Realistic level densities in fragment emission at high excitation energies
International Nuclear Information System (INIS)
Mustafa, M.G.; Blann, M.; Ignatyuk, A.V.
1993-01-01
Heavy fragment emission from a 44 100 Ru compound nucleus at 400 and 800 MeV of excitation is analyzed to study the influence of level density models on final yields. An approach is used in which only quasibound shell-model levels are included in calculating level densities. We also test the traditional Fermi gas model for which there is no upper energy limit to the single particle levels. We compare the influence of these two level density models in evaporation calculations of primary fragment excitations, kinetic energies and yields, and on final product yields
International Nuclear Information System (INIS)
Ignatyuk, A.V.
1998-01-01
For any applications of the statistical theory of nuclear reactions it is very important to obtain the parameters of the level density description from the reliable experimental data. The cumulative numbers of low-lying levels and the average spacings between neutron resonances are usually used as such data. The level density parameters fitted to such data are compiled in the RIPL Starter File for the tree models most frequently used in practical calculations: i) For the Gilber-Cameron model the parameters of the Beijing group, based on a rather recent compilations of the neutron resonance and low-lying level densities and included into the beijing-gc.dat file, are chosen as recommended. As alternative versions the parameters provided by other groups are given into the files: jaeri-gc.dat, bombay-gc.dat, obninsk-gc.dat. Additionally the iljinov-gc.dat, and mengoni-gc.dat files include sets of the level density parameters that take into account the damping of shell effects at high energies. ii) For the backed-shifted Fermi gas model the beijing-bs.dat file is selected as the recommended one. Alternative parameters of the Obninsk group are given in the obninsk-bs.dat file and those of Bombay in bombay-bs.dat. iii) For the generalized superfluid model the Obninsk group parameters included into the obninsk-bcs.dat file are chosen as recommended ones and the beijing-bcs.dat file is included as an alternative set of parameters. iv) For the microscopic approach to the level densities the files are: obninsk-micro.for -FORTRAN 77 source for the microscopical statistical level density code developed in Obninsk by Ignatyuk and coworkers, moller-levels.gz - Moeller single-particle level and ground state deformation data base, moller-levels.for -retrieval code for Moeller single-particle level scheme. (author)
Study of excitation energy dependence of nuclear level density parameter
International Nuclear Information System (INIS)
Mohanto, G.; Nayak, B.K.; Saxena, A.
2016-01-01
In the present study, we have populated CN by fusion reaction and excitation energy of the intermediate nuclei is determined after first chance α-emission to investigate excitation energy dependence of the NLD parameter. Evaporated neutron spectra were measured following alpha evaporation for obtaining NLD parameter for the reaction 11 B + 197 Au, populating CN 208 Po. This CN after evaporating an α-particle populates intermediate nucleus 204 Pb. The 204 Pb has magic number of Z=82. Our aim is to study the excitation energy dependence of NLD parameter for closed shell nuclei
Level densities of iron isotopes and lower-energy enhancement of y-strength function
International Nuclear Information System (INIS)
Voinov, A V; Grimes, S M; Agvaanluvsan, U; Algin, E; Belgya, T; Brune, C R; Guttormsen, M; Hornish, M J; Massey, T N; Mitchell, G; Rekstad, J; Schiller, A; Siem, S
2005-01-01
The neutron spectrum from the 55 Mn(d,n) 56 Fe reaction has been measured at E d = 7 MeV. The level density of 56 Fe obtained from neutron evaporation spectrum has been compared to the level density from Oslo-type 57 Fe( 3 He, aγ) 56 Fe experiment [1]. The good agreement supports the recent results [1, 8] including an availability of a low-energy enhancement in the γ-strength function for iron isotopes. The new level density function allowed us to investigate an excitation energy dependence of this enhancement, which is shown to increase with increasing excitation energy
Excitation energy and angular momentum dependence of the nuclear level densities
International Nuclear Information System (INIS)
Razavi, R.; Kakavand, T.; Behkami, A. N.
2007-01-01
We have investigated the excitation energy (E) dependence of nuclear level density for Bethe formula and constant temperature model. The level density parameter aa nd the back shifted energy from the Bethe formula are obtained by fitting the complete level schemes. Also the level density parameters from the constant temperature model have been determined for several nuclei. we have shown that the microscopic theory provides more precise information on the nuclear level densities. On the other hand, the spin cut-off parameter and effective moment of inertia are determined by studying of the angular momentum (J) dependence of the nuclear level density, and effective moment of inertia is compared with rigid body value.
Effects of pairing correlation on nuclear level density parameter and nucleon separation energy
International Nuclear Information System (INIS)
Rajesekaran, T.R.; Selvaraj, S.
2002-01-01
A systematic study of effects of pairing correlations on nuclear level density parameter 'a' and neutron separation energy S N is presented for 152 Gd using statistical theory of nuclei with deformation, collective and noncollective rotational degrees of freedom, shell effects, and pairing correlations
International Nuclear Information System (INIS)
Maslov, V.M.
1998-01-01
Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)
Ozturk, C F; Karakelleoglu, C; Orbak, Z; Yildiz, L
2012-06-01
An inadequate and imbalanced intake of protein and energy results in protein-energy malnutrition (PEM). It is known that bone mineral density and serum magnesium levels are low in malnourished children. However, the roles of serum magnesium and endothelin-1 (ET-1) levels in the pathophysiology of bone mineralization are obscure. Thus, the relationships between serum magnesium and ET-1 levels and the changes in bone mineral density were investigated in this study. There was a total of 32 subjects, 25 of them had PEM and seven were controls. While mean serum ET-1 levels of the children with kwashiorkor and marasmus showed no statistically significant difference, mean serum ET-1 levels of both groups were significantly higher than that of the control group. Serum magnesium levels were lower than normal value in 9 (36%) of 25 malnourished children. Malnourished children included in this study were divided into two subgroups according to their serum magnesium levels. While mean serum ET-1 levels in the group with low magnesium levels were significantly higher than that of the group with normal magnesium levels (p malnutrition. Our study suggested that lower magnesium levels and higher ET-1 levels might be important factors in changes of bone mineral density in malnutrition. We recommend that the malnourished patients, especially with hypomagnesaemia, should be treated with magnesium early.
International Nuclear Information System (INIS)
Cardoso Junior, J.L.
1982-10-01
Experimental data show that the number of nuclear states increases rapidly with increasing excitation energy. The properties of highly excited nuclei are important for many nuclear reactions, mainly those that go via processes of the compound nucleus type. In this case, it is sufficient to know the statistical properties of the nuclear levels. First of them is the function of nuclear levels density. Several theoretical models which describe the level density are presented. The statistical mechanics and a quantum mechanics formalisms as well as semi-empirical results are analysed and discussed. (Author) [pt
International Nuclear Information System (INIS)
Charity, R.J.; Sobotka, L.G.
2005-01-01
In the independent-particle model, the nuclear level density is determined from the neutron and proton single-particle level densities. The single-particle level density for the positive-energy continuum levels is important at high excitation energies for stable nuclei and at all excitation energies for nuclei near the drip lines. This single-particle level density is subdivided into compound-nucleus and gas components. Two methods are considered for this subdivision: In the subtraction method, the single-particle level density is determined from the scattering phase shifts. In the Gamov method, only the narrow Gamov states or resonances are included. The level densities calculated with these two methods are similar; both can be approximated by the backshifted Fermi-gas expression with level-density parameters that are dependent on A, but with very little dependence on the neutron or proton richness of the nucleus. However, a small decrease in the level-density parameter is predicted for some nuclei very close to the drip lines. The largest difference between the calculations using the two methods is the deformation dependence of the level density. The Gamov method predicts a very strong peaking of the level density at sphericity for high excitation energies. This leads to a suppression of deformed configurations and, consequently, the fission rate predicted by the statistical model is reduced in the Gamov method
Organic semiconductor density of states controls the energy level alignment at electrode interfaces
Oehzelt, Martin; Koch, Norbert; Heimel, Georg
2014-01-01
Minimizing charge carrier injection barriers and extraction losses at interfaces between organic semiconductors and metallic electrodes is critical for optimizing the performance of organic (opto-) electronic devices. Here, we implement a detailed electrostatic model, capable of reproducing the alignment between the electrode Fermi energy and the transport states in the organic semiconductor both qualitatively and quantitatively. Covering the full phenomenological range of interfacial energy level alignment regimes within a single, consistent framework and continuously connecting the limiting cases described by previously proposed models allows us to resolve conflicting views in the literature. Our results highlight the density of states in the organic semiconductor as a key factor. Its shape and, in particular, the energy distribution of electronic states tailing into the fundamental gap is found to determine both the minimum value of practically achievable injection barriers as well as their spatial profile, ranging from abrupt interface dipoles to extended band-bending regions. PMID:24938867
Low energy level density and surface instabilities in heavy transition nuclei
International Nuclear Information System (INIS)
Wieclawik, W. de; Foucher, R.; Dionisio, J.S.; Vieu, C.; Hoglund, A.; Watzig, W.
1975-01-01
A statistical analysis of Au, Pt, Hg nuclear levels was performed with Ericson's method. The odd mass gold experimental number of levels distributions are compared to the theoretical distributions corresponding to vibrational (Alaga and Kisslinger-Sorensen) and rotational (Stephens, Meyer-ter-Vehn) models. The Alaga model gives the most complete description of 193 Au, 195 Au levels and fits the lowest part of Gilbert-Cameron high energy distributions (deduced from the statistical model and neutron capture data). The Ericson's method shows other interesting features of Pt and Hg isotopes (i.e. level density dependence on nuclear shape and pairing correlations, evidence for phase transitions). Consequently, this method is a useful tool for guiding experimental as well as theoretical investigations of transition nuclei [fr
International Nuclear Information System (INIS)
Grimes, S.M.
2005-01-01
Recent research in the area of nuclear level densities is reviewed. The current interest in nuclear astrophysics and in structure of nuclei off of the line of stability has led to the development of radioactive beam facilities with larger machines currently being planned. Nuclear level densities for the systems used to produce the radioactive beams influence substantially the production rates of these beams. The modification of level-density parameters near the drip lines would also affect nucleosynthesis rates and abundances
International Nuclear Information System (INIS)
Mishra, V.; Boukharouba, N.; Brient, C.E.; Grimes, S.M.; Pedroni, R.S.
1994-01-01
Levels in 57 Co have been studied in the region of resolved levels (E 57 Fe(p,n) 57 Co neutron spectrum with resolution ΔE∼5 keV. Seventeen previously unknown levels are located. Level density parameters in the continuum region are deduced from thick target measurements of the same reaction and additional level density information is deduced from Ericson fluctuation studies of the reaction 56 Fe(p,n) 56 Co. A set of level density parameters is found which describes the level density of 57 Co at energies up to 14 MeV. Efforts to obtain level density information from the 56 Fe(d,n) 57 Co reaction were unsuccessful, but estimates of the fraction of the deuteron absorption cross section corresponding to compound nucleus formation are obtained
Level density approach to perturbation theory and inverse-energy-weighted sum-rules
International Nuclear Information System (INIS)
Halemane, T.R.
1983-01-01
The terms in the familiar Rayleigh-Schroedinger perturbation series involve eigenvalues and eigenfunctions of the unperturbed operator. A level density formalism, that does not involve computation of eigenvalues and eigenfunctions, is given here for the perturbation series. In the CLT (central limit theorem) limit the expressions take very simple linear forms. The evaluation is in terms of moments and traces of operators and operator products. 3 references
Level densities in nuclear physics
International Nuclear Information System (INIS)
Beckerman, M.
1978-01-01
In the independent-particle model nucleons move independently in a central potential. There is a well-defined set of single- particle orbitals, each nucleon occupies one of these orbitals subject to Fermi statistics, and the total energy of the nucleus is equal to the sum of the energies of the individual nucleons. The basic question is the range of validity of this Fermi gas description and, in particular, the roles of the residual interactions and collective modes. A detailed examination of experimental level densities in light-mass system is given to provide some insight into these questions. Level densities over the first 10 MeV or so in excitation energy as deduced from neutron and proton resonances data and from spectra of low-lying bound levels are discussed. To exhibit some of the salient features of these data comparisons to independent-particle (shell) model calculations are presented. Shell structure is predicted to manifest itself through discontinuities in the single-particle level density at the Fermi energy and through variatons in the occupancy of the valence orbitals. These predictions are examined through combinatorial calculations performed with the Grover [Phys. Rev., 157, 832(1967), 185 1303(1969)] odometer method. Before the discussion of the experimenta results, statistical mechanical level densities for spherical nuclei are reviewed. After consideration of deformed nuclei, the conclusions resulting from this work are drawn. 7 figures, 3 tables
Hybrid Density Functional Study of the Local Structures and Energy Levels of CaAl2O4:Ce3.
Lou, Bibo; Jing, Weiguo; Lou, Liren; Zhang, Yongfan; Yin, Min; Duan, Chang-Kui
2018-05-03
First-principles calculations were carried out for the electronic structures of Ce 3+ in calcium aluminate phosphors, CaAl 2 O 4 , and their effects on luminescence properties. Hybrid density functional approaches were used to overcome the well-known underestimation of band gaps of conventional density functional approaches and to calculate the energy levels of Ce 3+ ions more accurately. The obtained 4f-5d excitation and emission energies show good consistency with measured values. A detailed energy diagram of all three sites is obtained, which explains qualitatively all of the luminescent phenomena. With the results of energy levels calculated by combining the hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06) and the constraint occupancy approach, we are able to construct a configurational coordinate diagram to analyze the processes of capture of a hole or an electron and luminescence. This approach can be applied for systematic high-throughput calculations in predicting Ce 3+ activated luminescent materials with a moderate computing requirement.
Modelling energy level alignment at organic interfaces and density functional theory
DEFF Research Database (Denmark)
Flores, F.; Ortega, J.; Vazquez, Patricia
2009-01-01
A review of our theoretical understanding of the band alignment at organic interfaces is presented with particular emphasis on the metal/organic (MO) case. The unified IDIS (induced density of interface states) and the ICT (integer charge transfer) models are reviewed and shown to describe qualit...
Systematics of nuclear level density parameters
International Nuclear Information System (INIS)
Bucurescu, Dorel; Egidy, Till von
2005-01-01
The level density parameters for the back-shifted Fermi gas (both without and with energy-dependent level density parameter) and the constant temperature models have been determined for 310 nuclei between 18 F and 251 Cf by fitting the complete level schemes at low excitation energies and the s-wave neutron resonance spacings at the neutron binding energies. Simple formulae are proposed for the description of the two parameters of each of these models, which involve only quantities available from the mass tables. These formulae may constitute a reliable tool for extrapolating to nuclei far from stability, where nuclear level densities cannot be measured
Level density from realistic nuclear potentials
International Nuclear Information System (INIS)
Calboreanu, A.
2006-01-01
Nuclear level density of some nuclei is calculated using a realistic set of single particle states (sps). These states are derived from the parameterization of nuclear potentials that describe the observed sps over a large number of nuclei. This approach has the advantage that one can infer level density for nuclei that are inaccessible for a direct study, but are very important in astrophysical processes such as those close to the drip lines. Level densities at high excitation energies are very sensitive to the actual set of sps. The fact that the sps spectrum is finite has extraordinary consequences upon nuclear reaction yields due to the leveling-off of the level density at extremely high excitation energies wrongly attributed so far to other nuclear effects. Single-particle level density parameter a parameter is extracted by fitting the calculated densities to the standard Bethe formula
Systematics of the level density parameters
International Nuclear Information System (INIS)
Ignatyuk, A.V.; Istekov, K.K.; Smirenkin, G.N.
1977-01-01
The excitation energy dependence of nucleus energy-level density is phenomenologically systematized in terms of the Fermi gas model. The analysis has been conducted in the atomic mass number range of A(>=)150, where the collective effects are mostly pronounced. The density parameter a(U) is obtained using data on neutron resonances. To depict energy spectra of nuclear states in the Fermi gas model (1) the contributions from collective rotational and vibrational modes (2), as well as from pair correlations (3) are also taken into account. It is shown, that at excitation energies close to the neutron binding energy all three systematics of a(U) yield practically the same energy-level densities. At high energies only the (2) and (3) systematics are valid, and at energies lower than the neutron binding energy only the last systematics will be adequate
Minimal nuclear energy density functional
Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; Perez, Rodrigo Navarro; Schunck, Nicolas
2018-04-01
We present a minimal nuclear energy density functional (NEDF) called "SeaLL1" that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ɛr=0.022 fm and a standard deviation σr=0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body (NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body (NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. We identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.
Su, Jun; Zhu, Long; Guo, Chenchen
2018-05-01
Background: Special attention has been paid to study the shell effect and odd-even staggering (OES) in the nuclear spallation. Purpose: In this paper, we investigate the influence of the nuclear level density on the OES in the 56Fe+p spallations at energies from 300 to 1500 MeV/nucleon. Method: The isospin-dependent quantum molecular dynamics (IQMD) model is applied to produce the highly excited and equilibrium remnants, which is then de-excited using the statistical model gemini. The excitation energy of the heaviest hot fragments is applied to match the IQMD model with the gemini model. In the gemini model, the statistical description of the evaporation are based on the Hauser-Feshbach formalism, in which level density prescriptions are applied. Results: By investigating the OES of the excited pre-fragments, it is found that the OES originates at the end of the decay process when the excitation energy is close to the nucleon-emission threshold energy, i.e., the smaller value of the neutron separation energy and proton separation energy. The strong influence of level density on the OES is noticed. Two types of the nuclear level densities, the discrepancy of which is only about 7% near the nucleon emission threshold energy, are used in the model. However, the calculated values of the OES differ by the factor of 3 for the relevant nuclei. Conclusions: It is suggested that, although the particle-separation energies play a key role in determining the OES, the level density at excitation energy lower than the particle-separation energies should be taken into consideration
Tables of nuclear level density parameters
International Nuclear Information System (INIS)
Chatterjee, A.; Ghosh, S.K.; Majumdar, H.
1976-03-01
The Renormalized Gas Model (RGM) has been used to calculate single particle level density parameters for more than 2000 nucleides over the range 9<=Z<=126 (15<=A<=338). Three separate tables present the elements on or near the valley of beta stability, neutron-rich fission fragment nucleides, and transitional nuclei, actinides and light-mass super heavy elements. Each table identifies the nucleus in terms of Z and N and presents the RGM deformation energy of binding, the total RGM structural energy correction over the free gas Fermi surface, and the level density parameter
Combinatorial nuclear level-density model
International Nuclear Information System (INIS)
Uhrenholt, H.; Åberg, S.; Dobrowolski, A.; Døssing, Th.; Ichikawa, T.; Möller, P.
2013-01-01
A microscopic nuclear level-density model is presented. The model is a completely combinatorial (micro-canonical) model based on the folded-Yukawa single-particle potential and includes explicit treatment of pairing, rotational and vibrational states. The microscopic character of all states enables extraction of level-distribution functions with respect to pairing gaps, parity and angular momentum. The results of the model are compared to available experimental data: level spacings at neutron separation energy, data on total level-density functions from the Oslo method, cumulative level densities from low-lying discrete states, and data on parity ratios. Spherical and deformed nuclei follow basically different coupling schemes, and we focus on deformed nuclei
Continuum Level Density in Complex Scaling Method
International Nuclear Information System (INIS)
Suzuki, R.; Myo, T.; Kato, K.
2005-01-01
A new calculational method of continuum level density (CLD) at unbound energies is studied in the complex scaling method (CSM). It is shown that the CLD can be calculated by employing the discretization of continuum states in the CSM without any smoothing technique
High Energy Density Laboratory Astrophysics
Lebedev, Sergey V
2007-01-01
During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...
Level densities in rare earth nuclei
International Nuclear Information System (INIS)
Siem, S.; Tveter, T.S.; Bergholt, L.; Guttormsen, M.; Melby, E.; Rekstad, J.
1997-01-01
An iterative procedure for simultaneous extraction of fine structure in the level density and the γ-ray strength function from a set of primary γ-ray spectra has been developed. Data from the reactions 163 Dy(3He,αγ) 172 Dy and 173 Yb(3He,αγ) 172 Yb reveals step like enhancements in the level density in the region below 5 MeV and peaks in the γ-ray strength function at low γ-energy (E γ ∼ 2 - 3.5 MeV). Tentative physical interpretations are presented. (author)
High density energy storage capacitor
International Nuclear Information System (INIS)
Whitham, K.; Howland, M.M.; Hutzler, J.R.
1979-01-01
The Nova laser system will use 130 MJ of capacitive energy storage and have a peak power capability of 250,000 MW. This capacitor bank is a significant portion of the laser cost and requires a large portion of the physical facilities. In order to reduce the cost and volume required by the bank, the Laser Fusion Program funded contracts with three energy storage capacitor producers: Aerovox, G.E., and Maxwell Laboratories, to develop higher energy density, lower cost energy storage capacitors. This paper describes the designs which resulted from the Aerovox development contract, and specifically addresses the design and initial life testing of a 12.5 kJ, 22 kV capacitor with a density of 4.2 J/in 3 and a projected cost in the range of 5 cents per joule
International Nuclear Information System (INIS)
Aydin, A.; Yalim, H.A.; Tel, E.; Sarer, B.; Unal, R.; Sarpuen, I.H.; Kaplan, A.; Dag, M.
2009-01-01
This study aims to show the dependence on the choice of the ratio of the level density parameters a f and a n corresponding to the saddle point of fission and equilibrium deformation of nucleus, respectively, of the proton induced fission cross sections of some subactinide targets. The method was employed using different level density parameter ratios for each fission cross section calculation in ALICE/ASH computer code. The ALICE/ASH code calculations were compared both with the available experimental data and with the Prokofiev systematics data. It is found that the fission cross sections dependent heavily on the choice of level density parameter ratio in the fission and neutron emission channels, a f /a n , for some subactinide nuclei. To get a good description of the measured fission cross sections for subactinide nuclei, we used a ratio of the level density parameters in the fission and neutron emission channels, a f /a n , depending both on the target-nucleus and on the energy of the projectile, in agreement with results published in literature.
Nuclear Level densities from drip line to drip line
International Nuclear Information System (INIS)
Hilaire, S.; Goriely, S.
2007-01-01
New energy-, spin-, parity-dependent level densities based on the microscopic combinatorial model are presented and compared with available experimental data as well as with other nuclear level densities usually employed in nuclear reaction codes. These microscopic level densities are made available in a table format for nearly 8500 nuclei
International Nuclear Information System (INIS)
Murray, M.
1988-02-01
The transverse energy, E/sub tau/ spectra for O 16 and S 32 incident for various elements at 200 GeVnucleon are shown. The target and projectile dependencies of the data are discussed. The energy density achieved is estimated. For O 16 on Tungsten the multiplicity spectrum is also presented as well as the pseudorapidity spectra as a function of the transverse energy. The multiplicity cross section dσdN as measured in the backward hemisphere (0.9 < /eta/ < 2.9/ is found to be very similar in shape to the transverse energy distribution dσdE/tau/ reflecting the particular geometry of nucleus nucleus nucleus collisions. The dependence on the atomic mass of the target, A/sub tau/ and projectile A/sub p/ is not what one would expect from naive considerations
International Nuclear Information System (INIS)
Lombard, R.J.; Mas, D.; Moszkowski, S.A.
1991-01-01
We discuss two expressions for the density of kinetic energy which differ by an integration by parts. Using the Wigner transform we shown that the arithmetic mean of these two terms is closely analogous to the classical value. Harmonic oscillator wavefunctions are used to illustrate the radial dependence of these expressions. We study the differences they induce through effective mass terms when performing self-consistent calculations. (author)
Experimental level densities of atomic nuclei
Energy Technology Data Exchange (ETDEWEB)
Guttormsen, M.; Bello Garrote, F.L.; Eriksen, T.K.; Giacoppo, F.; Goergen, A.; Hagen, T.W.; Klintefjord, M.; Larsen, A.C.; Nyhus, H.T.; Renstroem, T.; Rose, S.J.; Sahin, E.; Siem, S.; Tornyi, T.G.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Aiche, M.; Ducasse, Q.; Jurado, B. [University of Bordeaux, CENBG, CNRS/IN2P3, B.P. 120, Gradignan (France); Bernstein, L.A.; Bleuel, D.L. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Byun, Y.; Voinov, A. [Ohio University, Department of Physics and Astronomy, Athens, Ohio (United States); Gunsing, F. [CEA Saclay, DSM/Irfu/SPhN, Cedex (France); Lebois, L.; Leniau, B.; Wilson, J. [Institut de Physique Nucleaire d' Orsay, Orsay Cedex (France); Wiedeking, M. [iThemba LABS, P.O. Box 722, Somerset West (South Africa)
2015-12-15
It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. From the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold. (orig.)
Study of nuclear level density parameter and its temperature dependence
International Nuclear Information System (INIS)
Nasrabadi, M. N.; Behkami, A. N.
2000-01-01
The nuclear level density ρ is the basic ingredient required for theoretical studies of nuclear reaction and structure. It describes the statistical nuclear properties and is expressed as a function of various constants of motion such as number of particles, excitation energy and angular momentum. In this work the energy and spin dependence of nuclear level density will be presented and discussed. In addition the level density parameter α will be extracted from this level density information, and its temperature and mass dependence will be obtained
Recent advances in measurements of the nuclear level density
International Nuclear Information System (INIS)
John, Bency
2007-01-01
A short review of recent advances in measurements of the nuclear level density is given. First results of the inverse level density parameter - angular momentum correlation in a number of nuclei around Z∼50 shell region at an excitation energy around 0.3 MeV/nucleon are presented. Significant variations observed over and above the expected shell corrections are discussed in context of the emerging trends in microscopic calculations of the nuclear level density. (author)
Level density in the complex scaling method
International Nuclear Information System (INIS)
Suzuki, Ryusuke; Kato, Kiyoshi; Myo, Takayuki
2005-01-01
It is shown that the continuum level density (CLD) at unbound energies can be calculated with the complex scaling method (CSM), in which the energy spectra of bound states, resonances and continuum states are obtained in terms of L 2 basis functions. In this method, the extended completeness relation is applied to the calculation of the Green functions, and the continuum-state part is approximately expressed in terms of discretized complex scaled continuum solutions. The obtained result is compared with the CLD calculated exactly from the scattering phase shift. The discretization in the CSM is shown to give a very good description of continuum states. We discuss how the scattering phase shifts can inversely be calculated from the discretized CLD using a basis function technique in the CSM. (author)
State and level densities for 23<=A<=40
International Nuclear Information System (INIS)
Beckerman, M.
1975-01-01
State and level density parameters are deduced for nuclei in the mass range 23<=A<=40 by combining low energy experimental data with high energy numerical calculations. Low energy experimental information is obtained from direct level counting, s and p-wave neutron resonance measurements, charged particle resonance measurements and stripping and pickup reaction data. Numerical calculations are performed for excitation energies of from 45 to 50 MeV using realistic single particle energies deduced from experimental data. (author)
Energy vs. density on paths toward more exact density functionals.
Kepp, Kasper P
2018-03-14
Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a "path". Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness and "straying" from the "path" by separating errors in ρ and E[ρ]. A consistent path toward exactness involves minimizing both errors. Second, a suitably diverse test set of trial densities ρ' can be used to estimate the significance of errors in ρ without knowing the exact densities which are often inaccessible. To illustrate this, the systems previously studied by Medvedev et al., the first ionization energies of atoms with Z = 1 to 10, the ionization energy of water, and the bond dissociation energies of five diatomic molecules were investigated using CCSD(T)/aug-cc-pV5Z as benchmark at chemical accuracy. Four functionals of distinct designs was used: B3LYP, PBE, M06, and S-VWN. For atomic cations regardless of charge and compactness up to Z = 10, the energy effects of the different ρ are energy-wise insignificant. An interesting oscillating behavior in the density sensitivity is observed vs. Z, explained by orbital occupation effects. Finally, it is shown that even large "normal" problems such as the Co-C bond energy of cobalamins can use simpler (e.g. PBE) trial densities to drastically speed up computation by loss of a few kJ mol -1 in accuracy. The proposed method of using a test set of trial densities to estimate the sensitivity and significance of density errors of functionals may be useful for testing and designing new balanced functionals with more systematic improvement of densities and energies.
Batteries. Higher energy density than gasoline?
International Nuclear Information System (INIS)
Fischer, Michael; Werber, Mathew; Schwartz, Peter V.
2009-01-01
The energy density of batteries is two orders of magnitude below that of liquid fuels. However, this information alone cannot be used to compare batteries to liquid fuels for automobile energy storage media. Because electric motors have a higher energy conversion efficiency and lower mass than combustion engines, they can provide a higher deliverable mechanical energy density than internal combustion for most transportation applications. (author)
Effect of pairing in nuclear level density at low temperatures
International Nuclear Information System (INIS)
Rhine Kumar, A.K.; Modi, Swati; Arumugam, P.
2013-01-01
The nuclear level density (NLD) has been an interesting topic for researchers, due its importance in many aspects of nuclear physics, nuclear astrophysics, nuclear medicine, and other applied areas. The calculation of NLD helps us to understand the energy distribution of the excited levels of nuclei, entropy, specific heat, reaction cross sections etc. In this work the effect of temperature and pairing on level-density of the nucleus 116 Sn has been studied
New aspects of high energy density plasma
International Nuclear Information System (INIS)
Hotta, Eiki
2005-10-01
The papers presented at the symposium on 'New aspects of high energy density plasma' held at National Institute for Fusion Science are collected in this proceedings. The papers reflect the present status and recent progress in the experiments and theoretical works on high energy density plasma produced by pulsed power technology. The 13 of the presented papers are indexed individually. (J.P.N.)
Pueyo Bellafont, Noèlia; Bagus, Paul S; Illas, Francesc
2015-06-07
A systematic study of the N(1s) core level binding energies (BE's) in a broad series of molecules is presented employing Hartree-Fock (HF) and the B3LYP, PBE0, and LC-BPBE density functional theory (DFT) based methods with a near HF basis set. The results show that all these methods give reasonably accurate BE's with B3LYP being slightly better than HF but with both PBE0 and LCBPBE being poorer than HF. A rigorous and general decomposition of core level binding energy values into initial and final state contributions to the BE's is proposed that can be used within either HF or DFT methods. The results show that Koopmans' theorem does not hold for the Kohn-Sham eigenvalues. Consequently, Kohn-Sham orbital energies of core orbitals do not provide estimates of the initial state contribution to core level BE's; hence, they cannot be used to decompose initial and final state contributions to BE's. However, when the initial state contribution to DFT BE's is properly defined, the decompositions of initial and final state contributions given by DFT, with several different functionals, are very similar to those obtained with HF. Furthermore, it is shown that the differences of Kohn-Sham orbital energies taken with respect to a common reference do follow the trend of the properly calculated initial state contributions. These conclusions are especially important for condensed phase systems where our results validate the use of band structure calculations to determine initial state contributions to BE shifts.
Level density of radioactive doubly-magic nucleus 56Ni
International Nuclear Information System (INIS)
Santhosh Kumar, S.; Rengaiyan, R.; Victor Babu, A.; Preetha, P.
2012-01-01
In this work the single particle energies are obtained by diagonalising the Nilsson Hamiltonian in the cylindrical basis and are generated up to N =11 shells for the isotopes of Ni from A = 48-70, emphasizing the three magic nuclei viz, 48 Ni, 56 Ni and 68 Ni. The statistical quantities like excitation energy, level density parameter and nuclear level density which play the important roles in the nuclear structure and nuclear reactions can be calculated theoretically by means of the Statistical or Partition function method. Hence the statistical model approach is followed to probe the dynamical properties of the nucleus in the microscopic level
Energy density of marine pelagic fish eggs
DEFF Research Database (Denmark)
Riis-Vestergaard, J.
2002-01-01
Analysis of the literature on pelagic fish eggs enabled generalizations to be made of their energy densities, because the property of being buoyant in sea water appears to constrain the proximate composition of the eggs and thus to minimize interspecific variation. An energy density of 1.34 J mul......(-1) of total egg volume is derived for most species spawning eggs without visible oil globules. The energy density of eggs with oil globules is predicted by (σ) over cap = 1.34 + 40.61 x (J mul(-1)) where x is the fractional volume of the oil globule. (C) 2002 The Fisheries Society of the British...
High Energy Density Polymer Film Capacitors
National Research Council Canada - National Science Library
Boufelfel, Ali
2006-01-01
High-energy-density capacitors that are compact and light-weight are extremely valuable in a number of critical DoD systems that include portable field equipment, pulsed lasers, detection equipment...
Calculations on the vibrational level density in highly excited formaldehyde
International Nuclear Information System (INIS)
Rashev, Svetoslav; Moule, David C.
2003-01-01
The object of the present work is to develop a model that provides realistic estimates of the vibrational level density in polyatomic molecules in a given electronic state, at very high (chemically relevant) vibrational excitation energies. For S 0 formaldehyde (D 2 CO), acetylene, and a number of triatomics, the estimates using conventional spectroscopic formulas have yielded densities at the dissociation threshold, very much lower than the experimentally measured values. In the present work we have derived a general formula for the vibrational energy levels of a polyatomic molecule, which is a generalization of the conventional Dunham spectroscopic expansion. Calculations were performed on the vibrational level density in S 0 D 2 CO, H 2 C 2 , and NO 2 at excitation energies in the vicinity of the dissociation limit, using the newly derived formula. The results from the calculations are in reasonable agreement with the experimentally measured data
Large model-space calculation of the nuclear level density parameter
International Nuclear Information System (INIS)
Agrawal, B.K.; Samaddar, S.K.; De, J.N.; Shlomo, S.
1998-01-01
Recently, several attempts have been made to obtain nuclear level density (ρ) and level density parameter (α) within the microscopic approaches based on path integral representation of the partition function. The results for the inverse level density parameter K es and the level density as a function of excitation energy are presented
Universal Nuclear Energy Density Functional
Energy Technology Data Exchange (ETDEWEB)
Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James
2012-12-01
An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.
Global and local level density models
International Nuclear Information System (INIS)
Koning, A.J.; Hilaire, S.; Goriely, S.
2008-01-01
Four different level density models, three phenomenological and one microscopic, are consistently parameterized using the same set of experimental observables. For each of the phenomenological models, the Constant Temperature Model, the Back-shifted Fermi gas Model and the Generalized Superfluid Model, a version without and with explicit collective enhancement is considered. Moreover, a recently published microscopic combinatorial model is compared with the phenomenological approaches and with the same set of experimental data. For each nuclide for which sufficient experimental data exists, a local level density parameterization is constructed for each model. Next, these local models have helped to construct global level density prescriptions, to be used for cases for which no experimental data exists. Altogether, this yields a collection of level density formulae and parameters that can be used with confidence in nuclear model calculations. To demonstrate this, a large-scale validation with experimental discrete level schemes and experimental cross sections and neutron emission spectra for various different reaction channels has been performed
Ambient RF energy scavenging: GSM and WLAN power density measurements
Visser, H.J.; Reniers, A.C.F.; Theeuwes, J.A.C.
2009-01-01
To assess the feasibility of ambient RF energy scavenging, a survey of expected power density levels distant from GSM-900 and GSM-1800 base stations has been conducted and power density measurements have been performed in a WLAN environment. It appears that for distances ranging from 25 m to 100 m
Nuclear level density parameter 's dependence on angular momentum
International Nuclear Information System (INIS)
Aggarwal, Mamta; Kailas, S.
2009-01-01
Nuclear level densities represent a very important ingredient in the statistical Model calculations of nuclear reaction cross sections and help to understand the microscopic features of the excited nuclei. Most of the earlier experimental nuclear level density measurements are confined to low excitation energy and low spin region. A recent experimental investigation of nuclear level densities in high excitation energy and angular momentum domain with some interesting results on inverse level density parameter's dependence on angular momentum in the region around Z=50 has motivated us to study and analyse these experimental results in a microscopic theoretical framework. In the experiment, heavy ion fusion reactions are used to populate the excited and rotating nuclei and measured the α particle evaporation spectra in coincidence with ray multiplicity. Residual nuclei are in the range of Z R 48-55 with excitation energy range 30 to 40 MeV and angular momentum in 10 to 25. The inverse level density parameter K is found to be in the range of 9.0 - 10.5 with some exceptions
Realistic microscopic level densities for spherical nuclei
International Nuclear Information System (INIS)
Cerf, N.
1994-01-01
Nuclear level densities play an important role in nuclear reactions such as the formation of the compound nucleus. We develop a microscopic calculation of the level density based on a combinatorial evaluation from a realistic single-particle level scheme. This calculation makes use of a fast Monte Carlo algorithm allowing us to consider large shell model spaces which could not be treated previously in combinatorial approaches. Since our model relies on a microscopic basis, it can be applied to exotic nuclei with more confidence than the commonly used semiphenomenological formuals. An exhaustive comparison of our predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented
Density dependence of the nuclear energy-density functional
Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho
2018-01-01
Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic
Thermodynamics of excited nuclei and nuclear level densities
International Nuclear Information System (INIS)
Ramamurthy, V.S.
1977-01-01
A review has been made of the different approaches that are being used for a theoretical calculation of nuclear level densities. It is pointed out that while the numerical calculations based on the partition function approach and shell model single particle level schemes have shed important insight into the influence of nuclear shell effects on level densities and its excitation energy dependence and have brought out the inadequacy of the conventional Bethe Formula, these calculations are yet to reach a level where they can be directly used for quantitative comparisons. Some of the important drawbacks of the numerical calculations are also discussed. In this context, a new semi-empirical level density formula is described which while retaining the simplicity of analytical formulae, takes into account nuclear shell effects in a more realistic manner. (author)
Laser fusion and high energy density science
International Nuclear Information System (INIS)
Kodama, Ryosuke
2005-01-01
High-power laser technology is now opening a variety of new fields of science and technology using laser-produced plasmas. The laser plasma is now recognized as one of the important tools for the investigation and application of matter under extreme conditions, which is called high energy density science. This chapter shows a variety of applications of laser-produced plasmas as high energy density science. One of the more attractive industrial and science applications is the generation of intense pulse-radiation sources, such as the generation of electro-magnetic waves in the ranges of EUV (Extreme Ultra Violet) to gamma rays and laser acceleration of charged particles. The laser plasma is used as an energy converter in this regime. The fundamental science applications of high energy density physics are shown by introducing laboratory astrophysics, the equation of state of high pressure matter, including warm dense matter and nuclear science. Other applications are also presented, such as femto-second laser propulsion and light guiding. Finally, a new systematization is proposed to explore the possibility of the high energy density plasma application, which is called high energy plasma photonics''. This is also exploration of the boundary regions between laser technology and beam optics based on plasma physics. (author)
Condensation energy density in Bi-2212 superconductors
International Nuclear Information System (INIS)
Matsushita, Teruo; Kiuchi, Masaru; Haraguchi, Teruhisa; Imada, Takeki; Okamura, Kazunori; Okayasu, Satoru; Uchida, Satoshi; Shimoyama, Jun-ichi; Kishio, Kohji
2006-01-01
The relationship between the condensation energy density and the anisotropy parameter, γ a , has been derived for Bi-2212 superconductors in various anisotropic states by analysing the critical current density due to columnar defects introduced by heavy ion irradiation. The critical current density depended on the size of the defects, determined by the kind and irradiation energy of the ions. A significantly large critical current density of 17.0 MA cm -2 was obtained at 5 K and 0.1 T even for the defect density of a matching field of 1 T in a specimen irradiated with iodine ions. The dependence of the critical current density on the size of the defects agreed well with the prediction from the summation theory of pinning forces, and the condensation energy density could be obtained consistently from specimens irradiated with different ions. The condensation energy density obtained increased with decreasing γ a over the entire range of measurement temperature, and reached about 60% of the value for the most three-dimensional Y-123 observed by Civale et al at 5 K. This gives the reason for the very strong pinning in Bi-2212 superconductors at low temperatures. The thermodynamic critical field obtained decreased linearly with increasing temperature and extrapolated to zero at a certain characteristic temperature, T * , lower than the critical temperature, T c . T * , which seems to be associated with the superconductivity in the block layers, was highest for the optimally doped specimen. This shows that the superconductivity becomes more inhomogeneous as the doped state of a superconductor deviates from the optimum condition
Local density approximations for relativistic exchange energies
International Nuclear Information System (INIS)
MacDonald, A.H.
1986-01-01
The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented
Density and energy of supernova remnants
Energy Technology Data Exchange (ETDEWEB)
Canto, J [Manchester Univ. (UK). Dept. of Astronomy
1977-12-01
The effects of an interstellar magnetic field on the gas flow behind a strong shock front are considered. The ambient density and energy of supernova remnants are estimated from the intensity ratio of sulphur lines I(6717)/I(6731). It is found that, on average, the ambient density around galactic supernova remnants is 4 cm/sup -3/. The total energy appears to be the same for all supernova remnants (to within a factor = approximately 5). A mean value of 4 10/sup 51/ erg is found.
Ultrasonic level, temperature, and density sensor
International Nuclear Information System (INIS)
Rogers, S.C.; Miller, G.N.
1982-01-01
A sensor has been developed to measure simultaneously the level, temperature, and density of the fluid in which it is immersed. The sensor is a thin, rectangular stainless steel ribbon which acts as a waveguide and is housed in a perforated tube. The waveguide is coupled to a section of magnetostrictive magnetic-coil transducers. These tranducers are excited in an alternating sequence to interrogate the sensor with both torsional ultrasonic waves, utilizing the Wiedemann effect, and extensional ultrasonic waves, using the Joule effect. The measured torsional wave transit time is a function of the density, level, and temperature of the fluid surrounding the waveguide. The measured extensional wave transit time is a function of the temperature of the waveguide only. The sensor is divided into zones by the introduction of reflecting surfaces at measured intervals along its length. Consequently, the transit times from each reflecting surface can be analyzed to yield a temperature profile and a density profile along the length of the sensor. Improvements in acoustic wave dampener and pressure seal designs enhance the compatibility of the probe with high-temperature, high-radiation, water-steam environments and increase the likelihood of survival in such environments. Utilization of a microcomputer to automate data sampling and processing has resulted in improved resolution of the sensor
The level density parameters for fermi gas model
International Nuclear Information System (INIS)
Zuang Youxiang; Wang Cuilan; Zhou Chunmei; Su Zongdi
1986-01-01
Nuclear level densities are crucial ingredient in the statistical models, for instance, in the calculations of the widths, cross sections, emitted particle spectra, etc. for various reaction channels. In this work 667 sets of more reliable and new experimental data are adopted, which include average level spacing D D , radiative capture width Γ γ 0 at neutron binding energy and cumulative level number N 0 at the low excitation energy. They are published during 1973 to 1983. Based on the parameters given by Gilbert-Cameon and Cook the physical quantities mentioned above are calculated. The calculated results have the deviation obviously from experimental values. In order to improve the fitting, the parameters in the G-C formula are adjusted and new set of level density parameters is obsained. The parameters is this work are more suitable to fit new measurements
Angular momentum dependence of the nuclear level density parameter
International Nuclear Information System (INIS)
Aggarwal, Mamta; Kailas, S.
2010-01-01
Dependence of nuclear level density parameter on the angular momentum and temperature is investigated in a theoretical framework using the statistical theory of hot rotating nuclei. The structural effects are incorporated by including shell correction, shape, and deformation. The nuclei around Z≅50 with an excitation energy range of 30 to 40 MeV are considered. The calculations are in good agreement with the experimentally deduced inverse level density parameter values especially for 109 In, 113 Sb, 122 Te, 123 I, and 127 Cs nuclei.
Building a universal nuclear energy density functional
International Nuclear Information System (INIS)
Bertsch, G F
2007-01-01
This talk describes a new project in SciDAC II in the area of low-energy nuclear physics. The motivation and goals of the SciDAC are presented as well as an outline of the theoretical and computational methodology that will be employed. An important motivation is to have more accurate and reliable predictions of nuclear properties including their binding energies and low-energy reaction rates. The theoretical basis is provided by density functional theory, which the only available theory that can be systematically applied to all nuclei. However, other methodologies based on wave function methods are needed to refine the functionals and to make applications to dynamic processes
Numerical analysis of energy density and particle density in high energy heavy-ion collisions
International Nuclear Information System (INIS)
Fu Yuanyong; Lu Zhongdao
2004-01-01
Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared. The results show that Gauss-Laguerre formulas is a good method in calculations of high energy heavy-ion collisions. (author)
Nuclear level density variation with angular momentum induced shape transition
International Nuclear Information System (INIS)
Aggarwal, Mamta
2016-01-01
Variation of Nuclear level density (NLD) with the excitation energy and angular momentum in particular has been a topic of interest in the recent past and there have been continuous efforts in this direction on the theoretical and experimental fronts but a conclusive trend in the variation of nuclear level density parameter with angular momentum has not been achieved so far. A comprehensive investigation of N=68 isotones around the compound nucleus 119 Sb from neutron rich 112 Ru (Z=44) to neutron deficient 127 Pr (Z= 59) nuclei is presented to understand the angular momentum induced variations in inverse level density parameter and the possible influence of deformation and structural transitions on the variations on NLd
Combinatorial nuclear level density by a Monte Carlo method
International Nuclear Information System (INIS)
Cerf, N.
1994-01-01
We present a new combinatorial method for the calculation of the nuclear level density. It is based on a Monte Carlo technique, in order to avoid a direct counting procedure which is generally impracticable for high-A nuclei. The Monte Carlo simulation, making use of the Metropolis sampling scheme, allows a computationally fast estimate of the level density for many fermion systems in large shell model spaces. We emphasize the advantages of this Monte Carlo approach, particularly concerning the prediction of the spin and parity distributions of the excited states,and compare our results with those derived from a traditional combinatorial or a statistical method. Such a Monte Carlo technique seems very promising to determine accurate level densities in a large energy range for nuclear reaction calculations
Effect of interstitial low level laser stimulation in skin density
Jang, Seulki; Ha, Myungjin; Lee, Sangyeob; Yu, Sungkon; Park, Jihoon; Radfar, Edalat; Hwang, Dong Hyun; Lee, Han A.; Kim, Hansung; Jung, Byungjo
2016-03-01
As the interest in skin was increased, number of studies on skin care also have been increased. The reduction of skin density is one of the symptoms of skin aging. It reduces elasticity of skin and becomes the reason of wrinkle formation. Low level laser therapy (LLLT) has been suggested as one of the effective therapeutic methods for skin aging as in hasten to change skin density. This study presents the effect of a minimally invasive laser needle system (MILNS) (wavelength: 660nm, power: 20mW) in skin density. Rabbits were divided into three groups. Group 1 didn't receive any laser stimulation as a control group. Group 2 and 3 as test groups were exposed to MILNS with energy of 8J and 6J on rabbits' dorsal side once a week, respectively. Skin density of rabbits was measured every 12 hours by using an ultrasound skin scanner.
Calculations of nuclear energies using the energy density formalism
International Nuclear Information System (INIS)
Pu, W.W.T.
1975-01-01
The energy density formalism (EDF) is used to investigate two problems. In this formalism the energy of the nucleus is expressed as a functional of its density. The nucleus energy is obtained by minimizing the functional with respect to the density. The first problem has to do with the stability of nuclei having shapes of different degrees of central depression (bubble shapes). It is shown that the bubble shapes are energetically favorable only for unrealistically large nuclei. Particularly, the super heavy nucleus that has been suggested (Z = 114, N = 184) prefers a shape with constant central density. These results are in good agreement with earlier calculations using the liquid drop model. The second problem concerns an anomaly detected experimentally in the isotope shift of mercury. The isotope shifts among a long chain of mercury isotopes show a sudden change as the neutron number is reduced. In particular, the experimental result suggests that the effective size of the charge distributions of 183 Hg and 185 Hg are as large as that of 196 Hg. Such sudden changes in other nuclei have been attributed to a sudden onset of permanent quadruple deformation. In the case of mercury there is no experimental evidence for deformed shapes. It was, therefore, suggested that the proton distribution might develop a central depression in the lighter isotopes. The EDF is used to investigate the mercury isotope shift anomaly following the aforementioned suggestion. Specifically, nucleon densities with different degrees of central depression are generated. Energies corresponding to these densities are obtained. To allow for shell effects, nucleon densities are obtained from single-particle wave functions. Calculations are made for a few mercury isotopes, especially for 184 Hg. The results are that in all cases the energy is lower for densities corresponding to a solid spherical shape
Nonlocal kinetic-energy-density functionals
International Nuclear Information System (INIS)
Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.
1996-01-01
In this paper we present nonlocal kinetic-energy functionals T[n] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. copyright 1996 The American Physical Society
Constraints on the cosmological relativistic energy density
International Nuclear Information System (INIS)
Zentner, Andrew R.; Walker, Terry P.
2002-01-01
We discuss bounds on the cosmological relativistic energy density as a function of redshift, reviewing the big bang nucleosynthesis and cosmic microwave background bounds, updating bounds from large scale structure, and introducing a new bound from the magnitude-redshift relation for type Ia supernovae. We conclude that the standard and well-motivated assumption that relativistic energy is negligible during recent epochs is not necessitated by extant data. We then demonstrate the utility of these bounds by constraining the mass and lifetime of a hypothetical massive big bang relic particle
Systematics of nuclear mass and level density formulas
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Hisashi [Fuji Electric Co. Ltd., Kawasaki, Kanagawa (Japan)
1998-03-01
The phenomenological models of the nuclear mass and level density are close related to each other, the nuclear ground and excited state properties are described by using the parameter systematics on the mass and level density formulas. The main aim of this work is to provide in an analytical framework the improved energy dependent shell, pairing and deformation corrections generalized to the collective enhancement factors, which offer a systematic prescription over a great number of nuclear reaction cross sections. The new formulas are shown to be in close agreement with not only the empirical nuclear mass data but the measured slow neutron resonance spacings, and experimental systematics observed in the excitation energy dependent properties. (author)
High energy density, long life energy storage capacitor dielectric system
International Nuclear Information System (INIS)
Nichols, D.H.; Wilson, S.R.
1977-01-01
The evolution of energy storage dielectric systems shows a dramatic improvement in life and joule density, culminating in a 50% to 300% life improvement of polypropylene film-paper-phthalate ester over paper-castor oil depending on service. The physical and electrical drawbacks of castor oil are not present in the new system, allowing the capacitor designer to utilize the superior insulation resistance, dielectric strength, and corona resistance to full advantage. The result is longer life for equal joule density or greater joule density for equal life. Field service proof of the film-Geconol system superiority is based on 5 megajoule in operation and 16 megajoule on order
Nuclear symmetry energy in density dependent hadronic models
International Nuclear Information System (INIS)
Haddad, S.
2008-12-01
The density dependence of the symmetry energy and the correlation between parameters of the symmetry energy and the neutron skin thickness in the nucleus 208 Pb are investigated in relativistic Hadronic models. The dependency of the symmetry energy on density is linear around saturation density. Correlation exists between the neutron skin thickness in the nucleus 208 Pb and the value of the nuclear symmetry energy at saturation density, but not with the slope of the symmetry energy at saturation density. (author)
Foldable, High Energy Density Lithium Ion Batteries
Suresh, Shravan
Lithium Ion Batteries (LIBs) have become ubiquitous owing to its low cost, high energy density and, power density. Due to these advantages, LIBs have garnered a lot of attention as the primary energy storage devices in consumer electronics and electric vehicles. Recent advances in the consumer electronics research and, the drive to reduce greenhouse gases have created a demand for a shape conformable, high energy density batteries. This thesis focuses on the aforementioned two aspects of LIBs: (a) shape conformability (b) energy density and provides potential solutions to enhance them. This thesis is divided into two parts viz. (i) achieving foldability in batteries and, (ii) improving its energy density. Conventional LIBs are not shape conformable due to two limitations viz. inelasticity of metallic foils, and delamination of the active materials while bending. In the first part of the thesis (in Chapter 3), this problem is solved by replacing metallic current collector with Carbon Nanotube Macrofilms (CNMs). CNMs are superelastic films comprising of porous interconnected nanotube network. Using Molecular Dynamics (MD) simulation, we found that in the presence of an interconnected nanotube network CNMs can be fully folded. This is because the resultant stress due to bending and, the effective bending angle at the interface is reduced due to the network of nanotubes. Hence, unlike an isolated nanotube (which ruptures beyond 120 degrees of bending), a network of nanotubes can be completely folded. Thus, by replacing metallic current collector foils with CNMs, the flexibility limitation of a conventional LIB can be transcended. The second part of this thesis focusses on enhancing the energy density of LIBs. Two strategies adopted to achieve this goal are (a) removing the dead weight of the batteries, and (b) incorporating high energy density electrode materials. By incorporating CNMs, the weight of the batteries was reduced by 5-10 times due to low mass loading of
Moderate energy ions for high energy density physics experiments
International Nuclear Information System (INIS)
Grisham, L.R.
2004-01-01
This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target
AMODS and High Energy Density Sciences
International Nuclear Information System (INIS)
Rhee, Y.-J.
2011-01-01
Following a brief introduction to the Lab for Quantum Optics (LFQO) in KAERI, which has been devoted to the research on atomic spectroscopy for more than 20 years with precision measurement of atomic parameters such as isotope shift, hyperfine structures, autoionization levels and so on as well as with theoretical analysis of atomic systems by developing relativistic calculation methodologies for laser propagation and population dynamics, electron impact ionization, radiative transitions of high Z materials, etc for the application to isotope separation, the AMODS (Atomic Molecular and Optical Database Systems) which was established in 1997 and has been a member of International Data Center Network of IAEA since then is explained by giving an information on the data sources and internal structure of the compilation of AMODS. Since AMODS was explained in detail during last DCN meeting, just a brief introduction is given this time. Then more specific research themes carried out in LFQO in conjunction with A+M data are discussed, including (1) electron impact ionization processes of W, Mo, Be, C, etc, (2) spectra of highly charged ions of W, Xe, and Si, (3) dielectronic recombination process of Fe ion. Also given are the talk about research activities about the simulations of high energy density experiments such as those performed at (1) GEKKO laser facility (Japan) for X-ray photoionization of low temperature Si plasma, which can explain the unsolved arguments on the X-ray spectra of black holes and/or neutron stars, (2) VULCAN laser facility (UK) for two dimensional compression of cylindrical target and investigation of hot electron transport in the compressed target plasma to understand the fast ignition process of laser fusion, (3) LULI laser facility (France) and TITAN laser facility (USA) for one dimensional compression of aluminum targets with different laser energies, and (4) PALS facility (Czech Republic) for 'Laser Induced Cavity Pressure Acceleration' to
Single particle level density in a finite depth potential well
International Nuclear Information System (INIS)
Shlomo, S.; Kolomietz, V.M.; Dejbakhsh, H.
1997-01-01
We consider the single particle level density g(ε) of a realistic finite depth potential well, concentrating on the continuum (ε>0) region. We carry out quantum-mechanical calculations of the partial level density g l (ε), associated with a well-defined orbital angular momentum l≤40, using the phase-shift derivative method and the Greens-function method and compare the results with those obtained using the Thomas-Fermi approximation. We also numerically calculate g(ε) as a l sum of g l (ε) up to a certain value of scr(l) max ≤40 and determine the corresponding smooth level densities using the Strutinsky smoothing procedure. We demonstrate, in accordance with Levinson close-quote s theorem, that the partial contribution g l (ε) to the single particle level density from continuum states has positive and negative values. However, g(ε) is nonnegative. We also point out that this is not the case for an energy-dependent potential well. copyright 1997 The American Physical Society
SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS
Energy Technology Data Exchange (ETDEWEB)
Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J
2010-12-20
We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.
Calculation of the level density parameter using semi-classical approach
International Nuclear Information System (INIS)
Canbula, B.; Babacan, H.
2011-01-01
The level density parameters (level density parameter a and energy shift δ) for back-shifted Fermi gas model have been determined for 1136 nuclei for which complete level scheme is available. Level density parameter is calculated by using the semi-classical single particle level density, which can be obtained analytically through spherical harmonic oscillator potential. This method also enables us to analyze the Coulomb potential's effect on the level density parameter. The dependence of this parameter on energy has been also investigated. Another parameter, δ, is determined by fitting of the experimental level scheme and the average resonance spacings for 289 nuclei. Only level scheme is used for optimization procedure for remaining 847 nuclei. Level densities for some nuclei have been calculated by using these parameter values. Obtained results have been compared with the experimental level scheme and the resonance spacing data.
Diffuse Waves and Energy Densities Near Boundaries
Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.
2007-12-01
Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of
Magnetic energy density and plasma energy density in the Venus wake
Perez De Tejada, H. A.; Durand-Manterola, H. J.; Lundin, R.; Barabash, S.; Zhang, T.; Reyes-Ruiz, M.; Sauvaud, J.
2013-05-01
Magnetic energy density and plasma energy density in the Venus wake H. Pérez-de-Tejada1, H. Durand-Manterola1, R. Lundin2, S. Barabash2, T. L. Zhang3, A. Sauvaud4, M. Reyes-Ruiz5. 1 - Institute of Geophysics, UNAM, México, D. F. 2 - Swedish Institute of Space Physics, Umea, Sweden 3 - Space Research Institute, Graz, Austria 4 - CESR, Toulouse, France 5 - Institute of Astronomy, UNAM, Ensenada, México Measurements conducted in the Venus wake with the magnetometer and the Aspera-4 plasma instrument of the Venus Express spacecraft show that average values of the kinetic energy density of the plasma in that region are comparable to average local values of the magnetic energy density. Observations were carried out in several orbits of the Venus Express near the midnight plane and suggest that the total energy content in the Venus wake is distributed with nearly comparable values between the plasma and the magnetic field. Processes associated with the solar wind erosion of planetary ions from the polar magnetic regions of the ionosphere are involved in the comparable distribution of both energy components.
DEFF Research Database (Denmark)
Van Assche, P. H. M.; Baader, H. A.; Koch, H. R.
1971-01-01
The low-energy spectrum of the 55Mn(n,γ)56 Mn reaction has been studied with a γ-diffraction spectrometer. These data allowed the construction of a level scheme for 56Mn with two previously unobserved doublets. High-energy γ-transitions to the low-energy states have been measured for different...
Nuclear level density of 166Er with static deformation
International Nuclear Information System (INIS)
Nasrabadi, M.N.
2006-01-01
The level densities of 166 Er is calculated using the microscopic theory of interacting fermions and is compared with experimental. It is concluded that the data can be reproduced with level density formalism for nuclei with static deformation
Perspectives on High-Energy-Density Physics
Drake, R. Paul
2008-11-01
Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very non-traditional plasmas. High-energy density (HED) plasmas are often examples, variously involving strong Coulomb interactions and few particles per Debeye sphere, dominant radiation effects, strongly relativistic effects, or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of ``plasma''. This presentation will focus on two types of HED plasmas that exhibit non-traditional behavior. Our first example will be the plasmas produced by extremely strong shock waves. Shock waves are present across the entire realm of plasma densities, often in space or astrophysical contexts. HED shock waves (at pressures > 1 Mbar) enable studies in many areas, from equations of state to hydrodynamics to radiation hydrodynamics. We will specifically consider strongly radiative shocks, in which the radiative energy fluxes are comparable to the mechanical energy fluxes that drive the shocks. Modern HED facilities can produce such shocks, which are also present in dense, energetic, astrophysical systems such as supernovae. These shocks are also excellent targets for advanced simulations due to their range of spatial scales and complex radiation transport. Our second example will be relativistic plasmas. In general, these vary from plasmas containing relativistic particle beams, produced for some decades in the laboratory, to the relativistic thermal plasmas present for example in pulsar winds. Laboratory HED relativistic plasmas to date have been those produced by laser beams of irradiance ˜ 10^18 to 10^22 W/cm^2 or by accelerator-produced HED electron beams. These have applications ranging from generation of intense x-rays to production of proton beams for radiation therapy to acceleration of electrons. Here we will focus on electron acceleration, a spectacular recent success and a rare
Local thermodynamic equilibrium in rapidly heated high energy density plasmas
International Nuclear Information System (INIS)
Aslanyan, V.; Tallents, G. J.
2014-01-01
Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance
Impurity energy level in the Haldane gap
International Nuclear Information System (INIS)
Wang Wei; Lu Yu
1995-11-01
An impurity bond J' in a periodic 1D antiferromagnetic spin 1 chain with exchange J is considered. Using the numerical density matrix renormalization group method, we find an impurity energy level in the Haldane gap, corresponding to a bound state near the impurity bond. When J' J. The impurity level appears only when the deviation dev = (J'- J)/J' is greater than B c , which is close to 0.3 in our calculation. (author). 15 refs, 4 figs
Study of nuclear level densities for exotic nuclei
International Nuclear Information System (INIS)
Nasrabadi, M. N.; Sepiani, M.
2012-01-01
Nuclear level density is one of the properties of nuclei with widespread applications in astrophysics and nuclear medicine. Since there has been little experimental and theoretical research on the study of nuclei which are far from stability line, studying nuclear level density for these nuclei is of crucial importance. Also, as nuclear level density is an important input for nuclear research codes, hence studying the methods for calculation of this parameter is essential. Besides introducing various methods and models for calculating nuclear level density for practical applications, we used exact spectra distribution (SPDM) for determining nuclear level density of two neutron and proton enriched exotic nuclei with the same mass number.
Coulomb displacement energies and neutron density distributions
International Nuclear Information System (INIS)
Shlomo, S.
1979-01-01
We present a short review of the present status of the theory of Coulomb displacement energies, ΔEsub(c), discussing the Okamoto-Nolem-Schiffer anomaly and its solution. We emphasize, in particular, that contrary to previous hopes, ΔEsub(c) does not determine rsub(ex), the root-mean square (rms) radius of the excess (valence) neutron density distribution. Instead, ΔEsub(c) is very sensitive to the value of Δr = rsub(n) - rsub(p), the difference between the rms radii of the density distributions of all neutrons and all protons. For neutron rich nuclei, such as 48 Ca and 208 Pb, a value of Δr = 0.1 fm is found to be consistent with ΔEsub(c). This value of Δr, which is considerably smaller than that (of 0.2 - 0.3 fm) predicted by some common Hartree-Fock calculations, seems to be confirmed by very recent experimental results. (orig.)
Energy vs. density on paths toward exact density functionals
DEFF Research Database (Denmark)
Kepp, Kasper Planeta
2018-01-01
Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a “path”. Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness...
Recent experimental results on level densities for compound reaction calculations
International Nuclear Information System (INIS)
Voinov, A.V.
2012-01-01
There is a problem related to the choice of the level density input for Hauser-Feshbach model calculations. Modern computer codes have several options to choose from but it is not clear which of them has to be used in some particular cases. Availability of many options helps to describe existing experimental data but it creates problems when it comes to predictions. Traditionally, different level density systematics are based on experimental data from neutron resonance spacing which are available for a limited spin interval and one parity only. On the other hand reaction cross section calculations use the total level density. This can create large uncertainties when converting the neutron resonance spacing to the total level density that results in sizable uncertainties in cross section calculations. It is clear now that total level densities need to be studied experimentally in a systematic manner. Such information can be obtained only from spectra of compound nuclear reactions. The question is does level densities obtained from compound nuclear reactions keep the same regularities as level densities obtained from neutron resonances- Are they consistent- We measured level densities of 59-64 Ni isotopes from proton evaporation spectra of 6,7 Li induced reactions. Experimental data are presented. Conclusions of how level density depends on the neutron number and on the degree of proximity to the closed shell ( 56 Ni) are drawn. The level density parameters have been compared with parameters obtained from the analysis of neutron resonances and from model predictions
Statistical interpretation of low energy nuclear level schemes
Energy Technology Data Exchange (ETDEWEB)
Egidy, T von; Schmidt, H H; Behkami, A N
1988-01-01
Nuclear level schemes and neutron resonance spacings yield information on level densities and level spacing distributions. A total of 75 nuclear level schemes with 1761 levels and known spins and parities was investigated. The A-dependence of level density parameters is discussed. The spacing distributions of levels near the groundstate indicate transitional character between regular and chaotic properties while chaos dominates near the neutron binding energy.
Building a Universal Nuclear Energy Density Functional
Energy Technology Data Exchange (ETDEWEB)
Carlson, Joe A. [Michigan State Univ., East Lansing, MI (United States); Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James
2012-12-30
During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.
Resonance phenomena at high level density
International Nuclear Information System (INIS)
Sobeslavsky, E.; Dittes, F.M.; Rotter, I.; Technische Univ. Dresden
1994-11-01
We investigate the behaviour of resonances as a function of the coupling strength between bound and unbound states on the basis of a simple S-matrix model. Resonance energies and widths are calculated for well isolated, overlapping and strongly overlapping resonance states. The formation of shorter and longer time scales (trapping effect) is traced. We illustrate that the cross section results from an interference of all resonance states in spite of the fact that their lifetimes may be very different. (orig.)
Microelectromechanical high-density energy storage/rapid release system
Rodgers, M. Steven; Allen, James J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Samuel L.
1999-08-01
One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.
Frontiers of controlling energy levels at interfaces
Koch, Norbert
The alignment of electron energy levels at interfaces between semiconductors, dielectrics, and electrodes determines the function and efficiency of all electronic and optoelectronic devices. Reliable guidelines for predicting the level alignment for a given material combination and methods to adjust the intrinsic energy landscape are needed to enable efficient engineering approaches. These are sufficiently understood for established electronic materials, e.g., Si, but for the increasing number of emerging materials, e.g., organic and 2D semiconductors, perovskites, this is work in progress. The intrinsic level alignment and the underlying mechanisms at interfaces between organic and inorganic semiconductors are discussed first. Next, methods to alter the level alignment are introduced, which all base on proper charge density rearrangement at a heterojunction. As interface modification agents we use molecular electron acceptors and donors, as well as molecular photochromic switches that add a dynamic aspect and allow device multifunctionality. For 2D semiconductors surface transfer doping with molecular acceptors/donors transpires as viable method to locally tune the Fermi-level position in the energy gap. The fundamental electronic properties of a prototypical 1D interface between intrinsic and p-doped 2D semiconductor regions are derived from local (scanning probe) and area-averaged (photoemission) spectroscopy experiments. Future research opportunities for attaining unsurpassed interface control through charge density management are discussed.
Probing the density content of the nuclear symmetry energy
Indian Academy of Sciences (India)
Abstract. The nature of equation of state for the neutron star matter is crucially governed by the density dependence of the nuclear symmetry energy. We attempt to probe the behaviour of the nuclear symmetry energy around the saturation density by exploiting the empirical values for volume and surface symmetry energy ...
On the study of level density parameters for some deformed light nuclei
International Nuclear Information System (INIS)
Sonmezoglu, S.
2005-01-01
The nuclear level density, which is the number of energy levels/MeV at an excitation energy Ex , is a characteristic property of every nucleus. Total level densities are among the key quantities in statistical calculations in many fields, such as nuclear physics, astrophysics, spallation s neutrons measurements, and studies of intermediate-energy heavy-ion collisions. The nuclear level density is an important physical quantity both from the fundamental point of view as well as in understanding the particle and gamma ray emission in various reactions. In light and heavy deformed nucleus, the gamma-ray energies drop with decreasing spin in a very regular fashion. The nuclear level density parameters have been usually used in investigation of the nuclear level density. This parameter itself changes with excitation energy depending on both shell effect in the single particle model and different excitation modes in the collective models. In this study, the energy level density parameters of some deformed light nucleus (40 C a, 47 T i, 59 N i, 79 S e, 80 B r) are determined by using energy spectrum of the interest nucleus for different band. In calculation of energy-level density parameters dependent upon excitation energy of nuclei studied, a model was considered which relies on the fact that energy levels of deformed light nuclei, just like those of deformed heavy nuclei, are equidistant and which relies on collective motions of their nucleons. The present calculation results have been compared with the corresponding experimental and theoretical results. The obtained results are in good agreement with the experimental results
Energy density and rate limitations in structural composite supercapacitors
Snyder, J. F.; Gienger, E.; Wetzel, E. D.; Xu, K.
2012-06-01
The weight and volume of conventional energy storage technologies greatly limits their performance in mobile platforms. Traditional research efforts target improvements in energy density to reduce device size and mass. Enabling a device to perform additional functions, such as bearing mechanical load, is an alternative approach as long as the total mass efficiency exceeds that of the individual materials it replaces. Our research focuses on structural composites that function as batteries and supercapacitors. These multifunctional devices could be used to replace conventional structural components, such as vehicle frame elements, to provide significant system-level weight reductions and extend mission times. Our approach is to design structural properties directly into the electrolyte and electrode materials. Solid polymer electrolyte materials bind the system and transfer load to the fibers while conducting ions between the electrodes. Carbon fiber electrodes provide a route towards optimizing both energy storage and load-bearing capabilities, and may also obviate the need for a separate current collector. The components are being integrated using scalable, cost-effective composite processing techniques that are amenable to complex part shapes. Practical considerations of energy density and rate behavior are described here as they relate to materials used. Our results highlight the viability as well as the challenges of this multifunctional approach towards energy storage.
Effect of vibrational states on nuclear level density
International Nuclear Information System (INIS)
Plujko, V. A.; Gorbachenko, O. M.
2007-01-01
Simple methods to calculate a vibrational enhancement factor of a nuclear level density with allowance for damping of collective state are considered. The results of the phenomenological approach and the microscopic quasiparticle-phonon model are compared. The practical method of calculation of a vibrational enhancement factor and level density parameters is recommended
Generalized Freud's equation and level densities with polynomial
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 81; Issue 2. Generalized Freud's equation and level densities with polynomial potential. Akshat Boobna Saugata Ghosh. Research Articles Volume 81 ... Keywords. Orthogonal polynomial; Freud's equation; Dyson–Mehta method; methods of resolvents; level density.
On exact and approximate exchange-energy densities
DEFF Research Database (Denmark)
Springborg, Michael; Dahl, Jens Peder
1999-01-01
Based on correspondence rules between quantum-mechanical operators and classical functions in phase space we construct exchange-energy densities in position space. Whereas these are not unique but depend on the chosen correspondence rule, the exchange potential is unique. We calculate this exchange......-energy density for 15 closed-shell atoms, and compare it with kinetic- and Coulomb-energy densities. It is found that it has a dominating local-density character, but electron-shell effects are recognizable. The approximate exchange-energy functionals that have been proposed so far are found to account only...
High Energy Density Dielectrics for Pulsed Power Applications
National Research Council Canada - National Science Library
Wu, Richard L; Bray, Kevin R
2008-01-01
This report was developed under a SBIR contract. Aluminum oxynitride (AlON) capacitors exhibit several promising characteristics for high energy density capacitor applications in extreme environments...
COMBINATION OF DENSITY AND ENERGY MODULATION IN MICROBUNCHING ANALYSIS
Energy Technology Data Exchange (ETDEWEB)
Tsai, Cheng Ying [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Li, Rui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-05-01
Microbunching instability (MBI) has been one of the most challenging issues in the transport of high-brightness electron beams for modern recirculating or energy recovery linac machines. Recently we have developed and implemented a Vlasov solver [1] to calculate the microbunching gain for an arbitrary beamline lattice, based on the extension of existing theoretical formulation [2-4] for the microbunching amplification from an initial density perturbation to the final density modulation. For more thorough analyses, in addition to the case of (initial) density to (final) density amplification, we extend in this paper the previous formulation to more general cases, including energy to density, density to energy and energy to energy amplifications for a recirculation machine. Such semi-analytical formulae are then incorporated into our Vlasov solver, and qualitative agreement is obtained when the semi-analytical Vlasov results are compared with particle tracking simulation using ELEGANT [5].
Properties of 112Cd from the (n,n'γ) reaction: Levels and level densities
International Nuclear Information System (INIS)
Garrett, P. E.; Lehmann, H.; Jolie, J.; McGrath, C. A.; Yeh, Minfang; Younes, W.; Yates, S. W.
2001-01-01
Levels in 112 Cd have been studied through the (n,n'γ) reaction with monoenergetic neutrons. An extended set of experiments that included excitation functions, γ-ray angular distributions, and γγ coincidence measurements was performed. A total of 375 γ rays were placed in a level scheme comprising 200 levels (of which 238 γ-ray assignments and 58 levels are newly established) up to 4 MeV in excitation. No evidence to support the existence of 47 levels as suggested in previous studies was found, and these have been removed from the level scheme. From the results, a comparison of the level density is made with the constant temperature and back-shifted Fermi gas models. The back-shifted Fermi gas model with the Gilbert-Cameron spin cutoff parameter provided the best overall fit. Without using the neutron resonance information and only fitting the cumulative number of low-lying levels, the level density parameters extracted are a sensitive function of the maximum energy used in the fit
Nuclear level density and gamma strength function in 64Fe
Smith, M. K.; Spyrou, A.; Ahn, T.; Dombos, A. C.; Liddick, S. N.; Montes, F.; Naqvi, F.; Richman, D.; Schatz, H.; Brown, J.; Childers, K.; Crider, B. P.; Prokop, C. J.; Deleeuw, E.; Deyoung, P. A.; Langer, C.; Lewis, R.; Meisel, Z.; Pereira, J.; Quinn, S. J.; Schmidt, K.; Larsen, A. C.; Guttormsen, M.
2017-09-01
The Fe-Cd mass region exhibits enhanced collectivity and an unexpected increased in gamma-decay probability at low energies. These effects could be significant for r-process nucleosynthesis, where masses, beta-decay probabilities, and neutron capture cross sections are among the most important inputs. Neutron capture is notoriously difficult to measure; so the recent development of an indirect technique to constrain neutron-captures far from stability is especially valuable. This is the beta-Oslo method, which allows the extraction of the nuclear level density and gamma-ray strength function to compute neutron-capture cross sections. This work reports on 64Fe, populated via beta-decay of 64Mn at the National Superconducting Cyclotron Laboratory and measured with the 4pi Summing NaI (SuN) total gamma-ray spectrometer.
Symmetry Energy as a Function of Density and Mass
International Nuclear Information System (INIS)
Danielewicz, Pawel; Lee, Jenny
2007-01-01
Energy in nuclear matter is, in practice, completely characterized at different densities and asymmetries, when the density dependencies of symmetry energy and of energy of symmetric matter are specified. The density dependence of the symmetry energy at subnormal densities produces mass dependence of nuclear symmetry coefficient and, thus, can be constrained by that latter dependence. We deduce values of the mass dependent symmetry coefficients, by using excitation energies to isobaric analog states. The coefficient systematic, for intermediate and high masses, is well described in terms of the symmetry coefficient values of a a V = (31.5-33.5) MeV for the volume coefficient and a a S = (9-12) MeV for the surface coefficient. These two further correspond to the parameter values describing density dependence of symmetry energy, of L∼95 MeV and K sym ∼25 MeV
Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar
2016-01-01
Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...
Dietary energy density: Applying behavioural science to weight management.
Rolls, B J
2017-09-01
Studies conducted by behavioural scientists show that energy density (kcal/g) provides effective guidance for healthy food choices to control intake and promote satiety. Energy density depends upon a number of dietary components, especially water (0 kcal/g) and fat (9 kcal/g). Increasing the proportion of water or water-rich ingredients, such as vegetables or fruit, lowers a food's energy density. A number of studies show that when the energy density of the diet is reduced, both adults and children spontaneously decrease their ad libitum energy intake. Other studies show that consuming a large volume of a low-energy-dense food such as soup, salad, or fruit as a first course preload can enhance satiety and reduce overall energy intake at a meal. Current evidence suggests that energy density influences intake through a complex interplay of cognitive, sensory, gastrointestinal, hormonal and neural influences. Other studies that focus on practical applications show how the strategic incorporation of foods lower in energy density into the diet allows people to eat satisfying portions while improving dietary patterns. This review discusses studies that have led to greater understanding of the importance of energy density for food intake regulation and weight management.
Energy Density and Weight Loss: Feel Full on Fewer Calories
... Behavior. 2009;97:609. Rouhani MH, et al. Associations between dietary energy density and obesity: A systematic review and meta-analysis of observational studies. Nutrition. 2016;32:1037. Stelmach-Mardas M, et al. Link between food energy density and body weight changes in obese ...
Electrode/Dielectric Strip For High-Energy-Density Capacitor
Yen, Shiao-Ping S.
1994-01-01
Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.
Energy density functional analysis of shape coexistence in 44S
International Nuclear Information System (INIS)
Li, Z. P.; Yao, J. M.; Vretenar, D.; Nikšić, T.; Meng, J.
2012-01-01
The structure of low-energy collective states in the neutron-rich nucleus 44 S is analyzed using a microscopic collective Hamiltonian model based on energy density functionals (EDFs). The calculated triaxial energy map, low-energy spectrum and corresponding probability distributions indicate a coexistence of prolate and oblate shapes in this nucleus.
Clustering and Symmetry Energy in a Low Density Nuclear Gas
International Nuclear Information System (INIS)
Kowalski, S.; Natowitz, J.B.; Shlomo, S.; Wada, R.; Hagel, K.; Wang, J.; Materna, T.; Chen, Z.; Ma, Y.G.; Qin, L.; Botvina, A.S.; Fabris, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pesente, S.; Rizzi, V.; Viesti, G.; Cinausero, M.; Prete, G.; Keutgen, T.; El Masri, Y.; Majka, Z.; Ono, A.
2007-01-01
Temperature and density dependent symmetry energy coefficients have been derived from isoscaling analyses of the yields of nuclei with A= 64 Zn projectiles with 92 Mo and 197 Au target nuclei. The symmetry energies at low density are larger than those obtained in mean field calculations, reflecting the clustering of low density nuclear matter. They are in quite good agreement with results of a recently proposed Virial Equation of State calculation
Moments Method for Shell-Model Level Density
International Nuclear Information System (INIS)
Zelevinsky, V; Horoi, M; Sen'kov, R A
2016-01-01
The modern form of the Moments Method applied to the calculation of the nuclear shell-model level density is explained and examples of the method at work are given. The calculated level density practically exactly coincides with the result of full diagonalization when the latter is feasible. The method provides the pure level density for given spin and parity with spurious center-of-mass excitations subtracted. The presence and interplay of all correlations leads to the results different from those obtained by the mean-field combinatorics. (paper)
Energy confinement of high-density tokamaks
Schüller, F.C.; Schram, D.C.; Coppi, B.; Sadowski, W.
1977-01-01
Neoclassical ion heat conduction is the major energy loss mechanism in the center of an ohmically heated high-d. tokamak discharge (n>3 * 1020 m-3). This fixes the mutual dependence of plasma quantities on the axis and leads to scaling laws for the poloidal b and energy confinement time, given the
High energy density propulsion systems and small engine dynamometer
Hays, Thomas
2009-07-01
Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.
Trivial constraints on orbital-free kinetic energy density functionals
Luo, Kai; Trickey, S. B.
2018-03-01
Approximate kinetic energy density functionals (KEDFs) are central to orbital-free density functional theory. Limitations on the spatial derivative dependencies of KEDFs have been claimed from differential virial theorems. We identify a central defect in the argument: the relationships are not true for an arbitrary density but hold only for the minimizing density and corresponding chemical potential. Contrary to the claims therefore, the relationships are not constraints and provide no independent information about the spatial derivative dependencies of approximate KEDFs. A simple argument also shows that validity for arbitrary v-representable densities is not restored by appeal to the density-potential bijection.
Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan
2017-12-15
The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Update of axion CDM energy density
International Nuclear Information System (INIS)
Huh, Ji-Haeng
2008-01-01
We update cosmological bound on axion model. The contribution from the anharmonic effect and the newly introduced initial overshoot correction are considered. We present an explicit formula for the axion relic density in terms of the QCD scale Λ QCD , the current quark masses m q 's and the Peccei-Quinn scale F a , including firstly introduced 1.85 factor which is from the initial overshoot.
Testing of the level density segment of the RIPL
International Nuclear Information System (INIS)
Capote, Roberto
2000-01-01
A comparison between RIPL phenomenological state density parameterizations and microscopical state density (SD) codes was performed for nickel and samarium isotopes. All the codes were shown to be complete. More work is needed on calculation of the collective enhancement of the level densities to improve currently used phenomenological recipes. It was shown that phenomenological closed formulae for particle-hole state density fails to describe microscopical calculation for magic nuclei. For deformed nuclei, like Sm-152, the agreement of Williams closed formulae considering Kalbach pairing correction with microscopical SID calculations was very good. (author)
Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua
2017-12-01
The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.
Single-particle energies and density of states in density functional theory
van Aggelen, H.; Chan, G. K.-L.
2015-07-01
Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.
The Influence of Decreased Levels of High Density Lipoprotein ...
African Journals Online (AJOL)
Background: Changes in lipoproteins levels in sickle cell disease (SCD) patients are well.known, but the physiological ramifications of the low levels observed have not been entirely resolved. Aim: The aim of this study is to evaluate the impact of decreased levels of high density lipoprotein cholesterol (HDL.c) on ...
Unified model of nuclear mass and level density formulas
International Nuclear Information System (INIS)
Nakamura, Hisashi
2001-01-01
The objective of present work is to obtain a unified description of nuclear shell, pairing and deformation effects for both ground state masses and level densities, and to find a new set of parameter systematics for both the mass and the level density formulas on the basis of a model for new single-particle state densities. In this model, an analytical expression is adopted for the anisotropic harmonic oscillator spectra, but the shell-pairing correlation are introduced in a new way. (author)
Microscopic calculation of level densities: the shell model Monte Carlo approach
International Nuclear Information System (INIS)
Alhassid, Yoram
2012-01-01
The shell model Monte Carlo (SMMC) approach provides a powerful technique for the microscopic calculation of level densities in model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We discuss a number of developments: (i) Spin distribution. We used a spin projection method to calculate the exact spin distribution of energy levels as a function of excitation energy. In even-even nuclei we find an odd-even staggering effect (in spin). Our results were confirmed in recent analysis of experimental data. (ii) Heavy nuclei. The SMMC approach was extended to heavy nuclei. We have studied the crossover between vibrational and rotational collectivity in families of samarium and neodymium isotopes in model spaces of dimension approx. 10 29 . We find good agreement with experimental results for both state densities and 2 > (where J is the total spin). (iii) Collective enhancement factors. We have calculated microscopically the vibrational and rotational enhancement factors of level densities versus excitation energy. We find that the decay of these enhancement factors in heavy nuclei is correlated with the pairing and shape phase transitions. (iv) Odd-even and odd-odd nuclei. The projection on an odd number of particles leads to a sign problem in SMMC. We discuss a novel method to calculate state densities in odd-even and odd-odd nuclei despite the sign problem. (v) State densities versus level densities. The SMMC approach has been used extensively to calculate state densities. However, experiments often measure level densities (where levels are counted without including their spin degeneracies.) A spin projection method enables us to also calculate level densities in SMMC. We have calculated the SMMC level density of 162 Dy and found it to agree well with experiments
Longitudinal density modulation and energy conversion in intense beams
International Nuclear Information System (INIS)
Harris, J. R.; Neumann, J. G.; Tian, K.; O'Shea, P. G.
2007-01-01
Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams
Extraction of level density and γ strength function from primary γ spectra
International Nuclear Information System (INIS)
Schiller, A.; Bergholt, L.; Guttormsen, M.; Melby, E.; Rekstad, J.; Siem, S.
2000-01-01
We present a new iterative procedure to extract the level density and the γ strength function from primary γ spectra for energies close up to the neutron binding energy. The procedure is tested on simulated spectra and on data from the 173 Yb( 3 He,α) 172 Yb reaction
Postmortem validation of breast density using dual-energy mammography
Energy Technology Data Exchange (ETDEWEB)
Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A. [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)
2014-08-15
Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.
Postmortem validation of breast density using dual-energy mammography
International Nuclear Information System (INIS)
Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.
2014-01-01
Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer
International Nuclear Information System (INIS)
Kessides, Ioannis N.; Wade, David C.
2011-01-01
This paper employs a framework of dynamic energy analysis to model the growth potential of alternative electricity supply infrastructures as constrained by innate physical energy balance and dynamic response limits. Coal-fired generation meets the criteria of longevity (abundance of energy source) and scalability (ability to expand to the multi-terawatt level) which are critical for a sustainable energy supply chain, but carries a very heavy carbon footprint. Renewables and nuclear power, on the other hand, meet both the longevity and environmental friendliness criteria. However, due to their substantially different energy densities and load factors, they vary in terms of their ability to deliver net excess energy and attain the scale needed for meeting the huge global energy demand. The low power density of renewable energy extraction and the intermittency of renewable flows limit their ability to achieve high rates of indigenous infrastructure growth. A significant global nuclear power deployment, on the other hand, could engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses and errors can have ecological and social impacts that are catastrophic and irreversible. Thus, the transition to a low carbon economy is likely to prove much more challenging than early optimists have claimed. - Highlights: → We model the growth potential of alternative electricity supply infrastructures. → Coal is scalable and abundant but carries a heavy carbon footprint. → Renewables and nuclear meet the longevity and environmental friendliness criteria. → The low power density and intermittency of renewables limit their growth potential. → Nuclear power continues to raise concerns about proliferation, safety, and waste.
Quantum Phenomena in High Energy Density Plasmas
Energy Technology Data Exchange (ETDEWEB)
Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)
2017-05-10
The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV
Nuclear level densities with pairing and self-consistent ground-state shell effects
Arnould, M
1981-01-01
Nuclear level density calculations are performed using a model of fermions interacting via the pairing force, and a realistic single particle potential. The pairing interaction is treated within the BCS approximation with different pairing strength values. The single particle potentials are derived in the framework of an energy-density formalism which describes self-consistently the ground states of spherical nuclei. These calculations are extended to statistically deformed nuclei, whose estimated level densities include rotational band contributions. The theoretical results are compared with various experimental data. In addition, the level densities for several nuclei far from stability are compared with the predictions of a back-shifted Fermi gas model. Such a comparison emphasizes the possible danger of extrapolating to unknown nuclei classical level density formulae whose parameter values are tailored for known nuclei. (41 refs).
Postmortem validation of breast density using dual-energy mammography
Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.
2014-01-01
Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dua...
Negative vacuum energy densities and the causal diamond measure
International Nuclear Information System (INIS)
Salem, Michael P.
2009-01-01
Arguably a major success of the landscape picture is the prediction of a small, nonzero vacuum energy density. The details of this prediction depend in part on how the diverging spacetime volume of the multiverse is regulated, a question that remains unresolved. One proposal, the causal diamond measure, has demonstrated many phenomenological successes, including predicting a distribution of positive vacuum energy densities in good agreement with observation. In the string landscape, however, the vacuum energy density is expected to take positive and negative values. We find the causal diamond measure gives a poor fit to observation in such a landscape - in particular, 99.6% of observers in galaxies seemingly just like ours measure a vacuum energy density smaller than we do, most of them measuring it to be negative.
Workshop on extremely high energy density plasmas and their diagnostics
International Nuclear Information System (INIS)
Ishii, Shozo
2001-09-01
Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)
Cosmic-ray energy densities in star-forming galaxies
Directory of Open Access Journals (Sweden)
Persic Massimo
2017-01-01
Full Text Available The energy density of cosmic ray protons in star forming galaxies can be estimated from π0-decay γ-ray emission, synchrotron radio emission, and supernova rates. To galaxies for which these methods can be applied, the three methods yield consistent energy densities ranging from Up ~ 0.1 − 1 eV cm−3 to Up ~ 102 − 103 eV cm−3 in galaxies with low to high star-formation rates, respectively.
Fifth International Conference on High Energy Density Physics
Energy Technology Data Exchange (ETDEWEB)
Beg, Farhat
2017-07-05
The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.
Workshop on extremely high energy density plasmas and their diagnostics
Energy Technology Data Exchange (ETDEWEB)
Ishii, Shozo (ed.)
2001-09-01
Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)
The creation of high energy densities with antimatter beams
International Nuclear Information System (INIS)
Gibbs, W.R.; Kruk, J.W.; Rice Univ., Houston, TX
1989-01-01
The use of antiprotons (and antideuterons) for the study of the behavior of nuclear matter at high energy density is considered. It is shown that high temperatures and high energy densities can be achieved for small volumes. Also investigated is the strangeness production in antimatter annihilation. It is found that the high rate of Lambda production seen in a recent experiment is easily understood. The Lambda and K-short rapidity distributions are also reproduced by the model considered. 11 refs., 6 figs
Research on high energy density plasmas and applications
International Nuclear Information System (INIS)
1999-01-01
Recently, technologies on lasers, accelerators, and pulse power machines have been significantly advanced and input power density covers the intensity range from 10 10 W/cm 2 to higher than 10 20 W/cm 2 . As the results, high pressure gas and solid targets can be heated up to very high temperature to create hot dense plasmas which have never appeared on the earth. The high energy density plasmas opened up new research fields such as inertial confinement fusion, high brightness X-ray radiation sources, interiors of galactic nucleus,supernova, stars and planets, ultra high pressure condensed matter physics, plasma particle accelerator, X-ray laser, and so on. Furthermore, since these fields are intimately connected with various industrial sciences and technologies, the high energy density plasma is now studied in industries, government institutions, and so on. This special issue of the Journal of Plasma Physics and Nuclear Fusion Research reviews the high energy density plasma science for the comprehensive understanding of such new fields. In May, 1998, the review committee for investigating the present status and the future prospects of high energy density plasma science was established in the Japan Society of Plasma Science and Nuclear Fusion Research. We held three committee meetings to discuss present status and critical issues of research items related to high energy density plasmas. This special issue summarizes the understandings of the committee. This special issue consists of four chapters: They are Chapter 1: Physics important in the high energy density plasmas, Chapter 2: Technologies related to the plasma generation; drivers such as lasers, pulse power machines, particle beams and fabrication of various targets, Chapter 3: Plasma diagnostics important in high energy density plasma experiments, Chapter 4: A variety of applications of high energy density plasmas; X-ray radiation, particle acceleration, inertial confinement fusion, laboratory astrophysics
Level-density parameter of nuclei at finite temperature
International Nuclear Information System (INIS)
Gregoire, C.; Kuo, T.T.S.; Stout, D.B.
1991-01-01
The contribution of particle-particle (hole-hole) and of particle-hole ring diagrams to the nuclear level-density parameter at finite temperature is calculated. We first derive the correlated grand potential with the above ring diagrams included to all orders by way of a finite temperature RPA equation. An expression for the correlated level-density parameter is then obtained by differentiating the grand potential. Results obtained for the 40 Ca nucleus with realistic matrix elements derived from the Paris potential are presented. The contribution of the RPA correlations is found to be important, being significantly larger than typical Hartree-Fock results. The temperature dependence of the level-density parameter derived in the present work is generally similar to that obtained in a schematic model. Comparison with available experimental data is discussed. (orig.)
Many-body theory and Energy Density Functionals
Energy Technology Data Exchange (ETDEWEB)
Baldo, M. [INFN, Catania (Italy)
2016-07-15
In this paper a method is first presented to construct an Energy Density Functional on a microscopic basis. The approach is based on the Kohn-Sham method, where one introduces explicitly the Nuclear Matter Equation of State, which can be obtained by an accurate many-body calculation. In this way it connects the functional to the bare nucleon-nucleon interaction. It is shown that the resulting functional can be performing as the best Gogny force functional. In the second part of the paper it is shown how one can go beyond the mean-field level and the difficulty that can appear. The method is based on the particle-vibration coupling scheme and a formalism is presented that can handle the correct use of the vibrational degrees of freedom within a microscopic approach. (orig.)
Ultimate energy density of observable cold baryonic matter.
Lattimer, James M; Prakash, Madappa
2005-03-25
We demonstrate that the largest measured mass of a neutron star establishes an upper bound to the energy density of observable cold baryonic matter. An equation of state-independent expression satisfied by both normal neutron stars and self-bound quark matter stars is derived for the largest energy density of matter inside stars as a function of their masses. The largest observed mass sets the lowest upper limit to the density. Implications from existing and future neutron star mass measurements are discussed.
Level density of random matrices for decaying systems
International Nuclear Information System (INIS)
Haake, F.; Izrailev, F.; Saher, D.; Sommers, H.-J.
1991-01-01
Analytical and numerical results for the level density of a certain class of random non-Hermitian matrices H=H+iΓ are presented. The conservative part H belongs to the Gaussian orthogonal ensemble while the damping piece Γ is quadratic in Gaussian random numbers and may describe the decay of resonances through various channels. In the limit of a large matrix dimension the level density assumes a surprisingly simple dependence on the relative strength of the damping and the number of channels. 18 refs.; 4 figs
The relation between food price, energy density and diet quality
Directory of Open Access Journals (Sweden)
Margareta Bolarić
2013-01-01
Full Text Available Low energy density diet, high in fruits and vegetables, is related to lower obesity risk and to better health status, but is more expensive. High energy density diet, high in added sugar and fats, is more affordable, but is related to higher obesity and chronic diseases risk. The aim of this study was to report prices according to energy density (low vs. high of food items and to show how food affordability could affect food choice and consumers’ health. Data was collected for 137 raw and processed foods from three purchase sites in Zagreb (one representative for supermarket, one smaller shop and green market. Results showed that low energy density food is more expensive than high energy density food (for example, the price of 1000 kcal from green zucchini (15 kcal/100 g is 124.20 kn while the price of 1000 kcal from sour cream (138 kcal/100 g is 13.99 kn. Food energy price was significantly different (p<0.05 between food groups with highest price for vegetable products (159.04 ± 36.18 kn/1000 kcal and raw vegetables (97.90 ± 50.13 kn/1000 kcal and lowest for fats (8.49 ± 1.22 kn/1000 kcal and cereals and products (5.66 ± 0.76 kn/1000 kcal. Negative correlation (Spearman r=-0.72, p<0.0001 was observed for energy density (kcal/100 g and price of 1000 kcal. Therefore, it is advisable to develop strategies in order to reduce price of low energy density food and encourage its intake since it would improve diet quality, which could lead to better costumers’ health.
C. Klauberg; A. T. Hudak; B. C. Bright; L. Boschetti; M. B. Dickinson; R. L. Kremens; C. A. Silva
2018-01-01
Fire radiative energy density (FRED, J m-2) integrated from fire radiative power density (FRPD, W m-2) observations of landscape-level fires can present an undersampling problem when collected from fixed-wing aircraft. In the present study, the aircraft made multiple passes over the fire at ~3 min intervals, thus failing to observe most of the FRPD emitted as the flame...
Maksud, F A N; Kakehasi, A M; Guimarães, M F B R; Machado, C J; Barbosa, A J A
2017-05-18
Generalized bone loss can be considered an extra-articular manifestation of rheumatoid arthritis (RA) that may lead to the occurrence of fractures, resulting in decreased quality of life and increased healthcare costs. The peptide ghrelin has demonstrated to positively affect osteoblasts in vitro and has anti-inflammatory actions, but the studies that correlate ghrelin plasma levels and RA have contradictory results. We aimed to evaluate the correlation between total ghrelin plasma levels, density of ghrelin-immunoreactive cells in the gastric mucosa, and bone mineral density (BMD) in twenty adult women with established RA with 6 months or more of symptoms (mean age of 52.70±11.40 years). Patients with RA presented higher ghrelin-immunoreactive cells density in gastric mucosa (P=0.008) compared with healthy females. There was a positive relationship between femoral neck BMD and gastric ghrelin cell density (P=0.007). However, these same patients presented a negative correlation between plasma ghrelin levels and total femoral BMD (P=0.03). The present results indicate that ghrelin may be involved in bone metabolism of patients with RA. However, the higher density of ghrelin-producing cells in the gastric mucosa of these patients does not seem to induce a corresponding elevation in the plasma levels of this peptide.
Directory of Open Access Journals (Sweden)
F.A.N. Maksud
Full Text Available Generalized bone loss can be considered an extra-articular manifestation of rheumatoid arthritis (RA that may lead to the occurrence of fractures, resulting in decreased quality of life and increased healthcare costs. The peptide ghrelin has demonstrated to positively affect osteoblasts in vitro and has anti-inflammatory actions, but the studies that correlate ghrelin plasma levels and RA have contradictory results. We aimed to evaluate the correlation between total ghrelin plasma levels, density of ghrelin-immunoreactive cells in the gastric mucosa, and bone mineral density (BMD in twenty adult women with established RA with 6 months or more of symptoms (mean age of 52.70±11.40 years. Patients with RA presented higher ghrelin-immunoreactive cells density in gastric mucosa (P=0.008 compared with healthy females. There was a positive relationship between femoral neck BMD and gastric ghrelin cell density (P=0.007. However, these same patients presented a negative correlation between plasma ghrelin levels and total femoral BMD (P=0.03. The present results indicate that ghrelin may be involved in bone metabolism of patients with RA. However, the higher density of ghrelin-producing cells in the gastric mucosa of these patients does not seem to induce a corresponding elevation in the plasma levels of this peptide.
A high energy density relaxor antiferroelectric pulsed capacitor dielectric
Energy Technology Data Exchange (ETDEWEB)
Jo, Hwan Ryul; Lynch, Christopher S. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095 (United States)
2016-01-14
Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb{sub 0.88}La{sub 0.08})(Zr{sub 0.91}Ti{sub 0.09})O{sub 3} was found to be an ideal candidate. La{sup 3+} doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm{sup 3} with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.
Histogram plots and cutoff energies for nuclear discrete levels
International Nuclear Information System (INIS)
Belgya, T.; Molnar, G.; Fazekas, B.; Oestoer, J.
1997-05-01
Discrete level schemes for 1277 nuclei, from 6 Li through 251 Es, extracted from the Evaluated Nuclear Structure Data File were analyzed. Cutoff energies (U max ), indicating the upper limit of level scheme completeness, were deduced from the inspection of histograms of the cumulative number of levels. Parameters of the constant-temperature level density formula (nuclear temperature T and energy shift U 0 ) were obtained by means of the least square fit of the formula to the known levels below cutoff energy. The results are tabulated for all 1277 nuclei allowing for an easy and reliable application of the constant-temperature level density approach. A complete set of cumulative plots of discrete levels is also provided. (author). 5 figs, 2 tabs
Evaluation of the Automatic Density Compensation for Pressurizer Level Measurement
International Nuclear Information System (INIS)
Jeong, Insoo; Min, Seohong; Ahn, Myunghoon
2014-01-01
When using two transmitters, it is difficult for the operators to identify the correct level of the pressurizer (PZR) upon failure of one of the two transmitters. For this reason, Korean Utility Requirements Document (KURD) requires that the operators to use three independent level indicators. Two hot calibrated transmitters and one cold calibrated transmitter compose PZR level transmitters in APR1400. In this paper, the deviation between cold calibration and hot calibration is evaluated, and the application of compensated PZR level measurement and uncompen-sated PZR level measurement during the normal operation of APR1400 are introduced. The PZR level signals for APR1400 come in three channels. To satisfy the KURD requirements for PZR level measurement, and at the same time to accomplish correction design and implementation, applicability and differences between hot calibration and cold calibration, compensated level and uncompensated level were evaluated as follows: For proper indication of PZR levels under normal operating condition, two of the three transmitters went through hot calibration and the remaining one transmitter went through cold calibration. This was to allow indicating entire regions of PZR regardless of the plant operation modes. For automatic density compensation per KURD requirements, the algorithm of the density compensated PZR level implemented in the DCS controller and PRV logic is adopted as a signal validation method
Parity dependence of the nuclear level density at high excitation
International Nuclear Information System (INIS)
Rao, B.V.; Agrawal, H.M.
1995-01-01
The basic underlying assumption ρ(l+1, J)=ρ(l, J) in the level density function ρ(U, J, π) has been checked on the basis of high quality data available on individual resonance parameters (E 0 , Γ n , J π ) for s- and p-wave neutrons in contrast to the earlier analysis where information about p-wave resonance parameters was meagre. The missing level estimator based on the partial integration over a Porter-Thomas distribution of neutron reduced widths and the Dyson-Mehta Δ 3 statistic for the level spacing have been used to ascertain that the s- and p-wave resonance level spacings D(0) and D(1) are not in error because of spurious and missing levels. The present work does not validate the tacit assumption ρ(l+1, J)=ρ(l, J) and confirms that the level density depends upon parity at high excitation. The possible implications of the parity dependence of the level density on the results of statistical model calculations of nuclear reaction cross sections as well as on pre-compound emission have been emphasized. (orig.)
Effects of energy content and energy density of pre-portioned entrées on energy intake.
Blatt, Alexandria D; Williams, Rachel A; Roe, Liane S; Rolls, Barbara J
2012-10-01
Pre-portioned entrées are commonly consumed to help control portion size and limit energy intake. The influence of entrée characteristics on energy intake, however, has not been well studied. We determined how the effects of energy content and energy density (ED, kcal/g) of pre-portioned entrées combine to influence daily energy intake. In a crossover design, 68 non-dieting adults (28 men and 40 women) were provided with breakfast, lunch, and dinner on 1 day a week for 4 weeks. Each meal included a compulsory, manipulated pre-portioned entrée followed by a variety of unmanipulated discretionary foods that were consumed ad libitum. Across conditions, the entrées were varied in both energy content and ED between a standard level (100%) and a reduced level (64%). Results showed that in men, decreases in the energy content and ED of pre-portioned entrées acted independently and added together to reduce daily energy intake (both P kcal/day; P lunch, but at dinner and for the entire day the effects depended on the interaction of the two factors (P daily energy intake in women by 14% (289 ± 35 kcal/day; P daily energy intake and could influence the effectiveness of such foods for weight management.
Alpha particle emission as a probe of the level density in highly excited A∼200 nuclei
International Nuclear Information System (INIS)
Fabris, D.; Fioretto, E.; Viesti, G.; Cinausero, M.; Gelli, N.; Hagel, K.; Lucarelli, F.; Natowitz, J.B.; Nebbia, G.; Prete, G.; Wada, R.
1994-01-01
The alpha particle emission from 90 to 140 MeV 19 F+ 181 Ta fusion-evaporation reactions has been studied. The comparisons of the experimental spectral shapes and multiplicities with statistical model predictions indicate a need to use an excitation energy dependent level-density parameter a=A/K in which K increases with excitation energy. This increase is more rapid than that in lower mass nuclei. The effect of this change in level density on the prescission multiplicities in fission is significant
Ultra-stiff metallic glasses through bond energy density design.
Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M
2017-07-05
The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.
Split energy level radiation detection
International Nuclear Information System (INIS)
Barnes, G.T.
1986-01-01
This patent describes an energy discriminating radiation detector comprising: (a) a first element comprising a first material of a kind which is preferentially responsive to penetrative radiation of a first energy range; (b) a second element comprising a second material different in kind from the first material and of a kind which is preferentially responsive to penetrative radiation of second energy range extending higher than the first energy range. The element is positioned to receive radiation which has penetrated through a portion of the first element; and (c) a filter of penetrative radiation interposed between the first and second elements
Non-empirical energy density functional for the nuclear structure
International Nuclear Information System (INIS)
Rot ival, V.
2008-09-01
The energy density functional (EDF) formalism is the tool of choice for large-scale low-energy nuclear structure calculations both for stable experimentally known nuclei whose properties are accurately reproduced and systems that are only theoretically predicted. We highlight in the present dissertation the capability of EDF methods to tackle exotic phenomena appearing at the very limits of stability, that is the formation of nuclear halos. We devise a new quantitative and model-independent method that characterizes the existence and properties of halos in medium- to heavy-mass nuclei, and quantifies the impact of pairing correlations and the choice of the energy functional on the formation of such systems. These results are found to be limited by the predictive power of currently-used EDFs that rely on fitting to known experimental data. In the second part of this dissertation, we initiate the construction of non-empirical EDFs that make use of the new paradigm for vacuum nucleon-nucleon interactions set by so-called low-momentum interactions generated through the application of renormalization group techniques. These soft-core vacuum potentials are used as a step-stone of a long-term strategy which connects modern many-body techniques and EDF methods. We provide guidelines for designing several non-empirical models that include in-medium many-body effects at various levels of approximation, and can be handled in state-of-the art nuclear structure codes. In the present work, the first step is initiated through the adjustment of an operator representation of low-momentum vacuum interactions using a custom-designed parallel evolutionary algorithm. The first results highlight the possibility to grasp most of the relevant physics for low-energy nuclear structure using this numerically convenient Gaussian vertex. (author)
An exposition on Friedmann cosmology with negative energy densities
International Nuclear Information System (INIS)
Nemiroff, Robert J.; Joshi, Ravi; Patla, Bijunath R.
2015-01-01
How would negative energy density affect a classic Friedmann cosmology? Although never measured and possibly unphysical, certain realizations of quantum field theories leaves the door open for such a possibility. In this paper we analyze the evolution of a universe comprising varying amounts of negative energy forms. Negative energy components have negative normalized energy densities, Ω < 0. They include negative phantom energy with an equation of state parameter w < −1, negative cosmological constant: w=−1, negative domain walls: w = −2/3, negative cosmic strings: w=−1/3, negative mass: w = 0, negative radiation: w = 1/3 and negative ultralight: w > 1/3. Assuming that such energy forms generate pressure like perfect fluids, the attractive or repulsive nature of negative energy components are reviewed. The Friedmann equation is satisfied only when negative energy forms are coupled to a greater magnitude of positive energy forms or positive curvature. We show that the solutions exhibit cyclic evolution with bounces and turnovers.The future and fate of such universes in terms of curvature, temperature, acceleration, and energy density are reviewed. The end states are dubbed ''big crunch,' '' big void,' or ''big rip' and further qualified as ''warped',''curved', or ''flat',''hot' versus ''cold', ''accelerating' versus ''decelerating' versus ''coasting'. A universe that ends by contracting to zero energy density is termed ''big poof.' Which contracting universes ''bounce' in expansion and which expanding universes ''turnover' into contraction are also reviewed
Generalized Freud's equation and level densities with polynomial potential
Boobna, Akshat; Ghosh, Saugata
2013-08-01
We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.
High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries
Directory of Open Access Journals (Sweden)
Guiming Zhong
2018-03-01
Full Text Available Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx with superior performance through a direct gas fluorination method. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1,073 Wh kg−1 and an excellent power density of 21,460 W kg−1 at a high current density of 10 A g−1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.
Lipsky, Leah M
2009-11-01
The inverse relation between energy density (kcal/g) and energy cost (price/kcal) has been interpreted to suggest that produce (fruit, vegetables) is more expensive than snacks (cookies, chips). The objective of this study was to show the methodologic weakness of comparing energy density with energy cost. The relation between energy density and energy cost was replicated in a random-number data set. Additionally, observational data were collected for produce and snacks from an online supermarket. Variables included total energy (kcal), total weight (g), total number of servings, serving size (g/serving), and energy density (kcal/g). Price measures included energy cost ($/kcal), total price ($), unit price ($/g), and serving price ($/serving). Two-tailed t tests were used to compare price measures by food category. Relations between energy density and price measures within food categories were examined with the use of Spearman rank correlation analysis. The relation between energy density and energy cost was shown to be driven by the algebraic properties of these variables. Food category was strongly correlated with both energy density and food price measures. Energy cost was higher for produce than for snacks. However, total price and unit price were lower for produce. Serving price and serving size were greater for produce than for snacks. Within food categories, energy density was uncorrelated with most measures of food price, except for a weak positive correlation with serving price within the produce category. The findings suggest the relation between energy density and food price is confounded by food category and depends on which measure of price is used.
Estimation of energy density of Li-S batteries with liquid and solid electrolytes
Li, Chunmei; Zhang, Heng; Otaegui, Laida; Singh, Gurpreet; Armand, Michel; Rodriguez-Martinez, Lide M.
2016-09-01
With the exponential growth of technology in mobile devices and the rapid expansion of electric vehicles into the market, it appears that the energy density of the state-of-the-art Li-ion batteries (LIBs) cannot satisfy the practical requirements. Sulfur has been one of the best cathode material choices due to its high charge storage (1675 mAh g-1), natural abundance and easy accessibility. In this paper, calculations are performed for different cell design parameters such as the active material loading, the amount/thickness of electrolyte, the sulfur utilization, etc. to predict the energy density of Li-S cells based on liquid, polymeric and ceramic electrolytes. It demonstrates that Li-S battery is most likely to be competitive in gravimetric energy density, but not volumetric energy density, with current technology, when comparing with LIBs. Furthermore, the cells with polymer and thin ceramic electrolytes show promising potential in terms of high gravimetric energy density, especially the cells with the polymer electrolyte. This estimation study of Li-S energy density can be used as a good guidance for controlling the key design parameters in order to get desirable energy density at cell-level.
Rydberg energies using excited state density functional theory
International Nuclear Information System (INIS)
Cheng, C.-L.; Wu Qin; Van Voorhis, Troy
2008-01-01
We utilize excited state density functional theory (eDFT) to study Rydberg states in atoms. We show both analytically and numerically that semilocal functionals can give quite reasonable Rydberg energies from eDFT, even in cases where time dependent density functional theory (TDDFT) fails catastrophically. We trace these findings to the fact that in eDFT the Kohn-Sham potential for each state is computed using the appropriate excited state density. Unlike the ground state potential, which typically falls off exponentially, the sequence of excited state potentials has a component that falls off polynomially with distance, leading to a Rydberg-type series. We also address the rigorous basis of eDFT for these systems. Perdew and Levy have shown using the constrained search formalism that every stationary density corresponds, in principle, to an exact stationary state of the full many-body Hamiltonian. In the present context, this means that the excited state DFT solutions are rigorous as long as they deliver the minimum noninteracting kinetic energy for the given density. We use optimized effective potential techniques to show that, in some cases, the eDFT Rydberg solutions appear to deliver the minimum kinetic energy because the associated density is not pure state v-representable. We thus find that eDFT plays a complementary role to constrained DFT: The former works only if the excited state density is not the ground state of some potential while the latter applies only when the density is a ground state density.
Energy density, stopping and flow in ultrarelativistic heavy ion collisions
International Nuclear Information System (INIS)
Sorge, H.; von Keitz, A.; Mattiello, R.; Stoecker, H.; Greiner, W.
1990-01-01
The Lorentz invariant molecular dynamics approach (RQMD) is employed to investigate the space-time evolution of heavy ion collisions at energies (E kin = 10AGeV hor-ellipsis 200AGeV). The calculations for various nucleus nucleus reactions show a high degree of stopping power. The importance of secondary rescattering at these beam energies is demonstrated. The computed nucleon rapidity distributions are compared to available experimental data. It is demonstrated that nonlinear, collective effects like full stopping of target and projectile and matter flow could be expected for heavy projectiles only. For nuclear collisions in the Booster era at BNL and for the lead beam at CERN SPS the authors predict a stimulating future: then a nearly equilibrated, long lived (8 fm/c) macroscopic volume of very high energy density (> 1 GeV/fm 3 ) and baryon density (> 5 times ground state density) is produced
KIDS Nuclear Energy Density Functional: 1st Application in Nuclei
Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok
We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.
Navarro Pérez, R.; Schunck, N.; Dyhdalo, A.; Furnstahl, R. J.; Bogner, S. K.
2018-05-01
in closed-shell nuclei, and the fission barrier of 240Pu. Quantitatively, they perform noticeably better than the more phenomenological Skyrme functionals. Conclusions: The inclusion of higher-order terms in the chiral perturbation expansion seems to produce a systematic improvement in predicting nuclear binding energies while the impact on other observables is not really significant. This result is especially promising since all the fits have been performed at the single-reference level of the energy density functional approach, where important collective correlations such as center-of-mass correction, rotational correction, or zero-point vibrational energies have not been taken into account yet.
International Nuclear Information System (INIS)
Morikawa, Masayuki
2012-01-01
This study, using novel establishment-level microdata from the Energy Consumption Statistics, empirically analyzes the effect of urban density on energy intensity in the service sector. According to the analysis, the efficiency of energy consumption in service establishments is higher for densely populated cities. Quantitatively, after controlling for differences among industries, energy efficiency increases by approximately 12% when the density in a municipality population doubles. This result suggests that, given a structural transformation toward the service economy, deregulation of excessive restrictions hindering urban agglomeration, and investment in infrastructure in city centers would contribute to environmentally friendly economic growth.
High energy density capacitors fabricated by thin film technology
International Nuclear Information System (INIS)
Barbee, T W; Johnson, G W; Wagner, A V.
1999-01-01
Low energy density in conventional capacitors severely limits efforts to miniaturize power electronics and imposes design limitations on electronics in general. We have successfully applied physical vapor deposition technology to greatly increase capacitor energy density. The high dielectric breakdown strength we have achieved in alumina thin films allows high energy density to be achieved with this moderately low dielectric constant material. The small temperature dependence of the dielectric constant, and the high reliability, high resistivity, and low dielectric loss of Al 2 O 3 , make it even more appealing. We have constructed single dielectric layer thin film capacitors and shown that they can be stacked to form multilayered structures with no loss in yield for a given capacitance. Control of film growth morphology is critical for achieving the smooth, high quality interfaces between metal and dielectric necessary for device operation at high electric fields. Most importantly, high rate deposition with extremely low particle generation is essential for achieving high energy storage at a reasonable cost. This has been achieved by reactive magnetron sputtering in which the reaction to form the dielectric oxide has been confined to the deposition surface. By this technique we have achieved a yield of over 50% for 1 cm 2 devices with an energy density of 14 J per cubic centimeter of Al 2 O 3 dielectric material in 1.2 kV, 4 nF devices. By further reducing defect density and increasing the dielectric constant of the material, we will be able to increase capacitance and construct high energy density devices to meet the requirements of applications in power electronics
International Nuclear Information System (INIS)
March, N.H.
2006-08-01
A differential equation for the Dirac density matrix γ(r, r'), given ground-state electron- and kinetic energy-densities, has been derived by March and Suhai for one- and two-level occupancy. For ten-electron spin-compensated spherical systems, it is shown here that γ ≡ γ[ρ, t g ] where ρ and t g are electron- and kinetic energy-densities. The philosophy of March and Suhai is confirmed beyond two-level filling. An important byproduct of the present approach is an explicit expression for the one-body potential of DFT in terms of the p-shell electron density. (author)
Wind power statistics and an evaluation of wind energy density
Energy Technology Data Exchange (ETDEWEB)
Jamil, M.; Parsa, S.; Majidi, M. [Materials and Energy Research Centre, Tehran (Iran, Islamic Republic of)
1995-11-01
In this paper the statistical data of fifty days` wind speed measurements at the MERC- solar site are used to find out the wind energy density and other wind characteristics with the help of the Weibull probability distribution function. It is emphasized that the Weibull and Rayleigh probability functions are useful tools for wind energy density estimation but are not quite appropriate for properly fitting the actual wind data of low mean speed, short-time records. One has to use either the actual wind data (histogram) or look for a better fit by other models of the probability function. (Author)
Comparison of three methods to reduce energy density: effects on daily energy intake
Williams, Rachel A.; Roe, Liane S.; Rolls, Barbara J.
2013-01-01
Reductions in food energy density can decrease energy intake, but it is not known if the effects depend on the way that energy density is reduced. We investigated whether three methods of reducing energy density (decreasing fat, increasing fruit and vegetables, and adding water) differed in their effects on energy intake across the day. In a crossover design, 59 adults ate breakfast, lunch, and dinner in the laboratory once a week for four weeks. Across conditions, the entrées were either sta...
High Energy Density Sciences with High Power Lasers at SACLA
Kodama, Ryosuke
2013-10-01
One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.
Metal hydrides based high energy density thermal battery
International Nuclear Information System (INIS)
Fang, Zhigang Zak; Zhou, Chengshang; Fan, Peng; Udell, Kent S.; Bowman, Robert C.; Vajo, John J.; Purewal, Justin J.; Kekelia, Bidzina
2015-01-01
Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH 2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH 2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH 2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV 0.62 Mn 1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles
High energy density fusing using the Compact Torus
International Nuclear Information System (INIS)
Hartman, C.W.
1989-01-01
My remarks are concerned with employing the Compact Torus magnetic field configuration to produce fusion energy. In particular, I would like to consider high energy density regimes where the pressures generated extend well beyond the strength of materials. Under such conditions, where nearby walls are vaporized and pushed aside each shot, the technological constraints are very different from usual magnetic fusion and may admit opportunities for an improved fusion reactor design. 5 refs., 3 figs
On the relation between the statistical γ-decay and the level density in 162Dy
International Nuclear Information System (INIS)
Henden, L.; Bergholt, L.; Guttormsen, M.; Rekstad, J.; Tveter, T.S.
1994-12-01
The level density of low-spin states (0-10ℎ) in 162 Dy has been determined from the ground state up to approximately 6 MeV of excitation energy. Levels in the excitation region up to 8 MeV were populated by means of the 163 Dy( 3 He, α) reaction, and the first-generation γ-rays in the decay of these states has been isolated. The energy distribution of the first-generation γ-rays provides a new source of information about the nuclear level density over a wide energy region. A broad peak is observed in the first-generation spectra, and the authors suggest an interpretation in terms of enhanced M1 transitions between different high-j Nilsson orbitals. 30 refs., 9 figs., 2 tabs
Novel nanostructured materials for high energy density supercapacitors
Energy Technology Data Exchange (ETDEWEB)
Yuan, C.Z.; Zhang, X.G. [Nanjing Univ. of Aeronautics and Astronautics (China). College of Material Science and Engineering
2010-07-01
Researchers are currently examining methods of improving energy density while not sacrificing the high power density of supercapacitors. In this study, nanostructured materials assembled from nanometer-sized building blocks with mesoporosity were synthesized in order investigate diffusion time, kinetics, and capacitances. Petal-like cobalt hydroxide Co(OH){sub 2} mesocrystals, urchin-like Co(OH){sub 2} and dicobalt tetroxide (Co{sub 2}O{sub 4}) ordered arrays as well as N{sub i}O microspheres were assembled from 0-D nanoparticles, 1-D mesoporous nanowires and nanobelts, and 2-D mesoporous nanopetals. The study showed that all the synthesized nanostructured materials delivered larger energy densities while showing electrochemical stability at high rates.
Creating high energy density in nuclei with energetic antiparticles
International Nuclear Information System (INIS)
Gibbs, W.R.
1986-01-01
The possibility of creating a phase change in nuclear matter using energetic antiprotons and antideuterons is examined. It is found that energy densities of the order of 2 GeV/c can be obtained for periods of approx.2 fm/c with the proper experimental selection of events. 10 refs., 7 figs
Estimate of energy density on CYCLOPS spatial filter pinhole structure
International Nuclear Information System (INIS)
Guch, S. Jr.
1974-01-01
The inclusion of a spatial filter between the B and C stages in CYCLOPS to reduce the effects of small-scale beam self-focusing is discussed. An estimate is made of the energy density to which the pinhole will be subjected, and the survivability of various pinhole materials and designs is discussed
Neutron stars as probes of extreme energy density matter
Indian Academy of Sciences (India)
2015-05-07
May 7, 2015 ... Neutron stars have long been regarded as extraterrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, some of the recent advances made in astrophysical observations and related theory are highlighted. Although the focus is on the much ...
Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density
Energy Technology Data Exchange (ETDEWEB)
Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.
2005-11-07
The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.
High energy density in matter produced by heavy ion beams
International Nuclear Information System (INIS)
1987-08-01
This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)
Density-scaling exponents and virial potential-energy correlation ...
Indian Academy of Sciences (India)
This paper investigates the relation between the density-scaling exponent γ and the virial potential energy correlation coefficient R at several thermodynamic state points in three dimensions for the generalized (2n, n) Lennard-Jones (LJ) system for n = 4, 9, 12, 18, as well as for the standard n = 6 LJ system in two,three, and ...
Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density
International Nuclear Information System (INIS)
Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.
2005-01-01
The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.
Internal wave energy flux from density perturbations in nonlinear stratifications
Lee, Frank M.; Allshouse, Michael R.; Swinney, Harry L.; Morrison, P. J.
2017-11-01
Tidal flow over the topography at the bottom of the ocean, whose density varies with depth, generates internal gravity waves that have a significant impact on the energy budget of the ocean. Thus, understanding the energy flux (J = p v) is important, but it is difficult to measure simultaneously the pressure and velocity perturbation fields, p and v . In a previous work, a Green's-function-based method was developed to calculate the instantaneous p, v , and thus J , given a density perturbation field for a constant buoyancy frequency N. Here we extend the previous analytic Green's function work to include nonuniform N profiles, namely the tanh-shaped and linear cases, because background density stratifications that occur in the ocean and some experiments are nonlinear. In addition, we present a finite-difference method for the general case where N has an arbitrary profile. Each method is validated against numerical simulations. The methods we present can be applied to measured density perturbation data by using our MATLAB graphical user interface EnergyFlux. PJM was supported by the U.S. Department of Energy Contract DE-FG05-80ET-53088. HLS and MRA were supported by ONR Grant No. N000141110701.
Connections between population density, energy use, and GHG emissions in water networks
Energy Technology Data Exchange (ETDEWEB)
Filion, Y.R. [Queen' s Univ., Kingston, ON (Canada). Dept. of Civil Engineering
2007-07-01
There is a growing concern that urban sprawl and highly dispersed urban infrastructure in cities is posing significant environmental impacts. However, there is no agreement on the suitability of interventions such as population intensification on reducing environmental impacts. This paper investigated the connection between population intensification and environmental impact in water distribution networks. Specifically, it examined the relationship between population density, annual per capita energy use, and annual per capita greenhouse gas (GHG) emissions in water distribution networks. It also examined which population densities produce low levels of annual per capita energy use and GHG emissions. An analytical model of a trunk main was developed to connect population density to energy use and GHG emissions. The model considered energy use in five life activities of the trunk main, namely pipe fabrication, pipe repair, water pumping, and pipe recycling and/or disposal. The energy use model was combined with emission factors and electricity fuel-source mixtures from four Canadian regions (Atlantic Provinces, Quebec, Ontario, and Alberta) to compute representative levels of annual per capita GHGs emitted by the trunk main. It was concluded that increasing population density from 10 ca/ha to 150 ca/ha reduced energy use and GHG emissions by 67per cent and that increasing population density beyond 150 ca/ha produces no significant decrease in annual per capita energy use and GHG emissions. Further analysis on looped networks is required to verify these preliminary findings. 10 refs., 3 tabs., 2 figs.
Experimental nuclear level densities and γ-ray strength functions in Sc and V isotopes
International Nuclear Information System (INIS)
Larsen, A. C.; Guttormsen, M.; Ingebretsen, F.; Messelt, S.; Rekstad, J.; Siem, S.; Syed, N. U. H.; Chankova, R.; Loennroth, T.; Schiller, A.; Voinov, A.
2008-01-01
The nuclear physics group at the Oslo Cyclotron Laboratory has developed a method to extract nuclear level density and γ-ray strength function from first-generation γ-ray spectra. This method is applied on the nuclei 44,45 Sc and 50,51 V in this work. The experimental level densities of 44,45 Sc are compared to calculated level densities using a microscopic model based on BCS quasiparticles within the Nilsson level scheme. The γ-ray strength functions are also compared to theoretical expectations, showing an unexpected enhancement of the γ-ray strength for low γ energies (E γ ≤3 MeV) in all the isotopes studied here. The physical origin of this enhancement is not yet understood
Plasma Photonic Devices for High Energy Density Science
International Nuclear Information System (INIS)
Kodama, R.
2005-01-01
High power laser technologies are opening a variety of attractive fields of science and technology using high energy density plasmas such as plasma physics, laboratory astrophysics, material science, nuclear science including medical applications and laser fusion. The critical issues in the applications are attributed to the control of intense light and enormous density of charged particles including efficient generation of the particles such as MeV electrons and protons with a current density of TA/cm2. Now these application possibilities are limited only by the laser technology. These applications have been limited in the control of the high power laser technologies and their optics. However, if we have another device consisted of the 4th material, i.e. plasma, we will obtain a higher energy density condition and explore the application possibilities, which could be called high energy plasma device. One of the most attractive devices has been demonstrated in the fast ignition scheme of the laser fusion, which is cone-guiding of ultra-intense laser light in to high density regions1. This is one of the applications of the plasma device to control the ultra-intense laser light. The other role of the devices consisted of transient plasmas is control of enormous energy-density particles in a fashion analogous to light control with a conventional optical device. A plasma fibre (5?m/1mm), as one example of the devices, has guided and deflected the high-density MeV electrons generated by ultra-intense laser light 2. The electrons have been well collimated with either a lens-like plasma device or a fibre-like plasma, resulting in isochoric heating and creation of ultra-high pressures such as Giga bar with an order of 100J. Plasmas would be uniquely a device to easily control the higher energy density particles like a conventional optical device as well as the ultra-intense laser light, which could be called plasma photonic device. (Author)
Atomic energy levels and Grotrian diagrams
Bashkin, Stanley
1975-01-01
Atomic Energy Levels and Grotrian Diagrams, Volume I: Hydrogen I - Phosphorus XV presents diagrams of various elements that show their energy level and electronic transitions. The book covers the first 15 elements according to their atomic number. The text will be of great use to researchers and practitioners of fields such as astrophysics that requires pictorial representation of the energy levels and electronic transitions of elements.
Kinetic-energy density functional: Atoms and shell structure
International Nuclear Information System (INIS)
Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.
1996-01-01
We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. copyright 1996 The American Physical Society
Replacing critical rare earth materials in high energy density magnets
McCallum, R. William
2012-02-01
High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.
Husowitz, B; Talanquer, V
2007-02-07
Density functional theory is used to explore the solvation properties of a spherical solute immersed in a supercritical diatomic fluid. The solute is modeled as a hard core Yukawa particle surrounded by a diatomic Lennard-Jones fluid represented by two fused tangent spheres using an interaction site approximation. The authors' approach is particularly suitable for thoroughly exploring the effect of different interaction parameters, such as solute-solvent interaction strength and range, solvent-solvent long-range interactions, and particle size, on the local solvent structure and the solvation free energy under supercritical conditions. Their results indicate that the behavior of the local coordination number in homonuclear diatomic fluids follows trends similar to those reported in previous studies for monatomic fluids. The local density augmentation is particularly sensitive to changes in solute size and is affected to a lesser degree by variations in the solute-solvent interaction strength and range. The associated solvation free energies exhibit a nonmonotonous behavior as a function of density for systems with weak solute-solvent interactions. The authors' results suggest that solute-solvent interaction anisotropies have a major influence on the nature and extent of local solvent density inhomogeneities and on the value of the solvation free energies in supercritical solutions of heteronuclear molecules.
Anti-Ferroelectric Ceramics for High Energy Density Capacitors
Directory of Open Access Journals (Sweden)
Aditya Chauhan
2015-11-01
Full Text Available With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.
Review of methods for level density estimation from resonance parameters
International Nuclear Information System (INIS)
Froehner, F.H.
1983-01-01
A number of methods are available for statistical analysis of resonance parameter sets, i.e. for estimation of level densities and average widths with account of missing levels. The main categories are (i) methods based on theories of level spacings (orthogonal-ensemble theory, Dyson-Mehta statistics), (ii) methods based on comparison with simulated cross section curves (Monte Carlo simulation, Garrison's autocorrelation method), (iii) methods exploiting the observed neutron width distribution by means of Bayesian or more approximate procedures such as maximum-likelihood, least-squares or moment methods, with various recipes for the treatment of detection thresholds and resolution effects. The present review will concentrate on (iii) with the aim of clarifying the basic mathematical concepts and the relationship between the various techniques. Recent theoretical progress in the treatment of resolution effects, detectability thresholds and p-wave admixture is described. (Auth.)
Functional derivative of noninteracting kinetic energy density functional
International Nuclear Information System (INIS)
Liu Shubin; Ayers, Paul W.
2004-01-01
Proofs from different theoretical frameworks, namely, the Hohenbergh-Kohn theorems, the Kohn-Sham scheme, and the first-order density matrix representation, have been presented in this paper to show that the functional derivative of the noninteracting kinetic energy density functional can uniquely be expressed as the negative of the Kohn-Sham effective potential, arbitrary only to an additive orbital-independent constant. Key points leading to the current result as well as confusion about the quantity in the literature are briefly discussed
Temperature dependent energy levels of methylammonium lead iodide perovskite
Foley, Benjamin J.; Marlowe, Daniel L.; Sun, Keye; Saidi, Wissam A.; Scudiero, Louis; Gupta, Mool C.; Choi, Joshua J.
2015-06-01
Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.
Temperature dependent energy levels of methylammonium lead iodide perovskite
Energy Technology Data Exchange (ETDEWEB)
Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sun, Keye; Gupta, Mool C., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Saidi, Wissam A. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States); Scudiero, Louis, E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Chemistry Department and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States)
2015-06-15
Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.
Level density and thermal properties in rare earth nuclei
International Nuclear Information System (INIS)
Siem, S.; Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Melby, E.; Rekstad, J.
2000-01-01
The level density at low spin has been extracted for several nuclei in the rare earth region using the ( 3 He,α) reaction. Within the framework of the microcanonical ensemble, the entropy and the temperature of the nuclei are derived. The temperature curve shows bumps which are associated with the break up of Cooper pairs. The entropies of the even-even and even-odd nuclei have been compared. The nuclear heat capacity is deduced within the framework of the canonical ensemble and exhibits an S-formed shape as function of temperature. (author)
Level density and thermal properties in rare earth
International Nuclear Information System (INIS)
Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Melby, E.; Rekstad, J.; Siem, S.
2001-01-01
A convergent method to extract the nuclear level density and the γ-ray strength function from primary γ-ray spectra has been established. Thermodynamical quantities have been obtained within the microcanonical and canonical ensemble theory. Structures in the caloric curve and in the heat capacity curve are interpreted as fingerprints of breaking of Cooper pairs and quenching of pairing correlations. The strength function can be described using models and common parametrizations for the E1, M1, and pygmy resonance strength. However, a significant decrease of pygmy resonance strength at finite temperatures has been observed [ru
Level density and thermal properties in rare earth nuclei
International Nuclear Information System (INIS)
Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Melby, E.; Rekstad, J.; Siem, S.
2001-01-01
A convergent method to extract the nuclear level density and the γ-ray strength function from primary γ-ray spectra has been established. Thermodynamical quantities have been obtained within the microcanonical and canonical ensemble theory. Structures in the caloric curve and in the heat capacity curve are interpreted as fingerprints of breaking of Cooper pairs and quenching of pairing correlations. The strength function can be described using models and common parametrizations for the E1, M1, and pygmy resonance strength. However, a significant decrease of the pygmy resonance strength at finite temperatures has been observed
Comparison of three methods to reduce energy density. Effects on daily energy intake.
Williams, Rachel A; Roe, Liane S; Rolls, Barbara J
2013-07-01
Reductions in food energy density can decrease energy intake, but it is not known if the effects depend on the way that energy density is reduced. We investigated whether three methods of reducing energy density (decreasing fat, increasing fruit and vegetables, and adding water) differed in their effects on energy intake across the day. In a crossover design, 59 adults ate breakfast, lunch, and dinner in the laboratory once a week for 4 weeks. Across conditions, the entrées were either standard in energy density or were reduced in energy density by 20% using one of the three methods. Each meal included a manipulated entrée along with unmanipulated side dishes, and all foods were consumed ad libitum. Reducing the energy density of entrées significantly decreased daily energy intake compared to standard entrées (mean intake 2667 ± 77 kcal/day; 11,166 ± 322 kJ/day). The mean decrease was 396 ± 44 kcal/day (1658 ± 184 kJ/day) when fat was reduced, 308 ± 41 kcal/day (1290 ± 172 kJ/day) when fruit and vegetables were increased, and 230 ± 35 kcal/day (963 ± 147 kJ/day) when water was added. Daily energy intake was lower when fat was decreased compared to the other methods. These findings indicate that a variety of diet compositions can be recommended to reduce overall dietary energy density in order to moderate energy intake. Copyright © 2013 Elsevier Ltd. All rights reserved.
Comment on 'Kinetic energy as a density functional'
International Nuclear Information System (INIS)
Holas, A.; March, N.H.
2002-01-01
In a recent paper, Nesbet [Phys. Rev. A 65, 010502(R) (2001)] has proposed dropping ''the widespread but unjustified assumption that the existence of a ground-state density functional for the kinetic energy, T s [ρ], of an N-electron system implies the existence of a density-functional derivative, δT s [ρ]/δρ(r), equivalent to a local potential function,'' because, according to his arguments, this derivative 'has the mathematical character of a linear operator that acts on orbital wave functions'. Our Comment demonstrates that the statement called by Nesbet an 'unjustified assumption' happens, in fact, to be a rigorously proven theorem. Therefore, his previous conclusions stemming from his different view of this derivative, which undermined the foundations of density-functional theory, can be discounted
Full charge-density calculation of the surface energy of metals
DEFF Research Database (Denmark)
Vitos, Levente; Kollár, J..; Skriver, Hans Lomholt
1994-01-01
of a spherically symmetrized charge density, while the Coulomb and exchange-correlation contributions are calculated by means of the complete, nonspherically symmetric charge density within nonoverlapping, space-filling Wigner-Seitz cells. The functional is used to assess the convergence and the accuracy......We have calculated the surface energy and the work function of the 4d metals by means of an energy functional based on a self-consistent, spherically symmetric atomic-sphere potential. In this approach the kinetic energy is calculated completely within the atomic-sphere approximation (ASA) by means...... of the linear-muffin-tin-orbitals (LMTO) method and the ASA in surface calculations. We find that the full charge-density functional improves the agreement with recent full-potential LMTO calculations to a level where the average deviation in surface energy over the 4d series is down to 10%....
Density Functional Methods for Shock Physics and High Energy Density Science
Desjarlais, Michael
2017-06-01
Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Lithium-Based High Energy Density Flow Batteries
Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)
2014-01-01
Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.
Extreme states of matter high energy density physics
Fortov, Vladimir E
2016-01-01
With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.
High energy-density science on the National Ignition Facility
Energy Technology Data Exchange (ETDEWEB)
Campbell, E.M.; Cauble, R.; Remington, B.A.
1997-08-01
The National Ignition Facility, as well as its French counterpart Le Laser Megajoule, have been designed to confront one of the most difficult and compelling problem in shock physics - the creation of a hot, compassed DT plasma surrounded and confined by cold, nearly degenerate DT fuel. At the same time, these laser facilities will present the shock physics community with unique tools for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers can contribute to investigations of high energy density in the area of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.
Density and starting-energy dependent effective interaction
International Nuclear Information System (INIS)
Yamaguchi, Norio; Nagata, Sinobu; Kasuga, Teruo
1979-01-01
A new effective potential constructed from the reaction matrix calculation of nuclear matters is proposed, taking three-body effects into account. Starting from the two-body scattering equation for nuclear matters, an equation with averaged momentum is introduced as the definition of effective interaction. The parameters in the equation are the Fermi momentum and the starting energy. The nuclear density dependence and the starting energy dependence are independently treated in the potential. The effective interactions including three-body effects were calculated. The dependence on the starting energy is large. The effective interaction is more attractive in the triplet E state, and assures overall saturation without any artificial renormalization. The reaction matrix calculation can be well reproduced by the calculation with this effective potential. The results of calculation for the binding energy of He-4 and O-16 and the shell model matrix elements of O-16 are represented. (Kato, T.)
High Density Thermal Energy Storage with Supercritical Fluids
Ganapathi, Gani B.; Wirz, Richard
2012-01-01
A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.
Regional level approach for increasing energy efficiency
International Nuclear Information System (INIS)
Viholainen, Juha; Luoranen, Mika; Väisänen, Sanni; Niskanen, Antti; Horttanainen, Mika; Soukka, Risto
2016-01-01
Highlights: • Comprehensive snapshot of regional energy system for decision makers. • Connecting regional sustainability targets and energy planning. • Involving local players in energy planning. - Abstract: Actions for increasing the renewable share in the energy supply and improving both production and end-use energy efficiency are often built into the regional level sustainability targets. Because of this, many local stakeholders such as local governments, energy producers and distributors, industry, and public and private sector operators require information on the current state and development aspects of the regional energy efficiency. The drawback is that an overall view on the focal energy system operators, their energy interests, and future energy service needs in the region is often not available for the stakeholders. To support the local energy planning and management of the regional energy services, an approach for increasing the regional energy efficiency is being introduced. The presented approach can be seen as a solid framework for gathering the required data for energy efficiency analysis and also evaluating the energy system development, planned improvement actions, and the required energy services at the region. This study defines the theoretical structure of the energy efficiency approach and the required steps for revealing such energy system improvement actions that support the regional energy plan. To demonstrate the use of the approach, a case study of a Finnish small-town of Lohja is presented. In the case example, possible actions linked to the regional energy targets were evaluated with energy efficiency analysis. The results of the case example are system specific, but the conducted study can be seen as a justified example of generating easily attainable and transparent information on the impacts of different improvement actions on the regional energy system.
Highly Compressed Ion Beams for High Energy Density Science
Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon
2005-01-01
The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...
Neutron and proton densities and the symmetry energy
International Nuclear Information System (INIS)
Bodmer, A.R.; Usmani, Q.N.
2003-01-01
The neutron/proton distributions in nuclei, in particular, the n-p difference, are considered in a 'macroscopic' Thomas-Fermi approach. The density dependence F(ρ) of the symmetry-energy density, where ρ is the total density, drives this difference in the absence of Coulomb and density-gradient contributions when we obtain an explicit solution for the difference in terms of F. If F is constant then the n-p difference and, in particular, the difference δR between the neutron and proton rms radii are zero. The Coulomb energy and gradient terms are treated variationally. The latter make only a small contribution to the n-p difference, and this is then effectively determined by F. The Coulomb energy reduces δR. Switching off the Coulomb contribution to the n-p difference then gives the maximum δR for a given F. Our numerical results are for 208 Pb. We consider a wide range of F; for these, both δR and the ratio χ of the surface to volume symmetry-energy coefficient depend, approximately, only on an integral involving F -1 . For δR < or approx. 0.45 fm this dependence is one valued and approximately linear for small δR, and this integral is then effectively determined by δR. There is a strong correlation between δR and χ, allowing an approximate determination of χ from δR. δR has a maximum of congruent with 0.65 fm
Frontiers for Discovery in High Energy Density Physics
Energy Technology Data Exchange (ETDEWEB)
Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.
2004-07-20
The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics
High Energy Density Physics and Exotic Acceleration Schemes
International Nuclear Information System (INIS)
Cowan, T.; Colby, E.
2005-01-01
The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to
State-Level Benefits of Energy Efficiency
Energy Technology Data Exchange (ETDEWEB)
Tonn, Bruce Edward [ORNL
2007-02-01
This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.
State-level benefits of energy efficiency
International Nuclear Information System (INIS)
Tonn, Bruce; Peretz, Jean H.
2007-01-01
This paper describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20% and 30% energy savings in homes and plants, respectively. Over a 20-year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies. Energy efficiency programs are cost-effective; typical benefit-cost ratios exceed 3:1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. (author)
Variation of level density parameter with angular momentum in 119Sb
International Nuclear Information System (INIS)
Aggarwal, Mamta; Kailas, S.
2015-01-01
Nuclear level density (NLD), a basic ingredient of Statistical Model has been a subject of interest for various decades as it plays an important role in the understanding of a wide variety of Nuclear reactions. There have been various efforts towards the precise determination of NLD and study its dependence on excitation energy and angular momentum as it is crucial in the determination of cross-sections. Here we report our results of theoretical calculations in a microscopic framework to understand the experimental results on inverse level density parameter (k) extracted for different angular momentum regions for 119 Sb corresponding to different γ-ray multiplicities by comparing the experimental neutron energy spectra with statistical model predictions where an increase in the level density with the increasing angular momentum is predicted. NLD and neutron emission spectra dependence on temperature and spin has been studied in our earlier works where the influence of structural transitions due to angular momentum and temperature on level density of states and neutron emission probability was shown
Effects of shape differences in the level densities of three formalisms on calculated cross-sections
International Nuclear Information System (INIS)
Fu, C.Y.; Larson, D.C.
1998-01-01
Effects of shape differences in the level densities of three formalisms on calculated cross-sections and particle emission spectra are described. Reactions for incident neutrons up to 20 MeV on 58 Ni are chosen for illustrations. Level density parameters for one of the formalisms are determined from the available neutron resonance data for one residual nuclide in the binary channels and from fitting the measured (n,n'), (n,p) and (n,α) cross-sections for the other two residual nuclides. Level density parameters for the other two formalisms are determined such that they yield the same values as the above one at two selected energies. This procedure forces the level densities from the three formalisms used for the binary pat of the calculation to be as close as possible. The remaining differences are in their energy dependences (shapes). It is shown that these shape differences alone are enough to cause the calculated cross-sections and particle emission spectra to be different by up to 60%. (author)
Vacuum stress energy density and its gravitational implications
Estrada, Ricardo; Fulling, Stephen A.; Kaplan, Lev; Kirsten, Klaus; Liu, Zhonghai; Milton, Kimball A.
2008-04-01
In nongravitational physics the local density of energy is often regarded as merely a bookkeeping device; only total energy has an experimental meaning—and it is only modulo a constant term. But in general relativity the local stress-energy tensor is the source term in Einstein's equation. In closed universes, and those with Kaluza-Klein dimensions, theoretical consistency demands that quantum vacuum energy should exist and have gravitational effects, although there are no boundary materials giving rise to that energy by van der Waals interactions. In the lab there are boundaries, and in general the energy density has a nonintegrable singularity as a boundary is approached (for idealized boundary conditions). As pointed out long ago by Candelas and Deutsch, in this situation there is doubt about the viability of the semiclassical Einstein equation. Our goal is to show that the divergences in the linearized Einstein equation can be renormalized to yield a plausible approximation to the finite theory that presumably exists for realistic boundary conditions. For a scalar field with Dirichlet or Neumann boundary conditions inside a rectangular parallelepiped, we have calculated by the method of images all components of the stress tensor, for all values of the conformal coupling parameter and an exponential ultraviolet cutoff parameter. The qualitative features of contributions from various classes of closed classical paths are noted. Then the Estrada-Kanwal distributional theory of asymptotics, particularly the moment expansion, is used to show that the linearized Einstein equation with the stress-energy near a plane boundary as source converges to a consistent theory when the cutoff is removed. This paper reports work in progress on a project combining researchers in Texas, Louisiana and Oklahoma. It is supported by NSF Grants PHY-0554849 and PHY-0554926.
International Nuclear Information System (INIS)
Horioka, Kazuhiko
2002-06-01
The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)
Metal hydrides based high energy density thermal battery
Energy Technology Data Exchange (ETDEWEB)
Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)
2015-10-05
Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.
Horn, Paul R; Head-Gordon, Martin
2016-02-28
In energy decomposition analysis (EDA) of intermolecular interactions calculated via density functional theory, the initial supersystem wavefunction defines the so-called "frozen energy" including contributions such as permanent electrostatics, steric repulsions, and dispersion. This work explores the consequences of the choices that must be made to define the frozen energy. The critical choice is whether the energy should be minimized subject to the constraint of fixed density. Numerical results for Ne2, (H2O)2, BH3-NH3, and ethane dissociation show that there can be a large energy lowering associated with constant density orbital relaxation. By far the most important contribution is constant density inter-fragment relaxation, corresponding to charge transfer (CT). This is unwanted in an EDA that attempts to separate CT effects, but it may be useful in other contexts such as force field development. An algorithm is presented for minimizing single determinant energies at constant density both with and without CT by employing a penalty function that approximately enforces the density constraint.
Continuum level density of a coupled-channel system in the complex scaling method
International Nuclear Information System (INIS)
Suzuki, Ryusuke; Kato, Kiyoshi; Kruppa, Andras; Giraud, Bertrand G.
2008-01-01
We study the continuum level density (CLD) in the formalism of the complex scaling method (CSM) for coupled-channel systems. We apply the formalism to the 4 He=[ 3 H+p]+[ 3 He+n] coupled-channel cluster model where there are resonances at low energy. Numerical calculations of the CLD in the CSM with a finite number of L 2 basis functions are consistent with the exact result calculated from the S-matrix by solving coupled-channel equations. We also study channel densities. In this framework, the extended completeness relation (ECR) plays an important role. (author)
The management-retrieval code of nuclear level density sub-library (CENPL-NLD)
International Nuclear Information System (INIS)
Ge Zhigang; Su Zongdi; Huang Zhongfu; Dong Liaoyuan
1995-01-01
The management-retrieval code of the Nuclear Level Density (NLD) is presented. It contains two retrieval ways: single nucleus (SN) and neutron reaction (NR). The latter contains four kinds of retrieval types. This code not only can retrieve level density parameter and the data related to the level density, but also can calculate the relevant data by using different level density parameters and do comparison of the calculated results with related data in order to help user to select level density parameters
High-energy density physics at Los Alamos
International Nuclear Information System (INIS)
Byrnes, P.; Younger, S.M.
1993-03-01
This brochure describes the facilities of the Above Ground Experiments II (AGEX II) and the Inertial Confinement Fusion (ICF) programs at Los Alamo. Combined, these programs represent, an unparalleled capability to address important issues in high-energy density physics that are critical to the future defense, energy, and research needs of th e United States. The mission of the AGEX II program at Los Alamos is to provide additional experimental opportunities for the nuclear weapons program. For this purpose we have assembled at Los Alamos the broadest array of high-energy density physics facilities of any laboratory in the world. Inertial confinement fusion seeks to achieve thermonuclear burn on a laboratory scale through the implosion of a small quantity of deuterium and tritium fuel to very high Pressure and temperature.The Los Alamos ICF program is focused on target physics. With the largest scientific computing center in the world, We can perform calculations of unprecedented sophistication and precision. We field experiments at facilities worldwide-including our own Trident and Mercury lasers-to confirm our understanding and to provide the necessary data base to proceed toward the historic goal of controlled fusion in the laboratory. In addition to direct programmatic high-energy density physics is a nc scientific endeavor in itself. The ultrahigh magnetic fields produced in our high explosive pulsed-power generators can be used in awide variety of solid state physics and temperature superconductor studies. The structure and dynamics of planetary atmospheres can be simulated through the compression of gas mixtures
The Influence of Decreased Levels of High Density Lipoprotein ...
African Journals Online (AJOL)
very low density lipoprotein cholesterol, and triglyceride were assayed. ... Abiodun and Gwarzo: Association of high density lipoprotein cholesterol with haemolysis in sickle cell disease ... analyses were carried out to determine the correlation.
Energy Levels of Hydrogen and Deuterium
SRD 142 NIST Energy Levels of Hydrogen and Deuterium (Web, free access) This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.
Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities.
Shen, Caiwei; Xie, Yingxi; Sanghadasa, Mohan; Tang, Yong; Lu, Longsheng; Lin, Liwei
2017-11-15
Fiber-based supercapacitors have attracted significant interests because of their potential applications in wearable electronics. Although much progress has been made in recent years, the energy and power densities, mechanical strength, and flexibility of such devices are still in need of improvement for practical applications. Here, we demonstrate an ultrathin microcoaxial fiber supercapacitor (μCFSC) with high energy and power densities (2.7 mW h/cm 3 and 13 W/cm 3 ), as well as excellent mechanical properties. The prototype with the smallest reported overall diameter (∼13 μm) is fabricated by successive coating of functional layers onto a single micro-carbon-fiber via a scalable process. Combining the simulation results via the electrochemical model, we attribute the high performance to the well-controlled thin coatings that make full use of the electrode materials and minimize the ion transport path between electrodes. Moreover, the μCFSC features high bending flexibility and large tensile strength (more than 1 GPa), which make it promising as a building block for various flexible energy storage applications.
Thermal Condensate Structure and Cosmological Energy Density of the Universe
Directory of Open Access Journals (Sweden)
Antonio Capolupo
2016-01-01
Full Text Available The aim of this paper is to study thermal vacuum condensate for scalar and fermion fields. We analyze the thermal states at the temperature of the cosmic microwave background (CMB and we show that the vacuum expectation value of the energy momentum tensor density of photon fields reproduces the energy density and pressure of the CMB. We perform the computations in the formal framework of the Thermo Field Dynamics. We also consider the case of neutrinos and thermal states at the temperature of the neutrino cosmic background. Consistency with the estimated lower bound of the sum of the active neutrino masses is verified. In the boson sector, nontrivial contribution to the energy of the universe is given by particles of masses of the order of 10−4 eV compatible with the ones of the axion-like particles. The fractal self-similar structure of the thermal radiation is also discussed and related to the coherent structure of the thermal vacuum.
High energy density supercapacitors using macroporous kitchen sponges
Chen, Wei
2012-01-01
Macroporous, low-cost and recyclable kitchen sponges are explored as effective electrode platforms for supercapacitor devices. A simple and scalable process has been developed to fabricate MnO 2-carbon nanotube (CNT)-sponge supercapacitor electrodes using ordinary kitchen sponges. Two organic electrolytes (1 M of tetraethylammonium tetrafluoroborate (Et 4NBF 4) in propylene carbonate (PC), 1 M of LiClO 4 in PC) are utilized with the sponge-based electrodes to improve the energy density of the symmetrical supercapacitors. Compared to aqueous electrolyte (1 M of Na 2SO 4 in H 2O), the energy density of supercapacitors tripled in Et 4NBF 4 electrolyte, and further increased by six times in LiClO 4 electrolyte. The long-term cycling performance in different electrolytes was examined and the morphology changes of the electrode materials were also studied. The good electrochemical performance in both aqueous and organic electrolytes indicates that the MnO 2-CNT-sponge is a promising low-cost electrode for energy storage systems. © 2012 The Royal Society of Chemistry.
High energy density Z-pinch plasmas using flow stabilization
Energy Technology Data Exchange (ETDEWEB)
Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)
2014-12-15
The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and
Statistical inference of level densities from resolved resonance parameters
International Nuclear Information System (INIS)
Froehner, F.H.
1983-08-01
Level densities are most directly obtained by counting the resonances observed in the resolved resonance range. Even in the measurements, however, weak levels are invariably missed so that one has to estimate their number and add it to the raw count. The main categories of missinglevel estimators are discussed in the present review, viz. (I) ladder methods including those based on the theory of Hamiltonian matrix ensembles (Dyson-Mehta statistics), (II) methods based on comparison with artificial cross section curves (Monte Carlo simulation, Garrison's autocorrelation method), (III) methods exploiting the observed neutron width distribution by means of Bayesian or more approximate procedures such as maximum-likelihood, least-squares or moment methods, with various recipes for the treatment of detection thresholds and resolution effects. The language of mathematical statistics is employed to clarify the basis of, and the relationship between, the various techniques. Recent progress in the treatment of resolution effects, detection thresholds and p-wave admixture is described. (orig.) [de
Predictors of Dietary Energy Density among Preschool Aged Children
Directory of Open Access Journals (Sweden)
Nilmani N.T. Fernando
2018-02-01
Full Text Available Childhood obesity is a global problem with many contributing factors including dietary energy density (DED. This paper aims to investigate potential predictors of DED among preschool aged children in Victoria, Australia. Secondary analysis of longitudinal data for 209 mother–child pairs from the Melbourne Infant Feeding, Activity and Nutrition Trial was conducted. Data for predictors (maternal child feeding and nutrition knowledge, maternal dietary intake, home food availability, socioeconomic status were obtained through questionnaires completed by first-time mothers when children were aged 4 or 18 months. Three 24-h dietary recalls were completed when children were aged ~3.5 years. DED was calculated utilizing three methods: “food only”, “food and dairy beverages”, and “food and all beverages”. Linear regression analyses were conducted to identify associations between predictors and these three measures of children’s DED. Home availability of fruits (β: −0.82; 95% CI: −1.35, −0.29, p = 0.002 for DEDfood; β: −0.42; 95% CI: −0.82, −0.02, p = 0.041 for DEDfood+dairy beverages and non-core snacks (β: 0.11; 95% CI: 0.02, 0.20, p = 0.016 for DEDfood; β: 0.09; 95% CI: 0.02, 0.15, p = 0.010 for DEDfood+dairy beverages were significantly associated with two of the three DED measures. Providing fruit at home early in a child’s life may encourage the establishment of healthful eating behaviors that could promote a diet that is lower in energy density later in life. Home availability of non-core snacks is likely to increase the energy density of preschool children’s diets, supporting the proposition that non-core snack availability at home should be limited.
International Nuclear Information System (INIS)
March, N.H.
2002-08-01
In early work, Dawson and March [J. Chem. Phys. 81, 5850 (1984)] proposed a local energy method for treating both Hartree-Fock and correlated electron theory. Here, an exactly solvable model two-electron atom with pure harmonic interactions is treated in its ground state in the above context. A functional relation between the kinetic energy density t(r) at the origin r=0 and the electron density p(r) at the same point then emerges. The same approach is applied to the Hookean atom; in which the two electrons repel with Coulombic energy e 2 /r 12 , with r 12 the interelectronic separation, but are still harmonically confined. Again the kinetic energy density t(r) is the focal point, but now generalization away from r=0 is also effected. Finally, brief comments are added about He-like atomic ions in the limit of large atomic number. (author)
Electromagnetic-implosion generation of pulsed high energy density plasma
International Nuclear Information System (INIS)
Baker, W.L.; Broderick, N.F.; Degnan, J.H.; Hussey, T.W.; Kiuttu, G.F.; Kloc, D.A.; Reinovsky, R.E.
1983-01-01
This chapter reports on the experimental and theoretical investigation of the generation of pulsed high-energy-density plasmas by electromagnetic implosion of cylindrical foils (i.e., imploding liners or hollow Z-pinches) at the Air Force Weapons Laboratory. Presents a comparison of experimental data with one-dimensional MHD and two-dimensional calculations. Points out that the study is distinct from other imploding liner efforts in that the approach is to produce a hot, dense plasma from the imploded liner itself, rather than to compress a magnetic-field-performed plasma mixture. The goal is to produce an intense laboratory pulsed X-ray source
Ab initio derivation of model energy density functionals
International Nuclear Information System (INIS)
Dobaczewski, Jacek
2016-01-01
I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results. (letter)
Automotive battery energy density — past, present and future
Peters, K.
Energy and power densities of automotive batteries at engine starting rates have doubled over the past twenty years. Most recent improvements can be credited to the use of both very thin plates with optimized grid design and low-resistance polyethylene separators with a thin backweb and a reduced rib height. Opportunities for further improvements using the same design approach and similar processing techniques are limited. The effect of some recent innovative developments on weight reduction and performance improvement are reviewed, together with possible changes to the electrical system of vehicles.
Holographic Bound in Quantum Field Energy Density and Cosmological Constant
Castorina, Paolo
2012-01-01
The cosmological constant problem is reanalyzed by imposing the limitation of the number of degrees of freedom (d.o.f.) due to entropy bounds directly in the calculation of the energy density of a field theory. It is shown that if a quantum field theory has to be consistent with gravity and holography, i.e. with an upper limit of storing information in a given area, the ultraviolet momentum cut-off is not the Planck mass, M_p, as naively expected, but M_p/N_U^(1/4) where N_U is the number of ...
Relativistic Energy Density Functionals: Exotic modes of excitation
International Nuclear Information System (INIS)
Vretenar, D.; Paar, N.; Marketin, T.
2008-01-01
The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of β-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.
Isotope effect with energy-dependent density of states and impurities
International Nuclear Information System (INIS)
Williams, P.J.; Carbotte, J.P.
1992-01-01
We have calculated the total isotope coefficient β in a model where there is energy-dependent structure in the electronic density of states. We model the structure with a simple Lorentzian. In our calculation, doping has the effect of shifting the Fermi level and broadening the structure in the density of states. We have treated the dopants both as normal and as magnetic impurities. The asymmetry observed in the experimental data is found in our results. However, the complete range of values observed is difficult to reproduce. We question also whether the shifts in Fermi level required in such models are reasonable
Spectral density of Cooper pairs in two level quantum dot–superconductors Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Dhyani, A., E-mail: archana.d2003@gmail.com [Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India); Rawat, P.S. [Department of Nuclear Science and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India); Tewari, B.S., E-mail: bstewari@ddn.upes.ac.in [Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India)
2016-09-15
Highlights: • The present work deals with the study of the electronic spectral density of electron pairs and its effect in charge transport in superconductor-quantum dot-superconductor junctions. • The charge transfer across such junctions can be controlled by changing the positions of the dot level. • The Josephson supercurrent can also be tuned by controlling the position of quantum dot energy levels. - Abstract: In the present paper, we report the role of quantum dot energy levels on the electronic spectral density for a two level quantum dot coupled to s-wave superconducting leads. The theoretical arguments in this work are based on the Anderson model so that it necessarily includes dot energies, single particle tunneling and superconducting order parameter for BCS superconductors. The expression for single particle spectral function is obtained by using the Green's function equation of motion technique. On the basis of numerical computation of spectral function of superconducting leads, it has been found that the charge transfer across such junctions can be controlled by the positions and availability of the dot levels.
The Hagedorn spectrum, nuclear level densities and first order phase transitions
International Nuclear Information System (INIS)
Moretto, Luciano G.; Larsen, A. C.; Guttormsen, M.; Siem, S.
2015-01-01
An exponential mass spectrum, like the Hagedorn spectrum, with slope 1/T H was interpreted as fixing an upper limiting temperature T H that the system can achieve. However, thermodynamically, such spectrum indicates a 1 st order phase transition at a fixed temperature T H . A much lower energy example is the log linear level nuclear density below the neutron binding energy that prevails throughout the nuclear chart. We show that, for non-magic nuclei, such linearity implies a 1 st order phase transition from the pairing superfluid to an ideal gas of quasi particles
The Hagedorn spectrum, nuclear level densities and first order phase transitions
Energy Technology Data Exchange (ETDEWEB)
Moretto, Luciano G., E-mail: lgmoretto@lbl.gov [Department of Chemistry, University of California, Berkeley, Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720 (United States); Larsen, A. C.; Guttormsen, M.; Siem, S. [Department of Physics, University of Oslo, N-0316 Oslo (Norway)
2015-10-15
An exponential mass spectrum, like the Hagedorn spectrum, with slope 1/T{sub H} was interpreted as fixing an upper limiting temperature T{sub H} that the system can achieve. However, thermodynamically, such spectrum indicates a 1{sup st} order phase transition at a fixed temperature T{sub H}. A much lower energy example is the log linear level nuclear density below the neutron binding energy that prevails throughout the nuclear chart. We show that, for non-magic nuclei, such linearity implies a 1{sup st} order phase transition from the pairing superfluid to an ideal gas of quasi particles.
Descriptions of carbon isotopes within the energy density functional theory
Energy Technology Data Exchange (ETDEWEB)
Ismail, Atef [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia and Department of Physics, Al-Azhar University, 71524 Assiut (Egypt); Cheong, Lee Yen; Yahya, Noorhana [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Tammam, M. [Department of Physics, Al-Azhar University, 71524 Assiut (Egypt)
2014-10-24
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.
Descriptions of carbon isotopes within the energy density functional theory
International Nuclear Information System (INIS)
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana; Tammam, M.
2014-01-01
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in 15 C, 17 C and 19 C, and the two-neutron halo structures in 16 C and 22 C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations
Laboratory Astrophysics Using High Energy Density Photon and Electron Beams
Bingham, Robert
2005-01-01
The development of intense laser and particle beams has opened up new opportunities to study high energy density astrophysical processes in the Laboratory. With even higher laser intensities possible in the near future vacuum polarization processes such as photon - photon scattering with or without large magnetic fields may also be experimentally observed. In this talk I will review the status of laboratory experiments using intense beans to investigate extreme astrophysical phenomena such as supernovae explosions, gamma x-ray bursts, ultra-high energy cosmic accelerators etc. Just as intense photon or electron beams can excite relativistic electron plasma waves or wakefields used in plasma acceleration, intense neutrino beams from type II supernovae can also excite wakefields or plasma waves. Other instabilities driven by intense beams relevant to perhaps x-ray bursts is the Weibel instability. Simulation results of extreme processes will also be presented.
Pairing in the BCS and LN approximations using continuum single particle level density
International Nuclear Information System (INIS)
Id Betan, R.M.; Repetto, C.E.
2017-01-01
Understanding the properties of drip line nuclei requires to take into account the correlations with the continuum spectrum of energy of the system. This paper has the purpose to show that the continuum single particle level density is a convenient way to consider the pairing correlation in the continuum. Isospin mean-field and isospin pairing strength are used to find the Bardeen–Cooper–Schrieffer (BCS) and Lipkin–Nogami (LN) approximate solutions of the pairing Hamiltonian. Several physical properties of the whole chain of the Tin isotope, as gap parameter, Fermi level, binding energy, and one- and two-neutron separation energies, were calculated and compared with other methods and with experimental data when they exist. It is shown that the use of the continuum single particle level density is an economical way to include explicitly the correlations with the continuum spectrum of energy in large scale mass calculation. It is also shown that the computed properties are in good agreement with experimental data and with more sophisticated treatment of the pairing interaction.
Strongly Interacting Matter at Very High Energy Density
International Nuclear Information System (INIS)
McLerran, L.
2011-01-01
The authors discuss the study of matter at very high energy density. In particular: what are the scientific questions; what are the opportunities to makes significant progress in the study of such matter and what facilities are now or might be available in the future to answer the scientific questions? The theoretical and experimental study of new forms of high energy density matter is still very much a 'wild west' field. There is much freedom for developing new concepts which can have order one effects on the way we think about such matter. It is also a largely 'lawless' field, in that concepts and methods are being developed as new information is generated. There is also great possibility for new experimental discovery. Most of the exciting results from RHIC experiments were unanticipated. The methods used for studying various effects like flow, jet quenching, the ridge, two particle correlations etc. were developed as experiments evolved. I believe this will continue to be the case at LHC and as we use existing and proposed accelerators to turn theoretical conjecture into tangible reality. At some point this will no doubt evolve into a precision science, and that will make the field more respectable, but for my taste, the 'wild west' times are the most fun.
Ultralow energy ion beam surface modification of low density polyethylene.
Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C
2005-12-01
Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.
Decay rates of resonance states at high level density
International Nuclear Information System (INIS)
Persson, E.; Technische Univ. Dresden; Gorin, T.; Technische Univ. Dresden; Rotter, I.; Technische Univ. Dresden
1996-05-01
The time dependent Schroedinger equation of an open quantum mechanical system is solved by using the stationary bi-orthogonal eigenfunctions of the non-Hermitean time independent Hamilton operator. We calculate the decay rates at low and high level density in two different formalism. The rates are, generally, time dependent and oscillate around an average value due to the non-orthogonality of the wavefunctions. The decay law is studied disregarding the oscillations. In the one-channel case, it is proportional to t -b with b∼3/2 in all cases considered, including the critical region of overlapping where the non-orthogonality of the wavefunctions is large. Starting from the shell model, we get b∼2 for 2 and 4 open decay channels and all coupling strengths to the continuum. When the closed system is described by a random matrix, b∼1+K/2 for K=2 and 4 channels. This law holds in a limited time interval. The distribution of the widths is different in the two models when more than one channel are open. This leads to the different exponents b in the power law. Our calculations are performed with 190 and 130 states, respectively, most of them in the critical region. The theoretical results should be proven experimentally by measuring the time behaviour of de-excitation of a realistic quantum system. (orig.)
Revised energy levels of singly ionized lanthanum
Güzelçimen, Feyza; Tonka, Mehdi; Uddin, Zaheer; Bhatti, Naveed Anjum; Windholz, Laurentius; Kröger, Sophie; Başar, Gönül
2018-05-01
Based on the experimental wavenumbers of 344 spectral lines from calibrated Fourier transform (FT) spectra as well as wavenumbers of 81 lines from the wavelength tables from literature, the energy of 115 fine structure levels of singly ionized lanthanum has been revised by weighted global fits. The classifications of the lines are provided by numerous previous investigations of lanthanum by different spectroscopic methods and authors. For the high accurate determination of the center of gravity wavenumbers from the experimental spectrum, the hyperfine constants of the involved levels have been taken into account, if possible. For the 94 levels with known hyperfine constants the accuracy of energy values is better than 0.01 cm-1. For 34 levels the magnetic dipole hyperfine constants A have been determined from FT spectra as part of this work. For four of these 34 levels even electric quadrupole hyperfine constants B could be estimated. For levels, which have experimentally unknown hyperfine constants and which are connected only by lines not found in the FT spectra but taken from literature, the uncertainties of energy values are about a factor of 10 higher. A list of all revised level energies together with a compilation of hyperfine structure data is given as well as a list of all lines used.
International Nuclear Information System (INIS)
Stránský, Pavel; Macek, Michal; Cejnar, Pavel
2014-01-01
Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies
Evaluation of the thermodynamics of a four level system using canonical density matrix method
Directory of Open Access Journals (Sweden)
Awoga Oladunjoye A.
2013-02-01
Full Text Available We consider a four-level system with two subsystems coupled by weak interaction. The system is in thermal equilibrium. The thermodynamics of the system, namely internal energy, free energy, entropy and heat capacity, are evaluated using the canonical density matrix by two methods. First by Kronecker product method and later by treating the subsystems separately and then adding the evaluated thermodynamic properties of each subsystem. It is discovered that both methods yield the same result, the results obey the laws of thermodynamics and are the same as earlier obtained results. The results also show that each level of the subsystems introduces a new degree of freedom and increases the entropy of the entire system. We also found that the four-level system predicts a linear relationship between heat capacity and temperature at very low temperatures just as in metals. Our numerical results show the same trend.
Energy Technology Data Exchange (ETDEWEB)
Horioka, Kazuhiko (ed.)
2002-06-01
The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)
Pulsed power drivers for ICF and high energy density physics
International Nuclear Information System (INIS)
Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.
1995-01-01
Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates ∼500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed ∼15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed
Formation energies of rutile metal dioxides using density functional theory
DEFF Research Database (Denmark)
Martinez, Jose Ignacio; Hansen, Heine Anton; Rossmeisl, Jan
2009-01-01
We apply standard density functional theory at the generalized gradient approximation (GGA) level to study the stability of rutile metal oxides. It is well known that standard GGA exchange and correlation in some cases is not sufficient to address reduction and oxidation reactions. Especially...... and due to a more accurate description of exchange for this particular GGA functional compared to PBE. Furthermore, we would expect the self-interaction problem to be largest for the most localized d orbitals; that means the late 3d metals and since Co, Fe, Ni, and Cu do not form rutile oxides...
Occupation number dependence of molecular energy levels
International Nuclear Information System (INIS)
Giambiagi, M.S. de; Giambiagi, M.; Ferreira, R.
1977-08-01
The Roothaan expression for the energy of a closed-shell molecular system is generalized in order to apply to open shells. A continuous variation from 0 to 2 is supposed for each level's occupation number, extending to this range tbe correction due to the spurious repulsion appearing in the half-electron method. The characteristic equations of the Xα method are applied to the energy expressions. The one level case is discussed in detail. Ionic and excited states of the 1,3 transbutadiene π system are analyzed
International Nuclear Information System (INIS)
Garg, S.B.
1991-01-01
A detailed investigation is carried out to determine the effect of different level density prescriptions on the computed neutron nuclear data of Ni-58 in the energy range 5-25 MeV. Calculations are performed in the framework of the multistep Hauser-Feshbach statistical theory including the Kalbach exciton model and Brink-Axel giant dipole resonance model for radiative capture. Level density prescriptions considered in this investigation are based on the original Gilbert-Cameron, improved Gilbert-Cameron, backshifted Fermi-gas and the Ignatyuk, et al. approaches. The effect of these prescriptions is discussed, with special reference to (n,p), (n,2n), (n,alpha) and total particle-production cross sections. (author). 17 refs, 8 figs
Lamot, D M; Sapkota, D; Wijtten, P J A; van den Anker, I; Heetkamp, M J W; Kemp, B; van den Brand, H
2017-07-01
This study aimed to determine effects of diet density on growth performance, energy balance, and nitrogen (N) balance characteristics of broiler chickens during the first wk of life. Effects of diet density were studied using a dose-response design consisting of 5 dietary fat levels (3.5, 7.0, 10.5, 14.0, and 17.5%). The relative difference in dietary energy level was used to increase amino acid levels, mineral levels, and the premix inclusion level at the same ratio. Chickens were housed in open-circuit climate respiration chambers from d 0 to 7 after hatch. Body weight was measured on d 0 and 7, whereas feed intake was determined daily. For calculation of energy balances, O2 and CO2 exchange were measured continuously and all excreta from d 0 to 7 was collected and analyzed at d 7. Average daily gain (ADG) and average daily feed intake (ADFI) decreased linearly (P = 0.047 and P density. Gross energy (GE) intake and metabolizable energy (ME) intake were not affected by diet density, but the ratio between ME and GE intake decreased linearly with increasing diet density (P = 0.006). Fat, N, and GE efficiencies (expressed as gain per unit of nutrient intake), heat production, and respiratory exchange ratio (CO2 to O2 ratio) decreased linearly (P density increased. Energy retention, N intake, and N retention were not affected by diet density. We conclude that a higher diet density in the first wk of life of broiler chickens did not affect protein and fat retention, whereas the ME to GE ratio decreased linearly with increased diet density. This suggests that diet density appears to affect digestibility rather than utilization of nutrients. © 2017 Poultry Science Association Inc.
X-ray spectroscopy for high energy-density X pinch density and temperature measurements (invited)
International Nuclear Information System (INIS)
Pikuz, S.A.; Shelkovenko, T.A.; Chandler, K.M.; Mitchell, M.D.; Hammer, D.A.; Skobelev, I.Y.; Shlyaptseva, A.S.; Hansen, S.B.
2004-01-01
X pinch plasmas produced from fine metal wires can reach near solid densities and temperatures of 1 keV or even more. Plasma conditions change on time scales as short as 5-10 ps as determined using an x-ray streak camera viewing a focusing crystal spectrograph or directly viewing the plasma through multiple filters on a single test. As a result, it is possible to determine plasma conditions from spectra with ∼10 ps time resolution. Experiments and theory are now coming together to give a consistent picture of the dynamics and kinetics of these high energy density plasmas with very high temporal and spatial precision. A set of diagnostic techniques used in experiments for spectrally, temporally, and spatially resolved measurements of X pinch plasmas is described. Results of plasma parameter determination from these measurements are presented. X ray backlighting of one x-pinch by another with ∼30 ps x-ray pulses enables the dynamics and kinetics to be correlated in time
Bailey, Rachel L
2016-12-01
More energy dense foods are preferable from an optimal foraging perspective, which suggests these foods are more motivationally relevant due to their greater capability of fulfilling biological imperatives. This increase in motivational relevance may be exacerbated in circumstances where foraging will be necessary. This study examined how food energy density and presence of food in the immediate environment interacted to influence motivational processing of food advertisements. N = 58 adults viewed advertisements for foods varying in energy density in contexts where the advertised food was actually present in the viewing room or not. Advertisements for more energy dense foods elicited greater skin conductivity level compared to ads for less energy dense foods when food was not present. All ads elicited decreases in corrugator supercilii activation indicating positive emotional response resultant from appetitive motivational activation, though the greatest activation was exhibited toward higher energy density foods when food was present. This supports an optimal foraging perspective and has implications for healthy eating interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hybrid graphene electrodes for supercapacitors of high energy density
Zhang, Feifei; Tang, Jie; Shinya, Norio; Qin, Lu-Chang
2013-10-01
We describe a process of co-reduction to reduce dispersed graphene oxide (GO) and single-walled carbon nanotubes (SWNTs) simultaneously for preparation of hybrid electrodes for graphene supercapacitors. The SWNTs are in between the inter-layer space of graphene sheets as a spacer to prevent effectively restacking of graphene that often limits seriously the electrochemical performance of graphene supercapacitors. The SWNTs also act as conductive binders to improve the electrical conduction of the electrode. A high specific capacitance of 261 F g-1 for a single electrode and specific energy density of 123 W h kg-1 measured in the two-electrode configuration have been obtained in ionic liquid (EMI-TFSI). For interpretation of color in Fig. 6, the reader is referred to the web version of this article.
Building a universal nuclear energy density functional (UNEDF)
Energy Technology Data Exchange (ETDEWEB)
Nazarewicz, Witold [Univ. of Tennessee, Knoxville, TN (United States)
2012-07-01
The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties. Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data. Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.
CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES
Energy Technology Data Exchange (ETDEWEB)
Professor Bruce R. Kusse; Professor David A. Hammer
2007-04-18
This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.
Rationally designed polyimides for high-energy density capacitor applications.
Ma, Rui; Baldwin, Aaron F; Wang, Chenchen; Offenbach, Ido; Cakmak, Mukerrem; Ramprasad, Rampi; Sotzing, Gregory A
2014-07-09
Development of new dielectric materials is of great importance for a wide range of applications for modern electronics and electrical power systems. The state-of-the-art polymer dielectric is a biaxially oriented polypropylene (BOPP) film having a maximal energy density of 5 J/cm(3) and a high breakdown field of 700 MV/m, but with a limited dielectric constant (∼2.2) and a reduced breakdown strength above 85 °C. Great effort has been put into exploring other materials to fulfill the demand of continuous miniaturization and improved functionality. In this work, a series of polyimides were investigated as potential polymer materials for this application. Polyimide with high dielectric constants of up to 7.8 that exhibits low dissipation factors (dielectric constant and band gap. Correlations of experimental and theoretical results through judicious variations of polyimide structures allowed for a clear demonstration of the relationship between chemical functionalities and dielectric properties.
DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS
International Nuclear Information System (INIS)
Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.
2010-01-01
Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K + beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.
5th International conference on High Energy Density Laboratory Astrophysics
Kyrala, G.A
2005-01-01
During the past several years, research teams around the world have developed astrophysics-relevant utilizing high energy-density facilities such as intense lasers and z-pinches. Research is underway in many areas, such as compressible hydrodynamic mixing, strong shock phenomena, radiation flow, radiative shocks and jets, complex opacities, equations o fstat, and relativistic plasmas. Beyond this current research and the papers it is producing, plans are being made for the application, to astrophysics-relevant research, of the 2 MJ National Ignition Facility (NIF) laser at Lawrence Livermore National Laboratory; the 600 kj Ligne d'Intergration Laser (LIL) and the 2 MJ Laser Megajoule (LMJ) in Bordeaux, France; petawatt-range lasers now under construction around the world; and current and future Z pinches. The goal of this conference and these proceedings is to continue focusing and attention on this emerging research area. The conference brought together different scientists interested in this emerging new fi...
Fabrication and demonstration of high energy density lithium ion microbatteries
Sun, Ke
density on a limited footprint area. In chapter 4, Li-ion batteries based on the LiMn2O4-TiP 2O7 couple are manufactured on flexible paper substrates; where the use of light-weight paper substrates significantly increase the gravimetric energy density of this electrode couple as compared to traditional metal current collectors. In chapter 5, a novel nanowire growth mechanism will be explored to grow interdigitated metal oxide nanowire micro battery electrodes. The growth kinetics of this mechanism is systematically studied to understand how to optimize the growth process to produce electrodes with improved electrochemical properties.
HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS
International Nuclear Information System (INIS)
Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.
2008-01-01
The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state
High energy density physics issues related to Future Circular Collider
Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.
2017-07-01
A design study for a post-Large Hadron Collider accelerator named, Future Circular Collider (FCC), is being carried out by the International Scientific Community. A complete design report is expected to be ready by spring 2018. The FCC will accelerate two counter rotating beams of 50 TeV protons in a tunnel having a length (circumference) of 100 km. Each beam will be comprised of 10 600 proton bunches, with each bunch having an intensity of 1011 protons. The bunch length is of 0.5 ns, and two neighboring bunches are separated by 25 ns. Although there is an option for 5 ns bunch separation as well, in the present studies, we consider the former case only. The total energy stored in each FCC beam is about 8.5 GJ, which is equivalent to the kinetic energy of Airbus 380 (560 t) flying at a speed of 850 km/h. Machine protection is a very important issue while operating with such powerful beams. It is important to have an estimate of the damage caused to the equipment and accelerator components due to the accidental release of a partial or total beam at a given point. For this purpose, we carried out numerical simulations of full impact of one FCC beam on an extended solid copper target. These simulations have been done employing an energy deposition code, FLUKA, and a two-dimensional hydrodynamic code, BIG2, iteratively. This study shows that although the static range of a single FCC proton and its shower is about 1.5 m in solid copper, the entire beam will penetrate around 350 m into the target. This substantial increase in the range is due to the hydrodynamic tunneling of the beam. Our calculations also show that a large part of the target will be converted into high energy density matter including warm dense matter and strongly coupled plasmas.
Mansø, Mads; Petersen, Anne Ugleholdt; Wang, Zhihang; Erhart, Paul; Nielsen, Mogens Brøndsted; Moth-Poulsen, Kasper
2018-05-16
Molecular photoswitches can be used for solar thermal energy storage by photoisomerization into high-energy, meta-stable isomers; we present a molecular design strategy leading to photoswitches with high energy densities and long storage times. High measured energy densities of up to 559 kJ kg -1 (155 Wh kg -1 ), long storage lifetimes up to 48.5 days, and high quantum yields of conversion of up to 94% per subunit are demonstrated in norbornadiene/quadricyclane (NBD/QC) photo-/thermoswitch couples incorporated into dimeric and trimeric structures. By changing the linker unit between the NBD units, we can at the same time fine-tune light-harvesting and energy densities of the dimers and trimers so that they exceed those of their monomeric analogs. These new oligomers thereby meet several of the criteria to be met for an optimum molecule to ultimately enter actual devices being able to undergo closed cycles of solar light-harvesting, energy storage, and heat release.
Quantum phase transitions and collective enhancement of level density in odd–A and odd–odd nuclei
Energy Technology Data Exchange (ETDEWEB)
Karampagia, S., E-mail: karampag@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Renzaglia, A. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); Zelevinsky, V. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)
2017-06-15
The nuclear shell model assumes an effective mean-field plus interaction Hamiltonian in a specific configuration space. We want to understand how various interaction matrix elements affect the observables, the collectivity in nuclei and the nuclear level density for odd–A and odd–odd nuclei. Using the sd and pf shells, we vary specific groups of matrix elements and study the evolution of energy levels, transition rates and the level density. In all cases studied, a transition between a “normal” and a collective phase is induced, accompanied by an enhancement of the level density in the collective phase. In distinction to neighboring even–even nuclei, the enhancement of the level density is observed already at the transition point. The collective phase is reached when the single-particle transfer matrix elements are dominant in the shell model Hamiltonian, providing a sign of their fundamental role.
Analysis of electronic models for solar cells including energy resolved defect densities
Energy Technology Data Exchange (ETDEWEB)
Glitzky, Annegret
2010-07-01
We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)
On expectation values for nuclear energy levels
International Nuclear Information System (INIS)
De Wet, J.A.
1978-01-01
The nuclear model is built up by constructing measured states, including the ground state, from the vacuum state. All states are, however, not accessible from the ground state so that selection rules may be found which at the same time impose even more stringent conditions on the labelling of energy levels. These are the subject of this paper
Spectrum and energy levels of Y VI
International Nuclear Information System (INIS)
Persson, W.; Reader, J.
1986-01-01
The spectrum of the five-times-ionized yttrium atom (Y VI), excited in a sliding-spark discharge, was studied in the 160--2500 A-circle range. About 900 Y VI lines were classified as transitions between 101 odd and 69 even energy levels.The energy-level system established includes almost all levels of the 4s 2 4p 4 , 4s4p 5 , 4s 2 4p 3 4d, 5d, 5s, 6s, and 5p configurations and a number of levels of the 7s, 4f, and 4s4p 4 4d configurations. The observed level system has been theoretically interpreted by means of Hartree--Fock calculations and least-squares parametric fits. Strong configuration mixings are found between the 4s4p 5 and 4s 2 4p 3 4d configurations, between the 4s 2 4p 3 5p and 4s4p 4 4d configurations, and between the 4s 2 4p 3 4f and 4s4p 4 4d configurations. From the optimized energy-level values, a system of Ritz-type wavelength standards with accuracies varying from 0.0003 to 0.003 A-circle in the range 179--500 A-circle has been determined. The ionization energy as determined from 4s 2 4p 3 ns levels (n = 5-7) is 737 110 +- 200 cm/sup -1/ (91.390 +- 0.025 eV)
International Nuclear Information System (INIS)
Hilaire, S.; Girod, M.; Goriely, S.
2011-01-01
The combinatorial model of nuclear level densities has now reached a level of accuracy comparable to that of the best global analytical expressions without suffering from the limits imposed by the statistical hypothesis on which the latter expressions rely. In particular, it provides naturally, non Gaussian spin distribution as well as non equipartition of parities which are known to have a significant impact on cross section predictions at low energies. Our first global model developed in Ref. 1 suffered from deficiencies, in particular in the way the collective effects - both vibrational and rotational - were treated. We have recently improved this treatment using simultaneously the single particle levels and collective properties predicted by a newly derived Gogny interaction, therefore enabling a microscopic description of energy-dependent shell, pairing and deformation effects. In addition, for deformed nuclei, the transition to sphericity is coherently taken into account on the basis of a temperature-dependent Hartree-Fock calculation which provides at each temperature the structure properties needed to build the level densities. This new method is described and shown to give promising preliminary results with respect to available experimental data. (authors)
Remarks on saturation of energy confinement in high density regime on LHD
International Nuclear Information System (INIS)
Yamada, Hiroshi; Morita, Shigeru; Murakami, Sadayoshi
2003-01-01
A study on energy confinement times in currentless helical plasmas has indicated a preferable density dependence like τ E ∝ n-bar e 0.5-0.6 . However, saturation of energy confinement time has been often observed during the density ramping-up phase by gas puffing in NBI heated plasmas in LHD. The power balance analysis indicates that the thermal diffusivity is improved by the increase in local density while the global energy confinement time loses the dependence on the density. The flat or hollow density profile, which is distinguished in the density-ramping phase, promotes a broad heat power deposition. This change explains the apparent contradiction between the density dependence of the thermal diffusivity and the global energy confinement time. This result suggests that central heating can maintain a favorable density dependence of the energy confinement time in the high density regime. (author)
Diagnostic Spectrometers for High Energy Density X-Ray Sources
International Nuclear Information System (INIS)
Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.
2007-01-01
A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength
International Nuclear Information System (INIS)
Tavukcu, E.; Becker, J.A.; Bernstein, L.A.; Garrett, P.E.; Guttormsen, M.; Mitchell, G.E.; Rekstad, J.; Schiller, A.; Siem, S.; Voinov, A.; Younes, W.
2002-01-01
An experimental primary γ-ray spectrum vs. excitation-energy bin (P(E x , E γ ) matrix) in a light-ion reaction is obtained for 56,57 Fe isotopes using a subtraction method. By factorizing the P(E x , E γ ) matrix according to the Axel-Brink hypothesis the nuclear level density and the radiative strength function (RSF) in 56,57 Fe are extracted simultaneously. A step structure is observed in the level density for both isotopes, and is interpreted as the breaking of Cooper pairs. The RSFs for 56,57 Fe reveal an anomalous enhancement at low γ-ray energies
Effects of energy content and energy density of pre-portioned entrées on energy intake
Blatt, Alexandria D.; Williams, Rachel A.; Roe, Liane S.; Rolls, Barbara J.
2012-01-01
Pre-portioned entrées are commonly consumed to help control portion size and limit energy intake. The influence of entrée characteristics on energy intake, however, has not been well studied. We determined how the effects of energy content and energy density (ED, kcal/g) of pre-portioned entrées combine to influence daily energy intake. In a crossover design, 68 non-dieting adults (28 men and 40 women) were provided with breakfast, lunch, and dinner on one day a week for four weeks. Each meal...
URBAN FEATURES AND ENERGY CONSUMPTION AT LOCAL LEVEL
Directory of Open Access Journals (Sweden)
Ali Soltani
2012-12-01
Full Text Available There has been a growing interest in discovering the human effects on the environment and energy consumption in recent decades. It is estimated that the share of energy consumed in transportation and housing systems are around 20 and 30 percent of total energy consumption respectively. Furthermore, the residential greenhouse emissions depend on urban form and structure. This paper explores the effects of urban features on residential energy consumption at neighborhood level using data collected through household questionnaire (n=140. Two residential districts in metropolitan Shiraz, south of Iran, were selected as case study areas. Different features of two areas were compared including building density, typology, housing location, parcel size, floor area and construction materials. Ordinary linear regression was used to discover the impact of explanatory variables on energy consumption. It was found that some physical variables such as parcel size, setback and number of floors played significant roles in explaining the variances exist in energy use level. The results can be used by governmental agencies to modify land use policies and subdivision rules in hope of saving energy and achieving a sustainable community.
Apolzan, John W; Bray, George A; Hamilton, Marc T; Zderic, Theodore W; Han, Hongmei; Champagne, Catherine M; Shepard, Desti; Martin, Corby K
2014-01-01
To evaluate the effects of overeating (140% of energy requirements) a high-fat low-energy density diet (HF/LED, 1.05 kcal/g), high-fat high-energy density diet (HF/HED, 1.60 kcal/g), and high-carbohydrate (HC) LED (1.05 kcal/g) for 2-days on subsequent 4-day energy intake (EI), activity levels, appetite, and mood. Using a randomized cross-over design, energy expenditure and EI were standardized during overeating. In 20 adults with a mean ± SD BMI of 30.7 ± 4.6 kg/m(2) , EI was not suppressed until the second day after overeating and accounted for ∼30% of the excess EI. Reductions in EI did not differ among the three diets or across days. Overeating had no effect on subsequent energy expenditure but steps/day decreased after the HC/LED and HF/HED. Sleep time was increased after the HF/HED compared to both LEDs. After overeating a HF/HED vs. HF/LED, carbohydrate cravings, hunger, prospective food consumption, and sadness increased and satisfaction, relaxation, and tranquility decreased. Diet type, time, or their interaction had no impact on compensation over 4 days. No adaptive thermogenesis was observed. The HF/HED vs. HF/LED had detrimental effects on food cravings, appetite, and mood. These results suggest short-term overeating is associated with incomplete compensation. Copyright © 2013 The Obesity Society.
Test of E1-radiative strength function and level density models by 155 Gd (n,2γ) 156 Gd reaction
International Nuclear Information System (INIS)
Voinov, A.V.
1996-01-01
The information about the level density of 156 Gd nucleus and strength functions of γ transitions extracted from two γ-cascade spectra of the 155 Gd (n,2γ) 156 Gd reaction is analyzed. The method of statistical simulation of γ-cascade intensity is applied for calculation of the main parameters of experimental spectra. The method is used to extract the information on the E1-radiative strength function of γ transitions and level density in the 156 Gd nucleus. It is shown that at an excitation energy above 3 MeV the level density of 156 Gd nucleus must decrease in comparison with that calculated within the Fermi gas model. Its is concluded that possible explanation of the observed effect is connected with the influence of pairing correlations on the level density in nuclei
Nuclear level density effects on the evaluated cross-sections of nickel isotopes
International Nuclear Information System (INIS)
Garg, S.B.
1995-01-01
A detailed investigation has been made to estimate the effect of various level density options on the computed neutron induced reaction cross-sections of Ni-58 and Ni-60 covering the energy range 5-25 MeV in the framework of the multistep Hauser-Feshbach statistical model scheme which accounts for the pre-equilibrium decay according to the Kalbach exciton model and gamma-ray competition according to the giant dipole radiation model of Brink and Axel. Various level density options considered in this paper are based on the Original Gilbert-Cameron, Improved Gilbert-Cameron, Back-Shifted Fermi gas and the Ingatyuk-Smirenkin-Tishin approaches. The effect of these different level density prescriptions is brought out with special reference to (n,p) (n,2n) (n,α) and total production cross-sections for neutron, hydrogen, helium and gamma-rays which are of technological importance for fission and fusion based reactor systems. (author). 18 refs, 2 figs
Comparison of renewable fuels based on their land use using energy densities
Dijkman, T. J.; Benders, R. M. J.
2010-01-01
In this article energy densities of selected renewable fuels are determined. Energy density is defined here as the annual energy production per hectare, taking energy inputs into account. Using 5 scenarios, consisting of 1 set focusing on technical differences and 1 set focusing on geographical
Level Densities and Radiative Strength Functions in ^{56}FE and ^{57}FE
Energy Technology Data Exchange (ETDEWEB)
Tavukcu, Emel [North Carolina State Univ., Raleigh, NC (United States)
2002-12-10
Understanding nuclear level densities and radiative strength functions is important for pure and applied nuclear physics. Recently, the Oslo Cyclotron Group has developed an experimental method to extract level densities and radiative strength functions simultaneously from the primary γ rays after a light-ion reaction. A primary γ-ray spectrum represents the γ-decay probability distribution. The Oslo method is based on the Axel-Brink hypothesis, according to which the primary γ-ray spectrum is proportional to the product of the level density at the final energy and the radiative strength function. The level density and the radiative strength function are fit to the experimental primary γ-ray spectra, and then normalized to known data. The method works well for heavy nuclei. The present measurements extend the Oslo method to the lighter mass nuclei ^{56}Fe and ^{57}Fe. The experimental level densities in ^{56}Fe and ^{57}Fe reveal step structure. This step structure is a signature for nucleon pair breaking. The predicted pairing gap parameter is in good agreement with the step corresponding to the first pair breaking. Thermodynamic quantities for ^{56}Fe and ^{57}Fe are derived within the microcanonical and canonical ensembles using the experimental level densities. Energy-temperature relations are considered using caloric curves and probability density functions. The differences between the thermodynamics of small and large systems are emphasized. The experimental heat capacities are compared with the recent theoretical calculations obtained in the Shell Model Monte Carlo method. Radiative strength functions in ^{56}Fe and ^{57}Fe have surprisingly high values at low γ-ray energies. This behavior has not been observed for heavy nuclei, but has been observed in other light- and medium-mass nuclei. The origin of this low γ-ray energy effect remains unknown.
Stabilizing laser energy density on a target during pulsed laser deposition of thin films
Dowden, Paul C.; Jia, Quanxi
2016-05-31
A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.
International Nuclear Information System (INIS)
Malmskog, S.G.; Hoejeberg, M.; Berg, V.
1969-02-01
Gamma ray spectra in the decay of 185 Ta and 185m W have been studied with Ge (Li) detectors. The 185m W isomeric transition at 131.6 keV is shown to be of E3 multipolarity. A level scheme of 185 W is proposed with the following energy levels (energies in keV, spin and K quantum numbers in brackets): 0 (3/2 - 3/2), 23.5 (1/2 - 1/2), 65.9 (5/2 - 3/2), 93.5 (3/2 - 1/2) (uncertain), 173.9 (7/2 - 3/2), 188.1 (5/2 - 1/2), 197.5 (11/2 + 11/2) , 243.5 (7/2 - 7/2), and 390.8 (9/2 - 7/2)
Comparison of energy performance requirements levels
DEFF Research Database (Denmark)
Spiekman, Marleen; Thomsen, Kirsten Engelund; Rose, Jørgen
This summary report provides a synthesis of the work within the EU SAVE project ASIEPI on developing a method to compare the energy performance (EP) requirement levels among the countries of Europe. Comparing EP requirement levels constitutes a major challenge. From the comparison of for instance...... the present Dutch requirement level (EPC) of 0,8 with the present Flemish level of E80, it can easily be seen that direct comparison is not possible. The conclusions and recommendations of the study are presented in part A. These constitute the most important result of the project. Part B gives an overview...... of all other project material related to that topic, which allows to easily identify the most pertinent information. Part C lists the project partners and sponsors....
Learning about the energy density of liquid and semi-solid foods
Hogenkamp, P.S.; Stafleu, A.; Mars, M.; Graaf, de C.
2012-01-01
BACKGROUND: People learn about a food's satiating capacity by exposure and consequently adjust their energy intake. OBJECTIVE: To investigate the effect of energy density and texture on subsequent energy intake adjustments during repeated consumption. DESIGN: In a randomized crossover design,
Atlas Pulsed Power Facility for High Energy Density Physics Experiments
International Nuclear Information System (INIS)
Miller, R.B.; Ballard, E.O.; Barr, G.W.; Bowman, D.W.; Chochrane, J.C.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Griego, J.R.; Hicks, R.D.; Hinckley, W.B.; Hosack, K.W.; Nielsen, K.E.; Parker, J.V.; Parsons, M.O.; Rickets, R.L.; Salazar, H.R.; Sanchez, P.G.; Scudder, D.W.; Shapiro, C.; Thompson, M.C.; Trainor, R.J.; Valdez, G.A.; Vigil, B.N.; Watt, R.G.; Wysock, F.J.
1999-01-01
The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-micros risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001
A generalized model for estimating the energy density of invertebrates
James, Daniel A.; Csargo, Isak J.; Von Eschen, Aaron; Thul, Megan D.; Baker, James M.; Hayer, Cari-Ann; Howell, Jessica; Krause, Jacob; Letvin, Alex; Chipps, Steven R.
2012-01-01
Invertebrate energy density (ED) values are traditionally measured using bomb calorimetry. However, many researchers rely on a few published literature sources to obtain ED values because of time and sampling constraints on measuring ED with bomb calorimetry. Literature values often do not account for spatial or temporal variability associated with invertebrate ED. Thus, these values can be unreliable for use in models and other ecological applications. We evaluated the generality of the relationship between invertebrate ED and proportion of dry-to-wet mass (pDM). We then developed and tested a regression model to predict ED from pDM based on a taxonomically, spatially, and temporally diverse sample of invertebrates representing 28 orders in aquatic (freshwater, estuarine, and marine) and terrestrial (temperate and arid) habitats from 4 continents and 2 oceans. Samples included invertebrates collected in all seasons over the last 19 y. Evaluation of these data revealed a significant relationship between ED and pDM (r2 = 0.96, p cost savings compared to traditional bomb calorimetry approaches. This model should prove useful for a wide range of ecological studies because it is unaffected by taxonomic, seasonal, or spatial variability.
Building A Universal Nuclear Energy Density Functional (UNEDF)
Energy Technology Data Exchange (ETDEWEB)
Carlson, Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Furnstahl, Dick [The Ohio State Univ., Columbus, OH (United States); Horoi, Mihai [Central Michigan Univ., Mount Pleasant, MI (United States); Lusk, Rusty [Argonne National Lab. (ANL), Argonne, IL (United States); Nazarewicz, Witek [Univ. of Tennessee, Knoxville, TN (United States); Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thompson, Ian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vary, James [Iowa State Univ., Ames, IA (United States)
2012-09-30
During the period of Dec. 1 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.
Plasma polymerized high energy density dielectric films for capacitors
Yamagishi, F. G.
1983-01-01
High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.
International Nuclear Information System (INIS)
Queipo-Ruiz, J.; Guzman-Martinez, F.; Rodriguez-Hoyos, O.
2011-01-01
The level density parameter is a very important ingredient in statistic study of nuclear reaction, it has been studied to low energies excitation E < 2MeV where it values is approximately constant, experimental results to energies of excitation more than 2 MeV has been obtained of evaporation spectrum, to nuclei with A=160. In this work we present a calculation of densities level parameter, for a wide range of mass and temperature, taking in accounts the shell effects and the mass effective interaction. The result has been carried out within the semi classical approximation, for the single particle level densities. We results have a reasonable agreement with the experimental data available. (Author)
International Nuclear Information System (INIS)
Sukhovoj, A.M.; Khitrov, V.A.
2008-01-01
The data published on two-step cascade intensities to 12 final levels of 96 Mo were approximated for different energies of excitations and dipole primary E1- and M1-transitions by a set of different random dependencies of the level density and strength functions. The averaged values of these parameters of gamma-decay well correspond to main dependencies revealed by now from analogous experiments for 42 nuclei from the mass region 40 ≤ A ≤ 200. They do not correspond to the existing ideas of the cascade gamma-decay parameters of compound nuclei with high level density
Energy Technology Data Exchange (ETDEWEB)
Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)
2014-05-14
Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.
Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi
2018-06-01
A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.
Excitation energy of the lowest 2+ and 3- levels in 32Mg and 146Gd
International Nuclear Information System (INIS)
Barranco, M.; Lombard, R.J.
1978-06-01
The excitation energy of the lowest 2 + and 3 - levels are calculated for neutron rich Mg-isotopes as well as for N=82 isotones. The calculations are made by assuming quadrupole-quadrupole and octupole-octupole forces. The quasi-particles energies and occupation numbers are taken from the energy density method
Directory of Open Access Journals (Sweden)
Noritaka Shimizu
2016-02-01
Full Text Available We introduce a novel method to obtain level densities in large-scale shell-model calculations. Our method is a stochastic estimation of eigenvalue count based on a shifted Krylov-subspace method, which enables us to obtain level densities of huge Hamiltonian matrices. This framework leads to a successful description of both low-lying spectroscopy and the experimentally observed equilibration of Jπ=2+ and 2− states in 58Ni in a unified manner.
Axial asymmetry of excited heavy nuclei as essential feature for the prediction of level densities
Energy Technology Data Exchange (ETDEWEB)
Grosse, Eckart [Institute of Nuclear and Particle Physics, Technische Universitaet Dresden (Germany); Junghans, Arnd R. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Massarczyk, Ralph [Los Alamos National Laboratory, New Mexico (United States)
2016-07-01
In previous studies a considerable improvement of predictions for neutron resonance spacings by a modified back-shifted Fermi-gas model (BSFM) was found. The modifications closely follow the basic principles for a gas of weakly bound Fermions as given in text books of statistical physics: (1) Phase transition at a temperature defined by theory, (2) pairing condensation independent of A, and (3) proportionality of entropy to temperature (and thus the level density parameter) fixed by the Fermi energy. For finite nuclei we add: (4) the back-shift energy is defined by shell correction and (5) the collective enhancement is enlarged by allowing the axial symmetry to be broken. Nearly no parameter fitting is needed to arrive at a good reproduction of level density information obtained by various methods for a number of nuclei in a wide range of A and E. To that end the modified BSFM is complemented by a constant temperature approximation below the phase transition point. The axial symmetry breaking (5), which is an evidently essential feature, will also be regarded with respect to other observables for heavy nuclei.
Strain Energy Density in the Elastodynamics of the Spacetime Continuum and the Electromagnetic Field
Directory of Open Access Journals (Sweden)
Millette P. A.
2013-04-01
Full Text Available We investigate the strain energy density of the spacetime continuum in the Elasto- dynamics of the Spacetime Continuum by applying continuum m echanical results to strained spacetime. The strain energy density is a scalar. W e find that it is separated into two terms: the first one expresses the dilatation energy density (the “mass” longitu- dinal term while the second one expresses the distortion en ergy density (the “massless” transverse term. The quadratic structure of the energy rel ation of Special Relativity is found to be present in the theory. In addition, we find that the kinetic energy pc is car- ried by the distortion part of the deformation, while the dil atation part carries only the rest-mass energy. The strain energy density of the electrom agnetic energy-momentum stress tensor is calculated. The dilatation energy density (the rest-mass energy density of the photon is found to be 0 as expected. The transverse dis tortion energy density is found to include a longitudinal electromagnetic energy fl ux term, from the Poynting vector, that is massless as it is due to distortion, not dilatation, of the spacetime con- tinuum. However, because this energy flux is along the direct ion of propagation (i.e. longitudinal, it gives rise to the particle aspect of the el ectromagnetic field, the photon.
Energy level diagrams for black hole orbits
Levin, Janna
2009-12-01
A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.
Energy level diagrams for black hole orbits
International Nuclear Information System (INIS)
Levin, Janna
2009-01-01
A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.
High Energy Density Li-Ion Batteries Designed for Low Temperature Applications, Phase II
National Aeronautics and Space Administration — The state-of-the-art Li-ion batteries do not fully meet the energy density, power density and safety requirements specified by NASA for future exploration missions....
Solid neutron matter the energy density in the relativistic harmonic approximation
International Nuclear Information System (INIS)
Cattani, M.; Fernandes, N.C.
A relativistic expression for the energy density as a function of particle density for solid neutron matter is obtained using Dirac's equation with a truncated harmonic potential. Ultrabaric and superluminous effects are not found in our approach [pt
Plasma guns for controlled fussion at megagauss energy-densities
International Nuclear Information System (INIS)
Turchi, Peter J.; Roderick, Norman F.; Degnan, James H.; Frese, Michael H.
2008-01-01
Electron cyclotron current drive (ECCD) at a low power level has been used on Tore Supra to induce local perturbations of the current density profile. Regimes with strong MHD activity have been analysed, and compared with similar stable discharges, in order to investigate the possible causes of their instability and relate the evolution of the discharge to the localization of EC power deposition. Both co- and counter-current drive pulses have been applied to dominantly or fully non-inductive discharges, sustained by a lower hybrid current drive. Detailed reconstructions by current diffusion calculations have been performed and the error bars evaluated. This method has proved valuable for shedding light on the complex interplay between the evolutions of temperature and safety factor profiles in steady-state tokamak plasmas. The crucial role of the dynamic evolution of rational surfaces has been identified. Moreover, we demonstrate that the operational domain in which ECCD can be employed must cope with the overall current profile characteristics, in particular the position where the safety factor has a minimum.
Quantifying intermolecular interactions of ionic liquids using cohesive energy densities
2017-01-01
For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced, is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, cedIP, where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, cedC+A, where the ionic vapour constituents are isolated ions. A cedIP dataset is presented for 64 ILs. For the first time an experimental cedC+A, a measure of the strength of the total intermolecular interaction for an IL, is presented. cedC+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between cedIP and the inverse of the molecular volume. A good linear correlation is found between IL cedIP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to cedIP. These findings show that cedIP is very important for understanding IL intermolecular interactions, in spite of cedIP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined. PMID:29308254
High energy density in matter produced by heavy ion beams
International Nuclear Information System (INIS)
1989-07-01
This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)
Quantifying intermolecular interactions of ionic liquids using cohesive energy densities.
Lovelock, Kevin R J
2017-12-01
For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced , is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, ced IP , where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, ced C+A , where the ionic vapour constituents are isolated ions. A ced IP dataset is presented for 64 ILs. For the first time an experimental ced C+A , a measure of the strength of the total intermolecular interaction for an IL, is presented. ced C+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between ced IP and the inverse of the molecular volume. A good linear correlation is found between IL ced IP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to ced IP . These findings show that ced IP is very important for understanding IL intermolecular interactions, in spite of ced IP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined.
Systematics of radiation widths and level density parameters in the mass number range region 40
International Nuclear Information System (INIS)
Bychkov, V.M.; Grudzevich, O.T.; Plyaskin, V.I.
1990-01-01
We suggest a systematics of radiation width based on a reduced radiative capture strength function for the E1-transition, which eliminates fluctuations in the analysed quantity with neutron binding energy, nuclear level density and γ-quanta energy. A smooth dependence for the fitting parameter of the radiative strength function for E1-transitions in relation to the relative atomic mass of the nucleus is obtained. 10 refs, 2 figs
Nonlocal exchange and kinetic-energy density functionals for electronic systems
International Nuclear Information System (INIS)
Glossman, M.D.; Rubio, A.; Balbas, L.C.; Alonso, J.A.
1992-01-01
The nonlocal weighted density approximation (WDA) to the exchange and kinetic-energy functionals of many electron systems proposed several years ago by Alonso and Girifalco is used to compute, within the framework of density functional theory, the ground-state electronic density and total energy of noble gas atoms and of neutral jellium-like sodium clusters containing up to 500 atoms. These results are compared with analogous calculations using the well known Thomas-Fermi-Weizsacker-Dirac (TFWD) approximations for the kinetic (TFW) and exchange (D) energy density functionals. An outstanding improvement of the total and exchange energies, of the density at the nucleus and of the expectation values is obtained for atoms within the WDA scheme. For sodium clusters the authors notice a sizeable contribution of the nonlocal effects to the total energy and to the density profiles. In the limit of very large clusters these effects should affect the surface energy of the bulk metal
Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy
International Nuclear Information System (INIS)
Kubis, S.; Kutschera, M.
1999-01-01
We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases. (author)
Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy
International Nuclear Information System (INIS)
Kubis, S.; Kutschera, M.
1999-04-01
We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases
Shampoo, Soy Sauce, and the Prince's Pendant: Density for Middle-Level Students
Chandrasekhar, Meera; Litherland, Rebecca
2006-01-01
In this article, the authors describe a series of activities they have used with middle-level students. The first set of lessons explores density through the layering of liquids. In the second set, they use some of the same liquids to explore the density of solids. The third set investigates how temperature affects the density of…
International Nuclear Information System (INIS)
Vidal, F; Lavertu, P-L; Bigaouette, N; Moore, F; Brunette, I; Giguere, D; Kieffer, J-C; Olivie, G; Ozaki, T
2007-01-01
The propagation of ultrashort laser pulses in dense optical media is investigated theoretically by solving numerically the nonlinear Schroedinger equation. It is shown that the maximum energy density deposition as a function of the pulse energy presents a well-defined threshold that increases with the pulse duration. As a consequence of plasma defocusing, the maximum energy density deposition is generally smaller and the size of the energy deposition zone is generally larger for shorter pulses. Nevertheless, significant values of the energy density deposition can be obtained near threshold, i.e., at lower energy than for longer pulses
Yoo, Young-Eun; Park, Jinwoo; Kim, Woong
2018-03-01
We present a novel method for enhancing the energy density of an electrical double layer capacitor (EDLC). Surface modification of single-walled carbon nanotube (SWNT) electrodes significantly affects the rest potential (E0) of EDLCs; acid treatment and polyethyleneimine (PEI) coating of SWNTs shift E0 toward more positive and more negative values, respectively. Adjusting E0 towards the center of the electrolyte stability window can increase the cell voltage and hence the energy density. PEI coating on SWNTs increases the cell voltage from 0.8 V to 1.7 V in tetrabutylammonium perchlorate (TBAP)/tetrahydrofuran (THF) electrolyte, and from 2.5 V to 3.1 V in tetraethylammonium tetrafluoroborate (TEABF4)/3-cyanopropionic acid methyl ester (CPAME), respectively. Moreover, PEI-SWNT EDLCs exhibit excellent cycling stability (92% of capacitance retention over 10000 cycles). We attribute the shift in E0 to a change in the Fermi level of SWNTs owing to the surface charge modification. Injection of electrical charge into PEI-SWNTs consistently yielded similar trends and thus validated our hypothesis. Our results may help to push various electrolytes that have been overlooked so far to new frontiers for obtaining high energy-density supercapacitors.
Flexible Aqueous Li-Ion Battery with High Energy and Power Densities.
Yang, Chongyin; Ji, Xiao; Fan, Xiulin; Gao, Tao; Suo, Liumin; Wang, Fei; Sun, Wei; Chen, Ji; Chen, Long; Han, Fudong; Miao, Ling; Xu, Kang; Gerasopoulos, Konstantinos; Wang, Chunsheng
2017-11-01
A flexible and wearable aqueous symmetrical lithium-ion battery is developed using a single LiVPO 4 F material as both cathode and anode in a "water-in-salt" gel polymer electrolyte. The symmetric lithium-ion chemistry exhibits high energy and power density and long cycle life, due to the formation of a robust solid electrolyte interphase consisting of Li 2 CO 3 -LiF, which enables fast Li-ion transport. Energy densities of 141 Wh kg -1 , power densities of 20 600 W kg -1 , and output voltage of 2.4 V can be delivered during >4000 cycles, which is far superior to reported aqueous energy storage devices at the same power level. Moreover, the full cell shows unprecedented tolerance to mechanical stress such as bending and cutting, where it not only does not catastrophically fail, as most nonaqueous cells would, but also maintains cell performance and continues to operate in ambient environment, a unique feature apparently derived from the high stability of the "water-in-salt" gel polymer electrolyte. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material
Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.
1999-01-01
A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.
Statistical properties of kinetic and total energy densities in reverberant spaces
DEFF Research Database (Denmark)
Jacobsen, Finn; Molares, Alfonso Rodriguez
2010-01-01
Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete....... With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically...... positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high...
Grech, Amanda Lee; Rangan, Anna; Allman-Farinelli, Margaret
2017-12-01
It is hypothesized that the observed proliferation of energy-dense, nutrient-poor foods globally is an important contributing factor to the development of the obesity epidemic. However, evidence that the population's dietary energy density has increased is sparse. The World Cancer Research Fund recommends that dietary energy density be density of the Australian population has changed between 1995 and 2012. A secondary analysis of two cross-sectional Australian national nutrition surveys from 1995 and 2011/2012 was conducted. Participants of the surveys included adults aged 18 years and older (1995 n=10,986 and 2011/2012 n=9,435) completing 24-hour dietary recalls, including a second recall for a subset of the population (10.4% in 1995 and 64.6% in 2011/2012). Outcome measures included the change in dietary energy density (calculated as energy/weight of food [kcal/g] for food only) between surveys. The National Cancer Institute method for "estimating ratios of two dietary components that are consumed nearly every day" was used to determine the usual distribution and the percentage of participants reporting energy density density was 1.59 (0.26) kcal/g and 1.64 (0.32) kcal/g (Pdensity recommendations. For those aged 70 years and older, the percentage with energy density density density has increased between the two surveys and few people consumed low energy-dense diets in line with recommendations. The change was largely due to increased energy density of older adult's diets, while young adults had high dietary energy density at both time points. These data suggest efforts now focus on the evaluation of the role of modifying energy density of the diet to reduce the risk of weight gain in adults. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
All-Nitrogen Compounds as High Energy Density Materials
National Research Council Canada - National Science Library
Baum, Kurt; Willer, Rodney L; Bottaro, Jeffrey; Petrie, Mark; Penwell, Paul; Dodge, Allen; Malhotra, Ripu
2005-01-01
.... Enhanced dissolving power, density and compatibilities with a wide range of propellant ingredients make ionic liquids a very attractive class of materials for advanced state-of-the-art propulsion systems...
Vatamanu, Jenel; Ni, Xiaojuan; Liu, Feng; Bedrov, Dmitry
2015-11-01
The semiconducting character of graphene and some carbon-based electrodes can lead to noticeably lower total capacitances and stored energy densities in electric double layer (EDL) capacitors. This paper discusses the chemical and electronic structure modifications that enhance the available energy bands, density of states and quantum capacitance of graphene substrates near the Fermi level, therefore restoring the conducting character of these materials. The doping of graphene with p or n dopants, such as boron and nitrogen atoms, or the introduction of vacancy defects that introduce zigzag edges, can significantly increase the quantum capacitance within the potential range of interest for the energy storage applications by either shifting the Dirac point away from the Fermi level or by eliminating the Dirac point. We show that a combination of doping and vacancies at realistic concentrations is sufficient to increase the capacitance of a graphene-based electrode to within 1 μF cm-2 from that of a metallic surface. Using a combination of ab initio calculations and classical molecular dynamics simulations we estimate how the changes in the quantum capacitance of these electrode materials affect the total capacitance stored by the open structure EDL capacitors containing room temperature ionic liquid electrolytes.
International Nuclear Information System (INIS)
Vatamanu, Jenel; Ni, Xiaojuan; Liu, Feng; Bedrov, Dmitry
2015-01-01
The semiconducting character of graphene and some carbon-based electrodes can lead to noticeably lower total capacitances and stored energy densities in electric double layer (EDL) capacitors. This paper discusses the chemical and electronic structure modifications that enhance the available energy bands, density of states and quantum capacitance of graphene substrates near the Fermi level, therefore restoring the conducting character of these materials. The doping of graphene with p or n dopants, such as boron and nitrogen atoms, or the introduction of vacancy defects that introduce zigzag edges, can significantly increase the quantum capacitance within the potential range of interest for the energy storage applications by either shifting the Dirac point away from the Fermi level or by eliminating the Dirac point. We show that a combination of doping and vacancies at realistic concentrations is sufficient to increase the capacitance of a graphene-based electrode to within 1 μF cm −2 from that of a metallic surface. Using a combination of ab initio calculations and classical molecular dynamics simulations we estimate how the changes in the quantum capacitance of these electrode materials affect the total capacitance stored by the open structure EDL capacitors containing room temperature ionic liquid electrolytes. (paper)
Boll, Torben; Zhu, Zhiyong; Al-Kassab, Talaat; Schwingenschlö gl, Udo
2012-01-01
In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations
High Energy-Density Lithium-Sulfur Batteries with Extended Cycle Life, Phase I
National Aeronautics and Space Administration — Conventional lithium-ion batteries demonstrate great potential for energy storage applications but they face some major challenges such as low energy density and...
Chemically and Thermally Stable High Energy Density Silicone Composites, Phase I
National Aeronautics and Space Administration — Thermal energy storage systems with 300 -- 1000 kJ/kg energy density through either phase changes or chemical heat absorption are sought by NASA. This proposed...
Renewable energy education at the University level
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, S.C. [Asian Institute of Technology, Pathumthani (Thailand). Energy Program
2001-03-01
The rapid growth in global enrolment of students for higher education observed in recent decades is expected to continue in the early next century. However, the role of the universities and their approach to education may undergo substantial transformation in the future. The Internet is expected to play a significant role in university-level education in general and renewable energy education (REE) in particular. Currently, REE at different universities is characterized by a lack of uniformity in terms of duration, coursework, emphasis on research, etc. There is a need to establish guidelines and standards regarding academic programs and to establish a system of accreditation, preferably global, of REE in different academic disciplines and departments. (author)
IAEA advisory group meeting on basic and applied problems of nuclear level densities
International Nuclear Information System (INIS)
Bhat, M.R.
1983-06-01
Separate entries were made in the data base for 17 of the 19 papers included. Two papers were previously included in the data base. Workshop reports are included on (1) nuclear level density theories and nuclear model reaction cross-section calculations and (2) extraction of nuclear level density information from experimental data
Efficient energy transfer and increase of energy density of magnetically charged flywheels
International Nuclear Information System (INIS)
Hinterdorfer, T.
2014-01-01
Flywheel Energy Storage Systems represent an ecologically and economically sustainable technology for decentralized energy storage. Compared to other storage technologies such as e.g. chemical accumulators, they offer longer life cycles without performance degradation over time and usage and need almost no systematic maintenance. Further, they are made of environmentally friendly materials. By means of the driving torque of an electric motor, the flywheel is accelerated and thus electrical energy is transformed to kinetic energy. The stored energy can be transfered back by the load torque of a generator when needed. Modern flywheel energy storage applications use magnetic bearings to minimize selfdischarge. To avoid bearing forces due to rotor eccentricity an unbalance control strategy is used. However, this leads to an off-centered run of the electric machines rotor which in turn generates undesirable forces. A force-compensating operation of the electric machine will minimize the influence on the magnetic bearings in the planned control scheme, thus increasing their efficiency. Different concepts will be developed and compared to each other by means of simulations. Validation of the simulation models is carried out on a specially constructed test setup under defined conditions. In addition, the electrical machine will be integrated into the concept of redundancy of the flywheel. A bearingless operation increases the reliability and enables a safe shutdown of the application in case of malfunction of the magnetic bearings. High strength composite materials are used to achieve high speeds. Based on existing results from past research activities, a disc-shaped rotor is optimized first. To increase material utilization and to maximize energy density a topology optimization is performed. Evolutionary and gradient based optimization algorithms are used. Thereby the unused strength potential of the material is exploited in order to increase the economic efficiency of
Newly discovered failure mode in high energy density, energy storage capacitors
International Nuclear Information System (INIS)
Boicourt, G.P.; Kemp, E.L.
1978-07-01
High energy density pulse capacitors, typified by the 10-kV, 170-μF unit, have become widely used in recent years. These units primarily were designed for lower cost and higher energy per unit volume. The life characteristics of these units have never been determined fully, but they have already been shown capable of lives much longer than originally expected. The Los Alamos Scientific Laboratory is now conducting an extended program to determine the long-term capabilities of these capacitors. This program is aimed not only at finding the statistical parameters of the failure distribution but also at determining the physical failure modes characteristic of such units. Recently, a new failure mode was found. This failure mode has prevented test samples of polypropylene-paper-dioctyl phthalate units from actually reaching the true potential life of the insulation. In this report, the new failure mechanism is examined and suggestions are made that could eliminate the failure mode
International Nuclear Information System (INIS)
Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.
2010-01-01
Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.
On the evaluation of semiclassical nuclear many-particle many-hole level densities
International Nuclear Information System (INIS)
Blin, A.H.; Hiller, B.; Schuck, P.; Yannouleas, C.
1985-10-01
An exact general scheme is described to calculate the m-particle n-hole fermion level densities for an arbitrary single particle Hamiltonian taking into account the Pauli exclusion principle. This technique is applied to obtain level densities of the three dimensional isotropic harmonic oscillator semiclassically in the Thomas-Fermi approach. In addition, we study the l-particle l-hole level density of the Woods-Saxon potential. For the harmonic oscillator we analyze the temperature dependence of the linear response function and the influence of pairing correlations on the l-particle l-hole level density. Finally, a Taylor expansion method of the m-particle n-hole level densities is discussed
Equation satisfied by electron-electron mutual Coulomb repulsion energy density functional
Joubert, Daniel P.
2011-01-01
The electron-electron mutual Coulomb repulsion energy density functional satisfies an equation that links functionals and functional derivatives at N-electron and (N-1)-electron densities for densities determined from the same adiabatic scaled external potential for the N-electron system.
Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.
2017-09-01
Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.
International Nuclear Information System (INIS)
Wang, Yue-Sheng; Tsai, Dah-Shyang; Chung, Wen-Hung; Syu, Yong-Sin; Huang, Ying-Sheng
2012-01-01
Highlights: ► Mo-doping (15 mol%) enhances capacitance and diminishes oxide resistance. ► Influences of Mo-doped MnO 2 are analyzed at the level of capacitor power and energy. ► Polarization loss of the asymmetric capacitor is more than that of the symmetric one. ► Pseudocapacitance benefit on energy is evaluated with power and current densities. - Abstract: Ultracapacitors of asymmetric configuration have been prepared with activated carbon (AC) and undoped or Mo-doped manganese oxide (MnO 2 ) in 1.0 M Na 2 SO 4 electrolyte. Phase analysis shows the AC powder, 1–15 μm in size, contains both disordered and graphitic structures, and the undoped and Mo-doped oxide powder, 0.05–0.20 μm in particle size, mainly involves amorphous MnO 2 and MoO 2 . CV results indicate the single electrode of AC plus 10 wt% Mo-doped MnO 2 (A9O M 1) is superior to the electrode with undoped MnO 2 or high content of doped MnO 2 , exhibiting features of double layer capacitance at high scan rate and pseudocapacitance characteristics at low scan rate. When assembled with a negative electrode of AC, the capacitor of positive A9O M 1 electrode demonstrates the least power loss among three asymmetric capacitors. This asymmetric capacitor also shows a higher capacitance than the symmetric AC capacitor when the current density is less than 8.0 A g −1 in 1.8 V potential window. But a higher electrode resistance of A9O M 1, in contrast with AC, compromises its capacitance plus. When the energy density of A9O M 1 asymmetric capacitor is compared with that of symmetric AC capacitor at the same power level, the capacitance benefit on energy density is restricted to current density ≤ 3.0 A g −1 .
An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics
Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.
2016-02-01
X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm-3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of x-ray source-size, similar to conventional radiography.
Low Density Symmetry Energy Effects and the Neutron Star Crust Properties
International Nuclear Information System (INIS)
Kubis, S.; Alvarez-Castillo, D.E.; Porebska, J.
2010-01-01
The form of the nuclear symmetry energy E s around saturation point density leads to a different crust-core transition point in the neutron star and affects the crust properties. We show that the knowledge of E s close to the saturation point is not sufficient to determine the position of the transition point and the very low density behaviour is required. We also claim that crust properties are strongly influenced by the very high density behaviour of E s , so in order to conclude about the form of low density part of the symmetry energy from astrophysical data one must isolate properly the high density part. (authors)
High energy-density liquid rocket fuel performance
Rapp, Douglas C.
1990-01-01
A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse and propellant density specific impulse.
International Nuclear Information System (INIS)
Okuducu, S.; Sarac, H.; Akti, N. N.; Boeluekdemir, M. H.; Tel, E.
2010-01-01
In this study the nuclear energy level density based on nuclear collective excitation mechanism has been identified in terms of the low-lying collective level bands at near the neutron binding energy. Nuclear level density parameters of some light deformed medical radionuclides used widely in medical applications have been calculated by using different collective excitation modes of observed nuclear spectra. The calculated parameters have been used successfully in estimation of the neutron-capture cross section basic data for the production of new medical radionuclides. The investigated radionuclides have been considered in the region of mass number 40< A< 100. The method used in the present work assumes equidistance spacing of the collective coupled state bands of the interest radionuclides. The present calculated results have been compared with the compiled values from the literatures for s-wave neutron resonance data.
Level densities and γ-strength functions in 148,149Sm
International Nuclear Information System (INIS)
Siem, S.; Guttormsen, M.; Ingeberg, K.; Melby, E.; Rekstad, J.; Schiller, A.; Voinov, A.
2002-01-01
The level densities and γ-strength functions of the weakly deformed 148 Sm and 149 Sm nuclei have been extracted. The temperature versus excitation energy curve, derived within the framework of the microcanonical ensemble, shows structures, which we associate with the breakup of Cooper pairs. The nuclear heat capacity is deduced within the framework of both the microcanonical and canonical ensembles. We observe negative heat capacity in the microcanonical ensemble whereas the canonical heat capacity exhibits an S shape as a function of temperature, both signals of a phase transition. The structures in the γ-strength functions are discussed in terms of the pygmy resonance and the scissors mode built on excited states. The samarium results are compared with data for the well-deformed 161,162 Dy, 166,167 Er, and 171,172 Yb isotopes and with data from (n,γ) experiments and giant dipole resonance studies
Energy Density, Energy Intake, and Body Weight Regulation in Adults12345
Karl, J. Philip; Roberts, Susan B.
2014-01-01
The role of dietary energy density (ED) in the regulation of energy intake (EI) is controversial. Methodologically, there is also debate about whether beverages should be included in dietary ED calculations. To address these issues, studies examining the effects of ED on EI or body weight in nonelderly adults were reviewed. Different approaches to calculating dietary ED do not appear to alter the direction of reported relations between ED and body weight. Evidence that lowering dietary ED reduces EI in short-term studies is convincing, but there are currently insufficient data to determine long-term effectiveness for weight loss. The review also identified key barriers to progress in understanding the role of ED in energy regulation, in particular the absence of a standard definition of ED, and the lack of data from multiple long-term clinical trials examining the effectiveness of low-ED diet recommendations for preventing both primary weight gain and weight regain in nonobese individuals. Long-term clinical trials designed to examine the impact of dietary ED on energy regulation, and including multiple ED calculation methods within the same study, are still needed to determine the importance of ED in the regulation of EI and body weight. PMID:25398750
Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan
Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.
2006-01-01
We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.
Is there an optimum level for renewable energy?
International Nuclear Information System (INIS)
Moriarty, Patrick; Honnery, Damon
2011-01-01
Because continued heavy use of fossil fuel will lead to both global climate change and resource depletion of easily accessible fuels, many researchers advocate a rapid transition to renewable energy (RE) sources. In this paper we examine whether RE can provide anywhere near the levels of primary energy forecast by various official organisations in a business-as-usual world. We find that the energy costs of energy will rise in a non-linear manner as total annual primary RE output increases. In addition, increasing levels of RE will lead to increasing levels of ecosystem maintenance energy costs per unit of primary energy output. The result is that there is an optimum level of primary energy output, in the sense that the sustainable level of energy available to the economy is maximised at that level. We further argue that this optimum occurs at levels well below the energy consumption forecasts for a few decades hence. - Highlights: → We need to shift to renewable energy for climate change and fuel depletion reasons. → We examine whether renewable energy can provide the primary energy levels forecast. → The energy costs of energy rise non-linearly with renewable energy output. → There is thus an optimum level of primary energy output. → This optimum occurs at levels well below future official energy use forecasts.
International Nuclear Information System (INIS)
Jayakumar, R.; Fleischmann, H.H.
1989-01-01
The production of intermediate energy secondary electrons in plasmas through collisions with fast charged particles is investigated. The density and the distribution of the secondary electrons are obtained by calculating the generation, slow down and diffusion rates, using basic Rutherford collision cross sections. It is shown that the total density of secondaries is much smaller than the fast particle density and that the energy distribution has roughly a 1/√E dependence. The higher generation secondary populations are also obtained. (orig.)
Nuclear energy density functional from chiral pion-nucleon dynamics revisited
Kaiser, N.; Weise, W.
2009-01-01
We use a recently improved density-matrix expansion to calculate the nuclear energy density functional in the framework of in-medium chiral perturbation theory. Our calculation treats systematically the effects from $1\\pi$-exchange, iterated $1\\pi$-exchange, and irreducible $2\\pi$-exchange with intermediate $\\Delta$-isobar excitations, including Pauli-blocking corrections up to three-loop order. We find that the effective nucleon mass $M^*(\\rho)$ entering the energy density functional is iden...
The energy density of a Landau damped plasma wave
Best, R. W. B.
1999-01-01
In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite
Energy expressions in density-functional theory using line integrals.
van Leeuwen, R.; Baerends, E.J.
1995-01-01
In this paper we will address the question of how to obtain energies from functionals when only the functional derivative is given. It is shown that one can obtain explicit expressions for the exchange-correlation energy from approximate exchange-correlation potentials using line integrals along
Serum osteoprotegerin levels and mammographic density among high-risk women.
Moran, Olivia; Zaman, Tasnim; Eisen, Andrea; Demsky, Rochelle; Blackmore, Kristina; Knight, Julia A; Elser, Christine; Ginsburg, Ophira; Zbuk, Kevin; Yaffe, Martin; Narod, Steven A; Salmena, Leonardo; Kotsopoulos, Joanne
2018-06-01
Mammographic density is a risk factor for breast cancer but the mechanism behind this association is unclear. The receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL) pathway has been implicated in the development of breast cancer. Given the role of RANK signaling in mammary epithelial cell proliferation, we hypothesized this pathway may also be associated with mammographic density. Osteoprotegerin (OPG), a decoy receptor for RANKL, is known to inhibit RANK signaling. Thus, it is of interest to evaluate whether OPG levels modify breast cancer risk through mammographic density. We quantified serum OPG levels in 57 premenopausal and 43 postmenopausal women using an enzyme-linked immunosorbent assay (ELISA). Cumulus was used to measure percent density, dense area, and non-dense area for each mammographic image. Subjects were classified into high versus low OPG levels based on the median serum OPG level in the entire cohort (115.1 pg/mL). Multivariate models were used to assess the relationship between serum OPG levels and the measures of mammographic density. Serum OPG levels were not associated with mammographic density among premenopausal women (P ≥ 0.42). Among postmenopausal women, those with low serum OPG levels had higher mean percent mammographic density (20.9% vs. 13.7%; P = 0.04) and mean dense area (23.4 cm 2 vs. 15.2 cm 2 ; P = 0.02) compared to those with high serum OPG levels after covariate adjustment. These findings suggest that low OPG levels may be associated with high mammographic density, particularly in postmenopausal women. Targeting RANK signaling may represent a plausible, non-surgical prevention option for high-risk women with high mammographic density, especially those with low circulating OPG levels.
On the energy-momentum density of gravitational plane waves
International Nuclear Information System (INIS)
Dereli, T; Tucker, R W
2004-01-01
By embedding Einstein's original formulation of general relativity into a broader context, we show that a dynamic covariant description of gravitational stress-energy emerges naturally from a variational principle. A tensor T G is constructed from a contraction of the Bel tensor with a symmetric covariant second degree tensor field Φ and has a form analogous to the stress-energy tensor of the Maxwell field in an arbitrary spacetime. For plane-fronted gravitational waves helicity-2 polarized (graviton) states can be identified carrying non-zero energy and momentum
Casimir energy density for spherical universes in n-dimensional spacetime
International Nuclear Information System (INIS)
Oezcan, Mustafa
2006-01-01
We consider the Casimir effect for the massless conformal scalar field in an n-dimensional, closed, static universe. We calculate the renormalized vacuum energy density using the covariant point-splitting method, the mode-sum regularization and the renormalized vacuum energy with the zeta-function regularization. We observe that all odd spacetime dimensions give us the zero renormalized vacuum energy density. For even spacetime dimensions the renormalized vacuum energy density oscillates in sign. The result agrees with three regularization techniques. The Casimir energy density for spherical universes in n-dimensional spacetime is regarded as interesting both to understand the correspondence between the sign of the effect and the dimension of manifold in topology and as a key to confirming the Casimir energy for half spherical universes (manifold with boundary) in n-dimensional spacetime
Density content of nuclear symmetry energy from nuclear observables
Indian Academy of Sciences (India)
mail: ... The asymmetry arises due to the requirements that ... nuclear binding energies and the nuclear drip lines and has a crucial role in determining ... neutron-skin thickness based on covariance analysis [6] once again yields a strong cor-.
High Power Density, Lightweight Thermoelectric Metamaterials for Energy Harvesting
National Aeronautics and Space Administration — Thermoelectric energy harvesting utilizes materials that generate an electrical current when subjected to a temperature gradient, or simply, a hot and cold source of...
Impact of density-dependent symmetry energy and Coulomb ...
Indian Academy of Sciences (India)
2014-03-07
Mar 7, 2014 ... The IMF production increases with the stiffness of symmetry energy. .... to clusterization using minimum spanning tree MST(M) method .... To understand the direct role of Coulomb interactions, we display in figure 4 the mean.
Modine, N. A.; Wright, A. F.; Lee, S. R.
The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Density functional theory (DFT) has been widely and successfully used to predict defect levels, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry developed the theory of carrier-capture by multiphonon emission in the 1970s and showed that carrier-capture cross-sections differ between defects primarily due to differences in their carrier capture activation energies. We present an approach to using DFT to calculate carrier capture activation energies that does not depend on an assumed configuration coordinate and that fully accounts for anharmonic effects, which can substantially modify carrier activation energies. We demonstrate our approach for intrinisic defects in GaAs and GaN and discuss how our results depend on the choice of exchange-correlation functional and the treatment of spin polarization. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Huang, Yan; Ip, Wing Shan; Lau, Yuen Ying; Sun, Jinfeng; Zeng, Jie; Yeung, Nga Sze Sea; Ng, Wing Sum; Li, Hongfei; Pei, Zengxia; Xue, Qi; Wang, Yukun; Yu, Jie; Hu, Hong; Zhi, Chunyi
2017-09-26
With intrinsic safety and much higher energy densities than supercapacitors, rechargeable nickel/cobalt-zinc-based textile batteries are promising power sources for next generation personalized wearable electronics. However, high-performance wearable nickel/cobalt-zinc-based batteries are rarely reported because there is a lack of industrially weavable and knittable highly conductive yarns. Here, we use scalably produced highly conductive yarns uniformly covered with zinc (as anode) and nickel cobalt hydroxide nanosheets (as cathode) to fabricate rechargeable yarn batteries. They possess a battery level capacity and energy density, as well as a supercapacitor level power density. They deliver high specific capacity of 5 mAh cm -3 and energy densities of 0.12 mWh cm -2 and 8 mWh cm -3 (based on the whole solid battery). They exhibit ultrahigh rate capabilities of 232 C (liquid electrolyte) and 116 C (solid electrolyte), which endows the batteries excellent power densities of 32.8 mW cm -2 and 2.2 W cm -3 (based on the whole solid battery). These are among the highest values reported so far. A wrist band battery is further constructed by using a large conductive cloth woven from the conductive yarns by a commercial weaving machine. It powers various electronic devices successfully, enabling dual functions of wearability and energy storage.
Levelized Cost of Energy of the Weptos wave energy converter
DEFF Research Database (Denmark)
Pecher, Arthur; Kofoed, Jens Peter
This report presents the cost of energy calculations of a wave energy array of 90 MW, consisting of 25 x 3.6 MW Weptos wave energy converters. The calculation has been made in analogy with a publically available document presented by the UK government, covering the case of a similar size wind...
TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries.
Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan; Cosimbescu, Lelia; Liu, Tianbiao; Sprenkle, Vincent; Wang, Wei
2014-12-03
A TEMPO-based non-aqueous electrolyte with the TEMPO concentration as high as 2.0 m is demonstrated as a high-energy-density catholyte for redox flow battery applications. With a hybrid anode, Li|TEMPO flow cells using this electrolyte deliver an energy efficiency of ca. 70% and an impressively high energy density of 126 W h L(-1) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Probing the nuclear symmetry energy at high densities with nuclear reactions
Leifels, Y.
2017-11-01
The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.
International Nuclear Information System (INIS)
Xu Chang; Li Baoan; Chen Liewen
2010-01-01
Based on the Hugenholtz-Van Hove theorem, it is shown that both the symmetry energy E sym (ρ) and its density slope L(ρ) at normal density ρ 0 are completely determined by the nucleon global optical potentials. The latter can be extracted directly from nucleon-nucleus scatterings, (p,n) charge-exchange reactions, and single-particle energy levels of bound states. Averaging all phenomenological isovector nucleon potentials constrained by world data available in the literature since 1969, the best estimates of E sym (ρ 0 )=31.3 MeV and L(ρ 0 )=52.7 MeV are simultaneously obtained. Moreover, the corresponding neutron-proton effective mass splitting in neutron-rich matter of isospin asymmetry δ is estimated to be (m n * -m p * )/m=0.32δ.
The energy density distribution of an ideal gas and Bernoulli’s equations
Santos, Leonardo S. F.
2018-05-01
This work discusses the energy density distribution in an ideal gas and the consequences of Bernoulli’s equation and the corresponding relation for compressible fluids. The aim of this work is to study how Bernoulli’s equation determines the energy flow in a fluid, although Bernoulli’s equation does not describe the energy density itself. The model from molecular dynamic considerations that describes an ideal gas at rest with uniform density is modified to explore the gas in motion with non-uniform density and gravitational effects. The difference between the component of the speed of a particle that is parallel to the gas speed and the gas speed itself is called ‘parallel random speed’. The pressure from the ‘parallel random speed’ is denominated as parallel pressure. The modified model predicts that the energy density is the sum of kinetic and potential gravitational energy densities plus two terms with static and parallel pressures. The application of Bernoulli’s equation and the corresponding relation for compressible fluids in the energy density expression has resulted in two new formulations. For incompressible and compressible gas, the energy density expressions are written as a function of stagnation, static and parallel pressures, without any dependence on kinetic or gravitational potential energy densities. These expressions of the energy density are the main contributions of this work. When the parallel pressure was uniform, the energy density distribution for incompressible approximation and compressible gas did not converge to zero for the limit of null static pressure. This result is rather unusual because the temperature tends to zero for null pressure. When the gas was considered incompressible and the parallel pressure was equal to static pressure, the energy density maintained this unusual behaviour with small pressures. If the parallel pressure was equal to static pressure, the energy density converged to zero for the limit of the
Mussmann, Bo; Overgaard, Søren; Torfing, Trine; Traise, Peter; Gerke, Oke; Andersen, Poul Erik
2017-07-01
The objective of this study was to test the precision and agreement between bone mineral density measurements performed in micro CT, single and dual energy computed tomography, to determine how the keV level influences density measurements and to assess the usefulness of quantitative dual energy computed tomography as a research tool for longitudinal studies aiming to measure bone loss adjacent to total hip replacements. Samples from 10 fresh-frozen porcine femoral heads were placed in a Perspex phantom and computed tomography was performed with two acquisition modes. Bone mineral density was calculated and compared with measurements derived from micro CT. Repeated scans and dual measurements were performed in order to measure between- and within-scan precision. Mean density difference between micro CT and single energy computed tomography was 72 mg HA/cm 3 . For dual energy CT, the mean difference at 100 keV was 128 mg HA/cm 3 while the mean difference at 110-140 keV ranged from -84 to -67 mg HA/cm 3 compared with micro CT. Rescanning the samples resulted in a non-significant overall between-scan difference of 13 mg HA/cm 3 . Bland-Altman limits of agreement were wide and intraclass correlation coefficients ranged from 0.29 to 0.72, while 95% confidence intervals covered almost the full possible range. Repeating the density measurements for within-scan precision resulted in ICCs >0.99 and narrow limits of agreement. Single and dual energy quantitative CT showed excellent within-scan precision, but poor between-scan precision. No significant density differences were found in dual energy quantitative CT at keV-levels above 110 keV. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1470-1477, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Lower Bound on the Energy Density in Classical and Quantum Field Theories.
Wall, Aron C
2017-04-14
A novel method for deriving energy conditions in stable field theories is described. In a local classical theory with one spatial dimension, a local energy condition always exists. For a relativistic field theory, one obtains the dominant energy condition. In a quantum field theory, there instead exists a quantum energy condition, i.e., a lower bound on the energy density that depends on information-theoretic quantities. Some extensions to higher dimensions are briefly discussed.
A Dual-Stimuli-Responsive Sodium-Bromine Battery with Ultrahigh Energy Density.
Wang, Faxing; Yang, Hongliu; Zhang, Jian; Zhang, Panpan; Wang, Gang; Zhuang, Xiaodong; Cuniberti, Gianaurelio; Feng, Xinliang
2018-06-01
Stimuli-responsive energy storage devices have emerged for the fast-growing popularity of intelligent electronics. However, all previously reported stimuli-responsive energy storage devices have rather low energy densities (energy density, electrochromic effect, and fast thermal response is demonstrated. Remarkably, the fabricated Na//Br 2 battery exhibits a large operating voltage of 3.3 V and an energy density up to 760 Wh kg -1 , which outperforms those for the state-of-the-art stimuli-responsive electrochemical energy storage devices. This work offers a promising approach for designing multi-stimuli-responsive and high-energy rechargeable batteries without sacrificing the electrochemical performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fujiwara, Takeo; Nishino, Shinya; Yamamoto, Susumu; Suzuki, Takashi; Ikeda, Minoru; Ohtani, Yasuaki
2018-06-01
A novel tight-binding method is developed, based on the extended Hückel approximation and charge self-consistency, with referring the band structure and the total energy of the local density approximation of the density functional theory. The parameters are so adjusted by computer that the result reproduces the band structure and the total energy, and the algorithm for determining parameters is established. The set of determined parameters is applicable to a variety of crystalline compounds and change of lattice constants, and, in other words, it is transferable. Examples are demonstrated for Si crystals of several crystalline structures varying lattice constants. Since the set of parameters is transferable, the present tight-binding method may be applicable also to molecular dynamics simulations of large-scale systems and long-time dynamical processes.
Local kinetic-energy density of the Airy gas
DEFF Research Database (Denmark)
Vitos, Levente; Johansson, B.; Kollár, J.
2000-01-01
The Airy gas model is used to derive an expression for the local kinetic energy in the linear potential approximation. The expression contains an explicit Laplacian term 2/5((h) over bar(2)/2m)del(mu)(2)(r) that, according to jellium surface calculations, must be a universal feature of any accura...
The Search for New High-Energy-Density Materials
2014-01-01
Evolution of the superhalogen properties in PtCln clusters“, J. Chem. Phys. (in press). Behera, S. and Jena, P.: “Stability and Spectroscopic Properties...Society, Cocoa Beach, FL, February 21-25, 2010 US-Egypt Advanced Studies Institute (ASI) on “Nanomaterials and Nanocatalysis for Energy
Chemical bonding in view of electron charge density and kinetic energy density descriptors.
Jacobsen, Heiko
2009-05-01
Stalke's dilemma, stating that different chemical interpretations are obtained when one and the same density is interpreted either by means of natural bond orbital (NBO) and subsequent natural resonance theory (NRT) application or by the quantum theory of atoms in molecules (QTAIM), is reinvestigated. It is shown that within the framework of QTAIM, the question as to whether for a given molecule two atoms are bonded or not is only meaningful in the context of a well-defined reference geometry. The localized-orbital-locator (LOL) is applied to map out patterns in covalent bonding interaction, and produces results that are consistent for a variety of reference geometries. Furthermore, LOL interpretations are in accord with NBO/NRT, and assist in an interpretation in terms of covalent bonding. 2008 Wiley Periodicals, Inc.
Extended MHD Effects in High Energy Density Experiments
Seyler, Charles
2016-10-01
The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation
Learning about the energy density of liquid and semi-solid foods
Hogenkamp, P.S.; Stafleu, A.; Mars, M.; Graaf C. de
2012-01-01
Background:People learn about a food's satiating capacity by exposure and consequently adjust their energy intake.Objective:To investigate the effect of energy density and texture on subsequent energy intake adjustments during repeated consumption.Design:In a randomized crossover design,
The symmetry energy at suprasaturation density and the ASY-EOS experiment at GSI
Directory of Open Access Journals (Sweden)
De Filippo E.
2017-01-01
Full Text Available The ASY-EOS experiment at GSI laboratory measured the direct and elliptic flow of neutrons and light charged particles in the reaction 197Au+197 Au at 400 A MeV incident energy. The ratio of elliptic flow of neutrons with respect to that of the light charged particles was used as main experimental observable to probe the density dependence of the symmetry energy term of the nuclear equation of state. Results, obtained by comparison of the experimental data with the UrQMD model predictions, strongly support a moderately soft to linear density dependence of the symmetry energy at suprasaturation densities below 2ρ0.
Sulfurized activated carbon for high energy density supercapacitors
Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong
2014-04-01
Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.
Optimization of power and energy densities in supercapacitors
Energy Technology Data Exchange (ETDEWEB)
Robinson, David B. [Sandia National Laboratories, PO Box 969 MS 9291, Livermore, CA 94551 (United States)
2010-06-01
Supercapacitors use nanoporous electrodes to store large amounts of charge on their high surface areas, and use the ions in electrolytes to carry charge into the pores. Their high power density makes them a potentially useful complement to batteries. However, ion transport through long, narrow channels still limits power and efficiency in these devices. Proper design can mitigate this. Current collector geometry must also be considered once this is done. Here, De Levie's model for porous electrodes is applied to quantitatively predict device performance and to propose optimal device designs for given specifications. Effects unique to nanoscale pores are considered, including that pores may not have enough salt to fully charge. Supercapacitors are of value for electric vehicles, portable electronics, and power conditioning in electrical grids with distributed renewable sources, and that value will increase as new device fabrication methods are developed and proper design accommodates those improvements. Example design outlines for vehicle applications are proposed and compared. (author)
The many-body level density; Densite de niveaux du probleme a n-corps
Energy Technology Data Exchange (ETDEWEB)
Roccia, J
2007-09-15
We investigate the many-body level density {rho}{sub MB} for fermion and boson gases. We establish its behavior as a function of the temperature and the number of particles. We deal with correction terms due to finite number of particles effects for {rho}{sub MB}: for fermions, it seems that it exists only one behavior. We propose a semiclassical expression of {rho}{sub MB} for two types of particles with an angular momentum. It is decomposed into a smooth part coming from the saddle point method plus corrective terms due to the expansion of the number of partitions for two types of particles and an oscillating part coming from the fluctuations of the single-particle level density. Our model is validated by a numerical study. For the case of the atomic nucleus, the oscillating part of {rho}{sub MB} is controlled by a temperature factor which depends on the chaotic or integrable nature of the system and on the fluctuation of the ground state energy. This leads to consider in more detail this last quantity. For an isolated system, we give the general expression of the mean value for fixed potentials. We treat the self-bound system case through the example of the three dimensional harmonic oscillator (3DHO). Furthermore we study the oscillating part of {rho}{sub MB} for bosons in the low temperature regime for billiards and for isotropic 3DHO. We note the oscillations disappear leading to a power law correction. In the case of the isotropic 3DHO, these corrections have the same order of magnitude as the smooth part. In the same way, for the high temperature regime we show the oscillating part of {rho}{sub MB} is exponentially negligible compared to the smooth part. (author)
Simple Levelized Cost of Energy (LCOE) Calculator Documentation | Energy
;M, performance and fuel costs. Note that this doesn't include financing issues, discount issues ). This means that the LCOE is the minimum price at which energy must be sold for an energy project to the balance between debt-financing and equity-financing, and an assessment of the financial risk
A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.
Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin; Li, Xianfeng
2017-11-20
Flow batteries (FBs) are one of the most promising stationary energy-storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc-iron FB with very low cost and high energy density is presented. By using highly soluble FeCl 2 /ZnBr 2 species, a charge energy density of 56.30 Wh L -1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe 3+ /Fe 2+ . The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm -2 and the battery can run stably for more than 100 cycles. Furthermore, a low-cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB is a promising candidate for stationary energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers
International Nuclear Information System (INIS)
Liu Min; Wang, Ning; Li Zhuxia; Wu Xizhen; Zhao Enguang
2006-01-01
The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied
Test of level density models from reactions of Li6 on Fe58 and Li7 on Fe57
Oginni, B. M.; Grimes, S. M.; Voinov, A. V.; Adekola, A. S.; Brune, C. R.; Carter, D. E.; Heinen, Z.; Jacobs, D.; Massey, T. N.; O'Donnell, J. E.; Schiller, A.
2009-09-01
The reactions of Li6 on Fe58 and Li7 on Fe57 have been studied at 15 MeV beam energy. These two reactions produce the same compound nucleus, Cu64. The charged particle spectra were measured at backward angles. The data obtained have been compared with Hauser-Feshbach model calculations. The level density parameters of Ni63 and Co60 have been obtained from the particle evaporation spectra. We also find contributions from the break up of the lithium projectiles to the low energy region of the α spectra.
Grosse, Eckart; Massarczyk, Ralph
2014-01-01
Cross sections for neutron capture in the range of unresolved resonances are predicted simultaneously to level distances at the neutron threshold for more than 100 spin-0 target nuclei with A >70. Assuming triaxiality in nearly all these nuclei a combined parameterization for both, level density and photon strength is presented. The strength functions used are based on a global fit to IVGDR shapes by the sum of three Lorentzians adding up to the TRK sum rule and theory-based predictions for the A-dependence of pole energies and spreading widths. For the small spins reached by capture level densities are well described by only one free global parameter; a significant collective enhancement due to the deviation from axial symmetry is observed. Reliable predictions for compound nuclear reactions also outside the valley of stability as expected from the derived global parameterization are important for nuclear astrophysics and for the transmutation of nuclear waste.
Energy Technology Data Exchange (ETDEWEB)
Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul, E-mail: rahul@iitmandi.ac.in [School of Engineering, Indian Institute of Technology Mandi, 175 001 (India)
2014-08-15
With the advent of modern power electronics, embedded circuits and non-conventional energy harvesting, the need for high performance capacitors is bound to become indispensible. The current state-of-art employs ferroelectric ceramics and linear dielectrics for solid state capacitance. However, lead-free ferroelectric ceramics propose to offer significant improvement in the field of electrical energy storage owing to their high discharge efficiency and energy storage density. In this regards, the authors have investigated the effects of compressive stress as a means of improving the energy storage density of lead-free ferroelectric ceramics. The energy storage density of 0.91(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-0.07BaTiO{sub 3}-0.02(K{sub 0.5}Na{sub 0.5})NbO{sub 3} ferroelectric bulk ceramic was analyzed as a function of varying levels of compressive stress and operational temperature .It was observed that a peak energy density of 387 mJ.cm{sup -3} was obtained at 100 MPa applied stress (25{sup o}C). While a maximum energy density of 568 mJ.cm{sup -3} was obtained for the same stress at 80{sup o}C. These values are indicative of a significant, 25% and 84%, improvement in the value of stored energy compared to an unloaded material. Additionally, material's discharge efficiency has also been discussed as a function of operational parameters. The observed phenomenon has been explained on the basis of field induced structural transition and competitive domain switching theory.
Directory of Open Access Journals (Sweden)
Aditya Chauhan
2014-08-01
Full Text Available With the advent of modern power electronics, embedded circuits and non-conventional energy harvesting, the need for high performance capacitors is bound to become indispensible. The current state-of-art employs ferroelectric ceramics and linear dielectrics for solid state capacitance. However, lead-free ferroelectric ceramics propose to offer significant improvement in the field of electrical energy storage owing to their high discharge efficiency and energy storage density. In this regards, the authors have investigated the effects of compressive stress as a means of improving the energy storage density of lead-free ferroelectric ceramics. The energy storage density of 0.91(Bi0.5Na0.5TiO3-0.07BaTiO3-0.02(K0.5Na0.5NbO3 ferroelectric bulk ceramic was analyzed as a function of varying levels of compressive stress and operational temperature .It was observed that a peak energy density of 387 mJ.cm-3 was obtained at 100 MPa applied stress (25oC. While a maximum energy density of 568 mJ.cm-3 was obtained for the same stress at 80oC. These values are indicative of a significant, 25% and 84%, improvement in the value of stored energy compared to an unloaded material. Additionally, material's discharge efficiency has also been discussed as a function of operational parameters. The observed phenomenon has been explained on the basis of field induced structural transition and competitive domain switching theory.
Level density and gamma-ray strength in sup 2 sup 7 sup , sup 2 sup 8 Si
Guttormsen, M; Rekstad, J; Siem, S; Schiller, A; Lönnroth, T; Voinov, A
2003-01-01
A method to extract simultaneously level densities and gamma-ray transmission coefficients has for the first time been tested on light nuclei utilizing the sup 2 sup 8 Si( sup 3 He,alpha gamma) sup 2 sup 7 Si and sup 2 sup 8 Si( sup 3 He, sup 3 He'gamma) sup 2 sup 8 Si reactions. The extracted level densities for sup 2 sup 7 Si and sup 2 sup 8 Si are consistent with the level densities obtained by counting known levels in the respective nuclei. The extracted gamma-ray strength in sup 2 sup 8 Si agrees well with the known gamma-decay properties of this nucleus. Typical nuclear temperatures are found to be T approx 2.4 MeV at around 7 MeV excitation energy. The entropy gap between nuclei with mass number A and A +- 1 is measured to be delta S approx 1.0 k sub B , which indicates an energy spacing between single-particle orbitals comparable with typical nuclear temperatures.
Directory of Open Access Journals (Sweden)
Xue Zhou
2015-07-01
Full Text Available Objective: We examined whether dietary energy intake (EI and dietary energy density (ED were cross-sectionally associated with body composition of children living in Southwest China. Design and Methods: Multivariate regression analyses were performed on three day, 24 h dietary recall data and information on potential confounders from 1207 participants aged 8–14 years. EI was calculated from all foods and drinks and ED was classified into five categories. Body mass index (BMI z-scores, percentage of body fat (%BF, fat mass index (FMI, fat-free mass index (FFMI and ratio of waist to hip circumference (WHR were used to describe body composition. Results: Boys with higher total EI had higher BMI z-scores, %BF, and FMI than boys with lower total EI both before and after measurements were adjusted for confounders (age, fiber intake, physical activity, the timing of adding complementary foods, paternal education level and maternal BMI (p ≤ 0.04. However, EI was not associated with body composition in girls. Dietary ED, in any category, was not associated with body composition in either gender. Conclusions: Dietary ED was not associated with body composition of children in Southwest China, while dietary EI in boys, not girls, was positively associated with body composition. Reducing dietary energy intake may help to prevent obesity and related diseases in later life among boys living in Southwest China.
Swart, M.; Sola, M.; Bickelhaupt, F.M.
2007-01-01
We have carried out a detailed evaluation of the performance of all classes of density functional theory (DFT) for describing the potential energy surface (PES) of a wide range of nucleophilic substitution (S
Nanomaterials Enabled High Energy and Power Density Li-ion Batteries, Phase I
National Aeronautics and Space Administration — There is a need for high energy (~ 200 Wh/kg) and high power (> 500 W/kg) density rechargeable Li-ion batteries that are safe and reliable for several space and...
Knot soliton in DNA and geometric structure of its free-energy density.
Wang, Ying; Shi, Xuguang
2018-03-01
In general, the geometric structure of DNA is characterized using an elastic rod model. The Landau model provides us a new theory to study the geometric structure of DNA. By using the decomposition of the arc unit in the helical axis of DNA, we find that the free-energy density of DNA is similar to the free-energy density of a two-condensate superconductor. By using the φ-mapping topological current theory, the torus knot soliton hidden in DNA is demonstrated. We show the relation between the geometric structure and free-energy density of DNA and the Frenet equations in differential geometry theory are considered. Therefore, the free-energy density of DNA can be expressed by the curvature and torsion of the helical axis.
Improving the energy density of hydraulic hybrid vehicles (HHVS) and evaluating plug-in HHVS.
2010-10-01
This report describes analyses performed by researchers at The University of Toledo (UT) in : collaboration with researchers at the University of Detroit Mercy (UDM) on the project : Improving the Energy Density of Hydraulic Hybrid Vehicles (HHVs)...
Advanced Cathode Material For High Energy Density Lithium-Batteries, Phase I
National Aeronautics and Space Administration — Advanced cathode materials having high red-ox potential and high specific capacity offer great promise to the development of high energy density lithium-based...
High-energy-density physics foundation of inertial fusion and experimental astrophysics
Drake, R Paul
2018-01-01
The raw numbers of high-energy-density physics are amazing: shock waves at hundreds of km/s (approaching a million km per hour), temperatures of millions of degrees, and pressures that exceed 100 million atmospheres. This title surveys the production of high-energy-density conditions, the fundamental plasma and hydrodynamic models that can describe them and the problem of scaling from the laboratory to the cosmos. Connections to astrophysics are discussed throughout. The book is intended to support coursework in high-energy-density physics, to meet the needs of new researchers in this field, and also to serve as a useful reference on the fundamentals. Specifically the book has been designed to enable academics in physics, astrophysics, applied physics and engineering departments to provide in a single-course, an introduction to fluid mechanics and radiative transfer, with dramatic applications in the field of high-energy-density systems. This second edition includes pedagogic improvements to the presentation ...
High Energy Density Solid State Li-ion Battery with Enhanced Safety, Phase I
National Aeronautics and Space Administration — We propose to develop an all solid state Li-ion battery which is capable of delivering high energy density, combined with high safety over a wide operating...
Foundations of high-energy-density physics physical processes of matter at extreme conditions
Larsen, Jon
2017-01-01
High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...
An asymptotic formula for the free energy density of ideal quantum gases
International Nuclear Information System (INIS)
Mackowiak, J.
1988-01-01
It is shown that the expressions for the free energy density of ideal quantum gases in the canonical and grand canonical ensembles, are identical up to additive terms which vanish in the thermodynamic limit. (orig.)
High energy density additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety
National Aeronautics and Space Administration — We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these...
Matching renewable energy systems to village-level energy needs
Energy Technology Data Exchange (ETDEWEB)
Ashworth, J.H.; Neuendorffer, J.W.
1980-06-01
This report provides a five step process for matching alternative renewable energy technologies with energy needs in rural villages of developing countries. Analytic tools are given for each of the five steps as well as information that can be expected. Twelve characterization criteria are developed to assist in the matching process. Three of these criteria, called discrimination criteria, are used for preliminary screening of technology possibilities for each need. The other criteria address site-specific temporal, climatic, social, cultural, and environmental characteristics of the energy need, technology, and cost considerations. To illustrate the matching process, seven basic human needs for energy are matched with seven potential renewable energy technologies. The final portion of the paper discusses the advantages of such a matching process and the resources required to initiate such an effort within a development project. Specific recommendations are given for field-testing this process and actions that could be taken immediately in basic research and development, applied research and technology modification, demonstrations, and commercialization to assist in the future diffusion of renewable energy technologies to rural areas of developing countries.
International Nuclear Information System (INIS)
Li, Ming; Kapusta, Joseph I.
2017-01-01
Heavy ion collisions at extremely high energy, such as the top energy at RHIC, exhibit the property of transparency where there is a clear separation between the almost net-baryon-free central rapidity region and the net-baryon-rich fragmentation region. We calculate the net-baryon rapidity loss and the nuclear excitation energy using the energy-momentum tensor obtained from the McLerran-Venugopalan model. Nuclear compression during the collision is further estimated using a simple space-time picture. The results show that extremely high baryon densities, about twenty times larger than the normal nuclear density, can be achieved in the fragmentation regions. (paper)
Estimating Solar Energy Potential in Buildings on a Global Level
DEFF Research Database (Denmark)
Petrichenko, Ksenia
2015-01-01
This chapter contributes to the debate around net-zero energy concept from a global perspective. By means of comprehensive modelling, it analyses how much global building energy consumption could be reduced through utilisation of building-integrated solar energy technologies and energy......-efficiency improvements. Valuable insights on the locations and building types, in which it is feasible to achieve a net-zero level of energy performance through solar energy utilisation, are presented in world maps....
Understanding the major uncertainties in the nuclear symmetry energy at suprasaturation densities
International Nuclear Information System (INIS)
Xu Chang; Li Baoan
2010-01-01
Within the interacting Fermi gas model for isospin asymmetric nuclear matter, effects of the in-medium three-body interaction and the two-body short-range tensor force owing to the ρ meson exchange, as well as the short-range nucleon correlation on the high-density behavior of the nuclear symmetry energy, are demonstrated respectively in a transparent way. Possible physics origins of the extremely uncertain nuclear symmetry energy at suprasaturation densities are discussed.
Report of the Interagency Task Force on High Energy Density Physics
International Nuclear Information System (INIS)
2007-01-01
Identifies the needs for improving Federal stewardship of specific aspects of high energy density physics, particularly the study of high energy density plasmas in the laboratory, and strengthening university activities in this latter discipline. The report articulates how HEDP fits into the portfolio of federally funded missions and includes agency actions to be taken that are necessary to further this area of study consistent with Federal priorities and plans, while being responsive to the needs of the scientific community
Report of the Interagency Task Force on High Energy Density Physics
Energy Technology Data Exchange (ETDEWEB)
None
2007-08-01
Identifies the needs for improving Federal stewardship of specific aspects of high energy density physics, particularly the study of high energy density plasmas in the laboratory, and strengthening university activities in this latter discipline. The report articulates how HEDP fits into the portfolio of federally funded missions and includes agency actions to be taken that are necessary to further this area of study consistent with Federal priorities and plans, while being responsive to the needs of the scientific community.
Frontiers in pulse-power-based high energy density plasma physics and its applications
International Nuclear Information System (INIS)
Horioka, Kazuhiko
2008-03-01
The papers in this volume of report were presented at the Symposium on Frontiers in Pulse-power-based High Energy Density Physics' held by National Institute for Fusion Science. The topics include the present status of high energy density plasma researches, extreme ultraviolet sources, intense radiation sources, high power ion beams, and R and D of related pulse power technologies. The 13 of the presented papers are indexed individually. (J.P.N.)
Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents
2017-11-28
AFRL-RV-PS- AFRL-RV-PS- TR-2017-0169 TR-2017-0169 ARRAYS OF SYNTHETIC ATOMS: NANOCAPACITOR BATTERIES WITH LARGE ENERGY DENSITY AND SMALL LEAK...1-0247 Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...large dielectric strength to a nanoscale rechargeable battery . We fabricated arrays of one-, two- and three-dimensional synthetic atoms and comparison
2013-06-21
The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL Presentation to: IEEE Pulsed Power and Plasma Science...Conference C. J. Keane Director, NIF User Office June 21, 2013 1491978-1-4673-5168-3/13/$31.00 ©2013 IEEE Report Documentation Page Form ApprovedOMB No...4. TITLE AND SUBTITLE The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL 5a. CONTRACT NUMBER 5b. GRANT
Frontiers of particle beam and high energy density plasma science using pulse power technology
International Nuclear Information System (INIS)
Masugata, Katsumi
2011-04-01
The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)
Nuclear energy levels and elementary particles
International Nuclear Information System (INIS)
de Wet, J.A.
1982-01-01
Considering only exchange forces, the binding energies and excited states of nuclei up to 24 Mg are predicted to within charge independence, and there is no reason why the model should not be extended to cover all of the elements. A comparison of theory with experiment shows that the energy of one exchange is 2.56 MeV. Moreover, there is an attractive well of depth 30 MeV, corresponding to the helium nucleus. before exchange forces become operative. A possible explanation of the origin of mesons is also presented
Tey, Siew Ling; Salleh, Nurhazwani; Henry, Christiani Jeyakumar; Forde, Ciaran G
2018-01-31
Consumption of reduced energy dense foods and drink has the potential to reduce energy intake and postprandial blood glucose concentrations. In addition, the taste quality of a meal (e.g., sweet or savoury) may play a role in satiation and food intake. The objective of this randomised crossover study was to examine whether energy density and taste quality has an impact on energy intake and postprandial blood glucose response. Using a preload design, participants were asked to consume a sweet ("Cheng Teng") or a savoury (broth) preload soup in high energy density (HED; around 0.50 kcal/g; 250 kcal) or low energy density (LED; around 0.12 kcal/g; 50 kcal) in mid-morning and an ad libitum lunch was provided an hour after the preload. Participants recorded their food intake for the rest of the day after they left the study site. Energy compensation and postprandial blood glucose response were measured in 32 healthy lean males (mean age = 28.9 years, mean BMI = 22.1 kg/m²). There was a significant difference in ad libitum lunch intake between treatments ( p = 0.012), with higher intake in sweet LED and savoury LED compared to sweet HED and savoury HED. Energy intake at subsequent meals and total daily energy intake did not differ between the four treatments (both p ≥ 0.214). Consumption of HED preloads resulted in a larger spike in postprandial blood glucose response compared with LED preloads, irrespective of taste quality ( p < 0.001). Energy density rather than taste quality plays an important role in energy compensation and postprandial blood glucose response. This suggests that regular consumption of low energy-dense foods has the potential to reduce overall energy intake and to improve glycemic control.
Directory of Open Access Journals (Sweden)
Siew Ling Tey
2018-01-01
Full Text Available Consumption of reduced energy dense foods and drink has the potential to reduce energy intake and postprandial blood glucose concentrations. In addition, the taste quality of a meal (e.g., sweet or savoury may play a role in satiation and food intake. The objective of this randomised crossover study was to examine whether energy density and taste quality has an impact on energy intake and postprandial blood glucose response. Using a preload design, participants were asked to consume a sweet (“Cheng Teng” or a savoury (broth preload soup in high energy density (HED; around 0.50 kcal/g; 250 kcal or low energy density (LED; around 0.12 kcal/g; 50 kcal in mid-morning and an ad libitum lunch was provided an hour after the preload. Participants recorded their food intake for the rest of the day after they left the study site. Energy compensation and postprandial blood glucose response were measured in 32 healthy lean males (mean age = 28.9 years, mean BMI = 22.1 kg/m2. There was a significant difference in ad libitum lunch intake between treatments (p = 0.012, with higher intake in sweet LED and savoury LED compared to sweet HED and savoury HED. Energy intake at subsequent meals and total daily energy intake did not differ between the four treatments (both p ≥ 0.214. Consumption of HED preloads resulted in a larger spike in postprandial blood glucose response compared with LED preloads, irrespective of taste quality (p < 0.001. Energy density rather than taste quality plays an important role in energy compensation and postprandial blood glucose response. This suggests that regular consumption of low energy-dense foods has the potential to reduce overall energy intake and to improve glycemic control.
Directory of Open Access Journals (Sweden)
Vasundhara Kamineni
2016-01-01
Full Text Available Aim: This study was conducted with the objective of assessing serum 25-hydroxyvitamin D (25(OHD in postmenopausal women (PMW, to detect osteopenia or osteoporosis in PMW and to establish a correlation between serum 25(OHD levels and bone mineral density (BMD. Materials and Methods: A total of 100 healthy PMW were selected, and a prospective observational study was conducted to correlate the BMD with serum 25(OHD levels. Their laboratory investigations along with serum 25(OHD levels were done. Their BMD was assessed with dual-energy X-ray absorptiometry at lumbar spine and neck of femur; T-scores were derived. Correlation analysis was done to investigate the relationship between serum 25(OHD levels and BMD. Results: The proportion of osteoporosis at the hip was 31.9% in deficient group, 16.1% in insufficient, and 18.2% in sufficient group and at lumbar spine, it was 27.7%, 16.1%, and 22.7%, respectively. Forty-seven percent of PMW had deficient (<20 ng/ml serum 25(OHD levels and 31% had insufficiency. T-score at hip in deficient group was −2.05 ± 0.25, and in an insufficient group, it was −1.79 ± 0.13; T-score at lumbar spine was −1.92 ± 0.12 and −1.79 ± 0.12, respectively, but both were not statistically significant. Osteoporosis was seen in 24%, osteopenia in 55% at hip level and 23% and 59% respectively at lumbar spine. There was no association between serum 25(OHD levels and BMD neither at hip nor at lumbar spine ( P = 0.51 and P = 0.79 respectively. Conclusion: In this study, among our cohort of patients there was no correlation between serum 25(OHD levels and BMD. However, Vitamin D deficiency coexists with low BMD. Vitamin D insufficiency is a common risk factor for osteoporosis associated with increased bone remodeling and low bone mass.
Cost optimal levels for energy performance requirements
DEFF Research Database (Denmark)
Thomsen, Kirsten Engelund; Aggerholm, Søren; Kluttig-Erhorn, Heike
This report summarises the work done within the Concerted Action EPBD from December 2010 to April 2011 in order to feed into the European Commission's proposal for a common European procedure for a Cost-Optimal methodology under the Directive on the Energy Performance of Buildings (recast) 2010/3...
High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.
Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing
2015-11-01
Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage.
High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane
Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing
2015-01-01
Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440
Cathode Materials for High Energy Density Lithium Batteries
Directory of Open Access Journals (Sweden)
Lefèvre G.
2017-01-01
Li2MnSiO4 has a large theoretical specific capacity (333 mAh/g through exchange of 2 lithium ions per formula unit. The thermal stability due to strong Si-O bonds makes LiMnSiO a very promising material for future energy storage in space applications. Preparation in inert atmosphere showed beneficial improvements of LMSO’s electrochemical properties. Nano-sizing and carbon coating have been effective ways to improve electronic conductivity and therefore electrochemical performance. Up to 1.66 Li per formula unit can be re-inserted in the 1st cycle. XRD analysis showed complete amorphization of Li2MnSiO4 after the 1st charge at 4.8 V with complete modification of the charge/discharge curves in the next cycles. Increasing the carbon coating ratio limits capacity loss during cycling but did not avoid amorphization. Finally influence of voltage window on structure stability was investigated. Careful choice of upper limit voltage has been showed to stabilize Li2MnSiO4 structure but for now is still limited to low Li+ insertion/extraction from the host material.
Competing Quantum Hall Phases in the Second Landau Level in Low Density Limit
Energy Technology Data Exchange (ETDEWEB)
Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Serafin, A. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Xia, J. S. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Liang, Y. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Sullivan, N. S. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Baldwin, K. W. [Princeton Univ., NJ (United States); West, K. W. [Princeton Univ., NJ (United States); Pfeiffer, L. N. [Princeton Univ., NJ (United States); Tsui, D. C. [Princeton Univ., NJ (United States)
2015-01-01
Up to date, studies of the fractional quantum Hall effect (FQHE) states in the second Landau level have mainly been carried out in the high electron density regime, where the electron mobility is the highest. Only recently, with the advance of high quality low density MBE growth, experiments have been pushed to the low density regime [1], where the electron-electron interactions are strong and the Landau level mixing parameter, defined by κ = e^{2}/εI_{B}/ℏω_{e}, is large. Here, l_{B} = (ℏe/B)^{1/2} is the magnetic length and ω_{c} = eB/m the cyclotron frequency. All other parameters have their normal meanings. It has been shown that a large Landau level mixing effect strongly affects the electron physics in the second Landau level [2].
International Nuclear Information System (INIS)
Rekik, Najeh
2014-01-01
Despite the considerable progress made in quantum theory and computational methods, detailed descriptions of the potential energy surfaces of hydrogen-bonded systems have not yet been achieved. In addition, the hydrogen bond (H-bond) itself is still so poorly understood at the fundamental level that it remains unclear exactly what geometry constitutes a “real” H-bond. Therefore, in order to investigate features essential for hydrogen bonded complexes, a simple, efficient, and general method for calculating matrix elements of vibrational operators capable of describing the stretching modes and the H-bond bridges of hydrogen-bonded systems is proposed. The derived matrix elements are simple and computationally easy to evaluate, which makes the method suitable for vibrational studies of multiple-well potentials. The method is illustrated by obtaining potential energy surfaces for a number of two-dimensional systems with repulsive potentials chosen to be in Gaussian form for the stretching mode and of the Morse-type for the H-bond bridge dynamics. The forms of potential energy surfaces of weak and strong hydrogen bonds are analyzed by varying the asymmetry of the Gaussian potential. Moreover, the choice and applicability of the selected potential for the stretching mode and comparison with other potentials used in the area of hydrogen bond research are discussed. The approach for the determination of spectral density has been constructed in the framework of the linear response theory for which spectral density is obtained by Fourier transform of the autocorrelation function of the dipole moment operator of the fast mode. The approach involves anharmonic coupling between the high frequency stretching vibration (double well potential) and low-frequency donor-acceptor stretching mode (Morse potential) as well as the electrical anharmonicity of the dipole moment operator of the fast mode. A direct relaxation mechanism is incorporated through a time decaying exponential
Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care.
Directory of Open Access Journals (Sweden)
Elijah Reyes
Full Text Available Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1 egg survival is density dependent or 2 adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained.
Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care.
Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B; Klug, Hope
2016-01-01
Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained.
Energy security issues at household level in India
International Nuclear Information System (INIS)
Jain, Garima
2010-01-01
Energy security at the household level implies ensuring assured and regular supply of clean energy fuels at an affordable price for various household activities. Threat to physical availability of clean energy fuels for cooking and lighting is determined through various indicators such as dependence on traditional fuels and limited access to clean fuels. Energy insecurity translates into various adverse social impacts. Financial threat to energy security is indicated by expenses incurred on energy fuels and affordability of clean fuels. Households spend a major portion of their income on acquiring energy fuels; however, due to high price of clean fuels, they continue to depend on traditional and inefficient fuels. There is an urgent need to address factors that pose a threat to energy security at the household level. In this regard, measures taken by the government agencies and other institutions are also reviewed. The paper also suggests the regulatory and policy interventions required to address the energy security issues at the household level.
Non-local energy density functionals: models plus some exact general results
International Nuclear Information System (INIS)
March, N.H.
2001-02-01
Holas and March (Phys. Rev. A51, 2040, 1995) gave a formally exact expression for the force - δV xc (r-tilde)/δr-tilde associated with the exchange-correlation potential V xc (r-tilde) of density functional theory. This forged a precise link between first- and second-order density matrices and V xc (r-tilde). Here models are presented in which these low-order matrices can be related to the ground-state electron density. This allows non-local energy density functionals to be constructed within the framework of such models. Finally, results emerging from these models have led to the derivation of some exact 'nuclear cusp' relations for exchange and correlation energy densities in molecules, clusters and condensed phases. (author)
Fine-structure energy levels, oscillator strengths and lifetimes
Indian Academy of Sciences (India)
We have done relativistic calculations for the evaluation of energy levels, oscillator strengths, transition probabilities and lifetimes for Cr VIII ion. Use has been made of configuration interaction technique by including Briet–Pauli approximation. The energies of various levels from the ground state to excited levels of 3s3p6, ...
Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes
Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie
2013-01-01
Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of
Scalings of energy confinement and density limit in stellarator/heliotron
International Nuclear Information System (INIS)
Sudo, S.; Takeiri, Y.; Zushi, H.; Sano, F.; Itoh, K.; Kondo, K.; Iiyoshi, A.
1989-04-01
Empirical scaling of energy confinement observed experimentally in stellarator/heliotron (Heliotron E, Wendelstein 7A, L2, Heliotron DR) under the condition that plasmas are heated by ECH and/or NbI is proposed. Empirical scaling of density limit obtainable under the optimum condition is proposed. These scalings are compared with those of tokamaks. The energy confinement scaling has similar power dependence as 'L mode scaling' of tokamaks. The density limit scaling seems also to indicate the upper limit of achievable density in many tokamaks. Combining the energy confinement time and the density limit scaling a transport-limited beta value is also deduced. Thus, from the viewpoint of designing a machine, there should be some compromise in determing magnetic field strength on plasma axis, average minor radius and major radius, because their dependence on confinement time and transport-limited beta value is contradicting. (J.P.N.)
Chemical bond as a test of density-gradient expansions for kinetic and exchange energies
International Nuclear Information System (INIS)
Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.
1988-01-01
Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N 2 and F 2 , which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules
Song, Sae Won; Bae, Yoon Jung; Lee, Dae Taek
2010-10-01
This study examines the combined effects of caloric restriction on body composition, blood lipid, and satiety in slightly overweight women by varying food density and aerobic exercise. Twenty-three women were randomly assigned to one of two groups for a four-week weight management program: the high-energy density diet plus exercise (HDE: n = 12, 22 ± 2 yrs, 65 ± 7 kg, 164 ± 5 cm, 35 ± 4 % fat) and low-energy density diet plus exercise (LDE: n = 11, 22 ± 1 yrs, 67 ± 7 kg, 161 ± 2 cm, 35 ± 4 % fat) groups. Subjects maintained a low-calorie diet (1,500 kcal/day) during the program. Isocaloric (483 ± 26 for HDE, 487 ± 27 kcal for LDE) but different weight (365 ± 68 for HDE, 814 ± 202 g for LDE) of lunch was provided. After lunch, they biked at 60% of maximum capacity for 40 minutes, five times per week. The hunger level was scaled (1: extremely hungry; 9: extremely full) at 17:30 each day. Before and after the program, the subjects' physical characteristics were measured, and fasting blood samples were drawn. The daily energy intake was 1,551 ± 259 for HDE and 1,404 ± 150 kcal for LDE (P > 0.05). After four weeks, the subjects' weights and % fat decreased for both LDE (-1.9 kg and -1.5%, P < 0.05) and HDE (-1.6 kg and -1.4%, respectively, P < 0.05). The hunger level was significantly higher for HDE (2.46 ± 0.28) than for LDE (3.10 ± 0.26) (P < 0.05). The results suggest that a low-energy density diet is more likely to be tolerated than a high-energy density diet for a weight management program combining a low-calorie diet and exercise, mainly because of a reduced hunger sensation.
International Nuclear Information System (INIS)
Kaczmarczyk, Maria
2005-01-01
The results of calculations of level densities ρ, in the vicinity of the neutron binding energy S n , are presented. These results were obtained using the Boehning combinatorial method for the calculation of particle-hole state densities dependent on the number of decompositions of the nucleus excitation energy to energies of independent fermions. The calculation was based on the semi-classical model description in the computation of particle-hole state densities and then of the level densities ρ, and takes into account the existence of energy gaps Δ, located near the Fermi level, in a single particle level scheme. This procedure considerably improved and extended the Boehning calculation method. The results, which were obtained in this way for ρ, for 220 nuclei, reproduce the regularities observed in the experimental values of ρ, which are dependent on the neutron number N, and they agree with the experimental data within two orders of magnitude. In addition, the neutron resonance densities ρ were calculated on the basis of the particle-hole state densities obtained using the analytical formula from Boehning's paper. To make the calculations possible, the values of 'complexity' k, as given in the semi-classical model, and the spin factors R(J), according to the paper by Ryckbosch, were used
[Ionization energies and infrared spectra studies of histidine using density functional theory].
Hu, Qiong; Wang, Guo-Ying; Liu, Gang; Ou, Jia-Ming; Wang, Rui-Li
2010-05-01
Histidines provide axial ligands to the primary electron donors in photosynthetic reaction centers (RCs) and play an important role in the protein environments of these donors. In this paper the authors present a systematic study of ionization energies and vibrational properties of histidine using hybrid density functional theory (DFT). All calculations were undertaken by using B3LYP method in combination with four basis sets: 6-31G(d), 6-31G(df, p), 6-31+G(d) and 6-311+G(2d, 2p) with the aim to investigate how the basis sets influence the calculation results. To investigate solvent effects and gain a detailed understanding of marker bands of histidine, the ionization energies of histidine and the vibrational frequencies of histidine which are unlabeled and 13C, 15N, and 2H labeled in the gas phase, CCl4, protein environment, THF and water solution, which span a wide range of dielectric constant, were also calculated. Our results showed that: (1) The main geometry parameters of histidine were impacted by basis sets and mediums, and C2-N3 and N3-C4 bond of imidazole ring of histidine side chain display the maximum bond lengths in the gas phase; (2) single point energies and frequencies calculated were decreased while ionization energies increased with the increasing level of basis sets and diffuse function applied in the same solvent; (3) with the same computational method, the higher the dielectric constant of the solvent used, the lower the ionization energy and vibrational frequency and the higher the intensity obtained. In addition, calculated ionization energy in the gas phase and marker bands of histidine as well as frequency shift upon 13C and 15N labeling at the computationally more expensive 6-311+G(2d, 2p) level are in good agreement with experimental observations available in literatures. All calculations indicated that the results calculated by using higher level basis set with diffuse function were more accurate and closer to the experimental value. In
New energy level identifications in Kr VI
International Nuclear Information System (INIS)
Tauheed, A.; Pinnington, E.H.; Ansbacher, W.; Kernahan, J.A.
1990-01-01
Beam-foil delayed spectra from 89.0 to 101.0 nm are used to identify the intercombination lines connecting the 4s4p 2 4 P and 4s 2 4p 2 P levels in Kr VI. The existing analysis is extended to include the 4s 2 5s 2 S 1/2 , 4f 2 F 5/2 , 2 F 7/2 , 4p 3 2 D 3/2 , 2 D 5/2 , 2 P 3/2 , 4 S 3/2 and 4s4p 2 4 P 1/2 , 4 P 3/2 , 4 P 5/2 levels. Lifetime measurements for the 4s4p 2 4 P 1/2 , 4 P 5/2 , 4p 3 2 D 3/2 and 2 D 5/2 levels are also discussed in support of these assignments. (orig.)
Yip, N.Y.; Vermaas, D.A.; Nijmeijer, K.; Elimelech, M.
2014-01-01
Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we
DEFF Research Database (Denmark)
Cornaton, Y.; Stoyanova, A.; Jensen, Hans Jørgen Aagaard
2013-01-01
of the noninteracting Kohn-Sham one. When second-order corrections to the density are neglected, the energy expression reduces to a range-separated double-hybrid (RSDH) type of functional, RSDHf, where "f" stands for "full-range integrals" as the regular full-range interaction appears explicitly in the energy...
Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.
Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei
2015-02-24
Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.
Indirect Measurement of Energy Density of Soft PZT Ceramic Utilizing Mechanical Stress
Unruan, Muangjai; Unruan, Sujitra; Inkong, Yutthapong; Yimnirun, Rattikorn
2017-11-01
This paper reports on an indirect measurement of energy density of soft PZT ceramic utilizing mechanical stress. The method works analogous to the Olsen cycle and allows for a large amount of electro-mechanical energy conversion. A maximum energy density of 350 kJ/m3/cycle was found under 0-312 MPa and 1-20 kV/cm of applied mechanical stress and electric field, respectively. The obtained result is substantially higher than the results reported in previous studies of PZT materials utilizing a direct piezoelectric effect.
Correlation between High Density Lipoprotein Cholesterol (HDL) Level and Aerobic Activity Level.
1987-04-01
over a 40 day period for HDtJICholesteroll and Total Choleis- added with the "reverse" technique, This technique is only poai- tarot . The results are...Stand- tarot and Total Cholestero levels, it is beat that eet laoatr ard and a control Serum were each analyzed 10 times giving the * determinle its
Otten, A.; Jain, V. K.
2015-08-01
This paper presents a microsystem for remote sensing of high energy radiation in extremely low flux density conditions. With wide deployment in mind, potential applications range from nuclear non-proliferation, to hospital radiation-safety. The daunting challenge is the low level of photon flux densities - emerging from a Scintillation Crystal (SC) on to a ~1 mm-square detector, which are a factor of 10000 or so lower than those acceptable to recently reported photonic chips (including `single-photon detection' chips), due to a combination of low Lux, small detector size, and short duration SC output pulses - on the order of 1 μs. These challenges are attempted to be overcome by the design of an innovative `System on a Chip' type microchip, with high detector sensitivity, and effective coupling from the SC to the photodetector. The microchip houses a tiny n+ diff p-epi photodiode (PD) as well as the associated analog amplification and other related circuitry, all fabricated in 0.5micron, 3-metal 2-poly CMOS technology. The amplification, together with pulse-shaping of the photocurrent-induced voltage signal, is achieved through a tandem of two capacitively coupled, double-cascode amplifiers. Included in the paper are theoretical estimates and experimental results.
Wellard, Lyndal; Havill, Michelle; Hughes, Clare; Watson, Wendy L; Chapman, Kathy
2015-12-01
To examine the association between energy cost and energy density of fast food products. Twenty Sydney outlets of the five largest fast food chains were surveyed four times. Price and kilojoule data were collected for all limited-time-only menu items (n=54) and a sample of standard items (n=67). Energy cost ($/kilojoule) and energy density (kilojoules/gram) of menu items were calculated. There was a significant inverse relationship between menu item energy density and energy cost (pFast food chains could provide a wider range of affordable, lower-energy foods, use proportional pricing of larger serve sizes, or change defaults in meals to healthier options. More research is required to determine the most effective strategy to reduce the negative impact of fast food on the population's diet. Current pricing in the fast food environment may encourage unhealthier purchases. © 2015 Public Health Association of Australia.
Level Densities and Radiative Strength Functions in 170,171Yb
International Nuclear Information System (INIS)
Agvaanluvsan, U.; Schiller, A.; Becker, J.A.; Berstein, L.A.; Guttormsen, M.; Mitchell, G.E.; Rekstad, J.; Siem, S.; Voinov, A.
2003-01-01
Level densities and radiative strength functions in 171 Yb and 170 Yb nuclei have been measured with the 171 Yb( 3 He, 3 He(prime) γ) 171 Yb and 171 Yb( 3 He, αγ) 170 Yb reactions. A simultaneous determination of the nuclear level density and the radiative strength function was made. The present data adds to and is consistent with previous results for several other rare earth nuclei. The method will be briefly reviewed and the result from the analysis will be presented. The radiative strength function for 171 Yb is compared to previously published work.
International Nuclear Information System (INIS)
Huddleston, A.L.; Weaver, J.
1980-01-01
Several methods important in the clinical diagnosis of skeletal diseases have been proposed for the determination of bone mass, such as photon absorptiometry, computed tomography, and neutron activation. None of these present methods provides for the determination of the physical density of bone. In the Radiological Physics Research Laboratory at the University of Virginia, the principles of Compton scattering are being investigated with the intent of determining the electron density and the physical density of human bone. A Compton-scatter densitometer has been constructed for the in vivo density determination of the femoral head. This technique utilizes of collimated low energy gamma source and detector system. The method has been tested in cadavers and in known density samples and has an accuracy of 2 %. A second densitometer has been designed for the in vivo determination of electron density of the vertebrae based upon a new technique which employs dual energy Compton scattering in the spinal column. These systems will be discussed; and the principles of dual energy Compton scatter densitometry will be presented. The importance of these isotope techniques and the feasibility of in vivo density determination in the vertebrae and femoral head will be discussed as they relate to clinical diagnosis and research. (author)
Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2009-01-01
An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.
Cheng, Qian; Tang, Jie; Ma, Jun; Zhang, Han; Shinya, Norio; Qin, Lu-Chang
2011-10-21
We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles. This journal is © the Owner Societies 2011
Path analysis of the energy density of wood in eucalyptus clones.
Couto, A M; Teodoro, P E; Trugilho, P F
2017-03-16
Path analysis has been used for establishing selection criteria in genetic breeding programs for several crops. However, it has not been used in eucalyptus breeding programs yet. In the present study, we aimed to identify the wood technology traits that could be used as the criteria for direct and indirect selection of eucalyptus genotypes with high energy density of wood. Twenty-four eucalyptus clones were evaluated in a completely randomized design with five replications. The following traits were assessed: basic wood density, total extractives, lignin content, ash content, nitrogen content, carbon content, hydrogen content, sulfur content, oxygen content, higher calorific power, holocellulose, and energy density. After verifying the variability of all evaluated traits among the clones, a two-dimensional correlation network was used to determine the phenotypic patterns among them. The obtained coefficient of determination (0.94) presented a higher magnitude in relation to the effect of the residual variable, and it served as an excellent model for explaining the genetic effects related to the variations observed in the energy density of wood in all eucalyptus clones. However, for future studies, we recommend evaluating other traits, especially the morphological traits, because of the greater ease in their measurement. Selecting clones with high basic density is the most promising strategy for eucalyptus breeding programs that aim to increase the energy density of wood because of its high heritability and magnitude of the cause-and-effect relationship with this trait.
Ab initio surface core-level shifts and surface segregation energies
DEFF Research Database (Denmark)
Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje
1993-01-01
We have calculated the surface core-level energy shifts of the 4d and 5d transition metals by means of local-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method. Final-state effects are included by treating the core-ionized atom as an impurity located in...
Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.
Kolpak, Alexie M; Grossman, Jeffrey C
2011-08-10
Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.
Jana, Subrata; Samal, Prasanjit
2018-01-01
The behaviors of the positive definite Kohn-Sham kinetic energy density near the origin and at the asymptotic region play a major role in designing meta-generalized gradient approximations (meta-GGAs) for exchange in low-dimensional quantum systems. It is shown that near the origin of the parabolic quantum dot, the Kohn-Sham kinetic energy differs from its von Weizsäcker counterpart due to the p orbital contributions, whereas in the asymptotic region, the difference between the above two kinetic energy densities goes as ˜ρ/(r ) r2 . All these behaviors have been explored using the two-dimensional isotropic quantum harmonic oscillator as a test case. Several meta-GGA ingredients are then studied by making use of the above findings. Also, the asymptotic conditions for the exchange energy density and the potential at the meta-GGA level are proposed using the corresponding behaviors of the two kinetic energy densities.
Yip, Ngai Yin; Vermaas, David A; Nijmeijer, Kitty; Elimelech, Menachem
2014-05-06
Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ∼ 33-44% can be obtained in RED, while the rest is lost through dissipation in the internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect. Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, without significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining the power densities attainable. Lastly, the performance of an RED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ∼ 37% and an overall gross power density of 3.5 W/m(2) represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low
International Nuclear Information System (INIS)
Reimund, Kevin K.
2015-01-01
A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy density of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π(1+√w -1 ), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at "maximum power density operating pressure" requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.
Energy Technology Data Exchange (ETDEWEB)
Reimund, Kevin K. [Univ. of Connecticut, Storrs, CT (United States). Dept. of Chemical and Biomolecular Engineering; McCutcheon, Jeffrey R. [Univ. of Connecticut, Storrs, CT (United States). Dept. of Chemical and Biomolecular Engineering; Wilson, Aaron D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-08-01
A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy density of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.
Energy Technology Data Exchange (ETDEWEB)
NONE
2012-06-15
The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. The second task in the overall project was the mapping of regional energy consumption density. Combined with the findings from task one, this enables comparison of energy consumption density per area unit with the renewable energy resource availability. In addition, it provides an energy baseline against which future energy planning activities can be evaluated. The mapping of the energy consumption density was divided into categories to correspond with local British Columbia Assessment Authority (BCAA) reporting. The residential sub-categories were comprised of single family detached dwellings, single family attached dwellings, apartments, and moveable dwellings. For commercial and industrial end-users the 14 sub-categories are also in line with BCAA as well as the on-going provincial TaNDM project of which the CVRD is a partner. The results of task two are documented in this report. (LN)
Directory of Open Access Journals (Sweden)
Ricardo Danil Guiraldo
2009-08-01
Full Text Available OBJECTIVE: The aim of this study was to determine the influence of different energy densities on the heat generated during photoactivation of Filtek Z250 (3M/ESPE and Z100 (3M/ESPE composite resins with different dentin and composite thickness. MATERIAL AND METHODS: The temperature increase was registered with a type-K thermocouple connected to a digital thermometer (Iopetherm 46. A chemically polymerized acrylic resin base was prepared to serve as a guide for the thermocouple and as a support for 0.5-, 1.0-, and 1.5-mm-thick bovine dentin discs. Circular elastomer molds (1.0 mm-height x 3.0-mm diameter or 2.0-mm height x 3.0-mm diameter were adapted on the acrylic resin base to standardize the composite resin thickness. A conventional halogen light-curing unit (XL 2500, 3M/ESPE was used with light intensity of 700 mW/cm². Energy density was calculated by the light intensity applied during a certain time with values of 28 J/cm² for Z100 and 14 J/cm² for Filtek Z250. The temperature change data were subjected to three-way ANOVA and Tukey's test at 5% level. RESULTS: The higher energy density (Z100 promoted greater temperature increase (p<0.05 than the lower energy density (Filtek Z250. For both composites and all composite thicknesses, the lowest dentin thickness (0.5 mm yielded significantly higher (p<0.05 temperature increase than the other two dentin thicknesses. The 1-mm-thick composite resin layer yielded significantly higher (p<0.05 temperature changes for both composites and all dentin thicknesses. CONCLUSIONS: Temperature increase was influenced by higher energy density and dentin/composite thickness.
Comparing energy levels in isotropic and anisotropic potentials
Energy Technology Data Exchange (ETDEWEB)
Pikovski, Alexander, E-mail: alexander.pikovski@colorado.edu
2015-11-06
Qualitative information about the quantized energy levels of a system can be of great value. We study the relationship between the bound-state energies of an anisotropic potential and those of its spherical average. It is shown that the two ground-state energies satisfy an inequality, and there is a similar inequality for the first excited states. - Highlights: • Quantized energy levels in an arbitrary non-central potential are studied. • We derive inequalities between energies in a potential and its spherical average. • The results hold in three and two dimensions for any ground state and, with additional symmetry requirements for the first excited state.
Comparing energy levels in isotropic and anisotropic potentials
International Nuclear Information System (INIS)
Pikovski, Alexander
2015-01-01
Qualitative information about the quantized energy levels of a system can be of great value. We study the relationship between the bound-state energies of an anisotropic potential and those of its spherical average. It is shown that the two ground-state energies satisfy an inequality, and there is a similar inequality for the first excited states. - Highlights: • Quantized energy levels in an arbitrary non-central potential are studied. • We derive inequalities between energies in a potential and its spherical average. • The results hold in three and two dimensions for any ground state and, with additional symmetry requirements for the first excited state.
The effect of energy peak drift on the calibration of a high resolution gamma-ray soil density gauge
International Nuclear Information System (INIS)
Henshall, J.K.
1994-01-01
High spatial resolution is obtained from a gamma-ray transmission density gauge by restricting the measured counts to a narrow band of the energy spectrum, close to the emission energy peak. The effect on measurement accuracy of any movement of this measurement window relative to the energy peak was investigated. The findings were related to anticipated energy peak movements in a proposed LED-based gain-stabilization system. Movements of the energy peaks during recording of unstabilized spectra prevented direct comparisons of spectra at different positions. A simulation procedure was, therefore, developed in which movements of the measurement window relative to sets of stable calibration spectra were examined. When analysing spectra, recorded using a gauge with a different gain-stabilization system, accuracy was found to be unaffected by simulated peak movements of up to 0.03 MeV in the direction of increasing energy. However, movements of stabilized spectra in the direction of decreasing energy, and of unstabilized spectra in either direction, increased measurement errors to twice the level of inherent measurement errors within 0.02 MeV, with errors in bulk density of up to 0.7 Mg m −3 for movements of 0.1 MeV. The spectra of the new LED-based stabilization system are expected to behave in a manner similar to the unstabilized system, therefore requiring regular monitoring of the peak position. (author)
Information Geometry, Inference Methods and Chaotic Energy Levels Statistics
Cafaro, Carlo
2008-01-01
In this Letter, we propose a novel information-geometric characterization of chaotic (integrable) energy level statistics of a quantum antiferromagnetic Ising spin chain in a tilted (transverse) external magnetic field. Finally, we conjecture our results might find some potential physical applications in quantum energy level statistics.
International Nuclear Information System (INIS)
Alves, H.; Lima, I.; Lopes, R.T.
2014-01-01
Dual energy technique for computerized microtomography shows itself as a promising method for identification of mineralogy on geological samples of heterogeneous composition. It can also assist with differentiating very similar objects regarding the attenuation coefficient, which are usually not separable during image processing and analysis of microtomographic data. Therefore, the development of a feasible and applicable methodology of dual energy in the analysis of microtomographic images was sought. - Highlights: • Dual energy technique is promising for identification of distribution of minerals. • A feasible methodology of dual energy in analysis of tomographic images was sought. • The dual energy technique is efficient for density and atomic number identification. • Simulation showed that the proposed methodology agrees with theoretical data. • Nondestructive characterization of distribution of density and chemical composition
Energy Technology Data Exchange (ETDEWEB)
Presser, Volker [Leibniz-Institut fuer Neue Materialien (INM) gGmbH, Saarbruecken (Germany). Juniorforschungs-Gruppe Energie-Materialien; Universitaet des Saarlandes, Saarbruecken (Germany)
2013-05-15
Electrical double-layer capacitors, also known as supercapacitors (SC) are devices for electrical energy storage used for fast acceleration of hybrid cars or for the energy recovery during breaking operations. In contrast, lithium-ion batteries (LIB) are used as energy storage devices to provide an extended travel distance for plug-in hybrid cars and electric vehicles. Current research aims to overcome the major limitations of both technologies (SC: low energy density/LIB: slow recharge and limited service life) and hybrid cells are considered a promising solution. The goal is to improve the performance and energy density of storage devices which can be achieved, as shown by the Leibniz-Institute for New Materials (INM), with the use of nanotechnology. (orig.)
A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage
Energy Technology Data Exchange (ETDEWEB)
Wang, Ruxi [Virginia Polytechnic Institute and State University (Virginia Tech); Wang, Fei [ORNL; Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech); Burgos, Rolando [ABB; Lai, Rixin [General Electric; Ning, Puqi [ORNL; Rajashekara, Kaushik [Rolls Royce
2011-01-01
It is well known that single-phase pulse width modulation rectifiers have second-order harmonic currents and corresponding ripple voltages on the dc bus. The low-frequency harmonic current is normally filtered using a bulk capacitor in the bus, which results in low power density. However, pursuing high power density in converter design is a very important goal in the aerospace applications. This paper studies methods for reducing the energy storage capacitor for single-phase rectifiers. The minimum ripple energy storage requirement is derived independently of a specific topology. Based on theminimum ripple energy requirement, the feasibility of the active capacitor s reduction schemes is verified. Then, we propose a bidirectional buck boost converter as the ripple energy storage circuit, which can effectively reduce the energy storage capacitance. The analysis and design are validated by simulation and experimental results.
Cosmological constant problem and renormalized vacuum energy density in curved background
Energy Technology Data Exchange (ETDEWEB)
Kohri, Kazunori [Theory Center, IPNS, KEK, Tsukuba 305-0801, Ibaraki (Japan); Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp [The Graduate University of Advanced Studies (Sokendai), Tsukuba 305-0801, Ibaraki (Japan)
2017-06-01
The current vacuum energy density observed as dark energy ρ{sub dark}≅ 2.5×10{sup −47} GeV{sup 4} is unacceptably small compared with any other scales. Therefore, we encounter serious fine-tuning problem and theoretical difficulty to derive the dark energy. However, the theoretically attractive scenario has been proposed and discussed in literature: in terms of the renormalization-group (RG) running of the cosmological constant, the vacuum energy density can be expressed as ρ{sub vacuum}≅ m {sup 2} H {sup 2} where m is the mass of the scalar field and rather dynamical in curved spacetime. However, there has been no rigorous proof to derive this expression and there are some criticisms about the physical interpretation of the RG running cosmological constant. In the present paper, we revisit the RG running effects of the cosmological constant and investigate the renormalized vacuum energy density in curved spacetime. We demonstrate that the vacuum energy density described by ρ{sub vacuum}≅ m {sup 2} H {sup 2} appears as quantum effects of the curved background rather than the running effects of cosmological constant. Comparing to cosmological observational data, we obtain an upper bound on the mass of the scalar fields to be smaller than the Planck mass, m ∼< M {sub Pl}.
Grosse, E.; Junghans, A. R.; Wilson, J. N.
2017-11-01
The basic parameters for calculations of radiative neutron capture, photon strength functions and nuclear level densities near the neutron separation energy are determined based on experimental data without an ad hoc assumption about axial symmetry—at variance to previous analysis. Surprisingly few global fit parameters are needed in addition to information on nuclear deformation, taken from Hartree Fock Bogolyubov calculations with the Gogny force, and the generator coordinator method assures properly defined angular momentum. For a large number of nuclei the GDR shapes and the photon strength are described by the sum of three Lorentzians, extrapolated to low energies and normalised in accordance to the dipole sum rule. Level densities are influenced strongly by the significant collective enhancement based on the breaking of shape symmetry. The replacement of axial symmetry by the less stringent requirement of invariance against rotation by 180° leads to a novel prediction for radiative neutron capture. It compares well to recent compilations of average radiative widths and Maxwellian average cross sections for neutron capture by even target nuclei. An extension to higher spin promises a reliable prediction for various compound nuclear reactions also outside the valley of stability. Such predictions are of high importance for future nuclear energy systems and waste transmutation as well as for the understanding of the cosmic synthesis of heavy elements.
Allijn, Iris E.; Leong, Wei; Tang, Jun; Gianella, Anita; Mieszawska, Aneta J.; Fay, Francois; Ma, Ge; Russell, Stewart; Callo, Catherine B.; Gordon, Ronald E.; Korkmaz, Emine; Post, Jan Andries; Zhao, Yiming; Gerritsen, Hans C.; Thran, Axel; Proksa, Roland; Daerr, Heiner; Storm, Gert; Fuster, Valentin; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.; Cormode, David P.
2013-01-01
Low-density lipoprotein (LDL) plays a critical role in cholesterol transport and is closely linked to the progression of several diseases. This motivates the development of methods to study LDL behavior from the microscopic to whole-body level. We have developed an approach to efficiently load LDL
Level densities and γ strength functions in light Sc and Ti isotopes
International Nuclear Information System (INIS)
Burger, A.; Larsen, A.C.; Syed, N.U.H.; Guttormsen, M.; Nyhus, H.; Siem, S.; Harissopulos, S.; Konstantinopoulos, T.; Lagoyannis, A.; Perdidakis, G.; Spyrou, A.; Kmiecik, M.; Mazurek, K.; Krticka, M.; Loennroth, T.; Norby, M.; Voinov, A.
2010-01-01
We present preliminary results from a measurement of nuclear level densities and the γ-ray strength of light Sc (Sc 43 , Sc 45 ) and Ti (Ti 44 , Ti 45 and Ti 46 ) isotopes using the Oslo Method. The article begins with a presentation of the experimental setup. (authors)
Nanocomposites with increased energy density through high aspect ratio PZT nanowires.
Tang, Haixiong; Lin, Yirong; Andrews, Clark; Sodano, Henry A
2011-01-07
High energy storage plays an important role in the modern electric industry. Herein, we investigated the role of filler aspect ratio in nanocomposites for energy storage. Nanocomposites were synthesized using lead zirconate titanate (PZT) with two different aspect ratio (nanowires, nanorods) fillers at various volume fractions dispersed in a polyvinylidene fluoride (PVDF) matrix. The permittivity constants of composites containing nanowires (NWs) were higher than those with nanorods (NRs) at the same inclusion volume fraction. It was also indicated that the high frequency loss tangent of samples with PZT nanowires was smaller than for those with nanorods, demonstrating the high electrical energy storage efficiency of the PZT NW nanocomposite. The high aspect ratio PZT NWs showed a 77.8% increase in energy density over the lower aspect ratio PZT NRs, under an electric field of 15 kV mm(-1) and 50% volume fraction. The breakdown strength was found to decrease with the increasing volume fraction of PZT NWs, but to only change slightly from a volume fraction of around 20%-50%. The maximum calculated energy density of nanocomposites is as high as 1.158 J cm(-3) at 50% PZT NWs in PVDF. Since the breakdown strength is lower compared to a PVDF copolymer such as poly(vinylidene fluoride-tertrifluoroethylene-terchlorotrifluoroethylene) P(VDF-TreEE-CTFE) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP), the energy density of the nanocomposite could be significantly increased through the use of PZT NWs and a polymer with greater breakdown strength. These results indicate that higher aspect ratio fillers show promising potential to improve the energy density of nanocomposites, leading to the development of advanced capacitors with high energy density.
Towards improved local hybrid functionals by calibration of exchange-energy densities
International Nuclear Information System (INIS)
Arbuznikov, Alexei V.; Kaupp, Martin
2014-01-01
A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities
US Heavy Ion Beam Research for Energy Density Physics Applications and Fusion
International Nuclear Information System (INIS)
Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; Callahan D.A.; Kireeff Covo, M.; Celata, C.M.; Cohen, R.H.; Coleman, J.E.; Debonnel, C.S.; Grote, D.P.; Efthimiom, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Henestroza, E.; Kaganovich, I.D.; Kwan, J.W.; Lee, E.P.; Lee, W.W.; Leitner, M.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.L.; Penn, G.E.; Qin, H.; Roy, P.K.; Rose, D.V.; Sefkow, A.; Seidl, P.A.; Sharp, W.M.; Startsev, E.A.; Tabak, M.; Thoma, C.; Vay, J-L; Wadron, W.L.; Wurtele, J.S.; Welch, D.R.; Westenskow, G.A.; Yu, S.S.
2005-01-01
Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers
Exploration of Plasma Jets Approach to High Energy Density Physics. Final report
Energy Technology Data Exchange (ETDEWEB)
Chen, Chiping [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2013-08-26
High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.
U.S. Heavy Ion Beam Research for High Energy Density Physics Applications and Fusion
International Nuclear Information System (INIS)
Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.
2005-01-01
Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers
Energy density of a dissipative polarizable solid by a Lagrangean formalism
International Nuclear Information System (INIS)
Englman, R.; Yahalom, A.
2003-01-01
A Lagrangean for the dynamics of an electromagnetic field in a dispersive and dissipative material is constructed (adapting some ideas by Bekenstein and Hannay) and an expression for the energy density that is positive is obtained from it. The expression contains extra (sink) degrees of freedom that represent dissipating modes. In simplified cases the sink modes can be eliminated to yield an energy density expression in terms of the electromagnetic fields, the polarization and the magnetization only, but which contains parameters associated with the sink modes. The method of adding extra modes can be used to set up a Lagrangean formalism for dissipative systems in general, such that will reinstate time-translation invariance and will yield a unique energy density
Research and Evaluation of the Energy Flux Density of the Mobile Phone Electromagnetic Field
Directory of Open Access Journals (Sweden)
Pranas Baltrėnas
2012-12-01
Full Text Available The article analyses variations in the energy flux density of the electromagnetic field of 10 mobile phones depending on distance. The studies have been conducted using three modes: sending a text message, receiving a text message and connecting a mobile phone to the Internet. When text messages are received or sent from a mobile phone, the values of the energy flux density of the mobile phone electromagnetic field exceed the safe allowable limit and make 10 μW / cm². A distance of 10, 20 and 30 cm from a mobile phone is effective protection against the energy flux density of the electromagnetic field when writing texts, receiving messages or connecting to the mobile Internet.Article in Lithuanian
Color ferromagnetic vacuum states in QCD and two-loop energy densities
International Nuclear Information System (INIS)
Nielsen, H.B.; Ninomiya, M.
1979-12-01
Two-loop energy densities of color ferromagnetic states are obtained using the β-function calculated to two-loop approximation and the exact formula for the energy density of such a state. This is used to derive bounds on the MIT bag constant correcting the previous bound in one-loop approximation. For a constant field color ferromagnetic ansatz state the bound on the QCD scale parameter Λsub(p) 3 -vacuum ansatz with two-loop and instanton correction gives Λsub(p)<= 0.16 GeV. Tt is stressed that the 'perturbative vacuum', which is identified with the inside bag state is a somewhat ill defined concept due to a path-dependence in the integral giving the energy density. (Auth.)
Note: A high-energy-density Tesla-type pulse generator with novel insulating oil
Liu, Sheng; Su, Jiancang; Fan, Xuliang
2017-09-01
A 10-GW high-energy-density Tesla-type pulse generator is developed with an improved insulating liquid based on a modified Tesla pulser—TPG700, of which the pulse forming line (PFL) is filled with novel insulating oil instead of transformer oil. Properties of insulating oil determining the stored energy density of the PFL are analyzed, and a criterion for appropriate oil is proposed. Midel 7131 is chosen as an application example. The results of insulating property experiment under tens-of-microsecond pulse charging demonstrate that the insulation capability of Midel 7131 is better than that of KI45X transformer oil. The application test in Tesla pulser TPG700 shows that the output power is increased to 10.5 GW with Midel 7131. The output energy density of TPG700 increases for about 60% with Midel 7131.
On the energy confinement in the TM-G tokamak with high plasma density
International Nuclear Information System (INIS)
Stefanovskij, A.M.
1986-01-01
Energy confinement time τ E , when plasma density changing, has been measured at the TM-G-tokamak device with a graphite discharge chamber. The measurements have been carried out in three different discharge modes with a similar stability margin on the limiter (q L )=3) and with different values of the discharge current of a longitudinal field (I p =20, 40 and 60 kA, V T =0.8; 1.6 and 2.4 T). On the basis of experimental data analysis the conclusion is made that saturation of τ E (n e ) dependence at high plasma density occurs due to current channel compression and violation of a ''self-consistent'' profile of current density. Drift wave excitation at densities similar to the limiting Murakami density can also play an important role
Higher order corrections to energy levels of muonic atoms
International Nuclear Information System (INIS)
Rinker, G.A. Jr.; Steffen, R.M.
1975-08-01
In order to facilitate the analysis of muonic x-ray spectra, the results of numerical computations of all higher order quantum electrodynamical corrections to the energy levels of muonic atoms are presented in tabular and graphical form. These corrections include the vacuum polarization corrections caused by emission and reabsorption of virtual electron pairs to all orders, including ''double-bubble'' and ''cracked-egg'' diagrams. An estimate of the Delbruecke scattering-type correction is presented. The Lamb-shift (second- and fourth-order vertex) corrections have been calculated including the correction for the anomalous magnetic moment of the muon. The relativistic nuclear motion (or recoil) correction as well as the correction caused by the screening of the atomic electrons is presented in graphs. For the sake of completeness a graph of the nuclear polarization as computed on the basis of Chen's approach has been included. All calculations were made with a two-parameter Fermi distribution of the nuclear charge density. 7 figures, 23 references
Cultural energy analyses of dairy cattle receiving different concentrate levels
International Nuclear Information System (INIS)
Koknaroglu, Hayati
2010-01-01
Purpose of this study was to conduct cultural energy analyses of dairy cows receiving different levels of concentrate. Data were acquired by conducting a survey on 132 dairy farms selected by the stratified random sampling method. Dairy cattle farms were divided into three groups according to concentrate level and were analyzed. Accordingly concentrate levels were assigned as low (LLC) ( 50%, 44 farms). Cultural energy used for feed for cows was calculated by multiplying each ingredient with corresponding values of ingredients from literature. Transportation energy was also included in the analysis. Total cultural energy expended was highest for LLC (P < 0.05). Cultural energy expended for feed constituted more than half of the total cultural energy and was highest for LLC (P < 0.05). Cultural energy expended per kg milk and per Mcal protein energy was higher for LLC (P < 0.05). Efficiency defined as Mcal input/Mcal output was better for ILC and was worse for LLC (P < 0.05) and HLC was intermediate thus not differing from other groups. Results show that cultural energy use efficiency does not linearly increases as concentrate level increases and increasing concentrate level does not necessarily mean better efficiency. Thus optimum concentrate level not interfering cows performance should be sought for sustainable dairy production.
Directory of Open Access Journals (Sweden)
Wiedeking M.
2012-02-01
Full Text Available Results from a program of measurements of level densities and gamma ray strength functions in the actinide region are presented. Experiments at the Oslo cyclotron involving the Cactus/Siri detectors and 232Th(d,x and 232Th(3He,x reactions were carried out to help answer the question of which level density model is the most appropriate for actinide nuclei, since it will have an impact on cross section calculations important for reactor physics simulations. A new technique for extracting level densities and gamma ray strength functions from particle-gamma coincidence data is proposed and results from the development of this technique are presented. In addition, simultaneous measurements of compound nuclear gamma decay probabilities have been performed for the key thorium cycle nuclei 233Th, 231Th and 232Pa up to around 1MeV above the neutron binding energy and have enabled extraction of indirect neutron induced capture cross sections for the 232Th, 231Pa and 230Th nuclei using the surrogate reaction method. Since the neutron capture cross section for 232Th is already well known from direct measurements a comparison provides a stringent test of the applicability of the surrogate technique in the actinide region.
Nuclear energy density functional from chiral pion-nucleon dynamics revisited
Kaiser, N.; Weise, W.
2010-05-01
We use a recently improved density-matrix expansion to calculate the nuclear energy density functional in the framework of in-medium chiral perturbation theory. Our calculation treats systematically the effects from 1 π-exchange, iterated 1 π-exchange, and irreducible 2 π-exchange with intermediate Δ-isobar excitations, including Pauli-blocking corrections up to three-loop order. We find that the effective nucleon mass M(ρ) entering the energy density functional is identical to the one of Fermi-liquid theory when employing the improved density-matrix expansion. The strength F(ρ) of the ( surface-term as provided by the pion-exchange dynamics is in good agreement with that of phenomenological Skyrme forces in the density region ρ/2short-range spin-orbit interaction. The strength function F(ρ) multiplying the square of the spin-orbit density comes out much larger than in phenomenological Skyrme forces and it has a pronounced density dependence.
Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics
Kou, Liang; Huang, Tieqi; Zheng, Bingna; Han, Yi; Zhao, Xiaoli; Gopalsamy, Karthikeyan; Sun, Haiyan; Gao, Chao
2014-05-01
Yarn supercapacitors have great potential in future portable and wearable electronics because of their tiny volume, flexibility and weavability. However, low-energy density limits their development in the area of wearable high-energy density devices. How to enhance their energy densities while retaining their high-power densities is a critical challenge for yarn supercapacitor development. Here we propose a coaxial wet-spinning assembly approach to continuously spin polyelectrolyte-wrapped graphene/carbon nanotube core-sheath fibres, which are used directly as safe electrodes to assembly two-ply yarn supercapacitors. The yarn supercapacitors using liquid and solid electrolytes show ultra-high capacitances of 269 and 177 mF cm-2 and energy densities of 5.91 and 3.84 μWh cm-2, respectively. A cloth supercapacitor superior to commercial capacitor is further interwoven from two individual 40-cm-long coaxial fibres. The combination of scalable coaxial wet-spinning technology and excellent performance of yarn supercapacitors paves the way to wearable and safe electronics.
Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics
Kou, Liang; Huang, Tieqi; Zheng, Bingna; Han, Yi; Zhao, Xiaoli; Gopalsamy, Karthikeyan; Sun, Haiyan; Gao, Chao
2014-01-01
Yarn supercapacitors have great potential in future portable and wearable electronics because of their tiny volume, flexibility and weavability. However, low-energy density limits their development in the area of wearable high-energy density devices. How to enhance their energy densities while retaining their high-power densities is a critical challenge for yarn supercapacitor development. Here we propose a coaxial wet-spinning assembly approach to continuously spin polyelectrolyte-wrapped graphene/carbon nanotube core-sheath fibres, which are used directly as safe electrodes to assembly two-ply yarn supercapacitors. The yarn supercapacitors using liquid and solid electrolytes show ultra-high capacitances of 269 and 177 mF cm−2 and energy densities of 5.91 and 3.84 μWh cm−2, respectively. A cloth supercapacitor superior to commercial capacitor is further interwoven from two individual 40-cm-long coaxial fibres. The combination of scalable coaxial wet-spinning technology and excellent performance of yarn supercapacitors paves the way to wearable and safe electronics. PMID:24786366
Effect of light energy density on conversion degree and hardness of dual-cured resin cement.
Komori, Paula Carolina de Paiva; de Paula, Andréia Bolzan; Martin, Airton Abrāo; Tango, Rubens Nisie; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço
2010-01-01
This study evaluated the effect of different light energy densities on conversion degree (CD) and Knoop hardness number (KHN) of RelyX ARC (RLX) resin cement. After manipulation according to the manufacturer's instructions, RLX was inserted into a rubber mold (0.8 mm x 5 mm) and covered with a Mylar strip. The tip of the light-curing unit (LCU) was positioned in contact with the Mylar surface. Quartz-tungsten-halogen (QTH) and light-emitting diode (LED) LCUs with light densities of 10, 20 and 30 J/cm2 were used to light-cure the specimens. After light curing, the specimens were stored dry in lightproof containers at 37 degrees C. After 24 hours, the CD was analyzed by FT-Raman and, after an additional 24-hours, samples were submitted to Knoop hardness testing. The data of the CD (%) and KHN were submitted to two-way ANOVA and the Tukey's test (alpha = 0.05). QTH and LED were effective light curing units. For QTH, there were no differences among the light energy densities for CD or KHN. For LED, there was a significant reduction in CD with the light energy density set at 10 J/cm2. KHN was not influenced by the light-curing unit and by its light energy density.
ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration
Energy Technology Data Exchange (ETDEWEB)
David Wenzhong Gao
2012-09-30
The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An
Energy Technology Data Exchange (ETDEWEB)
Ma, Xiaojun, E-mail: maxj802@163.com [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Bo; Gao, Dangzhong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Xu, Jiayun [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)
2017-02-01
A novel method based on dual α-particles energy loss (DAEL) is proposed for measuring the area density and composition of binary alloy films. In order to obtain a dual-energy α-particles source, an ingenious design that utilizes the transmitted α-particles traveling the thin film as a new α-particles source is presented. Using the DAEL technique, the area density and composition of Au/Cu film are determined accurately with an uncertainty of better than 10%. Finally, some measures for improving the combined uncertainty are discussed.
International Nuclear Information System (INIS)
Falize, E.
2008-10-01
The spectacular recent development of powerful facilities allows the astrophysical community to explore, in laboratory, astrophysical phenomena where radiation and matter are strongly coupled. The titles of the nine chapters of the thesis are: from high energy density physics to laboratory astrophysics; Lie groups, invariance and self-similarity; scaling laws and similarity properties in High-Energy-Density physics; the Burgan-Feix-Munier transformation; dynamics of polytropic gases; stationary radiating shocks and the POLAR project; structure, dynamics and stability of optically thin fluids; from young star jets to laboratory jets; modelling and experiences for laboratory jets
Method for controlling low-energy high current density electron beams
International Nuclear Information System (INIS)
Lee, J.N.; Oswald, R.B. Jr.
1977-01-01
A method and an apparatus for controlling the angle of incidence of low-energy, high current density electron beams are disclosed. The apparatus includes a current generating diode arrangement with a mesh anode for producing a drifting electron beam. An auxiliary grounded screen electrode is placed between the anode and a target for controlling the average angle of incidence of electrons in the drifting electron beam. According to the method of the present invention, movement of the auxiliary screen electrode relative to the target and the anode permits reliable and reproducible adjustment of the average angle of incidence of the electrons in low energy, high current density relativistic electron beams
Characterization of radiation-cross-linked, high-density polyethylene for thermal energy storage
International Nuclear Information System (INIS)
Whitaker, R.B.; Craven, S.M.; Etter, D.E.; Jendrek, E.F.; Nease, A.B.
1983-01-01
Electron beam cross-linked high-density polyethylene (HDPE) pellets (DuPont Alathon, 0.93 MI) have been characterized for potential utility in thermal energy storage applications, before and after up to 500 melt-freeze cycles in ethylene glycol. Up to 95% of the HDPE's initial DSC differential scanning calorimetry Δ H/sub f/ value (44.7 cal/g) (at 1.25 0 C/min cooling rates) was retained up to 9.0 Mrad radiation dosage. Form-stability after 500 melt-freeze cycles was very good at this dosage level. X-ray diffraction measurements showed little difference between irradiated HDPE's and the unirradiated control, indicating that cross-linking occurred primarily in the amorphous regions. FTIR spectroscopy showed the pellets to be uniformly reacted. The ratios of the 965-cm -1 absorption band (trans RCH=CRH') to the 909-cm -1 band (RCH=CH 2 ) increased with increasing radiation dosage, up to 18 Mrad. Gel contents reached a maximum of 75% at the 13.5 Mrad dosage, indicating that other reactions, in addition to cross-linking, occurred at the highest (18 Mrad) dosage level. 15 references, 5 figures, 4 tables
Directory of Open Access Journals (Sweden)
Nader - Rahnama
2009-11-01
Full Text Available
Visualization and analysis of pulsed ion beam energy density profile with infrared imaging
Isakova, Y. I.; Pushkarev, A. I.
2018-03-01
Infrared imaging technique was used as a surface temperature-mapping tool to characterize the energy density distribution of intense pulsed ion beams on a thin metal target. The technique enables the measuring of the total ion beam energy and the energy density distribution along the cross section and allows one to optimize the operation of an ion diode and control target irradiation mode. The diagnostics was tested on the TEMP-4M accelerator at TPU, Tomsk, Russia and on the TEMP-6 accelerator at DUT, Dalian, China. The diagnostics was applied in studies of the dynamics of the target cooling in vacuum after irradiation and in the experiments with target ablation. Errors caused by the target ablation and target cooling during measurements have been analyzed. For Fluke Ti10 and Fluke Ti400 infrared cameras, the technique can achieve surface energy density sensitivity of 0.05 J/cm2 and spatial resolution of 1-2 mm. The thermal imaging diagnostics does not require expensive consumed materials. The measurement time does not exceed 0.1 s; therefore, this diagnostics can be used for the prompt evaluation of the energy density distribution of a pulsed ion beam and during automation of the irradiation process.
Zeng, Yi; Shen, Zhong-Hui; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen
2018-03-01
Flexible dielectric polymer films with high energy storage density and high charge-discharge efficiency have been considered as promising materials for electrical power applications. Here, we design hierarchical structured nanocomposite films using nonlinear polymer poly(vinylidene fluoride-HFP) [P(VDF-HFP)] with inorganic h-boron nitride (h-BN) nanosheets by electrospinning and hot-pressing methods. Our results show that the addition of h-BN nanosheets and the design of the hierarchical multilayer structure in the nanocomposites can remarkably enhance the charge-discharge efficiency and energy density. A high charge-discharge efficiency of 78% and an energy density of 21 J/cm3 can be realized in the 12-layered PVDF/h-BN nanocomposite films. Phase-field simulation results reveal that the spatial distribution of the electric field in these hierarchical structured films affects the charge-discharge efficiency and energy density. This work provides a feasible route, i.e., structure modulation, to improve the energy storage performances for nanocomposite films.
Meso-level analysis, the missing link in energy strategies
International Nuclear Information System (INIS)
Schenk, Niels J.; Moll, Henri C.; Schoot Uiterkamp, Anton J.M.
2007-01-01
Energy is essential for human societies. Energy systems, though, are also associated with several adverse environmental effects. So far societies have been unable to successfully change their energy systems in a way that addresses environmental and health concerns. Lack of policy consensus often resulted in so-called 'stop-go' policies, which were identified as some of the most important barriers regarding successful energy transitions. The lack of policy consensus and coherent long-term strategies may result from a lack of knowledge of energy systems' meso-level dynamics. The meso-level involves the dynamic behaviour of the individual system elements and the coupling of individual technologies, resulting in interdependencies and regimes. Energy systems are at the meso-level characterised by two typical aspects, i.e. dynamics driven by interactions between actors, and heterogeneous characteristics of actors. These aspects give rise to the ineffectiveness of traditional energy policies, which is illustrated with examples from the transport sector and household electricity consumption. We found that analysis of energy systems at the meso-level helps to better understand energy systems. To resolve persistent policy issues, the traditional 'one size fits all' energy policies are not sufficient. In order to tackle the difficult issues, 'redesign of system organisation', 'target group approach', or 'target group induced system re-orientation' are needed
Murphy, E; FitzGerald, O; Saxne, T; Bresnihan, B
2002-11-01
Chondromalacia patellae is a potentially disabling disorder characterised by features of patellar cartilage degradation. To evaluate markers of cartilage and bone turnover in patients with chondromalacia patellae. 18 patients with chondromalacia patellae were studied. Serum cartilage oligomeric matrix protein (s-COMP) and bone sialoprotein (s-BSP) levels were measured by enzyme linked immunosorbent assay (ELISA) and compared with those of age and sex matched healthy control subjects. Periarticular bone mineral density (BMD) of both knee joints was assessed by dual energy x ray absorptiometry (DXA). s-COMP levels were significantly raised in all patients with chondromalacia patellae compared with healthy control subjects (p=0.0001). s-BSP levels did not differ significantly between the groups (p=0.41). BMD of the patella was significantly reduced in patients with chondromalacia patellae compared with the control subjects (p=0.016). In patients with bilateral chondromalacia patellae, BMD of the patella was lower in the more symptomatic knee joint (p=0.005). Changes in periarticular BMD were localised to the patella and were not present in femoral regions. Neither s-COMP (p=0.18) nor s-BSP (p=0.40) levels correlated with patellar BMD. Increased s-COMP levels, reflecting cartilage degradation, and reduced BMD localised to the patella may represent clinically useful markers in the diagnosis and monitoring of patients with chondromalacia patellae. Measures of cartilage degradation did not correlate with loss of patellar bone density, suggesting dissociated pathophysiological mechanisms.
Revisiting the density scaling of the non-interacting kinetic energy.
Borgoo, Alex; Teale, Andrew M; Tozer, David J
2014-07-28
Scaling relations play an important role in the understanding and development of approximate functionals in density functional theory. Recently, a number of these relationships have been redefined in terms of the Kohn-Sham orbitals [Calderín, Phys. Rev. A: At., Mol., Opt. Phys., 2013, 86, 032510]. For density scaling the author proposed a procedure involving a multiplicative scaling of the Kohn-Sham orbitals whilst keeping their occupation numbers fixed. In the present work, the differences between this scaling with fixed occupation numbers and that of previous studies, where the particle number change implied by the scaling was accommodated through the use of the grand canonical ensemble, are examined. We introduce the terms orbital and ensemble density scaling for these approaches, respectively. The natural ambiguity of the density scaling of the non-interacting kinetic energy functional is examined and the ancillary definitions implicit in each approach are highlighted and compared. As a consequence of these differences, Calderín recovered a homogeneity of degree 1 for the non-interacting kinetic energy functional under orbital scaling, contrasting recent work by the present authors [J. Chem. Phys., 2012, 136, 034101] where the functional was found to be inhomogeneous under ensemble density scaling. Furthermore, we show that the orbital scaling result follows directly from the linearity and the single-particle nature of the kinetic energy operator. The inhomogeneity of the non-interacting kinetic energy functional under ensemble density scaling can be quantified by defining an effective homogeneity. This quantity is shown to recover the homogeneity values for important approximate forms that are exact for limiting cases such as the uniform electron gas and one-electron systems. We argue that the ensemble density scaling provides more insight into the development of new functional forms.
Quantification of breast density using dual-energy mammography with liquid phantom calibration
International Nuclear Information System (INIS)
Lam, Alfonso R; Ding, Huanjun; Molloi, Sabee
2014-01-01
Breast density is a widely recognized potential risk factor for breast cancer. However, accurate quantification of breast density is a challenging task in mammography. The current use of plastic breast-equivalent phantoms for calibration provides limited accuracy in dual-energy mammography due to the chemical composition of the phantom. We implemented a breast-equivalent liquid phantom for dual-energy calibration in order to improve the accuracy of breast density measurement. To design these phantoms, three liquid compounds were chosen: water, isopropyl alcohol, and glycerol. Chemical compositions of glandular and adipose tissues, obtained from NIST database, were used as reference materials. Dual-energy signal of the liquid phantom at different breast densities (0% to 100%) and thicknesses (1 to 8 cm) were simulated. Glandular and adipose tissue thicknesses were estimated from a higher order polynomial of the signals. Our results indicated that the linear attenuation coefficients of the breast-equivalent liquid phantoms match those of the target material. Comparison between measured and known breast density data shows a linear correlation with a slope close to 1 and a non-zero intercept of 7%, while plastic phantoms showed a slope of 0.6 and a non-zero intercept of 8%. Breast density results derived from the liquid calibration phantoms showed higher accuracy than those derived from the plastic phantoms for different breast thicknesses and various tube voltages. We performed experimental phantom studies using liquid phantoms and then compared the computed breast density with those obtained using a bovine tissue model. The experimental data and the known values were in good correlation with a slope close to 1 (∼1.1). In conclusion, our results indicate that liquid phantoms are a reliable alternative for calibration in dual-energy mammography and better reproduce the chemical properties of the target material. (paper)
Energy and nutrient density of foods in relation to their carbon footprint.
Drewnowski, Adam; Rehm, Colin D; Martin, Agnes; Verger, Eric O; Voinnesson, Marc; Imbert, Philippe
2015-01-01
A carbon footprint is the sum of greenhouse gas emissions (GHGEs) associated with food production, processing, transporting, and retailing. We examined the relation between the energy and nutrient content of foods and associated GHGEs as expressed as g CO2 equivalents. GHGE values, which were calculated and provided by a French supermarket chain, were merged with the Composition Nutritionnelle des Aliments (French food-composition table) nutrient-composition data for 483 foods and beverages from the French Agency for Food, Environmental and Occupational Health and Safety. Foods were aggregated into 34 food categories and 5 major food groups as follows: meat and meat products, milk and dairy products, frozen and processed fruit and vegetables, grains, and sweets. Energy density was expressed as kcal/100 g. Nutrient density was determined by using 2 alternative nutrient-density scores, each based on the sum of the percentage of daily values for 6 or 15 nutrients, respectively. The energy and nutrient densities of foods were linked to log-transformed GHGE values expressed per 100 g or 100 kcal. Grains and sweets had lowest GHGEs (per 100 g and 100 kcal) but had high energy density and a low nutrient content. The more-nutrient-dense animal products, including meat and dairy, had higher GHGE values per 100 g but much lower values per 100 kcal. In general, a higher nutrient density of foods was associated with higher GHGEs per 100 kcal, although the slopes of fitted lines varied for meat and dairy compared with fats and sweets. Considerations of the environmental impact of foods need to be linked to concerns about nutrient density and health. The point at which the higher carbon footprint of some nutrient-dense foods is offset by their higher nutritional value is a priority area for additional research. © 2015 American Society for Nutrition.
Energy Technology Data Exchange (ETDEWEB)
Ma, Su Man; Kim, Sung Hun; Jang, Jung Hun; Yun, Mung Hun; Yun Jun Hyung; Kang, Sung Youn [Techvalley co., Ltd., Research Center, Seoul (Korea)
2000-03-01
-Pervasive effect of R and D results. Technical development of level/density measuring instruments has a definitely significant effect on the quality test of various products in the filled on the heavy industry. As measurement of flow increasingly becomes important in the plant design in the chemical industry, development of our products is applicable to various equipment in the field of industries. -Applications of R and D results. Technical development of level/density measurement copes with a technical difficulty in inspecting the internal conditions of chemical plants by transmission through metal materials in a non-destructive manner and thereby enables non-destructive flow and level tests in the field of industries. 11 refs., 19 figs., 4 tabs. (Author)
Inferring Parametric Energy Consumption Functions at Different Software Levels
DEFF Research Database (Denmark)
Liqat, Umer; Georgiou, Kyriakos; Kerrison, Steve
2016-01-01
The static estimation of the energy consumed by program executions is an important challenge, which has applications in program optimization and verification, and is instrumental in energy-aware software development. Our objective is to estimate such energy consumption in the form of functions...... on the input data sizes of programs. We have developed a tool for experimentation with static analysis which infers such energy functions at two levels, the instruction set architecture (ISA) and the intermediate code (LLVM IR) levels, and reflects it upwards to the higher source code level. This required...... the development of a translation from LLVM IR to an intermediate representation and its integration with existing components, a translation from ISA to the same representation, a resource analyzer, an ISA-level energy model, and a mapping from this model to LLVM IR. The approach has been applied to programs...
How to Draw Energy Level Diagrams in Excitonic Solar Cells.
Zhu, X-Y
2014-07-03
Emerging photovoltaic devices based on molecular and nanomaterials are mostly excitonic in nature. The initial absorption of a photon in these materials creates an exciton that can subsequently dissociate in each material or at their interfaces to give charge carriers. Any attempt at mechanistic understanding of excitonic solar cells must start with drawing energy level diagrams. This seemingly elementary exercise, which is described in textbooks for inorganic solar cells, has turned out to be a difficult subject in the literature. The problem stems from conceptual confusion of single-particle energy with quasi-particle energy and the misleading practice of mixing the two on the same energy level diagram. Here, I discuss how to draw physically accurate energy diagrams in excitonic solar cells using only single-particle energies (ionization potentials and electron affinities) of both ground and optically excited states. I will briefly discuss current understanding on the electronic energy landscape responsible for efficient charge separation in excitonic solar cells.
Collision dynamics of H+ + N2 at low energies based on time-dependent density-functional theory
Yu, W.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Gao, C.-Z.; Wei, B.
2018-02-01
Using time-dependent density-functional theory at the level of local density approximation augmented by a self-interaction correction and coupled non-adiabatically to molecular dynamics, we study, from a theoretical perspective, scattering dynamics of the proton in collisions with the N2 molecule at 30 eV. Nine different collision configurations are employed to analyze the proton energy loss spectra, electron depletion, scattering angles and self-interaction effects. Our results agree qualitatively with the experimental data and previous theoretical calculations. The discrepancies are ascribed to the limitation of the theoretical models in use. We find that self-interaction effects can significantly influence the electron capture and the excited diatomic vibrational motion, which is in consistent with other calculations. In addition, it is found that the molecular structure can be readily retrieved from the proton energy loss spectra due to a significant momentum transfer in head-on collisions.
Ali, Amjad; Shabbir Naz, G.; Saleem Shahzad, M.; Kouser, R.; Aman-ur-Rehman; Nasim, M. H.
2018-03-01
The energy states of the bound electrons in high energy density systems (HEDS) are significantly affected due to the electric field of the neighboring ions. Due to this effect bound electrons require less energy to get themselves free and move into the continuum. This phenomenon of reduction in potential is termed as ionization potential depression (IPD) or the continuum lowering (CL). The foremost parameter to depict this change is the average charge state, therefore accurate modeling for CL is imperative in modeling atomic data for computation of radiative and thermodynamic properties of HEDS. In this paper, we present an improved model of CL in the screened hydrogenic model with l-splitting (SHML) proposed by G. Faussurier and C. Blancard, P. Renaudin [High Energy Density Physics 4 (2008) 114] and its effect on average charge state. We propose the level charge dependent calculation of CL potential energy and inclusion of exchange and correlation energy in SHML. By doing this, we made our model more relevant to HEDS and free from CL empirical parameter to the plasma environment. We have implemented both original and modified model of SHML in our code named OPASH and benchmark our results with experiments and other state-of-the-art simulation codes. We compared our results of average charge state for Carbon, Beryllium, Aluminum, Iron and Germanium against published literature and found a very reasonable agreement between them.
Quintano, E.; Díez, I.; Muguerza, N.; Figueroa, F. L.; Gorostiaga, J. M.
2017-12-01
In recent decades a decline in the foundation species Gelidium corneum (Hudson) J. V. Lamouroux has been detected along the Basque coast (northern Spain). This decline has been attributed to several factors, but recent studies have found a relationship between high irradiance and the biochemical and physiological stress of G. corneum. Since physiological responses to changes in light occur well before variations in morphology, the present study seeks to use a size-class demographic approach to investigate whether shallow subtidal populations of G. corneum off the Basque coast show different frond bleaching, density and biomass under different irradiance conditions. The results revealed that the bleaching incidence and cover were positively related to irradiance, whereas biomass was negatively related. The effect of the irradiance level on frond density was found to vary with size-class, i.e. fronds up to 15 cm showed greater densities under high light conditions (126.6 to 262.2 W m- 2) whereas the number of larger fronds (> 20 cm) per unit area was lower. In conclusion, the results of the present study suggest that irradiance might be a key factor for controlling along-shore bleaching, frond density and biomass in G. corneum. Further research should be carried out on the physiology of this canopy species in relation to its bed structure and on the interaction of irradiance and other abiotic (nutrients, temperature, wave energy) and biotic factors (grazing pressure).
Energy level broadening effect on the equation of state of hot dense Al and Au plasma
International Nuclear Information System (INIS)
Hou Yong; Jin Fengtao; Yuan Jianmin
2007-01-01
In the hot dense matter regime, the isothermal equation of state (EOS) of Al and Au is calculated using an average-atom (AA) model in which the broadening of energy levels of atoms and ions are accounted for by using with a Gaussian distribution of the density of states. The distribution of bound electrons in the energy bands is determined by the continuum Fermi-Dirac distribution. With a self-consistent field average atoms scheme, it is shown that the energy-level broadening has a significant effect on the isothermal equation of state (EOS) of Al and Au in the hot dense matter regime. The jumps in the equation of state (EOS) induced by pressure ionization of the one-electron orbital with the increase in density, which often occur in the normal average-atom model and have been avoided by generally introducing the pseudo-shape resonance states, disappear naturally
Energy Technology Data Exchange (ETDEWEB)
NONE
2012-06-15
The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. Task 5 focused on energy projection mapping to estimate and visualise the energy consumption density and GHG emissions under different scenarios. The scenarios from task 4 were built around the energy consumption density of the residential sector under future land use patterns and rely on different energy source combinations (the suite of pathways). In task 5 the energy usage under the different scenarios were fed back into GIS, thereby giving a visual representation of forecasted residential energy consumption per unit area. The methodology is identical to that used in task 2 where current usage was mapped, whereas the mapping in this task is for future forecasts. These results are documented in this report. In addition, GHG mapping under the various scenarios was also undertaken. (LN)
Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities
Energy Technology Data Exchange (ETDEWEB)
Meng, Fanhui [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250061 (China); Ding, Yi [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250061 (China); Shandong Applied Research Center for Gold Technology (Au-SDARC), Yantai 264005 (China)
2011-09-15
A sub-micrometer-thick, flexible, all-solid-state supercapacitor is fabricated. Through simultaneous realization of high dispersity of pseudocapacitance materials and quick electrode response, the hybrid nanostructures show enhanced volumetric capacitance and excellent stability, as well as very high power and energy densities. This suggests their potential as next-generation, high-performance energy conversion and storage devices for wearable electronics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Charge modes of pulsed high energy and high density plasma injection source
International Nuclear Information System (INIS)
Cheng, D.Y.
1974-01-01
Detonation (snowplow), deflagration and other modes of discharge can be produced in a single coaxial plasma gun. Conservation laws of mass, momentum and energy together with the entropy production condition of the discharge phenomena are used to identify dense discharge modes. The Rankine-Hugoniot relation for a magnetized plasma is derived. Discussions of how to design a deflagration plasma gun to yield a prescribed plasma kinetic energy and plasma beam density are given
Ground-state energy for 1D (t,U,X)-model at low densities
International Nuclear Information System (INIS)
Buzatu, F.D.
1992-09-01
In describing the properties of quasi-1D materials with a highly-screened interelectronic potential, an attractive hopping term has to be added to the Hubbard Hamiltonian. The effective interaction and the ground-state energy in ladder approximation are analyzed. At low electronic densities, the attractive part of the interaction, initially smaller than the repulsive term, can become more effective, the ground-state energy decreasing below the unperturbed value. (author). 12 refs, 4 figs
Stoyanova, Alexandrina; Teale, Andrew M; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel
2013-10-07
The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-field (MCSCF) levels. In the HF case, an analytical expression for the energy gradient has been derived and implemented. Calculations have been performed within the short-range local density approximation on H2, N2, Li2, and H2O. Significant improvements in binding energies are obtained with the new decomposition of the short-range energy. The importance of optimizing the short-range OEP at the MCSCF level when static correlation becomes significant has also been demonstrated for H2, using a finite-difference gradient. The implementation of the analytical gradient for MCSCF wavefunctions is currently in progress.
International Nuclear Information System (INIS)
Díaz, Patricia; González, Zoraida; Santamaría, Ricardo; Granda, Marcos; Menéndez, Rosa; Blanco, Clara
2015-01-01
Highlights: •Ce 2 (SO 4 ) 3 /H 2 SO 4 redox electrolyte as a new route to increase the energy density of SCs. •Increased operating cell voltage with no electrolyte decomposition. •Redox reactions on the battery-type electrode. •The negative electrode retains its capacitor behaviour. •Outstanding energy density values compared to those measured in H 2 SO 4 . -- ABSTRACT: The energy density of carbon based supercapacitors (CBSCs) was significantly increased by the addition of an inorganic redox species [Ce 2 (SO 4 ) 3 ] to an aqueous electrolyte (H 2 SO 4 ). The development of the faradaic processes on the positive electrode not only significantly increased the capacitance but also the operational cell voltage of these devices (up to 1.5 V) due to the high redox potentials at which the Ce 3+ /Ce 4+ reactions occur. Therefore, in asymmetric CBSCs assembled using an activated carbon as negative electrode and MWCNTs as the positive one, the addition of Ce 2 (SO 4 ) 3 moderately increases the energy density of the device (from 1.24 W h kg −1 to 5.08 W h kg −1 ). When a modified graphite felt is used as positive electrode the energy density of the cell reaches values as high as 13.84 W h kg −1 . The resultant systems become asymmetric hybrid devices where energy is stored due to the electrical double layer formation in the negative electrode and the development of the faradaic process in the positive electrode, which acts as a battery-type electrode
Parametric Statistics of Individual Energy Levels in Random Hamiltonians
Smolyarenko, I. E.; Simons, B. D.
2002-01-01
We establish a general framework to explore parametric statistics of individual energy levels in disordered and chaotic quantum systems of unitary symmetry. The method is applied to the calculation of the universal intra-level parametric velocity correlation function and the distribution of level shifts under the influence of an arbitrary external perturbation.
International Nuclear Information System (INIS)
Garcia-Aldea, David; Alvarellos, J. E.
2008-01-01
We propose a kinetic energy density functional scheme with nonlocal terms based on the von Weizsaecker functional, instead of the more traditional approach where the nonlocal terms have the structure of the Thomas-Fermi functional. The proposed functionals recover the exact kinetic energy and reproduce the linear response function of homogeneous electron systems. In order to assess their quality, we have tested the total kinetic energies as well as the kinetic energy density for atoms. The results show that these nonlocal functionals give as good results as the most sophisticated functionals in the literature. The proposed scheme for constructing the functionals means a step ahead in the field of fully nonlocal kinetic energy functionals, because they are capable of giving better local behavior than the semilocal functionals, yielding at the same time accurate results for total kinetic energies. Moreover, the functionals enjoy the possibility of being evaluated as a single integral in momentum space if an adequate reference density is defined, and then quasilinear scaling for the computational cost can be achieved
Zhao, Lei; Gao, Jing; Liu, Qing; Zhang, Shujun; Li, Jing-Feng
2018-01-10
Lead-free dielectric ceramics with high recoverable energy density are highly desired to sustainably meet the future energy demand. AgNbO 3 -based lead-free antiferroelectric ceramics with double ferroelectric hysteresis loops have been proved to be potential candidates for energy storage applications. Enhanced energy storage performance with recoverable energy density of 3.3 J/cm 3 and high thermal stability with minimal energy density variation (<10%) over a temperature range of 20-120 °C have been achieved in W-modified AgNbO 3 ceramics. It is revealed that the W 6+ cations substitute the B-site Nb 5+ and reduce the polarizability of B-site cations, leading to the enhanced antiferroelectricity, which is confirmed by the polarization hysteresis and dielectric tunability. It is believed that the polarizability of B-site cations plays a dominant role in stabilizing the antiferroelectricity in AgNbO 3 system, in addition to the tolerance factor, which opens up a new design approach to achieve stable antiferroelectric materials.