    2014-11-01

    It is well established that pubertal activation of the reproductive axis and maintenance of fertility are critically dependent on the magnitude of body energy reserves and the metabolic state of the organism. Hence, conditions of impaired energy homeostasis often result in deregulation of puberty and reproduction, whereas gonadal dysfunction can be associated with the worsening of the metabolic profile and, eventually, changes in body weight. While much progress has taken place in our knowledge about the neuroendocrine mechanisms linking metabolism and reproduction, our understanding of how such dynamic interplay happens is still incomplete. As paradigmatic example, much has been learned in the last two decades on the reproductive roles of key metabolic hormones (such as leptin, insulin and ghrelin), their brain targets and the major transmitters and neuropeptides involved. Yet, the molecular mechanisms whereby metabolic information is translated and engages into the reproductive circuits remain largely unsolved. In this work, we will summarize recent developments in the characterization of the putative central roles of key cellular energy sensors, such as mTOR, in this phenomenon, and will relate these with other molecular mechanisms likely contributing to the brain coupling of energy balance and fertility. In doing so, we aim to provide an updated view of an area that, despite still underdeveloped, may be critically important to fully understand how reproduction and metabolism are tightly connected in health and disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses.

    Science.gov (United States)

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2017-08-01

    Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Validation of a metabolic network for Saccharomyces cerevisiae using mixed substrate studies.

    Science.gov (United States)

    Vanrolleghem, P A; de Jong-Gubbels, P; van Gulik, W M; Pronk, J T; van Dijken, J P; Heijnen, S

    1996-01-01

    Setting up a metabolic network model for respiratory growth of Saccharomyces cerevisiae requires the estimation of only two (energetic) stoichiometric parameters: (1) the operational PO ratio and (2) a growth-related maintenance factor k. It is shown, both theoretically and practically, how chemostat cultivations with different mixtures of two substrates allow unique values to be given to these unknowns of the proposed metabolic model. For the yeast and model considered, an effective PO ratio of 1.09 mol of ATP/mol of O (95% confidence interval 1.07-1.11) and a k factor of 0.415 mol of ATP/C-mol of biomass (0.385-0.445) were obtained from biomass substrate yield data on glucose/ethanol mixtures. Symbolic manipulation software proved very valuable in this study as it supported the proof of theoretical identifiability and significantly reduced the necessary computations for parameter estimation. In the transition from 100% glucose to 100% ethanol in the feed, four metabolic regimes occur. Switching between these regimes is determined by cessation of an irreversible reaction and initiation of an alternative reaction. Metabolic network predictions of these metabolic switches compared well with activity measurements of key enzymes. As a second validation of the network, the biomass yield of S. cerevisiae on acetate was also compared to the network prediction. An excellent agreement was found for a network in which acetate transport was modeled with a proton symport, while passive diffusion of acetate gave significantly higher yield predictions.

  11. Effects of energy-dense nutrient-poor snacks on the incidence of metabolic syndrome: a prospective approach in Tehran Lipid and Glucose Study.

    Science.gov (United States)

    Mirmiran, Parvin; Bahadoran, Zahra; Delshad, Hossein; Azizi, Fereidoun

    2014-05-01

    Increased consumption of energy-dense, nutrient-poor snacks is one of the major, growing concerns in relation to the alarming trend of overweight, obesity, and metabolic disorders worldwide. The aim of this study was to investigate whether consumption of energy-dense snacks could affect the occurrence of metabolic syndrome after 3 y of follow-up in adults. This longitudinal study was conducted within the framework of the Tehran Lipid and Glucose Study between 2006 and 2008 and 2009 and 2011, on 1466 adults, ages 19 to 70 y. The usual intake of participants was measured using a validated semiquantitative food frequency questionnaire at baseline. Biochemical and anthropometric measurements were assessed at baseline and 3 y later. Multiple logistic regression models were used to estimate the occurrence of metabolic syndrome (MetS) in each quartile of energy-dense snacks. Participants in the highest quartile of energy-dense snack consumption were significantly younger (33.8 versus 43.1 y; P consumption of salty snacks increased more than 50% (OR, 1.56; 95% CI, 1.01-2.40). Consumption of soft drinks had a borderline effect on the risk for MetS. More than 361 kcal/d from total energy-dense snacks independently increased the occurrence of MetS in the fourth compared the first quartile category (OR, 1.53; 95% CI, 1.03-2.29). The findings of this study demonstrated that higher consumption of energy-dense snacks could be a dietary risk factor for development of MetS. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. 31P-magnetic resonance spectroscopy: Impaired energy metabolism in latent hyperthyroidism

    International Nuclear Information System (INIS)

    Theissen, P.; Kaldewey, S.; Moka, D.; Bunke, J.; Voth, E.; Schicha, H.

    1993-01-01

    31 Phosphorous magnetic resonance spectroscopy allows an in vivo examination of energy metabolism. The present study was designed to evaluate whether in patients with latent hyperthyroidism alterations of muscle energy metabolism could be found similar to those observed in patients with overt hyperthyroidism. In 10 patients with overt hyperthyroidism before therapy and 20 with latent hyperthyroidism (also without therapy) and in 24 healthy volunteers magnetic resonance spectroscopy of the calf muscle was performed within a 1.5-Tesla magnet. Muscle concentrations of phosphocreatine, inorganic phosphate, and ATP were quantified compared to an external standard solution of K 2 HPO 4 . In the patients with overt hyperthyroidism and with latent hyperthyroidism a significant decrease of phosphocreatine was found. Further, the ATP concentration in patients with latent and manifest hyperthyroidism tended towards lower values. There were no significant differences in the decrease of phosphocreatine and ATP between both patient groups. Therefore, this study for the first time shows that alterations of energy metabolism in latent hyperthyroidism can be measured and that they are similar to those observed in overt hyperthyroidism. (orig.) [de

  13. Salinity modulates thermotolerance, energy metabolism and stress response in amphipods Gammarus lacustris

    Directory of Open Access Journals (Sweden)

    Kseniya P. Vereshchagina

    2016-11-01

    Full Text Available Temperature and salinity are important abiotic factors for aquatic invertebrates. We investigated the influence of different salinity regimes on thermotolerance, energy metabolism and cellular stress defense mechanisms in amphipods Gammarus lacustris Sars from two populations. We exposed amphipods to different thermal scenarios and determined their survival as well as activity of major antioxidant enzymes (peroxidase, catalase, glutathione S-transferase and parameters of energy metabolism (content of glucose, glycogen, ATP, ADP, AMP and lactate. Amphipods from a freshwater population were more sensitive to the thermal challenge, showing higher mortality during acute and gradual temperature change compared to their counterparts from a saline lake. A more thermotolerant population from a saline lake had high activity of antioxidant enzymes. The energy limitations of the freshwater population (indicated by low baseline glucose levels, downward shift of the critical temperature of aerobic metabolism and inability to maintain steady-state ATP levels during warming was observed, possibly reflecting a trade-off between the energy demands for osmoregulation under the hypo-osmotic condition of a freshwater environment and protection against temperature stress.

  14. High energy reactions in normal metabolism and ageing of animals

    International Nuclear Information System (INIS)

    Avdonina, E.N.; Nesmeyanov, N.

    1983-01-01

    Processes involving reactions on highly excited states are thought to be of great importance for normal metabolism and aging. Excess energy of the organism is transferred to result in the formation of highly excited states of macromolecules. UV, visible light or ionizing radiation created partially by the organism itself can change metabolic process rates. According to the authors, aging is associated with the defects of macromolecules owing to high energy processes. Gerontological changes in biological materials result from the elimination of low molecular weight molecules and from the formation of unsaturated compounds. Crosslinking of the compounds, accumulation of collagen and connective tissues, the energetic overload of the organism are listed as important features of aging. (V.N.)

  15. Cytosolic Calcium Coordinates Mitochondrial Energy Metabolism with Presynaptic Activity

    Science.gov (United States)

    Chouhan, Amit K.; Ivannikov, Maxim V.; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R.; Macleod, Gregory T.

    2012-01-01

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations which blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+, and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13nM). In summary, we show that when MNs fire at endogenous rates [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs. PMID:22279208

  16. In Vitro Effects of Sports and Energy Drinks on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    Science.gov (United States)

    Vinson, LaQuia A; Goodlett, Amy K; Huang, Ruijie; Eckert, George J; Gregory, Richard L

    2017-09-15

    Sports and energy drinks are being increasingly consumed and contain large amounts of sugars, which are known to increase Streptococcus mutans biofilm formation and metabolic activity. The purpose of this in vitro study was to investigate the effects of sports and energy drinks on S. mutans biofilm formation and metabolic activity. S. mutans UA159 was cultured with and without a dilution (1:3 ratio) of a variety of sports and energy drinks in bacterial media for 24 hours. The biofilm was washed, fixed, and stained. Biofilm growth was evaluated by reading absorbance of the crystal violet. Biofilm metabolic activity was measured by the biofilm-reducing XTT to a water-soluble orange compound. Gatorade Protein Recovery Shake and Starbucks Doubleshot Espresso Energy were found to significantly increase biofilm (30-fold and 22-fold, respectively) and metabolic activity (2-fold and 3-fold, respectively). However, most of the remaining drinks significantly inhibited biofilm growth and metabolic activity. Several sports and energy drinks, with sugars or sugar substitutes as their main ingredients inhibited S. mutans biofilm formation. Among the drinks evaluated, Gatorade Protein Recovery Chocolate Shake and Starbucks Doubleshot Energy appear to have cariogenic potential since they increased the biofilm formation and metabolic activity of S. mutans.

  17. Within-day energy deficiency and metabolic perturbation in male endurance athletes

    DEFF Research Database (Denmark)

    Torstveit, Monica K; Fahrenholtz, Ida Lysdahl; Stenqvist, Thomas B

    2018-01-01

    ) or normal RMR (RMRratio> 0.90, n=11). Despite no observed differences in 24-hour EB or EA between the groups, subjects with suppressed RMR spent more time in an energy deficit exceeding 400 kcal (20.9 [18.8 - 21.8] hours vs. 10.8 [2.5 - 16.4], P=0.023), and had larger single-hour energy deficits compared......Endurance athletes are at increased risk of relative energy deficiency associated with metabolic perturbation and impaired health. We aimed to estimate and compare within-day energy balance (WDEB) in male athletes with suppressed and normal resting metabolic rate (RMR) and explore if within...... to subjects with normal RMR (3265 ± 1963 kcal vs. -1340 ± 2439, P=0.023). Larger single-hour energy deficits were associated with higher cortisol levels (r = -0.499, P=0.004) and a lower testosterone:cortisol ratio (r = 0.431, P=0.015), but no associations with T3or fasting blood glucose were observed...

  18. Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism.

    Science.gov (United States)

    Goforth, Paulette B; Myers, Martin G

    The neuropeptide hypocretin is also commonly referred to as orexin, since its orexigenic action was recognized early. Orexin/hypocretin (OX) neurons project widely throughout the brain and the physiologic and behavioral functions of OX are much more complex than initially conceived based upon the stimulation of feeding. OX most notably controls functions relevant to attention, alertness, and motivation. OX also plays multiple crucial roles in the control of food intake, metabolism, and overall energy balance in mammals. OX signaling not only promotes food-seeking behavior upon short-term fasting to increase food intake and defend body weight, but, conversely, OX signaling also supports energy expenditure to protect against obesity. Furthermore, OX modulates the autonomic nervous system to control glucose metabolism, including during the response to hypoglycemia. Consistently, a variety of nutritional cues (including the hormones leptin and ghrelin) and metabolites (e.g., glucose, amino acids) control OX neurons. In this chapter, we review the control of OX neurons by nutritional/metabolic cues, along with our current understanding of the mechanisms by which OX and OX neurons contribute to the control of energy balance and metabolism.

  19. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation

    Science.gov (United States)

    Baker, Candice N.; Gidus, Sarah A.; Price, George F.; Peoples, Jessica N. R.

    2014-01-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh−/− embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547

  20. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.

    Science.gov (United States)

    Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N

    2015-03-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. Copyright © 2015 the American Physiological Society.

  1. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  2. Sex Differences in Energy Metabolism Need to Be Considered with Lifestyle Modifications in Humans

    Directory of Open Access Journals (Sweden)

    Betty N. Wu

    2011-01-01

    Full Text Available Women have a higher proportion of body fat compared to men. However, women consume fewer kilojoules per kilogram lean mass and burn fat more preferentially during exercise compared with men. During gestation, women store even greater amounts of fat that cannot be solely attributed to increased energy intake. These observations suggest that the relationship between kilojoules consumed and kilojoules utilised is different in men and women. The reason for these sex differences in energy metabolism is not known; however, it may relate to sex steroids, differences in insulin resistance, or metabolic effects of other hormones such as leptin. When considering lifestyle modifications, sex differences in energy metabolism should be considered. Moreover, elucidating the regulatory role of hormones in energy homeostasis is important for understanding the pathogenesis of obesity and perhaps in the future may lead to ways to reduce body fat with less energy restriction.

  3. Generation and Validation of the iKp1289 Metabolic Model for Klebsiella pneumoniae KPPR1

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Christopher S.; Rotman, Ella; Lathem, Wyndham W.; Tyo, Keith E. J.; Hauser, Alan R.; Mandel, Mark J.

    2017-02-15

    Klebsiella pneumoniae has a reputation for causing a wide range of infectious conditions, with numerous highly virulent and antibiotic-resistant strains. Metabolic models have the potential to provide insights into the growth behavior, nutrient requirements, essential genes, and candidate drug targets in these strains. Here we develop a metabolic model for KPPR1, a highly virulent strain of K. pneumoniae. We apply a combination of Biolog phenotype data and fitness data to validate and refine our KPPR1 model. The final model displays a predictive accuracy of 75% in identifying potential carbon and nitrogen sources for K. pneumoniae and of 99% in predicting nonessential genes in rich media. We demonstrate how this model is useful in studying the differences in the metabolic capabilities of the low-virulence MGH 78578 strain and the highly virulent KPPR1 strain. For example, we demonstrate that these strains differ in carbohydrate metabolism, including the ability to metabolize dulcitol as a primary carbon source. Our model makes numerous other predictions for follow-up verification and analysis.

  4. Energy Metabolism and Human Dosimetry of Tritium

    International Nuclear Information System (INIS)

    Galeriu, D.; Takeda, H.; Melintescu, A.; Trivedi, A.

    2005-01-01

    In the frame of current revision of human dosimetry of 14 C and tritium, undertaken by the International Commission of Radiological Protection, we propose a novel approach based on energy metabolism and a simple biokinetic model for the dynamics of dietary intake (organic 14 C, tritiated water and Organically Bound Tritium-OBT). The model predicts increased doses for HTO and OBT comparing to ICRP recommendations, supporting recent findings

  5. The role of energy & fatty acid metabolism in obesity and insulin resistance

    NARCIS (Netherlands)

    Heemskerk, Mattijs Maria

    2015-01-01

    In today’s world, more people die from complications of overweight than from underweight. But not all individuals are equally prone to develop metabolic complications, such as obesity and insulin resistance. This thesis focuses on the differences in the energy and fatty acid metabolism that play a

  6. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo

    Directory of Open Access Journals (Sweden)

    Sarah Sonnay

    2017-05-01

    Full Text Available Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS, several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers, the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here

  7. Interrelationships between mitochondrial fusion, energy metabolism and oxidative stress during development in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kayo [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Education and Research Support Center, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Hartman, Philip S. [Biology Department, Texas Christian University, Fort Worth, TX 76129 (United States); Ishii, Takamasa [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Suda, Hitoshi [School of High-Technology for Human Welfare, Tokai University, Nishino 317, Numazu, Shizuoka 410-0395 (Japan); Akatsuka, Akira [Education and Research Support Center, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Shoyama, Tetsuji [School of High-Technology for Human Welfare, Tokai University, Nishino 317, Numazu, Shizuoka 410-0395 (Japan); Miyazawa, Masaki [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Ishii, Naoaki, E-mail: nishii@is.icc.u-tokai.ac.jp [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan)

    2011-01-21

    Research highlights: {yields} Growth and development of a fzo-1 mutant defective in the fusion process of mitochondria was delayed relative to the wild type of Caenorhabditis elegans. {yields} Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. {yields} fzo-1 animals had significantly lower metabolism than did N2 and mev-1 overproducing superoxide from mitochondrial electron transport complex II. {yields} Mitochondrial fusion can profoundly affect energy metabolism and development. -- Abstract: Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development.

  8. Validity and reproducibility of resting metabolic rate measurements in rural Bangladeshi women: comparison of measurements obtained by Medgem and by Deltatrac device

    NARCIS (Netherlands)

    Alam, D.S.; Hulshof, P.J.M.; Roordink, D.; Meltzer, M.; Yunus, M.; Salam, M.A.; Raaij, van J.M.A.

    2005-01-01

    Objective:To assess reproducibility and validity of resting metabolic rate (RMR) of Bangladeshi women as measured with the MedGem device and using the Deltatrac metabolic monitor as a reference; and (2) to evaluate the FAO/WHO/UNU basal metabolic rate (BMR)-prediction equations. Design:In each of

  9. Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet

    Directory of Open Access Journals (Sweden)

    Seyfried B

    2009-09-01

    Full Text Available Malignant brain tumors are a significant health problem in children and adults and are largely unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration (the Warburg effect, malignant brain cancer can be managed through changes in metabolic environment. In contrast to malignant brain tumors that are mostly dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (β-hydroxybutyrate for energy in vivo when glucose levels are reduced. The transition from glucose to ketone bodies as a major energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells during extreme shifts in nutritional environment. Only those cells with a flexible genome, honed through millions of years of environmental forcing and variability selection, can transition from one energy state to another. We propose a different approach to brain cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective and less metabolically flexible tumor cells. This approach to brain cancer management is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with calorie restriction and the ketogenic diet. Issues of implementation and use protocols are discussed.

  10. Experimental ocean acidification alters the allocation of metabolic energy.

    Science.gov (United States)

    Pan, T-C Francis; Applebaum, Scott L; Manahan, Donal T

    2015-04-14

    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.

  11. Effects of photoperiod on energy metabolism and thermogenesis in ...

    African Journals Online (AJOL)

    Administrator

    2010-12-27

    Dec 27, 2010 ... levels, the responses of this species were studied in different photoperiods. Experiment data ... thermogenesis. Key words: Melano-bellied oriental vole, photoperiod, energy metabolism, brown adipose tissue, cytochrome c .... Folin phenol method with bovine serum albumin as standard (Lowry et al., 1951).

  12. The Role of Energy Metabolism in Cutaneous Sulfur Mustard Injury

    National Research Council Canada - National Science Library

    Martens, M. E

    2006-01-01

    .... Our research has shown that inhibition of energy metabolism and depletion of energy stores are a significant consequence of HD exposure and that this inhibition is severe enough to be a determining factor in both cell survival and repair of HD-induced damage. In this paper we present an overview of our results and conclusions to date and briefly discuss their implications.

  13. The use of a personal digital assistant for dietary self-monitoring does not improve the validity of self-reports of energy intake.

    Science.gov (United States)

    Yon, Bethany Ann; Johnson, Rachel K; Harvey-Berino, Jean; Gold, Beth Casey

    2006-08-01

    Underreporting of energy intake is a pervasive problem and resistant to improvement, especially among people with overweight and obesity. The goal of this study was to investigate whether the use of a personal digital assistant (PDA) for dietary self-monitoring would reduce underreporting prevalence and improve the validity of self-reported energy intake. Adults with overweight and obesity (n=61, 92% women, mean age 48.2 years, mean body mass index 32.3) were provided with a PalmZire 21 (Palm, Inc, Sunnyvale, CA) loaded with Calorie King's Diet Diary software (version 3.2.2, 2002, Family Health Network, Costa Mesa, CA). Subjects participated in a 24-week in-person behavioral weight control program and were asked to self-monitor their diet and exercise habits using the PDA. Basal metabolic rate and physical activity level were estimated at baseline. Energy intake from 7-day electronic food records were collected within the first month of the weight-control program. As subjects were actively losing weight, Bandini's adjustments were used to correct self-reported energy intake for weight loss. In this group, where 41% of the subjects were categorized as low-energy reporters, the use of a PDA did not improve validity of energy reporting when compared to what is reported in the literature.

  14. Construction and validation of educational materials for the prevention of metabolic syndrome in adolescents.

    Science.gov (United States)

    Moura, Ionara Holanda de; Silva, Antônia Fabiana Rodrigues da; Rocha, Aparecida do Espírito Santo de Holanda; Lima, Luisa Helena de Oliveira; Moreira, Thereza Maria Magalhães; Silva, Ana Roberta Vilarouca da

    2017-10-05

    To develop and validate an educational technology focused on prevention of metabolic syndrome among adolescents. This was methodological research. Using an integrative review, the available publications on the subject were analyzed. Then, this knowledge was used to describe the theoretical content and, with the help of a graphic designer, the art and layout of the pages were developed. In the third phase, the booklet was evaluated and validated by 21 specialists and 39 adolescents. Data collection included three different questionnaires, according to the focus of evaluation of each group of participants, analyzed for reliability (Cronbach's Alpha) and agreement by Infraclass Correlation Coefficient. The mean score attributed by technical content experts was 91.7%, and the content validity index, measured by experts responses, was 0.98, showing high reliability and agreement. In addition, the level of agreement of the positive responses given by adolescents was 88.4%. the educational booklet has proved to be a valid and reliable tool to be used for promoting adolescent health.

  15. Lymphocytes Mitochondrial Physiology as Biomarker of Energy Metabolism during Fasted and Fed Conditions

    Directory of Open Access Journals (Sweden)

    Erika Cortez

    2012-01-01

    Full Text Available Mitochondria are central coordinators of energy metabolism, and changes of their physiology have long been associated with metabolic disorders. Thus, observations of energy dynamics in different cell types are of utmost importance. Therefore, tools with quick and easy handling are needed for consistent evaluations of such interventions. In this paper, our main hypothesis is that during different nutritional situations lymphocytes mitochondrial physiology could be associated with the metabolism of other cell types, such as cardiomyocytes, and consequently be used as metabolic biomarker. Blood lymphocytes and heart muscle fibers were obtained from both fed and 24 h-fasted mice, and mitochondrial analysis was assessed by high-resolution respirometry and western blotting. Carbohydrate-linked oxidation and fatty acid oxidation were significantly higher after fasting. Carnitine palmitoil transferase 1 and uncouple protein 2 contents were increased in the fasted group, while the glucose transporters 1 and 4 and the ratio phosphorylated AMP-activated protein kinase/AMPK did not change between groups. In summary, under a nutritional status modification, mitochondria demonstrated earlier adaptive capacity than other metabolic sensors such as glucose transporters and AMPK, suggesting the accuracy of mitochondria physiology of lymphocytes as biomarker for metabolic changes.

  16. Mitochondrial biogenesis and energy production in differentiating murine stem cells: a functional metabolic study.

    Science.gov (United States)

    Han, Sungwon; Auger, Christopher; Thomas, Sean C; Beites, Crestina L; Appanna, Vasu D

    2014-02-01

    The significance of metabolic networks in guiding the fate of the stem cell differentiation is only beginning to emerge. Oxidative metabolism has been suggested to play a major role during this process. Therefore, it is critical to understand the underlying mechanisms of metabolic alterations occurring in stem cells to manipulate the ultimate outcome of these pluripotent cells. Here, using P19 murine embryonal carcinoma cells as a model system, the role of mitochondrial biogenesis and the modulation of metabolic networks during dimethyl sulfoxide (DMSO)-induced differentiation are revealed. Blue native polyacrylamide gel electrophoresis (BN-PAGE) technology aided in profiling key enzymes, such as hexokinase (HK) [EC 2.7.1.1], glucose-6-phosphate isomerase (GPI) [EC 5.3.1.9], pyruvate kinase (PK) [EC 2.7.1.40], Complex I [EC 1.6.5.3], and Complex IV [EC 1.9.3.1], that are involved in the energy budget of the differentiated cells. Mitochondrial adenosine triphosphate (ATP) production was shown to be increased in DMSO-treated cells upon exposure to the tricarboxylic acid (TCA) cycle substrates, such as succinate and malate. The increased mitochondrial activity and biogenesis were further confirmed by immunofluorescence microscopy. Collectively, the results indicate that oxidative energy metabolism and mitochondrial biogenesis were sharply upregulated in DMSO-differentiated P19 cells. This functional metabolic and proteomic study provides further evidence that modulation of mitochondrial energy metabolism is a pivotal component of the cellular differentiation process and may dictate the final destiny of stem cells.

  17. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism

    DEFF Research Database (Denmark)

    Jansen, S W; Akintola, A A; Roelfsema, F

    2015-01-01

    hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring...... of nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis...... may favour longevity without altering energy metabolism....

  18. Comparison of the metabolic energy cost of overground and treadmill walking in older adults.

    Science.gov (United States)

    Berryman, Nicolas; Gayda, Mathieu; Nigam, Anil; Juneau, Martin; Bherer, Louis; Bosquet, Laurent

    2012-05-01

    We assessed whether the metabolic energy cost of walking was higher when measured overground or on a treadmill in a population of healthy older adults. We also assessed the association between the two testing modes. Participants (n = 20, 14 men and 6 women aged between 65 and 83 years of age) were randomly divided into two groups. Half of them went through the overground-treadmill sequence while the other half did the opposite order. A familiarization visit was held for each participant prior to the actual testing. For both modes of testing, five walking speeds were experimented (0.67, 0.89, 1.11, 1.33 and 1.67 m s(-1)). Oxygen uptake was monitored for all walking speeds. We found a significant difference between treadmill and track metabolic energy cost of walking, whatever the walking speed. The results show that walking on the treadmill requires more metabolic energy than walking overground for all experimental speeds (P < 0.05). The association between both measures was low to moderate (0.17 < ICC < 0.65), and the standard error of measurement represented 6.9-15.7% of the average value. These data indicate that metabolic energy cost of walking results from a treadmill test does not necessarily apply in daily overground activities. Interventions aiming at reducing the metabolic energy cost of walking should be assessed with the same mode as it was proposed during the intervention. If the treadmill mode is necessary for any purposes, functional overground walking tests should be implemented to obtain a more complete and specific evaluation.

  19. Dietary Energy Source in Dairy Cows in Early Lactation: Metabolites and Metabolic Hormones

    NARCIS (Netherlands)

    Knegsel, van A.T.M.; Brand, van den H.; Graat, E.A.M.; Dijkstra, J.; Jorritsma, R.; Decuypere, M.P.; Tamminga, S.; Kemp, B.

    2007-01-01

    Negative energy balance-related metabolic disorders suggest that the balance between available lipogenic and glucogenic nutrients is important. The objectives of this study were to compare the effects of a glucogenic or a lipogenic diet on liver triacylglycerides (TAG), metabolites, and metabolic

  20. Resting and exercise energy metabolism in weight-reduced adults with severe obesity.

    Science.gov (United States)

    Hames, Kazanna C; Coen, Paul M; King, Wendy C; Anthony, Steven J; Stefanovic-Racic, Maja; Toledo, Frederico G S; Lowery, Jolene B; Helbling, Nicole L; Dubé, John J; DeLany, James P; Jakicic, John M; Goodpaster, Bret H

    2016-06-01

    To determine effects of physical activity (PA) with diet-induced weight loss on energy metabolism in adults with severe obesity. Adults with severe obesity (n = 11) were studied across 6 months of intervention, then compared with controls with less severe obesity (n = 7) or normal weight (n = 9). Indirect calorimetry measured energy metabolism during exercise and rest. Markers of muscle oxidation were determined by immunohistochemistry. Data were presented as medians. The intervention induced 7% weight loss (P = 0.001) and increased vigorous PA by 24 min/wk (P = 0.02). During exercise, energy expenditure decreased, efficiency increased (P ≤ 0.03), and fatty acid oxidation (FAO) did not change. Succinate dehydrogenase increased (P = 0.001), but fiber type remained the same. Post-intervention subjects' resting metabolism remained similar to controls. Efficiency was lower in post-intervention subjects compared with normal-weight controls exercising at 25 W (P ≤ 0.002) and compared with all controls exercising at 60% VO2peak (P ≤ 0.019). Resting and exercise FAO of post-intervention subjects remained similar to adults with less severe obesity. Succinate dehydrogenase and fiber type were similar across all body weight statuses. While metabolic adaptations to PA during weight loss occur in adults with severe obesity, FAO does not change. Resulting FAO during rest and exercise remains similar to adults with less severe obesity. © 2016 The Obesity Society.

  1. In silico search of energy metabolism inhibitors for alternative leishmaniasis treatments.

    Science.gov (United States)

    Silva, Lourival A; Vinaud, Marina C; Castro, Ana Maria; Cravo, Pedro Vítor L; Bezerra, José Clecildo B

    2015-01-01

    Leishmaniasis is a complex disease that affects mammals and is caused by approximately 20 distinct protozoa from the genus Leishmania. Leishmaniasis is an endemic disease that exerts a large socioeconomic impact on poor and developing countries. The current treatment for leishmaniasis is complex, expensive, and poorly efficacious. Thus, there is an urgent need to develop more selective, less expensive new drugs. The energy metabolism pathways of Leishmania include several interesting targets for specific inhibitors. In the present study, we sought to establish which energy metabolism enzymes in Leishmania could be targets for inhibitors that have already been approved for the treatment of other diseases. We were able to identify 94 genes and 93 Leishmania energy metabolism targets. Using each gene's designation as a search criterion in the TriTrypDB database, we located the predicted peptide sequences, which in turn were used to interrogate the DrugBank, Therapeutic Target Database (TTD), and PubChem databases. We identified 44 putative targets of which 11 are predicted to be amenable to inhibition by drugs which have already been approved for use in humans for 11 of these targets. We propose that these drugs should be experimentally tested and potentially used in the treatment of leishmaniasis.

  2. [Specific growth rate and the rate of energy metabolism in the ontogenesis of axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae)].

    Science.gov (United States)

    Vladimirova, I G; Kleĭmenov, S Iu; Alekseeva, T A; Radzinskaia, L I

    2003-01-01

    Concordant changes in the rate of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.

  3. Sex differences of human cortical blood flow and energy metabolism

    DEFF Research Database (Denmark)

    Aanerud, Joel; Borghammer, Per; Rodell, Anders

    2017-01-01

    cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral...... cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy...... turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity....

  4. Genotype by energy expenditure interaction with metabolic syndrome traits: the Portuguese healthy family study.

    Science.gov (United States)

    Santos, Daniel M V; Katzmarzyk, Peter T; Diego, Vincent P; Souza, Michele C; Chaves, Raquel N; Blangero, John; Maia, José A R

    2013-01-01

    Moderate-to-high levels of physical activity are established as preventive factors in metabolic syndrome development. However, there is variability in the phenotypic expression of metabolic syndrome under distinct physical activity conditions. In the present study we applied a Genotype X Environment interaction method to examine the presence of GxEE interaction in the phenotypic expression of metabolic syndrome. A total of 958 subjects, from 294 families of The Portuguese Healthy Family study, were included in the analysis. Total daily energy expenditure was assessed using a 3 day physical activity diary. Six metabolic syndrome related traits, including waist circumference, systolic blood pressure, glucose, HDL cholesterol, total cholesterol and triglycerides, were measured and adjusted for age and sex. GxEE examination was performed on SOLAR 4.3.1. All metabolic syndrome indicators were significantly heritable. The GxEE interaction model fitted the data better than the polygenic model (pmetabolic syndrome traits expression is significantly influenced by the interaction established between total daily energy expenditure and genotypes. Physical activity may be considered an environmental variable that promotes metabolic differences between individuals that are distinctively active.

  5. Citrate Defines a Regulatory Link Between Energy Metabolism and the Liver Hormone Hepcidin

    OpenAIRE

    Ladeira Courelas da Silva, Ana Rita

    2017-01-01

    Iron plays a critical role as an oxygen carrier in hemoglobin as well as a constituent of iron-sulfur clusters. Increasing evidence suggests that mechanisms maintaining iron homeostasis cross-talk to intermediary metabolism. The liver hormone hepcidin is the key regulator of systemic iron metabolism. Hepcidin transcriptional control is linked to the nutrient-sensing mTOR pathway, proliferative signals, gluconeogenic responses during starvation and hormones that modulate energy metabolism. The...

  6. Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K+ Rather than Glutamate.

    Science.gov (United States)

    DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia

    2017-01-01

    Brain activity involves essential functional and metabolic interactions between neurons and astrocytes. The importance of astrocytic functions to neuronal signaling is supported by many experiments reporting high rates of energy consumption and oxidative metabolism in these glial cells. In the brain, almost all energy is consumed by the Na + /K + ATPase, which hydrolyzes 1 ATP to move 3 Na + outside and 2 K + inside the cells. Astrocytes are commonly thought to be primarily involved in transmitter glutamate cycling, a mechanism that however only accounts for few % of brain energy utilization. In order to examine the participation of astrocytic energy metabolism in brain ion homeostasis, here we attempted to devise a simple stoichiometric relation linking glutamatergic neurotransmission to Na + and K + ionic currents. To this end, we took into account ion pumps and voltage/ligand-gated channels using the stoichiometry derived from available energy budget for neocortical signaling and incorporated this stoichiometric relation into a computational metabolic model of neuron-astrocyte interactions. We aimed at reproducing the experimental observations about rates of metabolic pathways obtained by 13 C-NMR spectroscopy in rodent brain. When simulated data matched experiments as well as biophysical calculations, the stoichiometry for voltage/ligand-gated Na + and K + fluxes generated by neuronal activity was close to a 1:1 relationship, and specifically 63/58 Na + /K + ions per glutamate released. We found that astrocytes are stimulated by the extracellular K + exiting neurons in excess of the 3/2 Na + /K + ratio underlying Na + /K + ATPase-catalyzed reaction. Analysis of correlations between neuronal and astrocytic processes indicated that astrocytic K + uptake, but not astrocytic Na + -coupled glutamate uptake, is instrumental for the establishment of neuron-astrocytic metabolic partnership. Our results emphasize the importance of K + in stimulating the activation of

  7. Lessons from "lower" organisms: what worms, flies, and zebrafish can teach us about human energy metabolism.

    Directory of Open Access Journals (Sweden)

    Amnon Schlegel

    2007-11-01

    Full Text Available A pandemic of metabolic diseases (atherosclerosis, diabetes mellitus, and obesity, unleashed by multiple social and economic factors beyond the control of most individuals, threatens to diminish human life span for the first time in the modern era. Given the redundancy and inherent complexity of processes regulating the uptake, transport, catabolism, and synthesis of nutrients, magic bullets to target these diseases will be hard to find. Recent studies using the worm Caenorhabditis elegans, the fly Drosophila melanogaster, and the zebrafish Danio rerio indicate that these "lower" metazoans possess unique attributes that should help in identifying, investigating, and even validating new pharmaceutical targets for these diseases. We summarize findings in these organisms that shed light on highly conserved pathways of energy homeostasis.

  8. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.

    Science.gov (United States)

    McCollom, Thomas M

    2007-12-01

    Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.

  9. Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea

    Science.gov (United States)

    McGlynn, Shawn E.

    2017-01-01

    Anaerobic methane oxidation in archaea is often presented to operate via a pathway of “reverse methanogenesis”. However, if the cumulative reactions of a methanogen are run in reverse there is no apparent way to conserve energy. Recent findings suggest that chemiosmotic coupling enzymes known from their use in methylotrophic and acetoclastic methanogens—in addition to unique terminal reductases—biochemically facilitate energy conservation during complete CH4 oxidation to CO2. The apparent enzyme modularity of these organisms highlights how microbes can arrange their energy metabolisms to accommodate diverse chemical potentials in various ecological niches, even in the extreme case of utilizing “reverse” thermodynamic potentials. PMID:28321009

  10. Characterization of energy and neurotransmitter metabolism in cortical glutamatergic neurons derived from human induced pluripotent stem cells: A novel approach to study metabolism in human neurons.

    Science.gov (United States)

    Aldana, Blanca I; Zhang, Yu; Lihme, Maria Fog; Bak, Lasse K; Nielsen, Jørgen E; Holst, Bjørn; Hyttel, Poul; Freude, Kristine K; Waagepetersen, Helle S

    2017-06-01

    Alterations in the cellular metabolic machinery of the brain are associated with neurodegenerative disorders such as Alzheimer's disease. Novel human cellular disease models are essential in order to study underlying disease mechanisms. In the present study, we characterized major metabolic pathways in neurons derived from human induced pluripotent stem cells (hiPSC). With this aim, cultures of hiPSC-derived neurons were incubated with [U- 13 C]glucose, [U- 13 C]glutamate or [U- 13 C]glutamine. Isotopic labeling in metabolites was determined using gas chromatography coupled to mass spectrometry, and cellular amino acid content was quantified by high-performance liquid chromatography. Additionally, we evaluated mitochondrial function using real-time assessment of oxygen consumption via the Seahorse XF e 96 Analyzer. Moreover, in order to validate the hiPSC-derived neurons as a model system, a metabolic profiling was performed in parallel in primary neuronal cultures of mouse cerebral cortex and cerebellum. These serve as well-established models of GABAergic and glutamatergic neurons, respectively. The hiPSC-derived neurons were previously characterized as being forebrain-specific cortical glutamatergic neurons. However, a comparable preparation of predominantly mouse cortical glutamatergic neurons is not available. We found a higher glycolytic capacity in hiPSC-derived neurons compared to mouse neurons and a substantial oxidative metabolism through the mitochondrial tricarboxylic acid (TCA) cycle. This finding is supported by the extracellular acidification and oxygen consumption rates measured in the cultured human neurons. [U- 13 C]Glutamate and [U- 13 C]glutamine were found to be efficient energy substrates for the neuronal cultures originating from both mice and humans. Interestingly, isotopic labeling in metabolites from [U- 13 C]glutamate was higher than that from [U- 13 C]glutamine. Although the metabolic profile of hiPSC-derived neurons in vitro was

  11. The Gut Microbiota Modulates Energy Metabolism in the Hibernating Brown Bear Ursus arctos.

    Science.gov (United States)

    Sommer, Felix; Ståhlman, Marcus; Ilkayeva, Olga; Arnemo, Jon M; Kindberg, Jonas; Josefsson, Johan; Newgard, Christopher B; Fröbert, Ole; Bäckhed, Fredrik

    2016-02-23

    Hibernation is an adaptation that helps many animals to conserve energy during food shortage in winter. Brown bears double their fat depots during summer and use these stored lipids during hibernation. Although bears seasonally become obese, they remain metabolically healthy. We analyzed the microbiota of free-ranging brown bears during their active phase and hibernation. Compared to the active phase, hibernation microbiota had reduced diversity, reduced levels of Firmicutes and Actinobacteria, and increased levels of Bacteroidetes. Several metabolites involved in lipid metabolism, including triglycerides, cholesterol, and bile acids, were also affected by hibernation. Transplantation of the bear microbiota from summer and winter to germ-free mice transferred some of the seasonal metabolic features and demonstrated that the summer microbiota promoted adiposity without impairing glucose tolerance, suggesting that seasonal variation in the microbiota may contribute to host energy metabolism in the hibernating brown bear. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Intestinal Microbiota Contributes to Energy Balance, Metabolic Inflammation, and Insulin Resistance in Obesity

    Directory of Open Access Journals (Sweden)

    Joseph F. Cavallari

    2017-09-01

    Full Text Available Obesity is associated with increased risk of developing metabolic diseases such as type 2 diabetes. The origins of obesity are multi-factorial, but ultimately rooted in increased host energy accumulation or retention. The gut microbiota has been implicated in control of host energy balance and nutrient extraction from dietary sources. The microbiota also impacts host immune status and dysbiosis-related inflammation can augment insulin resistance, independently of obesity. Advances in microbial metagenomic analyses and directly manipulating bacterial-host models of obesity have contributed to our understanding of the relationship between gut bacteria and metabolic disease. Foodborne, or drug-mediated perturbations to the gut microbiota can increase metabolic inflammation, insulin resistance, and dysglycemia. There is now some evidence that specific bacterial species can influence obesity and related metabolic defects such as insulin sensitivity. Components of bacteria are sufficient to impact obesity-related changes in metabolism. In fact, different microbial components derived from the bacterial cell wall can increase or decrease insulin resistance. Improving our understanding of the how components of the microbiota alter host metabolism is positioned to aid in the development of dietary interventions, avoiding triggers of dysbiosis, and generating novel therapeutic strategies to combat increasing rates of obesity and diabetes.

  13. The Genome Sequence of Methanohalophilus mahii SLPT Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments

    Directory of Open Access Journals (Sweden)

    Stefan Spring

    2010-01-01

    Full Text Available Methanohalophilus mahii is the type species of the genus Methanohalophilus, which currently comprises three distinct species with validly published names. Mhp. mahii represents moderately halophilic methanogenic archaea with a strictly methylotrophic metabolism. The type strain SLPT was isolated from hypersaline sediments collected from the southern arm of Great Salt Lake, Utah. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,012,424 bp genome is a single replicon with 2032 protein-coding and 63 RNA genes and part of the Genomic Encyclopedia of Bacteria and Archaea project. A comparison of the reconstructed energy metabolism in the halophilic species Mhp. mahii with other representatives of the Methanosarcinaceae reveals some interesting differences to freshwater species.

  14. The Genome Sequence of Methanohalophilus mahii SLPT Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments

    Energy Technology Data Exchange (ETDEWEB)

    Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Scheuner, Carmen [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Lykidis, A [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Brettin, Thomas S [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2010-01-01

    Methanohalophilus mahii is the type species of the genus Methanohalophilus, which currently comprises three distinct species with validly published names. Mhp. mahii represents moderately halophilic methanogenic archaea with a strictly methylotrophic metabolism. The type strain SLPT was isolated from hypersaline sediments collected from the southern arm of Great Salt Lake, Utah. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,012,424 bp genome is a single replicon with 2032 protein-coding and 63 RNA genes and part of the Genomic Encyclopedia of Bacteria and Archaea project. A comparison of the reconstructed energy metabolism in the halophilic species Mhp. mahii with other representatives of the Methanosarcinaceae reveals some interesting differences to freshwater species.

  15. The Genome Sequence of Methanohalophilus mahii SLPT Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments

    Energy Technology Data Exchange (ETDEWEB)

    Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Scheuner, Carmen [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Glavina Del Rio, Tijana [Joint Genome Institute, Walnut Creek, California; Tice, Hope [Joint Genome Institute, Walnut Creek, California; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Chen, Feng [Joint Genome Institute, Walnut Creek, California; Nolan, Matt [Joint Genome Institute, Walnut Creek, California; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Pitluck, Samuel [ORNL; Liolios, Konstantinos [Joint Genome Institute, Walnut Creek, California; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Lykidis, A [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia D [ORNL; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Detter, J. Chris [Joint Genome Institute, Walnut Creek, California; Brettin, Thomas S [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [ORNL; Bristow, James [Joint Genome Institute, Walnut Creek, California; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpidis, Nikos C [ORNL; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2010-12-01

    Methanohalophilus mahii is the type species of the genus Methanohalophilus, which currently comprises three distinct species with validly published names. Mhp. mahii represents moderately halophilic methanogenic archaea with a strictly methylotrophic metabolism. The type strain SLPT was isolated from hypersaline sediments collected from the southern arm of Great Salt Lake, Utah. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,012,424 bp genome is a single replicon with 2032 protein-coding and 63 RNA genes and part of the Genomic Encyclopedia of Bacteria and Archaea project. A comparison of the reconstructed energy metabolism in the halophilic species Mhp. mahii with other representatives of the Methanosarcinaceae reveals some interesting differences to freshwater species.

  16. Genetic modulation of energy metabolism in birds through mitochondrial function

    NARCIS (Netherlands)

    Tieleman, B. Irene; Versteegh, Maaike A.; Fries, Anthony; Helm, Barbara; Dingemanse, Niels J.; Gibbs, H. Lisle; Williams, Joseph B.

    2009-01-01

    Despite their central importance for the evolution of physiological variation, the genetic mechanisms that determine energy expenditure in animals have largely remained unstudied. We used quantitative genetics to confirm that both mass-specific and whole-organism basal metabolic rate (BMR) were

  17. Astrocyte glycogen and brain energy metabolism.

    Science.gov (United States)

    Brown, Angus M; Ransom, Bruce R

    2007-09-01

    The brain contains glycogen but at low concentration compared with liver and muscle. In the adult brain, glycogen is found predominantly in astrocytes. Astrocyte glycogen content is modulated by a number of factors including some neurotransmitters and ambient glucose concentration. Compelling evidence indicates that astrocyte glycogen breaks down during hypoglycemia to lactate that is transferred to adjacent neurons or axons where it is used aerobically as fuel. In the case of CNS white matter, this source of energy can extend axon function for 20 min or longer. Likewise, during periods of intense neural activity when energy demand exceeds glucose supply, astrocyte glycogen is degraded to lactate, a portion of which is transferred to axons for fuel. Astrocyte glycogen, therefore, offers some protection against hypoglycemic neural injury and ensures that neurons and axons can maintain their function during very intense periods of activation. These emerging principles about the roles of astrocyte glycogen contradict the long held belief that this metabolic pool has little or no functional significance.

  18. Energy Metabolism in the Liver

    OpenAIRE

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, p...

  19. Simultaneous Validation of Seven Physical Activity Questionnaires Used in Japanese Cohorts for Estimating Energy Expenditure: A Doubly Labeled Water Study.

    Science.gov (United States)

    Sasai, Hiroyuki; Nakata, Yoshio; Murakami, Haruka; Kawakami, Ryoko; Nakae, Satoshi; Tanaka, Shigeho; Ishikawa-Takata, Kazuko; Yamada, Yosuke; Miyachi, Motohiko

    2018-04-28

    Physical activity questionnaires (PAQs) used in large-scale Japanese cohorts have rarely been simultaneously validated against the gold standard doubly labeled water (DLW) method. This study examined the validity of seven PAQs used in Japan for estimating energy expenditure against the DLW method. Twenty healthy Japanese adults (9 men; mean age, 32.4 [standard deviation {SD}, 9.4] years, mainly researchers and students) participated in this study. Fifteen-day daily total energy expenditure (TEE) and basal metabolic rate (BMR) were measured using the DLW method and a metabolic chamber, respectively. Activity energy expenditure (AEE) was calculated as TEE - BMR - 0.1 × TEE. Seven PAQs were self-administered to estimate TEE and AEE. The mean measured values of TEE and AEE were 2,294 (SD, 318) kcal/day and 721 (SD, 161) kcal/day, respectively. All of the PAQs indicated moderate-to-strong correlations with the DLW method in TEE (rho = 0.57-0.84). Two PAQs (Japan Public Health Center Study [JPHC]-PAQ Short and JPHC-PAQ Long) showed significant equivalence in TEE and moderate intra-class correlation coefficients (ICC). None of the PAQs showed significantly equivalent AEE estimates, with differences ranging from -547 to 77 kcal/day. Correlations and ICCs in AEE were mostly weak or fair (rho = 0.02-0.54, and ICC = 0.00-0.44). Only JPHC-PAQ Short provided significant and fair agreement with the DLW method. TEE estimated by the PAQs showed moderate or strong correlations with the results of DLW. Two PAQs showed equivalent TEE and moderate agreement. None of the PAQs showed equivalent AEE estimation to the gold standard, with weak-to-fair correlations and agreements. Further studies with larger sample sizes are needed to confirm these findings.

  20. In Silico Genome-Scale Reconstruction and Validation of the Corynebacterium glutamicum Metabolic Network

    DEFF Research Database (Denmark)

    Kjeldsen, Kjeld Raunkjær; Nielsen, J.

    2009-01-01

    A genome-scale metabolic model of the Gram-positive bacteria Corynebacterium glutamicum ATCC 13032 was constructed comprising 446 reactions and 411 metabolite, based on the annotated genome and available biochemical information. The network was analyzed using constraint based methods. The model...... was extensively validated against published flux data, and flux distribution values were found to correlate well between simulations and experiments. The split pathway of the lysine synthesis pathway of C. glutamicum was investigated, and it was found that the direct dehydrogenase variant gave a higher lysine...... yield than the alternative succinyl pathway at high lysine production rates. The NADPH demand of the network was not found to be critical for lysine production until lysine yields exceeded 55% (mmol lysine (mmol glucose)(-1)). The model was validated during growth on the organic acids acetate...

  1. Formal validation of supervisory energy management systems for microgrids

    DEFF Research Database (Denmark)

    Sugumar, Gayathri; Selvamuthukumaran, R.; Dragicevic, T.

    2017-01-01

    techniques are available in the literature to monitor and control the energy flows among distributed RES in MGs, formal verification of those techniques was not proposed yet. The emphasis of this paper is to design and validate energy management system for a MG which consists of a solar photovoltaic (PV...

  2. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism.

    Science.gov (United States)

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle.

  3. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism

    Science.gov (United States)

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle. PMID:26039160

  4. Military training elicits marked increases in plasma metabolomic signatures of energy metabolism, lipolysis, fatty acid oxidation, and ketogenesis.

    Science.gov (United States)

    Karl, J Philip; Margolis, Lee M; Murphy, Nancy E; Carrigan, Christopher T; Castellani, John W; Madslien, Elisabeth H; Teien, Hilde-Kristin; Martini, Svein; Montain, Scott J; Pasiakos, Stefan M

    2017-09-01

    Military training studies provide unique insight into metabolic responses to extreme physiologic stress induced by multiple stressor environments, and the impacts of nutrition in mediating these responses. Advances in metabolomics have provided new approaches for extending current understanding of factors modulating dynamic metabolic responses in these environments. In this study, whole-body metabolic responses to strenuous military training were explored in relation to energy balance and macronutrient intake by performing nontargeted global metabolite profiling on plasma collected from 25 male soldiers before and after completing a 4-day, 51-km cross-country ski march that produced high total daily energy expenditures (25.4 MJ/day [SD 2.3]) and severe energy deficits (13.6 MJ/day [SD 2.5]). Of 737 identified metabolites, 478 changed during the training. Increases in 88% of the free fatty acids and 91% of the acylcarnitines, and decreases in 88% of the mono- and diacylglycerols detected within lipid metabolism pathways were observed. Smaller increases in 75% of the tricarboxylic acid cycle intermediates, and 50% of the branched-chain amino acid metabolites detected were also observed. Changes in multiple metabolites related to lipid metabolism were correlated with body mass loss and energy balance, but not with energy and macronutrient intakes or energy expenditure. These findings are consistent with an increase in energy metabolism, lipolysis, fatty acid oxidation, ketogenesis, and branched-chain amino acid catabolism during strenuous military training. The magnitude of the energy deficit induced by undereating relative to high energy expenditure, rather than macronutrient intake, appeared to drive these changes, particularly within lipid metabolism pathways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  5. Changes in energy metabolism accompanying pitting in blueberries stored at low temperature.

    Science.gov (United States)

    Zhou, Qian; Zhang, Chunlei; Cheng, Shunchang; Wei, Baodong; Liu, Xiuying; Ji, Shujuan

    2014-12-01

    Low-temperature storage and transport of blueberries is widely practiced in commercial blueberry production. In this research, the storage life of blueberries was extended at low temperature, but fruit stored for 30 d at 0°C pitted after 2d at room-temperature. Fruit cellular structure and physiological parameters accompanying pitting in blueberries were changed. The objective of this research was to characterise properties of energy metabolism accompanying pitting in blueberries during storage, including adenosine phosphates and mitochondrial enzymes involved in stress responses. Physiological and metabolic disorders, changes in cell ultrastructure, energy content and ATPase enzyme activity were observed in pitting blueberries. Energy shortages and increased activity of phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) were observed in fruit kept at shelf life. The results suggested that sufficient available energy status and a stable enzymatic system in blueberries collectively contribute to improve chilling tolerance, thereby alleviating pitting and maintaining quality of blueberry fruit in long-term cold storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Within-Day Energy Deficiency and Metabolic Perturbation in Male Endurance Athletes.

    Science.gov (United States)

    Torstveit, Monica Klungland; Fahrenholtz, Ida; Stenqvist, Thomas B; Sylta, Øystein; Melin, Anna

    2018-06-26

    Endurance athletes are at increased risk of relative energy deficiency associated with metabolic perturbation and impaired health. We aimed to estimate and compare within-day energy balance in male athletes with suppressed and normal resting metabolic rate (RMR) and explore whether within-day energy deficiency is associated with endocrine markers of energy deficiency. A total of 31 male cyclists, triathletes, and long-distance runners recruited from regional competitive sports clubs were included. The protocol comprised measurements of RMR by ventilated hood and energy intake and energy expenditure to predict RMR ratio (measured RMR/predicted RMR), energy availability, 24-hr energy balance and within-day energy balance in 1-hr intervals, assessment of body composition by dual-energy X-ray absorptiometry, and blood plasma analysis. Subjects were categorized as having suppressed (RMR ratio   0.90, n = 11) RMR. Despite there being no observed differences in 24-hr energy balance or energy availability between the groups, subjects with suppressed RMR spent more time in an energy deficit exceeding 400 kcal (20.9 [18.8-21.8] hr vs. 10.8 [2.5-16.4], p = .023) and had larger single-hour energy deficits compared with subjects with normal RMR (3,265 ± 1,963 kcal vs. -1,340 ± 2,439, p = .023). Larger single-hour energy deficits were associated with higher cortisol levels (r = -.499, p = .004) and a lower testosterone:cortisol ratio (r = .431, p = .015), but no associations with triiodothyronine or fasting blood glucose were observed. In conclusion, within-day energy deficiency was associated with suppressed RMR and catabolic markers in male endurance athletes.

  7. Hypothalamic energy metabolism is impaired by doxorubicin independently of inflammation in non-tumour-bearing rats.

    Science.gov (United States)

    Antunes, Barbara M M; Lira, Fabio Santos; Pimentel, Gustavo Duarte; Rosa Neto, José Cesar; Esteves, Andrea Maculano; Oyama, Lila Missae; de Souza, Cláudio Teodoro; Gonçalves, Cinara Ludvig; Streck, Emilio Luiz; Rodrigues, Bruno; dos Santos, Ronaldo Vagner; de Mello, Marco Túlio

    2015-08-01

    We sought to explore the effects of doxorubicin on inflammatory profiles and energy metabolism in the hypothalamus of rats. To investigate these effects, we formed two groups: a control (C) group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control (C) or DOXO groups. The hypothalamus was collected. The levels of interleukin (IL)-1β, IL-6, IL-10, TNF-α and energy metabolism (malate dehydrogenase, complex I and III activities) were analysed in the hypothalamus. The DOXO group exhibited a decreased body weight (p hypothalamus is a central organ that regulates a great number of functions, such as food intake, temperature and energy expenditure, among others. Doxorubicin can lead to deep anorexia and metabolic chaos; thus, we observed the effect of this chemotherapeutic drug on the inflammation and metabolism in rats after the administration of doxorubicin in order to understand the central effect in the hypothalamus. Drug treatment by doxorubicin is used as a cancer therapy; however the use of this drug may cause harmful alterations to the metabolism. Thus, further investigations are needed on the impact of drug therapy over the long term. Copyright © 2015 John Wiley & Sons, Ltd.

  8. LGR4 and its role in intestinal protection and energy metabolism

    Directory of Open Access Journals (Sweden)

    Ziru eLi

    2015-08-01

    Full Text Available Leucine-rich repeat-containing G protein-coupled receptors (LGRs were identified by the unique nature of their long leucine-rich repeat extracellular domains. Distinct from classical G protein-coupled receptors which act via G proteins, LGR4 functions mainly through Wnt/β-catenin signaling to regulate cell proliferation, differentiation, and adult stem cell homeostasis. LGR4 is widely expressed in tissues ranging from the reproductive system, urinary system, sensory organs, digestive system, and the central nervous system, indicating LGR4 may have multiple functions in development. Here we focus on the digestive system by reviewing its effects on crypt cells differentiation and stem cells maintenance, which are important for cell regeneration after injury. Through effects on Wnt/β-catenin signaling and cell proliferation, LGR4 and its endogenous ligands, R-spondins, are involved in colon tumorigenesis. LGR4 also contributes to regulation of energy metabolism, including food intake, energy expenditure and lipid metabolism, as well as pancreatic β-cell proliferation and insulin secretion. This review summarizes the identification of LGR4, its endogenous ligand, ligand-receptor binding and intracellular signaling. Physiological functions include intestinal development and energy metabolism. The potential effects of LGR4 and its ligand in the treatment of inflammatory bowel disease, chemoradiotherapy induced gut damage, colorectal cancer and diabetes are also discussed.

  9. Test-retest studies of cerebral glucose metabolism using fluorine-18 deoxyglucose: validation of method

    International Nuclear Information System (INIS)

    Brooks, R.A.; Di Chiro, G.; Zukerberg, B.W.; Bairamian, D.; Larson, S.M.

    1987-01-01

    In studies using [ 18 F]deoxyglucose (FDG), one often wants to compare metabolic rates following stimulation (drug or motor-sensory) with the baseline values. However, because of reproducibility problems with baseline variations of 25% in the same individual not uncommon, the global effect of the stimulation may be difficult to see. One approach to this problem is to perform the two studies sequentially. This means that, with the 110-min half-life of 18 F, one must take into account the residual activity from the first study when calculating metabolic rates for the second. We performed TEST-RETEST baseline studies on four subjects, with a 1-hr interval between injections. These studies were done without stimulation, in order to validate the repeatability of the method. To reduce the amount of residual activity from the first study, the first injection was only 2 mCi in three cases, and only 1 mCi in one case, out of a total injected dose of 5 mCi. A correction for residual activity was included in the RETEST calculation of metabolic rate. The results showed a global metabolic shift between the two studies of 2% to 9%. An error analysis shows that the shift could be further reduced if anatomically comparable scans are done at comparable postinjection times

  10. Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina

    International Nuclear Information System (INIS)

    Recalde, Marina; Ramos-Martin, Jesús

    2012-01-01

    The link between energy consumption and economic growth has been widely studied in the economic literature. Understanding this relationship is important from both an environmental and a socio-economic point of view, as energy consumption is crucial to economic activity and human environmental impact. This relevance is even higher for developing countries, since energy consumption per unit of output varies through the phases of development, increasing from an agricultural stage to an industrial one and then decreasing for certain service based economies. In the Argentinean case, the relevance of energy consumption to economic development seems to be particularly important. While energy intensity seems to exhibit a U-Shaped curve from 1990 to 2003 decreasing slightly after that year, total energy consumption increases along the period of analysis. Why does this happen? How can we relate this result with the sustainability debate? All these questions are very important due to Argentinean hydrocarbons dependence and due to the recent reduction in oil and natural gas reserves, which can lead to a lack of security of supply. In this paper we study Argentinean energy consumption pattern for the period 1990–2007, to discuss current and future energy and economic sustainability. To this purpose, we developed a conventional analysis, studying energy intensity, and a non conventional analysis, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) accounting methodology. Both methodologies show that the development process followed by Argentina has not been good enough to assure sustainability in the long term. Instead of improving energy use, energy intensity has increased. The current composition of its energy mix, and the recent economic crisis in Argentina, as well as its development path, are some of the possible explanations. -- Highlights: ► We analyze Argentinean energy consumption and social metabolism using MuSIASEM.

  11. Hypothalamic control of energy metabolism via the autonomic nervous system

    NARCIS (Netherlands)

    Kalsbeek, A.; Bruinstroop, E.; Yi, C. X.; Klieverik, L. P.; La Fleur, S. E.; Fliers, E.

    2010-01-01

    The hypothalamic control of hepatic glucose production is an evident aspect of energy homeostasis. In addition to the control of glucose metabolism by the circadian timing system, the hypothalamus also serves as a key relay center for (humoral) feedback information from the periphery, with the

  12. The SCFA receptor GPR43 and energy metabolism

    Directory of Open Access Journals (Sweden)

    Ikuo eKimura

    2014-06-01

    Full Text Available Free fatty acids (FFAs are essential nutrients and act as signaling molecules in various cellular processes via binding with FFA receptors. Of these receptors, GPR43 is activated by short chain fatty acids (SCFAs; e.g., acetate, propionate, and butyrate. During feeding, SCFAs are produced by microbial fermentation of dietary fiber in the gut, and these SCFAs become important energy sources for the host. The gut microbiota affects nutrient acquisition and energy regulation of the host and can influence the development of obesity, insulin resistance, and diabetes. Recently, GPR43 has been reported to regulate host energy homeostasis in the gastrointestinal tract and adipose tissues. Hence, GPR43 is also thought to be a potential drug target for metabolic disorders, such as obesity and diabetes. In this review, we summarize the identification, structure, and activities of GPR43, with a focus on host energy regulation, and present an essential overview of our current understanding of its physiological roles in host energy regulation that is mediated by gut microbiota. We also discuss the potential for GPR43 as a therapeutic target.

  13. α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus Controls Energy Metabolism Flexibility

    Directory of Open Access Journals (Sweden)

    Alexandre Fisette

    2016-10-01

    Full Text Available α/β-Hydrolase domain 6 (ABHD6 is a monoacylglycerol hydrolase that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG. Although complete or peripheral ABHD6 loss of function is protective against diet-induced obesity and insulin resistance, the role of ABHD6 in the central control of energy balance is unknown. Using a viral-mediated knockout approach, targeted endocannabinoid measures, and pharmacology, we discovered that mice lacking ABHD6 from neurons of the ventromedial hypothalamus (VMHKO have higher VMH 2-AG levels in conditions of endocannabinoid recruitment and fail to physiologically adapt to key metabolic challenges. VMHKO mice exhibited blunted fasting-induced feeding and reduced food intake, energy expenditure, and adaptive thermogenesis in response to cold exposure, high-fat feeding, and dieting (transition to a low-fat diet. Our findings identify ABHD6 as a regulator of the counter-regulatory responses to major metabolic shifts, including fasting, nutrient excess, cold, and dieting, thereby highlighting the importance of ABHD6 in the VMH in mediating energy metabolism flexibility.

  14. Interplay Between Diet, Gut Microbiota, Immune Cells and Energy Metabolism in Obesity Development

    DEFF Research Database (Denmark)

    Danneskiold-Samsøe, Niels Banhos

    Obesity and associated metabolic disorders such as type 2 diabetes are major causes of morbidity and mortality globally. A major contributor to development of the obesity pandemic has been the increasing intake of energy dense diets, consisting of dietary fats combined with high-glycemic carbohyd......Obesity and associated metabolic disorders such as type 2 diabetes are major causes of morbidity and mortality globally. A major contributor to development of the obesity pandemic has been the increasing intake of energy dense diets, consisting of dietary fats combined with high......-glycemic carbohydrates such as refined grains and sugars. The lack of sufficient therapeutic options for obesity, and the inability of most individuals to reduce energy intake or increase expenditure highlight the importance of understanding its underlying biological mechanisms. Obesity is associated with low...... in glucose intolerance without inflammatory changes in visceral fat or the liver, but with changes to the gut microbiota. Finally we find that fat cell specific activity of cyclooxygenase-2, an enzyme important for metabolism of fat, decreases body fat mass and increases insulin sensitivity associated...

  15. Proteomic analysis indicates that mitochondrial energy metabolism in skeletal muscle tissue is negatively correlated with feed efficiency in pigs

    Science.gov (United States)

    Fu, Liangliang; Xu, Yueyuan; Hou, Ye; Qi, Xiaolong; Zhou, Lian; Liu, Huiying; Luan, Yu; Jing, Lu; Miao, Yuanxin; Zhao, Shuhong; Liu, Huazhen; Li, Xinyun

    2017-03-01

    Feed efficiency (FE) is a highly important economic trait in pig production. Investigating the molecular mechanisms of FE is essential for trait improvement. In this study, the skeletal muscle proteome of high-FE and low-FE pigs were investigated by the iTRAQ approach. A total of 1780 proteins were identified, among which 124 proteins were differentially expressed between the high- and low-FE pigs, with 74 up-regulated and 50 down-regulated in the high-FE pigs. Ten randomly selected differentially expressed proteins (DEPs) were validated by Western blotting and quantitative PCR (qPCR). Gene ontology (GO) analysis showed that all the 25 DEPs located in mitochondria were down-regulated in the high-FE pigs. Furthermore, the glucose-pyruvate-tricarboxylic acid (TCA)-oxidative phosphorylation energy metabolism signaling pathway was found to differ between high- and low-FE pigs. The key enzymes involved in the conversion of glucose to pyruvate were up-regulated in the high-FE pigs. Thus, our results suggested mitochondrial energy metabolism in the skeletal muscle tissue was negatively correlated with FE in pigs, and glucose utilization to generate ATP was more efficient in the skeletal muscle tissue of high-FE pigs. This study offered new targets and pathways for improvement of FE in pigs.

  16. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia.

    Directory of Open Access Journals (Sweden)

    Michael Berney

    Full Text Available Mycobacteria are a group of obligate aerobes that require oxygen for growth, but paradoxically have the ability to survive and metabolize under hypoxia. The mechanisms responsible for this metabolic plasticity are unknown. Here, we report on the adaptation of Mycobacterium smegmatis to slow growth rate and hypoxia using carbon-limited continuous culture. When M. smegmatis is switched from a 4.6 h to a 69 h doubling time at a constant oxygen saturation of 50%, the cells respond through the down regulation of respiratory chain components and the F1Fo-ATP synthase, consistent with the cells lower demand for energy at a reduced growth rate. This was paralleled by an up regulation of molecular machinery that allowed more efficient energy generation (i.e. Complex I and the use of alternative electron donors (e.g. hydrogenases and primary dehydrogenases to maintain the flow of reducing equivalents to the electron transport chain during conditions of severe energy limitation. A hydrogenase mutant showed a 40% reduction in growth yield highlighting the importance of this enzyme in adaptation to low energy supply. Slow growing cells at 50% oxygen saturation subjected to hypoxia (0.6% oxygen saturation responded by switching on oxygen scavenging cytochrome bd, proton-translocating cytochrome bc1-aa3 supercomplex, another putative hydrogenase, and by substituting NAD+-dependent enzymes with ferredoxin-dependent enzymes thus highlighting a new pattern of mycobacterial adaptation to hypoxia. The expression of ferredoxins and a hydrogenase provides a potential conduit for disposing of and transferring electrons in the absence of exogenous electron acceptors. The use of ferredoxin-dependent enzymes would allow the cell to maintain a high carbon flux through its central carbon metabolism independent of the NAD+/NADH ratio. These data demonstrate the remarkable metabolic plasticity of the mycobacterial cell and provide a new framework for understanding their

  17. Validation of resting metabolic rate prediction equations for teenagers

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Santos da Fonseca

    2007-09-01

    Full Text Available The resting metabolic rate (RMR can be defi ned as the minimum rate of energy spent and represents the main component of the energetic outlay. The purpose of this study is to validate equations to predict the resting metabolic rate in teenagers (103 individuals, being 51 girls and 52 boys, with age between 10 and 17 years from Florianópolis – SC – Brazil. It was measured: the body weight, body height, skinfolds and obtained the lean and body fat mass through bioimpedance. The nonproteic RMR was measured by Weir’s equation (1949, utilizing AeroSport TEEM-100 gas analyzer. The studied equations were: Harry and Benedict (1919, Schofi eld (1985, WHO/FAO/UNU (1985, Henry and Rees (1991, Molnár et al. (1998, Tverskaya et al. (1998 and Müller et al. (2004. In order to study the cross-validation of the RMR prediction equations and its standard measure (Weir 1949, the following statistics procedure were calculated: Pearson’s correlation (r ≥ 0.70, the “t” test with the signifi cance level of p0.05 in relation to the standard measure, with exception of the equations suggested for Tverskaya et al. (1998, and the two models of Müller et al (2004. Even though there was not a signifi cant difference, only the models considered for Henry and Rees (1991, and Molnár et al. (1995 had gotten constant error variation under 5%. All the equations analyzed in the study in girls had not reached criterion of correlation values of 0.70 with the indirect calorimetry. Analyzing the prediction equations of RMR in boys, all of them had moderate correlation coeffi cients with the indirect calorimetry, however below 0.70. Only the equation developed for Tverskaya et al. (1998 presented differences (p ABSTRACT0,05 em relação à medida padrão (Weir 1949, com exceção das equações sugeridas por Tverskaya et al. (1998 e os dois modelos de Müller et al (2004. Mesmo não havendo diferença signifi cativa, somente os modelos propostos por Henry e Rees (1991

  18. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Computational Modeling of Fluctuations in Energy and Metabolic Pathways of Methanogenic Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Luthey-Schulten, Zaida [Univ. of Illinois, Urbana-Champaign, IL (United States). Dept. of Chemistry; Carl R. Woese Inst. for Genomic Biology

    2017-01-04

    The methanogenic archaea, anaerobic microbes that convert CO2 and H2 and/or other small organic fermentation products into methane, play an unusually large role in the global carbon cycle. As they perform the final step in the anaerobic breakdown of biomass, methanogens are a biogenic source of an estimated one billion tons methane each year. Depending on the location, produced methane can be considered as either a greenhouse gas (agricultural byproduct), sequestered carbon storage (methane hydrate deposits), or a potential energy source (organic wastewater treatment). These microbes therefore represent an important target for biotechnology applications. Computational models of methanogens with predictive power are useful aids in the adaptation of methanogenic systems, but need to connect processes of wide-ranging time and length scales. In this project, we developed several computational methodologies for modeling the dynamic behavior of entire cells that connects stochastic reaction-diffusion dynamics of individual biochemical pathways with genome-scale modeling of metabolic networks. While each of these techniques were in the realm of well-defined computational methods, here we integrated them to develop several entirely new approaches to systems biology. The first scientific aim of the project was to model how noise in a biochemical pathway propagates into cellular phenotypes. Genetic circuits have been optimized by evolution to regulate molecular processes despite stochastic noise, but the effect of such noise on a cellular biochemical networks is currently unknown. An integrated stochastic/systems model of Escherichia coli species was created to analyze how noise in protein expression gives—and therefore noise in metabolic fluxes—gives rise to multiple cellular phenotype in isogenic population. After the initial work developing and validating methods that allow characterization of the heterogeneity in the model organism E. coli, the project shifted toward

  20. Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective.

    Science.gov (United States)

    Massucci, Francesco A; DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Castillo, Isaac Perez; Marinari, Enzo; De Martino, Andrea

    2013-10-10

    The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange.

  1. Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective

    Science.gov (United States)

    2013-01-01

    Background The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. Results We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. Conclusions These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange. PMID:24112710

  2. Energy metabolism in BPH/2J genetically hypertensive mice.

    Science.gov (United States)

    Jackson, Kristy L; Nguyen-Huu, Thu-Phuc; Davern, Pamela J; Head, Geoffrey A

    2014-05-01

    Recent evidence indicates that genetic hypertension in BPH/2J mice is sympathetically mediated, but these mice also have lower body weight (BW) and elevated locomotor activity compared with BPN/3J normotensive mice, suggestive of metabolic abnormalities. The aim of the present study was to determine whether hypertension in BPH/2J mice is associated with metabolic differences. Whole-body metabolic and cardiovascular parameters were measured over 24 h by indirect calorimetry and radiotelemetry respectively, in conscious young (10-13 weeks) and older (22-23 weeks) BPH/2J, normotensive BPN/3J and C57Bl6 mice. Blood pressure (BP) was greater in BPH/2J compared with both normotensive strains at both ages (PBPH/2J compared with BPN/3J mice (PBPH/2J and normotensive mice when adjusted for activity (P>0.1) suggesting differences in this relationship are not responsible for hypertension. EchoMRI revealed that percentage body composition was comparable in BPN/3J and BPH/2J mice (P>0.1) and both strains gained weight similarly with age (P=0.3). Taken together, the present findings indicate that hypertension in BPH/2J mice does not appear to be related to altered energy metabolism.

  3. Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing.

    Science.gov (United States)

    Villa, R F; Ferrari, F; Gorini, A

    2012-12-27

    Ageing is one of the main risk factors for brain disorders. According to the neuroendocrine theory, ageing modifies the sensitivity of hypothalamus-pituitary-adrenal axis to homoeostatic signals coming from the cerebral cortex. The relationships between the energy metabolism of these areas have not been considered yet, in particular with respect to ageing. For these reasons, this study was undertaken to systematically investigate in female Sprague-Dawley rats aged 4, 6, 12, 18, 24, 28 months and in 4-month-old male ones, the catalytic properties of energy-linked enzymes of the Krebs' cycle, electron transport chain, glutamate and related amino acids on different mitochondrial subpopulations, i.e. non-synaptic perikaryal and intra-synaptic (two types) mitochondria. The biochemical enzymatic pattern of these mitochondria shows different expression of the above-mentioned enzymatic activities in the investigated brain areas, including frontal cerebral cortex, hippocampus, striatum, hypothalamus and hypophysis. The study shows that: (i) the energy metabolism of the frontal cerebral cortex is poorly affected by physiological ageing; (ii) the biochemical machinery of non-synaptic perikaryal mitochondria is differently expressed in the considered brain areas; (iii) at 4-6 months, hypothalamus and hypophysis possess lower oxidative metabolism with respect to the frontal cerebral cortex while (iv), during ageing, the opposite situation occurs. We hypothesised that these metabolic modifications likely try to grant HPA functionality in response to the incoming external stress stimuli increased during ageing. It is particularly notable that age-related changes in brain bioenergetics and in mitochondrial functionality may be considered as remarkable factors during physiological ageing and should play important roles in predisposing the brain to physiopathological events, tightly related to molecular mechanisms evoked for pharmacological treatments. Copyright © 2012 IBRO

  4. Regional cerebral energy metabolism during intravenous anesthesia with etomidate, ketamine or thiopental

    International Nuclear Information System (INIS)

    Davis, D.W.

    1987-01-01

    Regional brain glucose utilization (rCMRglc) was measured in rats during steady-state levels of intravenous anesthesia to determine if alterations in brain function due to anesthesia could provide information on the mechanisms of anesthesia. Intravenous anesthetics from three different chemical classes were studied: etomidate, ketamine and thiopental. All rCMRglc experiments were conducted in freely moving rats in isolation chambers, with the use of [6- 14 C] glucose and guantitative autoradiography. Etomidate caused a rostral-to-caudal gradient of depression of rCMRglc. The four doses of etomidate did not differ in their effects on energy metabolism. Sub-anesthetic (5 mg kg -1 ) and anesthetic (30 mg kg -1 ) doses of ketamine produced markedly different patterns of behavior. Brain energy metabolism during the sub-anesthetic dose was stimulated in most regions, while the anesthetic dose selectively stimulated the hippocampus, leaving most brain regions unaffected. Thiopental produced a dose-dependent reduction of rCMRglc in all gray matter regions. No brain region was selectively affected. Comparison of the drug-specific alterations of cerebral energy metabolism suggests these anesthetics do not act through a common mechanism. The hypothesis that each acts by binding to specific cell membrane receptors is consistent with these observations

  5. Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions

    Science.gov (United States)

    Robador, Alberto; LaRowe, Douglas E.; Finkel, Steven E.; Amend, Jan P.; Nealson, Kenneth H.

    2018-01-01

    Calorimetric measurements of the change in heat due to microbial metabolic activity convey information about the kinetics, as well as the thermodynamics, of all chemical reactions taking place in a cell. Calorimetric measurements of heat production made on bacterial cultures have recorded the energy yields of all co-occurring microbial metabolic reactions, but this is a complex, composite signal that is difficult to interpret. Here we show that nanocalorimetry can be used in combination with enumeration of viable cell counts, oxygen consumption rates, cellular protein content, and thermodynamic calculations to assess catabolic rates of an isolate of Shewanella oneidensis MR-1 and infer what fraction of the chemical energy is assimilated by the culture into biomass and what fraction is dissipated in the form of heat under different limiting conditions. In particular, our results demonstrate that catabolic rates are not necessarily coupled to rates of cell division, but rather, to physiological rearrangements of S. oneidensis MR-1 upon growth phase transitions. In addition, we conclude that the heat released by growing microorganisms can be measured in order to understand the physiochemical nature of the energy transformation and dissipation associated with microbial metabolic activity in conditions approaching those found in natural systems. PMID:29449836

  6. Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets.

    Science.gov (United States)

    Seyfried, Thomas N; Kiebish, Michael; Mukherjee, Purna; Marsh, Jeremy

    2008-11-01

    Information is presented on the calorically restricted ketogenic diet (CRKD) as an alternative therapy for brain cancer. In contrast to normal neurons and glia, which evolved to metabolize ketone bodies as an alternative fuel to glucose under energy-restricted conditions, brain tumor cells are largely glycolytic due to mitochondrial defects and have a reduced ability to metabolize ketone bodies. The CRKD is effective in managing brain tumor growth in animal models and in patients, and appears to act through antiangiogenic, anti-inflammatory, and proapoptotic mechanisms.

  7. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH.

    Science.gov (United States)

    Yaseen, Mohammad A; Sakadžić, Sava; Wu, Weicheng; Becker, Wolfgang; Kasischke, Karl A; Boas, David A

    2013-02-01

    Minimally invasive, specific measurement of cellular energy metabolism is crucial for understanding cerebral pathophysiology. Here, we present high-resolution, in vivo observations of autofluorescence lifetime as a biomarker of cerebral energy metabolism in exposed rat cortices. We describe a customized two-photon imaging system with time correlated single photon counting detection and specialized software for modeling multiple-component fits of fluorescence decay and monitoring their transient behaviors. In vivo cerebral NADH fluorescence suggests the presence of four distinct components, which respond differently to brief periods of anoxia and likely indicate different enzymatic formulations. Individual components show potential as indicators of specific molecular pathways involved in oxidative metabolism.

  8. Regulation of lipid metabolism by energy availability: a role for the central nervous system.

    Science.gov (United States)

    Nogueiras, R; López, M; Diéguez, C

    2010-03-01

    The central nervous system (CNS) is crucial in the regulation of energy homeostasis. Many neuroanatomical studies have shown that the white adipose tissue (WAT) is innervated by the sympathetic nervous system, which plays a critical role in adipocyte lipid metabolism. Therefore, there are currently numerous reports indicating that signals from the CNS control the amount of fat by modulating the storage or oxidation of fatty acids. Importantly, some CNS pathways regulate adipocyte metabolism independently of food intake, suggesting that some signals possess alternative mechanisms to regulate energy homeostasis. In this review, we mainly focus on how neuronal circuits within the hypothalamus, such as leptin- ghrelin-and resistin-responsive neurons, as well as melanocortins, neuropeptide Y, and the cannabinoid system exert their actions on lipid metabolism in peripheral tissues such as WAT, liver or muscle. Dissecting the complicated interactions between peripheral signals and neuronal circuits regulating lipid metabolism might open new avenues for the development of new therapies preventing and treating obesity and its associated cardiometabolic sequelae.

  9. GH and IGF1: roles in energy metabolism of long-living GH mutant mice.

    Science.gov (United States)

    Brown-Borg, Holly M; Bartke, Andrzej

    2012-06-01

    Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of these pathways are suppressed. Core body temperature is markedly lower in dwarf mice, yet whole-body metabolism, as measured by indirect calorimetry, is surprisingly higher in Ames dwarf and Ghr-/- mice compared with normal controls. Elevated adiponectin, a key antiinflammatory cytokine, is also very likely to contribute to longevity in these mice. Thus, several important components related to energy metabolism are altered in GH mutant mice, and these differences are likely critical in aging processes and life-span extension.

  10. An integrative approach to energy, carbon, and redox metabolism in the cyanobacterium Synechocystis sp. PCC 6803

    Energy Technology Data Exchange (ETDEWEB)

    Overbeek, Ross; Fonstein, Veronika; Osterman, Andrei; Gerdes, Svetlana; Vassieva, Olga; Zagnitko, Olga; Rodionov, Dmitry

    2005-02-15

    The team of the Fellowship for Interpretation of Genomes (FIG) under the leadership of Ross Overbeek, began working on this Project in November 2003. During the previous year, the Project was performed at Integrated Genomics Inc. A transition from the industrial environment to the public domain prompted us to adjust some aspects of the Project. Notwithstanding the challenges, we believe that these adjustments had a strong positive impact on our deliverables. Most importantly, the work of the research team led by R. Overbeek resulted in the deployment of a new open source genomic platform, the SEED (Specific Aim 1). This platform provided a foundation for the development of CyanoSEED a specialized portal to comparative analysis and metabolic reconstruction of all available cyanobacterial genomes (Specific Aim 3). The SEED represents a new generation of software for genome analysis. Briefly, it is a portable and extendable system, containing one of the largest and permanently growing collections of complete and partial genomes. The complete system with annotations and tools is freely available via browsing or via installation on a user's Mac or Linux computer. One of the important unique features of the SEED is the support of metabolic reconstruction and comparative genome analysis via encoding and projection of functional subsystems. During the project period, the FIG research team has validated the new software by developing a significant number of core subsystems, covering many aspects of central metabolism (Specific Aim 2), as well as metabolic areas specific for cyanobacteria and other photoautotrophic organisms (Specific Aim 3). In addition to providing a proof of technology and a starting point for further community-based efforts, these subsystems represent a valuable asset. An extensive coverage of central metabolism provides the bulk of information required for metabolic modeling in Synechocystis sp.PCC 6803. Detailed analysis of several subsystems

  11. Validation of Hydrodynamic Numerical Model of a Pitching Wave Energy Converter

    DEFF Research Database (Denmark)

    López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede

    2017-01-01

    Validation of numerical model is essential in the development of new technologies. Commercial software and codes available simulating wave energy converters (WECs) have not been proved to work for all the available and upcoming technologies yet. The present paper presents the first stages...... of the validation process of a hydrodynamic numerical model for a pitching wave energy converter. The development of dry tests, wave flume and wave basin experiments are going to be explained, lessons learned shared and results presented....

  12. Environmental physiology: effects of energy-related pollutants on daily cycles of energy metabolism, motor activity, and thermoregulation

    International Nuclear Information System (INIS)

    Sacher, G.A.; Rosenberg, R.S.; Duffy, P.H.; Obermeyer, W.; Russell, J.J.

    1979-01-01

    This section contains a summary of research on the effects of energy-related pollutants on daily cycles of energy metabolism, motor activity, and thermoregulation. So far, mice have been exposed to fast neutron-gamma radiation or to the chemical effluents of an atmospheric pressure experimental fluidized-bed combustor. The physiological parameters measured included: O 2 consumption; CO 2 production; motor activity; and deep body temperatures

  13. Effects of reducing dietary crude protein and metabolic energy in ...

    African Journals Online (AJOL)

    The objective of this experiment was to determine the effects of a pure reduction in the dietary crude protein (CP) and metabolic energy (ME) contents on growth performance, nutrient digestibility, blood profile, faecal microflora and odour gas emission in weaned pigs. A total of 80 weaned piglets ((Landrace × Yorkshire) ...

  14. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure.

    Science.gov (United States)

    Baud, Maxime O; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J; Petit, Jean-Marie

    2016-10-01

    Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment. © 2016 European Sleep Research Society.

  15. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.

    2016-05-03

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment.

  16. Test-retest reliability and construct validity of the ENERGY-parent questionnaire on parenting practices, energy balance-related behaviours and their potential behavioural determinants: the ENERGY-project

    Directory of Open Access Journals (Sweden)

    Singh Amika S

    2012-08-01

    Full Text Available Abstract Background Insight in parental energy balance-related behaviours, their determinants and parenting practices are important to inform childhood obesity prevention. Therefore, reliable and valid tools to measure these variables in large-scale population research are needed. The objective of the current study was to examine the test-retest reliability and construct validity of the parent questionnaire used in the ENERGY-project, assessing parental energy balance-related behaviours, their determinants, and parenting practices among parents of 10–12 year old children. Findings We collected data among parents (n = 316 in the test-retest reliability study; n = 109 in the construct validity study of 10–12 year-old children in six European countries, i.e. Belgium, Greece, Hungary, the Netherlands, Norway, and Spain. Test-retest reliability was assessed using the intra-class correlation coefficient (ICC and percentage agreement comparing scores from two measurements, administered one week apart. To assess construct validity, the agreement between questionnaire responses and a subsequent interview was assessed using ICC and percentage agreement. All but one item showed good to excellent test-retest reliability as indicated by ICCs > .60 or percentage agreement ≥ 75%. Construct validity appeared to be good to excellent for 92 out of 121 items, as indicated by ICCs > .60 or percentage agreement ≥ 75%. From the other 29 items, construct validity was moderate for 24 and poor for 5 items. Conclusions The reliability and construct validity of the items of the ENERGY-parent questionnaire on multiple energy balance-related behaviours, their potential determinants, and parenting practices appears to be good. Based on the results of the validity study, we strongly recommend adapting parts of the ENERGY-parent questionnaire if used in future research.

  17. Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds

    Directory of Open Access Journals (Sweden)

    Kyle H. Elliott

    2013-04-01

    Thyroid hormones affect in vitro metabolic intensity, increase basal metabolic rate (BMR in the lab, and are sometimes correlated with basal and/or resting metabolic rate (RMR in a field environment. Given the difficulty of measuring metabolic rate in the field—and the likelihood that capture and long-term restraint necessary to measure metabolic rate in the field jeopardizes other measurements—we examined the possibility that circulating thyroid hormone levels were correlated with RMR in two free-ranging bird species with high levels of energy expenditure (the black-legged kittiwake, Rissa tridactyla, and thick-billed murre, Uria lomvia. Because BMR and daily energy expenditure (DEE are purported to be linked, we also tested for a correlation between thyroid hormones and DEE. We examined the relationships between free and bound levels of the thyroid hormones thyroxine (T4 and triiodothyronine (T3 with DEE and with 4-hour long measurements of post-absorptive and thermoneutral resting metabolism (resting metabolic rate; RMR. RMR but not DEE increased with T3 in both species; both metabolic rates were independent of T4. T3 and T4 were not correlated with one another. DEE correlated with body mass in kittiwakes but not in murres, presumably owing to the larger coefficient of variation in body mass during chick rearing for the more sexually dimorphic kittiwakes. We suggest T3 provides a good proxy for resting metabolism but not DEE in these seabird species.

  18. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J.; Petit, Jean-Marie

    2016-01-01

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs

  19. Estimating Energy Expenditure from Heart Rate in Older Adults: A Case for Calibration

    OpenAIRE

    Schrack, Jennifer A.; Zipunnikov, Vadim; Goldsmith, Jeff; Bandeen-Roche, Karen; Crainiceanu, Ciprian M.; Ferrucci, Luigi

    2014-01-01

    Background Accurate measurement of free-living energy expenditure is vital to understanding changes in energy metabolism with aging. The efficacy of heart rate as a surrogate for energy expenditure is rooted in the assumption of a linear function between heart rate and energy expenditure, but its validity and reliability in older adults remains unclear. Objective To assess the validity and reliability of the linear function between heart rate and energy expenditure in older adults using diffe...

  20. Catalonia's energy metabolism: Using the MuSIASEM approach at different scales

    International Nuclear Information System (INIS)

    Ramos-Martin, Jesus; Canellas-Bolta, Silvia; Giampietro, Mario; Gamboa, Gonzalo

    2009-01-01

    This paper applies the so-called Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM), based on Georgescu-Roegen's fund-flow model, to the Spanish region of Catalonia. It arrives to the conclusion that within the context of the end of cheap oil, the current development model of the Catalan economy, based on the growth of low-productivity sectors such as services and construction, must be changed. The change is needed not only because of the increasing scarcity of affordable energy and the increasing environmental impact of present development, but also because of the aging population. Moreover, the situation experienced by Catalonia is similar to that of other European countries and many other developed countries. This implies that we can expect a wave of major structural changes in the economy of developed countries worldwide. To make things more challenging, according to current trends, the energy intensity and exosomatic energy metabolism of Catalonia will keep increasing in the near future. To avoid a reduction in the standard of living of Catalans due to a reduction in the available energy it is important that the Government of Catalonia implement major adjustments and conservation efforts in both the household and paid-work sectors.

  1. Genotype by energy expenditure interaction with metabolic syndrome traits: the Portuguese healthy family study.

    Directory of Open Access Journals (Sweden)

    Daniel M V Santos

    Full Text Available Moderate-to-high levels of physical activity are established as preventive factors in metabolic syndrome development. However, there is variability in the phenotypic expression of metabolic syndrome under distinct physical activity conditions. In the present study we applied a Genotype X Environment interaction method to examine the presence of GxEE interaction in the phenotypic expression of metabolic syndrome. A total of 958 subjects, from 294 families of The Portuguese Healthy Family study, were included in the analysis. Total daily energy expenditure was assessed using a 3 day physical activity diary. Six metabolic syndrome related traits, including waist circumference, systolic blood pressure, glucose, HDL cholesterol, total cholesterol and triglycerides, were measured and adjusted for age and sex. GxEE examination was performed on SOLAR 4.3.1. All metabolic syndrome indicators were significantly heritable. The GxEE interaction model fitted the data better than the polygenic model (p<0.001 for waist circumference, systolic blood pressure, glucose, total cholesterol and triglycerides. For waist circumference, glucose, total cholesterol and triglycerides, the significant GxEE interaction was due to rejection of the variance homogeneity hypothesis. For waist circumference and glucose, GxEE was also significant by the rejection of the genetic correlation hypothesis. The results showed that metabolic syndrome traits expression is significantly influenced by the interaction established between total daily energy expenditure and genotypes. Physical activity may be considered an environmental variable that promotes metabolic differences between individuals that are distinctively active.

  2. An Integrative Approach to Energy Carbon and Redox Metabolism In Cyanobacterium Synechocystis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ross Overbeek

    2003-06-30

    The main objectives for the first year were to produce a detailed metabolic reconstruction of synechocystis sp.pcc6803 especially in interrelated arrears of photosynthesis respiration and central carbon metabolism to support a more complete understanding and modeling of this organism. Additionally, IG, Inc. provided detailed bioinformatic analysis of selected functional systems related to carbon and energy generation and utilization, and of the corresponding pathways functional roles and individual genes to support wet lab experiments by collaborators.

  3. Energy metabolism of overweight women before, during and after weight reduction, assessed by indirect calorimetry

    NARCIS (Netherlands)

    Groot, de C.P.G.M.

    1988-01-01

    Previous studies had suggested that periods of low energy intake evoke compensatory adaptations in energy metabolism, which retard weight loss, and promote weight regain when energy intake returns to normal. The aim of this thesis was to investigate whether a slimming (low-energy) diet based on

  4. Body size, body composition, and metabolic profile explain higher energy expenditure in overweight children

    Science.gov (United States)

    Lower relative rates of energy expenditure (EE), increased energetic efficiency, and altered fuel utilization purportedly associated with obesity have not been demonstrated indisputably in overweight children. We hypothesized that differences in energy metabolism between nonoverweight and overweight...

  5. Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes

    Directory of Open Access Journals (Sweden)

    Higashi Richard M

    2008-10-01

    Full Text Available Abstract Background The functional status of a cell is expressed in its metabolic activity. We have applied stable isotope tracing methods to determine the differences in metabolic pathways in proliferating Rhabdomysarcoma cells (Rh30 and human primary myocytes in culture. Uniformly 13C-labeled glucose was used as a source molecule to follow the incorporation of 13C into more than 40 marker metabolites using NMR and GC-MS. These include metabolites that report on the activity of glycolysis, Krebs' cycle, pentose phosphate pathway and pyrimidine biosynthesis. Results The Rh30 cells proliferated faster than the myocytes. Major differences in flux through glycolysis were evident from incorporation of label into secreted lactate, which accounts for a substantial fraction of the glucose carbon utilized by the cells. Krebs' cycle activity as determined by 13C isotopomer distributions in glutamate, aspartate, malate and pyrimidine rings was considerably higher in the cancer cells than in the primary myocytes. Large differences were also evident in de novo biosynthesis of riboses in the free nucleotide pools, as well as entry of glucose carbon into the pyrimidine rings in the free nucleotide pool. Specific labeling patterns in these metabolites show the increased importance of anaplerotic reactions in the cancer cells to maintain the high demand for anabolic and energy metabolism compared with the slower growing primary myocytes. Serum-stimulated Rh30 cells showed higher degrees of labeling than serum starved cells, but they retained their characteristic anabolic metabolism profile. The myocytes showed evidence of de novo synthesis of glycogen, which was absent in the Rh30 cells. Conclusion The specific 13C isotopomer patterns showed that the major difference between the transformed and the primary cells is the shift from energy and maintenance metabolism in the myocytes toward increased energy and anabolic metabolism for proliferation in the Rh30 cells

  6. Fluvoxamine alters the activity of energy metabolism enzymes in the brain

    Directory of Open Access Journals (Sweden)

    Gabriela K. Ferreira

    2014-09-01

    Full Text Available Objective: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Methods: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. Results: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. Conclusions: Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent.

  7. Hypothalamic Energy Metabolism Is Impaired By Doxorubicin Independently Of Inflammation In Non-tumour-bearing Rats.

    OpenAIRE

    Antunes, Barbara M M; Lira, Fabio Santos; Pimentel, Gustavo Duarte; Rosa Neto, José Cesar; Esteves, Andrea Maculano; Oyama, Lila Missae; de Souza, Cláudio Teodoro; Gonçalves, Cinara Ludvig; Streck, Emilio Luiz; Rodrigues, Bruno; dos Santos, Ronaldo Vagner; de Mello, Marco Túlio

    2016-01-01

    We sought to explore the effects of doxorubicin on inflammatory profiles and energy metabolism in the hypothalamus of rats. To investigate these effects, we formed two groups: a control (C) group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control (C) or DOXO groups. The hypothalamus was collected. The levels of interleukin (IL)-1β, IL-6, IL-10, TNF-α and energy metabolism (malate dehydrogenase, complex I and III activities) were analysed in the hypothala...

  8. A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.

    Science.gov (United States)

    Kim, Joo H; Roberts, Dustyn

    2015-09-01

    Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Challenges in validating radiation sterilization with low energy electron irradiation

    International Nuclear Information System (INIS)

    Miller, A.; Helt-Hansen, J.

    2011-01-01

    Complete text of publication follows. Low energy electron irradiation (80-300 keV) is used increasingly for sterilization or decontamination in connection with isolators for aseptic filling lines in the pharmaceutical industry. It is not defined how validation for this process shall be carried out. A method can be derived from the medical device standard for radiation sterilization, ISO 11137, because the principles described in this standard can be applied to almost any industrial irradiation process. The validations elements are: Process definition, concerning specification of the dose required for the process and the maximum acceptable dose for the product. Installation qualification, concerning acceptance the irradiation facility. Operational qualification, concerning characterization of the facility. Performance qualification, concerning setting up the process. Process control, concerning routine monitoring. The limited penetration of the low energy electrons leads to problems with respect to executing these validation steps. This paper discusses these problems, and shows with examples how they can be solved.

  10. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism.

    Science.gov (United States)

    Jansen, S W; Akintola, A A; Roelfsema, F; van der Spoel, E; Cobbaert, C M; Ballieux, B E; Egri, P; Kvarta-Papp, Z; Gereben, B; Fekete, C; Slagboom, P E; van der Grond, J; Demeneix, B A; Pijl, H; Westendorp, R G J; van Heemst, D

    2015-06-19

    Few studies have included subjects with the propensity to reach old age in good health, with the aim to disentangle mechanisms contributing to staying healthier for longer. The hypothalamic-pituitary-thyroid (HPT) axis maintains circulating levels of thyroid stimulating hormone (TSH) and thyroid hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring of nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis may favour longevity without altering energy metabolism.

  11. Basal metabolic rate in relation to body composition and daily energy expenditure in the field vole, Microtus agrestis

    NARCIS (Netherlands)

    Meerlo, P; Bolle, L; Visser, GH; Masman, D; Daan, S

    1997-01-01

    Basal metabolic rate in the field vole (Microtus agrestis) was studied in relation to body composition and daily energy expenditure in the field Daily energy expenditure was measured by means of doubly labelled water ((D2O)-O-18). In the same individuals, basal metabolic rate was subsequently

  12. Impact of hypothalamic reactive oxygen species in the control of energy metabolism and food intake

    Directory of Open Access Journals (Sweden)

    Anne eDrougard

    2015-02-01

    Full Text Available Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC and agouti-related protein (AgRP/neuropeptide Y (NPY neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,..., neurotransmitters and nutrients (glucose, lipids,.... The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes.In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.

  13. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake.

    Science.gov (United States)

    Drougard, Anne; Fournel, Audren; Valet, Philippe; Knauf, Claude

    2015-01-01

    Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites) from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS) as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC) and agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,…), neurotransmitters and nutrients (glucose, lipids,…). The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes. In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.

  14. Practicing Tai Chi had lower energy metabolism than walking but similar health benefits in terms of aerobic fitness, resting energy expenditure, body composition and self-perceived physical health.

    Science.gov (United States)

    Hui, Stanley Sai-Chuen; Xie, Yao Jie; Woo, Jean; Kwok, Timothy Chi-Yui

    2016-08-01

    To examine the effects of Tai Chi and walking training on aerobic fitness, resting energy expenditure (REE), body composition, and quality of life; as well as analyzing the energy metabolism during exercises, to determine which one had better advantage in improving health status. Three hundred seventy-four middle-aged Chinese subjects who were recruited from nine geographic areas in Sha Tin were randomized into Tai Chi, walking, or control groups at area level. The 12-week (45min per day, 5days per week) Tai Chi or brisk walking training were conducted in respective intervention groups. Measures were performed at baseline and end of trial. Another 30 subjects were recruited to compare the energy metabolism between practicing Tai Chi and walking. The between-group difference of VO2max was 3.3ml/min/kg for Tai Chi vs. control and 3.7ml/min/kg for walking vs. control (both Pwalking. Regarding to energy metabolism test, the self-paced walking produced approximately 46% higher metabolic costs than Tai Chi. Practicing Tai Chi consumes a smaller amount of energy metabolism but similar health benefits as self-paced brisk walking. Copyright © 2016. Published by Elsevier Ltd.

  15. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism.

    Science.gov (United States)

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-10-29

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation.

  16. High Glucose-Induced Cardiomyocyte Death May Be Linked to Unbalanced Branched-Chain Amino Acids and Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2018-04-01

    Full Text Available High glucose-induced cardiomyocyte death is a common symptom in advanced-stage diabetic patients, while its metabolic mechanism is still poorly understood. The aim of this study was to explore metabolic changes in high glucose-induced cardiomyocytes and the heart of streptozotocin-induced diabetic rats by 1H-NMR-based metabolomics. We found that high glucose can promote cardiomyocyte death both in vitro and in vivo studies. Metabolomic results show that several metabolites exhibited inconsistent variations in vitro and in vivo. However, we also identified a series of common metabolic changes, including increases in branched-chain amino acids (BCAAs: leucine, isoleucine and valine as well as decreases in aspartate and creatine under high glucose condition. Moreover, a reduced energy metabolism could also be a common metabolic characteristic, as indicated by decreases in ATP in vitro as well as AMP, fumarate and succinate in vivo. Therefore, this study reveals that a decrease in energy metabolism and an increase in BCAAs metabolism could be implicated in high glucose-induced cardiomyocyte death.

  17. AMP-Activated Protein Kinase (AMPK) Regulates Energy Metabolism through Modulating Thermogenesis in Adipose Tissue

    Science.gov (United States)

    Wu, Lingyan; Zhang, Lina; Li, Bohan; Jiang, Haowen; Duan, Yanan; Xie, Zhifu; Shuai, Lin; Li, Jia; Li, Jingya

    2018-01-01

    Obesity occurs when excess energy accumulates in white adipose tissue (WAT), whereas brown adipose tissue (BAT), which is specialized in dissipating energy through thermogenesis, potently counteracts obesity. White adipocytes can be converted to thermogenic “brown-like” cells (beige cells; WAT browning) under various stimuli, such as cold exposure. AMP-activated protein kinase (AMPK) is a crucial energy sensor that regulates energy metabolism in multiple tissues. However, the role of AMPK in adipose tissue function, especially in the WAT browning process, is not fully understood. To illuminate the effect of adipocyte AMPK on energy metabolism, we generated Adiponectin-Cre-driven adipose tissue-specific AMPK α1/α2 KO mice (AKO). These AKO mice were cold intolerant and their inguinal WAT displayed impaired mitochondrial integrity and biogenesis, and reduced expression of thermogenic markers upon cold exposure. High-fat-diet (HFD)-fed AKO mice exhibited increased adiposity and exacerbated hepatic steatosis and fibrosis and impaired glucose tolerance and insulin sensitivity. Meanwhile, energy expenditure and oxygen consumption were markedly decreased in the AKO mice both in basal conditions and after stimulation with a β3-adrenergic receptor agonist, CL 316,243. In contrast, we found that in HFD-fed obese mouse model, chronic AMPK activation by A-769662 protected against obesity and related metabolic dysfunction. A-769662 alleviated HFD-induced glucose intolerance and reduced body weight gain and WAT expansion. Notably, A-769662 increased energy expenditure and cold tolerance in HFD-fed mice. A-769662 treatment also induced the browning process in the inguinal fat depot of HFD-fed mice. Likewise, A-769662 enhanced thermogenesis in differentiated inguinal stromal vascular fraction (SVF) cells via AMPK signaling pathway. In summary, a lack of adipocyte AMPKα induced thermogenic impairment and obesity in response to cold and nutrient-overload, respectively

  18. Frequency of feeding, weight reduction and energy metabolism.

    Science.gov (United States)

    Verboeket-van de Venne, W P; Westerterp, K R

    1993-01-01

    A study was conducted to investigate the effect of feeding frequency on the rate and composition of weight loss and 24 h energy metabolism in moderately obese women on a 1000 kcal/day diet. During four consecutive weeks fourteen female adults (age 20-58 years, BMI 25.4-34.9 kg/m2) restricted their food intake to 1000 kcal/day. Seven subjects consumed the diet in two meals daily (gorging pattern), the others consumed the diet in three to five meals (nibbling pattern). Body mass and body composition, obtained by deuterium dilution, were measured at the start of the experiment and after two and four weeks of dieting. Sleeping metabolic rate (SMR) was measured at the same time intervals using a respiration chamber. At the end of the experiment 24 h energy expenditure (24 h EE) and diet-induced thermogenesis (DIT) were assessed by a 36 h stay in the respiration chamber. There was no significant effect of the feeding frequency on the rate of weight loss, fat mass loss or fat-free mass loss. Furthermore, fat mass and fat-free mass contributed equally to weight loss in subjects on both gorging and nibbling diet. Feeding frequency had no significant effect on SMR after two or four weeks of dieting. The decrease in SMR after four weeks was significantly greater in subjects on the nibbling diet. 24 h EE and DIT were not significantly different between the two feeding regimens.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel A Beard

    2006-09-01

    hypoperfusion. These findings suggest that the observed stability of energy metabolites emerges as a property of a properly constructed model of cardiac substrate transport and mitochondrial metabolism. In addition, the validated model provides quantitative predictions of changes in phosphate metabolites during cardiac ischemia.

  20. Energy metabolism and inflammation in brain aging and Alzheimer's disease.

    Science.gov (United States)

    Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique

    2016-11-01

    The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer's disease. As important cellular sources of H 2 O 2 , mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer's disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer's disease. Interaction of these systems is reviewed based on basic research and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A review of some metabolic changes in protein-energy malnutrition.

    Science.gov (United States)

    Akuyam, S A

    2007-06-01

    Protein-energy malnutrition (PEM) is a major public health problem in the tropical and subtropical regions of the world and often arises during protein and / or energy deficit due to nutritional inadequacy, infections and poor socio-economic and environmental conditions. It is the most common nutritional disorder affecting children in developing countries and the third most common disease of childhood in such countries. PEM has a lasting effect on immune functions, growth and development of children, learning ability, social adjustment, work efficiency and productivity of labour. It seems that many deaths from PEM occur as a result of outdated clinical practices and that improving these practices reduces the rate of morbidity and mortality. This paper reviews various metabolic changes in protein-energy malnutrition (PEM). It gives an overview of the theoretical basis for the understanding of the biochemical derangements in PEM. It aims at stimulating the paediatricians and clinical chemists to read more on the recent advances in this broad subject with the view to improving the understanding of the current laboratory investigation of PEM. This review demonstrates that the metabolic changes in PEM include water and electrolytes imbalance, amino acids and proteins deficiencies, carbohydrates and energy deficiencies, hypolipidaemias, hypolipoproteinaemias, hormonal imbalance, deficiency of anti-oxidant vitamins and enzymes, depression of cell-mediated immune complexes and decrease in amino acids and trace elements in skin and hair. The review therefore suggests that assessment of these conditions in PEM patients could improve the management of this group of patients and hence reduce the rate of morbidity and mortality from PEM.

  2. Differential regulation of metabolic parameters by energy deficit and hunger.

    Science.gov (United States)

    Kitka, Tamás; Tuza, Sebestyén; Varga, Balázs; Horváth, Csilla; Kovács, Péter

    2015-10-01

    Hypocaloric diet decreases both energy expenditure (EE) and respiratory exchange rate (RER), affecting the efficacy of dieting inversely. Energy deficit and hunger may be modulated separately both in human and animal studies by drug treatment or food restriction. Thus it is important to separate the effects of energy deficit and hunger on EE and RER. Three parallel and analogous experiments were performed using three pharmacologically distinct anorectic drugs: rimonabant, sibutramine and tramadol. Metabolic parameters of vehicle- and drug-treated and pair-fed diet-induced obese mice from the three experiments underwent common statistical analysis to identify effects independent of the mechanisms of action. Diet-induced obesity (DIO) test of tramadol was also performed to examine its anti-obesity efficacy. RER was decreased similarly by drug treatments and paired feeding throughout the experiment irrespective of the cause of reduced food intake. Contrarily, during the passive phase, EE was decreased more by paired feeding than by both vehicle and drug treatment irrespective of the drug used. In the active phase, EE was influenced by the pharmacological mechanisms of action. Tramadol decreased body weight in the DIO test. Our results suggest that RER is mainly affected by the actual state of energy balance; conversely, EE is rather influenced by hunger. Therefore, pharmacological medications that decrease hunger may enhance the efficacy of a hypocaloric diet by maintaining metabolic rate. Furthermore, our results yield the proposal that effects of anorectic drugs on EE and RER should be determined compared to vehicle and pair-fed groups, respectively, in animal models. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Validity of a continuous metabolic syndrome score as an index for modeling metabolic syndrome in children and adolescents: the CASPIAN-V study

    Directory of Open Access Journals (Sweden)

    Ramin Heshmat

    2017-11-01

    Full Text Available Abstract Background The purpose of the present study was to assess the validity of continuous metabolic syndrome score (cMetS for predicting metabolic syndrome (MetS and to determine the cutoff values in a representative sample of Iranian children and adolescents. Methods This national study was conducted among 3843 students, aged 7–18 years country during the fifth survey of a national school-based surveillance program. The cMetS was computed by standardizing the residuals of waist circumference, mean arterial blood pressure, high-density lipoprotein cholesterol, triglycerides, and glucose by regressing them according to age and sex and aggregating them. The optimal cut-off points of cMetS for predicting MetS were determined by the receiver operation characteristic (ROC curve analysis in different gender and age categories. Results Totally, 3843 students (52.3% boys with average age of 12.45 years were assessed. The mean of cMetS increased according to elevating the number of MetS components. The overall cMetS cut-off point was 1.76 (sensitivity 93% and specificity 82% in total pediatrics. The area under the ROC curve was 94%. The values for boys and girls were 1.79 and 2.72, respectively. Conclusions cMetS performed highly accurate in predicting pediatrics with MetS in all gender and age groups and it appears to be a valid index in children and adolescents.

  4. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans

    NARCIS (Netherlands)

    Timmers, Silvie; Konings, Ellen; Bilet, Lena; Houtkooper, Riekelt H.; Weijer, van de Tineke; Hoeks, Joris; Krieken, van der Sophie; Ryu, Dongryeol; Kersten, Sander; Moonen-Kornips, Esther; Goossens, Gijs H.; Hesselink, Matthijs K.; Kunz, Iris; Schrauwen-Hinderling, Vera B.; Blaak, Ellen E.; Auwerx, Johan; Schrauwen, Patrick

    2011-01-01

    Resveratrol is a naturally occurring compound that profoundly affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here we treated 10 healthy, obese men with placebo and 150 mg/day resveratrol in a randomized

  5. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera).

    Science.gov (United States)

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2017-03-07

    Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera , detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food.

  6. Change in energy metabolism of in vitro produced embryos: an alternative to make them more cryoresistant?

    Directory of Open Access Journals (Sweden)

    Luzia Renata Oliveira Dias

    2017-08-01

    Full Text Available For the development of in vitro produced (IVP as well as in vivo produced bovine embryos, it is extremely important that their energy metabolism works properly because the embryo must be able to metabolize energy substrates that are necessary for producing energy. Lipids play an important role in early embryonic development, acting as source of energy for oocytes and embryos. However, it is known that oocytes and embryos, mainly IVP, accumulate large amounts of lipids in the cytoplasm. Although they are extremely important in embryonic development, lipids have been associated with the reduced survival of bovine embryos following cryopreservation. There is evidence that at least four different categories of lipids affect embryo survival after cryopreservation, including triglycerides (TAG, free fatty acids, cholesterol and phospholipids. Thus, many studies are being conducted to improve the resistance of IVP embryos to the cryopreservation process by reducing the concentration or removing the source of serum from the medium or by reducing oocyte/embryo lipids using mechanical or chemical means. Regarding the use of delipidating agents that reduce the uptake and synthesis of fatty acids (FA by cells, substances such as phenazine ethosulfate (PES, forskolin, L-carnitine and isomers of conjugated linoleic acid (CLA have been utilized. This review aims to address important issues related to embryonic energy metabolism, the importance of lipid metabolism and its relation to the cryopreservation of IVP bovine embryos by summarizing the latest research in this field.

  7. Free fatty acid receptors and their role in regulation of energy metabolism.

    Science.gov (United States)

    Hara, Takafumi; Kimura, Ikuo; Inoue, Daisuke; Ichimura, Atsuhiko; Hirasawa, Akira

    2013-01-01

    The free fatty acid receptor (FFAR) is a G protein-coupled receptor (GPCR) activated by free fatty acids (FFAs), which play important roles not only as essential nutritional components but also as signaling molecules in numerous physiological processes. In the last decade, FFARs have been identified by the GPCR deorphanization strategy derived from the human genome database. To date, several FFARs have been identified and characterized as critical components in various physiological processes. FFARs are categorized according to the chain length of FFA ligands that activate each FFAR; FFA2 and FFA3 are activated by short chain FFAs, GPR84 is activated by medium-chain FFAs, whereas FFA1 and GPR120 are activated by medium- or long-chain FFAs. FFARs appear to act as physiological sensors for food-derived FFAs and digestion products in the gastrointestinal tract. Moreover, they are considered to be involved in the regulation of energy metabolism mediated by the secretion of insulin and incretin hormones and by the regulation of the sympathetic nerve systems, taste preferences, and inflammatory responses related to insulin resistance. Therefore, because FFARs can be considered to play important roles in physiological processes and various pathophysiological processes, FFARs have been targeted in therapeutic strategies for the treatment of metabolic disorders including type 2 diabetes and metabolic syndrome. In this review, we present a summary of recent progress regarding the understanding of their physiological roles in the regulation of energy metabolism and their potential as therapeutic targets.

  8. Mitochondrial energy metabolism of rat hippocampus after treatment with the antidepressants desipramine and fluoxetine.

    Science.gov (United States)

    Villa, Roberto Federico; Ferrari, Federica; Bagini, Laura; Gorini, Antonella; Brunello, Nicoletta; Tascedda, Fabio

    2017-07-15

    Alterations in mitochondrial functions have been hypothesized to participate in the pathogenesis of depression, because brain bioenergetic abnormalities have been detected in depressed patients by neuroimaging in vivo studies. However, this hypothesis is not clearly demonstrated in experimental studies: some suggest that antidepressants are inhibitors of mitochondrial metabolism, while others observe the opposite. In this study, the effects of 21-day treatment with desipramine (15 mg/kg) and fluoxetine (10 mg/kg) were examined on the energy metabolism of rat hippocampus, evaluating the catalytic activity of regulatory enzymes of mitochondrial energy-yielding metabolic pathways. Because of the micro-heterogeneity of brain mitochondria, we have distinguished between (a) non-synaptic mitochondria (FM) of neuronal perikaryon (post-synaptic compartment) and (b) intra-synaptic light (LM) and heavy (HM) mitochondria (pre-synaptic compartment). Desipramine and fluoxetine changed the catalytic activity of specific enzymes in the different types of mitochondria: (a) in FM, both drugs enhanced cytochrome oxidase and glutamate dehydrogenase, (b) in LM, the overall bioenergetics was unaffected and (c) in HM only desipramine increased malate dehydrogenase and decreased the activities of Electron Transport Chain Complexes. These results integrate the pharmacodynamic features of desipramine and fluoxetine at subcellular level, overcoming the previous conflicting data about the effects of antidepressants on brain energy metabolism, mainly referred to whole brain homogenates or to bulk of cerebral mitochondria. With the differentiation in non-synaptic and intra-synaptic mitochondria, this study demonstrates that desipramine and fluoxetine lead to adjustments in the mitochondrial bioenergetics respect to the energy requirements of pre- and post-synaptic compartments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Teaching Energy Metabolism Using Scientific Articles: Implementation of a Virtual Learning Environment for Medical Students

    Science.gov (United States)

    de Espindola, Marina Bazzo; El-Bacha, Tatiana; Giannella, Tais Rabetti; Struchiner, Miriam; da Silva, Wagner S.; Da Poian, Andrea T.

    2010-01-01

    This work describes the use of a virtual learning environment (VLE) applied to the biochemistry class for undergraduate, first-year medical students at the Federal University of Rio de Janeiro. The course focused on the integration of energy metabolism, exploring metabolic adaptations in different physiological or pathological states such as…

  10. Enzymes of energy metabolism in hatchlings of amazonian freshwater turtles (Testudines, Podocnemididae

    Directory of Open Access Journals (Sweden)

    WP. Duncan

    Full Text Available The metabolic profiles of selected tissues were analyzed in hatchlings of the Amazonian freshwater turtles Podocnemis expansa, P. unifilis and P. sextuberculata. Metabolic design in these species was judged based on the key enzymes of energy metabolism, with special emphasis on carbohydrate, lipid, amino acid and ketone body metabolism. All species showed a high glycolytic potential in all sampled tissues. Based on low levels of hexokinase, glycogen may be an important fuel for these species. The high lactate dehydrogenase activity in the liver may play a significant role in carbohydrate catabolism, possibly during diving. Oxidative metabolism in P. sextuberculata appears to be designed for the use of lipids, amino acids and ketone bodies. The maximal activities of 3-hydroxyacyl-CoA dehydrogenase, malate dehydrogenase, glutamine dehydrogenase, alanine aminotransferase and succinyl-CoA keto transferase display high aerobic potential, especially in muscle and liver tissues of this species. Although amino acids and ketone bodies may be important fuels for oxidative metabolism, carbohydrates and lipids are the major fuels used by P. expansa and P. unifilis. Our results are consistent with the food habits and lifestyle of Amazonian freshwater turtles. The metabolic design, based on enzyme activities, suggests that hatchlings of P. unifilis and P. expansa are predominately herbivorous, whereas P. sextuberculata rely on a mixed diet of animal matter and vegetation.

  11. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism

    DEFF Research Database (Denmark)

    Grgurevic, Lovorka; Christensen, Gitte Lund; Schulz, Tim J

    2016-01-01

    implicated in pancreas development as well as control of adult glucose homeostasis. Lastly, we review the recently recognized role of BMPs in brown adipose tissue formation and their consequences for energy expenditure and adiposity. In summary, BMPs play a pivotal role in metabolism beyond their role...... homeostasis (anaemia, hemochromatosis) and oxidative damage. The second and third parts of this review focus on BMPs in the development of metabolic pathologies such as type-2 diabetes mellitus and obesity. The pancreatic beta cells are the sole source of the hormone insulin and BMPs have recently been...

  12. Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans

    NARCIS (Netherlands)

    Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; Weijer, van de T.; Goossens, G.H.; Hoeks, J.; Krieken, van der S.; Ryu, D.; Kersten, A.H.; Moonen-Kornips, E.; Hesselink, M.K.C.; Kunz, I.; Schrauwen-Hinderling, V.B.; Blaak, E.E.; Auwerx, J.; Schrauwen, P.

    2011-01-01

    Resveratrol is a natural compound that affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here, we treated 11 healthy, obese men with placebo and 150 mg/day resveratrol (resVida) in a randomized double-blind

  13. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans

    NARCIS (Netherlands)

    Timmers, Silvie; Konings, Ellen; Bilet, Lena; Houtkooper, Riekelt H.; van de Weijer, Tineke; Goossens, Gijs H.; Hoeks, Joris; van der Krieken, Sophie; Ryu, Dongryeol; Kersten, Sander; Moonen-Kornips, Esther; Hesselink, Matthijs K. C.; Kunz, Iris; Schrauwen-Hinderling, Vera B.; Blaak, Ellen E.; Auwerx, Johan; Schrauwen, Patrick

    2011-01-01

    Resveratrol is a natural compound that affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here, we treated 11 healthy, obese men with placebo and 150 mg/day resveratrol (resVida) in a randomized double-blind

  14. Sex matters: The effects of biological sex on adipose tissue biology and energy metabolism

    Directory of Open Access Journals (Sweden)

    Teresa G. Valencak

    2017-08-01

    Full Text Available Adipose tissue is a complex and multi-faceted organ. It responds dynamically to internal and external stimuli, depending on the developmental stage and activity of the organism. The most common functional subunits of adipose tissue, white and brown adipocytes, regulate and respond to endocrine processes, which then determine metabolic rate as well as adipose tissue functions. While the molecular aspects of white and brown adipose biology have become clearer in the recent past, much less is known about sex-specific differences in regulation and deposition of adipose tissue, and the specific role of the so-called pink adipocytes during lactation in females. This review summarises the current understanding of adipose tissue dynamics with a focus on sex-specific differences in adipose tissue energy metabolism and endocrine functions, focussing on mammalian model organisms as well as human-derived data. In females, pink adipocytes trans-differentiate during pregnancy from subcutaneous white adipocytes and are responsible for milk-secretion in mammary glands. Overlooking biological sex variation may ultimately hamper clinical treatments of many aspects of metabolic disorders. Keywords: Body fatness, Adipose tissue, Sex-specific differences, Adipokines, Adipocytes, Obesity, Energy metabolism

  15. Nuclear Energy Knowledge and Validation Center (NEKVaC) Needs Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    The Department of Energy (DOE) has made significant progress developing simulation tools to predict the behavior of nuclear systems with greater accuracy and of increasing our capability to predict the behavior of these systems outside of the standard range of applications. These analytical tools require a more complex array of validation tests to accurately simulate the physics and multiple length and time scales. Results from modern simulations will allow experiment designers to narrow the range of conditions needed to bound system behavior and to optimize the deployment of instrumentation to limit the breadth and cost of the campaign. Modern validation, verification and uncertainty quantification (VVUQ) techniques enable analysts to extract information from experiments in a systematic manner and provide the users with a quantified uncertainty estimate. Unfortunately, the capability to perform experiments that would enable taking full advantage of the formalisms of these modern codes has progressed relatively little (with some notable exceptions in fuels and thermal-hydraulics); the majority of the experimental data available today is the "historic" data accumulated over the last decades of nuclear systems R&D. A validated code-model is a tool for users. An unvalidated code-model is useful for code developers to gain understanding, publish research results, attract funding, etc. As nuclear analysis codes have become more sophisticated, so have the measurement and validation methods and the challenges that confront them. A successful yet cost-effective validation effort requires expertise possessed only by a few, resources possessed only by the well-capitalized (or a willing collective), and a clear, well-defined objective (validating a code that is developed to satisfy the need(s) of an actual user). To that end, the Idaho National Laboratory established the Nuclear Energy Knowledge and Validation Center to address the challenges of modern code validation and to

  16. Comparison of Various Indices of Energy Metabolism in Recumbent and Healthy Dairy Cows

    OpenAIRE

    Guyot, Hugues; Detilleux, Johann; Lebreton, Pascal; Garnier, Catherine; Bonvoisin, Marie; Rollin, Frederic; Sandersen, Charlotte

    2017-01-01

    Background Downer cow syndrome (DCS) is often diagnosed in dairy cattle during the early post-partum period. The etiology of this condition is not completely understood, as it can be related to the energetic or electrolyte metabolism, as well as to infectious diseases or to trauma. Hypothesis/Objectives The aim of this study is to compare energy metabolism and insulin sensitivity indices and various biochemical parameters between recumbent and healthy dairy cows. Animals A prospective study h...

  17. TGF-β Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia.

    Science.gov (United States)

    Greco, Stephanie H; Tomkötter, Lena; Vahle, Anne-Kristin; Rokosh, Rae; Avanzi, Antonina; Mahmood, Syed Kashif; Deutsch, Michael; Alothman, Sara; Alqunaibit, Dalia; Ochi, Atsuo; Zambirinis, Constantinos; Mohaimin, Tasnima; Rendon, Mauricio; Levie, Elliot; Pansari, Mridul; Torres-Hernandez, Alejandro; Daley, Donnele; Barilla, Rocky; Pachter, H Leon; Tippens, Daniel; Malik, Hassan; Boutajangout, Allal; Wisniewski, Thomas; Miller, George

    2015-01-01

    Cancer cachexia is a debilitating condition characterized by a combination of anorexia, muscle wasting, weight loss, and malnutrition. This condition affects an overwhelming majority of patients with pancreatic cancer and is a primary cause of cancer-related death. However, few, if any, effective therapies exist for both treatment and prevention of this syndrome. In order to develop novel therapeutic strategies for pancreatic cancer cachexia, appropriate animal models are necessary. In this study, we developed and validated a syngeneic, metastatic, murine model of pancreatic cancer cachexia. Using our model, we investigated the ability of transforming growth factor beta (TGF-β) blockade to mitigate the metabolic changes associated with cachexia. We found that TGF-β inhibition using the anti-TGF-β antibody 1D11.16.8 significantly improved overall mortality, weight loss, fat mass, lean body mass, bone mineral density, and skeletal muscle proteolysis in mice harboring advanced pancreatic cancer. Other immunotherapeutic strategies we employed were not effective. Collectively, we validated a simplified but useful model of pancreatic cancer cachexia to investigate immunologic treatment strategies. In addition, we showed that TGF-β inhibition can decrease the metabolic changes associated with cancer cachexia and improve overall survival.

  18. TGF-β Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia.

    Directory of Open Access Journals (Sweden)

    Stephanie H Greco

    Full Text Available Cancer cachexia is a debilitating condition characterized by a combination of anorexia, muscle wasting, weight loss, and malnutrition. This condition affects an overwhelming majority of patients with pancreatic cancer and is a primary cause of cancer-related death. However, few, if any, effective therapies exist for both treatment and prevention of this syndrome. In order to develop novel therapeutic strategies for pancreatic cancer cachexia, appropriate animal models are necessary. In this study, we developed and validated a syngeneic, metastatic, murine model of pancreatic cancer cachexia. Using our model, we investigated the ability of transforming growth factor beta (TGF-β blockade to mitigate the metabolic changes associated with cachexia. We found that TGF-β inhibition using the anti-TGF-β antibody 1D11.16.8 significantly improved overall mortality, weight loss, fat mass, lean body mass, bone mineral density, and skeletal muscle proteolysis in mice harboring advanced pancreatic cancer. Other immunotherapeutic strategies we employed were not effective. Collectively, we validated a simplified but useful model of pancreatic cancer cachexia to investigate immunologic treatment strategies. In addition, we showed that TGF-β inhibition can decrease the metabolic changes associated with cancer cachexia and improve overall survival.

  19. TGF-β Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia

    Science.gov (United States)

    Rokosh, Rae; Avanzi, Antonina; Mahmood, Syed Kashif; Deutsch, Michael; Alothman, Sara; Alqunaibit, Dalia; Ochi, Atsuo; Zambirinis, Constantinos; Mohaimin, Tasnima; Rendon, Mauricio; Levie, Elliot; Pansari, Mridul; Torres-Hernandez, Alejandro; Daley, Donnele; Barilla, Rocky; Pachter, H. Leon; Tippens, Daniel; Malik, Hassan; Boutajangout, Allal; Wisniewski, Thomas; Miller, George

    2015-01-01

    Cancer cachexia is a debilitating condition characterized by a combination of anorexia, muscle wasting, weight loss, and malnutrition. This condition affects an overwhelming majority of patients with pancreatic cancer and is a primary cause of cancer-related death. However, few, if any, effective therapies exist for both treatment and prevention of this syndrome. In order to develop novel therapeutic strategies for pancreatic cancer cachexia, appropriate animal models are necessary. In this study, we developed and validated a syngeneic, metastatic, murine model of pancreatic cancer cachexia. Using our model, we investigated the ability of transforming growth factor beta (TGF-β) blockade to mitigate the metabolic changes associated with cachexia. We found that TGF-β inhibition using the anti-TGF-β antibody 1D11.16.8 significantly improved overall mortality, weight loss, fat mass, lean body mass, bone mineral density, and skeletal muscle proteolysis in mice harboring advanced pancreatic cancer. Other immunotherapeutic strategies we employed were not effective. Collectively, we validated a simplified but useful model of pancreatic cancer cachexia to investigate immunologic treatment strategies. In addition, we showed that TGF-β inhibition can decrease the metabolic changes associated with cancer cachexia and improve overall survival. PMID:26172047

  20. A Complete Reporting of MCNP6 Validation Results for Electron Energy Deposition in Single-Layer Extended Media for Source Energies <= 1-MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-04

    In this paper, we expand on previous validation work by Dixon and Hughes. That is, we present a more complete suite of validation results with respect to to the well-known Lockwood energy deposition experiment. Lockwood et al. measured energy deposition in materials including beryllium, carbon, aluminum, iron, copper, molybdenum, tantalum, and uranium, for both single- and multi-layer 1-D geometries. Source configurations included mono-energetic, mono-directional electron beams with energies of 0.05-MeV, 0.1-MeV, 0.3- MeV, 0.5-MeV, and 1-MeV, in both normal and off-normal angles of incidence. These experiments are particularly valuable for validating electron transport codes, because they are closely represented by simulating pencil beams incident on 1-D semi-infinite slabs with and without material interfaces. Herein, we include total energy deposition and energy deposition profiles for the single-layer experiments reported by Lockwood et al. (a more complete multi-layer validation will follow in another report).

  1. VAPB/ALS8 MSP ligands regulate striated muscle energy metabolism critical for adult survival in caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Sung Min Han

    Full Text Available Mutations in VAPB/ALS8 are associated with amyotrophic lateral sclerosis (ALS and spinal muscular atrophy (SMA, two motor neuron diseases that often include alterations in energy metabolism. We have shown that C. elegans and Drosophila neurons secrete a cleavage product of VAPB, the N-terminal major sperm protein domain (vMSP. Secreted vMSPs signal through Roundabout and Lar-like receptors expressed on striated muscle. The muscle signaling pathway localizes mitochondria to myofilaments, alters their fission/fusion balance, and promotes energy production. Here, we show that neuronal loss of the C. elegans VAPB homolog triggers metabolic alterations that appear to compensate for muscle mitochondrial dysfunction. When vMSP levels drop, cytoskeletal or mitochondrial abnormalities in muscle induce elevated DAF-16, the Forkhead Box O (FoxO homolog, transcription factor activity. DAF-16 promotes muscle triacylglycerol accumulation, increases ATP levels in adults, and extends lifespan, despite reduced muscle mitochondria electron transport chain activity. Finally, Vapb knock-out mice exhibit abnormal muscular triacylglycerol levels and FoxO target gene transcriptional responses to fasting and refeeding. Our data indicate that impaired vMSP signaling to striated muscle alters FoxO activity, which affects energy metabolism. Abnormalities in energy metabolism of ALS patients may thus constitute a compensatory mechanism counterbalancing skeletal muscle mitochondrial dysfunction.

  2. How to enhance the future use of energy policy simulation models through ex post validation

    International Nuclear Information System (INIS)

    Qudrat-Ullah, Hassan

    2017-01-01

    Although simulation and modeling in general and system dynamics models in particular has long served the energy policy domain, ex post validation of these energy policy models is rarely addressed. In fact, ex post validation is a valuable area of research because it offers modelers a chance to enhance the future use of their simulation models by validating them against the field data. This paper contributes by presenting (i) a system dynamics simulation model, which was developed and used to do a three dimensional, socio-economical and environmental long-term assessment of Pakistan's energy policy in 1999, (ii) a systematic analysis of the 15-years old predictive scenarios produced by a system dynamics simulation model through ex post validation. How did the model predictions compare with the actual data? We report that the ongoing crisis of the electricity sector of Pakistan is unfolding, as the model-based scenarios had projected. - Highlights: • Argues that increased use of energy policy models is dependent on their credibility validation. • An ex post validation process is presented as a solution to build confidence in models. • A unique system dynamics model, MDESRAP, is presented. • The root mean square percentage error and Thiel's inequality statistics are applied. • The dynamic model, MDESRAP, is presented as an ex ante and ex post validated model.

  3. Obesity-related metabolic dysfunction in dogs: a comparison with human metabolic syndrome.

    Science.gov (United States)

    Tvarijonaviciute, Asta; Ceron, Jose J; Holden, Shelley L; Cuthbertson, Daniel J; Biourge, Vincent; Morris, Penelope J; German, Alexander J

    2012-08-28

    Recently, metabolic syndrome (MS) has gained attention in human metabolic medicine given its associations with development of type 2 diabetes mellitus and cardiovascular disease. Canine obesity is associated with the development of insulin resistance, dyslipidaemia, and mild hypertension, but the authors are not aware of any existing studies examining the existence or prevalence of MS in obese dogs.Thirty-five obese dogs were assessed before and after weight loss (median percentage loss 29%, range 10-44%). The diagnostic criteria of the International Diabetes Federation were modified in order to define canine obesity-related metabolic dysfunction (ORMD), which included a measure of adiposity (using a 9-point body condition score [BCS]), systolic blood pressure, fasting plasma cholesterol, plasma triglyceride, and fasting plasma glucose. By way of comparison, total body fat mass was measured by dual-energy X-ray absorptiometry, whilst total adiponectin, fasting insulin, and high-sensitivity C-reactive protein (hsCRP) were measured using validated assays. Systolic blood pressure (P = 0.008), cholesterol (P = 0.003), triglyceride (P = 0.018), and fasting insulin (P disease associations and outcomes of weight loss.

  4. Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate.

    Science.gov (United States)

    Kamminga, Tjerko; Slagman, Simen-Jan; Bijlsma, Jetta J E; Martins Dos Santos, Vitor A P; Suarez-Diez, Maria; Schaap, Peter J

    2017-10-01

    Mycoplasma hyopneumoniae is cultured on large-scale to produce antigen for inactivated whole-cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint-based genome-scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time-series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non-growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model-driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3-4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339-2347. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Visceral metabolism and efficiency of energy use by ruminants

    Directory of Open Access Journals (Sweden)

    Kozloski Gilberto Vilmar

    2001-01-01

    Full Text Available The visceral system (liver and portal-drained viscera represents an interface between diet and the animal, and it acts as the main site of regulation of nutrients that are used for maintenance, growth, lactation, reproduction, and physical activities of animals. However the functions carried out by visceral organs have, however, a significant energetic cost and are influenced by a variety of factors, such as the level of feed intake and diet composition, among others. As a result, variable quantities of substances are metabolized by them and, thus, the pattern and the quantity of nutrients available to the peripheral tissues can be quite different from those absorbed at the intestinal lumen. Probably, the major source of variation in the efficiency of utilization of metabolizable energy among feeds is associated mainly with visceral metabolism and it is unlikely that the ratio ketogenic/glucogenic of absorbed substances has determinant effect under physiological conditions.

  6. Test-retest reliability and construct validity of the ENERGY-child questionnaire on energy balance-related behaviours and their potential determinants: the ENERGY-project

    Directory of Open Access Journals (Sweden)

    Singh Amika S

    2011-12-01

    Full Text Available Abstract Background Insight in children's energy balance-related behaviours (EBRBs and their determinants is important to inform obesity prevention research. Therefore, reliable and valid tools to measure these variables in large-scale population research are needed. Objective To examine the test-retest reliability and construct validity of the child questionnaire used in the ENERGY-project, measuring EBRBs and their potential determinants among 10-12 year old children. Methods We collected data among 10-12 year old children (n = 730 in the test-retest reliability study; n = 96 in the construct validity study in six European countries, i.e. Belgium, Greece, Hungary, the Netherlands, Norway, and Spain. Test-retest reliability was assessed using the intra-class correlation coefficient (ICC and percentage agreement comparing scores from two measurements, administered one week apart. To assess construct validity, the agreement between questionnaire responses and a subsequent face-to-face interview was assessed using ICC and percentage agreement. Results Of the 150 questionnaire items, 115 (77% showed good to excellent test-retest reliability as indicated by ICCs > .60 or percentage agreement ≥ 75%. Test-retest reliability was moderate for 34 items (23% and poor for one item. Construct validity appeared to be good to excellent for 70 (47% of the 150 items, as indicated by ICCs > .60 or percentage agreement ≥ 75%. From the other 80 items, construct validity was moderate for 39 (26% and poor for 41 items (27%. Conclusions Our results demonstrate that the ENERGY-child questionnaire, assessing EBRBs of the child as well as personal, family, and school-environmental determinants related to these EBRBs, has good test-retest reliability and moderate to good construct validity for the large majority of items.

  7. Test-retest reliability and construct validity of the ENERGY-child questionnaire on energy balance-related behaviours and their potential determinants: the ENERGY-project

    Science.gov (United States)

    2011-01-01

    Background Insight in children's energy balance-related behaviours (EBRBs) and their determinants is important to inform obesity prevention research. Therefore, reliable and valid tools to measure these variables in large-scale population research are needed. Objective To examine the test-retest reliability and construct validity of the child questionnaire used in the ENERGY-project, measuring EBRBs and their potential determinants among 10-12 year old children. Methods We collected data among 10-12 year old children (n = 730 in the test-retest reliability study; n = 96 in the construct validity study) in six European countries, i.e. Belgium, Greece, Hungary, the Netherlands, Norway, and Spain. Test-retest reliability was assessed using the intra-class correlation coefficient (ICC) and percentage agreement comparing scores from two measurements, administered one week apart. To assess construct validity, the agreement between questionnaire responses and a subsequent face-to-face interview was assessed using ICC and percentage agreement. Results Of the 150 questionnaire items, 115 (77%) showed good to excellent test-retest reliability as indicated by ICCs > .60 or percentage agreement ≥ 75%. Test-retest reliability was moderate for 34 items (23%) and poor for one item. Construct validity appeared to be good to excellent for 70 (47%) of the 150 items, as indicated by ICCs > .60 or percentage agreement ≥ 75%. From the other 80 items, construct validity was moderate for 39 (26%) and poor for 41 items (27%). Conclusions Our results demonstrate that the ENERGY-child questionnaire, assessing EBRBs of the child as well as personal, family, and school-environmental determinants related to these EBRBs, has good test-retest reliability and moderate to good construct validity for the large majority of items. PMID:22152048

  8. Metabolic substrate use and the turnover of endogenous energy reserves in broad-tailed hummingbirds (Selasphorus platycercus).

    Science.gov (United States)

    Carleton, Scott A; Bakken, Bradley Hartman; Del Rio, Carlos Martínez

    2006-07-01

    We fed broad-tailed hummingbirds (Selasphorus platycercus) diets of contrasting carbon isotope composition and measured changes in the delta(13)C of expired breath through time. By measuring the delta(13)C in the breath of fed and fasted birds we were able to quantify the fraction of metabolism fueled by assimilated sugars and endogenous energy reserves. These measurements also allowed us to estimate the fractional turnover of carbon in the hummingbirds' energy reserves. When hummingbirds were feeding, they fueled their metabolism largely ( approximately 90%) with assimilated sugars. The rate of carbon isotope incorporation into the energy reserves of hummingbirds was higher when birds were gaining as opposed to losing body mass. The average residence time of a carbon atom in the hummingbirds' energy reserves ranged from 1 to 2 days.

  9. Aspects of Energy Metabolism in Mangalitsa Pigs Exposed at Thermic Neutral Temperature

    Directory of Open Access Journals (Sweden)

    Monica Pârvu

    2011-10-01

    Full Text Available The studies aimed the energy metabolism determination in Mangalitsa pigs exposed at thermic neutral temperature, compared to Large White pigs. The experimental period was between 80 and 100 kg liveweight. The animals had free access to standard, isoprotein and isocalory diets, with 13.5% crude protein (CP and 3100 kcal/kg metabolizable energy. Feed intake was measured on a daily basis. The energy-protein balance was calculated on the basis of comparative slaughter made at the beginning and end of the experiment. The metabolizable energy (MEc was estimated by chemical analysis (feed and excreta using mathematical modelling and the Whittemore’s formula. The metabolizable energy utilization efficiency was 0.61 at Large White and 0.53 at Mangalitsa.

  10. Adipose energy stores, physical work, and the metabolic syndrome: lessons from hummingbirds.

    Science.gov (United States)

    Hargrove, James L

    2005-12-13

    Hummingbirds and other nectar-feeding, migratory birds possess unusual adaptive traits that offer important lessons concerning obesity, diabetes and the metabolic syndrome. Hummingbirds consume a high sugar diet and have fasting glucose levels that would be severely hyperglycemic in humans, yet these nectar-fed birds recover most glucose that is filtered into the urine. Hummingbirds accumulate over 40% body fat shortly before migrations in the spring and autumn. Despite hyperglycemia and seasonally elevated body fat, the birds are not known to become diabetic in the sense of developing polyuria (glucosuria), polydipsia and polyphagia. The tiny (3-4 g) Ruby-throated hummingbird has among the highest mass-specific metabolic rates known, and loses most of its stored fat in 20 h by flying up to 600 miles across the Gulf of Mexico. During the breeding season, it becomes lean and maintains an extremely accurate energy balance. In addition, hummingbirds can quickly enter torpor and reduce resting metabolic rates by 10-fold. Thus, hummingbirds are wonderful examples of the adaptive nature of fat tissue, and may offer lessons concerning prevention of metabolic syndrome in humans.

  11. Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Andersen, Vibe H; Andersen, Jens V

    2017-01-01

    by glutamate was significantly lower in brain mitochondria from GDH KO mice and synaptosomes were not able to increase their respiration upon an elevated energy demand. The role of GDH for metabolism of glutamine and the respiratory capacity underscore the importance of GDH for neurons particularly during...

  12. Validity of the Modified Baecke Questionnaire: comparison with energy expenditure according to the doubly labeled water method

    Directory of Open Access Journals (Sweden)

    Peeters Petra HM

    2008-05-01

    Full Text Available Abstract Background In epidemiological research, physical activity is usually assessed by questionnaires. Questionnaires are suitable for large study populations since they are relatively inexpensive and not very time consuming. However, questionnaire information is by definition subjective and prone to recall bias, especially among elderly subjects. The Modified Baecke Questionnaire, developed by Voorrips and coworkers, measures habitual physical activity in the elderly. The questionnaire includes questions on household activities, sports, and leisure time activities, over a time period of one year. The Modified Baecke Questionnaire results in a score to classify people as high, moderate, or low in daily physical activity, based on tertiles. Methods The validity of the Modified Baecke Questionnaire score was assessed among 21 elderly men and women using the doubly labeled water method as the reference criterion. This method is considered to be the gold standard for measuring energy expenditure in free-living individuals. Energy expenditure on physical activity is estimated by the ratio of total energy expenditure measured by the doubly labeled water method and resting metabolic rate measured by indirect calorimetry. This ratio is called the physical activity ratio. Results The Spearman correlation coefficient between the questionnaire score and the physical activity ratio (PAR was 0.54 (95% CI 0.22–0.66. Correct classification by the questionnaire occurred in 71% of participants who were in the lowest tertile of PAR, in 14% of participants in the middle tertile, and in 43% of participants in the highest tertile. Subjects were not wrongly classified in an opposite tertile. Conclusion The validity of the Modified Baecke Questionnaire is fair-to-moderate. This study shows that the questionnaire can correctly classify individuals as low or high active, but does a poor job for moderately active individuals.

  13. A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Xu, Zhaojun; Tsurugi, Kunio

    2006-04-01

    The energy-metabolism oscillation in aerobic chemostat cultures of yeast is a periodic change of the respiro-fermentative and respiratory phase. In the respiro-fermentative phase, the NADH level was kept high and respiration was suppressed, and glucose was anabolized into trehalose and glycogen at a rate comparable to that of catabolism. On the transition to the respiratory phase, cAMP levels increased triggering the breakdown of storage carbohydrates and the increased influx of glucose into the glycolytic pathway activated production of glycerol and ethanol consuming NADH. The resulting increase in the NAD(+)/NADH ratio stimulated respiration in combination with a decrease in the level of ATP, which was consumed mainly in the formation of biomass accompanying budding, and the accumulated ethanol and glycerol were gradually degraded by respiration via NAD(+)-dependent oxidation to acetate and the respiratory phase ceased after the recovery of NADH and ATP levels. However, the mRNA levels of both synthetic and degradative enzymes of storage carbohydrates were increased around the early respiro-fermentative phase, when storage carbohydrates are being synthesized, suggesting that the synthetic enzymes were expressed directly as active forms while the degradative enzymes were activated late by cAMP. In summary, the energy-metabolism oscillation is basically regulated by a feedback loop of oxido-reductive reactions of energy metabolism mediated by metabolites like NADH and ATP, and is modulated by metabolism of storage carbohydrates in combination of post-translational and transcriptional regulation of the related enzymes. A potential mechanism of energy-metabolism oscillation is proposed.

  14. Exercising for Life? Energy Metabolism, Body Composition, and Longevity in Mice Exercising at Different Intensities

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Daan, Serge; Garland, Theodore; Visser, G. Henk; Garland Jr., Theodore

    2010-01-01

    Studies that have found a positive influence of moderate, non-exhaustive exercise on life expectancy contradict the rate-of-living theory, which predicts that high energy expenditure in exercising animals should shorten life. We investigated effects of exercise on energy metabolism and life span in

  15. Formate as an energy source for microbial metabolism in chemosynthetic zones of hydrothermal ecosystems.

    Science.gov (United States)

    Windman, Todd; Zolotova, Natalya; Schwandner, Florian; Shock, Everett L

    2007-12-01

    Formate, a simple organic acid known to support chemotrophic hyperthermophiles, is found in hot springs of varying temperature and pH. However, it is not yet known how metabolic strategies that use formate could contribute to primary productivity in hydrothermal ecosystems. In an effort to provide a quantitative framework for assessing the role of formate metabolism, concentration data for dissolved formate and many other solutes in samples from Yellowstone hot springs were used, together with data for coexisting gas compositions, to evaluate the overall Gibbs energy for many reactions involving formate oxidation or reduction. The result is the first rigorous thermodynamic assessment of reactions involving formate oxidation to bicarbonate and reduction to methane coupled with various forms of iron, nitrogen, sulfur, hydrogen, and oxygen for hydrothermal ecosystems. We conclude that there are a limited number of reactions that can yield energy through formate reduction, in contrast to numerous formate oxidation reactions that can yield abundant energy for chemosynthetic microorganisms. Because the energy yields are so high, these results challenge the notion that hydrogen is the primary energy source of chemosynthetic microbes in hydrothermal ecosystems.

  16. Expression of peroxisome proliferator-activated receptor-gamma in key neuronal subsets regulating glucose metabolism and energy homeostasis.

    Science.gov (United States)

    Sarruf, David A; Yu, Fang; Nguyen, Hong T; Williams, Diana L; Printz, Richard L; Niswender, Kevin D; Schwartz, Michael W

    2009-02-01

    In addition to increasing insulin sensitivity and adipogenesis, peroxisome proliferator-activated receptor (PPAR)-gamma agonists cause weight gain and hyperphagia. Given the central role of the brain in the control of energy homeostasis, we sought to determine whether PPARgamma is expressed in key brain areas involved in metabolic regulation. Using immunohistochemistry, PPARgamma distribution and its colocalization with neuron-specific protein markers were investigated in rat and mouse brain sections spanning the hypothalamus, the ventral tegmental area, and the nucleus tractus solitarius. In several brain areas, nuclear PPARgamma immunoreactivity was detected in cells that costained for neuronal nuclei, a neuronal marker. In the hypothalamus, PPARgamma immunoreactivity was observed in a majority of neurons in the arcuate (including both agouti related protein and alpha-MSH containing cells) and ventromedial hypothalamic nuclei and was also present in the hypothalamic paraventricular nucleus, the lateral hypothalamic area, and tyrosine hydroxylase-containing neurons in the ventral tegmental area but was not expressed in the nucleus tractus solitarius. To validate and extend these histochemical findings, we generated mice with neuron-specific PPARgamma deletion using nestin cre-LoxP technology. Compared with littermate controls, neuron-specific PPARgamma knockout mice exhibited dramatic reductions of both hypothalamic PPARgamma mRNA levels and PPARgamma immunoreactivity but showed no differences in food intake or body weight over a 4-wk study period. We conclude that: 1) PPARgamma mRNA and protein are expressed in the hypothalamus, 2) neurons are the predominant source of PPARgamma in the central nervous system, although it is likely expressed by nonneuronal cell types as well, and 3) arcuate nucleus neurons that control energy homeostasis and glucose metabolism are among those in which PPARgamma is expressed.

  17. Molecular Interaction of Bone Marrow Adipose Tissue with Energy Metabolism.

    Science.gov (United States)

    Suchacki, Karla J; Cawthorn, William P

    2018-01-01

    The last decade has seen a resurgence in the study of bone marrow adipose tissue (BMAT) across diverse fields such as metabolism, haematopoiesis, skeletal biology and cancer. Herein, we review the most recent developments of BMAT research in both humans and rodents, including the distinct nature of BMAT; the autocrine, paracrine and endocrine interactions between BMAT and various tissues, both in physiological and pathological scenarios; how these interactions might impact energy metabolism; and the most recent technological advances to quantify BMAT. Though still dwarfed by research into white and brown adipose tissues, BMAT is now recognised as endocrine organ and is attracting increasing attention from biomedical researchers around the globe. We are beginning to learn the importance of BMAT both within and beyond the bone, allowing us to better appreciate the role of BMAT in normal physiology and disease.

  18. Energy Metabolism and Inflammation in Brain Aging and Alzheimer’s Disease

    Science.gov (United States)

    Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique

    2016-01-01

    The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer’s disease. As important cellular sources of H2O2, mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer’s disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer’s disease. Interactions of these systems is reviewed based on basic research and clinical studies. PMID:27154981

  19. NAD+ metabolism and the control of energy homeostasis - a balancing act between mitochondria and the nucleus

    Science.gov (United States)

    Cantó, Carles; Menzies, Keir; Auwerx, Johan

    2015-01-01

    NAD+ has emerged as a vital cofactor that can rewire metabolism, activate sirtuins and maintain mitochondrial fitness through mechanisms such as the mitochondrial unfolded protein response. This improved understanding of NAD+ metabolism revived interest in NAD+ boosting strategies to manage a wide spectrum of diseases, ranging from diabetes to cancer. In this review, we summarize how NAD+ metabolism links energy status with adaptive cellular and organismal responses and how this knowledge can be therapeutically exploited. PMID:26118927

  20. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses

    Directory of Open Access Journals (Sweden)

    Jia Li

    2016-01-01

    Full Text Available Higher protein meals increase satiety and the thermic effect of feeding (TEF in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume and quantity (10%, 20%, or 30% of energy from protein on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER in overweight and obese adults. Subjects were randomly assigned to one protein source and then consumed diets with different quantities of protein (4 weeks each in a randomized crossover manner. Perceived appetite ratings (free-living and in-lab, TEF, and fasting cardio-metabolic indices were assessed at the end of each 4-week period. Protein source and quantity did not affect TEF, hunger, or desire to eat, other than a modestly higher daily composite fullness rating with 30% vs. 10% protein diet (p = 0.03. While the 20% and 30% protein diets reduced cholesterol, triacylglycerol, and APO-B vs. 10% protein (p < 0.05, protein source did not affect cardio-metabolic indices. In conclusion, diets varying in protein quantity with either beef/pork or soy/legume as the predominant source have minimal effects on appetite control, energy expenditure and cardio-metabolic risk factors during ER-induced weight loss.

  1. Simulating the physiology of athletes during endurance sports events: modelling human energy conversion and metabolism

    NARCIS (Netherlands)

    van Beek, J.H.G.M.; Supandi, F.B.; Gavai, Anand; de Graaf, A.A.; Binsl, T.W.; Hettling, H.

    2011-01-01

    The human physiological system is stressed to its limits during endurance sports competition events.We describe a whole body computational model for energy conversion during bicycle racing. About 23 per cent of the metabolic energy is used for muscle work, the rest is converted to heat. We

  2. Simulating the physiology of athletes during endurance sports events: Modelling human energy conversion and metabolism

    NARCIS (Netherlands)

    Beek, J.H.G.M. van; Supandi, F.; Gavai, A.K.; Graaf, A.A. de; Binsl, T.W.; Hettling, H.

    2011-01-01

    The human physiological system is stressed to its limits during endurance sports competition events.We describe a whole body computational model for energy conversion during bicycle racing. About 23 per cent of the metabolic energy is used for muscle work, the rest is converted to heat. We

  3. A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Meera Shah

    2016-08-01

    Full Text Available The multi-subunit eukaryotic translation initiation factor eIF3 is thought to assist in the recruitment of ribosomes to mRNA. The expression of eIF3 subunits is frequently disrupted in human cancers, but the specific roles of individual subunits in mRNA translation and cancer remain elusive. Using global transcriptomic, proteomic, and metabolomic profiling, we found a striking failure of Schizosaccharomyces pombe cells lacking eIF3e and eIF3d to synthesize components of the mitochondrial electron transport chain, leading to a defect in respiration, endogenous oxidative stress, and premature aging. Energy balance was maintained, however, by a switch to glycolysis with increased glucose uptake, upregulation of glycolytic enzymes, and strict dependence on a fermentable carbon source. This metabolic regulatory function appears to be conserved in human cells where eIF3e binds metabolic mRNAs and promotes their translation. Thus, via its eIF3d-eIF3e module, eIF3 orchestrates an mRNA-specific translational mechanism controlling energy metabolism that may be disrupted in cancer.

  4. PET studies of brain energy metabolism in a model of subcortical dementia: progressive supranuclear Palsy

    International Nuclear Information System (INIS)

    Blin, J.; Baron, J.C.; Cambon, H.

    1988-01-01

    In 41 patients with clinically determined Progressive Supranuclear Palsy, a model of degenerative subcortical dementia, alterations in regional brain energy metabolism with respect to control subjects have been investigated using positron computed tomography and correlated to clinical and neuropsychological scores. A generalized significant reduction in brain metabolism was found, which predominated in the prefrontal cortex in accordance with, and statistically correlated to, the frontal neuropsychological score

  5. Root Transcriptomic Analysis Revealing the Importance of Energy Metabolism to the Development of Deep Roots in Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Qiaojun Lou

    2017-07-01

    Full Text Available Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs between deep rooting and shallow rooting varieties (H vs. L were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA, we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots.

  6. Root Transcriptomic Analysis Revealing the Importance of Energy Metabolism to the Development of Deep Roots in Rice (Oryza sativa L.).

    Science.gov (United States)

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Xu, Kai; Wei, Haibin; Feng, Fangjun; Li, Tiemei; Pang, Xiaomeng; Shi, Caiping; Luo, Lijun; Zhong, Yang

    2017-01-01

    Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs) between deep rooting and shallow rooting varieties (H vs. L) were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S) were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs) were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA), we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots.

  7. [Coactivators in energy metabolism: peroxisome proliferator-activated receptor-gamma coactivator 1 family].

    Science.gov (United States)

    Wang, Rui; Chang, Yong-sheng; Fang, Fu-de

    2009-12-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) family is highly expressed in tissues with high energy metabolism. They coactivate transcription factors in regulating genes engaged in processes such as gluconeogenesis, adipose beta-oxydation, lipoprotein synthesis and secretion, mitochondrial biogenesis, and oxidative metabolism. Protein conformation studies demonstrated that they lack DNA binding domains and act as coactivators through physical interaction with transcription factors. PGC1 activity is regulated at transcription level or by multiple covalent chemical modifications such as phosphorylation, methylation and acetylation/deacetylation. Abnormal expression of PGC1 coactivators usually is closely correlated with diseases such as diabetes, obesity, hyperglycemia, hyperlipemia, and arterial and brain neuron necrosis diseases.

  8. GH and IGF1: Roles in Energy Metabolism of Long-Living GH Mutant Mice

    OpenAIRE

    Brown-Borg, Holly M.; Bartke, Andrzej

    2012-01-01

    Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of t...

  9. Simulating antler growth and energy, nitrogen, calcium and phosphorus metabolism in caribou

    Directory of Open Access Journals (Sweden)

    Ron Moen

    1998-03-01

    Full Text Available We added antler growth and mineral metabolism modules to a previously developed energetics model for ruminants to simulate energy and mineral balance of male and female caribou throughout an annual cycle. Body watet, fat, protein, and ash are monitored on a daily time step, and energy costs associated with reproduction and body mass changes are simulated. In order to simulate antler growth, we had to predict calcium and phosphorus metabolism as it is affected by antler growth, gestation, and lactation. We used data on dietary digestibility, protein, calcium and phosphorus content, and seasonal patterns in body mass to predict the energy, nitrogen, calcium, and phosphorus balances of a "generic" male and female caribou. Antler growth in males increased energy requirements during antler growth by 8 to 16%, depending on the efficiency with which energy was used for antler growth. Female energy requirements for antler growth were proportionately much smaller because of the smaller size of female antlers. Protein requirements for antler growth in both males and females were met by forage intake. Calcium and phosphorus must be resorbed from bone during peak antler growth in males, when > 25 g/day of calcium and > 12 g/day of phosphorus are being deposited in antlers. Females are capable of meeting calcium needs during antler growth without bone resorption, but phosphorus was resorbed from bone during the final stages of antler mineralization. After energy, phosphorus was most likely to limit growth of antlers for both males and females in our simulations. Input parameters can be easily changed to represent caribou from specific geographic regions in which dietary nutrient content or body mass patterns differ from those in our "generic" caribou. The model can be used to quantitatively analyze the evolutionary basis for development of antlers in female caribou, and the relationship between body mass and antler size in the Cervidae.

  10. The effects of home oxygen therapy on energy metabolism in patients with COPD

    Science.gov (United States)

    Kırıcı Berber, Nurcan; Yetkin, Özkan; Kılıç, Talat; Berber, Ilhami; Özgel, Mehmet

    2018-01-01

    Background COPD is preventable and treatable and is characterized by completely nonreversible airflow obstruction. In this study, we aimed to investigate the effect of long-term oxygen therapy on patients with stage 4 COPD who were followed up and treated at the polyclinic or clinic service. We evaluated the effects of oxygen therapy on energy metabolism and physical activity in patients with COPD. Methods Nineteen patients with COPD (16 male/3 female), treated with oxygen therapy for the first time, were included in this study. Analysis of arterial blood gases and pulmonary function test was performed. Metabolic Holter device (SenseWear® Armband) was placed pre- and post-oxygen therapy on the patients’ arm for at least 3 days. This device captures Holter data in a digitized electronic system, and the daily average value was calculated from the data. Results Post-oxygen treatment showed a significant increase in energy expenditure by patients with COPD (pretreatment, 1,497±596 joule; posttreatment, 2,977±5,985 joule; P=0.044). Moreover, number of steps during walking (pretreatment, 2,056±256; posttreatment, 2,120±195; P=0.03), resting (pretreatment, 6.36±3.31 hours; posttreatment, 3.47±2.19 hours; P<0.03), and sleeping (pretreatment, 4.23±2.13 hours; posttreatment, 2.33±1.42 hours; P<0.00) showed significant differences. Increased daily energy expenditure in patients with respiratory failure was detected with long-term oxygen therapy. In addition, the immobility of patients decreased and duration of physical activity increased in patients with COPD. Conclusion In this study, positive effects of long-term oxygen therapy have been demonstrated with respect to energy metabolism and physical activity of patients with COPD. Thus, we recommend that medication adherence and long-term oxygen therapy should begin early in patients with COPD.

  11. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity.

    Science.gov (United States)

    Shan, Bo; Wang, Xiaoxia; Wu, Ying; Xu, Chi; Xia, Zhixiong; Dai, Jianli; Shao, Mengle; Zhao, Feng; He, Shengqi; Yang, Liu; Zhang, Mingliang; Nan, Fajun; Li, Jia; Liu, Jianmiao; Liu, Jianfeng; Jia, Weiping; Qiu, Yifu; Song, Baoliang; Han, Jing-Dong J; Rui, Liangyou; Duan, Sheng-Zhong; Liu, Yong

    2017-05-01

    Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1 f/f ; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1 f/f ; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.

  12. Effect of melatonin and lighting schedule on energy metabolism in broiler chickens

    NARCIS (Netherlands)

    Apeldoorn, E.J.; Schrama, J.W.; Mashaly, M.M.; Parmentier, H.K.

    1999-01-01

    The effect of melatonin and lighting schedule on energy metabolism in broiler chickens was studied. Eight groups of six female broiler chickens each were assigned to a continuous lighting schedule [23 h light (L):1 h darkness (D)] or an intermittent lighting schedule (1L:3D), and were fed a diet

  13. Wave Tank Testing and Model Validation of an Autonomous Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Bret Bosma

    2015-08-01

    Full Text Available A key component in bringing ocean wave energy converters from concept to commercialization is the building and testing of scaled prototypes to provide model validation. A one quarter scale prototype of an autonomous two body heaving point absorber was modeled, built, and tested for this work. Wave tank testing results are compared with two hydrodynamic and system models—implemented in both ANSYS AQWA and MATLAB/Simulink—and show model validation over certain regions of operation. This work will serve as a guide for future developers of wave energy converter devices, providing insight in taking their design from concept to prototype stage.

  14. Experience in the modular teaching of the integrated course of metabolism and energy

    Institute of Scientific and Technical Information of China (English)

    Jian HUANG; Qian LI; Xue-mei TONG; Rong YANG; Ping ZHANG

    2015-01-01

    The teaching of eight-year clinical medicine program of Shanghai Jiao Tong University School of Medicine was reformed since 2009 to replace the traditional teaching model with modular teaching. As one of reformed courses,the metabolism and energy course combines biochemistry and physiology related knowledge points and endeavors to overcome shortcomings of traditional basic medical knowledge education,such as simple learning contents,isolation between basic medicine and clinical medicine,simple teaching methods of teachers,and passive learning methods of students. After 6 years of teaching practice,the new teaching model has been recognized by both teachers and students and the teaching quality improves comprehensively,but there are still some shortcomings that need to be overcome. This paper summarizes the gain and loss of the modular teaching of integrated course of metabolism and energy,so as to provide reference for extending the reform of modular teaching and further improving the teaching quality.

  15. Adipose energy stores, physical work, and the metabolic syndrome: lessons from hummingbirds

    Directory of Open Access Journals (Sweden)

    Hargrove James L

    2005-12-01

    Full Text Available Abstract Hummingbirds and other nectar-feeding, migratory birds possess unusual adaptive traits that offer important lessons concerning obesity, diabetes and the metabolic syndrome. Hummingbirds consume a high sugar diet and have fasting glucose levels that would be severely hyperglycemic in humans, yet these nectar-fed birds recover most glucose that is filtered into the urine. Hummingbirds accumulate over 40% body fat shortly before migrations in the spring and autumn. Despite hyperglycemia and seasonally elevated body fat, the birds are not known to become diabetic in the sense of developing polyuria (glucosuria, polydipsia and polyphagia. The tiny (3–4 g Ruby-throated hummingbird has among the highest mass-specific metabolic rates known, and loses most of its stored fat in 20 h by flying up to 600 miles across the Gulf of Mexico. During the breeding season, it becomes lean and maintains an extremely accurate energy balance. In addition, hummingbirds can quickly enter torpor and reduce resting metabolic rates by 10-fold. Thus, hummingbirds are wonderful examples of the adaptive nature of fat tissue, and may offer lessons concerning prevention of metabolic syndrome in humans.

  16. Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation.

    Science.gov (United States)

    Blundell, John E; Caudwell, Phillipa; Gibbons, Catherine; Hopkins, Mark; Naslund, Erik; King, Neil; Finlayson, Graham

    2012-09-01

    A long-running issue in appetite research concerns the influence of energy expenditure on energy intake. More than 50 years ago, Otto G. Edholm proposed that "the differences between the intakes of food [of individuals] must originate in differences in the expenditure of energy". However, a relationship between energy expenditure and energy intake within any one day could not be found, although there was a correlation over 2 weeks. This issue was never resolved before interest in integrative biology was replaced by molecular biochemistry. Using a psychobiological approach, we have studied appetite control in an energy balance framework using a multi-level experimental system on a single cohort of overweight and obese human subjects. This has disclosed relationships between variables in the domains of body composition [fat-free mass (FFM), fat mass (FM)], metabolism, gastrointestinal hormones, hunger and energy intake. In this Commentary, we review our own and other data, and discuss a new formulation whereby appetite control and energy intake are regulated by energy expenditure. Specifically, we propose that FFM (the largest contributor to resting metabolic rate), but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake. This formulation has implications for understanding weight regulation and the management of obesity.

  17. Clinical validity of the estimated energy requirement and the average protein requirement for nutritional status change and wound healing in older patients with pressure ulcers: A multicenter prospective cohort study.

    Science.gov (United States)

    Iizaka, Shinji; Kaitani, Toshiko; Nakagami, Gojiro; Sugama, Junko; Sanada, Hiromi

    2015-11-01

    Adequate nutritional intake is essential for pressure ulcer healing. Recently, the estimated energy requirement (30 kcal/kg) and the average protein requirement (0.95 g/kg) necessary to maintain metabolic balance have been reported. The purpose was to evaluate the clinical validity of these requirements in older hospitalized patients with pressure ulcers by assessing nutritional status and wound healing. This multicenter prospective study carried out as a secondary analysis of a clinical trial included 194 patients with pressure ulcers aged ≥65 years from 29 institutions. Nutritional status including anthropometry and biochemical tests, and wound status by a structured severity tool, were evaluated over 3 weeks. Energy and protein intake were determined from medical records on a typical day and dichotomized by meeting the estimated average requirement. Longitudinal data were analyzed with a multivariate mixed-effects model. Meeting the energy requirement was associated with changes in weight (P clinically validated for prevention of nutritional decline and of impaired healing of deep pressure ulcers. © 2014 Japan Geriatrics Society.

  18. Insight into Energy Conservation via Alternative Carbon Monoxide Metabolism in Carboxydothermus pertinax Revealed by Comparative Genome Analysis.

    Science.gov (United States)

    Fukuyama, Yuto; Omae, Kimiho; Yoneda, Yasuko; Yoshida, Takashi; Sako, Yoshihiko

    2018-05-04

    Carboxydothermus species are some of the most studied thermophilic carboxydotrophs. Their varied carboxydotrophic growth properties suggest distinct strategies for energy conservation via CO metabolism. In this study, we used comparative genome analysis of the genus Carboxydothermus to show variations in the CO dehydrogenase/energy-converting hydrogenase gene cluster, which is responsible for CO metabolism with H 2 production (hydrogenogenic CO metabolism). Indeed, ability or inability to produce H 2 with CO oxidation is explained by the presence or absence of this gene cluster in C. hydrogenoformans , C. islandicus , and C. ferrireducens Interestingly, despite its hydrogenogenic CO metabolism, C. pertinax lacks the Ni-CO dehydrogenase catalytic subunit (CooS-I) and its transcriptional regulator encoding genes in this gene cluster probably due to inversion. Transcriptional analysis in C. pertinax showed that the Ni-CO dehydrogenase gene ( cooS-II ) and distantly encoded energy-converting hydrogenase related genes were remarkably upregulated under 100% CO. In addition, when thiosulfate was available as a terminal electron acceptor under 100% CO, C. pertinax maximum cell density and maximum specific growth rate were 3.1-fold and 1.5-fold higher, respectively, than when thiosulfate was absent. The amount of H 2 produced was only 63% of the consumed CO, less than expected according to hydrogenogenic CO oxidation: CO + H 2 O → CO 2 + H 2 Accordingly, C. pertinax would couple CO oxidation by Ni-CO dehydrogenase-II with simultaneous reduction of not only H 2 O but thiosulfate when grown under 100% CO. IMPORTANCE Anaerobic hydrogenogenic carboxydotrophs are thought to fill a vital niche with scavenging potentially toxic CO and producing H 2 as available energy source for thermophilic microbes. This hydrogenogenic carboxydotrophy relies on a Ni-CO dehydrogenase/energy-converting hydrogenase gene cluster. This feature is thought to be as common to these organisms. However

  19. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses.

    Science.gov (United States)

    Li, Jia; Armstrong, Cheryl L H; Campbell, Wayne W

    2016-01-26

    Higher protein meals increase satiety and the thermic effect of feeding (TEF) in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume) and quantity (10%, 20%, or 30% of energy from protein) on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER) in overweight and obese adults. Subjects were randomly assigned to one protein source and then consumed diets with different quantities of protein (4 weeks each) in a randomized crossover manner. Perceived appetite ratings (free-living and in-lab), TEF, and fasting cardio-metabolic indices were assessed at the end of each 4-week period. Protein source and quantity did not affect TEF, hunger, or desire to eat, other than a modestly higher daily composite fullness rating with 30% vs. 10% protein diet (p = 0.03). While the 20% and 30% protein diets reduced cholesterol, triacylglycerol, and APO-B vs. 10% protein (p appetite control, energy expenditure and cardio-metabolic risk factors during ER-induced weight loss.

  20. Role of interleukin 1 and tumor necrosis factor on energy metabolism in rabbits

    International Nuclear Information System (INIS)

    Tredget, E.E.; Yu, Y.M.; Zhong, S.; Burini, R.; Okusawa, S.; Gelfand, J.A.; Dinarello, C.A.; Young, V.R.; Burke, J.F.

    1988-01-01

    A study of the combined effects of intravenous infusion of the recombinant cytokines beta-interleukin 1 (IL-1) and alpha-tumor necrosis factor (TNF) on energy substrate metabolism in awake, conditioned, adult rabbits was performed. After a 2-h basal or control period, 48-h fasted rabbits were administered TNF and IL-1 as a bolus (5 micrograms/kg) followed by a continuous intravenous infusion (25 ng.kg-1.min-1) for 3 h. Significant increases in plasma lactate (P less than 0.01), glucose (P less than 0.01), and triglycerides (P less than 0.05) occurred during the combined infusion of IL-1 and TNF, whereas neither cytokine alone had no effect. There was a 33% increase in the rate of glucose appearance (P less than 0.05), but glucose clearance was not altered compared with the control period. Glucose oxidation increased during the combined cytokine infusion period and glucose recycling increased by 600% (P less than 0.002). Lactic acidosis and decreased oxygen consumption, as a result of the cytokine infusions, indicated development of anaerobic glycolytic metabolism. A reduction in the activity state of hepatic mitochondrial pyruvate dehydrogenase (65 vs. 82% in control animals, P less than 0.05) was consistent with the observed increase in anaerobic glycolysis. Thus the combined infusion of IL-1 and TNF in rabbits produces metabolic manifestations seen in severe injury and sepsis in human patients and, as such, may account for the profound alterations of energy metabolism seen in these conditions

  1. Role of interleukin 1 and tumor necrosis factor on energy metabolism in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Tredget, E.E.; Yu, Y.M.; Zhong, S.; Burini, R.; Okusawa, S.; Gelfand, J.A.; Dinarello, C.A.; Young, V.R.; Burke, J.F.

    1988-12-01

    A study of the combined effects of intravenous infusion of the recombinant cytokines beta-interleukin 1 (IL-1) and alpha-tumor necrosis factor (TNF) on energy substrate metabolism in awake, conditioned, adult rabbits was performed. After a 2-h basal or control period, 48-h fasted rabbits were administered TNF and IL-1 as a bolus (5 micrograms/kg) followed by a continuous intravenous infusion (25 ng.kg-1.min-1) for 3 h. Significant increases in plasma lactate (P less than 0.01), glucose (P less than 0.01), and triglycerides (P less than 0.05) occurred during the combined infusion of IL-1 and TNF, whereas neither cytokine alone had no effect. There was a 33% increase in the rate of glucose appearance (P less than 0.05), but glucose clearance was not altered compared with the control period. Glucose oxidation increased during the combined cytokine infusion period and glucose recycling increased by 600% (P less than 0.002). Lactic acidosis and decreased oxygen consumption, as a result of the cytokine infusions, indicated development of anaerobic glycolytic metabolism. A reduction in the activity state of hepatic mitochondrial pyruvate dehydrogenase (65 vs. 82% in control animals, P less than 0.05) was consistent with the observed increase in anaerobic glycolysis. Thus the combined infusion of IL-1 and TNF in rabbits produces metabolic manifestations seen in severe injury and sepsis in human patients and, as such, may account for the profound alterations of energy metabolism seen in these conditions.

  2. Altered energy metabolism in an irradiated population of lizards at the Nevada Test Site

    International Nuclear Information System (INIS)

    Nagy, K.A.; Medica, P.A.

    1985-01-01

    Field metabolic rates (via doubly labeled water), body compartmentalization of energy stores, and energy assimilation efficiencies were measured to assess all avenues of energy utilization in Uta stansburiana living in a low-level γ-irradiated plot in Rock Valley, Nevada. Comparison of energy budgets for radiation-sterilized females with those of nonirradiated control lizards revealed several substantial differences. Sterile females were heavier, mainly because they had extraordinarily large energy (fat) storage depots. Sterile females had much lower rates of energy expenditure via respiration and lower rates of energy intake by feeding. These differences are interpreted as indirect responses to radiation-induced sterility. There is little evidence of direct radiation effects on physiological functions other than reproduction

  3. High energy diets-induced metabolic and prediabetic painful polyneuropathy in rats.

    Directory of Open Access Journals (Sweden)

    Fang Xie

    Full Text Available To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD or high-fat, high-sucrose and high-salt diets (HFSSD relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG, insulin, free fatty acids (FFA, homeostasis model assessment-insulin resistance index (HOMA-IR, thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF as well as unmyelinated fibers (UMF in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension and prediabetic conditions (impaired fasting glucose could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals.

  4. High Energy Diets-Induced Metabolic and Prediabetic Painful Polyneuropathy in Rats

    Science.gov (United States)

    Hou, Jun-Feng; Jiao, Kai; Costigan, Michael; Chen, Jun

    2013-01-01

    To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD) or high-fat, high-sucrose and high-salt diets (HFSSD) relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG), insulin, free fatty acids (FFA), homeostasis model assessment-insulin resistance index (HOMA-IR), thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF) as well as unmyelinated fibers (UMF) in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension) and prediabetic conditions (impaired fasting glucose) could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt) deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals. PMID:23451227

  5. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*.

    Science.gov (United States)

    Carrer, Michele; Liu, Ning; Grueter, Chad E; Williams, Andrew H; Frisard, Madlyn I; Hulver, Matthew W; Bassel-Duby, Rhonda; Olson, Eric N

    2012-09-18

    Obesity and metabolic syndrome are associated with mitochondrial dysfunction and deranged regulation of metabolic genes. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) is a transcriptional coactivator that regulates metabolism and mitochondrial biogenesis through stimulation of nuclear hormone receptors and other transcription factors. We report that the PGC-1β gene encodes two microRNAs (miRNAs), miR-378 and miR-378*, which counterbalance the metabolic actions of PGC-1β. Mice genetically lacking miR-378 and miR-378* are resistant to high-fat diet-induced obesity and exhibit enhanced mitochondrial fatty acid metabolism and elevated oxidative capacity of insulin-target tissues. Among the many targets of these miRNAs, carnitine O-acetyltransferase, a mitochondrial enzyme involved in fatty acid metabolism, and MED13, a component of the Mediator complex that controls nuclear hormone receptor activity, are repressed by miR-378 and miR-378*, respectively, and are elevated in the livers of miR-378/378* KO mice. Consistent with these targets as contributors to the metabolic actions of miR-378 and miR-378*, previous studies have implicated carnitine O-acetyltransferase and MED13 in metabolic syndrome and obesity. Our findings identify miR-378 and miR-378* as integral components of a regulatory circuit that functions under conditions of metabolic stress to control systemic energy homeostasis and the overall oxidative capacity of insulin target tissues. Thus, these miRNAs provide potential targets for pharmacologic intervention in obesity and metabolic syndrome.

  6. Experimental Validation of a Wave Energy Converter Array Hydrodynamics Tool

    DEFF Research Database (Denmark)

    Ruiz, Pau Mercadé; Ferri, Francesco; Kofoed, Jens Peter

    2017-01-01

    This paper uses experimental data to validate a wave energy converter (WEC) array hydrodynamics tool developed within the context of linearized potential flow theory. To this end, wave forces and power absorption by an array of five-point absorber WECs in monochromatic and panchromatic waves were...

  7. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice

    Science.gov (United States)

    Kliewer, Kara L; Ke, Jia-Yu; Tian, Min; Cole, Rachel M; Andridge, Rebecca R; Belury, Martha A

    2015-01-01

    Cancer cachexia is a progressive metabolic disorder that results in depletion of adipose tissue and skeletal muscle. A growing body of literature suggests that maintaining adipose tissue mass in cachexia may improve quality-of-life and survival outcomes. Studies of lipid metabolism in cachexia, however, have generally focused on later stages of the disorder when severe loss of adipose tissue has already occurred. Here, we investigated lipid metabolism in adipose, liver and muscle tissues during early stage cachexia – before severe fat loss – in the colon-26 murine model of cachexia. White adipose tissue mass in cachectic mice was moderately reduced (34–42%) and weight loss was less than 10% of initial body weight in this study of early cachexia. In white adipose depots of cachectic mice, we found evidence of enhanced protein kinase A - activated lipolysis which coincided with elevated total energy expenditure and increased expression of markers of brown (but not white) adipose tissue thermogenesis and the acute phase response. Total lipids in liver and muscle were unchanged in early cachexia while markers of fatty oxidation were increased. Many of these initial metabolic responses contrast with reports of lipid metabolism in later stages of cachexia. Our observations suggest intervention studies to preserve fat mass in cachexia should be tailored to the stage of cachexia. Our observations also highlight a need for studies that delineate the contribution of cachexia stage and animal model to altered lipid metabolism in cancer cachexia and identify those that most closely mimic the human condition. PMID:25457061

  8. Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation

    Directory of Open Access Journals (Sweden)

    John E. Blundell

    2012-09-01

    Full Text Available A long-running issue in appetite research concerns the influence of energy expenditure on energy intake. More than 50 years ago, Otto G. Edholm proposed that “the differences between the intakes of food [of individuals] must originate in differences in the expenditure of energy”. However, a relationship between energy expenditure and energy intake within any one day could not be found, although there was a correlation over 2 weeks. This issue was never resolved before interest in integrative biology was replaced by molecular biochemistry. Using a psychobiological approach, we have studied appetite control in an energy balance framework using a multi-level experimental system on a single cohort of overweight and obese human subjects. This has disclosed relationships between variables in the domains of body composition [fat-free mass (FFM, fat mass (FM], metabolism, gastrointestinal hormones, hunger and energy intake. In this Commentary, we review our own and other data, and discuss a new formulation whereby appetite control and energy intake are regulated by energy expenditure. Specifically, we propose that FFM (the largest contributor to resting metabolic rate, but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake. This formulation has implications for understanding weight regulation and the management of obesity.

  9. Food Components Modulate Obesity and Energy Metabolism via the Transcriptional Regulation of Lipid-Sensing Nuclear Receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Obesity is a major risk factor for chronic diseases such as diabetes, cardiovascular diseases, and hypertension. Many modern people have a tendency to overeat owing to stress and loosening of self-control. Moreover, energy expenditure varies greatly among individuals. Scientific reduction of obesity is important under these circumstances. Furthermore, recent research on molecular levels has clarified the differentiation of adipocytes, the level of subsequent fat accumulation, and the secretion of the biologically active adipokines by adipocytes. Adipose tissues and obesity have become the most important target for the prevention and treatment of many chronic diseases. We have identified various food-derived compounds modulating nuclear receptors, especially peroxisome proliferators-activated receptor(PPAR), in the regulation of energy metabolism and obesity. In this review, we discuss the PPARs that are most important in obesity and energy metabolism.

  10. Parametric recursive system identification and self-adaptive modeling of the human energy metabolism for adaptive control of fat weight.

    Science.gov (United States)

    Őri, Zsolt P

    2017-05-01

    A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.

  11. A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism.

    Science.gov (United States)

    Shah, Meera; Su, Dan; Scheliga, Judith S; Pluskal, Tomáš; Boronat, Susanna; Motamedchaboki, Khatereh; Campos, Alexandre Rosa; Qi, Feng; Hidalgo, Elena; Yanagida, Mitsuhiro; Wolf, Dieter A

    2016-08-16

    The multi-subunit eukaryotic translation initiation factor eIF3 is thought to assist in the recruitment of ribosomes to mRNA. The expression of eIF3 subunits is frequently disrupted in human cancers, but the specific roles of individual subunits in mRNA translation and cancer remain elusive. Using global transcriptomic, proteomic, and metabolomic profiling, we found a striking failure of Schizosaccharomyces pombe cells lacking eIF3e and eIF3d to synthesize components of the mitochondrial electron transport chain, leading to a defect in respiration, endogenous oxidative stress, and premature aging. Energy balance was maintained, however, by a switch to glycolysis with increased glucose uptake, upregulation of glycolytic enzymes, and strict dependence on a fermentable carbon source. This metabolic regulatory function appears to be conserved in human cells where eIF3e binds metabolic mRNAs and promotes their translation. Thus, via its eIF3d-eIF3e module, eIF3 orchestrates an mRNA-specific translational mechanism controlling energy metabolism that may be disrupted in cancer. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics.

    Science.gov (United States)

    Chicco, Adam J; Le, Catherine H; Gnaiger, Erich; Dreyer, Hans C; Muyskens, Jonathan B; D'Alessandro, Angelo; Nemkov, Travis; Hocker, Austin D; Prenni, Jessica E; Wolfe, Lisa M; Sindt, Nathan M; Lovering, Andrew T; Subudhi, Andrew W; Roach, Robert C

    2018-05-04

    Metabolic responses to hypoxia play important roles in cell survival strategies and disease pathogenesis in humans. However, the homeostatic adjustments that balance changes in energy supply and demand to maintain organismal function under chronic low oxygen conditions remain incompletely understood, making it difficult to distinguish adaptive from maladaptive responses in hypoxia-related pathologies. We integrated metabolomic and proteomic profiling with mitochondrial respirometry and blood gas analyses to comprehensively define the physiological responses of skeletal muscle energy metabolism to 16 days of high-altitude hypoxia (5260 m) in healthy volunteers from the AltitudeOmics project. In contrast to the view that hypoxia down-regulates aerobic metabolism, results show that mitochondria play a central role in muscle hypoxia adaptation by supporting higher resting phosphorylation potential and enhancing the efficiency of long-chain acylcarnitine oxidation. This directs increases in muscle glucose toward pentose phosphate and one-carbon metabolism pathways that support cytosolic redox balance and help mitigate the effects of increased protein and purine nucleotide catabolism in hypoxia. Muscle accumulation of free amino acids favor these adjustments by coordinating cytosolic and mitochondrial pathways to rid the cell of excess nitrogen, but might ultimately limit muscle oxidative capacity in vivo Collectively, these studies illustrate how an integration of aerobic and anaerobic metabolism is required for physiological hypoxia adaptation in skeletal muscle, and highlight protein catabolism and allosteric regulation as unexpected orchestrators of metabolic remodeling in this context. These findings have important implications for the management of hypoxia-related diseases and other conditions associated with chronic catabolic stress. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The energy metabolism of Fasciola hepatica during its development in the final host

    NARCIS (Netherlands)

    Tielens, A.G.M.; Heuvel, J.M. van den; Bergh, S.G. van den

    1984-01-01

    Mature liver flukes, Fasciola hepatica, of different ages were isolated from the bile ducts of experimentally infected rats. Their energy metabolism was studied during aerobic incubation with [6-14C]glucose. The results showed that the aerobic potentials of the parenchymal liver flukes are not lost

  14. Increasing serotonin concentrations alter calcium and energy metabolism in dairy cows.

    Science.gov (United States)

    Laporta, Jimena; Moore, Spencer A E; Weaver, Samantha R; Cronick, Callyssa M; Olsen, Megan; Prichard, Austin P; Schnell, Brian P; Crenshaw, Thomas D; Peñagaricano, Francisco; Bruckmaier, Rupert M; Hernandez, Laura L

    2015-07-01

    A 4×4 Latin square design in which varied doses (0, 0.5, 1.0, and 1.5 mg/kg) of 5-hydroxy-l-tryptophan (5-HTP, a serotonin precursor) were intravenously infused into late-lactation, non-pregnant Holstein dairy cows was used to determine the effects of serotonin on calcium and energy metabolism. Infusion periods lasted 4 days, with a 5-day washout between periods. Cows were infused at a constant rate for 1 h each day. Blood was collected pre- and 5, 10, 30, 60, 90, and 120 min post-infusion, urine was collected pre- and post-infusion, and milk was collected daily. All of the 5-HTP doses increased systemic serotonin as compared to the 0 mg/kg dose, and the 1.0 and 1.5 mg/kg doses increased circulating glucose and non-esterified fatty acids (NEFA) and decreased beta-hydroxybutyrate (βHBA) concentrations. Treatment of cows with either 1.0 or 1.5 mg/kg 5-HTP doses decreased urine calcium elimination, and the 1.5 mg/kg dose increased milk calcium concentrations. No differences were detected in the heart rates, respiration rates, or body temperatures of the cows; however, manure scores and defecation frequency were affected. Indeed, cows that received 5-HTP defecated more, and the consistency of their manure was softer. Treatment of late-lactation dairy cows with 5-HTP improved energy metabolism, decreased loss of calcium into urine, and increased calcium secretion into milk. Further research should target the effects of increasing serotonin during the transition period to determine any benefits for post-parturient calcium and glucose metabolism. © 2015 Society for Endocrinology.

  15. Altered metabolism in cancer

    Directory of Open Access Journals (Sweden)

    Locasale Jason W

    2010-06-01

    Full Text Available Abstract Cancer cells have different metabolic requirements from their normal counterparts. Understanding the consequences of this differential metabolism requires a detailed understanding of glucose metabolism and its relation to energy production in cancer cells. A recent study in BMC Systems Biology by Vasquez et al. developed a mathematical model to assess some features of this altered metabolism. Here, we take a broader look at the regulation of energy metabolism in cancer cells, considering their anabolic as well as catabolic needs. See research article: http://www.biomedcentral.com/1752-0509/4/58/

  16. [Construction and validation of an evaluation tool of sexual health using self-administered questionnaires for an application to metabolic diseases].

    Science.gov (United States)

    Petit, F; Hubert-Buron, A; Mollet-Boudjemline, A; Sechepine, A; Milcent, K; Guyonnet, C; Labrune, P

    2013-03-01

    To elaborate and validate in general population a survey built with self-administered questionnaires in French about evaluation of sexual health for an application to men and women with metabolic disease. Study built with four questionnaires (socio-familial environment [MSPSS scale], self-esteem [Rosenberg scale], anxiety and depression scale [Sigmund and Snaith scale], and male [BISF-M] or female [BISF-W] sexuality) translated in French and distributed to 232 men and 260 women. Hundred and eleven men aged 18 to 56 years and 142 women aged 20 to 60 years answered the self-administered questionnaire. Analysis showed several links between self-esteem, anxiety and depression and the different domains of male sexuality, justifying their association. Comparison between men and women confirmed the differences of sexual approach between the two sexes. Results in our population were concordant with those already reported in literature, indicating the validity and the reliability of our questionnaire and its multiparametric approach. Data obtained in this population will allow to use this multiparametric tool with patients affected by a metabolic disease. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Modelling central metabolic fluxes by constraint-based optimization reveals metabolic reprogramming of developing Solanum lycopersicum (tomato) fruit.

    Science.gov (United States)

    Colombié, Sophie; Nazaret, Christine; Bénard, Camille; Biais, Benoît; Mengin, Virginie; Solé, Marion; Fouillen, Laëtitia; Dieuaide-Noubhani, Martine; Mazat, Jean-Pierre; Beauvoit, Bertrand; Gibon, Yves

    2015-01-01

    Modelling of metabolic networks is a powerful tool to analyse the behaviour of developing plant organs, including fruits. Guided by our current understanding of heterotrophic metabolism of plant cells, a medium-scale stoichiometric model, including the balance of co-factors and energy, was constructed in order to describe metabolic shifts that occur through the nine sequential stages of Solanum lycopersicum (tomato) fruit development. The measured concentrations of the main biomass components and the accumulated metabolites in the pericarp, determined at each stage, were fitted in order to calculate, by derivation, the corresponding external fluxes. They were used as constraints to solve the model by minimizing the internal fluxes. The distribution of the calculated fluxes of central metabolism were then analysed and compared with known metabolic behaviours. For instance, the partition of the main metabolic pathways (glycolysis, pentose phosphate pathway, etc.) was relevant throughout fruit development. We also predicted a valid import of carbon and nitrogen by the fruit, as well as a consistent CO2 release. Interestingly, the energetic balance indicates that excess ATP is dissipated just before the onset of ripening, supporting the concept of the climacteric crisis. Finally, the apparent contradiction between calculated fluxes with low values compared with measured enzyme capacities suggest a complex reprogramming of the metabolic machinery during fruit development. With a powerful set of experimental data and an accurate definition of the metabolic system, this work provides important insight into the metabolic and physiological requirements of the developing tomato fruits. © 2014 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  18. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes

    KAUST Repository

    Martin, Jean Luc; Magistretti, Pierre J.; Allaman, Igor

    2013-01-01

    There is growing evidence that astrocytes are involved in the neuropathology of major depression. In particular, decreases in glial cell density observed in the cerebral cortex of individuals with major depressive disorder are accompanied by a reduction of several astrocytic markers suggesting that astrocyte dysfunction may contribute to the pathophysiology of major depression. In rodents, glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors and antidepressant treatment prevents the stress-induced reduction of astrocyte number in the hippocampus. Collectively, these data support the existence of a link between astrocyte loss or dysfunction, depressive-like behavior and antidepressant treatment. Astrocytes are increasingly recognized to play important roles in neuronal development, neurotransmission, synaptic plasticity and maintenance of brain homeostasis. It is also well established that astrocytes provide trophic, structural, and metabolic support to neurons. In this article, we review evidence that antidepressants regulate energy metabolism and neurotrophic factor expression with particular emphasis on studies in astrocytes. These observations support a role for astrocytes as new targets for antidepressants. The contribution of changes in astrocyte glucose metabolism and neurotrophic factor expression to the therapeutic effects of antidepressants remains to be established. © 2013 Bentham Science Publishers.

  19. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes

    KAUST Repository

    Martin, Jean Luc

    2013-09-01

    There is growing evidence that astrocytes are involved in the neuropathology of major depression. In particular, decreases in glial cell density observed in the cerebral cortex of individuals with major depressive disorder are accompanied by a reduction of several astrocytic markers suggesting that astrocyte dysfunction may contribute to the pathophysiology of major depression. In rodents, glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors and antidepressant treatment prevents the stress-induced reduction of astrocyte number in the hippocampus. Collectively, these data support the existence of a link between astrocyte loss or dysfunction, depressive-like behavior and antidepressant treatment. Astrocytes are increasingly recognized to play important roles in neuronal development, neurotransmission, synaptic plasticity and maintenance of brain homeostasis. It is also well established that astrocytes provide trophic, structural, and metabolic support to neurons. In this article, we review evidence that antidepressants regulate energy metabolism and neurotrophic factor expression with particular emphasis on studies in astrocytes. These observations support a role for astrocytes as new targets for antidepressants. The contribution of changes in astrocyte glucose metabolism and neurotrophic factor expression to the therapeutic effects of antidepressants remains to be established. © 2013 Bentham Science Publishers.

  20. Rethinking Energy in Parkinsonian Motor Symptoms: A Potential Role for Neural Metabolic Deficits

    Directory of Open Access Journals (Sweden)

    Shinichi eAmano

    2015-01-01

    Full Text Available Parkinson’s disease (PD is characterized as a chronic and progressive neurodegenerative disorder that results in a variety of debilitating symptoms, including bradykinesia, resting tremor, rigidity, and postural instability. Research spanning several decades has emphasized basal ganglia dysfunction, predominantly resulting from dopaminergic cell loss, as the primarily cause of the aforementioned parkinsonian features. But, why those particular features manifest themselves remains an enigma. The goal of this paper is to develop a theoretical framework that parkinsonian motor features are behavioral consequence of a long-term adaptation to their inability (inflexibility or lack of capacity to meet energetic demands, due to neural metabolic deficits arising from mitochondrial dysfunction associated with PD. Here, we discuss neurophysiological changes that are generally associated with PD, such as selective degeneration of dopaminergic neurons in the substantia nigra pars compacta, in conjunction with metabolic and mitochondrial dysfunction. We then characterize the cardinal motor symptoms of PD, bradykinesia, resting tremor, rigidity and gait disturbance, reviewing literature to demonstrate how these motor patterns are actually energy efficient from a metabolic perspective. We will also develop three testable hypotheses: (1 neural metabolic deficits precede the increased rate of neurodegeneration and onset of behavioral symptoms in PD, (2 motor behavior of persons with PD are more sensitive to changes in metabolic/bioenergetic state, and (3 improvement of metabolic function could lead to better motor performance in persons with PD. These hypotheses are designed to introduce a novel viewpoint that can elucidate the connections between metabolic, neural and motor function in PD.

  1. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    Science.gov (United States)

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2018-01-20

    The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.

  2. Validation studies of the DOE-2 Building Energy Simulation Program. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.; Winkelmann, F.

    1998-06-01

    This report documents many of the validation studies (Table 1) of the DOE-2 building energy analysis simulation program that have taken place since 1981. Results for several versions of the program are presented with the most recent study conducted in 1996 on version DOE-2.1E and the most distant study conducted in 1981 on version DOE-1.3. This work is part of an effort related to continued development of DOE-2, particularly in its use as a simulation engine for new specialized versions of the program such as the recently released RESFEN 3.1. RESFEN 3.1 is a program specifically dealing with analyzing the energy performance of windows in residential buildings. The intent in providing the results of these validation studies is to give potential users of the program a high degree of confidence in the calculated results. Validation studies in which calculated simulation data is compared to measured data have been conducted throughout the development of the DOE-2 program. Discrepancies discovered during the course of such work has resulted in improvements in the simulation algorithms. Table 2 provides a listing of additions and modifications that have been made to various versions of the program since version DOE-2.1A. One of the most significant recent changes in the program occurred with version DOE-2.1E. An improved algorithm for calculating the outside surface film coefficient was implemented. In addition, integration of the WINDOW 4 program was accomplished resulting in improved ability in analyzing window energy performance. Validation and verification of a program as sophisticated as DOE-2 must necessarily be limited because of the approximations inherent in the program. For example, the most accurate model of the heat transfer processes in a building would include a three-dimensional analysis. To justify such detailed algorithmic procedures would correspondingly require detailed information describing the building and/or HVAC system and energy plant parameters

  3. Energy metabolism of synaptosomes from different neuronal systems of rat cerebellum during aging: a functional proteomic characterization.

    Science.gov (United States)

    Ferrari, Federica; Gorini, Antonella; Villa, Roberto Federico

    2015-01-01

    Functional proteomics was used to characterize age-related changes in energy metabolism of different neuronal pathways within the cerebellar cortex of Wistar rats aged 2, 6, 12, 18, and 24 months. The "large" synaptosomes, derived from the glutamatergic mossy fibre endings which make synaptic contact with the granule cells of the granular layer, and the "small" synaptosomes, derived from the pre-synaptic terminals of granule cells making synaptic contact with the dendrites of Purkinje cells, were isolated by a combined differential/gradient centrifugation technique. Because most brain disorders are associated with bioenergetic changes, the maximum rate (Vmax) of selected enzymes of glycolysis, Krebs' cycle, glutamate and amino acids metabolism, and acetylcholine catabolism were evaluated. The results show that "large" and "small" synaptosomes possess specific and independent metabolic features. This study represents a reliable model to study in vivo (1) the physiopathological molecular mechanisms of some brain diseases dependent on energy metabolism, (2) the responsiveness to noxious stimuli, and (3) the effects of drugs, discriminating their action sites at subcellular level on specific neuronal pathways.

  4. Genome scale metabolic modeling of cancer

    DEFF Research Database (Denmark)

    Nilsson, Avlant; Nielsen, Jens

    2017-01-01

    of metabolism which allows simulation and hypotheses testing of metabolic strategies. It has successfully been applied to many microorganisms and is now used to study cancer metabolism. Generic models of human metabolism have been reconstructed based on the existence of metabolic genes in the human genome......Cancer cells reprogram metabolism to support rapid proliferation and survival. Energy metabolism is particularly important for growth and genes encoding enzymes involved in energy metabolism are frequently altered in cancer cells. A genome scale metabolic model (GEM) is a mathematical formalization...

  5. Effect of dietary energy and polymorphisms in BRAP and GHRL on obesity and metabolic traits.

    Science.gov (United States)

    Imaizumi, Takahiro; Ando, Masahiko; Nakatochi, Masahiro; Yasuda, Yoshinari; Honda, Hiroyuki; Kuwatsuka, Yachiyo; Kato, Sawako; Kondo, Takaaki; Iwata, Masamitsu; Nakashima, Toru; Yasui, Hiroshi; Takamatsu, Hideki; Okajima, Hiroshi; Yoshida, Yasuko; Maruyama, Shoichi

    Obesity, a risk factor for all-cause and cardiovascular mortality, is a major health concerns among middle-aged men. The aim of this study was to investigate a possible association of dietary habits and obesity related single nucleotide polymorphisms (SNPs) with obesity and metabolic abnormalities. We conducted a retrospective cohort study using annual health examination data of 5112 male workers, obtained between 2007 and 2011. Average dietary energy was estimated using electronically collected meal purchase data from cafeteria. We examined 8 SNPs related to obesity: GHRL rs696217, PPARG rs1175544, ADIPOQ rs2241766, ADIPOQ rs1501299, PPARD rs2016520, APOA5 rs662799, BRAP rs3782886, and ITGB2 rs235326. We also examined whether SNPs that were shown to associate with obesity affect other metabolic abnormalities such as blood pressure (BP), glucose, and lipid profile. Average dietary energy significantly associated with increased abdominal circumference (AC) and body mass index (BMI). The odds ratios (ORs) of overweight and obesity also increased. The major allele of rs696217 significantly increased BMI and an increased OR with obesity, while the minor allele of rs3782886 was associated with significantly decreased AC and the decreased ORs with overweight and obesity. The minor allele of rs3782886 was also associated with significantly decreased systolic BP (SBP), triglyceride (TG), high-density lipoprotein (HDL), and fasting blood sugar (FBS), while rs696217 was not associated with other metabolic abnormalities. Average dietary energy in lunch, rs3782886, and rs696217 were associated with obesity, and rs3782886 was associated with other metabolic abnormalities. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  6. Changes in the carbohydrate-energy metabolism with radiation-induced intestine syndrome

    International Nuclear Information System (INIS)

    Kendysh, I.N.; Grozdov, S.P.

    1981-01-01

    A local exposure of the rat abdomen in a dose of 3.6 cC/kg decreases the oxygen uptake, oxidation of glucose and fatty acids, glucose tolerance and insulin resistance, and also causes a trend toward lactic acidosis. These changes in the carbohydrate-energy metabolism are normalized with the administration of insulin and dichloracetate, and they may be interpreted as consequences of a shock provoked by a massive predominant injury to the intestine [ru

  7. Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates.

    Science.gov (United States)

    Elia, M; Cummings, J H

    2007-12-01

    The energy values of carbohydrates continue to be debated. This is because of the use of different energy systems, for example, combustible, digestible, metabolizable, and so on. Furthermore, ingested macronutrients may not be fully available to tissues, and the tissues themselves may not be able fully to oxidize substrates made available to them. Therefore, for certain carbohydrates, the discrepancies between combustible energy (cEI), digestible energy (DE), metabolizable energy (ME) and net metabolizable energy (NME) may be considerable. Three food energy systems are in use in food tables and for food labelling in different world regions based on selective interpretation of the digestive physiology and metabolism of food carbohydrates. This is clearly unsatisfactory and confusing to the consumer. While it has been suggested that an enormous amount of work would have to be undertaken to change the current ME system into an NME system, the additional changes may not be as great as anticipated. In experimental work, carbohydrate is high in the macronutrient hierarchy of satiation. However, studies of eating behaviour indicate that it does not unconditionally depend on the oxidation of one nutrient, and argue against the operation of a simple carbohydrate oxidation or storage model of feeding behaviour to the exclusion of other macronutrients. The site, rate and extent of carbohydrate digestion in, and absorption from the gut are key to understanding the many roles of carbohydrate, although the concept of digestibility has different meanings. Within the nutrition community, the characteristic patterns of digestion that occur in the small (upper) vs large (lower) bowel are known to impact in contrasting ways on metabolism, while in the discussion of the energy value of foods, digestibility is defined as the proportion of combustible energy that is absorbed over the entire length of the gastrointestinal tract. Carbohydrates that reach the large bowel are fermented to

  8. Comparison Between Cerebral Tissue Oxygen Tension and Energy Metabolism in Experimental Subdural Hematoma

    DEFF Research Database (Denmark)

    Nielsen, Troels Halfeld; Engell, Susanne I; Johnsen, Rikke Aagaard

    2011-01-01

    BACKGROUND: An experimental swine model (n = 7) simulating an acute subdural hematoma (ASDH) was employed (1) to explore the relation between the brain tissue oxygenation (PbtO(2)) and the regional cerebral energy metabolism as obtained by microdialysis, and (2) to define the lowest level of PbtO(2...

  9. Mechanistic model of mass-specific basal metabolic rate: evaluation in healthy young adults.

    Science.gov (United States)

    Wang, Z; Bosy-Westphal, A; Schautz, B; Müller, M

    2011-12-01

    Mass-specific basal metabolic rate (mass-specific BMR), defined as the resting energy expenditure per unit body mass per day, is an important parameter in energy metabolism research. However, a mechanistic explanation for magnitude of mass-specific BMR remains lacking. The objective of the present study was to validate the applicability of a proposed mass-specific BMR model in healthy adults. A mechanistic model was developed at the organ-tissue level, mass-specific BMR = Σ( K i × F i ), where Fi is the fraction of body mass as individual organs and tissues, and K i is the specific resting metabolic rate of major organs and tissues. The Fi values were measured by multiple MRI scans and the K i values were suggested by Elia in 1992. A database of healthy non-elderly non-obese adults (age 20 - 49 yrs, BMI BMR of all subjects was 21.6 ± 1.9 (mean ± SD) and 21.7 ± 1.6 kcal/kg per day, respectively. The measured mass-specific BMR was correlated with the predicted mass-specific BMR (r = 0.82, P BMR, versus the average of measured and predicted mass-specific BMR. In conclusion, the proposed mechanistic model was validated in non-elderly non-obese adults and can help to understand the inherent relationship between mass-specific BMR and body composition.

  10. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism

    OpenAIRE

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemys?aw; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-01-01

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, s...

  11. The Essential Role of Cholesterol Metabolism in the Intracellular Survival of Mycobacterium leprae Is Not Coupled to Central Carbon Metabolism and Energy Production.

    Science.gov (United States)

    Marques, Maria Angela M; Berrêdo-Pinho, Marcia; Rosa, Thabatta L S A; Pujari, Venugopal; Lemes, Robertha M R; Lery, Leticia M S; Silva, Carlos Adriano M; Guimarães, Ana Carolina R; Atella, Georgia C; Wheat, William H; Brennan, Patrick J; Crick, Dean C; Belisle, John T; Pessolani, Maria Cristina V

    2015-12-01

    Mycobacterium leprae induces the formation of lipid droplets, which are recruited to pathogen-containing phagosomes in infected macrophages and Schwann cells. Cholesterol is among the lipids with increased abundance in M. leprae-infected cells, and intracellular survival relies on cholesterol accumulation. The present study investigated the capacity of M. leprae to acquire and metabolize cholesterol. In silico analyses showed that oxidation of cholesterol to cholest-4-en-3-one (cholestenone), the first step of cholesterol degradation catalyzed by the enzyme 3β-hydroxysteroid dehydrogenase (3β-HSD), is apparently the only portion of the cholesterol catabolic pathway seen in Mycobacterium tuberculosis preserved by M. leprae. Incubation of bacteria with radiolabeled cholesterol confirmed the in silico predictions. Radiorespirometry and lipid analyses performed after incubating M. leprae with [4-(14)C]cholesterol or [26-(14)C]cholesterol showed the inability of this pathogen to metabolize the sterol rings or the side chain of cholesterol as a source of energy and carbon. However, the bacteria avidly incorporated cholesterol and, as expected, converted it to cholestenone both in vitro and in vivo. Our data indicate that M. leprae has lost the capacity to degrade and utilize cholesterol as a nutritional source but retains the enzyme responsible for its oxidation to cholestenone. Thus, the essential role of cholesterol metabolism in the intracellular survival of M. leprae is uncoupled from central carbon metabolism and energy production. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. Our study focused on the obligate intracellular pathogen Mycobacterium leprae and its capacity to metabolize cholesterol. The data make an important contribution for those interested in understanding the

  12. Acetate formation in the energy metabolism of parasitic helminths and protists.

    Science.gov (United States)

    Tielens, Aloysius G M; van Grinsven, Koen W A; Henze, Katrin; van Hellemond, Jaap J; Martin, William

    2010-03-15

    Formation and excretion of acetate as a metabolic end product of energy metabolism occurs in many protist and helminth parasites, such as the parasitic helminths Fasciola hepatica, Haemonchus contortus and Ascaris suum, and the protist parasites, Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis as well as Trypanosoma and Leishmania spp. In all of these parasites acetate is a main end product of their energy metabolism, whereas acetate formation does not occur in their mammalian hosts. Acetate production might therefore harbour novel targets for the development of new anti-parasitic drugs. In parasites, acetate is produced from acetyl-CoA by two different reactions, both involving substrate level phosphorylation, that are catalysed by either a cytosolic acetyl-CoA synthetase (ACS) or an organellar acetate:succinate CoA-transferase (ASCT). The ACS reaction is directly coupled to ATP synthesis, whereas the ASCT reaction yields succinyl-CoA for ATP formation via succinyl-CoA synthetase (SCS). Based on recent work on the ASCTs of F. hepatica, T. vaginalis and Trypanosoma brucei we suggest the existence of three subfamilies of enzymes within the CoA-transferase family I. Enzymes of these three subfamilies catalyse the ASCT reaction in eukaryotes via the same mechanism, but the subfamilies share little sequence homology. The CoA-transferases of the three subfamilies are all present inside ATP-producing organelles of parasites, those of subfamily IA in the mitochondria of trypanosomatids, subfamily IB in the mitochondria of parasitic worms and subfamily IC in hydrogenosome-bearing parasites. Together with the recent characterisation among non-parasitic protists of yet a third route of acetate formation involving acetate kinase (ACK) and phosphotransacetylase (PTA) that was previously unknown among eukaryotes, these recent developments provide a good opportunity to have a closer look at eukaryotic acetate formation. (c) 2010 Australian Society for Parasitology

  13. Brain energy metabolism and blood flow differences in healthy aging

    DEFF Research Database (Denmark)

    Aanerud, Joel; Borghammer, Per; Chakravarty, M Mallar

    2012-01-01

    Cerebral metabolic rate of oxygen consumption (CMRO(2)), cerebral blood flow (CBF), and oxygen extraction fraction (OEF) are important indices of healthy aging of the brain. Although a frequent topic of study, changes of CBF and CMRO(2) during normal aging are still controversial, as some authors......, and in the temporal cortex. Because of the inverse relation between OEF and capillary oxygen tension, increased OEF can compromise oxygen delivery to neurons, with possible perturbation of energy turnover. The results establish a possible mechanism of progression from healthy to unhealthy brain aging, as the regions...

  14. Preliminary validation of assays to measure parameters of calcium metabolism in captive Asian and African elephants in western Europe.

    Science.gov (United States)

    van Sonsbeek, Gerda R; van der Kolk, Johannes H; van Leeuwen, Johannes P T M; Schaftenaar, Willem

    2011-05-01

    Hypocalcemia is a well known cause of dystocia in animals, including elephants in captivity. In order to study calcium metabolism in elephants, it is of utmost importance to use properly validated assays, as these might be prone to specific matrix effects in elephant blood. The aim of the current study was to conduct preliminary work for validation of various parameters involved in calcium metabolism in both blood and urine of captive elephants. Basal values of these parameters were compared between Asian elephants (Elephas maximus) and African elephants (Loxodonta africana). Preliminary testing of total calcium, inorganic phosphorus, and creatinine appeared valid for use in plasma and creatinine in urine in both species. Furthermore, measurements of bone alkaline phosphatase and N-terminal telopeptide of type I collagen appeared valid for use in Asian elephants. Mean heparinized plasma ionized calcium concentration and pH were not significantly affected by 3 cycles of freezing and thawing. Storage at 4 °C, room temperature, and 37 °C for 6, 12, and 24 hr did not alter the heparinized plasma ionized calcium concentration in Asian elephants. The following linear regression equation using pH (range: 6.858-7.887) and ionized calcium concentration in heparinized plasma was utilized: iCa(7.4) (mmol/l) = -2.1075 + 0.3130·pH(actual) + 0.8296·iCa(actual) (mmol/l). Mean basal values for pH and plasma in Asian elephant whole blood were 7.40 ± 0.048 and 7.49 ± 0.077, respectively. The urinary specific gravity and creatinine concentrations in both Asian and African elephants were significantly correlated and both were significantly lower in Asian elephants. © 2011 The Author(s)

  15. Effects of an energy-dense diet and nicotinic acid supplementation on production and metabolic variables of primiparous or multiparous cows in periparturient period.

    Science.gov (United States)

    Tienken, Reka; Kersten, Susanne; Frahm, Jana; Meyer, Ulrich; Locher, Lena; Rehage, Jürgen; Huber, Korinna; Kenéz, Ákos; Sauerwein, Helga; Mielenz, Manfred; Dänicke, Sven

    2015-01-01

    It is well observed that feeding energy-dense diets in dairy cows during the dry period can cause metabolic imbalances after parturition. Especially dairy cows with high body condition score (BCS) and fed an energy-dense diet were prone to develop production diseases due to metabolic disturbances postpartum. An experiment was conducted to determine the effects of an energy-dense diet and nicotinic acid (NA) on production and metabolic variables of primiparous and multiparous cows in late pregnancy and early lactation which were not pre-selected for high BCS. Thirty-six multiparous and 20 primiparous German Holstein cows with equal body conditions were fed with energy-dense (60% concentrate/40% roughage mixture; HC group) or adequate (30% concentrate/70% roughage mixture; LC group) diets prepartum. After parturition, concentrate proportion was dropped to 30% for all HC and LC groups and was increased to 50% within 16 days for LC and within 24 days for HC cows. In addition, half of the cows per group received 24 g NA supplement per day and cow aimed to attenuate the lipid mobilisation postpartum. Feeding energy-dense diets to late-pregnant dairy cows elevated the dry matter (p metabolic deviation postpartum as the effects of prepartum concentrate feeding were not carried over into postpartum period. Multiparous cows responded more profoundly to energy-dense feeding prepartum compared with primiparous cows, and parity-related differences in the transition from late pregnancy to lactation were obvious pre- and postpartum. The supplementation with 24 g NA did not reveal any effect on energy metabolism. This study clearly showed that energy-dense feeding prepartum did not result in metabolic imbalances postpartum in multiparous and primiparous cows not selected for high BCS. A genetic predisposition for an anabolic metabolic status as indicated by high BCS may be crucial for developing production diseases at the onset of lactation.

  16. Fatty acid metabolism: target for metabolic syndrome

    OpenAIRE

    Wakil, Salih J.; Abu-Elheiga, Lutfi A.

    2009-01-01

    Fatty acids are a major energy source and important constituents of membrane lipids, and they serve as cellular signaling molecules that play an important role in the etiology of the metabolic syndrome. Acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2) catalyze the synthesis of malonyl-CoA, the substrate for fatty acid synthesis and the regulator of fatty acid oxidation. They are highly regulated and play important roles in the energy metabolism of fatty acids in animals, including humans. They...

  17. Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana.

    Science.gov (United States)

    Huarancca Reyes, Thais; Scartazza, Andrea; Lu, Yu; Yamaguchi, Junji; Guglielminetti, Lorenzo

    2016-08-01

    Carbon (C) and nitrogen (N) nutrient sources are essential elements for metabolism, and their availability must be tightly coordinated for the optimal growth and development in plants. Plants are able to sense and respond to different C/N conditions via specific partitioning of C and N sources and the regulation of a complex cellular metabolic activity. We studied how the interaction between C and N signaling could affect carbohydrate metabolism, soluble sugar levels, photochemical efficiency of photosystem II (PSII) and the ability to drive the excess energy in Arabidopsis seedlings under moderated and disrupted C/N-nutrient conditions. Invertase and sucrose synthase activities were markedly affected by C/N-nutrient status depending on the phosphorylation status, suggesting that these enzymes may necessarily be modulated by their direct phosphorylation or phosphorylation of proteins that form complex with them in response to C/N stress. In addition, the enzymatic activity of these enzymes was also correlated with the amount of sugars, which not only act as substrate but also as signaling compounds. Analysis of chlorophyll fluorescence in plants under disrupted C/N condition suggested a reduction of electron transport rate at PSII level associated with a higher capacity for non-radiative energy dissipation in comparison with plants under moderated C/N condition. In conclusion, the tight coordination between C and N not only affects the carbohydrates metabolism and their concentration within plant tissues, but also the partitioning of the excitation energy at PSII level between radiative (electron transport) and non-radiative (heat) dissipation pathways. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Energy metabolism in rat mast cells in relation to histamine secretion

    DEFF Research Database (Denmark)

    Johansen, T

    1987-01-01

    1. The relation between the energy metabolism and the secretory activity of rat peritoneal mast cells has been studied by determination of the cellular content of ATP and the rate of lactate production reflecting the rate of ATP synthesis under various experimental conditions. Secretion...... and the cellular ATP content at the time of cell activation was demonstrated. This may indicate a direct link between ATP and the secretory mechanism. 3. The possibility of an increased utilization of ATP during histamine secretion was explored in mast cells exposed to metabolic inhibitors. Incubation of mast...... cells with 2-deoxyglucose (2-DG) decreased the ATP content of the cells, and a long-lasting and stable level of mast cell ATP was observed. This is explained by a small decrease in the rate of ATP-synthesis by 2-DG. In 2-DG-treated cells secretion of histamine in response to compound 48...

  19. Restriction on an energy-dense diet improves markers of metabolic health and cellular aging in mice through decreasing hepatic mTOR activity.

    Science.gov (United States)

    Schloesser, Anke; Campbell, Graeme; Glüer, Claus-Christian; Rimbach, Gerald; Huebbe, Patricia

    2015-02-01

    Dietary restriction (DR) on a normal low-fat diet improves metabolic health and may prolong life span. However, it is still uncertain whether restriction of an energy-dense, high-fat diet would also be beneficial and mitigate age-related processes. In the present study, we determined biomarkers of metabolic health, energy metabolism, and cellular aging in obesity-prone mice subjected to 30% DR on a high-fat diet for 6 months. Dietary-restricted mice had significantly lower body weights, less adipose tissue, lower energy expenditure, and altered substrate oxidation compared to their ad libitum-fed counterparts. Hepatic major urinary proteins (Mup) expression, which is linked to glucose and energy metabolism, and biomarkers of metabolic health, including insulin, glucose, cholesterol, and leptin/adiponectin ratio, were likewise reduced in high-fat, dietary-restricted mice. Hallmarks of cellular senescence such as Lamp2a and Hsc70 that mediate chaperone-mediated autophagy were induced and mechanistic target of rapamycin (mTOR) signaling mitigated upon high-fat DR. In contrast to DR applied in low-fat diets, anti-oxidant gene expression, proteasome activity, as well as 5'-adenosine monophosphate-activated protein kinase (AMPK) activation were not changed, suggesting that high-fat DR may attenuate some processes associated with cellular aging without the induction of cellular stress response or energy deprivation.

  20. Prenatal programming in an obese swine model: sex-related effects of maternal energy restriction on morphology, metabolism and hypothalamic gene expression.

    Science.gov (United States)

    Óvilo, Cristina; González-Bulnes, Antonio; Benítez, Rita; Ayuso, Miriam; Barbero, Alicia; Pérez-Solana, Maria L; Barragán, Carmen; Astiz, Susana; Fernández, Almudena; López-Bote, Clemente

    2014-02-01

    Maternal energy restriction during pregnancy predisposes to metabolic alterations in the offspring. The present study was designed to evaluate phenotypic and metabolic consequences following maternal undernutrition in an obese pig model and to define the potential role of hypothalamic gene expression in programming effects. Iberian sows were fed a control or a 50 % restricted diet for the last two-thirds of gestation. Newborns were assessed for body and organ weights, hormonal and metabolic status, and hypothalamic expression of genes implicated in energy homeostasis, glucocorticoid function and methylation. Weight and adiposity were measured in adult littermates. Newborns of the restricted sows were lighter (P control newborns of both the sexes (P metabolic stress by nutrient insufficiency. A lower hypothalamic expression of anorexigenic peptides (LEPR and POMC, P controls (Pmetabolic alterations in the offspring. Differences in gene expression at birth and higher growth and adiposity in adulthood suggest a female-specific programming effect for a positive energy balance, possibly due to overexposure to endogenous stress-induced glucocorticoids.

  1. Redistribution of whole-body energy metabolism by exercise. A positron emission tomography study

    International Nuclear Information System (INIS)

    Masud, M.M.; Miyake, Masayasu; Watanuki, Shoichi; Itoh, Masatoshi; Tashiro, Manabu; Fujimoto, Toshihiko

    2009-01-01

    Our aim was to evaluate changes in glucose metabolism of skeletal muscles and viscera induced by different workloads using 18 F-2-fluoro-2-deoxyglucose ([ 18 F]FDG) and three-dimensional positron emission tomography (3-D PET). Five male volunteers performed ergometer bicycle exercise for 40 min at 40% and 70% of the maximal O 2 consumption (VO 2max ). [ 18 ]FDG was injected 10 min later following the exercise task. Whole-body 3-D PET was performed. Five other male volunteers were studied as a control to compare with the exercise group. The PET image data were analyzed using manually defined regions of interest to quantify the regional metabolic rate of glucose (rMRGlc). Group comparisons were made using analysis of variance, and significant differences (P 18 F]FDG-PET can be used as an index of organ energy metabolism for moderate exercise workloads (70% VO 2max ). The results of this investigation may contribute to sports medicine and rehabilitation science. (author)

  2. SirT1 regulates energy metabolism and response to caloric restriction in mice.

    Directory of Open Access Journals (Sweden)

    Gino Boily

    Full Text Available The yeast sir2 gene and its orthologues in Drosophila and C. elegans have well-established roles in lifespan determination and response to caloric restriction. We have studied mice carrying two null alleles for SirT1, the mammalian orthologue of sir2, and found that these animals inefficiently utilize ingested food. These mice are hypermetabolic, contain inefficient liver mitochondria, and have elevated rates of lipid oxidation. When challenged with a 40% reduction in caloric intake, normal mice maintained their metabolic rate and increased their physical activity while the metabolic rate of SirT1-null mice dropped and their activity did not increase. Moreover, CR did not extend lifespan of SirT1-null mice. Thus, SirT1 is an important regulator of energy metabolism and, like its orthologues from simpler eukaryotes, the SirT1 protein appears to be required for a normal response to caloric restriction.

  3. Constraints on energy intake in fish: the link between diet composition, energy metabolism, and energy intake in rainbow trout.

    Directory of Open Access Journals (Sweden)

    Subramanian Saravanan

    Full Text Available The hypothesis was tested that fish fed to satiation with iso-energetic diets differing in macronutrient composition will have different digestible energy intakes (DEI but similar total heat production. Four iso-energetic diets (2 × 2 factorial design were formulated having a contrast in i the ratio of protein to energy (P/E: high (H(P/E vs. low (L(P/E and ii the type of non-protein energy (NPE source: fat vs. carbohydrate which were iso-energetically exchanged. Triplicate groups (35 fish/tank of rainbow trout were hand-fed each diet twice daily to satiation for 6 weeks under non-limiting water oxygen conditions. Feed intake (FI, DEI (kJ kg(-0.8 d(-1 and growth (g kg(-0.8 d(-1 of trout were affected by the interaction between P/E ratio and NPE source of the diet (P0.05. Our data suggest that the control of DEI in trout might be a function of heat production, which in turn might reflect a physiological limit related with oxidative metabolism.

  4. Physical activity energy expenditure vs cardiorespiratory fitness level in impaired glucose metabolism

    DEFF Research Database (Denmark)

    Lidegaard, Lærke P; Hansen, Anne-Louise Smidt; Johansen, Nanna B

    2015-01-01

    Aim/hypothesis: Little is known about the relative roles of physical activity energy expenditure (PAEE) and cardiorespiratory fitness (CRF) as determinants of glucose regulation. The aim of this study was to examine the associations of PAEE and CRF with markers of glucose metabolism, and to test...... the hypothesis that CRF modifies the association between PAEE and glucose metabolism. Methods: We analysed cross-sectional data from 755 adults from the Danish ADDITION-PRO study. On the basis of OGTT results, participants without known diabetes were classified as having normal glucose tolerance, isolated...... impaired fasting glycaemia (i-IFG), isolated impaired glucose tolerance (i-IGT), combined IFG + IGT or screen-detected diabetes mellitus. Markers of insulin sensitivity and beta cell function were determined. PAEE was measured using a combined heart rate and movement sensor. CRF (maximal oxygen uptake...

  5. Effect of the pattern of food intake on human energy metabolism.

    Science.gov (United States)

    Verboeket-van de Venne, W P; Westerterp, K R; Kester, A D

    1993-07-01

    The pattern of food intake can affect the regulation of body weight and lipogenesis. We studied the effect of meal frequency on human energy expenditure (EE) and its components. During 1 week ten male adults (age 25-61 years, body mass index 20.7-30.4 kg/m2) were fed to energy balance at two meals/d (gorging pattern) and during another week at seven meals/d (nibbling pattern). For the first 6 d of each week the food was provided at home, followed by a 36 h stay in a respiration chamber. O2 consumption and CO2 production (and hence EE) were calculated over 24 h. EE in free-living conditions was measured over the 2 weeks with doubly-labelled water (average daily metabolic rate, ADMR). The three major components of ADMR are basal metabolic rate (BMR), diet-induced thermogenesis (DIT) and EE for physical activity (ACT). There was no significant effect of meal frequency on 24 h EE or ADMR. Furthermore, BMR and ACT did not differ between the two patterns. DIT was significantly elevated in the gorging pattern, but this effect was neutralized by correction for the relevant time interval. With the method used for determination of DIT no significant effect of meal frequency on the contribution of DIT to ADMR could be demonstrated.

  6. Energy metabolism after U.V.-irradiation in a sensitive yeast strain

    International Nuclear Information System (INIS)

    Kiefer, J.

    1976-01-01

    Stationary-phase cells of an excision-repair deficient diploid yeast (strain 2094) were UV-irradiated at exposures of up to 440 erg mm -2 and then resuspended in fresh medium. Measurements of energy metabolism per cell at periods of up to 6 hours after irradiation showed that cellular respiration was increased for all doses tested from about 3 hours after exposure, whereas fermentation did not start before about 2 hours after irradiation, never significantly exceeded control values and was markedly inhibited by the higher doses. The results suggest that respiration is under nuclear control, since a mutation in one gene is thought to be the only difference between this strain and the wild-type. The D 0 value of about 360 erg mm -2 found for the relative cellular fermentation at 2 hours after irradiation was used to give an estimate of the size of the structural gene involved, of about 3000 nucleotides, or a protein with 1000 amino-acid residues, compatible with the molecular weight of alcohol dehydrogenase. Fermentation can therefore be inhibited in this sensitive strain by lesions in the structural gene of a key enzyme. Since respiration was increased even more in repair-deficient than in repair-proficient strains, it must be assumed that higher energy metabolism is not linked to the repair process, but rather reflects a general disturbance in cellular regulation. (U.K.)

  7. Comparison of Various Indices of Energy Metabolism in Recumbent and Healthy Dairy Cows.

    Science.gov (United States)

    Guyot, Hugues; Detilleux, Johann; Lebreton, Pascal; Garnier, Catherine; Bonvoisin, Marie; Rollin, Frederic; Sandersen, Charlotte

    2017-01-01

    Downer cow syndrome (DCS) is often diagnosed in dairy cattle during the early post-partum period. The etiology of this condition is not completely understood, as it can be related to the energetic or electrolyte metabolism, as well as to infectious diseases or to trauma. The aim of this study is to compare energy metabolism and insulin sensitivity indices and various biochemical parameters between recumbent and healthy dairy cows. A prospective study has been undertaken on 361 recumbent and 80 healthy Holstein cows. Plasmatic glucose, insulin, non-esterified fatty acid (NEFA) and β-hydroxybutyrate (BHB) were assayed in all cows in order to calculate the insulin sensitivity indices but also minerals (Calcium, Phosphorous and Magnesium), thyroxin and creatine kinase. Body Condition Scores (BCS) was assessed. Significant differences in NEFA, and the glucose and insulin sensitivity indices ("Homeostasis Model Assessment" HOMA, "Revised Quantitative Insulin Sensitivity Check Index" RQUICKI, RQUICKI-BHB) were observed between healthy and recumbent cows in the early post-parturient period indicating disturbances of glucose and insulin homeostasis in the recumbent cows. In the same manner, mineral concentrations were significantly different between healthy and recumbent cows. Glucose, insulin NEFA, and HOMA, were different between early post-partum downer cows and the DCS-affected cows later in lactation. Results indicate disturbances in energy homeostasis in DCS-affected dairy cows. Further research should determine a prognostic value of the indices in cows suffering from recumbency of metabolic origin.

  8. Comparison of Various Indices of Energy Metabolism in Recumbent and Healthy Dairy Cows.

    Directory of Open Access Journals (Sweden)

    Hugues Guyot

    Full Text Available Downer cow syndrome (DCS is often diagnosed in dairy cattle during the early post-partum period. The etiology of this condition is not completely understood, as it can be related to the energetic or electrolyte metabolism, as well as to infectious diseases or to trauma.The aim of this study is to compare energy metabolism and insulin sensitivity indices and various biochemical parameters between recumbent and healthy dairy cows.A prospective study has been undertaken on 361 recumbent and 80 healthy Holstein cows.Plasmatic glucose, insulin, non-esterified fatty acid (NEFA and β-hydroxybutyrate (BHB were assayed in all cows in order to calculate the insulin sensitivity indices but also minerals (Calcium, Phosphorous and Magnesium, thyroxin and creatine kinase. Body Condition Scores (BCS was assessed.Significant differences in NEFA, and the glucose and insulin sensitivity indices ("Homeostasis Model Assessment" HOMA, "Revised Quantitative Insulin Sensitivity Check Index" RQUICKI, RQUICKI-BHB were observed between healthy and recumbent cows in the early post-parturient period indicating disturbances of glucose and insulin homeostasis in the recumbent cows. In the same manner, mineral concentrations were significantly different between healthy and recumbent cows. Glucose, insulin NEFA, and HOMA, were different between early post-partum downer cows and the DCS-affected cows later in lactation.Results indicate disturbances in energy homeostasis in DCS-affected dairy cows. Further research should determine a prognostic value of the indices in cows suffering from recumbency of metabolic origin.

  9. The relationship between basal metabolic rate and daily energy expenditure in birds and mammals

    NARCIS (Netherlands)

    Ricklefs, RE; Konarzewski, M; Daan, S

    We examined the relationship between daily energy expenditure (DEE) and basal metabolic rate (BMR) in birds and mammals. Two models of the relationship between DEE and BMR were distinguished: a ''shared pathways'' model in which DEE replaces BMR in the active organism and a ''partitioned pathways''

  10. Dynamic changes in energy metabolism upon embryonic stem cell differentiation support developmental toxicant identification

    NARCIS (Netherlands)

    Dartel, van D.A.M.; Schulpen, S.H.; Theunissen, P.T.; Bunschoten, A.; Piersma, A.H.; Keijer, J.

    2014-01-01

    Embryonic stem cells (ESC) are widely used to study embryonic development and to identify developmental toxicants. Particularly, the embryonic stem cell test (EST) is well known as in vitro model to identify developmental toxicants. Although it is clear that energy metabolism plays a crucial role in

  11. Glucose stimulates intestinal epithelial crypt proliferation by modulating cellular energy metabolism.

    Science.gov (United States)

    Zhou, Weinan; Ramachandran, Deepti; Mansouri, Abdelhak; Dailey, Megan J

    2018-04-01

    The intestinal epithelium plays an essential role in nutrient absorption, hormone release, and barrier function. Maintenance of the epithelium is driven by continuous cell renewal by stem cells located in the intestinal crypts. The amount and type of diet influence this process and result in changes in the size and cellular make-up of the tissue. The mechanism underlying the nutrient-driven changes in proliferation is not known, but may involve a shift in intracellular metabolism that allows for more nutrients to be used to manufacture new cells. We hypothesized that nutrient availability drives changes in cellular energy metabolism of small intestinal epithelial crypts that could contribute to increases in crypt proliferation. We utilized primary small intestinal epithelial crypts from C57BL/6J mice to study (1) the effect of glucose on crypt proliferation and (2) the effect of glucose on crypt metabolism using an extracellular flux analyzer for real-time metabolic measurements. We found that glucose increased both crypt proliferation and glycolysis, and the glycolytic pathway inhibitor 2-deoxy-d-glucose (2-DG) attenuated glucose-induced crypt proliferation. Glucose did not enhance glucose oxidation, but did increase the maximum mitochondrial respiratory capacity, which may contribute to glucose-induced increases in proliferation. Glucose activated Akt/HIF-1α signaling pathway, which might be at least in part responsible for glucose-induced glycolysis and cell proliferation. These results suggest that high glucose availability induces an increase in crypt proliferation by inducing an increase in glycolysis with no change in glucose oxidation. © 2017 Wiley Periodicals, Inc.

  12. The Contribution of Different Components in QiShenYiQi Pills® to Its Potential to Modulate Energy Metabolism in Protection of Ischemic Myocardial Injury

    Directory of Open Access Journals (Sweden)

    Yuan-Chen Cui

    2018-04-01

    Full Text Available Ischemic heart diseases remain a challenge for clinicians. QiShenYiQi pills® (QSYQ has been reported to be curative during coronary heart diseases with modulation of energy metabolism as one of the underlying mechanisms. In this study, we detected the effect of QSYQ and its components on rat myocardial structure, mitochondrial respiratory chain complexes activity and energy metabolism, and heart function after 30 min of cardiac ischemia, with focusing on the contribution of each component to its potential to regulate energy metabolism. Results showed that treatment with QSYQ and all its five components protected myocardial structure from damage by ischemia. QSYQ also attenuated release of myocardial cTnI, and restored the production of ATP after cardiac ischemia. AS-IV and Rb1, but not Rg1, R1, and DLA, had similar effect as QSYQ in regulation of energy metabolism. These results indicate that QSYQ may prevent ischemia-induced cardiac injury via regulation of energy metabolism, to which each of its components contributes differently.

  13. Potential hepatic toxicity of buprofezin at sublethal concentrations: ROS-mediated conversion of energy metabolism.

    Science.gov (United States)

    Ji, Xiaotong; Ku, Tingting; Zhu, Na; Ning, Xia; Wei, Wei; Li, Guangke; Sang, Nan

    2016-12-15

    Buprofezin is known for its broad-spectrum action and environmental safety. The popularity of buprofezin has raised concerns about its potentially adverse effects on human health and risk to the environment. In this study, we first identified the liver as one of the major organs in which buprofezin accumulated, and we detected a severe oxidative stress response. Next, we demonstrated that sublethal concentrations of buprofezin promoted the conversion of energy metabolism from the aerobic tricarboxylic acid (TCA) cycle and oxidative phosphorylation to anaerobic glycolysis. Importantly, reactive oxygen species (ROS) generation partially accounted for the shunting of the energy metabolism through the buprofezin-mediated inhibition of cytochrome c oxidase activity. ROS directly perturbed the activities of several key TCA cycle enzymes, stimulated glycolysis, and indirectly disturbed the activity of the respiratory chain complex by altering mitochondrial DNA (mtDNA). These findings clarify the potential mechanisms of buprofezin toxicity and provide biomarkers for buprofezin-mediated hepatotoxicity at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis.

    Science.gov (United States)

    Domínguez-Andrés, Jorge; Arts, Rob J W; Ter Horst, Rob; Gresnigt, Mark S; Smeekens, Sanne P; Ratter, Jacqueline M; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L; Joosten, Leo A B; Notebaart, Richard A; Ardavín, Carlos; Netea, Mihai G

    2017-09-01

    Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases.

  15. Energy Metabolism and Transfer of {sup 3}H and {sup 14}C in Mammals and Birds - Energy metabolism and transfer of {sup 3}H and {sup 14}C in mammals, birds, and fish

    Energy Technology Data Exchange (ETDEWEB)

    Melintescu, Anca; Galeriu, Dan [' Horia Hulubei' National Institute for Physics and Nuclear Engineering, Department of Environmental Physics and Life, 30 Reactorului St., POB MG-6, Bucharest-Magurele, RO-077125 (Romania); Beresford, Nicholas A. [NERC Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Av. Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2014-07-01

    The transfer of {sup 3}H and {sup 14}C in environment needs to be modelled differently than that of other radionuclides released from nuclear facilities because hydrogen and carbon are key components of biological tissues and the carbon and hydrogen life cycles. A detailed understanding of the behaviour of {sup 3}H and {sup 14}C in the food chain is essential because {sup 3}H may be released in large quantities from CANDU (Canadian Deuterium Uranium) reactors and future thermonuclear reactors, and {sup 14}C accumulates in the environment because of its long half-life. In recent years, the authors published both a simple and a complex dynamic metabolic model for {sup 3}H and {sup 14}C transfer to farm and wild animals. The models applications for wild animals were restricted to few examples. There is an increased interest to extend the models for a larger selection of wild animals, birds and fish to support developments such as the International Commission for Radiological Protection (ICRP) environmental protection framework. In this paper we describe activities to expand {sup 3}H and {sup 14}C models to cover a wider range of wildlife. The updated model of the dynamics of tritium transfer in aquatic food chains (AQUATRIT model) developed by the authors was successfully tested for small and large (trout) fish. Wild mammals and birds generally have a lower fat content than domestic species and must adapt to variable environmental conditions. The body mass is an important parameter involved in radionuclide transfer. The environmental temperature, type of animal, and diet must also be considered. The model input parameters for wild mammals are poorly defined because the experimental data are too few and the intraspecific variability is higher than that for farm and laboratory mammals. In the present study, our previously published approach considering the use of energy metabolism and the link between energy and organic matter turnover rate at the whole body and organ

  16. Changes in energy metabolism in relation to physical activity due to fermentable carbohydrates in group housed, growing pigs

    NARCIS (Netherlands)

    Schrama, J.W.; Bakker, G.C.M.

    1999-01-01

    Fermentable nonstarch polysaccharides (dietary fiber) affect energy retention in group-housed growing pigs by reducing physical activity. This study assessed the effects of fermentation and bulkiness of dietary carbohydrates on physical activity in relation to energy metabolism. Eight clusters of 14

  17. Changes in energy metabolism in relation to physical activity due to fermentable carbohydrates in group-housed growing pigs

    NARCIS (Netherlands)

    Schrama, J.W.; Bakker, G.C.M.

    1999-01-01

    Fermentable nonstarch polysaccharides (dietary fiber) affect energy retention in group-housed growing pigs by reducing physical activity. This study assessed the effects of fermentation and bulkiness of dietary carbohydrates on physical activity in relation to energy metabolism. Eight clusters of 14

  18. Mineral absorption and excretion as affected by microbial phytase and their effect on energy metabolism in young piglets

    NARCIS (Netherlands)

    Kies, A.K.; Gerrits, W.J.J.; Schrama, J.W.; Heetkamp, M.J.W.; Linden, van der K.L.; Zandstra, T.; Verstegen, M.W.A.

    2005-01-01

    Positive effects of dietary phytase supplementation on pig performance are observed not only when phosphorus is limiting. Improved energy utilization might be one explanation. Using indirect calorimetry, phytase-induced changes in energy metabolism were evaluated in young piglets with adequate

  19. Common variants near MC4R in relation to body fat, body fat distribution, metabolic traits and energy expenditure

    DEFF Research Database (Denmark)

    Kring, Sofia Inez Iqbal; Holst, C; Toubro, Søren

    2010-01-01

    Common variants near melanocortin receptor 4 (MC4R) have been related to fatness and type 2 diabetes. We examined the associations of rs17782313 and rs17700633 in relation to body fat, body fat distribution, metabolic traits, weight development and energy expenditure.......Common variants near melanocortin receptor 4 (MC4R) have been related to fatness and type 2 diabetes. We examined the associations of rs17782313 and rs17700633 in relation to body fat, body fat distribution, metabolic traits, weight development and energy expenditure....

  20. Effects of dietary fermentable carbohydrates on energy metabolism in group-housed sows.

    Science.gov (United States)

    Rijnen, M M; Verstegen, M W; Heetkamp, M J; Haaksma, J; Schrama, J W

    2001-01-01

    The effect of dietary nonstarch polysaccharide (NSP) content on the metabolic rate in group-housed sows was studied. Twelve groups of six nonpregnant sows were each fed one of four experimental diets similar in composition except for the starch and NSP content. Exchanging sugar beet pulp silage (SBPS) for tapioca created the difference in starch and NSP ratio in the diet. On a DM basis, diets contained 0, 10, 20, or 30% SBPS. Sows were group-housed and fed at 1.30 times the assumed maintenance energy requirements. Nitrogen and energy balances were measured per group during a 7-d experimental period, which was preceded by a 33-d adaptation period. Both digestibility and metabolizability of energy decreased with increasing dietary SBPS content (P 0.1). Based on energy retention data and apparent fecal digestibilities of crude protein, crude fat, starch, and NSP, the estimated net energy value of fermented NSP was 13.4 kJ/g. The present study shows that group-housed sows are capable of using energy from fermented NSP (i.e., NSP from SBPS) as efficiently as energy from digested starch (i.e., starch from tapioca).

  1. Changes in energy metabolism in response to 48 h of overfeeding and fasting in Caucasians and Pima Indians

    DEFF Research Database (Denmark)

    Weyer, C; Vozarova, B; Ravussin, E

    2001-01-01

    Differences in the metabolic response to overfeeding and starvation may confer susceptibility or resistance to obesity in humans. To further examine this hypothesis, we assessed the changes in 24 h energy metabolism in response to short-term overfeeding and fasting in Caucasians (C) and Pima...... Indians (I), a population with a very high propensity for obesity....

  2. Postmortem validation of breast density using dual-energy mammography

    OpenAIRE

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dua...

  3. Physiological response to extreme fasting in subantarctic fur seal (Arctocephalus tropicalis) pups: metabolic rates, energy reserve utilization, and water fluxes.

    Science.gov (United States)

    Verrier, Delphine; Groscolas, René; Guinet, Christophe; Arnould, John P Y

    2009-11-01

    Surviving prolonged fasting requires various metabolic adaptations, such as energy and protein sparing, notably when animals are simultaneously engaged in energy-demanding processes such as growth. Due to the intermittent pattern of maternal attendance, subantarctic fur seal pups have to repeatedly endure exceptionally long fasting episodes throughout the 10-mo rearing period while preparing for nutritional independence. Their metabolic responses to natural prolonged fasting (33.4 +/- 3.3 days) were investigated at 7 mo of age. Within 4-6 fasting days, pups shifted into a stage of metabolic economy characterized by a minimal rate of body mass loss (0.7%/day) and decreased resting metabolic rate (5.9 +/- 0.1 ml O(2)xkg(-1)xday(-1)) that was only 10% above the level predicted for adult terrestrial mammals. Field metabolic rate (289 +/- 10 kJxkg(-1)xday(-1)) and water influx (7.9 +/- 0.9 mlxkg(-1)xday(-1)) were also among the lowest reported for any young otariid, suggesting minimized energy allocation to behavioral activity and thermoregulation. Furthermore, lean tissue degradation was dramatically reduced. High initial adiposity (>48%) and predominant reliance on lipid catabolism likely contributed to the exceptional degree of protein sparing attained. Blood chemistry supported these findings and suggested utilization of alternative fuels, such as beta-hydroxybutyrate and de novo synthesized glucose from fat-released glycerol. Regardless of sex and body condition, pups tended to adopt a convergent strategy of extreme energy and lean body mass conservation that appears highly adaptive for it allows some tissue growth during the repeated episodes of prolonged fasting they experience throughout their development.

  4. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men

    DEFF Research Database (Denmark)

    Canfora, Emanuel E; van der Beek, Christina M; Jocken, Johan W E

    2017-01-01

    Short-chain fatty acids (SCFA), formed by microbial fermentation, are believed to be involved in the aetiology of obesity and diabetes. This study investigated the effects of colonic administration of physiologically relevant SCFA mixtures on human substrate and energy metabolism...

  5. Carbon and energy metabolism of atp mutants of Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Michelsen, Ole

    1992-01-01

    strain is not able to utilize the resulting proton motive force for ATP synthesis. Indeed, the ratio of ATP concentration to ADP concentration was decreased from 19 in the wild type to 7 in the atp mutant, and the membrane potential of the atp deletion strain was increased by 20%, confirming......The membrane-bound H+-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth...... rate and growth yield were decreased less than expected for a shift from oxidative phosphorylation to glycolysis alone as a source of ATP. Moreover, the respiration rate of a atp deletion strain was increased by 40% compared with the wild-type strain. This result is surprising, since the atp deletion...

  6. A Plant Bacterial Pathogen Manipulates Its Insect Vector's Energy Metabolism

    Science.gov (United States)

    Hijaz, Faraj; Ebert, Timothy A.; Rogers, Michael E.

    2016-01-01

    ABSTRACT Insect-transmitted plant-pathogenic bacteria may alter their vectors' fitness, survival, behavior, and metabolism. Because these pathogens interact with their vectors on the cellular and organismal levels, potential changes at the biochemical level might occur. “Candidatus Liberibacter asiaticus” (CLas) is transmitted in a persistent, circulative, and propagative manner. The genome of CLas revealed the presence of an ATP translocase that mediates the uptake of ATP and other nucleotides from medium to achieve its biological processes, such as growth and multiplication. Here, we showed that the levels of ATP and many other nucleotides were significantly higher in CLas-infected than healthy psyllids. Gene expression analysis showed upregulation for ATP synthase subunits, while ATPase enzyme activity showed a decrease in ATPase activity. These results indicated that CLas stimulated Diaphorina citri to produce more ATP and many other energetic nucleotides, while it may inhibit their consumption by the insect. As a result of ATP accumulation, the adenylated energy charge (AEC) increased and the AMP/ATP and ADP/ATP ratios decreased in CLas-infected D. citri psyllids. Survival analysis confirmed a shorter life span for CLas-infected D. citri psyllids. In addition, electropenetrography showed a significant reduction in total nonprobing time, salivation time, and time from the last E2 (phloem ingestion) to the end of recording, indicating that CLas-infected psyllids were at a higher hunger level and they tended to forage more often. This increased feeding activity reflects the CLas-induced energetic stress. In conclusion, CLas alters the energy metabolism of its psyllid vector, D. citri, in order to secure its need for energetic nucleotides. IMPORTANCE Insect transmission of plant-pathogenic bacteria involves propagation and circulation of the bacteria within their vectors. The transmission process is complex and requires specific interactions at the molecular

  7. Adaptations in the energy metabolism of parasites

    NARCIS (Netherlands)

    van Grinsven, K.W.A.|info:eu-repo/dai/nl/304833436

    2009-01-01

    For this thesis fundamental research was performed on the metabolic adaptations found in parasites. Studying the adaptations in parasite metabolisms leads to a better understanding of parasite bioenergetics and can also result in the identification of new anti-parasitic drug targets. We focussed on

  8. Multiyear Plan for Validation of EnergyPlus Multi-Zone HVAC System Modeling using ORNL's Flexible Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Im, Piljae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bhandari, Mahabir S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); New, Joshua Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    This document describes the Oak Ridge National Laboratory (ORNL) multiyear experimental plan for validation and uncertainty characterization of whole-building energy simulation for a multi-zone research facility using a traditional rooftop unit (RTU) as a baseline heating, ventilating, and air conditioning (HVAC) system. The project’s overarching objective is to increase the accuracy of energy simulation tools by enabling empirical validation of key inputs and algorithms. Doing so is required to inform the design of increasingly integrated building systems and to enable accountability for performance gaps between design and operation of a building. The project will produce documented data sets that can be used to validate key functionality in different energy simulation tools and to identify errors and inadequate assumptions in simulation engines so that developers can correct them. ASHRAE Standard 140, Method of Test for the Evaluation of Building Energy Analysis Computer Programs (ASHRAE 2004), currently consists primarily of tests to compare different simulation programs with one another. This project will generate sets of measured data to enable empirical validation, incorporate these test data sets in an extended version of Standard 140, and apply these tests to the Department of Energy’s (DOE) EnergyPlus software (EnergyPlus 2016) to initiate the correction of any significant deficiencies. The fitness-for-purpose of the key algorithms in EnergyPlus will be established and demonstrated, and vendors of other simulation programs will be able to demonstrate the validity of their products. The data set will be equally applicable to validation of other simulation engines as well.

  9. Dissolve energy obesity by energy diet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Heum [Sunmoon University, Asan (Korea)

    2000-07-01

    Every organism takes needed materials or energy from outside and excretes unessential things to outside. This is called a metabolism or energy metabolism. Calculating the amount of energy consumed by human in the world by converting to the amount of metabolism of an animal to survive, the weight of a human being is corresponding to an animal with a weigh of 40 ton. Human beings can find a solution to dissolve energy obesity or can maintain a massive status by finding a new energy source in the universe.

  10. The role of acyl-CoA:diacylglycerol acyltransferase (DGAT) in energy metabolism.

    Science.gov (United States)

    Yu, Yi-Hao; Ginsberg, Henry N

    2004-01-01

    Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC2.3.1.20), a key enzyme in triglyceride (TG) biosynthesis, not only participates in lipid metabolism but also influences metabolic pathways of other fuel molecules. Changes in the expression and/or activity levels of DGAT may lead to changes in systemic insulin sensitivity and energy homeostasis. The synthetic role of DGAT in adipose tissue, the liver, and the intestine, sites where endogenous levels of DGAT activity and TG synthesis are high, is relatively clear. Less clear is whether DGAT plays a mediating or preventive role in the development of ectopic lipotoxicity in tissues such as muscle and the pancreas, when their supply of free fatty acids (FFAs) exceeds their needs. Future studies with tissue-specific overexpression and/or knockout in these animal models would be expected to shed additional light on these issues.

  11. Consistent estimation of Gibbs energy using component contributions.

    Directory of Open Access Journals (Sweden)

    Elad Noor

    Full Text Available Standard Gibbs energies of reactions are increasingly being used in metabolic modeling for applying thermodynamic constraints on reaction rates, metabolite concentrations and kinetic parameters. The increasing scope and diversity of metabolic models has led scientists to look for genome-scale solutions that can estimate the standard Gibbs energy of all the reactions in metabolism. Group contribution methods greatly increase coverage, albeit at the price of decreased precision. We present here a way to combine the estimations of group contribution with the more accurate reactant contributions by decomposing each reaction into two parts and applying one of the methods on each of them. This method gives priority to the reactant contributions over group contributions while guaranteeing that all estimations will be consistent, i.e. will not violate the first law of thermodynamics. We show that there is a significant increase in the accuracy of our estimations compared to standard group contribution. Specifically, our cross-validation results show an 80% reduction in the median absolute residual for reactions that can be derived by reactant contributions only. We provide the full framework and source code for deriving estimates of standard reaction Gibbs energy, as well as confidence intervals, and believe this will facilitate the wide use of thermodynamic data for a better understanding of metabolism.

  12. Associations of fatty acids in cerebrospinal fluid with peripheral glucose concentrations and energy metabolism.

    Directory of Open Access Journals (Sweden)

    Reiner Jumpertz

    Full Text Available Rodent experiments have emphasized a role of central fatty acid (FA species, such as oleic acid, in regulating peripheral glucose and energy metabolism. Thus, we hypothesized that central FAs are related to peripheral glucose regulation and energy expenditure in humans. To test this we measured FA species profiles in cerebrospinal fluid (CSF and plasma of 32 individuals who stayed in our clinical inpatient unit for 6 days. Body composition was measured by dual energy X-ray absorptiometry and glucose regulation by an oral glucose test (OGTT followed by measurements of 24 hour (24EE and sleep energy expenditure (SLEEP as well as respiratory quotient (RQ in a respiratory chamber. CSF was obtained via lumbar punctures; FA concentrations were measured by liquid chromatography/mass spectrometry. As expected, FA concentrations were higher in plasma compared to CSF. Individuals with high concentrations of CSF very-long-chain saturated FAs had lower rates of SLEEP. In the plasma moderate associations of these FAs with higher 24EE were observed. Moreover, CSF monounsaturated long-chain FA (palmitoleic and oleic acid concentrations were associated with lower RQs and lower glucose area under the curve during the OGTT. Thus, FAs in the CSF strongly correlated with peripheral metabolic traits. These physiological parameters were most specific to long-chain monounsaturated (C16:1, C18:1 and very-long-chain saturated (C24:0, C26:0 FAs.Together with previous animal experiments these initial cross-sectional human data indicate that central FA species are linked to peripheral glucose and energy homeostasis.

  13. N-3 fatty acids, neuronal activity and energy metabolism in the brain

    Directory of Open Access Journals (Sweden)

    Harbeby Emilie

    2012-07-01

    Full Text Available The content of docosahexaenoic acid (DHA in brain membranes is of crucial importance for the optimum development of brain functions. A lack of DHA accretion in the brain is accompanied by deficits in learning behavior linked to impairments in neurotransmission processes, which might result from alteration of brain fuel supply and hence energy metabolism. Experimental data we published support the hypothesis that n-3 fatty acids may modulate brain glucose utilization and metabolism. Indeed rats made deficient in DHA by severe depletion of total n-3 fatty acid intake have 1 a lower brain glucose utilization, 2 a decrease of the glucose transporter protein content GLUT1 both in endothelial cells and in astrocytes, 3 a repression of GLUT1 gene expression in basal state as well as upon neuronal activation. This could be due to the specific action of DHA on the regulation of GLUT1 expression since rat brain endothelial cells cultured with physiological doses of DHA had an increased GLUT1 protein content and glucose transport when compared to non-supplemented cells. These experimental data highlight the impact of n-3 fatty acids on the use of brain glucose, thereby constituting a key factor in the control of synaptic activity. This emerging role suggests that dietary intake of n-3 fatty acids can help to reduce the cognitive deficits in the elderly and possibly symptomatic cerebral metabolic alterations in Alzheimer disease by promoting brain glucose metabolism.

  14. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    Science.gov (United States)

    Wang, Ying; Brent, Colin S; Fennern, Erin; Amdam, Gro V

    2012-06-01

    Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg) and juvenile hormone (JH). However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi) to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp) and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1), the adipokinetic hormone receptor (AKHR), and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor). Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH), and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  15. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2012-06-01

    Full Text Available Honey bees (Apis mellifera provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses usually feed the brood and other adult bees inside the nest, while older bees (foragers forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg and juvenile hormone (JH. However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1, the adipokinetic hormone receptor (AKHR, and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor. Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH, and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  16. The Role of Exercise – Rehabilitation on Energy Cost and Metabolic Efficiency in Dipelegic Spastic Cerebral Palsy Children

    Directory of Open Access Journals (Sweden)

    M. Izadi

    2005-07-01

    Full Text Available Introduction & Objective: The aim of this study was to compare the resting energy expenditure and metabolic efficiency before and after of aerobic exercise in spastic cerebral palsy children (mean age of 11 years and also to compare with those of normal children. Materials & Methods : Fifteen dipelegia spastic cerebral palsy children (experimental group participated in exercise–rehabilitation program by voluntarily and the peers eighteen able body children(control group were selected randomly. The experimental group(cp performed rehabilitation program for 3 months,3 session in week with work intensity(%HRR=462.5equal to144bpm of heart rate. The values were measured on tantory cycle ergometer according to Macmaster protocol.Results: Rest and exercise heart rate and exercise intensity(%HRR in patients decreased after rehabilitation program(P<0.05. The resting energy expenditure was similar in cp and normal groups. The rate of oxygen cost of patients decreased in post test(P<0.05 that showed increasing in metabolic efficiency.Conclusion: cerebral palsy children have greater exercise energy cost and lower cardiovascular fitness than normal children and exercise–rehabilitation leads to enhance of metabolic efficiency in this patients that is remarkable from clinical perception.

  17. Energy metabolism and biotransformation as endpoints to pre-screen hepatotoxicity using a liver spheroid model

    International Nuclear Information System (INIS)

    Xu Jinsheng; Purcell, Wendy M.

    2006-01-01

    The current study investigated liver spheroid culture as an in vitro model to evaluate the endpoints relevant to the status of energy metabolism and biotransformation after exposure to test toxicants. Mature rat liver spheroids were exposed to diclofenac, galactosamine, isoniazid, paracetamol, m-dinitrobenzene (m-DNB) and 3-nitroaniline (3-NA) for 24 h. Pyruvate uptake, galactose biotransformation, lactate release and glucose secretion were evaluated after exposure. The results showed that pyruvate uptake and lactate release by mature liver spheroids in culture were maintained at a relatively stable level. These endpoints, together with glucose secretion and galactose biotransformation, were related to and could reflect the status of energy metabolism and biotransformation in hepatocytes. After exposure, all of the test agents significantly reduced glucose secretion, which was shown to be the most sensitive endpoint of those evaluated. Diclofenac, isoniazid, paracetamol and galactosamine reduced lactate release (P < 0.01), but m-DNB increased lactate release (P < 0.01). Diclofenac, isoniazid and paracetamol also reduced pyruvate uptake (P < 0.01), while galactosamine had little discernible effect. Diclofenac, galactosamine, paracetamol and m-DNB also reduced galactose biotransformation (P < 0.01), by contrast, isoniazid did not. The metabolite of m-DNB, 3-NA, which served as a negative control, did not cause significant changes in lactate release, pyruvate uptake or galactose biotransformation. It is concluded that pyruvate uptake, galactose biotransformation, lactate release and glucose secretion can be used as endpoints for evaluating the status of energy metabolism and biotransformation after exposure to test agents using the liver spheroid model to pre-screen hepatotoxicity

  18. Effects of energy restriction on acute adrenoceptor and metabolic responses to exercise in obese subjects

    NARCIS (Netherlands)

    Kempen, K.P.G.; Saris, W.H.M.; Senden, J.M.G.; Menheere, P.P.C.A.; Blaak, E.E.; van Baak, M.A.

    1994-01-01

    Effects of energy restriction on acute adrenoceptor and metabolic responses to exercise in obese subjects. Kempen KP, Saris WH, Senden JM, Menheere PP, Blaak EE, van Baak MA. Department of Human Biology, University of Limburg, Maastricht, The Netherlands. This study was intended to investigate the

  19. Reaction engineering analysis of the autotrophic energy metabolism of Clostridium aceticum.

    Science.gov (United States)

    Mayer, Alexander; Weuster-Botz, Dirk

    2017-12-01

    Acetogenesis with CO2:H2 or CO via the reductive acetyl-CoA pathway does not provide any net ATP formation in homoacetogenic bacteria. Autotrophic energy conservation is coupled to the generation of chemiosmotic H+ or Na+ gradients across the cytoplasm membrane using either a ferredoxin:NAD+ oxidoreductase (Rnf), a ferredoxin:H+ oxidoreductase (Ech) or substrate-level phosphorylation via cytochromes. The first isolated acetogenic bacterium Clostridium aceticum shows both cytochromes and Rnf complex, putting it into an outstanding position. Autotrophic batch processes with continuous gas supply were performed in fully controlled stirred-tank bioreactors to elucidate energy metabolism of C. aceticum. Varying the initial Na+ concentration in the medium showed sodium-dependent growth of C. aceticum with a growth optimum between 60 and 90 mM Na+. The addition of the Na+-selective ionophore ETH2120 or the protonophore CCCP or the H+/cation-antiporter monensin revealed that an H+ gradient is used as primary energy conservation mechanism, which strengthens the exceptional position of C. aceticum as acetogenic bacterium showing an H+-dependent energy conservation mechanism as well as Na+-dependent growth. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    Science.gov (United States)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2013-03-01

    To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.

  1. Impact of Orexin-A Treatment on Food Intake, Energy Metabolism and Body Weight in Mice.

    Directory of Open Access Journals (Sweden)

    Anne Blais

    Full Text Available Orexin-A and -B are hypothalamic neuropeptides of 33 and 28-amino acids, which regulate many homeostatic systems including sleep/wakefulness states, energy balance, energy homeostasis, reward seeking and drug addiction. Orexin-A treatment was also shown to reduce tumor development in xenografted nude mice and is thus a potential treatment for carcinogenesis. The aim of this work was to explore in healthy mice the consequences on energy expenditure components of an orexin-A treatment at a dose previously shown to be efficient to reduce tumor development. Physiological approaches were used to evaluate the effect of orexin-A on food intake pattern, energy metabolism body weight and body adiposity. Modulation of the expression of brain neuropeptides and receptors including NPY, POMC, AgRP, cocaine- and amphetamine related transcript (CART, corticotropin-releasing hormone (CRH and prepro-orexin (HCRT, and Y2 and Y5 neuropeptide Y, MC4 (melanocortin, OX1 and OX2 orexin receptors (Y2R, Y5R, MC4R, OX1R and OX2R, respectively was also explored. Our results show that orexin-A treatment does not significantly affect the components of energy expenditure, and glucose metabolism but reduces intraperitoneal fat deposit, adiposity and the expression of several brain neuropeptide receptors suggesting that peripheral orexin-A was able to reach the central nervous system. These findings establish that orexin-A treatment which is known for its activity as an inducer of tumor cell death, do have minor parallel consequence on energy homeostasis control.

  2. Quantitative Metabolomics and Instationary 13C-Metabolic Flux Analysis Reveals Impact of Recombinant Protein Production on Trehalose and Energy Metabolism in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Joel Jordà

    2014-05-01

    Full Text Available Pichia pastoris has been recognized as an effective host for recombinant protein production. In this work, we combine metabolomics and instationary 13C metabolic flux analysis (INST 13C-MFA using GC-MS and LC-MS/MS to evaluate the potential impact of the production of a Rhizopus oryzae lipase (Rol on P. pastoris central carbon metabolism. Higher oxygen uptake and CO2 production rates and slightly reduced biomass yield suggest an increased energy demand for the producing strain. This observation is further confirmed by 13C-based metabolic flux analysis. In particular, the flux through the methanol oxidation pathway and the TCA cycle was increased in the Rol-producing strain compared to the reference strain. Next to changes in the flux distribution, significant variations in intracellular metabolite concentrations were observed. Most notably, the pools of trehalose, which is related to cellular stress response, and xylose, which is linked to methanol assimilation, were significantly increased in the recombinant strain.

  3. Energy metabolism and metabolomics response of Pacific white shrimp Litopenaeus vannamei to sulfide toxicity.

    Science.gov (United States)

    Li, Tongyu; Li, Erchao; Suo, Yantong; Xu, Zhixin; Jia, Yongyi; Qin, Jian G; Chen, Liqiao; Gu, Zhimin

    2017-02-01

    The toxicity and poisoning mechanisms of sulfide were studied in Litopenaeus vannamei from the perspective of energy metabolism and metabolomics. The lethal concentrations of sulfide in L. vannamei (LC50) at 24h, 48h, 72h, and 96h were determined. Sulfide at a concentration of 0, 1/10 (425.5μg/L), and 1/5 (851μg/L) of the LC 50 at 96h was used to test the metabolic responses of L. vannamei for 21days. The chronic exposure of shrimp to a higher sulfide concentration of 851μg/L decreased shrimp survival but did not affect weight gain or the hepatopancreas index. The glycogen content in the hepatopancreas and muscle and the activity of hepatopancreas cytochrome C oxidase of the shrimp exposed to all sulfide concentrations were significantly lower, and the serum glucose and lactic acid levels and lactic acid dehydrogenase activity were significantly lower than those in the control. Metabolomics assays showed that shrimp exposed to sulfide had lower amounts of serum pyruvic acid, succinic acid, glycine, alanine, and proline in the 425.5μg/L group and phosphate, succinic acid, beta-alanine, serine, and l-histidine in the 851μg/L group than in the control. Chronic sulfide exposure could disturb protein synthesis in shrimp but enhance gluconeogenesis and substrate absorption for ATP synthesis and tricarboxylic acid cycles to provide extra energy to cope with sulfide stress. Chronic sulfide exposure could adversely affect the health status of L. vannamei, as indicated by the high amounts of serum n-ethylmaleamic acid, pyroglutamic acid, aspartic acid and phenylalanine relative to the control. This study indicates that chronic exposure of shrimp to sulfide can decrease health and lower survival through functional changes in gluconeogenesis, protein synthesis and energy metabolism. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A conserved role for syndecan family members in the regulation of whole-body energy metabolism.

    Directory of Open Access Journals (Sweden)

    Maria De Luca

    2010-06-01

    Full Text Available Syndecans are a family of type-I transmembrane proteins that are involved in cell-matrix adhesion, migration, neuronal development, and inflammation. Previous quantitative genetic studies pinpointed Drosophila Syndecan (dSdc as a positional candidate gene affecting variation in fat storage between two Drosophila melanogaster strains. Here, we first used quantitative complementation tests with dSdc mutants to confirm that natural variation in this gene affects variability in Drosophila fat storage. Next, we examined the effects of a viable dSdc mutant on Drosophila whole-body energy metabolism and associated traits. We observed that young flies homozygous for the dSdc mutation had reduced fat storage and slept longer than homozygous wild-type flies. They also displayed significantly reduced metabolic rate, lower expression of spargel (the Drosophila homologue of PGC-1, and reduced mitochondrial respiration. Compared to control flies, dSdc mutants had lower expression of brain insulin-like peptides, were less fecund, more sensitive to starvation, and had reduced life span. Finally, we tested for association between single nucleotide polymorphisms (SNPs in the human SDC4 gene and variation in body composition, metabolism, glucose homeostasis, and sleep traits in a cohort of healthy early pubertal children. We found that SNP rs4599 was significantly associated with resting energy expenditure (P = 0.001 after Bonferroni correction and nominally associated with fasting glucose levels (P = 0.01 and sleep duration (P = 0.044. On average, children homozygous for the minor allele had lower levels of glucose, higher resting energy expenditure, and slept shorter than children homozygous for the common allele. We also observed that SNP rs1981429 was nominally associated with lean tissue mass (P = 0.035 and intra-abdominal fat (P = 0.049, and SNP rs2267871 with insulin sensitivity (P = 0.037. Collectively, our results in Drosophila and humans argue that

  5. Actions of juglone on energy metabolism in the rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Saling, Simoni Cristina; Comar, Jurandir Fernando; Mito, Marcio Shigueaki; Peralta, Rosane Marina; Bracht, Adelar, E-mail: adebracht@uol.com.br

    2011-12-15

    Juglone is a phenolic compound used in popular medicine as a phytotherapic to treat inflammatory and infectious diseases. However, it also acts as an uncoupler of oxidative phosphorylation in isolated liver mitochondria and, thus, may interfere with the hepatic energy metabolism. The purpose of this work was to evaluate the effect of juglone on several metabolic parameters in the isolated perfused rat liver. Juglone, in the concentration range of 5 to 50 {mu}M, stimulated glycogenolysis, glycolysis and oxygen uptake. Gluconeogenesis from both lactate and alanine was inhibited with half-maximal effects at the concentrations of 14.9 and 15.7 {mu}M, respectively. The overall alanine transformation was increased by juglone, as indicated by the stimulated release of ammonia, urea, L-glutamate, lactate and pyruvate. A great increase (9-fold) in the tissue content of {alpha}-ketoglutarate was found, without a similar change in the L-glutamate content. The tissue contents of ATP were decreased, but those of ADP and AMP were increased. Experiments with isolated mitochondria fully confirmed previous notions about the uncoupling action of juglone. It can be concluded that juglone is active on metabolism at relatively low concentrations. In this particular it resembles more closely the classical uncoupler 2,4-dinitrophenol. Ingestion of high doses of juglone, thus, presents the same risks as the ingestion of 2,4-dinitrophenol which comprise excessive compromising of ATP production, hyperthermia and even death. Low doses, i.e., moderate consumption of natural products containing juglone, however, could be beneficial to health if one considers recent reports about the consequences of chronic mild uncoupling. -- Highlights: Black-Right-Pointing-Pointer We investigated how juglone acts on liver metabolism. Black-Right-Pointing-Pointer The actions on hepatic gluconeogenesis, glycolysis and ureogenesis. Black-Right-Pointing-Pointer Juglone stimulates glycolysis and ureagenesis and

  6. Actions of juglone on energy metabolism in the rat liver

    International Nuclear Information System (INIS)

    Saling, Simoni Cristina; Comar, Jurandir Fernando; Mito, Márcio Shigueaki; Peralta, Rosane Marina; Bracht, Adelar

    2011-01-01

    Juglone is a phenolic compound used in popular medicine as a phytotherapic to treat inflammatory and infectious diseases. However, it also acts as an uncoupler of oxidative phosphorylation in isolated liver mitochondria and, thus, may interfere with the hepatic energy metabolism. The purpose of this work was to evaluate the effect of juglone on several metabolic parameters in the isolated perfused rat liver. Juglone, in the concentration range of 5 to 50 μM, stimulated glycogenolysis, glycolysis and oxygen uptake. Gluconeogenesis from both lactate and alanine was inhibited with half-maximal effects at the concentrations of 14.9 and 15.7 μM, respectively. The overall alanine transformation was increased by juglone, as indicated by the stimulated release of ammonia, urea, L-glutamate, lactate and pyruvate. A great increase (9-fold) in the tissue content of α-ketoglutarate was found, without a similar change in the L-glutamate content. The tissue contents of ATP were decreased, but those of ADP and AMP were increased. Experiments with isolated mitochondria fully confirmed previous notions about the uncoupling action of juglone. It can be concluded that juglone is active on metabolism at relatively low concentrations. In this particular it resembles more closely the classical uncoupler 2,4-dinitrophenol. Ingestion of high doses of juglone, thus, presents the same risks as the ingestion of 2,4-dinitrophenol which comprise excessive compromising of ATP production, hyperthermia and even death. Low doses, i.e., moderate consumption of natural products containing juglone, however, could be beneficial to health if one considers recent reports about the consequences of chronic mild uncoupling. -- Highlights: ► We investigated how juglone acts on liver metabolism. ► The actions on hepatic gluconeogenesis, glycolysis and ureogenesis. ► Juglone stimulates glycolysis and ureagenesis and inhibits gluconeogenesis. ► The cellular ATP content is diminished. ► Juglone can

  7. An Integrated Research Infrastructure for Validating Cyber-Physical Energy Systems

    DEFF Research Database (Denmark)

    Strasser, T. I.; Moyo, C.; Bründlinger, R.

    2017-01-01

    quality and ensure security of supply. At the same time, the increased availability of advanced automation and communication technologies provides new opportunities for the derivation of intelligent solutions to tackle the challenges. Previous work has shown various new methods of operating highly...... interconnected power grids, and their corresponding components, in a more effective way. As a consequence of these developments, the traditional power system is being transformed into a cyber-physical energy system, a smart grid. Previous and ongoing research have tended to mainly focus on how specific aspects...... of smart grids can be validated, but until there exists no integrated approach for the analysis and evaluation of complex cyber-physical systems configurations. This paper introduces integrated research infrastructure that provides methods and tools for validating smart grid systems in a holistic, cyber...

  8. Effect of Acute Negative and Positive Energy Balance on Basal Very-Low Density Lipoprotein Triglyceride Metabolism in Women

    Science.gov (United States)

    Bellou, Elena; Maraki, Maria; Magkos, Faidon; Botonaki, Helena; Panagiotakos, Demosthenes B.; Kavouras, Stavros A.; Sidossis, Labros S.

    2013-01-01

    Background Acute reduction in dietary energy intake reduces very low-density lipoprotein triglyceride (VLDL-TG) concentration. Although chronic dietary energy surplus and obesity are associated with hypertriglyceridemia, the effect of acute overfeeding on VLDL-TG metabolism is not known. Objective The aim of the present study was to investigate the effects of acute negative and positive energy balance on VLDL-TG metabolism in healthy women. Design Ten healthy women (age: 22.0±2.9 years, BMI: 21.2±1.3 kg/m2) underwent a stable isotopically labeled tracer infusion study to determine basal VLDL-TG kinetics after performing, in random order, three experimental trials on the previous day: i) isocaloric feeding (control) ii) hypocaloric feeding with a dietary energy restriction of 2.89±0.42 MJ and iii) hypercaloric feeding with a dietary energy surplus of 2.91±0.32 MJ. The three diets had the same macronutrient composition. Results Fasting plasma VLDL-TG concentrations decreased by ∼26% after hypocaloric feeding relative to the control trial (P = 0.037), owing to decreased hepatic VLDL-TG secretion rate (by 21%, P = 0.023) and increased VLDL-TG plasma clearance rate (by ∼12%, P = 0.016). Hypercaloric feeding increased plasma glucose concentration (P = 0.042) but had no effect on VLDL-TG concentration and kinetics compared to the control trial. Conclusion Acute dietary energy deficit (∼3MJ) leads to hypotriglyceridemia via a combination of decreased hepatic VLDL-TG secretion and increased VLDL-TG clearance. On the other hand, acute dietary energy surplus (∼3MJ) does not affect basal VLDL-TG metabolism but disrupts glucose homeostasis in healthy women. PMID:23533676

  9. Effect of acute negative and positive energy balance on basal very-low density lipoprotein triglyceride metabolism in women.

    Directory of Open Access Journals (Sweden)

    Elena Bellou

    Full Text Available BACKGROUND: Acute reduction in dietary energy intake reduces very low-density lipoprotein triglyceride (VLDL-TG concentration. Although chronic dietary energy surplus and obesity are associated with hypertriglyceridemia, the effect of acute overfeeding on VLDL-TG metabolism is not known. OBJECTIVE: The aim of the present study was to investigate the effects of acute negative and positive energy balance on VLDL-TG metabolism in healthy women. DESIGN: Ten healthy women (AGE: 22.0±2.9 years, BMI: 21.2±1.3 kg/m(2 underwent a stable isotopically labeled tracer infusion study to determine basal VLDL-TG kinetics after performing, in random order, three experimental trials on the previous day: i isocaloric feeding (control ii hypocaloric feeding with a dietary energy restriction of 2.89±0.42 MJ and iii hypercaloric feeding with a dietary energy surplus of 2.91±0.32 MJ. The three diets had the same macronutrient composition. RESULTS: Fasting plasma VLDL-TG concentrations decreased by ∼26% after hypocaloric feeding relative to the control trial (P = 0.037, owing to decreased hepatic VLDL-TG secretion rate (by 21%, P = 0.023 and increased VLDL-TG plasma clearance rate (by ∼12%, P = 0.016. Hypercaloric feeding increased plasma glucose concentration (P = 0.042 but had no effect on VLDL-TG concentration and kinetics compared to the control trial. CONCLUSION: Acute dietary energy deficit (∼3MJ leads to hypotriglyceridemia via a combination of decreased hepatic VLDL-TG secretion and increased VLDL-TG clearance. On the other hand, acute dietary energy surplus (∼3MJ does not affect basal VLDL-TG metabolism but disrupts glucose homeostasis in healthy women.

  10. Interleaved MRI/MRS study of muscle perfusion, oxygenation and high energy phosphate metabolism in normal subjects and Becker's myopathic patients

    International Nuclear Information System (INIS)

    Toussaint, J.F.; Brillault-Salvat, C.; Giacomini, E.; Bloch, G.; Duboc, D.; Jehenson, P.

    1998-01-01

    We present the first results of a study comparing patients suffering from Becker's myopathy and normal volunteers. We simultaneously assessed perfusion, oxygenation and high-energy phosphate metabolism using an interleaved NMR/NMRS approach. Muscle metabolism does not seem to differ in Becker's patients, except for myoglobin reoxygenation rates. (authors)

  11. Postmortem validation of breast density using dual-energy mammography

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A. [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.

  12. Postmortem validation of breast density using dual-energy mammography

    International Nuclear Information System (INIS)

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer

  13. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect.

    Science.gov (United States)

    Witkiewicz, Halina; Oh, Phil; Schnitzer, Jan E

    2013-01-01

    Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect). Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis), gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in progression of

  14. The depressed central carbon and energy metabolisms is associated to the acquisition of levofloxacin resistance in Vibrio alginolyticus.

    Science.gov (United States)

    Cheng, Zhi-Xue; Yang, Man-Jun; Peng, Bo; Peng, Xuan-Xian; Lin, Xiang-Min; Li, Hui

    2018-06-15

    The overuse and misuse of antibiotics lead to bacterial antibiotic resistance, challenging human health and intensive cultivation. It is especially required to understand for the mechanism of antibiotic resistance to control antibiotic-resistant pathogens. The present study characterized the differential proteome of levofloxacin-resistant Vibrio alginolyticus with the most advanced iTRAQ quantitative proteomics technology. A total of 160 proteins of differential abundance were identified, where 70 were decreased and 90 were increased. Further analysis demonstrated that crucial metabolic pathways like TCA cycle were significantly down-regulated. qRT-PCR analysis demonstrated the decreased gene expression of glycolysis/gluconeogenesis, the TCA cycle, and fatty acid biosynthesis. Moreover, Na(+)-NQR complex gene expression, membrane potential and the adenylate energy charge ratio were decreased, indicating that the decreased central carbon metabolism is associated to the acquisition of levofloxacin resistance. Therefore, the reduced central carbon and energy metabolisms form a characteristic feature as fitness costs of V. alginolyticus in resistance to levofloxacin. The overuse and misuse of antibiotics lead to bacterial antibiotic resistance, challenging human health and intensive cultivation. Understanding for the antibiotic resistance mechanisms is especially required to control these antibiotic-resistant pathogens. The present study characterized the differential proteome of levofloxacin-resistant Vibrio alginolyticus using the most advanced iTRAQ quantitative proteomics technology. A total of 160 differential abundance of proteins were identified with 70 decreases and 90 increases by liquid chromatography matrix assisted laser desorption ionization mass spectrometry. Most interestingly, crucial metabolic pathways such as the TCA cycle sharply fluctuated. This is the first report that the reduced central carbon and energy metabolisms form a characteristic feature

  15. Proteomic signatures of infertile men with clinical varicocele and their validation studies reveal mitochondrial dysfunction leading to infertility

    Directory of Open Access Journals (Sweden)

    Ashok Agarwal

    2016-01-01

    Full Text Available To study the major differences in the distribution of spermatozoa proteins in infertile men with varicocele by comparative proteomics and validation of their level of expression. The study-specific estimates for each varicocele outcome were combined to identify the proteins involved in varicocele-associated infertility in men irrespective of stage and laterality of their clinical varicocele. Expression levels of 5 key proteins (PKAR1A, AK7, CCT6B, HSPA2, and ODF2 involved in stress response and sperm function including molecular chaperones were validated by Western blotting. Ninety-nine proteins were differentially expressed in the varicocele group. Over 87% of the DEP involved in major energy metabolism and key sperm functions were underexpressed in the varicocele group. Key protein functions affected in the varicocele group were spermatogenesis, sperm motility, and mitochondrial dysfunction, which were further validated by Western blotting, corroborating the proteomics analysis. Varicocele is essentially a state of energy deprivation, hypoxia, and hyperthermia due to impaired blood supply, which is corroborated by down-regulation of lipid metabolism, mitochondrial electron transport chain, and Krebs cycle enzymes. To corroborate the proteomic analysis, expression of the 5 identified proteins of interest was validated by Western blotting. This study contributes toward establishing a biomarker "fingerprint" to assess sperm quality on the basis of molecular parameters.

  16. A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington’s disease in mice

    Science.gov (United States)

    Acuña, Aníbal I.; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A.; Parra, Alejandra V.; Cepeda, Carlos; Toro, Carlos A.; Vidal, René L.; Hetz, Claudio; Concha, Ilona I.; Brauchi, Sebastián; Levine, Michael S.; Castro, Maite A.

    2013-12-01

    Huntington’s disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death.

  17. Proteome analysis of schizophrenia patients Wernicke's area reveals an energy metabolism dysregulation

    Directory of Open Access Journals (Sweden)

    Marangoni Sérgio

    2009-04-01

    Full Text Available Abstract Background Schizophrenia is likely to be a consequence of DNA alterations that, together with environmental factors, will lead to protein expression differences and the ultimate establishment of the illness. The superior temporal gyrus is implicated in schizophrenia and executes functions such as the processing of speech, language skills and sound processing. Methods We performed an individual comparative proteome analysis using two-dimensional gel electrophoresis of 9 schizophrenia and 6 healthy control patients' left posterior superior temporal gyrus (Wernicke's area – BA22p identifying by mass spectrometry several protein expression alterations that could be related to the disease. Results Our analysis revealed 11 downregulated and 14 upregulated proteins, most of them related to energy metabolism. Whereas many of the identified proteins have been previously implicated in schizophrenia, such as fructose-bisphosphate aldolase C, creatine kinase and neuron-specific enolase, new putative disease markers were also identified such as dihydrolipoyl dehydrogenase, tropomyosin 3, breast cancer metastasis-suppressor 1, heterogeneous nuclear ribonucleoproteins C1/C2 and phosphate carrier protein, mitochondrial precursor. Besides, the differential expression of peroxiredoxin 6 (PRDX6 and glial fibrillary acidic protein (GFAP were confirmed by western blot in schizophrenia prefrontal cortex. Conclusion Our data supports a dysregulation of energy metabolism in schizophrenia as well as suggests new markers that may contribute to a better understanding of this complex disease.

  18. Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States

    Directory of Open Access Journals (Sweden)

    Dongya Jia

    2018-03-01

    Full Text Available Aerobic glycolysis, also referred to as the Warburg effect, has been regarded as the dominant metabolic phenotype in cancer cells for a long time. More recently, it has been shown that mitochondria in most tumors are not defective in their ability to carry out oxidative phosphorylation (OXPHOS. Instead, in highly aggressive cancer cells, mitochondrial energy pathways are reprogrammed to meet the challenges of high energy demand, better utilization of available fuels and macromolecular synthesis for rapid cell division and migration. Mitochondrial energy reprogramming is also involved in the regulation of oncogenic pathways via mitochondria-to-nucleus retrograde signaling and post-translational modification of oncoproteins. In addition, neoplastic mitochondria can engage in crosstalk with the tumor microenvironment. For example, signals from cancer-associated fibroblasts can drive tumor mitochondria to utilize OXPHOS, a process known as the reverse Warburg effect. Emerging evidence shows that cancer cells can acquire a hybrid glycolysis/OXPHOS phenotype in which both glycolysis and OXPHOS can be utilized for energy production and biomass synthesis. The hybrid glycolysis/OXPHOS phenotype facilitates metabolic plasticity of cancer cells and may be specifically associated with metastasis and therapy-resistance. Moreover, cancer cells can switch their metabolism phenotypes in response to external stimuli for better survival. Taking into account the metabolic heterogeneity and plasticity of cancer cells, therapies targeting cancer metabolic dependency in principle can be made more effective.

  19. The Changes of Energy Interactions between Nucleus Function and Mitochondria Functions Causing Transmutation of Chronic Inflammation into Cancer Metabolism.

    Science.gov (United States)

    Ponizovskiy, Michail R

    2016-01-01

    Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works.

  20. Metabolic changes in malnutrition.

    Science.gov (United States)

    Emery, P W

    2005-10-01

    This paper is concerned with malnutrition caused by inadequate intake of all the major nutrients rather than deficiency diseases relating to a single micronutrient. Three common situations are recognised: young children in third world countries with protein-energy malnutrition; adults in the same countries who are chronically adapted to subsisting on marginally inadequate diets; and patients who become malnourished as a result of chronic diseases. In all these situations infectious diseases are often also present, and this complicates the interpretation of biochemical and physiological observations. The metabolic response to starvation is primarily concerned with maintaining a supply of water-soluble substrates to supply energy to the brain. Thus there is an initial rise in metabolic rate, reflecting gluconeogenic activity. As fasting progresses, gluconeogenesis is suppressed to minimise muscle protein breakdown and ketones become the main fuel for the brain. With chronic underfeeding the basal metabolic rate per cell appears to fall, but the mechanistic basis for this is not clear. The main adaptation to chronic energy deficiency is slow growth and low adult body size, although the reduction in energy requirement achieved by this is partially offset by the preservation of the more metabolically active organs at the expense of muscle, which has a lower metabolic rate. The interaction between malnutrition and the metabolic response to trauma has been studied using an animal model. The rise in energy expenditure and urinary nitrogen excretion following surgery were significantly attenuated in malnourished rats, suggesting that malnutrition impairs the ability of the body to mobilise substrates to support inflammatory and reparative processes. However, the healing process in wounded muscle remained unimpaired in malnutrition, suggesting that this process has a high biological priority.

  1. Proteomic Analysis of Chloroplast-to-Chromoplast Transition in Tomato Reveals Metabolic Shifts Coupled with Disrupted Thylakoid Biogenesis Machinery and Elevated Energy-Production Components1[W

    Science.gov (United States)

    Barsan, Cristina; Zouine, Mohamed; Maza, Elie; Bian, Wanping; Egea, Isabel; Rossignol, Michel; Bouyssie, David; Pichereaux, Carole; Purgatto, Eduardo; Bouzayen, Mondher; Latché, Alain; Pech, Jean-Claude

    2012-01-01

    A comparative proteomic approach was performed to identify differentially expressed proteins in plastids at three stages of tomato (Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent curation and processing of the data from three independent replicates identified 1,932 proteins among which 1,529 were quantified by spectral counting. The quantification procedures have been subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic or regulatory pathways. Among the main features of the chloroplast-to-chromoplast transition revealed by the study, chromoplastogenesis appears to be associated with major metabolic shifts: (1) strong decrease in abundance of proteins of light reactions (photosynthesis, Calvin cycle, photorespiration) and carbohydrate metabolism (starch synthesis/degradation), mostly between breaker and red stages and (2) increase in terpenoid biosynthesis (including carotenoids) and stress-response proteins (ascorbate-glutathione cycle, abiotic stress, redox, heat shock). These metabolic shifts are preceded by the accumulation of plastid-encoded acetyl Coenzyme A carboxylase D proteins accounting for the generation of a storage matrix that will accumulate carotenoids. Of particular note is the high abundance of proteins involved in providing energy and in metabolites import. Structural differentiation of the chromoplast is characterized by a sharp and continuous decrease of thylakoid proteins whereas envelope and stroma proteins remain remarkably stable. This is coincident with the disruption of the machinery for thylakoids and photosystem biogenesis (vesicular trafficking, provision of material for thylakoid biosynthesis, photosystems assembly) and the loss of the plastid division machinery. Altogether, the data provide new insights on the chromoplast differentiation process while enriching our knowledge of the plant plastid proteome. PMID:22908117

  2. The Deep Correlation between Energy Metabolism and Reproduction: A View on the Effects of Nutrition for Women Fertility

    OpenAIRE

    Fontana, Roberta; Della Torre, Sara

    2016-01-01

    In female mammals, mechanisms have been developed, throughout evolution, to integrate environmental, nutritional and hormonal cues in order to guarantee reproduction in favorable energetic conditions and to inhibit it in case of food scarcity. This metabolic strategy could be an advantage in nutritionally poor environments, but nowadays is affecting women’s health. The unlimited availability of nutrients, in association with reduced energy expenditure, leads to alterations in many metabolic p...

  3. Energy and lipid metabolism during direct and diapause development in a pierid butterfly.

    Science.gov (United States)

    Lehmann, Philipp; Pruisscher, Peter; Posledovich, Diana; Carlsson, Mikael; Käkelä, Reijo; Tang, Patrik; Nylin, Sören; Wheat, Christopher W; Wiklund, Christer; Gotthard, Karl

    2016-10-01

    Diapause is a fundamental component of the life cycle in the majority of insects living in environments characterized by strong seasonality. The present study addresses poorly understood associations and trade-offs between endogenous diapause duration, thermal sensitivity of development, energetic cost of development and cold tolerance. Diapause intensity, metabolic rate trajectories and lipid profiles of directly developing and diapausing animals were studied using pupae and adults of Pieris napi butterflies from a population in which endogenous diapause has been well studied. Endogenous diapause was terminated after 3 months and termination required chilling. Metabolic and post-diapause development rates increased with diapause duration, while the metabolic cost of post-diapause development decreased, indicating that once diapause is terminated, development proceeds at a low rate even at low temperature. Diapausing pupae had larger lipid stores than the directly developing pupae, and lipids constituted the primary energy source during diapause. However, during diapause, lipid stores did not decrease. Thus, despite lipid catabolism meeting the low energy costs of the diapausing pupae, primary lipid store utilization did not occur until the onset of growth and metamorphosis in spring. In line with this finding, diapausing pupae contained low amounts of mitochondria-derived cardiolipins, which suggests a low capacity for fatty acid β-oxidation. While ontogenic development had a large effect on lipid and fatty acid profiles, only small changes in these were seen during diapause. The data therefore indicate that the diapause lipidomic phenotype is developed early, when pupae are still at high temperature, and retained until post-diapause development. © 2016. Published by The Company of Biologists Ltd.

  4. Energy analysis for a sustainable future multi-scale integrated analysis of societal and ecosystem metabolism

    CERN Document Server

    Giampietro, Mario; Sorman, Alevgül H

    2013-01-01

    The vast majority of the countries of the world are now facing an imminent energy crisis, particularly the USA, China, India, Japan and EU countries, but also developing countries having to boost their economic growth precisely when more powerful economies will prevent them from using the limited supply of fossil energy. Despite this crisis, current protocols of energy accounting have been developed for dealing with fossil energy exclusively and are therefore not useful for the analysis of alternative energy sources. The first part of the book illustrates the weakness of existing analyses of energy problems: the science of energy was born and developed neglecting the issue of scale. The authors argue that it is necessary to adopt more complex protocols of accounting and analysis in order to generate robust energy scenarios and effective assessments of the quality of alternative energy sources. The second part of the book introduces the concept of energetic metabolism of modern societies and uses empirical res...

  5. Effects of medium-chain triglycerides on intestinal morphology and energy metabolism of intrauterine growth retarded weanling piglets.

    Science.gov (United States)

    Zhang, Li-Li; Zhang, Hao; Li, Yue; Wang, Tian

    2017-06-01

    It has been shown that there is a relationship between intrauterine growth retardation (IUGR) and postnatal intestinal damage involved in energy deficits. Therefore, the present study was conducted to investigate the effect of medium-chain triglycerides (MCT) on the intestinal morphology, intestinal function and energy metabolism of piglets with IUGR. At weaning (21 ± 1.1 d of age), 24 IUGR piglets and 24 normal birth weight (NBW) piglets were selected according to their birth weights (BW) (IUGR: 0.95 ± 0.04 kg BW; NBW: 1.58 ± 0.04 kg BW) and their weights at the time of weaning (IUGR: 5.26 ± 0.15 kg BW; NBW: 6.98 ± 0.19 kg BW). The piglets were fed a diet of either long-chain triglycerides (LCT) (containing 5% LCT) or MCT (containing 1% LCT and 4% MCT) for 28 d. Then, the piglets' intestinal morphology, biochemical parameters and mRNA abundance related to intestinal damage and energy metabolism were determined. IUGR was found to impair intestinal morphology, with evidence of decreased villus height and increased crypt depth; however, these negative effects of IUGR were ameliorated by MCT treatment. IUGR piglets showed compromised intestinal digestion and absorption functions when compared with NBW piglets. However, feeding MCT increased the maltase activity in the jejunum and alleviated IUGR-induced reductions in plasma d-xylose concentrations and jejunal sucrase activity. IUGR decreased the efficiency of the piglets' intestinal energy metabolism; however, piglets fed an MCT diet exhibited increased adenosine triphosphate (ATP) concentrations and ATP synthase F1 complex beta polypeptide expression, as well as decreased adenosine monophosphate-activated kinase alpha 1 expression in the jejunum of piglets. In addition, up-regulation of the piglets' citrate synthase and succinate dehydrogenase levels was found to occur following MCT treatment at both the activity and the transcriptional levels of the jejunum. Therefore, it can be postulated that

  6. Validation of the Sensewear Armband during recreational in-line skating.

    Science.gov (United States)

    Soric, Maroje; Mikulic, Pavle; Misigoj-Durakovic, Marjeta; Ruzic, Lana; Markovic, Goran

    2012-03-01

    Multi-sensor body monitors that combine accelerometry with other physiological data are designed to overcome drawbacks of accelerometers in assessing activities with little or no vertical movement. One of such devices is the Sensewear Armband (SWA) which has been extensively validated during various activities. However, very few of the validation studies included activities other than walking and running. The aim of this investigation was to assess the validity of the SWA during recreational in-line skating. Nineteen participants (11 females and 8 males), 28 (±6) years of age, performed in-line skating exercise on a circular track at a self-selected pace. Energy expenditure was measured with the SWA and the Cosmed K4b(2) breath-by-breath portable metabolic unit. The mean (SD) energy expenditure during in-line skating estimated by the SWA [25.5 (5.8) kJ/min] was significantly lower compared with indirect calorimetry [44.2 (9.7) kJ/min, P skating by as much as 24-56% compared with indirect calorimetry. In conclusion, the results of the present study indicate that the SWA is not able to overcome the drawbacks of accelerometry in assessing activities with limited vertical movement.

  7. Environmental oxygen tension regulates the energy metabolism and self-renewal of human embryonic stem cells.

    Science.gov (United States)

    Forristal, Catherine E; Christensen, David R; Chinnery, Fay E; Petruzzelli, Raffaella; Parry, Kate L; Sanchez-Elsner, Tilman; Houghton, Franchesca D

    2013-01-01

    Energy metabolism is intrinsic to cell viability but surprisingly has been little studied in human embryonic stem cells (hESCs). The current study aims to investigate the effect of environmental O2 tension on carbohydrate utilisation of hESCs. Highly pluripotent hESCs cultured at 5% O2 consumed significantly more glucose, less pyruvate and produced more lactate compared to those maintained at 20% O2. Moreover, hESCs cultured at atmospheric O2 levels expressed significantly less OCT4, SOX2 and NANOG than those maintained at 5% O2. To determine whether this difference in metabolism was a reflection of the pluripotent state, hESCs were cultured at 5% O2 in the absence of FGF2 for 16 hours leading to a significant reduction in the expression of SOX2. In addition, these cells consumed less glucose and produced significantly less lactate compared to those cultured in the presence of FGF2. hESCs maintained at 5% O2 were found to consume significantly less O2 than those cultured in the absence of FGF2, or at 20% O2. GLUT1 expression correlated with glucose consumption and using siRNA and chromatin immunoprecipitation was found to be directly regulated by hypoxia inducible factor (HIF)-2α at 5% O2. In conclusion, highly pluripotent cells associated with hypoxic culture consume low levels of O2, high levels of glucose and produce large amounts of lactate, while at atmospheric conditions glucose consumption and lactate production are reduced and there is an increase in oxidative metabolism. These data suggest that environmental O2 regulates energy metabolism and is intrinsic to the self-renewal of hESCs.

  8. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria.

    Science.gov (United States)

    LeBlanc, Jean Guy; Chain, Florian; Martín, Rebeca; Bermúdez-Humarán, Luis G; Courau, Stéphanie; Langella, Philippe

    2017-05-08

    The aim of this review is to summarize the effect in host energy metabolism of the production of B group vitamins and short chain fatty acids (SCFA) by commensal, food-grade and probiotic bacteria, which are also actors of the mammalian nutrition. The mechanisms of how these microbial end products, produced by these bacterial strains, act on energy metabolism will be discussed. We will show that these vitamins and SCFA producing bacteria could be used as tools to recover energy intakes by either optimizing ATP production from foods or by the fermentation of certain fibers in the gastrointestinal tract (GIT). Original data are also presented in this work where SCFA (acetate, butyrate and propionate) and B group vitamins (riboflavin, folate and thiamine) production was determined for selected probiotic bacteria.

  9. Day-night changes of energy-rich compounds in crassulacean acid metabolism (CAM) species utilizing hexose and starch.

    Science.gov (United States)

    Chen, Li-Song; Nose, Akihiro

    2004-09-01

    Plants with crassulacean acid metabolism (CAM) can be divided into two groups according to the major carbohydrates used for malic acid synthesis, either polysaccharide (starch) or monosaccharide (hexose). This is related to the mechanism and affects energy metabolism in the two groups. In Kalanchoë pinnata and K. daigremontiana, which utilize starch, ATP-dependent phosphofructokinase (tonoplast inorganic pyrophosphatase) activity is greater than inorganic pyrophosphate-dependent phosphofructokinase (tonoplast adenosine triphosphatase) activity, but the reverse is the case in pineapple (Ananas comosus) utilizing hexose. To test the hypothesis that the energy metabolism of the two groups differs, day-night changes in the contents of ATP, ADP, AMP, inorganic phosphate (Pi), phosphoenolpyruvate (PEP) and inorganic pyrophosphate (PPi) in K. pinnata and K. daigremontiana leaves and in pineapple chlorenchyma were analysed. The contents of energy-rich compounds were measured spectrophotometrically in extracts of tissue sampled in the light and dark, using potted plants, kept for 15 d before the experiments in a growth chamber. In the three species, ATP content and adenylate energy charge (AEC) increased in the dark and decreased in the light, in contrast to ADP and AMP. Changes in ATP and AEC were greater in Kalanchoë leaves than in pineapple chlorenchyma. PPi content in the three species increased in the dark, but on illumination it decreased rapidly and substantially, remaining little changed through the rest of the light period. Pi content of Kalanchoë leaves did not change between dark and light, whereas Pi in pineapple chlorenchyma increased in the dark and decreased in the light, and the changes were far greater than in Kalanchoë leaves. Light-dark changes in PEP content in the three species were similar. These results corroborate our hypothesis that day-night changes in the contents of energy-rich compounds differ between CAM species and are related to the

  10. Size dependence in non-sperm ejaculate production is reflected in daily energy expenditure and resting metabolic rate.

    Science.gov (United States)

    Friesen, Christopher R; Powers, Donald R; Copenhaver, Paige E; Mason, Robert T

    2015-05-01

    The non-sperm components of an ejaculate, such as copulatory plugs, can be essential to male reproductive success. But the costs of these ejaculate components are often considered trivial. In polyandrous species, males are predicted to increase energy allocation to the production of non-sperm components, but this allocation is often condition dependent and the energetic costs of their production have never been quantified. Red-sided garter snakes (Thamnophis sirtalis parietalis) are an excellent model with which to quantify the energetic costs of non-sperm components of the ejaculate as they exhibit a dissociated reproductive pattern in which sperm production is temporally disjunct from copulatory plug production, mating and plug deposition. We estimated the daily energy expenditure and resting metabolic rate of males after courtship and mating, and used bomb calorimetry to estimate the energy content of copulatory plugs. We found that both daily energy expenditure and resting metabolic rate were significantly higher in small mating males than in courting males, and a single copulatory plug without sperm constitutes 5-18% of daily energy expenditure. To our knowledge, this is the first study to quantify the energetic expense of size-dependent ejaculate strategies in any species. © 2015. Published by The Company of Biologists Ltd.

  11. The gut hormone ghrelin partially reverses energy substrate metabolic alterations in the failing heart.

    Science.gov (United States)

    Mitacchione, Gianfranco; Powers, Jeffrey C; Grifoni, Gino; Woitek, Felix; Lam, Amy; Ly, Lien; Settanni, Fabio; Makarewich, Catherine A; McCormick, Ryan; Trovato, Letizia; Houser, Steven R; Granata, Riccarda; Recchia, Fabio A

    2014-07-01

    The gut-derived hormone ghrelin, especially its acylated form, plays a major role in the regulation of systemic metabolism and exerts also relevant cardioprotective effects; hence, it has been proposed for the treatment of heart failure (HF). We tested the hypothesis that ghrelin can directly modulate cardiac energy substrate metabolism. We used chronically instrumented dogs, 8 with pacing-induced HF and 6 normal controls. Human des-acyl ghrelin [1.2 nmol/kg per hour] was infused intravenously for 15 minutes, followed by washout (rebaseline) and infusion of acyl ghrelin at the same dose. (3)H-oleate and (14)C-glucose were coinfused and arterial and coronary sinus blood sampled to measure cardiac free fatty acid and glucose oxidation and lactate uptake. As expected, cardiac substrate metabolism was profoundly altered in HF because baseline oxidation levels of free fatty acids and glucose were, respectively, >70% lower and >160% higher compared with control. Neither des-acyl ghrelin nor acyl ghrelin significantly affected function and metabolism in normal hearts. However, in HF, des-acyl and acyl ghrelin enhanced myocardial oxygen consumption by 10.2±3.5% and 9.9±3.7%, respectively (Pmetabolism in normal dogs, whereas they enhance free fatty acid oxidation and reduce glucose oxidation in HF dogs, thus partially correcting metabolic alterations in HF. This novel mechanism might contribute to the cardioprotective effects of ghrelin in HF. © 2014 American Heart Association, Inc.

  12. Sneaker Male Squid Produce Long-lived Spermatozoa by Modulating Their Energy Metabolism *

    Science.gov (United States)

    Hirohashi, Noritaka; Tamura-Nakano, Miwa; Nakaya, Fumio; Iida, Tomohiro; Iwata, Yoko

    2016-01-01

    Spermatozoa released by males should remain viable until fertilization. Hence, sperm longevity is governed by intrinsic and environmental factors in accordance with the male mating strategy. However, whether intraspecific variation of insemination modes can impact sperm longevity remains to be elucidated. In the squid Heterololigo bleekeri, male dimorphism (consort and sneaker) is linked to two discontinuous insemination modes that differ in place and time. Notably, only sneaker male spermatozoa inseminated long before egg spawning can be stored in the seminal receptacle. We found that sneaker spermatozoa exhibited greater persistence in fertilization competence and flagellar motility than consort ones because of a larger amount of flagellar glycogen. Sneaker spermatozoa also showed higher capacities in glucose uptake and lactate efflux. Lactic acidosis was considered to stabilize CO2-triggered self-clustering of sneaker spermatozoa, thus establishing hypoxia-induced metabolic changes and sperm survival. These results, together with comparative omics analyses, suggest that postcopulatory reproductive contexts define sperm longevity by modulating the inherent energy levels and metabolic pathways. PMID:27385589

  13. Validation of doubly labeled water for measuring energy expenditure during parenteral nutrition

    International Nuclear Information System (INIS)

    Schoeller, D.A.; Kushner, R.F.; Jones, P.J.

    1986-01-01

    The doubly labeled water method was compared with intake-balance for measuring energy expenditure in five patients receiving total parenteral nutrition (TPN). Because parenteral solutions were isotopically different from local water, patients had to be placed on TPN at least 10 days before the metabolic period. Approximately 0.1 g 2H2O and 0.25 g H2(18)O per kg total body water were given orally. We collected saliva before, 3 h, and 4 h after the dose for measurement of total body water and urine before, 1 day, and 14 days after the dose for measurement of isotope eliminations. On day 14, total body weight was remeasured and change in body energy stores was calculated, assuming constant hydration. Intake was assessed from weights of TPN fluids plus dietary record for any oral intake. Energy expenditure from doubly labeled water (+/- SD) averaged 3 +/- 6% greater than intake-balance. Doubly labeled water method is a noninvasive, nonrestrictive method for measuring energy expenditure in patients receiving TPN

  14. Omega-3 Fatty Acids and Mood Stabilizers Alter Behavioural and Energy Metabolism Parameters in Animals Subjected to an Animal Model of Mania Induced by Fenproporex.

    Science.gov (United States)

    Cancelier, Kizzy; Gomes, Lara M; Carvalho-Silva, Milena; Teixeira, Letícia J; Rebelo, Joyce; Mota, Isabella T; Arent, Camila O; Mariot, Edemilson; Kist, Luiza W; Bogo, Maurício R; Quevedo, João; Scaini, Giselli; Streck, Emilio L

    2017-08-01

    Studies have shown that changes in energy metabolism are involved in the pathophysiology of bipolar disorder (BD). It was suggested that omega-3 (ω3) fatty acids have beneficial properties in the central nervous system and that this fatty acid plays an important role in energy metabolism. Therefore, the study aimed to evaluate the effect of ω3 fatty acids alone and in combination with lithium (Li) or valproate (VPA) on behaviour and parameters of energy metabolism in an animal model of mania induced by fenproporex. Our results showed that co-administration of ω3 fatty acids and Li was able to prevent and reverse the increase in locomotor and exploratory activity induced by fenproporex. The combination of ω3 fatty acids with VPA was only able to prevent the fenproporex-induced hyperactivity. For the energy metabolism parameters, our results showed that the administration of Fen for the reversal or prevention protocol inhibited the activities of succinate dehydrogenase, complex II and complex IV in the hippocampus. However, hippocampal creatine kinase (CK) activity was decreased only for the reversal protocol. The ω3 fatty acids, alone and in combination with VPA or Li, prevented and reversed the decrease in complex II, IV and succinate dehydrogenase activity, whereas the decrease in CK activity was only reversed after the co-administration of ω3 fatty acids and VPA. In conclusion, our results showed that the ω3 fatty acids combined with VPA or Li were able to prevent and reverse manic-like hyperactivity and the inhibition of energy metabolism in the hippocampus, suggesting that ω3 fatty acids may play an important role in the modulation of behavioural parameters and energy metabolism.

  15. A Method for Ship Collision Damage and Energy Absorption Analysis and its Validation

    DEFF Research Database (Denmark)

    Zhang, Shengming; Pedersen, Preben Terndrup

    2017-01-01

    For design evaluation, there is a need for a method which is fast, practical and yet accurate enough to deter-mine the absorbed energy and collision damage extent in ship collision analysis. The most well-known sim-plified empirical approach to collision analysis was made probably by Minorsky......, and its limitation is alsowell-recognised. The authors have previously developed simple expressions for the relation between theabsorbed energy and the damaged material volume which take into account the structural arrangements,the material properties and the damage modes. The purpose of the present paper...... is to re-examine thismethod’s validity and accuracy for ship collision damage analysis in ship design assessments by compre-hensive validations with experimental results from the public domain. In total, 20 experimental tests havebeen selected, analysed and compared with the results calculated using...

  16. The Deep Correlation between Energy Metabolism and Reproduction: A View on the Effects of Nutrition for Women Fertility.

    Science.gov (United States)

    Fontana, Roberta; Della Torre, Sara

    2016-02-11

    In female mammals, mechanisms have been developed, throughout evolution, to integrate environmental, nutritional and hormonal cues in order to guarantee reproduction in favorable energetic conditions and to inhibit it in case of food scarcity. This metabolic strategy could be an advantage in nutritionally poor environments, but nowadays is affecting women's health. The unlimited availability of nutrients, in association with reduced energy expenditure, leads to alterations in many metabolic pathways and to impairments in the finely tuned inter-relation between energy metabolism and reproduction, thereby affecting female fertility. Many energetic states could influence female reproductive health being under- and over-weight, obesity and strenuous physical activity are all conditions that alter the profiles of specific hormones, such as insulin and adipokines, thus impairing women fertility. Furthermore, specific classes of nutrients might affect female fertility by acting on particular signaling pathways. Dietary fatty acids, carbohydrates, proteins and food-associated components (such as endocrine disruptors) have per se physiological activities and their unbalanced intake, both in quantitative and qualitative terms, might impair metabolic homeostasis and fertility in premenopausal women. Even though we are far from identifying a "fertility diet", lifestyle and dietary interventions might represent a promising and invaluable strategy to manage infertility in premenopausal women.

  17. The Deep Correlation between Energy Metabolism and Reproduction: A View on the Effects of Nutrition for Women Fertility

    Directory of Open Access Journals (Sweden)

    Roberta Fontana

    2016-02-01

    Full Text Available In female mammals, mechanisms have been developed, throughout evolution, to integrate environmental, nutritional and hormonal cues in order to guarantee reproduction in favorable energetic conditions and to inhibit it in case of food scarcity. This metabolic strategy could be an advantage in nutritionally poor environments, but nowadays is affecting women’s health. The unlimited availability of nutrients, in association with reduced energy expenditure, leads to alterations in many metabolic pathways and to impairments in the finely tuned inter-relation between energy metabolism and reproduction, thereby affecting female fertility. Many energetic states could influence female reproductive health being under- and over-weight, obesity and strenuous physical activity are all conditions that alter the profiles of specific hormones, such as insulin and adipokines, thus impairing women fertility. Furthermore, specific classes of nutrients might affect female fertility by acting on particular signaling pathways. Dietary fatty acids, carbohydrates, proteins and food-associated components (such as endocrine disruptors have per se physiological activities and their unbalanced intake, both in quantitative and qualitative terms, might impair metabolic homeostasis and fertility in premenopausal women. Even though we are far from identifying a “fertility diet”, lifestyle and dietary interventions might represent a promising and invaluable strategy to manage infertility in premenopausal women.

  18. [Study on gene differential expressions of substance and energy metabolism in chronic superficial gastritis patients of Pi deficiency syndrome and of pi-wei hygropyrexia syndrome].

    Science.gov (United States)

    Yang, Ze-Min; Chen, Wei-Wen; Wang, Ying-Fang

    2012-09-01

    To analyze the metabolic levels of energy and substance in chronic superficial gastritis (CSG) patients of Pi deficiency syndrome (PDS) and of Pi-Wei hygropyrexia syndrome (PWHS), including lipid, protein, nucleic acid, carbohydrate, trace element, and energy metabolism, and to study the pathogenesis mechanism of PDS from substance and energy metabolisms. Recruited were 8 CSG patients who visited at First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine and Guangdong Provincial Hospital of Traditional Chinese Medicine from June 2004 to March 2005, including 4 patients of PDS and 4 of PWHS. Their gastric mucosae were used for experiments of DNA microarray. The dual-channel DNA microarray data were bioinformatically analyzed by BRB ArrayTools and IPA Software. Obtained were fifty-six differentially expressed genes involved in substance and energy metabolisms with the expression fold more than 2, including 11 genes up-regulated and 45 genes down-regulated. Of them, genes correlated to lipid metabolism included CRLS1, LRP11, FUT9, GPCPD1, PIGL, SULT1A4, B3GNT1, ST8SIA4, and ACADVL, mainly involved in the metabolic processes of fatty acid, cholesterol, phospholipids, and glycolipid. Genes correlated to protein metabolism included ASRGL1, AARSD1, EBNA1BP2, PUM2, MRPL52, C120RF65, PSMB8, PSME2, UBA7, RNF11, FBXO44, ZFYVE26, CHMP2A, SSR4, SNX4, RAB3B, RABL2A, GOLGA2, KDELR1, PHPT1, ACPP, PTPRF, CRKL, HDAC7, ADPRHL2, B3GNT1, ST8SIA4, DDOST, and FUT9, mainly involved in the biosynthesis processes of protein, ubiquitination, targeted transport and post-translation modification. Genes correlated to nucleic acid metabolism included DFFB, FLJ35220, TOP2A, SF3A3, CREB3, CRTC2, NR1D2, MED6, GTF2IRD1, C1ORF83, ZNF773, and ZMYND11, mainly involved in DNA replication and repair, transcription regulation. Genes correlated to carbohydrate metabolism included AGL, B3GNT1, FUT9, ST8SIA4, SULT1A4, DDOST, and PIGL, mainly involved in glucogen degradation and

  19. Long Non-Coding RNAs in Metabolic Organs and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Maude Giroud

    2017-11-01

    Full Text Available Single cell organisms can surprisingly exceed the number of human protein-coding genes, which are thus not at the origin of the complexity of an organism. In contrast, the relative amount of non-protein-coding sequences increases consistently with organismal complexity. Moreover, the mammalian transcriptome predominantly comprises non-(protein-coding RNAs (ncRNA, of which the long ncRNAs (lncRNAs constitute the most abundant part. lncRNAs are highly species- and tissue-specific with very versatile modes of action in accordance with their binding to a large spectrum of molecules and their diverse localization. lncRNAs are transcriptional regulators adding an additional regulatory layer in biological processes and pathophysiological conditions. Here, we review lncRNAs affecting metabolic organs with a focus on the liver, pancreas, skeletal muscle, cardiac muscle, brain, and adipose organ. In addition, we will discuss the impact of lncRNAs on metabolic diseases such as obesity and diabetes. In contrast to the substantial number of lncRNA loci in the human genome, the functionally characterized lncRNAs are just the tip of the iceberg. So far, our knowledge concerning lncRNAs in energy homeostasis is still in its infancy, meaning that the rest of the iceberg is a treasure chest yet to be discovered.

  20. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    International Nuclear Information System (INIS)

    Zaya, Renee M.; Amini, Zakariya; Whitaker, Ashley S.; Ide, Charles F.

    2011-01-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule

  1. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Zaya, Renee M., E-mail: renee.zaya@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Amini, Zakariya, E-mail: zakariya.amini@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Whitaker, Ashley S., E-mail: ashley.s.whitaker@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Ide, Charles F., E-mail: charles.ide@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States)

    2011-08-15

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 {mu}g/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 {mu}g/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 {mu}g/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 {mu}g/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor {beta} (PPAR-{beta}) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid {beta}-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-{beta}, an energy

  2. Constraints on Energy Intake in Fish: The Link between Diet Composition, Energy Metabolism, and Energy Intake in Rainbow Trout

    Science.gov (United States)

    Saravanan, Subramanian; Schrama, Johan W.; Figueiredo-Silva, A. Claudia; Kaushik, Sadasivam J.; Verreth, Johan A. J.; Geurden, Inge

    2012-01-01

    The hypothesis was tested that fish fed to satiation with iso-energetic diets differing in macronutrient composition will have different digestible energy intakes (DEI) but similar total heat production. Four iso-energetic diets (2×2 factorial design) were formulated having a contrast in i) the ratio of protein to energy (P/E): high (HP/E) vs. low (LP/E) and ii) the type of non-protein energy (NPE) source: fat vs. carbohydrate which were iso-energetically exchanged. Triplicate groups (35 fish/tank) of rainbow trout were hand-fed each diet twice daily to satiation for 6 weeks under non-limiting water oxygen conditions. Feed intake (FI), DEI (kJ kg−0.8 d−1) and growth (g kg−0.8 d−1) of trout were affected by the interaction between P/E ratio and NPE source of the diet (Ptrout by ∼20%. The diet-induced differences in FI and DEI show that trout did not compensate for the dietary differences in digestible energy or digestible protein contents. Further, changes in body fat store and plasma glucose did not seem to exert a homeostatic feedback control on DEI. Independent of the diet composition, heat production of trout did not differ (P>0.05). Our data suggest that the control of DEI in trout might be a function of heat production, which in turn might reflect a physiological limit related with oxidative metabolism. PMID:22496852

  3. Validation of energy intake estimated from a food frequency questionnaire: a doubly labelled water study.

    Science.gov (United States)

    Andersen, L Frost; Tomten, H; Haggarty, P; Løvø, A; Hustvedt, B-E

    2003-02-01

    The validation of dietary assessment methods is critical in the evaluation of the relation between dietary intake and health. The aim of this study was to assess the validity of a food frequency questionnaire by comparing energy intake with energy expenditure measured with the doubly labelled water method. Total energy expenditure was measured with the doubly labelled water (DLW) method during a 10 day period. Furthermore, the subjects filled in the food frequency questionnaire about 18-35 days after the DLW phase of the study was completed. Twenty-one healthy, non-pregnant females volunteered to participate in the study; only 17 subjects completed the study. The group energy intake was on average 10% lower than the energy expenditure, but the difference was not statistically significant. However, there was a wide range in reporting accuracy: seven subjects were identified as acceptable reporters, eight as under-reporters and two were identified as over-reporters. The width of the 95% confidence limits of agreement in a Bland and Altman plot for energy intake and energy expenditure varied from -5 to 3 MJ. The data showed that there was substantial variability in the accuracy of the food frequency questionnaire at the individual level. Furthermore, the results showed that the questionnaire was more accurate for groups than individuals.

  4. Metabolic disruption in context: Clinical avenues for synergistic perturbations in energy homeostasis by endocrine disrupting chemicals.

    Science.gov (United States)

    Sargis, Robert M

    2015-01-01

    The global epidemic of metabolic disease is a clear and present danger to both individual and societal health. Understanding the myriad factors contributing to obesity and diabetes is essential for curbing their decades-long expansion. Emerging data implicate environmental endocrine disrupting chemicals (EDCs) in the pathogenesis of metabolic diseases such as obesity and diabetes. The phenylsulfamide fungicide and anti-fouling agent tolylfluanid (TF) was recently added to the list of EDCs promoting metabolic dysfunction. Dietary exposure to this novel metabolic disruptor promoted weight gain, increased adiposity, and glucose intolerance as well as systemic and cellular insulin resistance. Interestingly, the increase in body weight and adipose mass was not a consequence of increased food consumption; rather, it may have resulted from disruptions in diurnal patterns of energy intake, raising the possibility that EDCs may promote metabolic dysfunction through alterations in circadian rhythms. While these studies provide further evidence that EDCs may promote the development of obesity and diabetes, many questions remain regarding the clinical factors that modulate patient-specific consequences of EDC exposure, including the impact of genetics, diet, lifestyle, underlying disease, pharmacological treatments, and clinical states of fat redistribution. Currently, little is known regarding the impact of these factors on an individual's susceptibility to environmentally-mediated metabolic disruption. Advances in these areas will be critical for translating EDC science into the clinic to enable physicians to stratify an individual's risk of developing EDC-induced metabolic disease and to provide direction for treating exposed patients.

  5. Environmental and self-sufficiency assessment of the energy metabolism of tourist hubs on Mediterranean Islands: The case of Menorca (Spain)

    International Nuclear Information System (INIS)

    Sanyé-Mengual, Esther; Romanos, Héctor; Molina, Catalina; Oliver, M. Antònia; Ruiz, Núria; Pérez, Marta; Carreras, David; Boada, Martí; Garcia-Orellana, Jordi; Duch, Jordi; Rieradevall, Joan

    2014-01-01

    Energy performance of island tourism has been analyzed in the literature. However, tourist services tend to concentrate in tourist hubs, especially where mass tourism predominates (e.g., Mediterranean), and the energy metabolism of these systems has not yet been assessed. The present paper models and estimates the energy metabolism of tourist hubs in the Menorca Island (Spain) by integrating social, geographical and environmental methods. Mobility (both external and internal) and consumption of lodging services were characterized through surveys to users (tourists) and business managers. An environmental assessment evaluated CO 2 emissions, and energy self-sufficiency potential was estimated via GIS data. The results indicate that, on average, a tourist consumes 4756 MJ with associated emissions of 277 kg of CO 2 per stay (20 days on average). Of all the energy flows, external mobility contributes the most to total emissions (77%). For every day spent in a tourist hub, a tourist consumes between 29 MJ and 93 MJ in lodging services, consumption that could be 100% satisfied by photovoltaic systems, and these systems would result in positive effects for the island. Sustainable tourism management might focus on promoting environmentally friendly transportation, energy efficient practices, and environmental communication through ecolabeling. - Highlights: • We modeled the entire energy metabolism of tourist hubs in islands. • Results showed that a tourist in Menorca consumes from 4000 to 6000 MJ per trip. • External mobility (trip to the island) accounts for 77% of the total CO 2 emissions. • Photovoltaic systems could provide enough power to achieve self-sufficiency. • Tourists at hotel hubs have higher energy consumption than other types of hubs

  6. Quantitative Validation of the Presto Blue Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System.

    Science.gov (United States)

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P; Schrooten, Jan Ir

    2015-06-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required.

  7. Quantitative Validation of the Presto Blue™ Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System

    Science.gov (United States)

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P.

    2015-01-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue™, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required. PMID:25336207

  8. The effects of partial defeathering on energy metabolism in the laying fowl.

    Science.gov (United States)

    Tullett, S G; MacLeod, M G; Jewitt, T R

    1980-05-01

    1. The effects of a complete removal of feathers from the neck and/or breast on the energy metabolism of laying hens were measured by indirect calorimetry. 2. The daily heat production of fed birds was significantly increased if feathers were removed from the entire neck plus breast region but not if the neck only or breast only were denuded. 3. Removal of feathers from neck plus breast led to a 10% increase in food consumption. 4. The partially-defeathered birds laid more eggs.

  9. Changes in energy metabolism of the juvenile Fasciola hepatica during its development in the liver parenchyma

    NARCIS (Netherlands)

    Tielens, A.G.M.; Heuvel, J.M. van den; Bergh, S.G. van den

    1982-01-01

    Juvenile Fasciola hepatica at different stages of development were isolated from the liver parenchyma of experimentally infected rats. Their energy metabolism was studied by incubation with D-[16-14C]glucose and compared with that of juveniles isolated immediately after in vitro emergence from the

  10. NMR studies of myocardial energy metabolism and ionic homeostasis during ischemia and reperfusion

    International Nuclear Information System (INIS)

    Kirkels, J.H.

    1989-01-01

    In this study several aspects of myocardial energy metabolism and ionic homeostasis during ischemia and reperfusion were investigated in isolated perfused rat hearts, regionally ischemic rabbit hearts, and ex vivo human donor hearts during long term hypothermic cardioplegia. Phosphorus-31 nuclear magnetic resonance ( 31 P NMR) spectroscopy was used as a powerful tool to non-destructively follow the time course in changes in intracellular high-energy phosphates, (creatine phosphate and ATP), inorganic phosphate, and pH. In addition, changes in intracellular free magnesium were followed during ischemia and reperfusion. Sodium-23 ( 23 Na) NMR spectroscopy was used to study intracellular sodium during ischemia and reperfusion and during calcium-free perfusion. (author). 495 refs.; 33 figs.; 11 tabs

  11. More Energy and Less Work, but New Crises: How the Societal Metabolism-Labour Nexus Changes from Agrarian to Industrial Societies

    Directory of Open Access Journals (Sweden)

    Willi Haas

    2017-06-01

    Full Text Available The scientific finding that humanity is overburdening nature and thus risks further ecological crises is almost uncontroversial. Main reason for the crises is the drastic increase in the societal metabolism, which is accomplished through labour. In this article, we examine the societal metabolism-labour nexus in two energy regimes: a valley in the Ethiopian highlands, typical of an agrarian society, and a village in Austria, typical of an industrial society. In the Ethiopian village, the supply of food demands almost the entire labour force, thus limiting the capacity to facilitate material flows beyond food provision. In the Austrian village, fewer working hours, lower workloads but 50 times higher useful energy allow to accumulate stocks like buildings 70 times higher than the Ethiopian case. With fossil energy, industrial societies decisively expand their energy supply and reduce labour hours at the cost of high carbon emissions, which are almost non-existent in the Ethiopian case. To overcome the resulting ecological crises, there is a call to drastically reduce fossil fuel consumption. Such an abandonment of fossil fuels might have as far reaching consequences for the societal metabolism-labour nexus and consequently human labour as the introduction of fossil fuels has had.

  12. The plasma membrane as a capacitor for energy and metabolism

    Science.gov (United States)

    Ray, Supriyo; Kassan, Adam; Busija, Anna R.; Rangamani, Padmini

    2016-01-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as “capacitors for energy and metabolism.” Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell. PMID:26771520

  13. Weekend ethanol consumption and high-sucrose diet: resveratrol effects on energy expenditure, substrate oxidation, lipid profile, oxidative stress and hepatic energy metabolism.

    Science.gov (United States)

    Rocha, Katiucha Karolina Honório Ribeiro; Souza, Gisele Aparecida; Seiva, Fábio Rodrigues Ferreira; Ebaid, Geovana Xavier; Novelli, Ethel Lourenzi Barbosa

    2011-01-01

    The present study analyzed the association between weekend ethanol and high-sucrose diet on oxygen consumption, lipid profile, oxidative stress and hepatic energy metabolism. Because resveratrol (RS, 3,5,4'-trans-trihydroxystilbene) has been implicated as a modulator of alcohol-independent cardiovascular protection attributed to red wine, we also determined whether RS could change the damage done by this lifestyle. Male Wistar 24 rats receiving standard chow were divided into four groups (n = 6/group): (C) water throughout the experimental period; (E) 30% ethanol 3 days/week, water 4 days/week; (ES) a mixture of 30% ethanol and 30% sucrose 3 days/week, drinking 30% sucrose 4 days/week; (ESR) 30% ethanol and 30% sucrose containing 6 mg/l RS 3 days/week, drinking 30% sucrose 4 days/week. After 70 days the body weight was highest in ESR rats. E rats had higher energy expenditure (resting metabolic rate), oxygen consumption (VO(2)), fat oxidation, serum triacylglycerol (TG) and very low-density lipoprotein (VLDL) than C. ES rats normalized calorimetric parameters and enhanced carbohydrate oxidation. ESR ameliorated calorimetric parameters, reduced TG, VLDL and lipid hydroperoxide/total antioxidant substances, as well enhanced high-density lipoprotein (HDL) and HDL/TG ratio. Hepatic hydroxyacyl coenzyme-A dehydrogenase (OHADH)/citrate synthase ratio was lower in E and ES rats than in C. OHADH was highest in ESR rats. The present study brought new insights on weekend alcohol consumption, demonstrating for the first time, that this pattern of ethanol exposure induced dyslipidemic profile, calorimetric and hepatic metabolic changes which resemble that of the alcoholism. No synergistic effects were found with weekend ethanol and high-sucrose intake. RS was advantageous in weekend drinking and high-sucrose intake condition ameliorating hepatic metabolism and improving risk factors for cardiovascular damage.

  14. Uncovering transcriptional regulation of metabolism by using metabolic network topology

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Nielsen, Jens

    2005-01-01

    in the metabolic network that follow a common transcriptional response. Thus, the algorithm enables identification of so-called reporter metabolites (metabolites around which the most significant transcriptional changes occur) and a set of connected genes with significant and coordinated response to genetic......Cellular response to genetic and environmental perturbations is often reflected and/or mediated through changes in the metabolism, because the latter plays a key role in providing Gibbs free energy and precursors for biosynthesis. Such metabolic changes are often exerted through transcriptional...... therefore developed an algorithm that is based on hypothesis-driven data analysis to uncover the transcriptional regulatory architecture of metabolic networks. By using information on the metabolic network topology from genome-scale metabolic reconstruction, we show that it is possible to reveal patterns...

  15. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    Science.gov (United States)

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

  16. Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism.

    Science.gov (United States)

    Shi, Yuguang; Cheng, Dong

    2009-07-01

    Monoacyglycerol acyltransferases (MGATs) and diacylglycerol acyltransferases (DGATs) catalyze two consecutive steps of enzyme reactions in the synthesis of triacylglycerols (TAGs). The metabolic complexity of TAG synthesis is reflected by the presence of multiple isoforms of MGAT and DGAT enzymes that differ in catalytic properties, subcellular localization, tissue distribution, and physiological functions. MGAT and DGAT enzymes play fundamental roles in the metabolism of monoacylglycerol (MAG), diacylglycerol (DAG), and triacylglycerol (TAG) that are involved in many aspects of physiological functions, such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, signal transduction, satiety, and lactation. The recent progress in the phenotypic characterization of mice deficient in MGAT and DGAT enzymes and the development of chemical inhibitors have revealed important roles of these enzymes in the regulation of energy homeostasis and insulin sensitivity. Consequently, selective inhibition of MGAT or DGAT enzymes by synthetic compounds may provide novel treatment for obesity and its related metabolic complications.

  17. Validity and reproducibility of crutch force and heart rate measurements to assess energy expenditure of paraplegic gait

    NARCIS (Netherlands)

    IJzerman, Maarten Joost; Baardman, Gert; van 't Hof, Martin A.; Boom, H.B.K.; Hermens, Hermanus J.; Veltink, Petrus H.

    1999-01-01

    Objective: To determine the validity and reproducibility of heart rate (HR) and crutch force measurements to estimate energy expenditure during paraplegic walking. Usefulness of these outcome measures in comparative trials was assessed in terms of responsiveness. Design: Cross-sectional validity was

  18. Energy expenditure evaluation in humans and non-human primates by SenseWear Armband. Validation of energy expenditure evaluation by SenseWear Armband by direct comparison with indirect calorimetry.

    Science.gov (United States)

    Casiraghi, Francesca; Lertwattanarak, Raweewan; Luzi, Livio; Chavez, Alberto O; Davalli, Alberto M; Naegelin, Terry; Comuzzie, Anthony G; Frost, Patricia; Musi, Nicolas; Folli, Franco

    2013-01-01

    The purpose of this study was to compare and validate the use of SenseWear Armband (SWA) placed on the arm (SWA ARM) and on the back (SWA BACK) in healthy humans during resting and a cycle-ergometer exercise and to evaluate the SWA to estimate Resting Energy Expenditure (REE) and Total Energy Expenditure (TEE) in healthy baboons. We studied 26 (15F/11M) human subjects wearing SWA in two different anatomical sites (arm and back) during resting and a cycle-ergometer test and directly compared these results with indirect calorimetry evaluation (IC), performed at the same time. We then inserted the SWA in a metabolic jacket for baboons and evaluated the TEE and REE in free living condition for 6 days in 21 (8F/13M) non-human primates. In humans we found a good correlation between SWA place on the ARM and on the BACK with IC during the resting experiment (1.1±0.3 SWAs, 1±0.2 IC kcal/min) and a slight underestimation in the SWAs data compared with IC during the cycle-ergometer exercise (5±1.9 SWA ARM, 4.5±1.5 SWA BACK and 5.4±2.1 IC kcal/min). In the non-human primate (baboons) experiment SWA estimated a TEE of 0.54±0.009 kcal/min during free living and a REE of 0.82±0.06 kcal/min. SWA, an extremely simple and inexpensive apparatus, provides quite accurate measurements of energy expenditure in humans and in baboons. Energy expenditure data obtained with SWA are highly correlated with the data obtained with "gold standard", IC, in humans.

  19. Ontogeny of thermoregulation and energy metabolism in pygoscelid penguin chicks.

    Science.gov (United States)

    Taylor, J R

    1985-01-01

    The ontogeny of thermoregulation and energy metabolism of chinstrap (Pygoscelis antarctica) and gentoo (P. papua) penguins was studied on King George Island, South Shetland Island, Antarctica. The major findings of this study are: Chinstrap and gentoo penguin chicks hatched completely poikilothermic, due to their poor heat-production ability at low ambient temperatures. They were able to maintain high body temperatures and metabolic rates only by being brooded by adults. Newly hatched chinstrap penguin chicks had, at a specified ambient temperature, significantly higher metabolic rates than newly hatched gentoos. Moreover, chinstrap chicks maintained a significantly higher body temperature. It is suggested that this is a non-acclimatory metabolic adaptation of chinstrap penguin chicks to the lower mean temperatures of their breeding areas. On the 15th day after hatching, chinstrap chicks were completely, and gentoo chicks almost completely, homeothermic. In spite of their high thermogenic capacity from about day 10, chicks were not at that time capable of controlling heat dissipation, and were still dependent on their parents. In older downy chicks and fledglings, heat loss at low temperatures, expressed as heat conductance (CA), was similar to that found for the adults of other penguin species. Just before moulting the CA of chicks was lower than after moulting. Moulting alone did not cause a clear increase in CA. Towards the end of their stay on land the CA of pre-fledged gentoos decreased by 31%. This decrease was not connected with the development of feathers or growth in the chicks' weight. The combination of the low CA and high SMR of chicks gave very low lower critical temperatures, near -15 degrees C. The wide thermoneutral zones of the chicks covered the whole range of air temperature variations in the breeding colonies of both species studied on King George Island. The CA values of homeothermic chinstrap chicks were not lower than those of gentoos

  20. Energy dense, protein restricted diet increases adiposity and perturbs metabolism in young, genetically lean pigs.

    Science.gov (United States)

    Fisher, Kimberly D; Scheffler, Tracy L; Kasten, Steven C; Reinholt, Brad M; van Eyk, Gregory R; Escobar, Jeffery; Scheffler, Jason M; Gerrard, David E

    2013-01-01

    Animal models of obesity and metabolic dysregulation during growth (or childhood) are lacking. Our objective was to increase adiposity and induce metabolic syndrome in young, genetically lean pigs. Pre-pubertal female pigs, age 35 d, were fed a high-energy diet (HED; n = 12), containing 15% tallow, 35% refined sugars and 9.1-12.9% crude protein, or a control corn-based diet (n = 11) with 12.2-19.2% crude protein for 16 wk. Initially, HED pigs self-regulated energy intake similar to controls, but by wk 5, consumed more (Pblood glucose increased (Pblood glucose did not return to baseline (P = 0.01), even 4 h post-challenge. During OGTT, glucose area under the curve (AUC) was higher and insulin AUC was lower in HED pigs compared to controls (P = 0.001). Chronic HED intake increased (PAUC and insulin AUC did not improve, supporting that dietary intervention was not sufficient to recover glucose tolerance or insulin production. These data suggest a HED may be used to increase adiposity and disrupt glucose homeostasis in young, growing pigs.

  1. Measuring energy metabolism in the mouse – theoretical, practical and analytical considerations

    Directory of Open Access Journals (Sweden)

    John Roger Speakman

    2013-03-01

    Full Text Available The mouse is one of the most important model organisms for understanding human genetic function and disease. This includes characterisation of the factors that influence energy expenditure and dysregulation of energy balance leading to obesity and its sequalae. Measuring energy metabolism in the mouse presents a challenge because the animals are small, and in this respect it presents similar challenges to measuring energy demands in many other species of small mammal. This paper considers some theoretical, practical and analytical considerations to be considered when measuring energy expenditure in mice. Theoretically total daily energy expenditure is comprised of several different components: basal or resting expenditure, physical activity, thermoregulation and the thermic effect of food. Energy expenditure in mice is normally measured using open flow indirect calorimetry apparatus. Two types of system are available – one of which involves a single small Spartan chamber linked to a single analyser, which is ideal for measuring the individual components of energy demand. The other type of system involves a large chamber which mimics the home cage environment and is generally configured with several chambers per analyser. These latter systems are ideal for measuring total daily energy expenditure but at present do not allow accurate decomposition of the total expenditure into its components. The greatest analytical challenge for mouse expenditure data is how to account for body size differences between individuals. This has been a matter of some discussion for at least 120 years. The statistically most appropriate approach is to use ANCOVA with individual aspects of body composition as independent predictors.

  2. An Integrative Approach to Energy, Carbon, and Redox Metabolism in the Cyanobacterium Synechocystis sp. PCC 6803. Special Report

    Energy Technology Data Exchange (ETDEWEB)

    Overbeek, R.

    2003-06-30

    The main objectives for the first year were to produce a detailed metabolic reconstruction of synechocystis sp. PCC 6803 especially in interrelated areas of photosynthesis, respiration, and central carbon metabolism to support a more complete understanding and modeling of this organism. Additionally, Integrated Genomics, Inc., provided detailed bioinformatic analysis of selected functional systems related to carbon and energy generation and utilization, and of the corresponding pathways, functional roles and individual genes to support wet lab experiments by collaborators.

  3. Effect of the acquisition enhancing drug piracetam on rat cerebral energy metabolism. Comparison with naftidrofuryl and methamphetamine

    NARCIS (Netherlands)

    Nickolson, V.J.; Wolthuis, O.L.

    1976-01-01

    The effects of Piracetam, Naftidrofuryl and methamphetamine on several parameters of cerebral energy metabolism have been studied. At variance with some reports in the literature neither Piracetam nor Naftidrofuryl affected the cerebral contents of adenine nucleotides and, accordingly, both

  4. Modelling of the metabolism of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Posten, C; Thoma, M

    1986-01-01

    In order to optimize fermentations with respect to media, reactor configuration, and control a structured model of the metabolism of Zymononas mobilis has been developed. The model is based on structure of metabolism, rate limiting steps, energy balance and metabolic elemental balances. A three-fold effect of ethanol has been observed concerning substrate-turnover, ammonia uptake and energy consumption. In addition to the metabolic view a structured cell-membrane-model should be considered.

  5. Validation of metabolic syndrome using medical records in the SUN cohort

    Directory of Open Access Journals (Sweden)

    Barrio-Lopez Maria

    2011-11-01

    Full Text Available Abstract Background The objective of this study was to evaluate the validity of self reported criteria of Metabolic Syndrome (MS in the SUN (Seguimiento Universidad de Navarra cohort using their medical records as the gold standard. Methods We selected 336 participants and we obtained MS related data according to Adult Treatment Panel III (ATP III and International Diabetes Federation (IDF. Then we compared information on the self reported diagnosis of MS and MS diagnosed in their medical records. We calculated the proportion of confirmed MS, the proportion of confirmed non-MS and the intraclass correlation coefficients for each component of the MS. Results From those 336 selected participants, we obtained sufficient data in 172 participants to confirm or reject MS using ATP III criteria. The proportion of confirmed MS was 91.2% (95% CI: 80.7- 97.1 and the proportion of confirmed non-MS was 92.2% (95% CI: 85.7-96.4 using ATP III criteria. The proportion of confirmed MS using IDF criteria was 100% (95% CI: 87.2-100 and the proportion of confirmed non-MS was 97.1% (95% CI: 85.1-99.9. Kappa Index was 0.82 in the group diagnosed by ATP III criteria and 0.97 in the group diagnosed by IDF criteria. Intraclass correlation coefficients for the different component of MS were: 0.93 (IC 95%:0.91- 0.95 for BMI; 0.96 (IC 95%: 0.93-0.98 for waist circumference; 0.75 (IC 95%: 0.66-0.82 for fasting glucose; 0.50 (IC 95%:0.35-0.639 for HDL cholesterol; 0.78 (IC 95%: 0.70-0.84 for triglycerides; 0.49 (IC 95%:0.34-0.61 for systolic blood pressure and 0.55 (IC 95%: 0.41-0.65 for diastolic blood pressure. Conclusions Self-reported MS based on self reported components of the SM in a Spanish cohort of university graduates was sufficiently valid as to be used in epidemiological studies.

  6. Alpha-ketoglutarate and N-acetyl cysteine protect PC12 cells from cyanide-induced cytotoxicity and altered energy metabolism.

    Science.gov (United States)

    Satpute, R M; Hariharakrishnan, J; Bhattacharya, R

    2008-01-01

    Cyanide is a rapidly acting neurotoxin that inhibits cellular respiration and energy metabolism leading to histotoxic hypoxia. This results in the dissipation of mitochondrial membrane potential (MMP) accompanied by decreased cellular ATP content which in turn is responsible for increased levels of intracellular calcium ions ([Ca(2+)](i)) and total lactic acid content of the cells. Rat pheochromocytoma (PC12) cells possess much of the biochemical machinery associated with synaptic neurons. In the present study, we evaluated the cytoprotective effects of alpha-ketoglutarate (A-KG) and N-acetylcysteine (NAC) against cyanide-induced cytotoxicity and altered energy metabolism in PC12 cells. Cyanide-antagonism by A-KG is attributed to cyanohydrin formation whereas NAC is known for its antioxidant properties. Data on leakage of intracellular lactate dehydrogenase and mitochondrial function (MTT assay) revealed that simultaneous treatment of A-KG (0.5 mM) and NAC (0.25 mM) significantly prevented the cytotoxicity of cyanide. Also, cellular ATP content was found to improve, followed by restoration of MMP, intracellular calcium [Ca(2+)](i) and lactic acid levels. Treatment with A-KG and NAC also attenuated the levels of peroxides generated by cyanide. The study indicates that combined administration of A-KG and NAC protected the cyanide-challenged PC12 cells by resolving the altered energy metabolism. The results have implications in the development of new treatment regimen for cyanide poisoning.

  7. Yeast vitality during cider fermentation: assessment by energy metabolism.

    Science.gov (United States)

    Dinsdale, M G; Lloyd, D; McIntyre, P; Jarvis, B

    1999-03-15

    In an apple juice-based medium, an ethanol-tolerant Australian wine-yeast used for cider manufacture produced more than 10% ethanol over a 5 week period. Growth of the inoculum (10(6) organisms ml(-1)) occurred to a population of 3.1 x 10(7) ml(-1) during the first few days; at the end of the fermentation only 5 x 10(5) yeasts ml(-1) could be recovered as colony-forming units on plates. Respiratory and fermentative activities were measured by mass spectrometric measurements (O2 consumption and CO2 and ethanol production) of washed yeast suspensions taken from the cider fermentation at intervals. Both endogenous and glucose-supported energy-yielding metabolism declined, especially during the first 20 days. Levels of adenine nucleotides also showed decreases after day 1, as did adenylate energy charge, although in a prolonged (16.5 week) fermentation the lowest value calculated was 0.55. AMP was released into the medium. 31P-NMR spectra showed that by comparison with aerobically grown yeast, that from the later stages of the cider fermentation showed little polyphosphate. However, as previously concluded from studies of 'acidification power' and fluorescent oxonol dye exclusion (Dinsdale et al., 1995), repitching of yeast indicated little loss of viability despite considerable loss of vitality.

  8. Linking neuronal brain activity to the glucose metabolism

    OpenAIRE

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-01-01

    Background Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regul...

  9. Comparison of resting energy equations and total energy expenditure in haemodialysis patients and body composition measured by multi-frequency bioimpedance.

    Science.gov (United States)

    Oliveira, Ben; Sridharan, Sivakumar; Farrington, Ken; Davenport, Andrew

    2017-07-13

    Waste products of metabolism are retained in haemodialysis (HD) patients. Cellular metabolism generates energy, and patients with greater energy expenditure may therefore require more dialysis. To determine the amount of dialysis required, equations estimating resting and total energy expenditure (REE,TEE) are required. We compared estimates of REE in HD patients using established equations with a novel equation recently validated in HD patients (HD equation). TEE was derived from REE (HD equation) and estimates of physical activity obtained by questionnaire. REE and TEE relationships with bioimpedance measured body composition were then determined. We studied 317 HD patients; 195 males (61.5%), 123 diabetic (38.9%), mean age 65.0 ± 15.3 and weight 73.1 ± 16.8 kg. REE from HD Equation was 1509 ± 241 kcal/day, which was greater than for Mifflin St Joer 1384 ± 259, Harris-Benedict 1437 ± 244, Katch-McArdle 1345 ± 232 (all p employment (β 406.5, p appearance (β 2.7, p = 0.015), and negatively with age (β -7.9, p appearance, lower co-morbidity, age, and dialysis vintage, and the employed. More metabolically active patients may require greater dialytic clearances. This article is protected by copyright. All rights reserved.

  10. [sup 31]P-magnetic resonance spectroscopy: Impaired energy metabolism in latent hyperthyroidism. [sup 31]Phosphor-Kernspinspektroskopie: Gestoerter Energiestoffwechsel bei latenter Hyperthyreose

    Energy Technology Data Exchange (ETDEWEB)

    Theissen, P. (Klinik und Poliklinik fuer Nuklearmedizin, Univ. Koeln (Germany)); Kaldewey, S. (Klinik und Poliklinik fuer Nuklearmedizin, Univ. Koeln (Germany)); Moka, D. (Klinik und Poliklinik fuer Nuklearmedizin, Univ. Koeln (Germany)); Bunke, J. (Philips Medizin Systeme, Hamburg (Germany)); Voth, E. (Klinik und Poliklinik fuer Nuklearmedizin, Univ. Koeln (Germany)); Schicha, H. (Klinik und Poliklinik fuer Nuklearmedizin, Univ. Koeln (Germany))

    1993-06-01

    [sup 31]Phosphorous magnetic resonance spectroscopy allows an in vivo examination of energy metabolism. The present study was designed to evaluate whether in patients with latent hyperthyroidism alterations of muscle energy metabolism could be found similar to those observed in patients with overt hyperthyroidism. In 10 patients with overt hyperthyroidism before therapy and 20 with latent hyperthyroidism (also without therapy) and in 24 healthy volunteers magnetic resonance spectroscopy of the calf muscle was performed within a 1.5-Tesla magnet. Muscle concentrations of phosphocreatine, inorganic phosphate, and ATP were quantified compared to an external standard solution of K[sub 2]HPO[sub 4]. In the patients with overt hyperthyroidism and with latent hyperthyroidism a significant decrease of phosphocreatine was found. Further, the ATP concentration in patients with latent and manifest hyperthyroidism tended towards lower values. There were no significant differences in the decrease of phosphocreatine and ATP between both patient groups. Therefore, this study for the first time shows that alterations of energy metabolism in latent hyperthyroidism can be measured and that they are similar to those observed in overt hyperthyroidism. (orig.)

  11. DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance.

    Science.gov (United States)

    Caron, Alexandre; Labbé, Sébastien M; Mouchiroud, Mathilde; Huard, Renaud; Lanfray, Damien; Richard, Denis; Laplante, Mathieu

    2016-06-01

    We have recently demonstrated that specific overexpression of DEP-domain containing mTOR-interacting protein (DEPTOR) in the mediobasal hypothalamus (MBH) protects mice against high-fat diet-induced obesity, revealing DEPTOR as a significant contributor to energy balance regulation. On the basis of evidence that DEPTOR is expressed in the proopiomelanocortin (POMC) neurons of the MBH, the present study aimed to investigate whether these neurons mediate the metabolic effects of DEPTOR. Here, we report that specific DEPTOR overexpression in POMC neurons does not recapitulate any of the phenotypes observed when the protein was overexpressed in the MBH. Unlike the previous model, mice overexpressing DEPTOR only in POMC neurons 1) did not show differences in feeding behavior, 2) did not exhibit changes in locomotion activity and oxygen consumption, 3) did not show an improvement in systemic glucose metabolism, and 4) were not resistant to high-fat diet-induced obesity. These results support the idea that other neuronal populations are responsible for these phenotypes. Nonetheless, we observed a mild elevation in fasting blood glucose, insulin resistance, and alterations in liver glucose and lipid homeostasis in mice overexpressing DEPTOR in POMC neurons. Taken together, these results show that DEPTOR overexpression in POMC neurons does not affect energy balance regulation but could modulate metabolism through a brain-liver connection. Copyright © 2016 the American Physiological Society.

  12. Fermentation of Xylose Causes Inefficient Metabolic State Due to Carbon/Energy Starvation and Reduced Glycolytic Flux in Recombinant Industrial Saccharomyces cerevisiae

    Science.gov (United States)

    Matsushika, Akinori; Nagashima, Atsushi; Goshima, Tetsuya; Hoshino, Tamotsu

    2013-01-01

    In the present study, comprehensive, quantitative metabolome analysis was carried out on the recombinant glucose/xylose-cofermenting S. cerevisiae strain MA-R4 during fermentation with different carbon sources, including glucose, xylose, or glucose/xylose mixtures. Capillary electrophoresis time-of-flight mass spectrometry was used to determine the intracellular pools of metabolites from the central carbon pathways, energy metabolism pathways, and the levels of twenty amino acids. When xylose instead of glucose was metabolized by MA-R4, glycolytic metabolites including 3- phosphoglycerate, 2- phosphoglycerate, phosphoenolpyruvate, and pyruvate were dramatically reduced, while conversely, most pentose phosphate pathway metabolites such as sedoheptulose 7- phosphate and ribulose 5-phosphate were greatly increased. These results suggest that the low metabolic activity of glycolysis and the pool of pentose phosphate pathway intermediates are potential limiting factors in xylose utilization. It was further demonstrated that during xylose fermentation, about half of the twenty amino acids declined, and the adenylate/guanylate energy charge was impacted due to markedly decreased adenosine triphosphate/adenosine monophosphate and guanosine triphosphate/guanosine monophosphate ratios, implying that the fermentation of xylose leads to an inefficient metabolic state where the biosynthetic capabilities and energy balance are severely impaired. In addition, fermentation with xylose alone drastically increased the level of citrate in the tricarboxylic acid cycle and increased the aromatic amino acids tryptophan and tyrosine, strongly supporting the view that carbon starvation was induced. Interestingly, fermentation with xylose alone also increased the synthesis of the polyamine spermidine and its precursor S-adenosylmethionine. Thus, differences in carbon substrates, including glucose and xylose in the fermentation medium, strongly influenced the dynamic metabolism of MA-R4

  13. ON THE VALIDITY OF PURCHASING POWER PARITY: EVIDENCEFROM ENERGY EXPORTING SUB-SAHARAN AFRICA COUNTRIES

    Directory of Open Access Journals (Sweden)

    Ntokozo Patrick Nzimande

    2015-01-01

    Full Text Available Substantial amount of studies have examined the validity of mean-reversion onthe real exchange rate. However very limited studies of this nature have beenconducted in Sub-Saharan Africa countries, particularly energy exportingcountries, hence this study endeavors to find evidence for or against the mean-reversion of the real exchange rate. There is, however inadequate data requiredfor the statistical significance for Sub-Saharan African currencies. Hence thisstudy uses a panel of 5 energy exporting countries, i.e. South Africa,Mozambique, Congo Republic, Nigeria and Angola, to examine the validity of thepurchasing power parity. Relying on the Im, Pesaran and Shin and the Fisher ADFproposed panel unit root tests the study fails to reject the null hypothesis of a unitroot when small sample size is employed however by extending sample size andemploying different price index, i.e. traded goods prices instead of GDP deflatorsthe study reject the null hypothesis of a unit root and hence concludes thepurchasing power parity holds in Sub-Saharan African energy exporting countriesconsidered in the study.

  14. Maternal melatonin programs the daily pattern of energy metabolism in adult offspring.

    Directory of Open Access Journals (Sweden)

    Danilo S Ferreira

    Full Text Available BACKGROUND: Shift work was recently described as a factor that increases the risk of Type 2 diabetes mellitus. In addition, rats born to mothers subjected to a phase shift throughout pregnancy are glucose intolerant. However, the mechanism by which a phase shift transmits metabolic information to the offspring has not been determined. Among several endocrine secretions, phase shifts in the light/dark cycle were described as altering the circadian profile of melatonin production by the pineal gland. The present study addresses the importance of maternal melatonin for the metabolic programming of the offspring. METHODOLOGY/PRINCIPAL FINDINGS: Female Wistar rats were submitted to SHAM surgery or pinealectomy (PINX. The PINX rats were divided into two groups and received either melatonin (PM or vehicle. The SHAM, the PINX vehicle and the PM females were housed with male Wistar rats. Rats were allowed to mate and after weaning, the male and female offspring were subjected to a glucose tolerance test (GTT, a pyruvate tolerance test (PTT and an insulin tolerance test (ITT. Pancreatic islets were isolated for insulin secretion, and insulin signaling was assessed in the liver and in the skeletal muscle by western blots. We found that male and female rats born to PINX mothers display glucose intolerance at the end of the light phase of the light/dark cycle, but not at the beginning. We further demonstrate that impaired glucose-stimulated insulin secretion and hepatic insulin resistance are mechanisms that may contribute to glucose intolerance in the offspring of PINX mothers. The metabolic programming described here occurs due to an absence of maternal melatonin because the offspring born to PINX mothers treated with melatonin were not glucose intolerant. CONCLUSIONS/SIGNIFICANCE: The present results support the novel concept that maternal melatonin is responsible for the programming of the daily pattern of energy metabolism in their offspring.

  15. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    Science.gov (United States)

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  16. Sneaker Male Squid Produce Long-lived Spermatozoa by Modulating Their Energy Metabolism.

    Science.gov (United States)

    Hirohashi, Noritaka; Tamura-Nakano, Miwa; Nakaya, Fumio; Iida, Tomohiro; Iwata, Yoko

    2016-09-09

    Spermatozoa released by males should remain viable until fertilization. Hence, sperm longevity is governed by intrinsic and environmental factors in accordance with the male mating strategy. However, whether intraspecific variation of insemination modes can impact sperm longevity remains to be elucidated. In the squid Heterololigo bleekeri, male dimorphism (consort and sneaker) is linked to two discontinuous insemination modes that differ in place and time. Notably, only sneaker male spermatozoa inseminated long before egg spawning can be stored in the seminal receptacle. We found that sneaker spermatozoa exhibited greater persistence in fertilization competence and flagellar motility than consort ones because of a larger amount of flagellar glycogen. Sneaker spermatozoa also showed higher capacities in glucose uptake and lactate efflux. Lactic acidosis was considered to stabilize CO2-triggered self-clustering of sneaker spermatozoa, thus establishing hypoxia-induced metabolic changes and sperm survival. These results, together with comparative omics analyses, suggest that postcopulatory reproductive contexts define sperm longevity by modulating the inherent energy levels and metabolic pathways. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. The cut-off values of dietary energy intake for determining metabolic syndrome in hemodialysis patients: A clinical cross-sectional study

    Science.gov (United States)

    Duong, Tuyen Van; Wong, Te-Chih; Chen, Hsi-Hsien; Chen, Tzen-Wen; Chen, Tso-Hsiao; Hsu, Yung-Ho; Peng, Sheng-Jeng; Kuo, Ko-Lin; Wang, Chi-Sin; Tseng, I-Hsin; Feng, Yi-Wei; Chang, Tai-Yue; Su, Chien-Tien

    2018-01-01

    Dietary energy intake strongly linked to dialysis outcomes. We aimed to explore the optimal cut-off point of energy intake (EI) for identification of metabolic syndrome (MetS) in hemodialysis patients. The cross-sectional data of 243 hemodialysis patients from multi-dialysis centers in Taiwan was used. The dietary intake was assessed by using the three-day dietary questionnaire, and a 24-hour dietary recall, clinical and biochemical data were also evaluated. The MetS was diagnosed by the Harmonized Metabolic Syndrome criteria. The receiver operating characteristic (ROC) curve was to depict the optimal cut-off value of EI for the diagnosis of MetS. The logistic regression was also used to explore the association between inadequate EI and MetS. The optimal cut-off points of EI for identifying the MetS were 26.7 kcal/kg/day for patients aged less than 60 years, or with non-diabetes, and 26.2 kcal/kg/day for patients aged 60 years and above, or with diabetes, respectively. The likelihood of the MetS increased with lower percentiles of energy intake in hemodialysis patients. In the multivariate analysis, the inadequate dietary energy intake strongly determined 3.24 folds of the MetS. The assessment of dietary EI can help healthcare providers detecting patients who are at risk of metabolic syndrome. PMID:29538427

  18. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles.

    Science.gov (United States)

    Zaya, Renee M; Amini, Zakariya; Whitaker, Ashley S; Ide, Charles F

    2011-08-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p=0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule, also

  19. Quantitative imaging of brain energy metabolisms and neuroenergetics using in vivo X-nuclear 2H, 17O and 31P MRS at ultra-high field.

    Science.gov (United States)

    Zhu, Xiao-Hong; Lu, Ming; Chen, Wei

    2018-07-01

    Brain energy metabolism relies predominantly on glucose and oxygen utilization to generate biochemical energy in the form of adenosine triphosphate (ATP). ATP is essential for maintaining basal electrophysiological activities in a resting brain and supporting evoked neuronal activity under an activated state. Studying complex neuroenergetic processes in the brain requires sophisticated neuroimaging techniques enabling noninvasive and quantitative assessment of cerebral energy metabolisms and quantification of metabolic rates. Recent state-of-the-art in vivo X-nuclear MRS techniques, including 2 H, 17 O and 31 P MRS have shown promise, especially at ultra-high fields, in the quest for understanding neuroenergetics and brain function using preclinical models and in human subjects under healthy and diseased conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Day–Night Changes of Energy-rich Compounds in Crassulacean Acid Metabolism (CAM) Species Utilizing Hexose and Starch

    Science.gov (United States)

    CHEN, LI-SONG; NOSE, AKIHIRO

    2004-01-01

    • Background and Aims Plants with crassulacean acid metabolism (CAM) can be divided into two groups according to the major carbohydrates used for malic acid synthesis, either polysaccharide (starch) or monosaccharide (hexose). This is related to the mechanism and affects energy metabolism in the two groups. In Kalanchoë pinnata and K. daigremontiana, which utilize starch, ATP-dependent phosphofructokinase (tonoplast inorganic pyrophosphatase) activity is greater than inorganic pyrophosphate-dependent phosphofructokinase (tonoplast adenosine triphosphatase) activity, but the reverse is the case in pineapple (Ananas comosus) utilizing hexose. To test the hypothesis that the energy metabolism of the two groups differs, day-night changes in the contents of ATP, ADP, AMP, inorganic phosphate (Pi), phosphoenolpyruvate (PEP) and inorganic pyrophosphate (PPi) in K. pinnata and K. daigremontiana leaves and in pineapple chlorenchyma were analysed. • Methods The contents of energy-rich compounds were measured spectrophotometrically in extracts of tissue sampled in the light and dark, using potted plants, kept for 15 d before the experiments in a growth chamber. • Key Results In the three species, ATP content and adenylate energy charge (AEC) increased in the dark and decreased in the light, in contrast to ADP and AMP. Changes in ATP and AEC were greater in Kalanchoë leaves than in pineapple chlorenchyma. PPi content in the three species increased in the dark, but on illumination it decreased rapidly and substantially, remaining little changed through the rest of the light period. Pi content of Kalanchoë leaves did not change between dark and light, whereas Pi in pineapple chlorenchyma increased in the dark and decreased in the light, and the changes were far greater than in Kalanchoë leaves. Light-dark changes in PEP content in the three species were similar. • Conclusions These results corroborate our hypothesis that day–night changes in the contents of energy

  1. SU-E-J-102: Separation of Metabolic Supply and Demand: From Power Grid Economics to Cancer Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, T; Xu, L; Gillies, R; Gatenby, R [Moffitt Cancer Center and Research Institute, Tampa, FL (United States)

    2014-06-01

    Purpose: To study a new model of glucose metabolism which is primarily governed by the timescale of the energetic demand and not by the oxygen level, and its implication on cancer metabolism (Warburg effect) Methods: 1) Metabolic profiling of membrane transporters activity in several cell lines, which represent the spectrum from normal breast epithelium to aggressive, metastatic cancer, using Seahorse XF reader.2) Spatial localization of oxidative and non-oxidative metabolic components using immunocytochemical imaging of the glycolytic ATP-producing enzyme, pyruvate kinase and mitochondria. 3) Finite element simulations of coupled partial differential equations using COMSOL and MATLAB. Results: Inhibition or activation of pumps on the cell membrane led to reduction or increase in aerobic glycolysis, respectively, while oxidative phosphorylation remained unchanged. These results were consistent with computational simulations of changes in short-timescale demand for energy by cell membrane processes. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. These predictions were confirmed experimentally. Conclusion: The results in this work support a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Similar to power grid economics, optimal metabolic control requires the two pathways, even in normoxic conditions, to match two different types of energy demands. Cells use aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism to meet short-timescale energy demands, mainly from membrane transport activities, even in the presence of oxygen. This model provides a mechanism for the origin of the Warburg effect in cancer cells. Here, the Warburg effect emerges during carcinogenesis is a physiological

  2. SU-E-J-102: Separation of Metabolic Supply and Demand: From Power Grid Economics to Cancer Metabolism

    International Nuclear Information System (INIS)

    Epstein, T; Xu, L; Gillies, R; Gatenby, R

    2014-01-01

    Purpose: To study a new model of glucose metabolism which is primarily governed by the timescale of the energetic demand and not by the oxygen level, and its implication on cancer metabolism (Warburg effect) Methods: 1) Metabolic profiling of membrane transporters activity in several cell lines, which represent the spectrum from normal breast epithelium to aggressive, metastatic cancer, using Seahorse XF reader.2) Spatial localization of oxidative and non-oxidative metabolic components using immunocytochemical imaging of the glycolytic ATP-producing enzyme, pyruvate kinase and mitochondria. 3) Finite element simulations of coupled partial differential equations using COMSOL and MATLAB. Results: Inhibition or activation of pumps on the cell membrane led to reduction or increase in aerobic glycolysis, respectively, while oxidative phosphorylation remained unchanged. These results were consistent with computational simulations of changes in short-timescale demand for energy by cell membrane processes. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. These predictions were confirmed experimentally. Conclusion: The results in this work support a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Similar to power grid economics, optimal metabolic control requires the two pathways, even in normoxic conditions, to match two different types of energy demands. Cells use aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism to meet short-timescale energy demands, mainly from membrane transport activities, even in the presence of oxygen. This model provides a mechanism for the origin of the Warburg effect in cancer cells. Here, the Warburg effect emerges during carcinogenesis is a physiological

  3. Seasonal variations in energy levels and metabolic processes of two dominant Acropora species ( A. spicifera and A. digitifera) at Ningaloo Reef

    Science.gov (United States)

    Hinrichs, S.; Patten, N. L.; Allcock, R. J. N.; Saunders, S. M.; Strickland, D.; Waite, A. M.

    2013-09-01

    Seasonal variations in coral health indices reflecting autotrophic activity (chlorophyll a and zooxanthellae density), metabolic rates (RNA/DNA ratio and protein) and energy storage (ratio of storage: structural lipids or lipid ratios) were examined for two dominant Acropora species [ Acropora digitifera ( AD) and Acropora spicifera ( AS)] at Ningaloo Reef (north-western Australia). Such detailed investigation of metabolic processes is important background, with regard to understanding the vulnerability of corals to environmental change. Health indices in AD and AS were measured before and after spawning in austral autumn and winter 2010, and austral summer 2011 at six stations. Health indices showed seasonal and species-specific differences but negligible spatial differences across a reef section. For AD, autotrophic indices were negatively correlated with lipid ratios and metabolic indices. Metabolic indices were significantly higher in AS than AD. No correlation was observed between RNA/DNA ratios and lipid ratios with any autotrophic indices for AS. Lipid ratios were stable throughout the year for AS while they changed significantly for AD. For both species, indices of metabolic activity were highest during autumn, while autotrophic indices were highest in winter and summer. Results suggest that the impact of the broadcast spawning event on coral health indices at Ningaloo Reef occurred only as a backdrop to massive seasonal changes in coral physiology. The La Niña summer pattern resulted in high autotrophic indices and low metabolic indices and energy stores. Our results imply different metabolic processes in A. digitifera and A. spicifera as well as a strong impact of extreme events on coral physiology.

  4. Energy metabolism and fasting in male and female insectivorous bats Molossus molossus (Chiroptera: Molossidae

    Directory of Open Access Journals (Sweden)

    MB. Freitas

    Full Text Available Metabolic adaptations induced by 24 and 48 hours of fasting were investigated in male and female insectivorous bats (Molossus molossus Pallas, 1766. For this purpose, plasma glucose, non esterified fatty acids (NEFA, glycogen, protein and lipids concentrations in liver and muscles were obtained. Data presented here demonstrate that fed bats showed plasma glucose levels similar to those reported for other mammal species. In response to fasting, glycemia was decreased only in 48 hours fasted females. Plasma NEFA levels were similar in both sexes, and did not exhibit any changes during fasting. Considering the data from energy reserve variations, fed females presented an increased content of liver glycogen as well as higher breast muscle protein and limbs lipids concentrations, compared to fed males. In response to fasting, liver and muscle glycogen levels remained unchanged. Considering protein and lipid reserves, only females showed decreased values following fasting, as seen in breast, limbs and carcass lipids and breast muscle protein reserves, but still fail to keep glucose homeostasis after 48 hours without food. Taken together, our data suggest that the energy metabolism of insectivorous bats may vary according to sexual differences, a pattern that might be associated to different reproduction investments and costs between genders.

  5. Energy metabolism during activity-promoting video games practice in subjects with spinal cord injury: evidences for health promotion.

    Science.gov (United States)

    Gaffurini, P; Bissolotti, L; Calza, S; Calabretto, C; Orizio, C; Gobbo, M

    2013-02-01

    Activity promoting video game (APVG) practice significantly affects energy metabolism through energy expenditure (EE) increase and has been recently included in strategies for health promotion. It is not known if the APVG practice provides similar outcomes in subjects with spinal cord injury (SCI). Aim of the study was to evaluate cardio-pulmonary and metabolic adaptations during APVG practice and to find whether EE increase above resting condition could suggest the inclusion of this exercise in a more general strategy for health promotion and body weight control in subjects with SCI. Repeated measures study. Rehabilitation Institute. Ten male subjects with SCI (lesion levels from C7 to L1) age 26 to 55 years. We recorded pulmonary ventilation (VE), oxygen consumption (VO2) for EE esteem and heart rate (HR) at rest and while playing virtual bowling, tennis and boxing games using a portable metabolimeter equipped with ECG electrodes. The standard metabolic equivalent of task (METs) was calculated offline. The metabolic and functional parameters were referred to the 10th minute of each activity. Metabolic and functional parameters increased significantly from rest to bowling, tennis and boxing. METs exceeded in average 3 during boxing. One hour of APVG can increase daily EE by about 6% (bowling), 10% (tennis) and 15% (boxing). These considerable results suggest that physical exertion during APVG practice in subjects with SCI could contribute to health promotion as well as caloric balance control, especially when boxing is considered. This can be safely achieved at home with regular activity. These findings substantiate the potential for novel exercise modalities to counteract deconditioning due to inactivity in subjects with SCI by promoting physical activity through implementation of APVG exercise programs.

  6. First validation of the new continuous energy version of the MORET5 Monte Carlo code

    International Nuclear Information System (INIS)

    Miss, Joachim; Bernard, Franck; Forestier, Benoit; Haeck, Wim; Richet, Yann; Jacquet, Olivier

    2008-01-01

    The 5.A.1 version is the next release of the MORET Monte Carlo code dedicated to criticality and reactor calculations. This new version combines all the capabilities that are already available in the multigroup version with many new and enhanced features. The main capabilities of the previous version are the powerful association of a deterministic and Monte Carlo approach (like for instance APOLLO-MORET), the modular geometry, five source sampling techniques and two simulation strategies. The major advance in MORET5 is the ability to perform calculations either a multigroup or a continuous energy simulation. Thanks to these new developments, we now have better control over the whole process of criticality calculations, from reading the basic nuclear data to the Monte Carlo simulation itself. Moreover, this new capability enables us to better validate the deterministic-Monte Carlo multigroup calculations by performing continuous energy calculations with the same code, using the same geometry and tracking algorithms. The aim of this paper is to describe the main options available in this new release, and to present the first results. Comparisons of the MORET5 continuous-energy results with experimental measurements and against another continuous-energy Monte Carlo code are provided in terms of validation and time performance. Finally, an analysis of the interest of using a unified energy grid for continuous energy Monte Carlo calculations is presented. (authors)

  7. Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts.

    Science.gov (United States)

    Sanders, J G; Beinart, R A; Stewart, F J; Delong, E F; Girguis, P R

    2013-08-01

    Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking physiological poise to environmental conditions, but recovering samples from the deep sea is challenging, as the long recovery times can change expression profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha, a genus of vent snail, in which specific host-symbiont combinations are predictably distributed across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key differences in energy and nitrogen metabolism relating to both environmental chemistry (that is, the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed). Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that different symbiont types may also have distinct life histories. These data further our understanding of these symbionts' metabolic capabilities and their expression in situ, and suggest an important role for symbionts in mediating their hosts' interaction with regional-scale differences in geochemistry.

  8. Role of Gts1p in regulation of energy-metabolism oscillation in continuous cultures of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Xu, Zhaojun; Tsurugi, Kunio

    2007-03-01

    Energy-metabolism oscillation (EMO) in an aerobic chemostat culture of yeast is basically regulated by a feedback loop of redox reactions in energy metabolism and modulated by metabolism of storage carbohydrates. In this study, we investigated the role of Gts1p in the stabilization of EMO, using the GTS1-deleted transformant gts1Delta. We found that fluctuations in the redox state of the NAD co-factor and levels of redox-regulated metabolites in glycolysis, especially of ethanol, are markedly reduced in amplitude during EMO of gts1Delta, while respiration indicated by the oxygen uptake rate (OUR) and energy charge is not so affected throughout EMO in gts1Delta. Further, the transitions of the levels of OUR, NAD(+) : NADH ratio and intracellular pH between the two phases were apparently retarded compared with those in the wild-type, suggesting attenuation of EMO in gts1Delta. Furthermore, the mRNA levels of genes encoding enzymes for the synthesis of trehalose and glycogen are fairly reduced in gts1Delta, consistent with the decreased synthesis of storage carbohydrates. In addition, the level of inorganic phosphate, which is required for the reduction of NAD(+) and mainly supplied from trehalose synthesis, was decreased in the early respiro-fermentative phase in gts1Delta. Thus, we suggested that the deletion of GTS1 as a transcriptional co-activator for these genes inhibited the metabolism of storage carbohydrates, which causes attenuation of the feedback loop of dehydrogenase reactions in glycolysis with the restricted fluctuation of ethanol as a main synchronizing agent for EMO in a cell population.

  9. Energy Expenditure Evaluation in Humans and Non-Human Primates by SenseWear Armband. Validation of Energy Expenditure Evaluation by SenseWear Armband by Direct Comparison with Indirect Calorimetry

    Science.gov (United States)

    Casiraghi, Francesca; Chavez, Alberto O.; Davalli, Alberto M.; Naegelin, Terry; Comuzzie, Anthony G.; Frost, Patricia; Musi, Nicolas; Folli, Franco

    2013-01-01

    Introduction The purpose of this study was to compare and validate the use of SenseWear Armband (SWA) placed on the arm (SWA ARM) and on the back (SWA BACK) in healthy humans during resting and a cycle-ergometer exercise and to evaluate the SWA to estimate Resting Energy Expenditure (REE) and Total Energy Expenditure (TEE) in healthy baboons. Methods We studied 26 (15F/11M) human subjects wearing SWA in two different anatomical sites (arm and back) during resting and a cycle-ergometer test and directly compared these results with indirect calorimetry evaluation (IC), performed at the same time. We then inserted the SWA in a metabolic jacket for baboons and evaluated the TEE and REE in free living condition for 6 days in 21 (8F/13M) non-human primates. Results In humans we found a good correlation between SWA place on the ARM and on the BACK with IC during the resting experiment (1.1±0.3 SWAs, 1±0.2 IC kcal/min) and a slight underestimation in the SWAs data compared with IC during the cycle-ergometer exercise (5±1.9 SWA ARM, 4.5±1.5 SWA BACK and 5.4±2.1 IC kcal/min). In the non-human primate (baboons) experiment SWA estimated a TEE of 0.54±0.009 kcal/min during free living and a REE of 0.82±0.06 kcal/min. Conclusion SWA, an extremely simple and inexpensive apparatus, provides quite accurate measurements of energy expenditure in humans and in baboons. Energy expenditure data obtained with SWA are highly correlated with the data obtained with “gold standard”, IC, in humans. PMID:24069218

  10. Holographic Dark Energy Interacting with Two Fluids and Validity of Generalized Second Law of Thermodynamics

    OpenAIRE

    Debnath, Ujjal

    2010-01-01

    We have considered a cosmological model of holographic dark energy interacting with dark matter and another unknown component of dark energy of the universe. We have assumed two interaction terms $Q$ and $Q'$ in order to include the scenario in which the mutual interaction between the two principal components (i.e., holographic dark energy and dark matter) of the universe leads to some loss in other forms of cosmic constituents. Our model is valid for any sign of $Q$ and $Q'$. If $Q

  11. Associations of iron metabolism genes with blood manganese levels: a population-based study with validation data from animal models

    Directory of Open Access Journals (Sweden)

    Claus Henn Birgit

    2011-11-01

    Full Text Available Abstract Background Given mounting evidence for adverse effects from excess manganese exposure, it is critical to understand host factors, such as genetics, that affect manganese metabolism. Methods Archived blood samples, collected from 332 Mexican women at delivery, were analyzed for manganese. We evaluated associations of manganese with functional variants in three candidate iron metabolism genes: HFE [hemochromatosis], TF [transferrin], and ALAD [δ-aminolevulinic acid dehydratase]. We used a knockout mouse model to parallel our significant results as a novel method of validating the observed associations between genotype and blood manganese in our epidemiologic data. Results Percentage of participants carrying at least one copy of HFE C282Y, HFE H63D, TF P570S, and ALAD K59N variant alleles was 2.4%, 17.7%, 20.1%, and 6.4%, respectively. Percentage carrying at least one copy of either C282Y or H63D allele in HFE gene was 19.6%. Geometric mean (geometric standard deviation manganese concentrations were 17.0 (1.5 μg/l. Women with any HFE variant allele had 12% lower blood manganese concentrations than women with no variant alleles (β = -0.12 [95% CI = -0.23 to -0.01]. TF and ALAD variants were not significant predictors of blood manganese. In animal models, Hfe-/- mice displayed a significant reduction in blood manganese compared with Hfe+/+ mice, replicating the altered manganese metabolism found in our human research. Conclusions Our study suggests that genetic variants in iron metabolism genes may contribute to variability in manganese exposure by affecting manganese absorption, distribution, or excretion. Genetic background may be critical to consider in studies that rely on environmental manganese measurements.

  12. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism.

    Science.gov (United States)

    Anandhan, Annadurai; Jacome, Maria S; Lei, Shulei; Hernandez-Franco, Pablo; Pappa, Aglaia; Panayiotidis, Mihalis I; Powers, Robert; Franco, Rodrigo

    2017-07-01

    The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Within-day energy deficiency and reproductive function in female endurance athletes.

    Science.gov (United States)

    Fahrenholtz, I L; Sjödin, A; Benardot, D; Tornberg, Å B; Skouby, S; Faber, J; Sundgot-Borgen, J K; Melin, A K

    2018-03-01

    We aimed to estimate and compare within-day energy balance (WDEB) in athletes with eumenorrhea and menstrual dysfunction (MD) with similar 24-hour energy availability/energy balance (EA/EB). Furthermore, to investigate whether within-day energy deficiency is associated with resting metabolic rate (RMR), body composition, S-cortisol, estradiol, T 3 , and fasting blood glucose. We reanalyzed 7-day dietary intake and energy expenditure data in 25 elite endurance athletes with eumenorrhea (n = 10) and MD (n = 15) from a group of 45 subjects where those with disordered eating behaviors (n = 11), MD not related to low EA (n = 5), and low dietary record validity (n = 4) had been excluded. Besides gynecological examination and disordered eating evaluation, the protocol included RMR measurement; assessment of body composition by dual-energy X-ray absorptiometry, blood plasma analysis, and calculation of WDEB in 1-hour intervals. Subjects with MD spent more hours in a catabolic state compared to eumenorrheic athletes; WDEB energy deficiency was associated with clinical markers of metabolic disturbances. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Evidence for increasing digestive and metabolic efficiency of energy utilization with age of dairy cattle as determined in two feeding regimes.

    Science.gov (United States)

    Grandl, F; Zeitz, J O; Clauss, M; Furger, M; Kreuzer, M; Schwarm, A

    2018-03-01

    The changes taking place with age in energy turnover of dairy cattle are largely unknown. It is unclear whether the efficiency of energy utilization in digestion (characterized by faecal and methane energy losses) and in metabolism (characterized by urine and heat energy losses) is altered with age. In the present study, energy balance data were obtained from 30 lactating Brown Swiss dairy cows aged between 2 and 10 years, and 12 heifers from 0.5 to 2 years of age. In order to evaluate a possible dependence of age effects on diet type, half of the cattle each originated from two herds kept at the same farm, which were fed either on a forage-only diet or on the same forage diet but complemented with 5 kg/day of concentrate since their first calving. During 2 days, the gaseous exchange of the animals was quantified in open-circuit respiration chambers, followed by an 8-day period of feed, faeces, urine and milk collection. Daily amounts and energy contents were used to calculate complete energy balances. Age and feeding regime effects were analysed by parametric regression analysis where BW, milk yield and hay proportion in forage as consumed were considered as covariates. Relative to intake of gross energy, the availability of metabolizable energy (ME) increased with age. This was not the result of an increasing energy digestibility, but of proportionately lower energy losses with methane (following a curvilinear relationship with the greatest losses in middle-aged cows) and urine (continuously declining). The efficiency of utilization of ME for milk production (k l) increased with age. Potential reasons include an increase in the propionate-to-acetate ratio in the rumen because of a shift away from fibre degradation and methane formation as well as lower urine energy losses. The greater k l allowed older cows to accrete more energy reserves in the body. As expected, offering concentrate enhanced digestibility, metabolizability and metabolic utilization of energy

  15. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    International Nuclear Information System (INIS)

    Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; Kojori, Eshan Shokri; Benveniste, Helene; Tomasi, Dardo

    2015-01-01

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET- 18 FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared to placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal

  16. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases.

    Science.gov (United States)

    Volkow, Nora D; Wang, Gene-Jack; Shokri Kojori, Ehsan; Fowler, Joanna S; Benveniste, Helene; Tomasi, Dardo

    2015-02-18

    During alcohol intoxication, the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis, we compared the effects of alcohol intoxication (0.75 g/kg alcohol vs placebo) on brain glucose metabolism during video stimulation (VS) versus when given with no stimulation (NS), in 25 heavy drinkers (HDs) and 23 healthy controls, each of whom underwent four PET-(18)FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p = 0.04); that alcohol (compared with placebo) decreased metabolism more in HD (20 ± 13%) than controls (9 ± 11%, p = 0.005) and in proportion to daily alcohol consumption (r = 0.36, p = 0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10 ± 12%) compared with NS in both groups (15 ± 13%, p = 0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e., acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in HDs, which might make them vulnerable to energy deficits during withdrawal. Copyright © 2015 the authors 0270-6474/15/353248-08$15.00/0.

  17. Glutamatergic and GABAergic neurotransmitter cycling and energy metabolism in rat cerebral cortex during postnatal development.

    Science.gov (United States)

    Chowdhury, Golam M I; Patel, Anant B; Mason, Graeme F; Rothman, Douglas L; Behar, Kevin L

    2007-12-01

    The contribution of glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons to oxidative energy metabolism and neurotransmission in the developing brain is not known. Glutamatergic and GABAergic fluxes were assessed in neocortex of postnatal day 10 (P10) and 30 (P30) urethane-anesthetized rats infused intravenously with [1,6-(13)C(2)]glucose for different time intervals (time course) or with [2-(13)C]acetate for 2 to 3 h (steady state). Amino acid levels and (13)C enrichments were determined in tissue extracts ex vivo using (1)H-[(13)C]-NMR spectroscopy. Metabolic fluxes were estimated from the best fits of a three-compartment metabolic model (glutamatergic neurons, GABAergic neurons, and astroglia) to the (13)C-enrichment time courses of amino acids from [1,6-(13)C(2)]glucose, constrained by the ratios of neurotransmitter cycling (V(cyc))-to-tricarboxylic acid (TCA) cycle flux (V(TCAn)) calculated from the steady-state [2-(13)C]acetate enrichment data. From P10 to P30 increases in total neuronal (glutamate plus GABA) TCA cycle flux (3 x ; 0.24+/-0.05 versus 0.71+/-0.07 micromol per g per min, Pcycling flux (3.1 to 5 x ; 0.07 to 0.11 (+/-0.03) versus 0.34+/-0.03 micromol per g per min, Pcycling (DeltaV(cyc(tot))) and neuronal TCA cycle flux (DeltaV(TCAn(tot))) between P10 and P30 were 0.23 to 0.27 and 0.47 micromol per g per min, respectively, similar to the approximately 1:2 relationship previously reported for adult cortex. For the individual neurons, increases in V(TCAn) and V(cyc) were similar in magnitude (glutamatergic neurons, 2.7 x versus 2.8 to 4.6 x ; GABAergic neurons, approximately 5 x versus approximately 7 x), although GABAergic flux changes were larger. The findings show that glutamate and GABA neurons undergo large and approximately proportional increases in neurotransmitter cycling and oxidative energy metabolism during this major postnatal growth spurt.

  18. Energy metabolism in young mink kits (Neovison vison) affected by protein and carbohydrate level in the diet

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Hansen, Niels Enggaard; Tauson, Anne-Helene

    2010-01-01

    The mink is a strict carnivore and mink diets usually have a high content of protein. The energy metabolism in young minks in the transition period from milk to solid food is not investigated in detail, and the protein requirement is poorly defined. The substrate oxidation can give useful...

  19. Energy metabolism disorders in rare and common diseases. Toward bioenergetic modulation therapy and the training of a new generation of European scientists.

    Science.gov (United States)

    Rossignol, Rodrigue

    2015-06-01

    Energy metabolism alterations are found in a large number of rare and common diseases of genetic or environmental origin. The number of patients that could benefit from bioenergetic modulation therapy (BIOMET) is therefore very important and includes individuals with pathologies as diverse as mitochondrial diseases, acute coronary syndrome, chronic kidney disease, asthma or even cancer. Although, the alteration of energy metabolism is disease specific and sometimes patient specific, the strategies for BIOMET could be common and target a series of bioenergetic regulatory mechanisms discussed in this article. An excellent training of scientists in the field of energy metabolism, related human diseases and drug discovery is also crucial to form a young generation of MDs, PHDs and Pharma or CRO-group leaders who will discover novel personalized bioenergetic medicines, through pharmacology, genetics, nutrition or adapted exercise training. The Mitochondrial European Educational Training (MEET) consortium was created to pursue this goal, and we dedicated here a special issue of Organelle in Focus (OiF) to highlight their objectives. A total of 10 OiFs articles constitute this Directed Issue on Mitochondrial Medicine. As part of this editorial article, we asked timely questions to the PR. Jan W. Smeitink, professor of Mitochondrial Medicine and CEO of Khondrion, a mitochondrial medicine company. He shared with us his objectives and strategies for the study of mitochondrial diseases and the identification of future treatments. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Monitoring metabolic health of dairy cattle in the transition period.

    Science.gov (United States)

    LeBlanc, Stephen

    2010-01-01

    This paper reviews the importance of energy metabolism in transition dairy cows, its associations with disease and reproduction, and strategies for monitoring cows under field conditions during this critical time. Essentially all dairy cattle experience a period of insulin resistance, reduced feed intake, negative energy balance, hypocalcemia, reduced immune function, and bacterial contamination of the uterus soon before, or in the weeks after calving. One-third of dairy cows may be affected by some form of metabolic or infectious disease in early lactation. Routine, proactive actions, observations, or analysis are intended to accurately and efficiently provide early detection of problems, to provide an opportunity for investigation and intervention in order to limit the consequences and costs of health problems and reduced animal performance or welfare. Methods of early detection include monitoring of disease and culling records, feed intake, milk production, body condition, and simple metabolic tests. Methods, strategies, and interpretation of measurement of peripartum concentrations of non-esterified fatty acids (NEFA) and beta-hydroxybutyrate (BHB) as indicators of aspects of energy status and disease risk are reviewed. High NEFA (> 0.4 mmol/l) in the last 7 to 10 days before expected calving is associated with increased risk of displaced abomasum (DA), retained placenta, culling before 60 days in milk, and less milk production in the first 4 months of lactation. Subclinical ketosis (serum BHB >1200 to 1400 micromol/l) in the first or second week after calving is associated with increased risk of DA, metritis, clinical ketosis, endometritis, prolonged postpartum anovulation, increased severity of mastitis, and lower milk production in early lactation. There are several validated and practical tools for cow-side measurement of ketosis.

  1. [Aging and metabolism: changes and regulation].

    Science.gov (United States)

    Ortiz, Genaro Gabriel; Arias-Merino, Elva D; Velázquez-Brizuela, Irma E; Pacheco-Moisés, Fermín P; Flores-Alvarado, Luis J; Torres-Sánchez, Erandis D; Cortés-Enríquez, Fernando; González-Renovato, Erika D; Ortiz-Velázquez, Irma G

    2012-09-01

    Studies about the effects of aging in the physiology and metabolism are increasingly, one of its objectives is to help implement programs to improve the quality of life and prevent disability in elderly. It is relevant to mention that, during aging, there is a natural metabolic deceleration, a series of changes in the regulation of energy are produced, which contributes to loss of weight and fat; the changes in the regulation of caloric intake contribute to increase the susceptibility to energy imbalance both positive and negative, which is associated with a deterioration in health. However, to grow old, is not a death sentence for metabolism, on the other hand, it can be controlled by maintaining an active lifestyle, coupled with this, research has shown that the metabolism'can be regulated by a synchronized clock (circadian rhythms), which is mediated by regulatory proteins, this relationship ensures the proper functioning of the cells and therefore good health. The aim of this review is to provide updated information on the energy- metabolism-regulation and its relationship with the great variety of components involved in energy expenditure that accompany aging, to analyze the regulation of this system to improve the quality of life and maintenance of health in old age.

  2. Role of free fatty acid receptors in the regulation of energy metabolism.

    Science.gov (United States)

    Hara, Takafumi; Kashihara, Daiji; Ichimura, Atsuhiko; Kimura, Ikuo; Tsujimoto, Gozoh; Hirasawa, Akira

    2014-09-01

    Free fatty acids (FFAs) are energy-generating nutrients that act as signaling molecules in various cellular processes. Several orphan G protein-coupled receptors (GPCRs) that act as FFA receptors (FFARs) have been identified and play important physiological roles in various diseases. FFA ligands are obtained from food sources and metabolites produced during digestion and lipase degradation of triglyceride stores. FFARs can be grouped according to ligand profiles, depending on the length of carbon chains of the FFAs. Medium- and long-chain FFAs activate FFA1/GPR40 and FFA4/GPR120. Short-chain FFAs activate FFA2/GPR43 and FFA3/GPR41. However, only medium-chain FFAs, and not long-chain FFAs, activate GPR84 receptor. A number of pharmacological and physiological studies have shown that these receptors are expressed in various tissues and are primarily involved in energy metabolism. Because an impairment of these processes is a part of the pathology of obesity and type 2 diabetes, FFARs are considered as key therapeutic targets. Here, we reviewed recently published studies on the physiological functions of these receptors, primarily focusing on energy homeostasis. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Irregular meal pattern-effects on energy expenditure, metabolism and appetite regulation: a randomized controlled trial in healthy normal-weight women

    OpenAIRE

    Alhussain, Maha H; Macdonald, Ian A.; Taylor, Moira A.

    2016-01-01

    Background: Obesity is increasing in parallel with greater all-day food availability. The latter may promote meal irregularity, dysregulation of the energy balance, and poor metabolic health.\\ud Objective: We investigated the effect of meal irregularity on the thermic effect of food (TEF), lipid concentrations, carbohydrate metabolism, subjective appetite, and gut hormones in healthy women.\\ud Design: Eleven normal-weight women (18–40 y of age) were recruited in a randomized crossover trial w...

  4. Organic sulfur metabolisms in hydrothermal environments.

    Science.gov (United States)

    Rogers, Karyn L; Schulte, Mitchell D

    2012-07-01

    Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. While biotic and abiotic cycling of organic sulfur compounds has been well documented in low-temperature anaerobic environments, cycling of organic sulfur in hydrothermal environments has received less attention. Recently published thermodynamic data have been used to estimate aqueous alkyl thiol and sulfide activities in deep-sea hydrothermal systems. Here we use geochemical mixing models to predict fluid compositions that result from mixing end-member hydrothermal fluid from the East Pacific Rise with bottom seawater. These fluid compositions are combined with estimates of methanethiol and dimethylsulfide activities to evaluate energy yields for potential organic sulfur-based metabolisms under hydrothermal conditions. Aerobic respiration has the highest energy yields (over -240 kJ/mol e⁻) at lower temperature; however, oxygen is unlikely to persist at high temperatures, restricting aerobic respiration to mesophilic communities. Nitrite reduction to N₂ has the highest energy yields at higher temperatures (greater than ∼40 °C). Nitrate and nitrite reduction to ammonium also yield significant energy (up to -70 kJ/mol e⁻). Much lower, but still feasible energy yields are calculated for sulfate reduction, disproportionation, and reduction with H₂. Organic compound family and the activity of methanethiol and dimethylsulfide were less important than metabolic strategy in determining overall energy yields. All metabolic strategies considered were exergonic within some portion of the mixing regime suggesting that organic sulfur-based metabolisms may be prevalent within deep-sea hydrothermal vent microbial communities. © 2012 Blackwell Publishing Ltd.

  5. Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones.

    Science.gov (United States)

    Koehler, Karsten; Hoerner, Neele R; Gibbs, Jenna C; Zinner, Christoph; Braun, Hans; De Souza, Mary Jane; Schaenzer, Wilhelm

    2016-10-01

    Low energy availability, defined as low caloric intake relative to exercise energy expenditure, has been linked to endocrine alterations frequently observed in chronically energy-deficient exercising women. Our goal was to determine the endocrine effects of low energy availability in exercising men. Six exercising men (VO2peak: 49.3 ± 2.4 ml · kg(-1) · min(-1)) underwent two conditions of low energy availability (15 kcal · kg(-1) fat-free mass [FFM] · day(-1)) and two energy-balanced conditions (40 kcal · kg(-1) FFM · day(-1)) in randomised order. During one low energy availability and one balanced condition, participants exercised to expend 15 kcal · kg(-1) FFM · day(-1); no exercise was conducted during the other two conditions. Metabolic hormones were assessed before and after each 4-day period. Following both low energy availability conditions, leptin (-53% to -56%) and insulin (-34% to -38%) were reduced (P exercise (P > 0.80). Low energy availability did not significantly impact ghrelin, triiodothyronine, testosterone and IGF-1 (all P > 0.05). The observed reductions in leptin and insulin were in the same magnitude as changes previously reported in sedentary women. Further research is needed to understand why other metabolic hormones are more robust against low energy availability in exercising men than those in sedentary and exercising women.

  6. Two-Scale 13C Metabolic Flux Analysis for Metabolic Engineering.

    Science.gov (United States)

    Ando, David; Garcia Martin, Hector

    2018-01-01

    Accelerating the Design-Build-Test-Learn (DBTL) cycle in synthetic biology is critical to achieving rapid and facile bioengineering of organisms for the production of, e.g., biofuels and other chemicals. The Learn phase involves using data obtained from the Test phase to inform the next Design phase. As part of the Learn phase, mathematical models of metabolic fluxes give a mechanistic level of comprehension to cellular metabolism, isolating the principle drivers of metabolic behavior from the peripheral ones, and directing future experimental designs and engineering methodologies. Furthermore, the measurement of intracellular metabolic fluxes is specifically noteworthy as providing a rapid and easy-to-understand picture of how carbon and energy flow throughout the cell. Here, we present a detailed guide to performing metabolic flux analysis in the Learn phase of the DBTL cycle, where we show how one can take the isotope labeling data from a 13 C labeling experiment and immediately turn it into a determination of cellular fluxes that points in the direction of genetic engineering strategies that will advance the metabolic engineering process.For our modeling purposes we use the Joint BioEnergy Institute (JBEI) Quantitative Metabolic Modeling (jQMM) library, which provides an open-source, python-based framework for modeling internal metabolic fluxes and making actionable predictions on how to modify cellular metabolism for specific bioengineering goals. It presents a complete toolbox for performing different types of flux analysis such as Flux Balance Analysis, 13 C Metabolic Flux Analysis, and it introduces the capability to use 13 C labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale 13 C Metabolic Flux Analysis (2S- 13 C MFA) [1]. In addition to several other capabilities, the jQMM is also able to predict the effects of knockouts using the MoMA and ROOM methodologies. The use of the jQMM library is

  7. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring.

    Directory of Open Access Journals (Sweden)

    Michele La Merrill

    Full Text Available Dichlorodiphenyltrichloroethane (DDT has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring.

  8. Perinatal Exposure of Mice to the Pesticide DDT Impairs Energy Expenditure and Metabolism in Adult Female Offspring

    Science.gov (United States)

    La Merrill, Michele; Karey, Emma; Moshier, Erin; Lindtner, Claudia; La Frano, Michael R.; Newman, John W.; Buettner, Christoph

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring. PMID:25076055

  9. Regulation of Mitochondrial Function and Cellular Energy Metabolism by Protein Kinase C-λ/ι: A Novel Mode of Balancing Pluripotency

    Science.gov (United States)

    Mahato, Biraj; Home, Pratik; Rajendran, Ganeshkumar; Paul, Arindam; Saha, Biswarup; Ganguly, Avishek; Ray, Soma; Roy, Nairita; Swerdlow, Russell H.; Paul, Soumen

    2014-01-01

    Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis is key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic preferences in self-renewing vs. differentiated PSC populations are poorly understood. Here, using murine embryonic stem cells (ESCs) as a model system, we demonstrate that atypical protein kinase C isoform, PKC lambda/iota (PKCλ/ι), is a key regulator of mitochondrial function in ESCs. Depletion of PKCλ/ι in ESCs maintains their pluripotent state as evident from germline offsprings. Interestingly, loss of PKCλ/ι in ESCs leads to impairment in mitochondrial maturation, organization and a metabolic shift toward glycolysis under differentiating condition. Our mechanistic analyses indicate that a PKCλ/ι-HIF1α-PGC1α axis regulates mitochondrial respiration and balances pluripotency in ESCs. We propose that PKCλ/ι could be a crucial regulator of mitochondrial function and energy metabolism in stem cells and other cellular contexts. PMID:25142417

  10. Energy metabolism of thoracic surgical patients in the early postoperative period. Effect of posture.

    Science.gov (United States)

    Brandi, L S; Bertolini, R; Janni, A; Gioia, A; Angeletti, C A

    1996-03-01

    To determine the effect of elective thoracic surgery on energy metabolism and gas exchange and to evaluate whether the 30-degree sitting position would affect these variables. Prospective, unblinded, controlled study. Surgical ICU in a university hospital. Twenty-two adult patients undergoing elective pulmonary resection. Posture change from supine to 30-degree sitting position. Oxygen consumption (VO2), carbon dioxide production (VCO2), respiratory quotient (RQ), and energy expenditure (EE) were measured by means of computerized indirect calorimetry before and after surgery. Heart rate and respiratory frequency were measured continuously during gas exchange measurement. Blood gases were analyzed with an automated blood gas analyzer. Preoperatively, altering position did not affect energy metabolism, gas exchange, and cardiopulmonary variables. Postoperatively, the measured EE was 116% of the expected value. Mean EE and VO2 values for each position were higher than the preoperative values for the corresponding postures (pMean percent increases in EE, VO2, and VCO2 were significantly lower in the 30-degree sitting position than in the supine position (EE: 7.9+/-2.7% vs 14.4+/-2.3%; pexchange for each position were worse than the preoperative values for the corresponding postures (pMean arterial pressure, heart rate, and respiratory frequency for each position were higher than the preoperative values for the corresponding postures (pmean values of these variables occurred between the two positions postoperatively. The early postoperative period of patients undergoing elective thoracic surgery is characterized by a condition of impaired gas exchange and by a hypermetabolic state. Hypermetabolism can be partly mitigated by assuming the 30-degree sitting position.

  11. Chronic fluoxetine treatment directs energy metabolism towards the citric acid cycle and oxidative phosphorylation in rat hippocampal nonsynaptic mitochondria.

    Science.gov (United States)

    Filipović, Dragana; Costina, Victor; Perić, Ivana; Stanisavljević, Andrijana; Findeisen, Peter

    2017-03-15

    Fluoxetine (Flx) is the principal treatment for depression; however, the precise mechanisms of its actions remain elusive. Our aim was to identify protein expression changes within rat hippocampus regulated by chronic Flx treatment versus vehicle-controls using proteomics. Fluoxetine-hydrohloride (15mg/kg) was administered daily to adult male Wistar rats for 3weeks, and cytosolic and nonsynaptic mitochondrial hippocampal proteomes were analyzed. All differentially expressed proteins were functionally annotated according to biological process and molecular function using Uniprot and Blast2GO. Our comparative study revealed that in cytosolic and nonsynaptic mitochondrial fractions, 60 and 3 proteins respectively, were down-regulated, and 23 and 60 proteins, respectively, were up-regulated. Proteins differentially regulated in cytosolic and nonsynaptic mitochondrial fractions were primarily related to cellular and metabolic processes. Of the identified proteins, the expressions of calretinin and parvalbumine were confirmed. The predominant molecular functions of differentially expressed proteins in both cell hippocampal fractions were binding and catalytic activity. Most differentially expressed proteins in nonsynaptic mitochondria were catalytic enzymes involved in the pyruvate metabolism, citric acid cycle, oxidative phosphorylation, ATP synthesis, ATP transduction and glutamate metabolism. Results indicate that chronic Flx treatment may influence proteins involved in calcium signaling, cytoskeletal structure, chaperone system and stimulates energy metabolism via the upregulation of GAPDH expression in cytoplasm, as well as directing energy metabolism toward the citric acid cycle and oxidative phosphorylation in nonsynaptic mitochondria. This approach provides new insight into the chronic effects of Flx treatment on protein expression in a key brain region associated with stress response and memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Alterations of energy metabolism and glutathione levels of HL-60 cells induced by methacrylates present in composite resins.

    Science.gov (United States)

    Nocca, G; De Palma, F; Minucci, A; De Sole, P; Martorana, G E; Callà, C; Morlacchi, C; Gozzo, M L; Gambarini, G; Chimenti, C; Giardina, B; Lupi, A

    2007-03-01

    Methacrylic compounds such as 2-hydroxyethyl methacrylate (HEMA), triethylene glycol dimethacrylate (TEGDMA) and bisphenol A glycerolate (1 glycerol/phenol) dimethacrylate (Bis-GMA) are largely present in auto- or photopolymerizable composite resins. Since the polymerization reaction is never complete, these molecules are released into the oral cavity tissues and biological fluids where they could cause local adverse effects. The aim of this work was to verify the hypothesis that the biological effects of HEMA, TEGDMA and Bis-GMA - at a non-cytotoxic concentration - depend on the interaction with mitochondria and exert consequent alterations of energy metabolism, GSH levels and the related pathways in human promyelocytic cell line (HL-60). The biological effects of methacrylic monomers were determined by analyzing the following parameters: GSH concentration, glucose-6-phosphate dehydrogenase (G6PDH) and glutathione reductase (GR) activity, oxygen and glucose consumption and lactate production along with cell differentiation and proliferation. All monomers induced both cellular differentiation and decrease in oxygen consumption. Cells treated with TEGDMA and Bis-GMA showed a significant enhancement of glucose consumption and lactate production. TEGDMA and HEMA induced GSH depletion stimulating G6PDH and GR activity. All the monomers under study affect the metabolism of HL-60 cells and show differentiating activity. Since alterations in cellular metabolism occurred at compound concentrations well below cytotoxic levels, the changes in energy metabolism and glutathione redox balance could be considered as potential mechanisms for inducing clinical and sub-clinical adverse effects and thus providing useful parameters when testing biocompatibility of dental materials.

  13. Estimating energy expenditure from heart rate in older adults: a case for calibration.

    Science.gov (United States)

    Schrack, Jennifer A; Zipunnikov, Vadim; Goldsmith, Jeff; Bandeen-Roche, Karen; Crainiceanu, Ciprian M; Ferrucci, Luigi

    2014-01-01

    Accurate measurement of free-living energy expenditure is vital to understanding changes in energy metabolism with aging. The efficacy of heart rate as a surrogate for energy expenditure is rooted in the assumption of a linear function between heart rate and energy expenditure, but its validity and reliability in older adults remains unclear. To assess the validity and reliability of the linear function between heart rate and energy expenditure in older adults using different levels of calibration. Heart rate and energy expenditure were assessed across five levels of exertion in 290 adults participating in the Baltimore Longitudinal Study of Aging. Correlation and random effects regression analyses assessed the linearity of the relationship between heart rate and energy expenditure and cross-validation models assessed predictive performance. Heart rate and energy expenditure were highly correlated (r=0.98) and linear regardless of age or sex. Intra-person variability was low but inter-person variability was high, with substantial heterogeneity of the random intercept (s.d. =0.372) despite similar slopes. Cross-validation models indicated individual calibration data substantially improves accuracy predictions of energy expenditure from heart rate, reducing the potential for considerable measurement bias. Although using five calibration measures provided the greatest reduction in the standard deviation of prediction errors (1.08 kcals/min), substantial improvement was also noted with two (0.75 kcals/min). These findings indicate standard regression equations may be used to make population-level inferences when estimating energy expenditure from heart rate in older adults but caution should be exercised when making inferences at the individual level without proper calibration.

  14. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    Science.gov (United States)

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.

  15. Validity of Multisensor Array for Measuring Energy Expenditure of an Activity Bout in Early Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Sharon Flora Kramer

    2018-01-01

    Full Text Available Introduction. Stroke survivors use more energy than healthy people during activities such as walking, which has consequences for the way exercise is prescribed for stroke survivors. There is a need for wearable device that can validly measure energy expenditure (EE of activity to inform exercise prescription early after stroke. We aimed to determine the validity and reliability of the SenseWear-Armband (SWA to measure EE and step-counts during activity 0.75 for walking and sit-to-stand, respectively. However, agreement levels changed with increasing EE levels (i.e., proportional bias. The SWA did not accurately measure step-counts. Conclusion. The SWA should be used with caution to measure EE of activity of mild to moderate stroke survivors <1 month after stroke.

  16. Metabolic drift in the aging brain.

    Science.gov (United States)

    Ivanisevic, Julijana; Stauch, Kelly L; Petrascheck, Michael; Benton, H Paul; Epstein, Adrian A; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E; Boska, Michael D; Gendelman, Howard E; Fox, Howard S; Siuzdak, Gary

    2016-05-01

    Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energymetabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication.

  17. RAS signalling in energy metabolism and rare human diseases.

    Science.gov (United States)

    Dard, L; Bellance, N; Lacombe, D; Rossignol, R

    2018-05-08

    The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Neuron-glia metabolic coupling and plasticity.

    Science.gov (United States)

    Magistretti, Pierre J

    2011-04-01

    The focus of the current research projects in my laboratory revolves around the question of metabolic plasticity of neuron-glia coupling. Our hypothesis is that behavioural conditions, such as for example learning or the sleep-wake cycle, in which synaptic plasticity is well documented, or during specific pathological conditions, are accompanied by changes in the regulation of energy metabolism of astrocytes. We have indeed observed that the 'metabolic profile' of astrocytes is modified during the sleep-wake cycle and during conditions mimicking neuroinflammation in the presence or absence of amyloid-β. The effect of amyloid-β on energy metabolism is dependent on its state of aggregation and on internalization of the peptide by astrocytes. Distinct patterns of metabolic activity could be observed during the learning and recall phases in a spatial learning task. Gene expression analysis in activated areas, notably hippocampous and retrosplenial cortex, demonstrated that the expression levels of several genes implicated in astrocyte-neuron metabolic coupling are enhanced by learning. Regarding metabolic plasticity during the sleep-wake cycle, we have observed that the level of expression of a panel of selected genes, which we know are key for neuron-glia metabolic coupling, is modulated by sleep deprivation.

  19. Impact of metabolic syndrome on resting energy expenditure in patients with chronic kidney disease.

    Science.gov (United States)

    Rodrigues, Carolina Q D; Santos, Jacqueline A P; Quinto, Beata M R; Marrocos, Mauro S M; Teixeira, Andrei A; Rodrigues, Cássio J O; Batista, Marcelo C

    2016-10-01

    Resting energy expenditure (REE) changes in patients with chronic kidney disease (CKD) may contribute to mortality increase. The obesity and inflammation is associated with high REE and when not compensated by adequate intake, may determine an unfavorable clinical outcome in this population. We aimed to evaluate the influence of metabolic syndrome (MetS) on REE in CKD patients. One hundred eighty-three patients were stratified according to glomerular filtration rate (GFR) and divided in groups: without CKD (GFR > 60 ml/min/1.73 m 2 ) and CKD (GFR Patients without MetS, REE correlated with estimated GFR and the protein equivalent (r = 0.33, P patients, these correlations were not observed. The presence of CKD is independently associated with reduced REE. The observed decrease in REE is reversed in patients with MetS independent of renal function. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  20. On the use of prior information in modelling metabolic utilization of energy in growing pigs

    DEFF Research Database (Denmark)

    Strathe, Anders Bjerring; Jørgensen, Henry; Fernández, José Adalberto

    2011-01-01

    Construction of models that provide a realistic representation of metabolic utilization of energy in growing animals tend to be over-parameterized because data generated from individual metabolic studies are often sparse. In the Bayesian framework prior information can enter the data analysis......, PD and LD) made on a given pig at a given time followed a multivariate normal distribution. Two different equation systems were adopted from Strathe et al. (2010), generating the expected values in the multivariate normal distribution. Non-informative prior distributions were assigned for all model......, kp and kf, respectively. Utilizing both sets of priors showed that the maintenance component was sensitive to the statement of prior belief and, hence, that the estimate of 0.91 MJkg0.60d1 (95% CI: 0.78; 1.09) should be interpreted with caution. It was shown that boars were superior in depositing...

  1. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    International Nuclear Information System (INIS)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  2. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    Energy Technology Data Exchange (ETDEWEB)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R. [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates); Jijakli, Kenan [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates); Engineering Division, Biofinery, Manhattan, KS (United States); Salehi-Ashtiani, Kourosh, E-mail: ksa3@nyu.edu [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates)

    2014-12-10

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  3. Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK.

    Science.gov (United States)

    Murase, Takatoshi; Misawa, Koichi; Haramizu, Satoshi; Minegishi, Yoshihiko; Hase, Tadashi

    2010-08-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that is implicated in the control of energy metabolism and is considered to be a molecular target for the suppression of obesity and the treatment of metabolic syndrome. Here, we identified and characterized nootkatone, a constituent of grapefruit, as a naturally occurring AMPK activator. Nootkatone induced an increase in AMPKalpha1 and -alpha2 activity along with an increase in the AMP/ATP ratio and an increase the phosphorylation of AMPKalpha and the downstream target acetyl-CoA carboxylase (ACC), in C(2)C(12) cells. Nootkatone-induced activation of AMPK was possibly mediated both by LKB1 and Ca(2+)/calmodulin-dependent protein kinase kinase. Nootkatone also upregulated PPARgamma coactivator-1alpha in C(2)C(12) cells and C57BL/6J mouse muscle. In addition, administration of nootkatone (200 mg/kg body wt) significantly enhanced AMPK activity, accompanied by LKB1, AMPK, and ACC phosphorylation in the liver and muscle of mice. Whole body energy expenditure evaluated by indirect calorimetry was also increased by nootkatone administration. Long-term intake of diets containing 0.1% to 0.3% (wt/wt) nootkatone significantly reduced high-fat and high-sucrose diet-induced body weight gain, abdominal fat accumulation, and the development of hyperglycemia, hyperinsulinemia, and hyperleptinemia in C57BL/6J mice. Furthermore, endurance capacity, evaluated as swimming time to exhaustion in BALB/c mice, was 21% longer in mice fed 0.2% nootkatone than in control mice. These findings indicate that long-term intake of nootkatone is beneficial toward preventing obesity and improving physical performance and that these effects are due, at least in part, to enhanced energy metabolism through AMPK activation in skeletal muscle and liver.

  4. [Effect of Low-Intensity 900 MHz Frequency Electromagnetic Radiation on Rat Brain Enzyme Activities Linked to Energy Metabolism].

    Science.gov (United States)

    Petrosyan, M S; Nersesova, L S; Gazaryants, M G; Meliksetyan, G O; Malakyan, M G; Bajinyan, S A; Akopian, J I

    2015-01-01

    The research deals with the effect of low-intensity 900 MHz frequency electromagnetic radiation (EMR), power density 25 μW/cm2, on the following rat brain and blood serum enzyme activities: creatine kinase (CK), playing a central role in the process of storing and distributing the cell energy, as well as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) that play a key role in providing the conjunction of carbohydrate and amino acid metabolism. The comparative analysis of the changes in the enzyme activity studied at different times following the two-hour single, as well as fractional, radiation equivalent of the total time showed that the most radiosensitive enzyme is the brain creatine kinase, which may then be recommended as a marker of the radio frequency radiation impact. According to the analysis of the changing dynamics of the CK, ALT and AST activity level, with time these changes acquire the adaptive character and are directed to compensate the damaged cell energy metabolism.

  5. Modeling free energy availability from Hadean hydrothermal systems to the first metabolism.

    Science.gov (United States)

    Simoncini, E; Russell, M J; Kleidon, A

    2011-12-01

    Off-axis Hydrothermal Systems (HSs) are seen as the possible setting for the emergence of life. As the availability of free energy is a general requirement to drive any form of metabolism, we ask here under which conditions free energy generation by geologic processes is greatest and relate these to the conditions found at off-axis HSs. To do so, we present a conceptual model in which we explicitly capture the energetics of fluid motion and its interaction with exothermic reactions to maintain a state of chemical disequilibrium. Central to the interaction is the temperature at which the exothermic reactions take place. This temperature not only sets the equilibrium constant of the chemical reactions and thereby the distance of the actual state to chemical equilibrium, but these reactions also shape the temperature gradient that drives convection and thereby the advection of reactants to the reaction sites and the removal of the products that relate to geochemical free energy generation. What this conceptual model shows is that the positive feedback between convection and the chemical kinetics that is found at HSs favors a greater rate of free energy generation than in the absence of convection. Because of the lower temperatures and because the temperature of reactions is determined more strongly by these dynamics rather than an external heat flux, the conditions found at off-axis HSs should result in the greatest rates of geochemical free energy generation. Hence, we hypothesize from these thermodynamic considerations that off-axis HSs seem most conducive for the emergence of protometabolic pathways as these provide the greatest, abiotic generation rates of chemical free energy.

  6. Serum Compounds of Energy Metabolism Impairment Are Related to Disability, Disease Course and Neuroimaging in Multiple Sclerosis.

    Science.gov (United States)

    Lazzarino, Giacomo; Amorini, Angela M; Petzold, Axel; Gasperini, Claudio; Ruggieri, Serena; Quartuccio, Maria Esmeralda; Lazzarino, Giuseppe; Di Stasio, Enrico; Tavazzi, Barbara

    2017-11-01

    Multiple sclerosis (MS) is characterized by primary inflammation, demyelination, and progressive neurodegeneration. A biochemical MS feature is neuronal mitochondrial dysfunction, compensated by anaerobic metabolism increase, likely aggravating progression of neurodegeneration. Here, we characterized a pragmatic serum profile of compounds related to mitochondrial energy metabolism of potential clinical use. Blood samples of 518 well characterized (disability, disease course) MS patients and 167 healthy controls were analyzed for serum purines, pyrimidines, creatinine, and lactate. Nine of the 15 compounds assayed, hypoxanthine, xanthine, uric acid, inosine, uracil, β-pseudouridine, uridine, creatinine, and lactate, differed significantly between MS patients and controls (p < 0.0001). Using these nine compounds, a unifying Biomarker Score was calculated. Controls and MS patients had mean Biomarker Scores of 0.4 ± 0.7 and 4.4 ± 1.9, respectively (p < 0.00001). The Biomarker Score was higher in patients with progressive (6.0 ± 1.8 than with relapsing remitting disease course (3.6 ± 1.5, p < 0.00001). High association between the Biomarker Score and increase in disability (EDSS) was also observed. Additionally, in 50 patients who underwent magnetic resonance imaging (MRI), increase in the Biomarker Score correlated to neuroanatomical alterations. These results, obtained in a large cohort of MS patients evaluated for serum metabolic compounds connected to energy metabolism, demonstrated that the Biomarker Score might represent a pragmatic, resource saving, easy to obtain, laboratory tool useful to monitor MS patients and predict at an early stage who will switch from an RR to a progressive disease course. For the first time, it was also clearly shown a link between mitochondrial dysfunction and MRI lesions characteristic of MS.

  7. Validity of hip-mounted uniaxial accelerometry with heart-rate monitoring vs. triaxial accelerometry in the assessment of free-living energy expenditure in young children: the IDEFICS Validation Study.

    Science.gov (United States)

    Ojiambo, Robert; Konstabel, Kenn; Veidebaum, Toomas; Reilly, John; Verbestel, Vera; Huybrechts, Inge; Sioen, Isabelle; Casajús, José A; Moreno, Luis A; Vicente-Rodriguez, German; Bammann, Karin; Tubic, Bojan M; Marild, Staffan; Westerterp, Klaas; Pitsiladis, Yannis P

    2012-11-01

    One of the aims of Identification and Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and Infants (IDEFICS) validation study is to validate field measures of physical activity (PA) and energy expenditure (EE) in young children. This study compared the validity of uniaxial accelerometry with heart-rate (HR) monitoring vs. triaxial accelerometry against doubly labeled water (DLW) criterion method for assessment of free-living EE in young children. Forty-nine European children (25 female, 24 male) aged 4-10 yr (mean age: 6.9 ± 1.5 yr) were assessed by uniaxial ActiTrainer with HR, uniaxial 3DNX, and triaxial 3DNX accelerometry. Total energy expenditure (TEE) was estimated using DLW over a 1-wk period. The longitudinal axis of both devices and triaxial 3DNX counts per minute (CPM) were significantly (P hip-mounted uniaxial and triaxial accelerometers for assessing PA and EE is similar.

  8. Inverse Associations between a Locally Validated Mediterranean Diet Index, Overweight/Obesity, and Metabolic Syndrome in Chilean Adults.

    Science.gov (United States)

    Echeverría, Guadalupe; McGee, Emma E; Urquiaga, Inés; Jiménez, Paulina; D'Acuña, Sonia; Villarroel, Luis; Velasco, Nicolás; Leighton, Federico; Rigotti, Attilio

    2017-08-11

    Obesity and metabolic syndrome (MetS) are key risk factors for chronic disease. Dietary patterns are critical in the incidence and persistence of obesity and MetS, yet there is few data linking diet to obesity and MetS in Chile. Our objective was to use a locally validated diet index to evaluate adherence to a Mediterranean dietary pattern and its correlations with overweight/obesity (OW/O) and MetS prevalence in Chilean adults. We conducted a nationwide, cross-sectional online survey of Chilean adults with complete self-reported diet and body mass index data ( n = 24,882). A subsample of 4348 users (17.5%) had valid MetS data. An inverse association was observed between adherence to Mediterranean diet and OW/O and MetS prevalence. As diet quality decreased from healthy, to moderately-healthy, to unhealthy, prevalence increased from 44.8, 51.1, to 60.9% for OW/O and from 13.4, 18.5, to 28.9% for MetS ( p -values diet groups in comparison to the healthy diet group. This study represents the first report on the relationship between Mediterranean diet and chronic disease risk in Chile. It suggests that the Mediterranean diet may be applied to manage chronic disease risk beyond the Mediterranean basin.

  9. Obesity-related metabolic dysfunction in dogs: a comparison with human metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Tvarijonaviciute Asta

    2012-08-01

    Full Text Available Abstract Background Recently, metabolic syndrome (MS has gained attention in human metabolic medicine given its associations with development of type 2 diabetes mellitus and cardiovascular disease. Canine obesity is associated with the development of insulin resistance, dyslipidaemia, and mild hypertension, but the authors are not aware of any existing studies examining the existence or prevalence of MS in obese dogs. Thirty-five obese dogs were assessed before and after weight loss (median percentage loss 29%, range 10-44%. The diagnostic criteria of the International Diabetes Federation were modified in order to define canine obesity-related metabolic dysfunction (ORMD, which included a measure of adiposity (using a 9-point body condition score [BCS], systolic blood pressure, fasting plasma cholesterol, plasma triglyceride, and fasting plasma glucose. By way of comparison, total body fat mass was measured by dual-energy X-ray absorptiometry, whilst total adiponectin, fasting insulin, and high-sensitivity C-reactive protein (hsCRP were measured using validated assays. Results Systolic blood pressure (P = 0.008, cholesterol (P = 0.003, triglyceride (P = 0.018, and fasting insulin (P P = 0.001. However, hsCRP did not change with weight loss. Prior to weight loss, 7 dogs were defined as having ORMD, and there was no difference in total fat mass between these dogs and those who did not meet the criteria for ORMD. However, plasma adiponectin concentration was less (P = 0.031, and plasma insulin concentration was greater (P = 0.030 in ORMD dogs. Conclusions In this study, approximately 20% of obese dogs suffer from ORMD, and this is characterized by hypoadiponectinaemia and hyperinsulinaemia. These studies can form the basis of further investigations to determine path genetic mechanisms and the health significance for dogs, in terms of disease associations and outcomes of weight loss.

  10. Microglia energy metabolism in metabolic disorder

    NARCIS (Netherlands)

    Kalsbeek, Martin J. T.; Mulder, Laurie; Yi, Chun-Xia

    2016-01-01

    Microglia are the resident macrophages of the CNS, and are in charge of maintaining a healthy microenvironment to ensure neuronal survival. Microglia carry out a non-stop patrol of the CNS, make contact with neurons and look for abnormalities, all of which requires a vast amount of energy. This

  11. Two new meal- and web-based interactive food frequency questionnaires: validation of energy and macronutrient intake.

    Science.gov (United States)

    Christensen, Sara E; Möller, Elisabeth; Bonn, Stephanie E; Ploner, Alexander; Wright, Antony; Sjölander, Arvid; Bälter, Olle; Lissner, Lauren; Bälter, Katarina

    2013-06-05

    Meal-Q and its shorter version, MiniMeal-Q, are 2 new Web-based food frequency questionnaires. Their meal-based and interactive format was designed to promote ease of use and to minimize answering time, desirable improvements in large epidemiological studies. We evaluated the validity of energy and macronutrient intake assessed with Meal-Q and MiniMeal-Q as well as the reproducibility of Meal-Q. Healthy volunteers aged 20-63 years recruited from Stockholm County filled out the 174-item Meal-Q. The questionnaire was compared to 7-day weighed food records (WFR; n=163), for energy and macronutrient intake, and to doubly labeled water (DLW; n=39), for total energy expenditure. In addition, the 126-item MiniMeal-Q was evaluated in a simulated validation using truncated Meal-Q data. We also assessed the answering time and ease of use of both questionnaires. Bland-Altman plots showed a varying bias within the intake range for all validity comparisons. Cross-classification of quartiles placed 70%-86% in the same/adjacent quartile with WFR and 77% with DLW. Deattenuated and energy-adjusted Pearson correlation coefficients with the WFR ranged from r=0.33-0.74 for macronutrients and was r=0.18 for energy. Correlations with DLW were r=0.42 for Meal-Q and r=0.38 for MiniMeal-Q. Intraclass correlations for Meal-Q ranged from r=0.57-0.90. Median answering time was 17 minutes for Meal-Q and 7 minutes for MiniMeal-Q, and participants rated both questionnaires as easy to use. Meal-Q and MiniMeal-Q are easy to use and have short answering times. The ranking agreement is good for most of the nutrients for both questionnaires and Meal-Q shows fair reproducibility.

  12. Validity of medium-energy collimator for sentinel lymphoscintigraphy imaging

    International Nuclear Information System (INIS)

    Tsushima, Hiroyuki; Yamanaga, Takashi; Shimonishi, Yoshihiro; Kosakai, Kazuhisa; Takayama, Teruhiko; Kizu, Hiroto; Noguchi, Atsushi; Onoguchi, Masahisa

    2007-01-01

    For lymphoscintigraphy to detect sentinel lymph node (SLN) in the breast cancer, the lead shielding of the injection site is often used to avoid artifacts, but the method tends to cover the neighborhood SLN. To exclude this defect, authors developed ME (medium-energy) method where ME collimator and energy setting shifted to its higher region were employed. This paper described the development and validity evaluation of the ME method. Performed were examinations with 3 acrylic phantoms of the injection site (IS), LN and combination of IS+LN (CB): IS was a cylinder, containing 40 MBq of 99m Tc-pertechnetate and LN, a plate with 30 sealed holes having 0.78-400 kBq. CB phantom consisted from LN-simulating holes (each, 40 kBq) placed linearly around the center of IS in H and S directions. Imaging was conducted with 2 kinds of 2-detector gamma camera, FORTE (ADAGA) and DSX rectangular (Sopha Medical Corp.). CB phantom was found optimally visualized by ME collimator at 146, rather than 141, keV. In clinic, 99m Tc-Sn-colloid 40 MBq was given near the tumor of a patient and imaging was done with or without the lead shield with FORTE equipped with low energy high-resolution or ME collimator for their comparison. The present ME method described above set at 146 keV was found to give the image with excellent contrast and without false positive when compared with the lead shield method hitherto. (R.T.)

  13. Prebiotic Fibre Supplementation In Combination With Metformin Modifies Appetite, Energy Metabolism, And Gut Satiety Hormones In Obese Rats

    Science.gov (United States)

    Pyra, Kim Alicia

    The prebiotic fibre, oligofructose (OFS), reduces energy intake and improves glycemic control in rodents and man. Metformin (MT) is a commonly used insulin-sensitizing agent that may limit weight gain in individuals with type 2 diabetes. Our objective was to determine if using OFS as an adjunct to MT therapy (AD) modifies satiety hormone production and metabolism in obese rats. Independently, OFS and MT decreased energy intake, body fat, hepatic triglyceride content, plasma leptin and glucose-dependent insulinotropic peptide (GIP) levels. OFS and AD but not MT rats showed superior glycemic control during an oral glucose tolerance test (OGTT) compared to C. Area under the curve for GIP was lowest in ADThe prebiotic fibre, oligofructose (OFS), reduces energy intake and improves glycemic control in rodents and man. Metformin (MT) is a commonly used insulin-sensitizing agent that may limit weight gain in individuals with type 2 diabetes. Our objective was to determine if using OFS as an adjunct to MT therapy (AD) modifies satiety hormone production and metabolism in obese rats. Independently, OFS and MT decreased energy intake, body fat, hepatic triglyceride content, plasma leptin and glucose-dependent insulinotropic peptide (GIP) levels. OFS and AD but not MT rats showed superior glycemic control during an oral glucose tolerance test (OGTT) compared to C. Area under the curve for GIP was lowest in AD

  14. Role of insulin, adipocyte hormones, and nutrient-sensing pathways in regulating fuel metabolism and energy homeostasis: a nutritional perspective of diabetes, obesity, and cancer.

    Science.gov (United States)

    Marshall, Stephen

    2006-08-01

    Traditionally, nutrients such as glucose and amino acids have been viewed as substrates for the generation of high-energy molecules and as precursors for the biosynthesis of macromolecules. However, it is now apparent that nutrients also function as signaling molecules in functionally diverse signal transduction pathways. Glucose and amino acids trigger signaling cascades that regulate various aspects of fuel and energy metabolism and control the growth, proliferation, and survival of cells. Here, we provide a functional and regulatory overview of three well-established nutrient signaling pathways-the hexosamine signaling pathway, the mTOR (mammalian target of rapamycin) signaling pathway, and the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Nutrient signaling pathways are interconnected, coupled to insulin signaling, and linked to the release of metabolic hormones from adipose tissue. Thus, nutrient signaling pathways do not function in isolation. Rather, they appear to serve as components of a larger "metabolic regulatory network" that controls fuel and energy metabolism (at the cell, tissue, and whole-body levels) and links nutrient availability with cell growth and proliferation. Understanding the diverse roles of nutrients and delineating nutrient signaling pathways should facilitate drug discovery research and the search for novel therapeutic compounds to prevent and treat various human diseases such as diabetes, obesity, and cancer.

  15. Probing energy metabolism and microviscosity in cancer using FLIM

    Science.gov (United States)

    Shirmanova, Marina V.; Lukina, Maria M.; Shimolina, Lyubov'E.; Kuimova, Marina K.; Dudenkova, Varvara V.; Shcheslavskiy, Vladislav I.; Zagaynova, Elena V.

    2017-07-01

    Fluorescence lifetime imaging microscopy (FLIM) is a promising non-invasive highly sensitive technique for probing multiple physiological and physicochemical parameters in living cells and tissues. The present study is focused on the investigation of bioenergetics and microscopic viscosity of cultured cancer cells and animal tumors using FLIM during natural growth and chemotherapy. Fluorescence lifetime measurements of the metabolic cofactor NAD(P)H revealed a decrease of the relative amplitude of free NAD(P)H after cisplatin treatment, indicating a change towards a more oxidative metabolic state. Microviscosity mapping performed with the use of fluorescent molecular rotor BODIPY-2 showed a pronounced increase in the plasma membrane viscosity in cancer cells exposed to cisplatin. Although biochemical mechanisms underlying the metabolic and viscosity alterations during chemotherapy have yet to be clarified, our data suggest that the cisplatin-induced changes in cellular metabolism and membrane viscosity play a role in the cytotoxicity of the drug. The results of the study contribute to an understanding of mechanisms of cisplatin action and will be useful for development new approach for assessing response to a therapy.

  16. Self-administered structured food record for measuring individual energy and nutrient intake in large cohorts: Design and validation.

    Science.gov (United States)

    García, Silvia M; González, Claudio; Rucci, Enzo; Ambrosino, Cintia; Vidal, Julia; Fantuzzi, Gabriel; Prestes, Mariana; Kronsbein, Peter

    2018-06-05

    Several instruments developed to assess dietary intake of groups or populations have strengths and weaknesses that affect their specific application. No self-administered, closed-ended dietary survey was previously used in Argentina to assess current food and nutrient intake on a daily basis. To design and validate a self-administered, structured food record (NutriQuid, NQ) representative of the adult Argentine population's food consumption pattern to measure individual energy and nutrient intake. Records were loaded onto a database using software that checks a regional nutrition information system (SARA program), automatically quantifying energy and nutrient intake. NQ validation included two phases: (1) NQ construct validity comparing records kept simultaneously by healthy volunteers (45-75 years) and a nutritionist who provided meals (reference), and (2) verification of whether NQ reflected target population consumption (calories and nutrients), week consumption differences, respondent acceptability, and ease of data entry/analysis. Data analysis included descriptive statistics, repeated measures ANOVA, intraclass correlation coefficient, nonparametric regression, and cross-classification into quintiles. The first validation (study group vs. reference) showed an underestimation (10%) of carbohydrate, fat, and energy intake. Second validation: 109 volunteers (91% response) completed the NQ for seven consecutive days. Record completion took about 9min/day, and data entry 3-6min. Mean calorie intake was 2240±119kcal/day (42% carbohydrates, 17% protein, and 41% fat). Intake significantly increased in the weekend. NQ is a simple and efficient tool to assess dietary intake in large samples. Copyright © 2018 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Three good reasons for heart surgeons to understand cardiac metabolism.

    Science.gov (United States)

    Doenst, Torsten; Bugger, Heiko; Schwarzer, Michael; Faerber, Gloria; Borger, Michael A; Mohr, Friedrich W

    2008-05-01

    It is the principal goal of cardiac surgeons to improve or reinstate contractile function with, through or after a surgical procedure on the heart. Uninterrupted contractile function of the heart is irrevocably linked to the uninterrupted supply of energy in the form of ATP. Thus, it would appear natural that clinicians interested in myocardial contractile function are interested in the way the heart generates ATP, i.e. the processes generally referred to as energy metabolism. Yet, it may appear that the relevance of energy metabolism in cardiac surgery is limited to the area of cardioplegia, which is a declining research interest. It is the goal of this review to change this trend and to illustrate the role and the therapeutic potential of metabolism and metabolic interventions for management. We present three compelling reasons why cardiac metabolism is of direct, practical interest to the cardiac surgeon and why a better understanding of energy metabolism might indeed result in improved surgical outcomes: (1) To understand cardioplegic arrest, ischemia and reperfusion, one needs a working knowledge of metabolism; (2) hyperglycemia is an underestimated and modifiable risk factor; (3) acute metabolic interventions can be effective in patients undergoing cardiac surgery.

  18. C75, a fatty acid synthase inhibitor, modulates AMP-activated protein kinase to alter neuronal energy metabolism.

    Science.gov (United States)

    Landree, Leslie E; Hanlon, Andrea L; Strong, David W; Rumbaugh, Gavin; Miller, Ian M; Thupari, Jagan N; Connolly, Erin C; Huganir, Richard L; Richardson, Christine; Witters, Lee A; Kuhajda, Francis P; Ronnett, Gabriele V

    2004-01-30

    C75, a synthetic inhibitor of fatty acid synthase (FAS), is hypothesized to alter the metabolism of neurons in the hypothalamus that regulate feeding behavior to contribute to the decreased food intake and profound weight loss seen with C75 treatment. In the present study, we characterize the suitability of primary cultures of cortical neurons for studies designed to investigate the consequences of C75 treatment and the alteration of fatty acid metabolism in neurons. We demonstrate that in primary cortical neurons, C75 inhibits FAS activity and stimulates carnitine palmitoyltransferase-1 (CPT-1), consistent with its effects in peripheral tissues. C75 alters neuronal ATP levels and AMP-activated protein kinase (AMPK) activity. Neuronal ATP levels are affected in a biphasic manner with C75 treatment, decreasing initially, followed by a prolonged increase above control levels. Cerulenin, a FAS inhibitor, causes a similar biphasic change in ATP levels, although levels do not exceed control. C75 and cerulenin modulate AMPK phosphorylation and activity. TOFA, an inhibitor of acetyl-CoA carboxylase, increases ATP levels, but does not affect AMPK activity. Several downstream pathways are affected by C75 treatment, including glucose metabolism and acetyl-CoA carboxylase (ACC) phosphorylation. These data demonstrate that C75 modulates the levels of energy intermediates, thus, affecting the energy sensor AMPK. Similar effects in hypothalamic neurons could form the basis for the effects of C75 on feeding behavior.

  19. Single-cell tracking reveals antibiotic-induced changes in mycobacterial energy metabolism.

    Science.gov (United States)

    Maglica, Željka; Özdemir, Emre; McKinney, John D

    2015-02-17

    ATP is a key molecule of cell physiology, but despite its importance, there are currently no methods for monitoring single-cell ATP fluctuations in live bacteria. This is a major obstacle in studies of bacterial energy metabolism, because there is a growing awareness that bacteria respond to stressors such as antibiotics in a highly individualistic manner. Here, we present a method for long-term single-cell tracking of ATP levels in Mycobacterium smegmatis based on a combination of microfluidics, time-lapse microscopy, and Förster resonance energy transfer (FRET)-based ATP biosensors. Upon treating cells with antibiotics, we observed that individual cells undergo an abrupt and irreversible switch from high to low intracellular ATP levels. The kinetics and extent of ATP switching clearly discriminate between an inhibitor of ATP synthesis and other classes of antibiotics. Cells that resume growth after 24 h of antibiotic treatment maintain high ATP levels throughout the exposure period. In contrast, antibiotic-treated cells that switch from ATP-high to ATP-low states never resume growth after antibiotic washout. Surprisingly, only a subset of these nongrowing ATP-low cells stains with propidium iodide (PI), a widely used live/dead cell marker. These experiments also reveal a cryptic subset of cells that do not resume growth after antibiotic washout despite remaining ATP high and PI negative. We conclude that ATP tracking is a more dynamic, sensitive, reliable, and discriminating marker of cell viability than staining with PI. This method could be used in studies to evaluate antimicrobial effectiveness and mechanism of action, as well as for high-throughput screening. New antimicrobials are urgently needed to stem the rising tide of antibiotic-resistant bacteria. All antibiotics are expected to affect bacterial energy metabolism, directly or indirectly, yet tools to assess the impact of antibiotics on the ATP content of individual bacterial cells are lacking. The

  20. Protein and energy metabolism in two lines of chickens selected for growth on high or low protein diets

    DEFF Research Database (Denmark)

    Chwalibog, André; Eggum, B O; Sørensen, Peter

    1983-01-01

    Genetic adaptation was investigated in broilers selected for seven generations on a normal (A) or a low (B) protein diet. Protein and energy metabolism were studied in males from these selected lines fed on a diet of intermediate protein content. All selected birds retained more nitrogen than those...

  1. Effects of alpha-melanocyte-stimulating hormone on mitochondrial energy metabolism in rats of different age-groups.

    Science.gov (United States)

    Feichtinger, René G; Pétervári, Erika; Zopf, Michaela; Vidali, Silvia; Aminzadeh-Gohari, Sepideh; Mayr, Johannes A; Kofler, Barbara; Balaskó, Márta

    2017-08-01

    Hypothalamic alpha-melanocyte-stimulating hormone (α-MSH) is a key catabolic mediator of energy homeostasis. Its anorexigenic and hypermetabolic effects show characteristic age-related alterations that may be part of the mechanism of middle-aged obesity and geriatric anorexia/cachexia seen in humans and other mammals. We aimed to investigate the role of α-MSH in mitochondrial energy metabolism during the course of aging in a rodent model. To determine the role of α-MSH in mitochondrial energy metabolism in muscle, we administered intracerebroventricular (ICV) infusions of α-MSH for 7-days to different age-groups of male Wistar rats. The activities of oxidative phosphorylation complexes I to V and citrate synthase were determined and compared to those of age-matched controls. We also quantified mitochondrial DNA (mtDNA) copy number and measured the expression of the master regulators of mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and peroxisome proliferator-activated receptor gamma (PPARγ). The peptide reduced weight gain in juvenile rats to one fifth of that of controls and increased the weight loss in older animals by about five fold. Mitochondrial DNA copy number inversely correlated with changes in body weight in controls, but not in α-MSH-treated animals. The strong increase in body weight in young rats was associated with a low mtDNA copy number and high PPARγ mRNA levels in controls. Expression of PGC-1α and PPARγ declined with age, whereas OXPHOS and citrate synthase enzyme activities were unchanged. In contrast, α-MSH treatment suppressed OXPHOS enzyme and citrate synthase activity. In conclusion, our results showed age-related differences in the metabolic effects of α-MSH. In addition, administration of α-MSH suppressed citrate synthase and OXPHOS activities independent of age. These findings suggest that α-MSH exposure may inhibit mitochondrial biogenesis. Copyright © 2016 Elsevier

  2. Metabolic profile in growing buffalo heifers fed diet with different energy content

    Directory of Open Access Journals (Sweden)

    B. Gasparrini

    2010-02-01

    Full Text Available Aim of this study was to verify the relation among the mediators and indicators of nutritional status like insulin, glucagon, urea, cholesterol, triglycerides and total proteins in growing buffalo heifers, fed diets with different energy density. 12 Murrah heifers were randomly allocated into two dietary treatments (High, Group H; Low, Group L that differed in energetic levels (Group H: 5.8 UFL/d; Group L: 3.6 UFL/d. Every 30 days, for a total of five times, blood samples were collected at 08.00 h, before feeding, from the jugular vein in vacutainer tubes and analysed to determine metabolic profile. Data on haematic constants were analysed by ANOVA for repeated measures with treatment as the main factor. Low energy availability and low NSC reduced the glucose and insulin and increased glucagone and urea blood levels. The increase of NSC in the diet of group H during the experiment may caused a reduction of the fibre digestibility after the period of adaptation of the rumen microflora and, as a paradox effect, suffered for an energetic lack with a subsequent activation of lipolysis and mobilization of their body reserves. Liver and muscular synthesis increase in group with a high energy availability.

  3. Aerobic fitness and metabolic health in children: A clinical validation of directly measured maximal oxygen consumption versus performance measures as markers of health.

    Science.gov (United States)

    Aadland, Eivind; Kvalheim, Olav Martin; Rajalahti, Tarja; Skrede, Turid; Resaland, Geir Kåre

    2017-09-01

    High aerobic fitness is consistently associated with a favorable metabolic health profile in children. However, measurement of oxygen uptake, regarded as the gold standard for evaluating aerobic fitness, is often not feasible. Thus, the aim of the present study was to perform a clinical validation of three measures of aerobic fitness (peak oxygen consumption [VO 2peak ] and time to exhaustion [TTE] determined from a graded treadmill protocol to exhaustion, and the Andersen intermittent running test) with clustered metabolic health in 10-year-old children. We included 93 children (55 boys and 38 girls) from Norway during 2012-2013 in the study. Associations between aerobic fitness and three different composite metabolic health scores (including lipoprotein subgroup particle concentrations, triglyceride, glucose, systolic blood pressure, and waist-to-height ratio) were determined by regression analyses adjusting for sex. The relationships among the measures of aerobic fitness were r  = 0.78 for VO 2peak vs. TTE, r  = 0.63 for VO 2peak vs. the Andersen test, and r  = 0.67 for TTE vs. the Andersen test. The Andersen test showed the strongest associations across all markers of metabolic health ( r  = - 0.45 to - 0.31, p  fitness do not stand back as markers of metabolic health status in children, compared to VO 2peak . This is of great importance as good field tests provide opportunities for measuring aerobic fitness in many settings where measuring VO 2peak are impossible.

  4. Validation of mid-infrared spectrometry in milk for predicting body energy status in Holstein-Friesian cows.

    Science.gov (United States)

    McParland, S; Banos, G; McCarthy, B; Lewis, E; Coffey, M P; O'Neill, B; O'Donovan, M; Wall, E; Berry, D P

    2012-12-01

    Cow energy balance is known to be associated with cow health and fertility; therefore, routine access to data on energy balance can be useful in both management and breeding decisions to improve cow performance. The objective of this study was to determine if individual cow milk mid-infrared spectra (MIR) could be useful to predict cow energy balance across contrasting production systems. Direct energy balance was calculated as the differential between energy intake and energy output in milk and maintenance (maintenance was predicted using body weight). Body energy content was calculated from (change in) body weight and body condition score. Following editing, 2,992 morning, 2,742 midday, and 2,989 evening milk MIR records from 564 lactations on 337 Scottish cows, managed in a confinement system on 1 of 2 diets, were available. An additional 844 morning and 820 evening milk spectral records from 338 lactations on 244 Irish cows offered a predominantly grazed grass diet were also available. Equations were developed to predict body energy status using the milk spectral data and milk yield as predictor variables. Several different approaches were used to test the robustness of the equations calibrated in one data set and validated in another. The analyses clearly showed that the variation in the validation data set must be represented in the calibration data set. The accuracy (i.e., square root of the coefficient of multiple determinations) of predicting, from MIR, direct energy balance, body energy content, and energy intake was 0.47 to 0.69, 0.51 to 0.56, and 0.76 to 0.80, respectively. This highlights the ability of milk MIR to predict body energy balance, energy content, and energy intake with reasonable accuracy. Very high accuracy, however, was not expected, given the likely random errors in the calculation of these energy status traits using field data. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Metabolic consequences of resistive-type exercise

    Science.gov (United States)

    Dudley, G. A.

    1988-01-01

    This brief review concerns acute and chronic metabolic responses to resistive-type exercise (RTE) (i.e., Olympic/power weight lifting and bodybuilding). Performance of RTE presents power output substantially greater (10-15-fold) than that evident with endurance-type exercise. Accordingly, RTE relies heavily on the anaerobic enzyme machinery of skeletal muscle for energy supply, with alterations in the rate of aerobic metabolism being modest. Hydrolysis of high energy phosphate compounds (PC, ATP), glycogenolysis, and glycolysis are evident during an acute bout of RTE as indicated by metabolic markers in mixed fiber type skeletal muscle samples. The type of RTE probably influences the magnitude of these responses since the increase in blood lactate is much greater during a typical "bodybuilding" than "power lifting" session. The influence of RTE training on acute metabolic responses to RTE has received little attention. An individual's inherent metabolic characteristics are apparently sufficient to meet the energy demands of RTE as training of this type does not increase VO2max or substantially alter the content of marker enzymes in mixed fiber type skeletal muscle. Analyses of pools of fast- vs slow-twitch fibers, however, indicate that RTE-induced changes may be fiber type specific. Future studies should better delineate the metabolic responses to RTE and determine whether these are related to the enhanced performance associated with such training.

  6. Wheel-running activity and energy metabolism in relation to ambient temperature in mice selected for high wheel-running activity

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Garland, Theodore; Daan, Serge; Visser, G. Henk; Garland Jr., Theodore; Heldmaier, G.

    Interrelationships between ambient temperature, activity, and energy metabolism were explored in mice that had been selectively bred for high spontaneous wheel-running activity and their random-bred controls. Animals were exposed to three different ambient temperatures (10, 20 and 30 degrees C) and

  7. Non-Q-wave myocardial infarction: impaired myocardial energy metabolism in regions with reduced 99mTc-MIBI accumulation.

    Science.gov (United States)

    Moka, D; Baer, F M; Theissen, P; Schneider, C A; Dietlein, M; Erdmann, E; Schicha, H

    2001-05-01

    Reduced regional technetium-99m methoxyisobutylisonitrile (99mTc-MIBI) accumulation in patients with chronic non-Q-wave infarction (NQWI) but without significant coronary artery stenosis indicates non-transmural damage of the myocardial wall. The aim of this study was to characterise cardiac energy metabolism after NQWI using phosphorus-31 magnetic resonance spectroscopy (31P-MRS) and to compare the biochemical remodelling with changes in regional 99mTc-MIBI uptake and with morphological and functional parameters assessed by magnetic resonance imaging (MRI). Fifteen patients with a history of NQWI, exclusion of significant coronary artery stenosis (energy metabolism. Spectroscopic measurements were performed in the infarct-related myocardial region. Corresponding gradient-echo MR images and myocardial 99mTc-MIBI single-photon emission tomography images were acquired for exact localisation of the infarct region. All examinations were performed at rest under anti-ischaemic medication. Data were compared with those of patients in whom coronary artery disease had been excluded by angiography (group B, n=10). All patients of group A displayed anterior wall hypokinesia in the infarcted area on both ventriculography and MRI, with a reduced myocardial accumulation of 99mTc-MIBI (66.3%+/-11.8% vs 95.6%+/-2.2% in group B). The mean wall thickness during the complete cardiac cycle (9.5+/-1.8 mm vs 13.1+/-1.1 mm in group B, Penergy metabolism.

  8. Cerebral energy metabolism and the brain's functional network architecture: an integrative review.

    Science.gov (United States)

    Lord, Louis-David; Expert, Paul; Huckins, Jeremy F; Turkheimer, Federico E

    2013-09-01

    Recent functional magnetic resonance imaging (fMRI) studies have emphasized the contributions of synchronized activity in distributed brain networks to cognitive processes in both health and disease. The brain's 'functional connectivity' is typically estimated from correlations in the activity time series of anatomically remote areas, and postulated to reflect information flow between neuronal populations. Although the topological properties of functional brain networks have been studied extensively, considerably less is known regarding the neurophysiological and biochemical factors underlying the temporal coordination of large neuronal ensembles. In this review, we highlight the critical contributions of high-frequency electrical oscillations in the γ-band (30 to 100 Hz) to the emergence of functional brain networks. After describing the neurobiological substrates of γ-band dynamics, we specifically discuss the elevated energy requirements of high-frequency neural oscillations, which represent a mechanistic link between the functional connectivity of brain regions and their respective metabolic demands. Experimental evidence is presented for the high oxygen and glucose consumption, and strong mitochondrial performance required to support rhythmic cortical activity in the γ-band. Finally, the implications of mitochondrial impairments and deficits in glucose metabolism for cognition and behavior are discussed in the context of neuropsychiatric and neurodegenerative syndromes characterized by large-scale changes in the organization of functional brain networks.

  9. Effects of continuous hypoxia on energy metabolism in cultured cerebro-cortical neurons.

    Science.gov (United States)

    Malthankar-Phatak, Gauri H; Patel, Anant B; Xia, Ying; Hong, Soonsun; Chowdhury, Golam M I; Behar, Kevin L; Orina, Isaac A; Lai, James C K

    2008-09-10

    Mechanisms underlying hypoxia-induced neuronal adaptation have not been fully elucidated. In the present study we investigated glucose metabolism and the activities of glycolytic and TCA cycle enzymes in cerebro-cortical neurons exposed to hypoxia (3 days in 1% of O2) or normoxia (room air). Hypoxia led to increased activities of LDH (194%), PK (90%), and HK (24%) and decreased activities of CS (15%) and GDH (34%). Neurons were incubated with [1-(13)C]glucose for 45 and 120 min under normoxic or hypoxic (120 min only) conditions and 13C enrichment determined in the medium and cell extract using 1H-{13C}-NMR. In hypoxia-treated neurons [3-(13)C]lactate release into the medium was 428% greater than in normoxia-treated controls (45-min normoxic incubation) and total flux through lactate was increased by 425%. In contrast glucose oxidation was reduced significantly in hypoxia-treated neurons, even when expressed relative to total cellular protein, which correlated with the reduced activities of the measured mitochondrial enzymes. The results suggest that surviving neurons adapt to prolonged hypoxia by up-regulation of glycolysis and down-regulation of oxidative energy metabolism, similar to certain other cell types. The factors leading to adaptation and survival for some neurons but not others remain to be determined.

  10. Metabolic signals in sleep regulation: recent insights

    Directory of Open Access Journals (Sweden)

    Shukla C

    2016-01-01

    Full Text Available Charu Shukla, Radhika Basheer Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School, West Roxbury, MA, USA Abstract: Sleep and energy balance are essential for health. The two processes act in concert to regulate central and peripheral homeostasis. During sleep, energy is conserved due to suspended activity, movement, and sensory responses, and is redirected to restore and replenish proteins and their assemblies into cellular structures. During wakefulness, various energy-demanding activities lead to hunger. Thus, hunger promotes arousal, and subsequent feeding, followed by satiety that promotes sleep via changes in neuroendocrine or neuropeptide signals. These signals overlap with circuits of sleep-wakefulness, feeding, and energy expenditure. Here, we will briefly review the literature that describes the interplay between the circadian system, sleep-wake, and feeding-fasting cycles that are needed to maintain energy balance and a healthy metabolic profile. In doing so, we describe the neuroendocrine, hormonal/peptide signals that integrate sleep and feeding behavior with energy metabolism. Keywords: sleep, energy balance, hypothalamus, metabolism, homeostasis

  11. An integrated approach for the validation of energy and environmental system analysis models : used in the validation of the Flexigas Excel BioGas model

    NARCIS (Netherlands)

    Pierie, Frank; van Someren, Christian; Liu, Wen; Bekkering, Jan; Hengeveld, Evert Jan; Holstein, J.; Benders, René M.J.; Laugs, Gideon A.H.; van Gemert, Wim; Moll, Henri C.

    2016-01-01

    A review has been completed for a verification and validation (V&V) of the (Excel) BioGas simulator or EBS model. The EBS model calculates the environmental impact of biogas production pathways using Material and Energy Flow Analysis, time dependent dynamics, geographic information, and Life Cycle

  12. A Method for Ship Collision Damage and Energy Absorption Analysis and its Validation

    DEFF Research Database (Denmark)

    Zhang, Shengming; Pedersen, Preben Terndrup

    2016-01-01

    -examine this method’s validity andaccuracy for ship collision damage analysis in shipdesign assessments by comprehensive validations withthe experimental results from the public domain. Twentyexperimental tests have been selected, analysed andcompared with the results calculated using the proposedmethod. It can......For design evaluation there is a need for a method whichis fast, practical and yet accurate enough to determine theabsorbed energy and collision damage extent in shipcollision analysis. The most well-known simplifiedempirical approach to collision analysis was madeprobably by Minorsky and its...... limitation is also wellrecognized.The authors have previously developedsimple expressions for the relation between the absorbedenergy and the damaged material volume which take intoaccount the structural arrangements, the materialproperties and the damage modes. The purpose of thepresent paper is to re...

  13. Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction.

    Directory of Open Access Journals (Sweden)

    Enise Bagci

    Full Text Available Thyroid hormone (TH balance is essential for vertebrate development. Deiodinase type 1 (D1 and type 2 (D2 increase and deiodinase type 3 (D3 decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray, biochemistry, morphology and physiology using morpholino (MO knockdown. Knockdown of D1+D2 (D1D2MO and knockdown of D3 (D3MO both resulted in transcriptional regulation of energy metabolism and (muscle development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct

  14. Predicting of perceived self efficacy in the amount of macronutrients intake in women with metabolic syndrome - 2012.

    Science.gov (United States)

    Mohebi, Siamak; Azadbakht, Leila; Feizi, Avat; Sharifirad, Gholamreza; Hozori, Mohammad

    2014-01-01

    Metabolic syndrome is a collection of metabolic disorders, which can increase the mortality rates from 20% to 80%. One of strategies to control the disease is the attention to the dietary habits. Compliance with proper diet is one of the major challenges in the management of this syndrome. Due to this fact, that the patient is responsible for the adjustment of the daily diet, it is important to identify the factors affecting the adoption of nutritional self-care. Besides, self-efficacy is considered as an important pre-requisite for this behavior because it acts as an independent part of the basic skills. This study was carried out with the purpose of determining the predictive role of perceived self-efficacy on macronutrients intake in women with metabolic syndrome. In this descriptive study with correlational nature in 2012, there were 329 patients with the metabolic syndrome. The patients were covered by Isfahan oil industry medical centers and selected by a systematic method. In order to gather information on perceived self-efficacy, the questionnaires constructed by the researchers were used and the validity and reliability had been confirmed by the calculation of content validity indexand content validity ratio values and the indices of internal consistency and stability of the tool. The 24-h dietary recall questionnaire was also used for 3 days in order to investigate the nutritional behavior. The obtained data from the dietary recall questionnaire were analyzed by the N4 nutritional software. In this study, AMOS software version 16 was used for the structural model fitting by using the generalized least squares method besides the SPSS statistical software version 16. THESE AVERAGES OBTAINED FROM THE RESULTS: 2512.37 kcal energy intake, 70.95 g protein, 420 g carbohydrates and 61.61 g of fat per day. The mean of perceived self-efficacy score was 47.89. The Pearson correlation coefficient was indicated a significant inverse relationship between the perceived

  15. Utilization of dietary glucose in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Alemany Marià

    2011-10-01

    Full Text Available Abstract This review is focused on the fate of dietary glucose under conditions of chronically high energy (largely fat intake, evolving into the metabolic syndrome. We are adapted to carbohydrate-rich diets similar to those of our ancestors. Glucose is the main energy staple, but fats are our main energy reserves. Starvation drastically reduces glucose availability, forcing the body to shift to fatty acids as main energy substrate, sparing glucose and amino acids. We are not prepared for excess dietary energy, our main defenses being decreased food intake and increased energy expenditure, largely enhanced metabolic activity and thermogenesis. High lipid availability is a powerful factor decreasing glucose and amino acid oxidation. Present-day diets are often hyperenergetic, high on lipids, with abundant protein and limited amounts of starchy carbohydrates. Dietary lipids favor their metabolic processing, saving glucose, which additionally spares amino acids. The glucose excess elicits hyperinsulinemia, which may derive, in the end, into insulin resistance. The available systems of energy disposal could not cope with the excess of substrates, since they are geared for saving not for spendthrift, which results in an unbearable overload of the storage mechanisms. Adipose tissue is the last energy sink, it has to store the energy that cannot be used otherwise. However, adipose tissue growth also has limits, and the excess of energy induces inflammation, helped by the ineffective intervention of the immune system. However, even under this acute situation, the excess of glucose remains, favoring its final conversion to fat. The sum of inflammatory signals and deranged substrate handling induce most of the metabolic syndrome traits: insulin resistance, obesity, diabetes, liver steatosis, hyperlipidemia and their compounded combined effects. Thus, a maintained excess of energy in the diet may result in difficulties in the disposal of glucose, eliciting

  16. In Silico Genome-Scale Reconstruction and Validation of the Staphylococcus aureus Metabolic Network

    NARCIS (Netherlands)

    Heinemann, Matthias; Kümmel, Anne; Ruinatscha, Reto; Panke, Sven

    2005-01-01

    A genome-scale metabolic model of the Gram-positive, facultative anaerobic opportunistic pathogen Staphylococcus aureus N315 was constructed based on current genomic data, literature, and physiological information. The model comprises 774 metabolic processes representing approximately 23% of all

  17. Genome-scale metabolic network validation of Shewanella oneidensis using transposon insertion frequency analysis.

    Directory of Open Access Journals (Sweden)

    Hong Yang

    2014-09-01

    Full Text Available Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA. TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1 previous genome-wide direct gene-essentiality assignments; and, 2 flux balance analysis (FBA predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions.

  18. Gait Dynamics and Locomotor Metabolism

    Science.gov (United States)

    2014-12-01

    26 47. Taylor CR, Heglund NC, Maloiy GMO . Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of...San Diego, CA: Academic Press, 1994. 110 47. Taylor CR, Heglund NC, Maloiy GMO . Energetics and mechanics of terrestrial locomotion. I. Metabolic

  19. Energy Transition in the Nebular City: Connecting Transition Thinking, Metabolism Studies, and Urban Design

    Directory of Open Access Journals (Sweden)

    Griet Juwet

    2018-03-01

    Full Text Available Transforming urban infrastructures is an essential part of creating more sustainable urban regions. But rethinking these complex systems requires a better understanding of their spatial dimensions and their relation with urban morphology and spatial structure. This paper addresses that gap by examining different conceptualizations of technical infrastructure and space in science, technology and society studies (STS, transition thinking, urban metabolism studies, and urban political ecology, and draws connections with the spatial perspective of urban planning and design. It illustrates and tests these concepts through the case of energy transition in the Flemish region of Belgium. Transport and supply networks have played a crucial role in facilitating, structuring, and reproducing the region’s characteristic dispersed and energy-intensive urban landscape. Bringing different disciplinary perspectives together, the research broadens the conceptualization of the spatial dimension in transition thinking, and identifies useful concepts and design parameters for urban design to engage with the technical and socio-political complexity of transforming urban infrastructure. It reveals the energy transition as an inherently spatial project, and explores the spatially and socio-politically transformative potential of the transition towards a new energy system.

  20. Nutrients in Energy and One-Carbon Metabolism: Learning from Metformin Users

    Directory of Open Access Journals (Sweden)

    Fedra Luciano-Mateo

    2017-02-01

    Full Text Available Metabolic vulnerability is associated with age-related diseases and concomitant co-morbidities, which include obesity, diabetes, atherosclerosis and cancer. Most of the health problems we face today come from excessive intake of nutrients and drugs mimicking dietary effects and dietary restriction are the most successful manipulations targeting age-related pathways. Phenotypic heterogeneity and individual response to metabolic stressors are closely related food intake. Understanding the complexity of the relationship between dietary provision and metabolic consequences in the long term might provide clinical strategies to improve healthspan. New aspects of metformin activity provide a link to many of the overlapping factors, especially the way in which organismal bioenergetics remodel one-carbon metabolism. Metformin not only inhibits mitochondrial complex 1, modulating the metabolic response to nutrient intake, but also alters one-carbon metabolic pathways. Here, we discuss findings on the mechanism(s of action of metformin with the potential for therapeutic interpretations.