WorldWideScience

Sample records for energy extraction systems

  1. Energy Extracting and Quench Protection System in the LHC

    CERN Document Server

    Abu Siam, Mansour

    2016-01-01

    quadrupole magnets. The electromagnets are built of special cables that operate in superconducting state by cooling them to 1.9K (-271.3℃); the superconducting magnets of the LHC are powered in about 1700 electrical circuits. A phenomenon called quench can spontaneously occur in superconducting magnets, which means that the superconductivity is lost in part of their windings. The energy stored within the magnet, up to 1.3 GJ, can cause severe damage. In order to protect the superconducting elements after a resistive transition, the energy is dissipated into a dump resistor installed in series with the magnet chain that is switched into the circuit by opening circuit breakers. The system described above is utilized for magnets installed in the LHC that operate under currents ranging from 600A up to 13kA. For the next LHC upgrade (High Luminosity) there is a need for circuit breakers capable of interrupting high DC currents in a solely inductive circuit within one millisecond and under development of very hig...

  2. An Optimal Control Method for Maximizing the Efficiency of Direct Drive Ocean Wave Energy Extraction System

    Science.gov (United States)

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng

    2014-01-01

    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913

  3. An optimal control method for maximizing the efficiency of direct drive ocean wave energy extraction system.

    Science.gov (United States)

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng

    2014-01-01

    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.

  4. A General Mathematical Framework for Calculating Systems-Scale Efficiency of Energy Extraction and Conversion: Energy Return on Investment (EROI) and Other Energy Return Ratios

    OpenAIRE

    Adam R. Brandt; Michael Dale

    2011-01-01

    The efficiencies of energy extraction and conversion systems are typically expressed using energy return ratios (ERRs) such as the net energy ratio (NER) or energy return on investment (EROI). A lack of a general mathematical framework prevents inter-comparison of NER/EROI estimates between authors: methods used are not standardized, nor is there a framework for succinctly reporting results in a consistent fashion. In this paper we derive normalized mathematical forms of four ERRs for energy ...

  5. Novel high efficient speed sensorless controller for maximum power extraction from wind energy conversion systems

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2016-01-01

    Highlights: • Novel sensorless MPPT technique without drawbacks of other sensor/sensorless methods. • Tracking the actual MPP of WECSs, no tracking the MPP of their wind turbines. • Actually extracting the highest output power from WECSs. • Novel MPPT technique having the MPPT efficiency more than 98.5% for WECSs. • Novel MPPT technique having short convergence time for WECSs. - Abstract: In this study, a novel high accurate sensorless maximum power point tracking (MPPT) method is proposed. The technique tracks the actual maximum power point of a wind energy conversion system (WECS) at which maximum output power is extracted from the system, not the maximum power point of its wind turbine at which maximum mechanical power is obtained from the turbine, so it actually extracts the highest output power from the system. The technique only uses input voltage and current of the converter used in the system, and neither needs any speed sensors (anemometer and tachometer) nor has the drawbacks of other sensor/sensorless based MPPT methods. The technique has been implemented as a MPPT controller by constructing a WECS. Theoretical results, the technique performance, and its advantages are validated by presenting real experimental results. The real static-dynamic response of the MPPT controller is experimentally obtained that verifies the proposed MPPT technique high accurately extracts the highest instant power from wind energy conversion systems with the MPPT efficiency of more than 98.5% and a short convergence time that is only 25 s for the constructed system having a total inertia and friction coefficient of 3.93 kg m 2 and 0.014 N m s, respectively.

  6. Energy extraction system using dual-capacitor switching for quench protection of HTS magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yo Jong; Song, Seung Hyun; Jeon, Hae Ryong; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Lee, Woo Seung [JH ENGINEERING CO., LTD., Anyang (Korea, Republic of); Kang, Hyoung Ku [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-09-15

    The superconducting magnets have a large inductance as well as high operating current. Therefore, mega-joule scale energy can be stored in the magnet. The energy stored in the magnet is sufficient to damage the magnet when a quench occurs. Quench heater and dump resistor can be used to protect the magnet. However, using quench heater to create quench resistors through heat transfer can be slower than instantly switching resistors. Also, electrical short, overheating and breakdown can occur due to quench heater. Moreover, the number of dump resistor should be limited to avoid large terminal voltage. Therefore, in this paper, we propose a quench protection method for extracting the energy stored in a magnet by charging and discharging energy through a capacitor switching without increasing resistance. The simulation results show that the proposed system has a faster current decay within the allowable voltage level.

  7. Energy extraction system using dual-capacitor switching for quench protection of HTS magnet

    International Nuclear Information System (INIS)

    Chi, Yo Jong; Song, Seung Hyun; Jeon, Hae Ryong; Ko, Tae Kuk; Lee, Woo Seung; Kang, Hyoung Ku

    2017-01-01

    The superconducting magnets have a large inductance as well as high operating current. Therefore, mega-joule scale energy can be stored in the magnet. The energy stored in the magnet is sufficient to damage the magnet when a quench occurs. Quench heater and dump resistor can be used to protect the magnet. However, using quench heater to create quench resistors through heat transfer can be slower than instantly switching resistors. Also, electrical short, overheating and breakdown can occur due to quench heater. Moreover, the number of dump resistor should be limited to avoid large terminal voltage. Therefore, in this paper, we propose a quench protection method for extracting the energy stored in a magnet by charging and discharging energy through a capacitor switching without increasing resistance. The simulation results show that the proposed system has a faster current decay within the allowable voltage level

  8. A General Mathematical Framework for Calculating Systems-Scale Efficiency of Energy Extraction and Conversion: Energy Return on Investment (EROI and Other Energy Return Ratios

    Directory of Open Access Journals (Sweden)

    Adam R. Brandt

    2011-08-01

    Full Text Available The efficiencies of energy extraction and conversion systems are typically expressed using energy return ratios (ERRs such as the net energy ratio (NER or energy return on investment (EROI. A lack of a general mathematical framework prevents inter-comparison of NER/EROI estimates between authors: methods used are not standardized, nor is there a framework for succinctly reporting results in a consistent fashion. In this paper we derive normalized mathematical forms of four ERRs for energy extraction and conversion pathways. A bottom-up (process model formulation is developed for an n-stage energy harvesting and conversion pathway with various system boundaries. Formations with the broadest system boundaries use insights from life cycle analysis to suggest a hybrid process model/economic input output based framework. These models include indirect energy consumption due to external energy inputs and embodied energy in materials. Illustrative example results are given for simple energy extraction and conversion pathways. Lastly, we discuss the limitations of this approach and the intersection of this methodology with “top-down” economic approaches.

  9. Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy

    Science.gov (United States)

    Karimi, S.; Marsh, B. D.; Hilpert, M.

    2017-12-01

    A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the

  10. Ocean Thermal Extractable Energy Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Ascari, Matthew [Lockheed Martin Corporation, Bethesda, MD (United States)

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  11. Phoenix I energy extraction experiment

    International Nuclear Information System (INIS)

    Hoffman, J.M.; Patterson, E.L.; Tisone, G.C.; Moreno, J.B.

    1980-07-01

    Energy extraction experiments are reported for the Phoenix I amplifier driven by a discharge-initiated oscillator-preamplifier system operating on mixtures of either SF 6 -HI or SF 6 -C 2 H 6 and an electron-beam-initiated intermediate amplifer (lambda-3) fueled with H 2 and F 2 mixtures. When the oscillator-preamplifier system operated with mixtures of SF 6 -HI the input spectrum to the Phoenix I amplifier contained approx. 28 P-branch vibrational-rotational lines which were almost identical to the input spectrum from the H 2 -F 2 fueled oscillator. In this case the energy extraction measurements were essentially the same as the results obtained with the spectrum produced using H 2 and F 2 mixtures. For an input intensity of 10 7 W/cm 2 , 170 J were extracted from the amplifier. With the SF 6 -C 2 H 6 spectrum, extraction was only obtained from the first three excited vibrational levels. This result indicates that most of the energy in the amplifier could be extracted on the first three excited vibrational levels. It is shown that the extraction results can be fit with a simple two level model. The radius of curvature of the beam was estimated using a lateral shearing interferometer. It was found that the Phoenix I amplifier altered the radius of curvature

  12. Fuzzy Linguistic Knowledge Based Behavior Extraction for Building Energy Management Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dumidu Wijayasekara; Milos Manic

    2013-08-01

    Significant portion of world energy production is consumed by building Heating, Ventilation and Air Conditioning (HVAC) units. Thus along with occupant comfort, energy efficiency is also an important factor in HVAC control. Modern buildings use advanced Multiple Input Multiple Output (MIMO) control schemes to realize these goals. However, since the performance of HVAC units is dependent on many criteria including uncertainties in weather, number of occupants, and thermal state, the performance of current state of the art systems are sub-optimal. Furthermore, because of the large number of sensors in buildings, and the high frequency of data collection, large amount of information is available. Therefore, important behavior of buildings that compromise energy efficiency or occupant comfort is difficult to identify. This paper presents an easy to use and understandable framework for identifying such behavior. The presented framework uses human understandable knowledge-base to extract important behavior of buildings and present it to users via a graphical user interface. The presented framework was tested on a building in the Pacific Northwest and was shown to be able to identify important behavior that relates to energy efficiency and occupant comfort.

  13. HYPER (hybrid power extraction reactor): a system for clean nuclear energy

    International Nuclear Information System (INIS)

    Park, W.S.; Shin, U.; Han, S.-J.; Song, T.Y.; Choi, B.H.; Park, C.K.

    2000-01-01

    The Korea Atomic Energy Research Institute (KAERI) has been performing accelerator driven system related research and development (RID) called HYPER (hybrid power extraction reactor) for the transmutation of nuclear waste and energy production through the transmutation process. HYPER program is within the frame work of the national mid and long-term nuclear research plan. KAERI is aiming to develop the elemental technologies for the subcritical transmutation system by the year of 2001 and build a small bench scale test facility (∝5 MW) by the year of 2006. Some major features of HYPER have been developed and employed. On-power fueling concepts are employed to keep system power constant with a minimum variation of accelerator power. A hollow cylinder-type metal fuel is designed for the on-line refueling concept. Lead-bismuth (Pb-Bi) is adopted as a coolant and spallation target material. 1 GeV 16 mA proton beam is designed to be provided for HYPER. HYPER is to transmute about 380 kg of TRU a year and produce 1000 MW of power. The support ratio of HYPER for LWR units producing the same power is believed to be 5∝6. (orig.)

  14. Quality Assessment of Roof Planes Extracted from Height Data for Solar Energy Systems by the EAGLE Platform

    Directory of Open Access Journals (Sweden)

    Simon Schuffert

    2015-12-01

    Full Text Available Due to the increasing scarcity of fossil fuels and the upwards trend in energy costs over time, many countries—especially in Europe—have begun to modify their energy policies aiming to increase that percentage obtained from renewable energies. The EAGLE (FP7 program, European Commission has developed a web-based platform to promote renewable energy systems (RES in the public and private sectors, and to deliver a comprehensive information source for all interested users. In this paper, a comprehensive quality assessment of extracted roof planes suitable for solar energy installations (photovoltaic, solar thermal from height data derived automatically from both LiDAR (Light Detection and Ranging and aerial images will be presented. A shadow analysis is performed regarding the daily path of the sun including the shading effects of nearby objects (chimneys, dormers, vegetation, buildings, topography, etc.. A quality assessment was carried out for both LiDAR and aerial images of the same test sites in UK and Germany concerning building outline accuracy, extraction rate of roof planes and the accuracy of their geometric parameters (inclination and aspect angle, size. The benefit is an optimized system to extract roof planes for RES with a high level of detail, accuracy and flexibility (concerning different commonly available data sources including an estimation of quality of the results which is important for individual house owners as well as for regional applications by governments or solar energy companies to judge their usefulness.

  15. Information extraction system

    Science.gov (United States)

    Lemmond, Tracy D; Hanley, William G; Guensche, Joseph Wendell; Perry, Nathan C; Nitao, John J; Kidwell, Paul Brandon; Boakye, Kofi Agyeman; Glaser, Ron E; Prenger, Ryan James

    2014-05-13

    An information extraction system and methods of operating the system are provided. In particular, an information extraction system for performing meta-extraction of named entities of people, organizations, and locations as well as relationships and events from text documents are described herein.

  16. Energy extracted from underground rock area by using a horizontal closed loop system in Mutah University/Jordan

    International Nuclear Information System (INIS)

    Al-Dabbas, Mohammed Awwad Ali; Al-Rousan, Ammar A.

    2013-01-01

    Highlights: ► The ground can be used as a storage tank to store hot or cooled water in Jordan. ► The stored energy in rocks was utilized to provide heating cooling, and hot water for homes. ► The underground geothermal horizontal loop in rocks was technically approved. ► It can extract up to six times the heat energy that used in electrical energy. ► Its low capital cost and zero environmental emissions. - Abstract: Earth Energy Systems (EESs) utilize the thermal energy that is stored in rocks and ground water under the earth’s surface to provide homes, commercial buildings, and industrial facilities with heating, cooling, and hot water. Solar energy is absorbed by the earth’s surface which stores up to 50% of the sun’s energy that radiates on it. Consequently, the earth and groundwater’s temperature is relatively constant compared to that of the surface air. The earth’s temperature is generally warmer than the surface temperature during the colder months of the year, while it is generally cooler than the surface temperature during the hot months of the year. In this study, energy was extracted from the underground rocks at Mutah University in Jordan by using the geothermal horizontal closed loop system. Two-meter holes were drilled into the earth’s surface; copper pipes were inserted for liquid to pass through them into the heat exchange system. Then, the liquid was circulated back into the ground. Several temperature differences were measured and reported in the cold and hot months. The experimental results showed that thermal energy stored in rocks can be used to provide homes with heating, cooling, and hot water with low capital cost and zero environmental emissions.

  17. Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control.

    Science.gov (United States)

    Liu, Xilin; Zhang, Milin; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan

    2017-08-01

    This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18 μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.

  18. Energy extraction and water treatment in one system: The idea of using a desalination battery in a cooling tower

    Science.gov (United States)

    Shapira, Barak; Cohen, Izaak; Penki, Tirupathi Rao; Avraham, Eran; Aurbach, Doron

    2018-02-01

    The use of sodium manganese oxide as an intercalation electrode for water treatment was recently explored, and referred to as a "desalination battery" and "hybrid capacitive deionization". Here, we examine the feasibility of using such a desalination battery, comprising crystalline Na4Mn9O18 as the cathode and Ag/AgCl/Cl- electrode as the anode, to extract energy from low-grade waste heat sources. Sodium manganese oxide electrode's material was produced via a solid-state synthesis. Electrodes were produced by spray-coated onto graphite foils, and showed a temperature dependence of the electrode potential, namely, ∂ E / ∂ T , of -0.63 mV/K (whereas, the Ag/AgCl/Cl- mesh electrode showed much lower temperature dependence, < 0.1 mV/K). In order to demonstrate ion-removal capabilities together with the feasibility of thermal-energy conversion, a flow battery system was constructed. Thermally regenerative electrochemical cycles (TREC) were constructed for the flow battery cell. The thermal energy conversion, in this particular system, was shown to be feasible at relatively low C-rate (C/19) with temperatures varying between 30 °C and 70 °C.

  19. Extracting Aggregation Free Energies of Mixed Clusters from Simulations of Small Systems: Application to Ionic Surfactant Micelles.

    Science.gov (United States)

    Zhang, X; Patel, L A; Beckwith, O; Schneider, R; Weeden, C J; Kindt, J T

    2017-11-14

    Micelle cluster distributions from molecular dynamics simulations of a solvent-free coarse-grained model of sodium octyl sulfate (SOS) were analyzed using an improved method to extract equilibrium association constants from small-system simulations containing one or two micelle clusters at equilibrium with free surfactants and counterions. The statistical-thermodynamic and mathematical foundations of this partition-enabled analysis of cluster histograms (PEACH) approach are presented. A dramatic reduction in computational time for analysis was achieved through a strategy similar to the selector variable method to circumvent the need for exhaustive enumeration of the possible partitions of surfactants and counterions into clusters. Using statistics from a set of small-system (up to 60 SOS molecules) simulations as input, equilibrium association constants for micelle clusters were obtained as a function of both number of surfactants and number of associated counterions through a global fitting procedure. The resulting free energies were able to accurately predict micelle size and charge distributions in a large (560 molecule) system. The evolution of micelle size and charge with SOS concentration as predicted by the PEACH-derived free energies and by a phenomenological four-parameter model fit, along with the sensitivity of these predictions to variations in cluster definitions, are analyzed and discussed.

  20. Energy systems

    International Nuclear Information System (INIS)

    Haefele, W.

    1974-01-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  1. Energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Haefele, W [Nuclear Research Centre, Applied Systems Analysis and Reactor Physics, Karlsruhe (Germany); International Institute for Applied Systems Analysis, Laxenburg (Austria)

    1974-07-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  2. SPS extraction systems

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    One of the 3-m long electrostatics septa. The septum itself consists of 0.15 mm thick molybdenum wires with a 1.5 mm pitch. Each of the two SPS extraction systems will contain four of these electrostatic septa.

  3. Wind energy analysis system

    OpenAIRE

    2014-01-01

    M.Ing. (Electrical & Electronic Engineering) One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis of the energy within the wind on that particular site. No wind energy analysis system exists for the measurement and analysis of wind power. This dissertation documents the design and development of a Wind Energy Analysis System (WEAS). Using a micro-controller based design in conjunction with sensors, WEAS measure, calcu...

  4. A modeling study of tidal energy extraction and the associated impact on tidal circulation in a multi-inlet bay system of Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Taiping; Yang, Zhaoqing

    2017-12-01

    Previous tidal energy projects in Puget Sound have focused on major deep channels such as Admiralty Inlet that have a larger power potential but pose greater technical challenges than minor tidal channels connecting to small sub-basins. This paper focuses on the possibility of extracting energy from minor tidal channels by using a hydrodynamic model to quantify the power potential and the associated impact on tidal circulation. The study site is a multi-inlet bay system connected by two narrow inlets, Agate Pass and Rich Passage, to the Main Basin of Puget Sound. A three-dimensional hydrodynamic model was applied to the study site and calibrated for tidal elevations and currents. We examined three energy extraction scenarios in which turbines were deployed in each of the two passages and concurrently in both. Extracted power rates and associated changes in tidal elevation, current, tidal flux, and residence time were examined. Maximum instantaneous power rates reached 250 kW, 1550 kW, and 1800 kW, respectively, for the three energy extraction scenarios. The model suggests that with the proposed level of energy extraction, the impact on tidal circulation is very small. It is worth investigating the feasibility of harnessing tidal energy from minor tidal channels of Puget Sound.

  5. Extraction systems of the SPS

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    A pair of prototype septum magnets for the extraction systems of the SPS. Each of the two extraction systems will contain eighteen of these septum magnets (eight with a 4 mm septum and ten with a 16 mm septum) mounted in pairs in nine vacuum tanks.

  6. Extracting Minerals from Seawater: An Energy Analysis

    Directory of Open Access Journals (Sweden)

    Ugo Bardi

    2010-04-01

    Full Text Available The concept of recovering minerals from seawater has been proposed as a way of counteracting the gradual depletion of conventional mineral ores. Seawater contains large amounts of dissolved ions and the four most concentrated metal ones (Na, Mg, Ca, K are being commercially extracted today. However, all the other metal ions exist at much lower concentrations. This paper reports an estimate of the feasibility of the extraction of these metal ions on the basis of the energy needed. In most cases, the result is that extraction in amounts comparable to the present production from land mines would be impossible because of the very large amount of energy needed. This conclusion holds also for uranium as fuel for the present generation of nuclear fission plants. Nevertheless, in a few cases, mainly lithium, extraction from seawater could provide amounts of metals sufficient for closing the cycle of metal use in the economy, provided that an increased level of recycling can be attained.

  7. Wave energy extraction using decommisioned ships

    DEFF Research Database (Denmark)

    Mansour, A.E.; Pedersen, Preben Terndrup; Paik, J.K.

    2013-01-01

    is to tune the ship to have rigid body resonance, or close to it, and resist that motion to absorb power. A hydraulic ramp connected to an accumulator feeding a hydraulic motor that generates power is one possibility. Several other energy extraction mechanisms such as turbines connected to oscillating water...

  8. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  9. Phoenix II energy extraction and angular multiplexing experiments

    International Nuclear Information System (INIS)

    Hoffman, J.M.; Hays, G.N.

    1981-08-01

    The energy extraction efficiency as a function of input intensity has been determined from a large-volume HF amplifier. For an input intensity of 4 x 10 6 W/cm 2 , 1080 Joules was extracted from the amplifier. This corresponded to an energy extraction efficiency of 0.90. At the highest H 2 /F 2 /O 2 pressures used, 1700 Joules was obtained from this system when used in an oscillator configuration. These results also show evidence that energy extraction at low input intensities in large-volume HF amplifiers is strongly influenced by parasitic oscillations. The results also indicate that, for a long-pulse HF amplifier (60-nsec electron beam), the timing between the amplifier and oscillator to achieve optimum operating conditions is not very critical. This same amplifier, used in conjunction with a short-pulse, good-beam-quality oscillator-preamplifier chain, has also been used to evaluate pulse compression using angular multiplexing. Using two sequential 24-nsec pulses, the essential elements of angular multiplexing have been evaluated as a function of interpulse separation time. Included are energy extraction efficiency, overall temporal pulse distortion, leading-edge contrast-ratio distortion, and suppression of amplified spontaneous emission relative to a single, long-duration input pulse. For appropriate interpulse delay time, we show that distortionless amplification is possible with energy-extraction efficiency the same as is obtained using a single input beam having a pulse width equal to the duration of the amplifier gain

  10. Wind energy systems

    Science.gov (United States)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  11. Advanced integrated solvent extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A. [Argonne National Lab., IL (United States)

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  12. Enhancing radiative energy transfer through thermal extraction

    Science.gov (United States)

    Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu

    2016-06-01

    Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal

  13. Design of extraction system in BRing at HIAF

    Science.gov (United States)

    Ruan, Shuang; Yang, Jiancheng; Zhang, Jinquan; Shen, Guodong; Ren, Hang; Liu, Jie; Shangguan, Jingbing; Zhang, Xiaoying; Zhang, Jingjing; Mao, Lijun; Sheng, Lina; Yin, Dayu; Wang, Geng; Wu, Bo; Yao, Liping; Tang, Meitang; Cai, Fucheng; Chen, Xiaoqiang

    2018-06-01

    The Booster Ring (BRing), which is the key part of HIAF (High Intensity heavy ion Accelerator Facility) complex at IMP (Institute of Modern Physics, Chinese Academy of Sciences), can provide uranium (A / q = 7) beam with a wide extraction energy range of 200-800 MeV/u. To fulfill a flexible beam extraction for multi-purpose experiments, both fast and slow extraction systems will be accommodated in the BRing. The fast extraction system is used for extracting short bunched beam horizontally in single-turn. The slow extraction system is used to provide quasi-continuous beam by the third order resonance and RF-knockout scheme. To achieve a compact structure, the two extraction systems are designed to share the same extraction channel. The general design of the fast and slow extraction systems and simulation results are discussed in this paper.

  14. Maximal energy extraction under discrete diffusive exchange

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M. J., E-mail: hay@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Schiff, J. [Department of Mathematics, Bar-Ilan University, Ramat Gan 52900 (Israel); Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2015-10-15

    Waves propagating through a bounded plasma can rearrange the densities of states in the six-dimensional velocity-configuration phase space. Depending on the rearrangement, the wave energy can either increase or decrease, with the difference taken up by the total plasma energy. In the case where the rearrangement is diffusive, only certain plasma states can be reached. It turns out that the set of reachable states through such diffusive rearrangements has been described in very different contexts. Building upon those descriptions, and making use of the fact that the plasma energy is a linear functional of the state densities, the maximal extractable energy under diffusive rearrangement can then be addressed through linear programming.

  15. Enhancing radiative energy transfer through thermal extraction

    Directory of Open Access Journals (Sweden)

    Tan Yixuan

    2016-06-01

    Full Text Available Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a. In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics.

  16. Thermodynamics of energy extraction from fractured hot dry rock

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J S; Bejan, A [Duke Univ., Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science; Kim, J H [Electric Power Research Inst., Palo Alto, CA (United States)

    1992-03-01

    It has been proposed to extract energy from the subterranean hot dry rock bed (HDR) by creating one or more narrow fractures in the rock and circulating cold water through the fractures. In time, the temperature of the rock region surrounding the crack drops under the influence of time-dependent conduction. This study presents the most basic thermodynamic aspects (first law and second law) of the HDR energy extraction process. It shows which parameters most influence the amount of useful energy (exergy) extracted from the HDR reservoir over a fixed time interval. For example, the water flow rate can be selected optimally in order to maximize the delivery of exergy over the lifetime of the HDR system. (author).

  17. PSR extraction kicker system improvements

    International Nuclear Information System (INIS)

    Hardek, T.W.

    1991-01-01

    A program to improve the reliability of hardware required to operate the Los Alamos Proton Storage Ring has been under way for the past three years. The extraction kicker system for the PSR was identified as one candidate for improvement. Pulse modulators produce 50kV pulses 360 nsec in length at up to 24-Hz pulse repetition rate and drive two 4-meter-long stripline electrodes. Sources of difficulty with this system included short width switch tube lifetime, drive cable electrical breakdown, high-voltage connector failure, and occasional electrode breakdown. This paper discusses modifications completed on this system to correct these difficulties. 2 refs., 3 figs

  18. Energy Information Systems

    Science.gov (United States)

    Home > Building Energy Information Systems and Performance Monitoring (EIS-PM) Building Energy evaluate and improve performance monitoring tools for energy savings in commercial buildings. Within the and visualization capabilities to energy and facility managers. As an increasing number of

  19. Maximum wind energy extraction strategies using power electronic converters

    Science.gov (United States)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through

  20. Energy quality and energy surplus in the extraction of fossil fuels in the US

    International Nuclear Information System (INIS)

    Cleveland, C.J.

    1992-01-01

    The goal of net energy analysis is to assess the amount of useful energy delivered by an energy system, net of the energy costs of delivery. The standard technique of aggregating energy inputs and outputs by their thermal equivalents diminish the ability of energy analysis to achieve the goal because different types of energy have different abilities to do work per heat equivalent. This paper describes physical and economic methods of calculating energy quality, and incorporate economic estimates of quality in the analysis of the energy return on investment (EROI) for the extraction of coal and petroleum resources in the US from 1954 to 1987. EROI is the ratio of energy delivered to energy used in the delivery process. The quality- adjusted EROI is used to answer the following questions: (1) are coal and petroleum resources becoming more scarce in the US? (2) is society's capability of doing useful economic work changing? and (3) is society's allocation of energy between the extraction of coal and petroleum optimal? The results indicate that petroleum and coal become more scarce in the 1970s, although the degree of scarcity depends on the type of quality factor used. The quality-adjusted EROI shed light on the coal-petroleum paradox: when energy inputs and outputs are measured in thermal equivalents, coal extraction has a much larger EROI than petroleum. The adjustment for energy quality reduces substantially the difference between the two fuels. The results also suggest that when corrections are made for energy quality, society's allocation of energy between coal and petroleum extraction meets the efficiency criteria described by neoclassical and biophysical economists. 3 figs., 1 tab., 40 refs

  1. DESIGNING AN EVENT EXTRACTION SYSTEM

    Directory of Open Access Journals (Sweden)

    Botond BENEDEK

    2017-06-01

    Full Text Available In the Internet world, the amount of information available reaches very high quotas. In order to find specific information, some tools were created that automatically scroll through the existing web pages and update their databases with the latest information on the Internet. In order to systematize the search and achieve a result in a concrete form, another step is needed for processing the information returned by the search engine and generating the response in a more organized form. Centralizing events of a certain type is useful first of all for creating a news service. Through this system we are pursuing a knowledge - events from the Internet documents - extraction system. The system will recognize events of a certain type (weather, sports, politics, text data mining, etc. depending on how it will be trained (the concept it has in the dictionary. These events can be provided to the user, or it can also extract the context in which the event occurred, to indicate the initial form in which the event was embedded.

  2. Croatian Energy System Defossilization

    International Nuclear Information System (INIS)

    Potocnik, V.

    2013-01-01

    Defossilization of an energy system, as primary cause of the actual climate change, means exchange of predominantly imported fossil fuels with climate more convenient energy carriers, facilitating thus the way out of crisis.Overview of the world and Croatian energy system situation is presented as well as the overview of climate change. The most important Croatian energy system defossilization measures-energy efficiency increase, renewable energy inclusion and others - are described.(author)

  3. Energy systems security

    CERN Document Server

    Voeller, John G

    2014-01-01

    Energy Systems Security features articles from the Wiley Handbook of Science and Technology for Homeland Security covering topics related to electricity transmission grids and their protection, risk assessment of energy systems, analysis of interdependent energy networks. Methods to manage electricity transmission disturbances so as to avoid blackouts are discussed, and self-healing energy system and a nano-enabled power source are presented.

  4. Cyclotrons with fast variable and/or multiple energy extraction

    Directory of Open Access Journals (Sweden)

    C. Baumgarten

    2013-10-01

    Full Text Available We discuss the possibility in principle of stripping extraction in combination with reverse bends in isochronous separate-sector cyclotrons (and/or fixed field alternating gradient accelerators. If one uses reverse bends between the sectors (instead of or in combination with drifts and places stripper foils at the sector exit edges, the stripped beam has a reduced bending radius and it should be able to leave the cyclotron within the range of the valley—even if the beam is stripped at less than full energy. We are especially interested in stripping of H_{2}^{+}, as it doubles the charge to mass ratio of the ions. However the method could be applied to other ions or ionized molecules as well. For the production of proton beams by stripping extraction of an H_{2}^{+} beam, we discuss possible designs for three types of machines: First, a low-energy cyclotron for the simultaneous production of several beams at multiple energies—for instance 15, 30, and 70 MeV—thus allowing beam delivery on several isotope production targets. In this case it can be an advantage to have a strong energy dependence of the direction of the extracted beam. Second, we consider a fast variable-energy proton machine for cancer therapy that should allow extraction (of the complete beam at all energies in the range of about 70 MeV to about 250 MeV into the same beam line. Third, we consider a high-intensity high-energy machine, where the main design goals are extraction with low losses, low activation of components, and high reliability. Especially if such a machine is considered for an accelerator driven system (ADS, this extraction mechanism has advantages: Beam trips by the failure of electrostatic elements could be avoided and the turn separation would be less critical, which allows operation at lower main cavity voltages. This would in turn reduce the number of rf trips. The price that has to be paid for these advantages is an increase in size and/or field

  5. Kinetic energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Folini, P.

    1983-09-03

    A flywheel system for the purpose of energy storage in decentral solar- or wind energy plants is introduced. The system comprises a rotor made out of plastic fibre, a motor/generator serving as electro-mechanical energy converter and a frequency-voltage transformer serving as electric adapter. The storable energy quantity amounts to several kWh.

  6. Modeling and prediction of extraction profile for microwave-assisted extraction based on absorbed microwave energy.

    Science.gov (United States)

    Chan, Chung-Hung; Yusoff, Rozita; Ngoh, Gek-Cheng

    2013-09-01

    A modeling technique based on absorbed microwave energy was proposed to model microwave-assisted extraction (MAE) of antioxidant compounds from cocoa (Theobroma cacao L.) leaves. By adapting suitable extraction model at the basis of microwave energy absorbed during extraction, the model can be developed to predict extraction profile of MAE at various microwave irradiation power (100-600 W) and solvent loading (100-300 ml). Verification with experimental data confirmed that the prediction was accurate in capturing the extraction profile of MAE (R-square value greater than 0.87). Besides, the predicted yields from the model showed good agreement with the experimental results with less than 10% deviation observed. Furthermore, suitable extraction times to ensure high extraction yield at various MAE conditions can be estimated based on absorbed microwave energy. The estimation is feasible as more than 85% of active compounds can be extracted when compared with the conventional extraction technique. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Energy Extraction in the CERN Large Hadron Collider a Project Overview

    CERN Document Server

    Dahlerup-Petersen, K; Kazmine, B; Medvedko, A S; Sytchev, V V; Vasilev, L B

    2001-01-01

    In case of a resistive transition (quench), fast and reliable extraction of the magnetic energy, stored in the superconducting coils of the electromagnets of a particle collider, represents an important part of its magnet protection system. In general, the quench detectors, the quench heaters and the cold by-pass diodes across each magnet, together with the energy extraction facilities provide the required protection of the quenching superconductors against damage due to local energy dissipation. In CERN's LHC machine the energy stored in each of its eight superconducting dipole chains exceeds 1300 MJ. Following an opening of the extraction switches this energy will be absorbed in large extraction resistors located in the underground collider tunnel or adjacent galleries, during the exponential current decay. Also the sixteen, 13 kA quadrupole chains (QF, QD) and more than one hundred and fifty, 600 A circuits of the corrector magnets will be equipped with extraction systems. The extraction switch-gear is bas...

  8. Batteries for efficient energy extraction from a water salinity difference.

    Science.gov (United States)

    La Mantia, Fabio; Pasta, Mauro; Deshazer, Heather D; Logan, Bruce E; Cui, Yi

    2011-04-13

    The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery", which can extract and store it as useful electrochemical energy. The battery, containing a Na(2-x)Mn(5)O(10) nanorod electrode, was shown to extract energy from real seawater and river water and can be applied to a variety of salt waters. We demonstrated energy extraction efficiencies of up to 74%. Considering the flow rate of river water into oceans as the limiting factor, the renewable energy production could potentially reach 2 TW, or ∼13% of the current world energy consumption. The mixing entropy battery is simple to fabricate and could contribute significantly to renewable energy in the future.

  9. Batteries for Efficient Energy Extraction from a Water Salinity Difference

    KAUST Repository

    La Mantia, Fabio

    2011-04-13

    The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery", which can extract and store it as useful electrochemical energy. The battery, containing a Na2-xMn 5O10 nanorod electrode, was shown to extract energy from real seawater and river water and can be applied to a variety of salt waters. We demonstrated energy extraction efficiencies of up to 74%. Considering the flow rate of river water into oceans as the limiting factor, the renewable energy production could potentially reach 2 TW, or ∼13% of the current world energy consumption. The mixing entropy battery is simple to fabricate and could contribute significantly to renewable energy in the future. © 2011 American Chemical Society.

  10. Batteries for Efficient Energy Extraction from a Water Salinity Difference

    KAUST Repository

    La Mantia, Fabio; Pasta, Mauro; Deshazer, Heather D.; Logan, Bruce E.; Cui, Yi

    2011-01-01

    The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery

  11. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  12. Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad; Connolly, David

    2014-01-01

    on the electricity sector, smart energy systems include the entire energy system in its approach to identifying suitable energy infrastructure designs and operation strategies. The typical smart grid sole focus on the electricity sector often leads to the conclusion that transmission lines, flexible electricity......This paper presents the learning of a series of studies that analyse the problems and perspectives of converting the present energy system into a 100 % renewable energy system using a smart energy systems approach. As opposed to, for instance, the smart grid concept, which takes a sole focus...... are to be found when the electricity sector is combined with the heating and cooling sectors and/or the transportation sector. Moreover, the combination of electricity and gas infrastructures may play an important role in the design of future renewable energy systems. The paper illustrates why electricity smart...

  13. Flexible energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper discusses and analyses diffent national strategies and points out key changes in the energy system in order to achieve a system which can benefit from a high percentage of wind and CHP without having surplus production problems, introduced here as a flexible energy system....

  14. LCA of Energy Systems

    DEFF Research Database (Denmark)

    Laurent, Alexis; Espinosa Martinez, Nieves; Hauschild, Michael Zwicky

    2018-01-01

    Energy systems are essential in the support of modern societies’ activities, and can span a wide spectrum of electricity and heat generation systems and cooling systems. Along with their central role and large diversity, these systems have been demonstrated to cause serious impacts on human health...... , ecosystems and natural resources. Over the past two decades, energy systems have thus been the focus of more than 1000 LCA studies, with the aim to identify and reduce these impacts. This chapter addresses LCA applications to energy systems for generation of electricity and heat . The chapter gives insight...

  15. Extraction study on uranyl nitrate for energy applications

    Science.gov (United States)

    Giri, R.; Nath, G.

    2017-07-01

    Due to the ever-growing demand of energy nuclear reactor materials and the nuclear energy are now considered to be the most critical materials and source of energy for future era. Deposition of nuclear wastes in different industry, nuclear power sector are very much toxic in open environment which are hazardous to living being. There are different methods for extraction and reprocessing of these materials which are cost effective and tedious process. Ultrasonic assisted solvent extraction process is a most efficient and economical way for extraction of such type materials. The presence of third phase in mixing of extractants-diluent pair with aqueous phase imposes the problems in extraction of nuclear reactor materials. The appropriate solvent mixture in proper concentration is an important step in the solvent extraction process. Study of thermo-physical properties helps in selecting an optimum blend for extraction process. In the present work, the extraction of uranium with the binary mixture of Methyl Ethyl Ketone (MEK) and Kerosene was investigated and discussed with the variation of ultrasonic frequency for different temperatures. The result shows that the low frequency and low temperature is suitable environment for extraction. The extraction of uranium by this method is found to be a better result for extraction study in laboratory scale as well as industrial sector.

  16. Renewable Energy Tracking Systems

    Science.gov (United States)

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  17. New secondary energy systems

    International Nuclear Information System (INIS)

    Schulten, R.

    1977-01-01

    As an introduction, the FRG's energy industry situation is described, secondary energy systems to be taken into consideration are classified, and appropriate market requirements are analyzed. Dealt with is district heating, i.e. the direct transport of heat by means of circulating media, and long-distance energy, i.e. the long-distance energy transport by means of chemical conversion in closed- or open-cycle systems. In closed-cycle systems heat is transported in the form of chemical latent energy. In contrast to this, chemical energy is transported in open-cycle systems in the form of fuel gases produced by coal gasification or by thermochemical water splitting. (GG) [de

  18. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  19. Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling

    International Nuclear Information System (INIS)

    Strušnik, Dušan; Marčič, Milan; Golob, Marjan; Hribernik, Aleš; Živić, Marija; Avsec, Jurij

    2016-01-01

    Highlights: • Steam ejector pump and electric liquid ring vacuum pump are analysed and modelled. • A supervised machine learning models by using real process data are applied. • The equation of ejector pumped mass flow from steam turbine condenser was solved. • The loss of specific energy capable of work in a SEPS or LRVP component was analysed. • The economic efficiency analysis per different coal heating values was made. - Abstract: This paper compares the vapour ejector and electric vacuum pump power consumptions with machine learning algorithms by using real process data and presents some novelty guideline for the selection of an appropriate condenser vacuum pump system of a steam turbine power plant. The machine learning algorithms are made by using the supervised machine learning methods such as artificial neural network model and local linear neuro-fuzzy models. The proposed non-linear models are designed by using a wide range of real process operation data sets from the CHP system in the thermal power plant. The novelty guideline for the selection of an appropriate condenser vacuum pumps system is expressed in the comparative analysis of the energy consumption and use of specific energy capable of work. Furthermore, the novelty is expressed in the economic efficiency analysis of the investment taking into consideration the operating costs of the vacuum pump systems and may serve as basic guidelines for the selection of an appropriate condenser vacuum pump system of a steam turbine.

  20. Wave energy extraction by coupled resonant absorbers.

    Science.gov (United States)

    Evans, D V; Porter, R

    2012-01-28

    In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.

  1. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simões, Marcelo Godoy; Farret, Felix Alberto; Blaabjerg, Frede

    2017-01-01

    considered when selecting a generator for a wind power plant, including capacity of the AC system, types of loads, availability of spare parts, voltage regulation, technical personal and cost. If several loads are likely inductive, such asphase-controlled converters, motors and fluorescent lights......This chapter intends to serve as a brief guide when someone is considering the use of wind energy for small power applications. It is discussed that small wind energy systems act as the major energy source for residential or commercial applications, or how to make it part of a microgrid...... as a distributed generator. In this way, sources and loads are connected in such a way to behave as a renewable dispatch center. With this regard, non-critical loads might be curtailed or shed during times of energy shortfall or periods of high costs of energy production. If such a wind energy system is connected...

  2. Smart energy management system

    Science.gov (United States)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  3. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  4. Javanese Character Feature Extraction Based on Shape Energy

    Directory of Open Access Journals (Sweden)

    Galih Hendra Wibowo

    2017-07-01

    Full Text Available Javanese character is one of Indonesia's noble culture, especially in Java. However, the number of Javanese people who are able to read the letter has decreased so that there need to be conservation efforts in the form of a system that is able to recognize the characters. One solution to these problem lies in Optical Character Recognition (OCR studies, where one of its heaviest points lies in feature extraction which is to distinguish each character. Shape Energy is one of feature extraction method with the basic idea of how the character can be distinguished simply through its skeleton. Based on the basic idea, then the development of feature extraction is done based on its components to produce an angular histogram with various variations of multiples angle. Furthermore, the performance test of this method and its basic method is performed in Javanese character dataset, which has been obtained from various images, is 240 data with 19 labels by using K-Nearest Neighbors as its classification method. Performance values were obtained based on the accuracy which is generated through the Cross-Validation process of 80.83% in the angular histogram with an angle of 20 degrees, 23% better than Shape Energy. In addition, other test results show that this method is able to recognize rotated character with the lowest performance value of 86% at 180-degree rotation and the highest performance value of 96.97% at 90-degree rotation. It can be concluded that this method is able to improve the performance of Shape Energy in the form of recognition of Javanese characters as well as robust to the rotation.

  5. Analysis of synchronized charge extraction for piezoelectric energy harvesting

    International Nuclear Information System (INIS)

    Tang, Lihua; Yang, Yaowen

    2011-01-01

    In the past few years, various power conditioning circuits have been proposed to improve the efficiency of piezoelectric energy harvesting, among which the synchronized charge extraction (SCE) technique has been enthusiastically pursued. In the literature, the SCE technique is investigated based on the uncoupled or in-phase assumptions. The uncoupled assumption is only valid for weak electromechanical coupling and the in-phase assumption is not applicable for energy harvesting at off-resonance. In this paper, we derive an accurate analytical solution for the piezoelectric energy harvesting systems with the SCE technique. Based on this solution, we investigate the applicability of the SCE technique for different cases, i.e. the piezoelectric energy harvester (PEH) with various degrees of electromechanical coupling and the PEH excited at various frequencies. Circuit simulation is also conducted with an accurate circuit model derived for PEHs and the results validate the analytical outcomes. Both the accurate analytical solution and the circuit simulation show that the SCE technique cannot improve or even reduces the power output at resonance if the coupling of the PEH is not negligible. The SCE technique is found capable of significantly boosting the efficiency of energy harvesting only for the PEH vibrating at off-resonance frequencies or with weak coupling

  6. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  7. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  8. LHC beam dumping system Extraction channel layout and acceptance

    CERN Document Server

    Goddard, B; Uythoven, J; Veness, R; Weterings, W

    2003-01-01

    The LHC beam dumping system must safely abort the LHC beams under all conditions, including those resulting from abnormal behaviour of machine elements or subsystems of the beam dumping system itself. The extraction channels must provide sufficient aperture both for the circulating and extracted beams, over the whole energy range and under various beam parameters. These requirements impose tight constraints on the tolerances of various extraction channel components, and also on the allowed range of beam positions in the region of these components. Operation of the beam dumping system under various fault states has been considered, and the resulting apertures calculated. After describing briefly the beam dumping system and the extraction channel geometry, the various assumptions made in the analysis are presented, before deriving tolerance limits for the relevant equipment and beam parameters.

  9. Energy efficient trace removal by extractive distillation

    NARCIS (Netherlands)

    Jongmans, M.T.G.

    2012-01-01

    Separation processes contribute for about 40–70 % to the total energy requirements of the chemical process industry. Especially when trace removal is required to manufacture high purity products, traditional separation technologies become extremely expensive and are not providing satisfying

  10. Energy extraction from atmospheric turbulence to improve flight vehicle performance

    Science.gov (United States)

    Patel, Chinmay Karsandas

    Small 'bird-sized' Unmanned Aerial Vehicles (UAVs) have now become practical due to technological advances in embedded electronics, miniature sensors and actuators, and propulsion systems. Birds are known to take advantage of wind currents to conserve energy and fly long distances without flapping their wings. This dissertation explores the possibility of improving the performance of small UAVs by extracting the energy available in atmospheric turbulence. An aircraft can gain energy from vertical gusts by increasing its lift in regions of updraft and reducing its lift in downdrafts - a concept that has been known for decades. Starting with a simple model of a glider flying through a sinusoidal gust, a parametric optimization approach is used to compute the minimum gust amplitude and optimal control input required for the glider to sustain flight without losing energy. For small UAVs using optimal control inputs, sinusoidal gusts with amplitude of 10--15% of the cruise speed are sufficient to keep the aircraft aloft. The method is then modified and extended to include random gusts that are representative of natural turbulence. A procedure to design optimal control laws for energy extraction from realistic gust profiles is developed using a Genetic Algorithm (GA). A feedback control law is designed to perform well over a variety of random gusts, and not be tailored for one particular gust. A small UAV flying in vertical turbulence is shown to obtain average energy savings of 35--40% with the use of a simple control law. The design procedure is also extended to determine optimal control laws for sinusoidal as well as turbulent lateral gusts. The theoretical work is complemented by experimental validation using a small autonomous UAV. The development of a lightweight autopilot and UAV platform is presented. Flight test results show that active control of the lift of an autonomous glider resulted in approximately 46% average energy savings compared to glides with fixed

  11. Energy Usage Analysis System

    Data.gov (United States)

    General Services Administration — The EUAS application is a web based system which serves Energy Center of Expertise, under the Office of Facilitates Management and Service Programs. EUAS is used for...

  12. Flow energy conversion system

    International Nuclear Information System (INIS)

    Sargsyan, R.A.

    2011-01-01

    A cost-effective hydropower system called here Flow Energy Converter was developed, patented, manufactured and tested for water pumping, electricity generation and other purposes especially useful for the rural communities. The system consists of water-driven turbine with plane-surface blades, power transmission means and pump and/or generator. Working sample of the Flow Energy Converter was designed and manufactured at the Institute of Radio Physics and Electronics

  13. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  14. Living Systems Energy Module

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-26

    The Living Systems Energy Module, renamed Voyage from the Sun, is a twenty-lesson curriculum designed to introduce students to the major ways in which energy is important in living systems. Voyage from the Sun tells the story of energy, describing its solar origins, how it is incorporated into living terrestrial systems through photosynthesis, how it flows from plants to herbivorous animals, and from herbivores to carnivores. A significant part of the unit is devoted to examining how humans use energy, and how human impact on natural habitats affects ecosystems. As students proceed through the unit, they read chapters of Voyage from the Sun, a comic book that describes the flow of energy in story form (Appendix A). During the course of the unit, an ``Energy Pyramid`` is erected in the classroom. This three-dimensional structure serves as a classroom exhibit, reminding students daily of the importance of energy and of the fragile nature of our living planet. Interactive activities teach students about adaptations that allow plants and animals to acquire, to use and to conserve energy. A complete list of curricular materials and copies of all activity sheets appear in Appendix B.

  15. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simoes, Marcelo; Farret, Felix Alberto; Blaabjerg, Frede

    2015-01-01

    devices, and a centralized distribution control. In order to establish a small wind energy system it is important to observe the following: (i) Attending the energy requirements of the actual or future consumers; (ii) Establishing civil liabilities in case of accidents and financial losses due to shortage...... or low quality of energy; (iii) Negotiating collective conditions to interconnect the microgrid with the public network or with other sources of energy that is independent of wind resources; (iv) Establishing a performance criteria of power quality and reliability to end-users, in order to reduce costs...... and guaranteeing an acceptable energy supply. This paper discuss how performance is affected by local conditions and random nature of the wind, power demand profiles, turbine related factors, and presents the technical issues for implementing a self-excited induction generator system, or a permanent magnet based...

  16. Alternative Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    West, M.; Duckers, L.; Lockett, P.; Loughridge, B.; Peatfield, T.; White, P.

    1984-01-01

    The Coventry (Lanchester) Polytechnic Wave Energy Group has been involved in the United Kingdom wave energy research programme since its inception in 1975. Whilst the work of the group is mainly concerned with wave energy, and currently is directed towards the design of a wave energy device tailored to the needs of isolated/island communities, it has some involvement with other aspects of the alternatives. This conference, dealing with alternative energy systems and their electrical integration and utilisation was engendered by the general interest which the Polytechnic group members have in the alternatives and their use. The scope for electrical integration and utilisation is very broad. Energy for family groups may be provided in a relatively unsophisticated way which is acceptable to them. Small population centres, for example island communities relying upon diesel equipment, can reap the benefits of the alternatives through their ability to accept novel integration schemes and a flexible approach to the use of the energy available. Consumers already enjoying the benefits of a 'firm' electricity grid supply can use energy from a variety of alternative systems, via the grid, without having to modify their energy consumption habits. In addition to the domestic and industrial applications and coastal possibilities, specialist applications in isolated environments have also emerged. The Proceedings detail practical, technical and economic aspects of the alternatives and their electrical integration and utilisation.

  17. Optical Energy Transfer and Conversion System

    Science.gov (United States)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2018-01-01

    An optical energy transfer and conversion system comprising a fiber spooler and an electrical power extraction subsystem connected to the spooler with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy. The fiber spooler may reside on the remote mobility platform which may be a vehicle, or apparatus that is either self-propelled or is carried by a secondary mobility platform either on land, under the sea, in the air or in space.

  18. Autonomous renewable energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Valtchev, V. [Technical University of Varna (Bulgaria). Dept. of Electronics; Bossche, A. van den; Ghijselen, J.; Melkebeek, J. [University of Gent (Belgium). Dept. of Electrical Power Engineering

    2000-02-01

    This paper briefly reviews the need for renewable power generation and describes a medium-power Autonomous Renewable Energy Conversion System (ARECS), integrating conversion of wind and solar energy sources. The objectives of the paper are to extract maximum power from the proposed wind energy conversion scheme and to transfer this power and the power derived by the photovoltaic system in a high efficiency way to a local isolated load. The wind energy conversion operates at variable shaft speed yielding an improved annual energy production over constant speed systems. An induction generator (IG) has been used because of its reduced cost, robustness, absence of separate DC source for excitation, easier dismounting and maintenance. The maximum energy transfer of the wind energy is assured by a simple and reliable control strategy adjusting the stator frequency of the IG so that the power drawn is equal to the peak power production of the wind turbine at any wind speed. The presented control strategy also provides an optimal efficiency operation of the IG by applying a quadratic dependence between the IG terminal voltage and frequency V {approx} f{sup 2}. For improving the total system efficiency, high efficiency converters have been designed and implemented. The modular principle of the proposed DC/DC conversion provides the possibility for modifying the system structure depending on different conditions. The configuration of the presented ARECS and the implementation of the proposed control algorithm for optimal power transfer are fully discussed. The stability and dynamic performance as well as the different operation modes of the proposed control and the operation of the converters are illustrated and verified on an experimental prototype. (author)

  19. Energy saving synergies in national energy systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2015-01-01

    In the transition towards a 100% renewable energy system, energy savings are essential. The possibility of energy savings through conservation or efficiency increases can be identified in, for instance, the heating and electricity sectors, in industry, and in transport. Several studies point...... to various optimal levels of savings in the different sectors of the energy system. However, these studies do not investigate the idea of energy savings being system dependent. This paper argues that such system dependency is critical to understand, as it does not make sense to analyse an energy saving...... without taking into account the actual benefit of the saving in relation to the energy system. The study therefore identifies a need to understand how saving methods may interact with each other and the system in which they are conducted. By using energy system analysis to do hourly simulation...

  20. Slow extraction control system of HIRFL-CSR

    International Nuclear Information System (INIS)

    Liu Wufeng; Qiao Weimin; Yuan Youjin; Mao Ruishi; Zhao Tiecheng

    2013-01-01

    For heavy-ion radiotherapy, HIRFL-CSR (Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring) needs a long term uniform ion beam extraction from HIRFL-CSR main ring to high energy beam transport line to meet the requirement of heavy-ion radiotherapy's ion beam. Slow extraction control system uses the synchronous signal of HIRFL-CSR control system's timing system to realize process control. When the synchronous event data of HIRFL-CSR control system's timing system trigger controlling and changing data (frequency value, tune value, voltage value), the waveform generator will generate waveform by frequency value, tune value and voltage value, and will amplify the generated waveform by power amplifier to electrostatic deflector to achieve RF-KO slow extraction. The synchronous event receiver of slow extraction system is designed by using FPGA and optical fiber interface to keep high transmission speed and anti-jamming. HIRFL-CSR's running for heavy-ion radiotherapy and ten thousand seconds long period slow extraction experiments show that slow extraction control system is workable and can meet the requirement of heavy-ion radiotherapy's ion beam. (authors)

  1. Electrical energy systems

    CERN Document Server

    El-Hawary, Mohamed E

    2007-01-01

    Features discussions ranging from the technical aspects of generation, transmission, distribution, and utilization to power system components, theory, protection, and the energy control center that offer an introduction to effects of deregulating electric power systems, blackouts and their causes, and minimizing their effects.

  2. The Smart Energy System

    DEFF Research Database (Denmark)

    Jurowetzki, Roman; Dyrelund, Anders; Hummelmose, Lars

    Copenhagen Cleantech Cluster has launched a new report, which provides an overview of Danish competencies relating to smart energy systems. The report, which is based on a questionnaire answered by almost 200 companies working with smart energy as well as a number of expert interviews, focuses on...... production, large scale solar heat, fuel cells, heat storage, waste incineration, among others, the report draws a picture of Denmark as a research and development hub for smart energy system solutions.......Copenhagen Cleantech Cluster has launched a new report, which provides an overview of Danish competencies relating to smart energy systems. The report, which is based on a questionnaire answered by almost 200 companies working with smart energy as well as a number of expert interviews, focuses...... on the synergies which are obtained through integration of the district heating and district cooling, gas, and electricity grid into a single smart energy system. Besides documenting the technology and innovation strengths that Danish companies possess particularly relating to wind, district heating, CHP...

  3. The method for simultaneous extraction and back extraction in liquid three-phase system and equipment for simultaneous extraction and back extraction in liquid three-phase system

    International Nuclear Information System (INIS)

    Palyska, W.; Chmielewski, A.G.

    1992-01-01

    The method for simultaneous extraction and back extraction in liquid three-phase system has been worked out. The equipment designed for that process has been also subject of the patent. The interesting component is extracted first to intermediate phase consists of magnetic solvent keeping two extracting phases separately. The intermediate magnetic liquid has been kept in its position using a stable magnet maintained on the surface of the extraction vessel. Then the component pass from intermediate phase to the third phase as a result of back extraction. Mixing in the extraction and back extraction zones is organized by means of rotating shaft going along the whole apparatus. The extraction and back extraction processes occur simultaneously as a result of continuous flow of solvent in their zones. The single extraction back extraction facilities can be joined in larger batteries. 3 figs

  4. On the hydrophilicity of electrodes for capacitive energy extraction

    International Nuclear Information System (INIS)

    Lian, Cheng; East China University of Science and Technology, Shanghai; Kong, Xian; Tsinghua University, Beijing; Liu, Honglai; Wu, Jianzhong

    2016-01-01

    The so-called Capmix technique for energy extraction is based on the cyclic expansion of electrical double layers to harvest dissipative energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the electrical potentials for the charging and discharging processes, which must be matched with the pore characteristics of the electrode materials. While a number of recent studies have examined the effects of the electrode pore size and geometry on the capacitive energy extraction processes, there is little knowledge on how the surface properties of the electrodes affect the thermodynamic efficiency. In this paper, we investigate the Capmix processes using the classical density functional theory for a realistic model of electrolyte solutions. The theoretical predictions allow us to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different surface hydrophobicity. Finally, in agreement with recent experiments, we find that the thermodynamic efficiency can be much improved by using most hydrophilic electrodes.

  5. Understanding renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Quaschning, Volker

    2005-01-15

    Beginning with an overview of renewable energy sources including biomass, hydroelectricity, geothermal, tidal, wind and solar power, this book explores the fundamentals of different renewable energy systems. The main focus is on technologies with high development potential such as solar thermal systems, photovoltaics and wind power. This text not only describes technological aspects, but also deals consciously with problems of the energy industry. In this way, the topics are treated in a holistic manner, bringing together maths, engineering, climate studies and economics, and enabling readers to gain a broad understanding of renewable energy technologies and their potential. The book also contains a free CD-ROM resource, which includes a variety of specialist simulation software and detailed figures from the book. (Author)

  6. Evolving energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.

    1991-04-01

    This thesis presents scenarios of future energy systems, a cost-benefit analysis of measures to avoid greenhouse-gas emissions, an analysis of the effect of energy prices on end-use efficiencies and fuel choices, and an evaluation of financial-incentive programs designed to induce investments in efficient energy use. Twelve integrated energy supply/demand scenarios for the Swedish heat-and-power sector are presented to illustrate the potential for improvements in end-use efficiency and increased utilization of renewable energy sources. The results show that greenhouse-gas emissions could be reduced by 35 per cent from 1987 levels by 2010, with a net economic benefit compared to a business-as-usual scenario. A generalized methodology for calculating the net costs of reducing greenhouse-gas emissions is applied to a variety of fuel choices and energy end-use technologies. A key finding is that a combination of increased end-use efficiencies and use of renewable energy systems is required to achieve maximum cost-effective emissions reductions. End-use efficiencies and inter-fuel competition in Denmark and Sweden are compared during a time period in which real electricity prices were declining in Sweden and increasing in Denmark. Despite these different price environments, efficiencies and choices of heating fuels did not generally develop as expected according to economic theory. The influences of counter-price and non-price factors are important in understanding this outcome. Relying on prices alone injects considerable uncertainty into the energy planning process, and precludes efficiency improvements and fuel choices attainable with other mechanisms. Incentive programs can be used to promote energy-efficient technologies. Utilities in Europe have recently offered financial incentives intended to stimulate the adoption of compact-fluorescent lamps. These programs have been cost-effective in comparison to new electric supply. (au).

  7. Assessment of proposed electromagnetic quantum vacuum energy extraction methods

    OpenAIRE

    Moddel, Garret

    2009-01-01

    In research articles and patents several methods have been proposed for the extraction of zero-point energy from the vacuum. None has been reliably demonstrated, but the proposals remain largely unchallenged. In this paper the feasibility of these methods is assessed in terms of underlying thermodynamics principles of equilibrium, detailed balance, and conservation laws. The methods are separated into three classes: nonlinear processing of the zero-point field, mechanical extraction using Cas...

  8. Energy systems transformation.

    Science.gov (United States)

    Dangerman, A T C Jérôme; Schellnhuber, Hans Joachim

    2013-02-12

    The contemporary industrial metabolism is not sustainable. Critical problems arise at both the input and the output side of the complex: Although affordable fossil fuels and mineral resources are declining, the waste products of the current production and consumption schemes (especially CO(2) emissions, particulate air pollution, and radioactive residua) cause increasing environmental and social costs. Most challenges are associated with the incumbent energy economy that is unlikely to subsist. However, the crucial question is whether a swift transition to its sustainable alternative, based on renewable sources, can be achieved. The answer requires a deep analysis of the structural conditions responsible for the rigidity of the fossil-nuclear energy system. We argue that the resilience of the fossil-nuclear energy system results mainly from a dynamic lock-in pattern known in operations research as the "Success to the Successful" mode. The present way of generating, distributing, and consuming energy--the largest business on Earth--expands through a combination of factors such as the longevity of pertinent infrastructure, the information technology revolution, the growth of the global population, and even the recent financial crises: Renewable-energy industries evidently suffer more than the conventional-energy industries under recession conditions. Our study tries to elucidate the archetypical traits of the lock-in pattern and to assess the respective importance of the factors involved. In particular, we identify modern corporate law as a crucial system element that thus far has been largely ignored. Our analysis indicates that the rigidity of the existing energy economy would be reduced considerably by the assignment of unlimited liabilities to the shareholders.

  9. Wind Energy Systems.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  10. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  11. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Integration Laboratory Energy Systems Integration Laboratory Research in the Energy Systems Integration Laboratory is advancing engineering knowledge and market deployment of hydrogen technologies. Applications include microgrids, energy storage for renewables integration, and home- and station

  12. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  13. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    Science.gov (United States)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  14. From Extraction to Renewal: A Global Campaign for Healthy Energy.

    Science.gov (United States)

    Wang, Jennifer S; Euripidou, Rico; Armstrong, Fiona; Jensen, Génon K; Karliner, Josh; Guinto, Renzo R; Zhao, Ang; Narayanan, Divya; Orris, Peter

    2016-02-01

    A global movement is emerging in the health sector to engage in discourse and advocacy on the health impacts and health costs of energy choices--specifically the health harms of extractive, climate-disrupting energy sources such as coal and gas. Individuals and organizations in the health sector have begun to address climate and energy issues at multiple levels of engagement, including with others in the health sector, with pollution-affected communities, with policy makers, and with the media. We present recent examples of health sector advocacy and leadership on the health impacts of energy choices and opportunities for broadening and deepening the movement. © The Author(s) 2016.

  15. Energy Storage System

    Science.gov (United States)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  16. Energy Storage and Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2016-01-01

    It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper......, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution...... to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should...

  17. Energy Storage and Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2016-12-01

    Full Text Available It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should be disregarded but that it will be needed for other purposes in the future.

  18. Wind energy systems

    International Nuclear Information System (INIS)

    Richardson, R.D.; McNerney, G.M.

    1993-01-01

    Wind energy has matured to a level of development where it is ready to become a generally accepted utility generation technology. A brief discussion of this development is presented, and the operating and design principles are discussed. Alternative designs for wind turbines and the tradeoffs that must be considered are briefly compared. Development of a wind energy system and the impacts on the utility network including frequency stability, voltage stability, and power quality are discussed. The assessment of wind power station economics and the key economic factors that determine the economic viability of a wind power plant are presented

  19. Smart Extraction and Analysis System for Clinical Research.

    Science.gov (United States)

    Afzal, Muhammad; Hussain, Maqbool; Khan, Wajahat Ali; Ali, Taqdir; Jamshed, Arif; Lee, Sungyoung

    2017-05-01

    With the increasing use of electronic health records (EHRs), there is a growing need to expand the utilization of EHR data to support clinical research. The key challenge in achieving this goal is the unavailability of smart systems and methods to overcome the issue of data preparation, structuring, and sharing for smooth clinical research. We developed a robust analysis system called the smart extraction and analysis system (SEAS) that consists of two subsystems: (1) the information extraction system (IES), for extracting information from clinical documents, and (2) the survival analysis system (SAS), for a descriptive and predictive analysis to compile the survival statistics and predict the future chance of survivability. The IES subsystem is based on a novel permutation-based pattern recognition method that extracts information from unstructured clinical documents. Similarly, the SAS subsystem is based on a classification and regression tree (CART)-based prediction model for survival analysis. SEAS is evaluated and validated on a real-world case study of head and neck cancer. The overall information extraction accuracy of the system for semistructured text is recorded at 99%, while that for unstructured text is 97%. Furthermore, the automated, unstructured information extraction has reduced the average time spent on manual data entry by 75%, without compromising the accuracy of the system. Moreover, around 88% of patients are found in a terminal or dead state for the highest clinical stage of disease (level IV). Similarly, there is an ∼36% probability of a patient being alive if at least one of the lifestyle risk factors was positive. We presented our work on the development of SEAS to replace costly and time-consuming manual methods with smart automatic extraction of information and survival prediction methods. SEAS has reduced the time and energy of human resources spent unnecessarily on manual tasks.

  20. Energy Efficient Mobile Operating Systems

    OpenAIRE

    Muhammad Waseem

    2013-01-01

    Energy is an important resource in mobile computers now days. It is important to manage energy in efficient manner so that energy consumption will be reduced. Developers of operating system decided to increase the battery life time of mobile phones at operating system level. So, design of energy efficient mobile operating system is the best way to reduce the energy consumption in mobile devices. In this paper, currently used energy efficient mobile operating system is discussed and compared. ...

  1. Wellons Canada energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Wellons Canada is a British Columbia-based company that specializes in the manufacture and installation of lumber drying and energy conversion equipment. This brochure provided details of the Wellons energy system designed for oriented strand board (OSB) plants. The brochure outlined the system's scope of supply, and provided illustrations of system procedures from the initial wet fuel bin through to the electric precipitator used for air clean-up. During the process, fuel was conveyed from the bin to metering bins into combustors and through a cyclo-blast cell. Forced draft fan systems were then used to provide primary and secondary combustion air. Radiant heaters were then used. A drop-out chamber was supplied to allow for complete combustion of fuel particles and to provide a drop-out of ash. A fan was then used to deliver diluent air to maintain the set point temperature in the hot gas stream. Refractory lined hot gas ducts were used to deliver heat to the dryers. Hot gas was then drawn through a multi-cyclone collector for ash removal. Electrostatic precipitators were used to clean up emissions on a continuous operating basis. An automatic system was used to collect ash from the combustion system grates and other areas. Details of installation services provided by the company were also included. 42 figs.

  2. Capacitive technology for energy extraction from chemical potential differences

    NARCIS (Netherlands)

    Bastos Sales, B.

    2013-01-01

    This thesis introduces the principle of Capacitive energy extraction based on Donnan Potential (CDP) to exploit salinity gradients. It also shows the fundamental characterization and improvements of CDP. An alternative application of this technology aimed at thermal gradients was tested.

  3. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  4. 21st Century's energy: Hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. Nejat; Sahin, Suemer

    2008-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century

  5. 21st century's energy: hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. N.

    2007-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the Hydrogen Energy System. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st Century

  6. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  7. Integrating renewables into energy systems

    International Nuclear Information System (INIS)

    1999-03-01

    An analysis of renewable energy schemes was undertaken via case studies in China, India, Indonesia, Kenya, South Africa, Thailand and Zimbabwe, that provided an insight into the application of best practice for overcoming market, technical and financial barriers to the establishment of the sustainable markets required for the large-scale deployment of renewable energy technologies. The project showed clearly the need to select and target interventions according to the context. Lessons were extracted against a number of themes, as well as against the various technologies analysed and simple guides to the principles of best practice were derived under the following headings:- experience of gaining access to (micro) finance; the technical and non-technical issues raised when small, typically independent, generators seek access to central electricity grid systems; how to best undertake awareness raising and dissemination activities; promoting, building and operating biogas systems; promoting, building and operating solar (photovoltaic) home systems; promoting, building and operating grid connected wind power; promoting, building and operating solar hot water systems; promoting agricultural cogeneration using crop residues. (author)

  8. Extraction systems for the study of dubnium

    International Nuclear Information System (INIS)

    Gates, J.M.; Sudowe, R.; Ali, M.N.; Calvert, M.G.; Dragojevic, I.; Ellison, P.A.; Garcia, M.A.; Gharibyan, N.; Gregorich, K.E.; Nelson, S.L.; Neumann, S.H.; Parsons-Moss, T.; Stavsetra, L.; Nitsche, H.

    2007-01-01

    The chemistry of transactinide elements (Z (ge) 104) is a topic of great interest in current nuclear chemistry research. The chemical systems that can be used in these studies are limited by the short half-lives of the isotopes and the small production rates of atoms per minute or even atoms per week. In the initial investigations, the chemistry used had to be very selective to the periodic group of interest to separate the transactinide atom from all the other unwanted nuclear reaction products, e.g., transfer products. By using the Berkeley Gas-filled Separator (BGS) as a physical pre-separator, we are able concentrate on systems that are selective between the members of the group of interest, because all other interfering products and the beam are being suppressed by the BGS [1]. We are developing suitable extraction systems for the study of element 105, dubnium. For this purpose we have studied the extraction of niobium and tantalum, the lighter homologs of dubnium, from mineral acids with different organophosphorus compounds. All studies were performed online, using short-lived niobium and tantalum produced in the 124 Sn( 51 V,5n) 170 Ta and 74 Se( 18 O,p3n) 88 Nb reactions. This allowed for the study of the lighter homologues at metal concentrations of 10 -16 M. At these low metal concentrations, the formation of polymeric species is largely prohibited. As seen in Fig. 1, by varying the extractant and the hydrochloric acid concentration from 1 to 11 M, we are able to see a difference in extraction behavior between niobium and tantalum. While the system is suitable for determining chemical differences between the lighter homologues, the extraction of tantalum from hydrochloric acid shows slow kinetics. Figure 2 shows that after 90 seconds of mixing, the system is not in equilibrium. However, experiments indicate that equilibrium is reached faster at higher acid concentrations. We have studied the influence of hydrogen ion concentration on the extraction

  9. Multiple Energy System Analysis of Smart Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    2015-01-01

    thermal grids and smart gas grids, Smart Energy Systems moves the flexibility away from the fuel as is the case in current energy systems and into the system itself. However, most studies applying a Smart Energy System approach deals with analyses for either single countries or whole continents......To eliminate the use of fossil fuels in the energy sector it is necessary to transition to future 100% renewable energy systems. One approach for this radical change in our energy systems is Smart Energy Systems. With a focus on development and interaction between smart electricity grids, smart......, but it is unclear how regions, municipalities, and communities should deal with these national targets. It is necessary to be able to provide this information since Smart Energy Systems utilize energy resources and initiatives that have strong relations to local authorities and communities, such as onshore wind...

  10. Energy systems in transition

    International Nuclear Information System (INIS)

    Haefele, W.

    1989-01-01

    The principal point of the author was to discuss energy systems (ES) in transition, transition addresses the next 10-25 years, and strategy of the transition. He considers different scenarios of future development of ES. Further he presents considerations elaborated during the last years on the concept of novel horizontally integrated ES which gives promise to be at least an approximation to the desired object of no emissions. The main ideas of the concept are: to decompose and thereby clean all the primary inputs before they are brought to combustion; to develop a network combining all the primary inputs to an integrated supply structure of high absorption, buffer, and storage capacity that resembles in some way the supply and utility functions of the well established electric grid but completes it at best on the basis of mass flows; to achieve a high flexibility in supplying the final energy. The author considers the long run perspective of hydrogen, solar, and nuclear energy with respect to alternative energy sources. 6 refs, 24 figs

  11. Cooking exhaust systems for low energy dwellings

    NARCIS (Netherlands)

    Jacobs, P.; Borsboom, W.A.

    2017-01-01

    Especially in airtight low energy dwellings exhaust systems are of utmost importance as cooking can be a major source of PM2.5 exposure. Dwellings should be designed including facilities enabling extraction of at least 83 dm3/s (300 m3/h) directly to outside. Residents should be able to select an

  12. Energy System Analysis of 100 Per cent Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2007-01-01

    This paper presents the methodology and results of the overall energy system analysis of a 100 per cent renewable energy system. The input for the systems is the result of a project of the Danish Association of Engineers, in which 1600 participants during more than 40 seminars discussed...... and designed a model for the future energy system of Denmark, putting emphasis on energy efficiency, CO2 reduction, and industrial development. The energy system analysis methodology includes hour by hour computer simulations leading to the design of flexible energy systems with the ability to balance...... the electricity supply and demand and to exchange electricity productions on the international electricity markets. The results are detailed system designs and energy balances for two energy target years: year 2050 with 100 per cent renewable energy from biomass and combinations of wind, wave and solar power...

  13. Energy Storage Systems

    Science.gov (United States)

    Elliott, David

    2017-07-01

    As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.

  14. WIND ENERGY CONVERSION SYSTEMS - A TECHNICAL REVIEW

    Directory of Open Access Journals (Sweden)

    N. RAMESH BABU

    2013-08-01

    Full Text Available Wind power production has been under the main focus for the past decade in power production and tremendous amount of research work is going on renewable energy, specifically on wind power extraction. Wind power provides an eco-friendly power generation and helps to meet the national energy demand when there is a diminishing trend in terms of non-renewable resources. This paper reviews the modeling of Wind Energy Conversion Systems (WECS, control strategies of controllers and various Maximum Power Point Tracking (MPPT technologies that are being proposed for efficient production of wind energy from the available resource.

  15. Smart energy and smart energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2017-01-01

    In recent years, the terms “Smart Energy” and “Smart Energy Systems” have been used to express an approach that reaches broader than the term “Smart grid”. Where Smart Grids focus primarily on the electricity sector, Smart Energy Systems take an integrated holistic focus on the inclusion of more...... sectors (electricity, heating, cooling, industry, buildings and transportation) and allows for the identification of more achievable and affordable solutions to the transformation into future renewable and sustainable energy solutions. This paper first makes a review of the scientific literature within...... the field. Thereafter it discusses the term Smart Energy Systems with regard to the issues of definition, identification of solu- tions, modelling, and integration of storage. The conclusion is that the Smart Energy System concept represents a scientific shift in paradigms away from single-sector thinking...

  16. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly date on the latest energy systems integration (ESI) developments at NREL and worldwide. Have an item

  17. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  18. Extraction design and low energy beam transport optimization of space charge dominated multispecies ion beam sources

    International Nuclear Information System (INIS)

    Delferriere, O.; De Menezes, D.

    2004-01-01

    In all accelerator projects, the low energy part of the accelerator has to be carefully optimized to match the beam characteristic requirements of the higher energy parts. Since 1994 with the beginning of the Injector of Protons for High Intensity (IPHI) project and Source of Light Ions with High Intensities (SILHI) electron cyclotron resonance (ECR) ion source development at CEA/Saclay, we are using a set of two-dimensional (2D) codes for extraction system optimization (AXCEL, OPERA-2D) and beam transport (MULTIPART). The 95 keV SILHI extraction system optimization has largely increased the extracted current, and improved the beam line transmission. From these good results, a 130 mA D + extraction system for the International Fusion Material Irradiation Facility project has been designed in the same way as SILHI one. We are also now involved in the SPIRAL 2 project for the building of a 40 keV D + ECR ion source, continuously tunable from 0.1 to 5 mA, for which a special four-electrode extraction system has been studied. In this article we will describe the 2D design process and present the different extraction geometries and beam characteristics. Simulation results of SILHI H + beam emittance will be compared with experimental measurements

  19. HYDROKINETIC ENERGY CONVERSION SYSTEMS: PROSPECTS ...

    African Journals Online (AJOL)

    eobe

    Hydrokinetic energy conversion systems utilize the kinetic energy of flowing water bodies with little or no head to generate ... generator. ... Its principle of operation is analogous to that of wind ..... Crisis-solar and wind power systems, 2009,.

  20. Integrated energy systems and local energy markets

    DEFF Research Database (Denmark)

    Lund, Henrik; Münster, Ebbe

    2006-01-01

    Significant benefits are connected with an increase in the flexibility of the Danish energy system. On the one hand, it is possible to benefit from trading electricity with neighbouring countries, and on the other, Denmark will be able to make better use of wind power and other types of renewable...... energy in the future. This paper presents the analysis of different ways of increasing flexibility in the Danish energy system by the use of local regulation mechanisms. This strategy is compared with the opposite extreme, i.e. trying to solve all balancing problems via electricity trade...

  1. Wind Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2017-01-01

    transmission networks at the scale of hundreds of megawatts. As its level of grid penetration has begun to increase dramatically, wind power is starting to have a significant impact on the operation of the modern grid system. Advanced power electronics technologies are being introduced to improve......Wind power now represents a major and growing source of renewable energy. Large wind turbines (with capacities of up to 6-8 MW) are widely installed in power distribution networks. Increasing numbers of onshore and offshore wind farms, acting as power plants, are connected directly to power...... the characteristics of the wind turbines, and make them more suitable for integration into the power grid. Meanwhile, there are some emerging challenges that still need to be addressed. This paper provides an overview and discusses some trends in the power electronics technologies used for wind power generation...

  2. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    organization and independent system operator settle energy transactions in its real-time markets at the same time interval it dispatches energy, and settle operating reserves transactions in its real-time markets the electric grid. These control systems will enable real-time coordination between distributed energy

  3. Results from Commissioning of the Energy Extraction Facilities of the LHC Machine

    CERN Document Server

    Coelingh, G J; Mess, K H

    2008-01-01

    The risk of damage to the superconducting magnets, bus bars and current leads of the LHC machine in case of a resistive transition (quench) is being minimized by adequate protection. The protection is based on early quench detection, bypassing the quenching magnets by cold diodes, energy density dilution in the quenching magnets using heaters and, eventually, energy extraction. For two hundred and twenty-six LHC circuits (600 A and 13 kA) extraction of the stored magnetic energy to external dump resistors was required. All these systems are now installed in the machine and the final hardware commissioning has been undertaken. After a short description of the topology and definitive features, layouts and parameters of these systems the paper will focus on the results from their successful commissioning and an analysis of the system performance.

  4. Electron beam extraction system with a ring radiation field

    International Nuclear Information System (INIS)

    Auslender, V.L.; Kuksanov, N.K.; Polyakov, V.A.; Salimov, R.A.; Chertok, I.L.

    1979-01-01

    Description and results of testings of two electron beam extraction systems for shaping of a circular irradiation field are given. One of the systems contains three 20 cm long outlet windows arranged at 120 deg angle with respect to each other. Tests at the ILU-6 accelerator have shown that the given system provides 150 mm zone irradiation from three sides. Beam utilization factor when irradiating three 40 mm dia tubes amounted to 35% which provides capacity of 2.5 txMrad/h at 20 kW beam power. The other extraction system includes two C-form magnets producing nonuniform and opposing magnetic fields. This system tests at the EhLV-2 accelerator have shown that at 0.8-1.5 MeV electron energy it is possible to irradiate of 60 and 100 mm dia objects, accordingly. The system may be used together with both constant-action and pulse-action accelerators having extraction with linear scanning [ru

  5. Renewable energy covernance systems

    International Nuclear Information System (INIS)

    Hvelplund, F.

    2001-01-01

    The 'political quota-/certificate price market' system introduces an inefficient competition between energy robots, and weakens the increasingly important competition between equipment producers. It hampers the competition between investors by making it difficult for neighbours and local investors to invest in wind turbines. Due to its mono price character, it gives too high profits to wind turbine owners at very good wind sites, and not high enough to wind turbine owners at poor wind sites. The 'political quota-/certificate price market' system is very far from being a market model, as the RE amount is politically decided and the certificate market price is also political influenced. The conclusion, therefore, is that it is time to find a RE governance model that considers the specific needs and characteristics of RE technologies. The present analysis strongly indicates that a 'political price-/amount market' model in this connection is far better than the 'political quota-/certificate price market' model. Furthermore, a common EU model, based on the principle of site efficiency, would be much more flexible, cheaper and easier to pursue than the 'political quota-/certificate price market', or mono price model, which is designed for uranium and fossil fuel technologies, and represents a governance model designed for the technologies of yesterday. (EHS)

  6. Ground source energy in crystalline bedrock - increased energy extraction by using hydraulic fracturing in boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Ramstad, Randi Kalstad

    2004-11-01

    The use of improved equipment and methodology can result in considerable reductions in the drilling costs for medium- to large sized ground source heat pump system in crystalline bedrock. The main point has been to use special techniques within hydraulic fracturing to create a larger heat exchange area in the bedrock, and thus a greater energy extraction per borehole. The energy extraction is based on circulating groundwater. Stimulation with hydraulic fracturing is a well known technique in order to improve borehole yields for drinking water-, oil-, and geothermal purposes. A procedure for injection of propping agents in selected borehole sections, and custom-made equipment for hydraulic fracturing in crystalline bedrock, a double packer, have been developed in this study. The propping agents are likely to ensure a permanent improvement of the hydraulic conductivity in a long-run perspective. In addition to a pre-test, a comprehensive test programme has been performed at each of the two pilot plants at Bryn and at the former property of Energiselskapet Asker og Baerum (EAB) in Baerum municipality outside Oslo, Norway. A total of 125 stimulations with hydraulic fracturing using water-only and hydraulic fracturing with injection of sand have been performed in 9 boreholes. Test pumping and geophysical logging (temperature, electrical conductivity, gamma radiation, optical televiewer and flow measurements) have been carried out in order to document the effect of the hydraulic fracturing. The pilot plants at Bryn and EAB, where the ground source heat pump systems are based on circulating groundwater, have demonstrated the short-period energy extraction, limitations and opportunities of the concept for hydraulic fracturing and increased energy extraction in different geological and hydrogeological areas. The bedrock at Bryn and EAB is characterized as a low-metamorphic sandstone and a nodular limestone, respectively. At Bryn, the five boreholes were organised with a

  7. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    grids. In terms of paper sessions, NREL ESI researcher Santosh Veda chaired a session on energy Kroposki chaired a session on advanced renewable energy power systems. While Veda, Muljadi, and Kroposki

  8. Extracting the information backbone in online system.

    Science.gov (United States)

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency.

  9. Transient Behaviour of Interacting Extractive System

    International Nuclear Information System (INIS)

    El-Bialy, S.H.; Elsherbiny, A.E.

    2000-01-01

    The aim of this study is to investigate the dynamic behaviour of mixer-settler extractive system, which represents an interacting one. When a stimulus single is introduced to aqueous feed; the response of the aqueous phase of the first stage is considered as stimulus signals to both organic phase in the same stage and the aqueous phase of the second one. The response of the last phase represents-in turn- stimulus signals to both organic phase in the same stage and the aqueous phase in the next one. Mathematical model was derived for a system consisting of two stages in the cascade. The model assumed a continuous stirred tank reactor (CSTR) for mixer zone and variable holdups and flow rates of both aqueous and organic phases during operation. Non-linear equilibrium was considered. The obtained model-being non-linear- was linearized and Laplace transformation method was used to solve the model. The system constants are those corresponding to extraction of uranyl nitrate from 3 N nitric acid solution using Tbp dissolved in kerosene at 30% of the former. Stimulus-response test was carried out on the model by considering a step increase in solute concentration in aqueous feed stream. The system behaviour was tested at different values of operating parameters. First order behaviour for the first stage was observed and higher order for the rest of the system. A general relation for the difference in the power of the denominator and numerator of the transfer function of the i th stage was concluded for aqueous phase. The study showed that the system overdamp over the practical range of chosen parameters as explained from the values of transfer function roots

  10. National Energy Outlook Modelling System

    Energy Technology Data Exchange (ETDEWEB)

    Volkers, C.M. [ECN Policy Studies, Petten (Netherlands)

    2013-12-15

    For over 20 years, the Energy research Centre of the Netherlands (ECN) has been developing the National Energy Outlook Modelling System (NEOMS) for Energy projections and policy evaluations. NEOMS enables 12 energy models of ECN to exchange data and produce consistent and detailed results.

  11. Smart Energy Systems and Energy Transition

    International Nuclear Information System (INIS)

    Duic, N.

    2016-01-01

    Transition to decarbonized energy systems is becoming more attractive with fall of investment costs of renewables and volatile prices and political insecurity of fossil fuels. Improving energy efficiency, especially of buildings and transport, is important, but due to long life of buildings, it will be a slow way of decarbonization. The renewable energy resources are bountiful, especially wind and solar, while integrating them into current energy systems is proving to be a challenge. Solar has reached grid parity making it cheapest electricity source for retail customers in most of the World, creating new prosumer markets. It has started to reach cost parity in sunny countries, and soon solar energy will be cheapest everywhere. The limit of cheap and easy integration for wind is around 20% of yearly electricity generation, while a combined wind and solar may reach 30%. Going any further asks for implementation of completely free energy markets (involving day ahead, intraday and various reserve and ancillary services markets), demand response, coupling of wholesale and retail energy prices, and it involves integration between electricity, heat, water and transport systems. The cheapest and simplest way of increasing further the penetration of renewables is integrating power and heating/cooling systems through the use of district heating and cooling (which may be centrally controlled and may have significant heat storage capacity), since power to heat technologies are excellent for demand response. District cooling is of particular importance to historic cities that want to remove split systems from their facades. In countries with low heat demand water supply system may be used to increase the penetration of renewables, by using water at higher potential energy as storage media, or in dry climates desalination and stored water may be used for those purposes, and reversible hydro may be used as balancing technology. Electrification of personal car transport allows

  12. Power Take-Off with Integrated Resonator for Energy Extraction from Linear Motions

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a magnetic gear for converting linear motion into rotational motion and vice versa. The present invention converts slow linear irregular oscillating motion of wave energy devices into torque on a high speed shaft for powering a generator while making the wave energy device...... of sea or ocean waves into useful energy, such as electricity. The invention relates to the control and operation of a magnetic gear based motor/generator system. The invention provides a high force density electric powered linear actuator....... resonate with the waves. The invention relates to the field of energy-harvesting from energy sources, where the energy-harvesting requires the extraction of energy from slow and often irregular reciprocating motion of bodies. The present invention relates to a wave power apparatus for converting power...

  13. Extraction of quantifiable information from complex systems

    CERN Document Server

    Dahmen, Wolfgang; Griebel, Michael; Hackbusch, Wolfgang; Ritter, Klaus; Schneider, Reinhold; Schwab, Christoph; Yserentant, Harry

    2014-01-01

    In April 2007, the  Deutsche Forschungsgemeinschaft (DFG) approved the  Priority Program 1324 “Mathematical Methods for Extracting Quantifiable Information from Complex Systems.” This volume presents a comprehensive overview of the most important results obtained over the course of the program.   Mathematical models of complex systems provide the foundation for further technological developments in science, engineering and computational finance.  Motivated by the trend toward steadily increasing computer power, ever more realistic models have been developed in recent years. These models have also become increasingly complex, and their numerical treatment poses serious challenges.   Recent developments in mathematics suggest that, in the long run, much more powerful numerical solution strategies could be derived if the interconnections between the different fields of research were systematically exploited at a conceptual level. Accordingly, a deeper understanding of the mathematical foundations as w...

  14. Polish energy-system modernisation

    International Nuclear Information System (INIS)

    Drozdz, M.

    2003-01-01

    The Polish energy-system needs intensive investments in new technologies, which are energy efficient, clean and cost effective. Since the early 1990s, the Polish economy has had practically full access to modern technological devices, equipment and technologies. Introducing new technologies is a difficult task for project teams, constructors and investors. The author presents a set of principles for project teams useful in planning and energy modernisation. Several essential features are discussed: Energy-efficient appliances and systems; Choice of energy carriers, media and fuels; Optimal tariffs, maximum power and installed power; Intelligent, integrated, steering systems; Waste-energy recovery; Renewable-energy recovery. In practice there are several difficulties connected with planning and realising good technological and economic solutions. The author presents his own experiences of energy-system modernisation of industrial processes and building new objects. (Author)

  15. Constitutional compatibility of energy systems

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1983-01-01

    The paper starts from the results of the Enquiry Commission on 'Future Nuclear Energy Policy' of the 8th Federal German Parliament outlining technically feasible energy futures in four 'pathways'. For the purpose of the project, which was to establish the comparative advantages and disadvantages of different energy systems, these four scenarios were reduced to two alternatives: cases K (= nuclear energy) and S (= solar energy). The question to Ge put is: Which changes within our legal system will be ushered in by certain technological developments and how do these changes relate to the legal condition intended so far. Proceeding in this manner will not lead to the result of a nuclear energy system or a solar energy system being in conformity or in contradiction with the constitutional law, but will provide a catalogue of implications orientated to the aims of legal standards: a person deciding in favour of a nuclear energy system or a solar energy system supports this or that development of constitutional policy, and a person purishing this or that aim of legal policy should be consistent and decide in favour of this or that energy system. The investigation of constitutional compatibility leads to the question what effects different energy systems will have on the forms of political intercourse laid down in the constitutional law, which are orientated to models of a liberal constitutional tradition of citizens. (orig./HSCH) [de

  16. Smart Energy Systems

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2013-01-01

    • To reduce the costs of energy towards 2050 This transition faces many challenges from a variety of different perspectives, including: • Technology: The development of new technologies and infrastructures, which will enable us to utilise renewable energy resources. • Business: The design of new markets...

  17. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    , utilities can operate more efficiently and profitably. That can increase the use of renewable energy sources challenge to utility companies, grid operators, and other stakeholders involved in wind energy integration recording is available from the July 16 webinar "Smart Grid Research at NREL's Energy Systems

  18. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  19. Data extraction system for underwater particle holography

    Science.gov (United States)

    Nebrensky, J. J.; Craig, Gary; Hobson, Peter R.; Lampitt, R. S.; Nareid, Helge; Pescetto, A.; Trucco, Andrea; Watson, John

    2000-08-01

    Pulsed laser holography in an extremely powerful technique for the study of particle fields as it allows instantaneous, non-invasive high- resolution recording of substantial volumes. By relaying the real image one can obtain the size, shape, position and - if multiple exposures are made - velocity of every object in the recorded field. Manual analysis of large volumes containing thousands of particles is, however, an enormous and time-consuming task, with operator fatigue an unpredictable source of errors. Clearly the value of holographic measurements also depends crucially on the quality of the reconstructed image: not only will poor resolution degrade the size and shape measurements, but aberrations such as coma and astigmatism can change the perceived centroid of a particle, affecting position and velocity measurements. For large-scale applications of particle field holography, specifically the in situ recording of marine plankton with Holocam, we have developed an automated data extraction system that can be readily switched between the in-line and off-axis geometries and provides optimised reconstruction from holograms recorded underwater. As a videocamera is automatically stepped through the 200 by 200 by 1000mm sample volume, image processing and object tracking routines locate and extract particle images for further classification by a separate software module.

  20. Performance of deep geothermal energy systems

    Science.gov (United States)

    Manikonda, Nikhil

    Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation of electricity. The design involves the extraction of heat from the Earth and its conversion into electricity. This is performed by allowing fluid deep into the Earth where it gets heated due to the surrounding rock. The fluid gets vaporized and returns to the surface in a heat pipe. Finally, the energy of the fluid is converted into electricity using turbine or organic rankine cycle (ORC). The main feature of the system is the employment of side channels to increase the amount of thermal energy extracted. A finite difference computer model is developed to solve the heat transport equation. The numerical model was employed to evaluate the performance of the design. The major goal was to optimize the output power as a function of parameters such as thermal diffusivity of the rock, depth of the main well, number and length of lateral channels. The sustainable lifetime of the system for a target output power of 2 MW has been calculated for deep geothermal systems with drilling depths of 8000 and 10000 meters, and a financial analysis has been performed to evaluate the economic feasibility of the system for a practical range of geothermal parameters. Results show promising an outlook for deep geothermal systems for practical applications.

  1. Energy Systems Integration News - October 2016 | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL October 2016 Energy Systems Integration News A monthly recap of the latest energy systems integration (ESI) developments at NREL and around the world. Subscribe Archives October Integration Facility's main control room. OMNETRIC Group Demonstrates a Distributed Control Hierarchy for

  2. Stochastic Energy Deployment System

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-30

    SEDS is an economy-wide energy model of the U.S. The model captures dynamics between supply, demand, and pricing of the major energy types consumed and produced within the U.S. These dynamics are captured by including: the effects of macroeconomics; the resources and costs of primary energy types such as oil, natural gas, coal, and biomass; the conversion of primary fuels into energy products like petroleum products, electricity, biofuels, and hydrogen; and lastly the end- use consumption attributable to residential and commercial buildings, light and heavy transportation, and industry. Projections from SEDS extend to the year 2050 by one-year time steps and are generally projected at the national level. SEDS differs from other economy-wide energy models in that it explicitly accounts for uncertainty in technology, markets, and policy. SEDS has been specifically developed to avoid the computational burden, and sometimes fruitless labor, that comes from modeling significantly low-level details. Instead, SEDS focuses on the major drivers within the energy economy and evaluates the impact of uncertainty around those drivers.

  3. Work extraction and thermodynamics for individual quantum systems

    Science.gov (United States)

    Skrzypczyk, Paul; Short, Anthony J.; Popescu, Sandu

    2014-06-01

    Thermodynamics is traditionally concerned with systems comprised of a large number of particles. Here we present a framework for extending thermodynamics to individual quantum systems, including explicitly a thermal bath and work-storage device (essentially a ‘weight’ that can be raised or lowered). We prove that the second law of thermodynamics holds in our framework, and gives a simple protocol to extract the optimal amount of work from the system, equal to its change in free energy. Our results apply to any quantum system in an arbitrary initial state, in particular including non-equilibrium situations. The optimal protocol is essentially reversible, similar to classical Carnot cycles, and indeed, we show that it can be used to construct a quantum Carnot engine.

  4. Extracting the information backbone in online system.

    Directory of Open Access Journals (Sweden)

    Qian-Ming Zhang

    Full Text Available Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency.

  5. Extracting the Information Backbone in Online System

    Science.gov (United States)

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such “less can be more” feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency. PMID:23690946

  6. Energy policies and renewable energy systems monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Di Nisio, Attilio; Savino, Mario; Spadavecchia, Maurizio [Electrical and Electronic Measurements Laboratory, Dept. of Electrical and Electronic Engineering - Politecnico di Bari, Bari (Italy)], e-mails: dinisio@misure.poliba.it, savino@misure.poliba.it, spadavecchia@misure.poliba.it

    2011-07-01

    Full text: The global energy crisis is forcing every country worldwide to review its policies on energy. The environmental disaster at Japan's Fukushima Daiichi nuclear power plant has accelerated this process. Many people around the world are citing the disaster as evidence that nuclear power would endanger the survival of mankind on earth and should be banned. Today we need to focus more substantially on energy saving, especially using smart devices with low power consumption. We have also to review the approach to the exploitation of energy and move from a philosophy 'from the ground to the subsurface' to another 'from the earth to the sun'. This paper highlights the increasing importance of solar power in meeting energy needs while achieving security of supply and minimising carbon dioxide (CO{sub 2}) emissions. It deals also with the development of solar power plants, which require a supervisory control system that improves their efficiency and reliability. (author)

  7. Sustainable Energy Systems and Applications

    CERN Document Server

    Dinçer, İbrahim

    2012-01-01

    Sustainable Energy Systems and Applications presents analyses of sustainable energy systems and their applications, providing new understandings, methodologies, models and applications along with descriptions of several illustrative examples and case studies. This textbook aims to address key pillars in the field, such as: better efficiency, cost effectiveness, use of energy resources, environment, energy security, and sustainable development. It also includes some cutting-edge topics, such as hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools for design, analysis and performance improvement. The book also: Discusses producing energy by increasing systems efficiency in generation, conversion, transportation and consumption Analyzes the conversion of fossil fuels to clean fuels for limiting  pollution and creating a better environment Sustainable Energy Systems and Applications is a research-based textbook which can be used by senior u...

  8. Energy management systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lush, D. M.

    1979-07-01

    An investigation is made of the range of possibilities available from three types of systems (automatic control devices, building envelope, and the occupants) in buildings. The following subjects are discussed: general (buildings, design and personnel); new buildings (envelope, designers, energy and load calculations, plant design, general design parameters); existing buildings (conservation measures, general energy management, air conditioned buildings, industrial buildings); man and motivation (general, energy management and documentation, maintenance, motivation); automatic energy management systems (thermostatic controls, optimized plant start up, air conditioned and industrial buildings, building automatic systems). (MCW)

  9. Territorial approach to increased energy consumption of water extraction from depletion of a highlands Mexican aquifer.

    Science.gov (United States)

    Fonseca, Carlos Roberto; Esteller, María Vicenta; Díaz-Delgado, Carlos

    2013-10-15

    This work proposes a method to estimate increased energy consumption of pumping caused by a drawdown of groundwater level and the equivalent energy consumption of the motor-pump system in an aquifer under intensive exploitation. This method has been applied to the Valley of Toluca aquifer, located in the Mexican highlands, whose intensive exploitation is reflected in a decline in the groundwater level of between 0.10 and 1.6 m/year. Results provide a summary of energy consumption and a map of energy consumption isopleths showing the areas that are most susceptible to increases in energy consumption due to pumping. The proposed method can be used to estimate the effect of the intensive exploitation of the Valley of Toluca aquifer on the energy consumption of groundwater extraction. Finding reveals that, for the year 2006, groundwater extraction in the urban zone required 2.39 times more energy than the conditions observed 38 years earlier. In monetary terms, this reflects an increase of USD$ 3 million annually, according to 2005 energy production costs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications

  11. Temporally rendered automatic cloud extraction (TRACE) system

    Science.gov (United States)

    Bodrero, Dennis M.; Yale, James G.; Davis, Roger E.; Rollins, John M.

    1999-10-01

    Smoke/obscurant testing requires that 2D cloud extent be extracted from visible and thermal imagery. These data are used alone or in combination with 2D data from other aspects to make 3D calculations of cloud properties, including dimensions, volume, centroid, travel, and uniformity. Determining cloud extent from imagery has historically been a time-consuming manual process. To reduce time and cost associated with smoke/obscurant data processing, automated methods to extract cloud extent from imagery were investigated. The TRACE system described in this paper was developed and implemented at U.S. Army Dugway Proving Ground, UT by the Science and Technology Corporation--Acuity Imaging Incorporated team with Small Business Innovation Research funding. TRACE uses dynamic background subtraction and 3D fast Fourier transform as primary methods to discriminate the smoke/obscurant cloud from the background. TRACE has been designed to run on a PC-based platform using Windows. The PC-Windows environment was chosen for portability, to give TRACE the maximum flexibility in terms of its interaction with peripheral hardware devices such as video capture boards, removable media drives, network cards, and digital video interfaces. Video for Windows provides all of the necessary tools for the development of the video capture utility in TRACE and allows for interchangeability of video capture boards without any software changes. TRACE is designed to take advantage of future upgrades in all aspects of its component hardware. A comparison of cloud extent determined by TRACE with manual method is included in this paper.

  12. Decarbonization of Croatian Energy System

    International Nuclear Information System (INIS)

    Potocnik, V.

    2012-01-01

    Energy system decarbonization is reduction of greenhouse gases (CO 2 ) emission, chiefly from the fossil fuels (coal, oil, natural gas) combustion. The main objective of an energy system decarbonization is the climate change mitigation, and at the same time development of local industry and employment, better environment and health protection, as well as reduction of the fossil fuels import and foreign debt. Croatia has small fossil fuels reserves and large renewable energy sources (RES) reserves, energy efficiency (ENEF) is relatively low, and energy import, according to the actual Energy strategy 2009, should increase from 50% to 70% until 2020. Croatian energy system participates with about one third in the Croatian foreign trade deficit. The main measures of the Croatian energy system decarbonization should be: increasing ENEF (energy savings), switch from fossil fuels to RES, administrative measures (low carbon development strategy, environmental tax reform, and decoupling income from energy sales). By urgent application of these measures, Croatia could become fossil fuels free until the year 2050.(author)

  13. Smart energy control systems for sustainable buildings

    CERN Document Server

    Spataru, Catalina; Howlett, Robert; Jain, Lakhmi

    2017-01-01

    There is widespread interest in the way that smart energy control systems, such as assessment and monitoring techniques for low carbon, nearly-zero energy and net positive buildings can contribute to a Sustainable future, for current and future generations. There is a turning point on the horizon for the supply of energy from finite resources such as natural gas and oil become less reliable in economic terms and extraction become more challenging, and more unacceptable socially, such as adverse public reaction to ‘fracking’. Thus, in 2016 these challenges are having a major influence on the design, optimisation, performance measurements, operation and preservation of: buildings, neighbourhoods, cities, regions, countries and continents. The source and nature of energy, the security of supply and the equity of distribution, the environmental impact of its supply and utilization, are all crucial matters to be addressed by suppliers, consumers, governments, industry, academia, and financial institutions. Thi...

  14. Energy Extraction from a Hypothetical MHK Array in a Section of the Mississippi River

    Science.gov (United States)

    Barco, J.; James, S. C.; Roberts, J. D.; Jones, C. A.; Jepsen, R. A.

    2010-12-01

    The world is facing many challenges meeting the energy demands for the future. Growing populations and developing economies as well as increasing energy expenditures highlight the need for a spectrum of energy sources. Concerns about pollution and climate change have led to increased interest in all forms of renewable energy to stabilize or decrease consumption of fossil fuels. One promising renewable is marine and hydrokinetic (MHK) energy, which has the potential to make important contributions to energy portfolios of the future. However, a primary question remains: How much energy can be extracted from MHK devices in rivers and oceans without significant environmental effects? This study focuses on the potential energy extraction from different hypothetical MHK array configurations in a section of the Mississippi River located near to Scotlandville Bend, Louisiana. Bathymetry data, obtained from Free Flow Power Corporation (FFP) via the US Army Corps bathymetry survey library, were interpolated onto a DELFT3D curvilinear, orthogonal grid of the system using ArcGIS 9.3.1. Boundary conditions are constrained by the upstream and downstream river flow rates and gage heights obtained from USGS website. Acoustic Doppler Current Profiler (ADCP) measurements obtained from FFP are used for pre-array model validation. Energy extraction is simulated using momentum sinks recently coded into SNL-EFDC, which is an augmented version of US EPA’s Environmental Fluid Dynamics Code (EFDC). SNL-EFDC model includes a new module which considers energy removal by MHK devices and commensurate changes to the turbulent kinetic energy and turbulent kinetic energy dissipation rate. As expected, average velocities decrease downstream of each MHK device due to energy extraction and blunt-body form drag from the MHK support structures. Changes in the flow field can alter sediment transport dynamics around and downstream of an MHK array; various hypothetical scenarios are examined. This

  15. Integrated energy systems and local energy markets

    International Nuclear Information System (INIS)

    Lund, Henrik; Muenster, Ebbe

    2006-01-01

    Significant benefits are connected with an increase in the flexibility of the Danish energy system. On the one hand, it is possible to benefit from trading electricity with neighbouring countries, and on the other, Denmark will be able to make better use of wind power and other types of renewable energy in the future. This paper presents the analysis of different ways of increasing flexibility in the Danish energy system by the use of local regulation mechanisms. This strategy is compared with the opposite extreme, i.e. trying to solve all balancing problems via electricity trade on the international market. The conclusion is that it is feasible for the Danish society to include the CHP plants in the balancing of fluctuating wind power. There are major advantages in equipping small CHP plants as well as the large CHP plants with heat pumps. By doing so, it will be possible to increase the share of wind power from the present 20 to 40% without causing significant problems of imbalance between electricity consumption and production. Investment in increased flexibility is in itself profitable. Furthermore, the feasibility of wind power is improved

  16. Effect of power shape on energy extraction from microbial fuel cell

    Science.gov (United States)

    Alaraj, Muhannad; Feng, Shuo; Roane, Timberley M.; Park, Jae-Do

    2017-10-01

    Microbial fuel cells (MFCs) generate renewable energy in the form of direct current (DC) power. Harvesting energy from MFCs started with passive components such as resistors and capacitors, then charge pumps were introduced with some more advantages. Power electronics converters were later preferred due to their higher efficiency and controllability; however, they introduce high frequency current ripple due to their high frequency switching. In this paper, the effect of shape of power extraction on MFC performance was investigated using three types of current shapes: continuous, square-wave, and triangular-wave. Simultaneously, chemical parameters, such as pH, dissolved oxygen, electrical conductivity, and redox potential, in the anode chamber were monitored to see how these parameters change with the shape of the electrical power extraction. Results showed that the shape of the extracted current did not have a substantial effect on the MFC life span, output power, and energy extraction, nor on the chemical parameters. The outcome of this study provided insight for the electrical impact by power electronics converters on some microbial and chemical aspects of an MFC system.

  17. Separation of lanthanides using micro solvent extraction system

    International Nuclear Information System (INIS)

    Nishihama, S.; Tajiri, Y.; Yoshizuka, K.

    2006-01-01

    A micro solvent extraction system for the separation of lanthanides has been investigated. The micro flow channel is fabricated on a poly(methyl methacrylate) (PMMA) plate, and solvent extraction progresses by feeding aqueous and organic solutions into the channel simultaneously. The extraction equilibrium is quickly achieved, without any mechanical mixing, when a narrow channel (100 μm width and 100 μm depth) is used. The results of solvent extraction from the Pr/Nd and Pr/Sm binary solutions revealed that both lanthanides are firstly extracted together, and then, the lighter lanthanide extracted in the organic solution alternatively exchanges to the heavier one in the aqueous solution to achieve the extraction equilibrium. The phase separation of the aqueous and organic phases after extraction can also be successively achieved by contriving the cross section of the flow channel, and the extractive separation of Pr/Sm is demonstrated. (authors)

  18. Fossil energy savings potential of sugar cane bio-energy systems

    DEFF Research Database (Denmark)

    Nguyen, Thu Lan T; Hermansen, John Erik; Sagisaka, Masayuki

    2009-01-01

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity...... and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while...... proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts...

  19. Principles of sustainable energy systems

    CERN Document Server

    Kreith, Frank

    2013-01-01

    … ""This is an ideal book for seniors and graduate students interested in learning about the sustainable energy field and its penetration. The authors provide very strong discussion on cost-benefit analysis and ROI calculations for various alternate energy systems in current use. This is a descriptive book with detailed case-based analyses of various systems and engineering applications. The text book provides real-world case studies and related problems pertaining to sustainable energy systems.""--Dr. Kuruvilla John, University of North Texas""The new edition of ""Principles of Sustainable En

  20. Energy transfer in plasmonic systems

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy N; Urbas, Augustine M; Shahbazyan, Tigran V

    2014-01-01

    We present our results on energy transfer between donor and acceptor molecules or quantum dots near a plasmonic nanoparticle. In such systems, the Förster resonance energy transfer is strongly modified due to plasmon-mediated coupling between donors and acceptors. The transfer efficiency is determined by a competition between transfer, radiation and dissipation that depends sensitively on system parameters. When donor and accepror spectral bands overlap with dipole surface plasmon resonance, the dominant transfer mechanism is through plasmon-enhanced radiative coupling. When transfer takes place from an ensemble of donors to an acceptor, a cooperative amplification of energy transfer takes place in a wide range of system parameters. (paper)

  1. Extraction of low-energy negative oxygen ions for thin film formation

    International Nuclear Information System (INIS)

    Vasquez, M. Jr.; Sasaki, D.; Kasuya, T.; Wada, M.; Maeno, S.

    2011-01-01

    Coextraction of low-energy positive and negative ions were performed using a plasma sputter-type ion source system driven by a 13.56 MHz radio frequency (rf) power. Titanium (Ti) atoms were sputtered out from a target and the sputtered neutrals were postionized in oxygen/argon (O 2 /Ar) plasma prior to extraction. The negative O ions were surface-produced and self-extracted. Mass spectral analyses of the extracted ion beams revealed the dependence of the ion current on the incident rf power, induced target bias and O 2 /Ar partial pressure ratio. Ti + current was found to be dependent on Ar + current and reached a saturation value with increasing O 2 partial pressure while the O - current showed a peak current at around 1:9 O 2 /Ar partial pressure ratio. Ti + current was several orders of magnitude higher than that of the O - current.

  2. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  3. Startup Report for Ground Water Extraction, Treatment, and Recharge System

    National Research Council Canada - National Science Library

    Lamb, Steve

    1997-01-01

    The document presents startup procedures, observations and measurements conducted during the startup of the Groundwater Extraction, Treatment and Recharge System, built for the 162nd Fighter Wing, Air...

  4. Photovoltaic Energy Conversion Systems

    DEFF Research Database (Denmark)

    Kouro, Samir; Wu, Bin; Abu-Rub, Haitham

    2014-01-01

    This chapter presents a comprehensive overview of grid-connected PV systems, including power curves, grid-connected configurations, different converter topologies (both single- and three-phase), control schemes, MPPT, and anti-islanding detection methods. The focus of the chapter has been on the ...

  5. Probabilistic Approaches to Energy Systems

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning

    of renewable energy generation. Particularly we focus on producing forecasting models that can predict renewable energy generation, single user demand, and provide advanced forecast products that are needed for an efficient integration of renewable energy into the power generation mix. Such forecasts can...... integration of renewable energy.Thus forecast products should be developed in unison with the decision making tool as they are two sides of the same overall challenge.......Energy generation from wind and sun is increasing rapidly in many parts of the world. This presents new challenges on how to integrate this uncertain, intermittent and non-dispatchable energy source. This thesis deals with forecasting and decision making in energy systems with a large proportion...

  6. Secure Automated Microgrid Energy System

    Science.gov (United States)

    2016-12-01

    O&M Operations and Maintenance PSO Power System Optimization PV Photovoltaic RAID Redundant Array of Independent Disks RBAC Role...elements of the initial study and operational power system model (feeder size , protective devices, generation sources, controllable loads, transformers...EW-201340) Secure Automated Microgrid Energy System December 2016 This document has been cleared for public release; Distribution Statement A

  7. Development of blood extraction system for health monitoring system

    Science.gov (United States)

    Tsuchiya, Kazuyoshi; Nakanishi, Naoyuki; Nakamachi, Eiji

    2004-03-01

    The purpose of this research is to develop the compact human blood sampling device applied for a health monitoring system(HMS), which is called "Mobile Hospital". The HMS consists of (1) a micro electrical pumping system for blood extraction, (2) a bio-sensor to detect and evaluate an amount of Glucose, Cholesterol and Urea in extracted blood, by using enzyme such as Glucoseoxidase (GOD), Cholesteroloxidase and Urease. The mechanical design elements of the device are bio-compatible microneedle, indentation unit using a shape memory alloy(SMA) actuator and pumping unit using a piezoelectric microactuator. The design concept is the biomimetic micromachine of female mosquito"s blood sampling mechanism. The performances of the main mechanical elements such as indentation force of the microneedle, actual stroke of the indentation unit using a SMA actuator and liquid sampling ability of the pumping unit using PZT piezoelectric microactuator were measured. The 3 mm stroke of the indentation load generated by SMA actuator was 0.8mN. The amount of imitation blood extracted by using bimorph PZT actuators was about 0.5 microliters for 10 sec. A 60-micrometer outer diameter and 25-micrometer inner diameter Titanium microneedle, which size is same as female mosquito"s labium, was produced by sputter deposition.

  8. Electrical Energy Storage for Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Helms, C. R. [Univ. of Texas, Dallas, TX (United States); Cho, K. J. [Univ. of Texas, Dallas, TX (United States); Ferraris, John [Univ. of Texas, Dallas, TX (United States); Balkus, Ken [Univ. of Texas, Dallas, TX (United States); Chabal, Yves [Univ. of Texas, Dallas, TX (United States); Gnade, Bruce [Univ. of Texas, Dallas, TX (United States); Rotea, Mario [Univ. of Texas, Dallas, TX (United States); Vasselli, John [Univ. of Texas, Dallas, TX (United States)

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  9. Steady-state analysis of a conceptual offshore wind turbine driven electricity and thermocline energy extraction plant

    OpenAIRE

    Buhagiar, Daniel; Sant, Tonio

    2014-01-01

    A system for using offshore wind energy to generate electricity and simultaneously extract thermal energy is proposed. This concept is based on an offshore wind turbine driven hydraulic pump supplying deep seawater under high pressure to a land based plant consisting of a hydroelectric power generation unit and heat exchanger. A steady-state system model is developed using empirical formulae. The mathematical model comprises the fundamental system sub-models that are categoris...

  10. Computer modelling of a linear turbine for extracting energy from slow-flowing waters

    International Nuclear Information System (INIS)

    Raykov, Plamen

    2014-01-01

    The aim of the paper is to describe the main relationships in the process of designing linear chain turbines with blades and their accompanying devices for obtaining energy from slow flowing waters. Based on the shortcomings of previous types of linear turbines a new concept for arrangement of the blades angles with respect to the flowing water was developed. The dependencies of the geometrical parameters of designed new type linear water turbine and the force applied by the flowing water to the blades are obtained. The optimal relationship between velocity of stream water and extracted power is calculated. The ratio between power characteristics of the extracted energy for different speeds of blades and inclination angle are presented. On the basis of the theoretical results a new linear turbine prototype with inclined blades was designed. Key words: water power system, blade-chain devices, linear turbines

  11. The baltic states' energy system

    OpenAIRE

    Nikitaravičius, Martynas

    2006-01-01

    THE BALTIC STATES’ ENERGY SYSTEM SUMMARY The goal of paper – the comparative analysis of Baltic states‘ (i.e. of Lithuania, Latvia, Estonia) energy systems in 1990-2004. The main causes that affected the development of Baltic states’ energetics are indicated in this work. By the method of statistical analysis, the comparative advantages of Baltic states‘ energetics are detected. Moreover, the main trends of further development of integration of Baltic states ‘ energetics into the energetics o...

  12. TEXT Energy Storage System

    International Nuclear Information System (INIS)

    Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    The Texas Experimental Tokamak (TEXT) Enery Storage System, designed by the Center for Electromechanics (CEM), consists of four 50 MJ, 125 V homopolar generators and their auxiliaries and is designed to power the toroidal and poloidal field coils of TEXT on a two-minute duty cycle. The four 50 MJ generators connected in series were chosen because they represent the minimum cost configuration and also represent a minimal scale up from the successful 5.0 MJ homopolar generator designed, built, and operated by the CEM

  13. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    determine how well a solar photovoltaic (PV) system with battery energy storage can provide backup power to . These analyses will result in a design guide for climate-specific sizing of the system. NREL's Erfan , feasibility, and operational analyses for photovoltaic and concentrating solar power generation projects

  14. Energy Monitoring System Berbasis Web

    Directory of Open Access Journals (Sweden)

    Novan Zulkarnain

    2013-12-01

    Full Text Available Government through the Ministry of Energy and Mineral Resources (ESDM encourages the energy savings at whole buildings in Indonesia. Energy Monitoring System (EMS is a web-based solution to monitor energy usage in a building. The research methods used are the analysis, prototype design and testing. EMSconsists of hardware which consists of electrical sensors, temperature-humidity sensor, and a computer. Data on EMS are designed using Modbus protocol, stored in MySQL database application, and displayed on charts through Dashboard on LED TV using PHP programming.

  15. EXTRACT

    DEFF Research Database (Denmark)

    Pafilis, Evangelos; Buttigieg, Pier Luigi; Ferrell, Barbra

    2016-01-01

    The microbial and molecular ecology research communities have made substantial progress on developing standards for annotating samples with environment metadata. However, sample manual annotation is a highly labor intensive process and requires familiarity with the terminologies used. We have the...... and text-mining-assisted curation revealed that EXTRACT speeds up annotation by 15-25% and helps curators to detect terms that would otherwise have been missed.Database URL: https://extract.hcmr.gr/......., organism, tissue and disease terms. The evaluators in the BioCreative V Interactive Annotation Task found the system to be intuitive, useful, well documented and sufficiently accurate to be helpful in spotting relevant text passages and extracting organism and environment terms. Comparison of fully manual...

  16. GLODAPv2 data exploration and extraction system

    Science.gov (United States)

    Krassovski, Misha; Kozyr, Alex; Boden, Thomas

    2016-04-01

    The Global Ocean Data Analysis Project (GLODAP) is a cooperative effort of investigators funded for ocean synthesis and modeling projects by the U.S. National Oceanic and Atmospheric Administration (NOAA), Department of Energy (DOE), and National Science Foundation (NSF). Cruises conducted as part of the WOCE, JGOFS, and NOAA Ocean-Atmosphere Carbon Exchange Study (OACES) over the decade of the 1990s generated oceanographic data of unparalleled quality and quantity. GLODAPv2 is a uniformly calibrated open-ocean data product containing inorganic carbon and carbon-relevant variables. This new product includes data from approximately one million individual seawater samples collected from over 700 cruises during the period 1972-2013. Extensive quality control and subsequent calibration were carried out for salinity, oxygen, nutrient, carbon dioxide, total alkalinity, pH, and chlorofluorocarbon data. The Carbon Dioxide Information and Analysis Center (CDIAC), serving as the primary DOE disseminator for climate data and information, developed database and web accessible systems that permit users worldwide to query and retrieve data from the GLODAPv2 collection. This presentation will showcase this new system, discuss technologies used to build the GLODAPv2 resource, and describe integration with a metadata search engine provided by CDIAC as well.

  17. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  18. Efficiency Evaluation of Energy Systems

    CERN Document Server

    Kanoğlu, Mehmet; Dinçer, İbrahim

    2012-01-01

    Efficiency is one of the most frequently used terms in thermodynamics, and it indicates how well an energy conversion or process is accomplished. Efficiency is also one of the most frequently misused terms in thermodynamics and is often a source of misunderstanding. This is because efficiency is often used without being properly defined first. This book intends to provide a comprehensive evaluation of various efficiencies used for energy transfer and conversion systems including steady-flow energy devices (turbines, compressors, pumps, nozzles, heat exchangers, etc.), various power plants, cogeneration plants, and refrigeration systems. The book will cover first-law (energy based) and second-law (exergy based) efficiencies and provide a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book will be particularly useful for a clear ...

  19. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  20. Integrated roof wind energy system

    Directory of Open Access Journals (Sweden)

    Moonen S.P.G.

    2012-10-01

    Full Text Available Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  1. Separation of rare earth metal using micro solvent extraction system

    International Nuclear Information System (INIS)

    Nishihama, S.; Tajiri, Y.; Yoshizuka, K.

    2005-01-01

    A micro solvent extraction system for the separation of rare earth metals has been investigated. The micro flow channel was fabricated on a PMMA plate. Extraction equilibrium was quickly achieved, without any mechanical mixing. The solvent extraction results obtained for the Pr/Sm binary solutions revealed that both rare earth metals are firstly extracted together. Following, the Pr is extracted in the organic solution and Sm remains in the aqueous phase. The phase separation can be successively achieved by contriving the cross section of the flow channel

  2. Energy Systems Integration Partnerships: NREL + Cogent Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Sonja E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    NREL is collaborating with Cogent Energy Systems (Cogent) to introduce small-scale waste-to-energy technology in microgrids.The focus of the project is to test and demonstrate the feasibility, reliability, and usefulness of integrating electricity generated using a simulated syngas composition matching the syngas stream to be produced by a HelioStorm-based WTE gasifier to power a microgrid as a means of addressing and complementing the intermittency of other sources of electricity.

  3. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov (United States)

    System Solutions Energy-Water System Solutions NREL has been a pioneer in the development of energy -water system solutions that explicitly address and optimize energy-water tradeoffs. NREL has evaluated energy-water system solutions for Department of Defense bases, islands, communities recovering from

  4. Analysis of integrated energy systems

    International Nuclear Information System (INIS)

    Matsuhashi, Takaharu; Kaya, Yoichi; Komiyama, Hiroshi; Hayashi, Taketo; Yasukawa, Shigeru.

    1988-01-01

    World attention is now attracted to the concept of Novel Horizontally Integrated Energy System (NHIES). In NHIES, all fossil fuels are fist converted into CO and H 2 . Potential environmental contaminants such as sulfur are removed during this process. CO turbines are mainly used to generate electric power. Combustion is performed in pure oxygen produced through air separation, making it possible to completely prevent the formation of thermal NOx. Thus, NHIES would release very little amount of such substances that would contribute to acid rain. In this system, the intermediate energy sources of CO, H 2 and O 2 are integrated horizontally. They are combined appropriately to produce a specific form of final energy source. The integration of intermediate energy sources can provide a wide variety of final energy sources, allowing any type of fossil fuel to serve as an alternative to other types of fossil fuel. Another feature of NHIES is the positive use of nuclear fuel to reduce the formation of CO 2 . Studies are under way in Japan to develop a new concept of integrated energy system. These studies are especially aimed at decreased overall efficiency and introduction of new liquid fuels that are high in conversion efficiency. Considerations are made on the final form of energy source, robust control, acid fallout, and CO 2 reduction. (Nogami, K.)

  5. Indicative energy technology assessment of UK shale gas extraction

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; O’Grady, Áine

    2017-01-01

    Highlights: • UK shale gas ‘fracking’ is at a very early stage with an uncertain size of resource. • Shale gas extraction might benefit UK fuel security, as well as jobs and growth. • Potentially harmful environmental ‘side-effects’ must be monitored and regulated. • Gas bills for UK household and industrial consumers are unlikely to fall sharply. • Costs & benefits of shale gas fracking are unevenly distributed between communities. - Abstract: There is at present much interest in unconventional sources of natural gas, especially in shale gas which is obtained by hydraulic fracturing, or ‘fracking’. Boreholes are drilled and then lined with steel tubes so that a mixture of water and sand with small quantities of chemicals – the fracking fluid – can be pumped into them at very high pressure. The sand grains that wedge into the cracks induced in the shale rock by a ‘perforating gun’ then releases gas which returns up the tubes. In the United Kingdom (UK) exploratory drilling is at an early stage, with licences being issued to drill a limited number of test boreholes around the country. However, such activities are already meeting community resistance and controversy. Like all energy technologies it exhibits unwanted ‘side-effects’; these simply differ in their level of severity between the various options. Shale gas may make, for example, a contribution to attaining the UK’s statutory ‘greenhouse gas’ emissions targets, but only if appropriate and robust regulations are enforced. The benefits and disadvantages of shale gas fracking are therefore discussed in order to illustrate a ‘balance sheet’ approach. It is also argued that it is desirable to bring together experts from a range of disciplines in order to carry out energy technology assessments. That should draw on and interact with national and local stakeholders: ‘actors’ both large and small. Community engagement in a genuinely participative process – where the

  6. Renewable Energy Devices and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ionel, Dan M.

    2015-01-01

    In this paper, essential statistics demonstrating the increasing role of renewable energy generation are firstly discussed. A state of the art review section covers fundamentals of wind turbines and PV systems. Included are schematic diagrams illustrating the main components and system topologies...... and the fundamental and increasing role of power electronics as an enabler for renewable energy integration, and for the future power system and smart grid. Recent examples of research and development, including new devices and system installations for utility power plants, as well for as residential and commercial......, fuel cells, and storage with batteries and hydrogen, respectively. Recommended further readings on topics of electric power engineering for renewable energy are included in a final section. This paper also represents an editorial introduction for two special issues of the Electric Power Component...

  7. World energy data system (WENDS)

    International Nuclear Information System (INIS)

    Lareau, W.E.

    1979-01-01

    This paper presents a unique application of System 2000: the storage of preformatted textual information in a completely user oriented data base. The World Energy Data System is an information system which allows qualified users online access to non-classified management level data on worldwide energy technology and research and development activities. WENDS has been used to transmit up-to-date informaion on foreign energy technology and research and development programs to DOE program divisions, the Congress, and other U.S. government officials going abroad. The WENDS concept is first described. Then, the method of storage of the textual information is discussed followed by a discussion of the retrieval system which is thoroughly designed to serve the user

  8. Design of fast extraction system for the KEK proton synchrotron

    International Nuclear Information System (INIS)

    McCarthy, J.D.; Kimura, Yoshitaka.

    1975-03-01

    A fast beam extraction system is designed for the KEK 12 GeV Proton Synchrotron. The extraction is performed by the multi-turn beam shaving method in which hyper thin electrostatic septum inflectors are used as shaving elements. The beam loss and the emittance of the extracted beam are analyzed numerically as a function of thickness of the electrostatic septum wires. Specifications of the extraction elements, electrostatic septa, fast and slow bumps, and septum magnets, are given for the configuration of the designed system. (auth.)

  9. Introduction to Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Blaabjerg, Frede

    2014-01-01

    . It is concluded that as the quick development of renewable energy, wind power and PV power both show great potential to be largely integrated into the power grid. Power electronics is playing essential role in both of the systems to achieve more controllable, efficient, and reliable energy production......In this chapter, the state-of-the-arts developments of renewable energy are reviewed in respect to the installed power and market share, where wind power and photovoltaic power generation are the main focuses due to the fast growing speed and large share of installed capacity. Some basic principles...... of operation, mission profiles, as well as power electronics solutions and corresponding controls are discussed respectively in the case of wind power and photovoltaic power systems. Finally a few development trends for renewable energy conversions are also given from a power electronics point of view...

  10. Essential oil extraction with concentrating solar thermal energy

    OpenAIRE

    Veynandt, François

    2015-01-01

    Material complementari del cas estudi "Essential oil extraction with concentrating solar thermal energy”, part component del llibre "Case studies for developing globally responsible engineers" Peer Reviewed

  11. State space model extraction of thermohydraulic systems – Part I: A linear graph approach

    International Nuclear Information System (INIS)

    Uren, K.R.; Schoor, G. van

    2013-01-01

    Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state

  12. Analysis and design of energy systems

    International Nuclear Information System (INIS)

    Bajura, R.A.; Marston, C.H.; Tstsaronis, G.

    1989-01-01

    The 1980s saw growing public awareness of environmental issues. Events such as an unusually hot and dry summer in parts of the world, contamination of community drinking water supplies by leakage from abandoned waste disposal sites, and the discovery of a hole in the ozone layer in the upper stratosphere over Antarctica made headlines in the popular press. The long-range impact of these events on the environment or on human health is still being debated by the scientific and technical communities. In the interim, however, it is prudent to mitigate any possible environmental problems by continuing to develop high-efficiency energy utilization systems that are also cost effective and environmentally sound. High-efficiency fossil energy systems have a number of environmental benefits: carbon dioxide production is reduced and this, in turn, reduces the potential environmental insult which may occur during resource extraction or shipping. Thermodynamic analysis coupled with economic analysis is a useful tool to identify practical, high-efficiency systems. The Symposium on the Analysis and Design of Energy Systems is intended to provide a forum to present both advances in analytical techniques for this type of system and case studies applying these techniques

  13. Performance of a demand controlled mechanical extract ventilation system for dwellings

    Directory of Open Access Journals (Sweden)

    I. Pollet

    2013-10-01

    Full Text Available The main aim of ventilation is to guarantee a good indoor air quality, related to the energy consumed for heating and fan(s. Active or passive heat recovery systems seem to focus on the reduction of heating consumption at the expense of fan electricity consumption and maintenance. In this study, demandcontrolled mechanical extract ventilation systems of Renson (DCV1 and DCV2, based on natural supply in the habitable rooms and mechanical extraction in the wet rooms (or even the bedrooms, was analysed for one year by means of multi-zone Contam simulations on a reference detached house and compared with standard MEV and mechanical extract ventilation systems with heat recovery (MVHR. To this end, IAQ, total energy consumption, CO2 emissions and total cost of the systems are determined. The results show that DCV systems with increased supply air flow rates or direct mechanical extract from bedrooms can significantly improve IAQ, while reducing total energy consumption compared to MEV. Applying DCV reduces primary heating energy consumption and yearly fan electricity consumption at most by 65% to 50% compared to MEV. Total operational energy costs and CO2 emissions of DCV are similar when compared to MVHR. Total costs of DCV systems over 15 years are smaller when compared to MVHR due to lower investment and maintenance costs.

  14. Energy Systems Integration Newsletter - December 2016 | Energy Systems

    Science.gov (United States)

    system makes renewable energy integration easier. ESIF Research Shows That Connected Residential Devices and business intelligence. Baggu also noted the opportunity to harness next-generation graphical -through, ramp rate control, soft-start reconnection, and voltage-watt control. NREL then conducted power

  15. Portable test bench for the studies concerning ion sources and ion beam extraction and focusing systems

    International Nuclear Information System (INIS)

    Cordero Lopez, F.

    1961-01-01

    A portable test bench is described, which was designed to check ion sources, ion beam extraction and focusing systems before its use in a 600 KeV Cockcroft-Walton accelerator. The vacuum possibilities of the system are specially analyzed in connection with its particular use. The whole can be considered as a portable accelerator of low energy (50 keV). (Author)

  16. Energy distribution extraction of negative charges responsible for positive bias temperature instability

    International Nuclear Information System (INIS)

    Ren Shang-Qing; Yang Hong; Wang Wen-Wu; Tang Bo; Tang Zhao-Yun; Wang Xiao-Lei; Xu Hao; Luo Wei-Chun; Zhao Chao; Yan Jiang; Chen Da-Peng; Ye Tian-Chun

    2015-01-01

    A new method is proposed to extract the energy distribution of negative charges, which results from electron trapping by traps in the gate stack of nMOSFET during positive bias temperature instability (PBTI) stress based on the recovery measurement. In our case, the extracted energy distribution of negative charges shows an obvious dependence on energy, and the energy level of the largest energy density of negative charges is 0.01 eV above the conduction band of silicon. The charge energy distribution below that energy level shows strong dependence on the stress voltage. (paper)

  17. Ocean Thermal Extractable Energy Visualization- Final Technical Report on Award DE-EE0002664. October 28, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Ascari, Matthew B.; Hanson, Howard P.; Rauchenstein, Lynn; Van Zwieten, James; Bharathan, Desikan; Heimiller, Donna; Langle, Nicholas; Scott, George N.; Potemra, James; Nagurny, N. John; Jansen, Eugene

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world's ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today's state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources. The OTEEV project leverages existing NREL renewable energy GIS technologies and integrates extractable energy estimated from quality-controlled data and projected optimal achievable energy conversion rates. Input data are synthesized from a broad range of existing in-situ measurements and ground-truthed numerical models with temporal and spatial resolutions sufficient to reflect the local resource. Energy production rates are calculated for regions based on conversion rates estimated for current technology, local energy density of the resource, and sustainable resource extraction. Plant spacing and maximum production rates are then estimated based on a default plant size and transmission mechanisms. The resulting data are organized, displayed, and accessed using a multi-layered GIS mapping tool, http://maps.nrel.gov/mhk_atlas with a user-friendly graphical user interface.

  18. Energy efficient distributed computing systems

    CERN Document Server

    Lee, Young-Choon

    2012-01-01

    The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005.  From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems.  These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems.  This book brings together a group of outsta

  19. Enhanced distributed energy resource system

    Science.gov (United States)

    Atcitty, Stanley [Albuquerque, NM; Clark, Nancy H [Corrales, NM; Boyes, John D [Albuquerque, NM; Ranade, Satishkumar J [Las Cruces, NM

    2007-07-03

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  20. Calculation Of Extraction Optics For Ion System With Plazma Emitter

    CERN Document Server

    Frolov, B A

    2004-01-01

    The 2-D code for simulating of ion optics system of positive ion extraction from a plasma source is described. Example calculation of 100 kV optics for the extraction ion IHEP gun is presented. The trajectories of particles and emittance plots are resulted. The aberrations influ-ence strongly on ion optics for considered geometry.

  1. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  2. Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass

    Directory of Open Access Journals (Sweden)

    John J. Milledge

    2014-11-01

    Full Text Available The potential of algal biomass as a source of liquid and gaseous biofuels is a highly topical theme, but as yet there is no successful economically viable commercial system producing biofuel. However, the majority of the research has focused on producing fuels from microalgae rather than from macroalgae. This article briefly reviews the methods by which useful energy may be extracted from macroalgae biomass including: direct combustion, pyrolysis, gasification, trans-esterification to biodiesel, hydrothermal liquefaction, fermentation to bioethanol, fermentation to biobutanol and anaerobic digestion, and explores technical and engineering difficulties that remain to be resolved.

  3. Preliminary thermal analysis of grids for twin source extraction system

    International Nuclear Information System (INIS)

    Pandey, Ravi; Bandyopadhyay, Mainak; Chakraborty, Arun K.

    2017-01-01

    The TWIN (Two driver based Indigenously built Negative ion source) source provides a bridge between the operational single driver based negative ion source test facility, ROBIN in IPR and an ITER-type multi driver based ion source. The source is designed to be operated in CW mode with 180kW, 1MHz, 5s ON/600s OFF duty cycle and also in 5Hz modulation mode with 3s ON/20s OFF duty cycle for 3 such cycle. TWIN source comprises of ion source sub-assembly (consist of driver and plasma box) and extraction system sub-assembly. Extraction system consists of Plasma grid (PG), extraction grid (EG) and Ground grid (GG) sub assembly. Negative ion beams produced at plasma grid seeing the plasma side of ion source will receive moderate heat flux whereas the extraction grid and ground grid would be receiving majority of heat flux from extracted negative ion and co-extracted electron beams. Entire Co-extracted electron beam would be dumped at extraction grid via electron deflection magnetic field making the requirement of thermal and hydraulic design for extraction grid to be critical. All the three grids are made of OFHC Copper and would be actively water cooled keeping the peak temperature rise of grid surface within allowable limit with optimum uniformity. All the grids are to be made by vacuum brazing process where joint strength becomes crucial at elevated temperature. Hydraulic design must maintain the peak temperature at the brazing joint within acceptable limit

  4. Energy savings potential from energy-conserving irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  5. Energy extraction from wine dregs by self-sustained burning with fluidized-bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Leu, J.H. [Yu-Da Inst. of Business Technology, Taiwan (China). Dept. of Marketing and Logistics Management; Chung, Y.N.; Pan, T.S.; Chen, C.S. [Dayeh Univ., Taiwan (China). Dept. of Electrical Engineering

    2005-07-01

    Wine dregs typically have moisture contents of between 70 and 80 per cent, and the disposal of wine dregs in Taiwan is both costly and time-consuming. This paper described a method of extracting energy from wine dregs through the use of a pre-drying technique with a fluidized bed technology. A bubble-type fluidized bed combustor was used to combust high moisture Chinese Kaoliang wine lees. The system consisted of an incinerator, a feeding system, a heat recovery system, and an air pollution control system. Results of the experimental study showed that 92.3 per cent combustion was achieved for the wine lees at temperatures of 860 degrees C. Sulfur oxide (SO{sub x}) emissions and nitrogen oxide (NO{sub x}) emissions were negligible. Carbon monoxide (CO) emissions were suppressed to 92 ppm by modulating operating temperatures, axial temperature distributions, and primary and excess air. 3 refs., 3 tabs., 7 figs.

  6. Energy Systems and Population Health

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Majid; Bailis, Rob; Kammen, Daniel M.; Holloway, Tracey; Price, Lynn; Cifuentes, Luis A.; Barnes, Brendon; Chaurey, Akanksha; Dhanapala, Kiran N.

    2004-04-12

    It is well-documented that energy and energy systems have a central role in social and economic development and human welfare at all scales, from household and community to regional and national (41). Among its various welfare effects, energy is closely linked with people s health. Some of the effects of energy on health and welfare are direct. With abundant energy, more food or more frequent meals can be prepared; food can be refrigerated, increasing the types of food items that are consumed and reducing food contamination; water pumps can provide more water and eliminate the need for water storage leading to contamination or increased exposure to disease vectors such as mosquitoes or snails; water can be disinfected by boiling or using other technologies such as radiation. Other effects of energy on public health are mediated through more proximal determinants of health and disease. Abundant energy can lead to increased irrigation, agricultural productivity, and access to food and nutrition; access to energy can also increase small-scale income generation such as processing of agricultural commodities (e.g., producing refined oil from oil seeds, roasting coffee, drying and preserving fruits and meats) and production of crafts; ability to control lighting and heating allows education or economic activities to be shielded from daily or seasonal environmental constraints such as light, temperature, rainfall, or wind; time and other economic resources spent on collecting and/or transporting fuels can be used for other household needs if access to energy is facilitated; energy availability for transportation increases access to health and education facilities and allow increased economic activity by facilitating the transportation of goods and services to and from markets; energy for telecommunication technology (radio, television, telephone, or internet) provides increased access to information useful for health, education, or economic purposes; provision of energy

  7. Decentralized Energy from Waste Systems

    Directory of Open Access Journals (Sweden)

    Blanca Antizar-Ladislao

    2010-01-01

    Full Text Available In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change.

  8. Decentralized energy from waste systems

    International Nuclear Information System (INIS)

    Antizar-Ladislao, B.; Turrion-Gomez, J. L.

    2010-01-01

    In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change. (author)

  9. Beam extraction control systems of the fast-cycling synchrotron

    International Nuclear Information System (INIS)

    Toumanian, A.; Zapolski, N.; Nickogosian, V.; Ananian, A.; Kazarian, A.; Khoetsian, M.; Agababian, A.; Matevosian, A.

    1992-01-01

    A compact system controlling the extraction of different beams (gamma, electron, synchrotron radiation) in single and simultaneous operation modes at high electromagnetic disturbances level based on using one computer of IBM PC/AT type is described. (author)

  10. Agent based energy management systems

    Energy Technology Data Exchange (ETDEWEB)

    Wolter, Martin

    2012-07-01

    In liberalized, regulated energy markets, the different participants - namely producers and consumers of energy, transmission and distribution system operators as well as regulatory authorities - have partly divergent and partly convergent interests. Loads, power plants and grid operators try to maximize their own benefit in this highly complex environment accepting to act detrimentally to others. Although the relationship between the participants is mostly competitive, there are some fundamental shared interests, e.g. voltage stability, a constant system frequency or efficient energy production, transmission and distribution, which are endangered e.g. by increased injection of volatile sources in low and medium voltage grids, displacement of stabilizing bulk generation and the slowly progressing extension of the electric grid. There is a global consensus, that the resulting challenges can efficiently be faced using information and communication technologies to coordinate grid utilization and operation. The basic idea is to benefit from unused reserves by participating in deployment of system services e.g. reactive power supply to keep the voltage within certain bounds. The coordination can best be done by the grid operator. All activities of that kind are summarized under the umbrella term ''Smart Grid''. To simultaneously model the behavior and interests of different types of market participants and their convergent and divergent interests, multi-agent systems are used. They offer a perfectly fitting framework for this sort of game theory and can easily be adapted to all kinds of new challenges of electricity markets. In this work, multi-agent systems are used to either cooperatively or competitively solve problems in distribution and transmission systems. Therefore, conventional algorithms have to be modified to converge into multiple local optima using only small pieces of the entire system information. It is clearly stated, that personal

  11. Quantum measurement information as a key to energy extraction from local vacuums

    International Nuclear Information System (INIS)

    Hotta, Masahiro

    2008-01-01

    In this paper, a protocol is proposed in which energy extraction from local vacuum states is possible by using quantum measurement information for the vacuum state of quantum fields. In the protocol, Alice, who stays at a spatial point, excites the ground state of the fields by a local measurement. Consequently, wave packets generated by Alice's measurement propagate the vacuum to spatial infinity. Let us assume that Bob stays away from Alice and fails to catch the excitation energy when the wave packets pass in front of him. Next Alice announces her local measurement result to Bob by classical communication. Bob performs a local unitary operation depending on the measurement result. In this process, positive energy is released from the fields to Bob's apparatus of the unitary operation. In the field systems, wave packets are generated with negative energy around Bob's location. Soon afterwards, the negative-energy wave packets begin to chase after the positive-energy wave packets generated by Alice and form loosely bound states.

  12. Designing and Testing Composite Energy Storage Systems for Regulating the Outputs of Linear Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Zanxiang Nie

    2017-01-01

    Full Text Available Linear wave energy converters generate intrinsically intermittent power with variable frequency and amplitude. A composite energy storage system consisting of batteries and super capacitors has been developed and controlled by buck-boost converters. The purpose of the composite energy storage system is to handle the fluctuations and intermittent characteristics of the renewable source, and hence provide a steady output power. Linear wave energy converters working in conjunction with a system composed of various energy storage devices, is considered as a microsystem, which can function in a stand-alone or a grid connected mode. Simulation results have shown that by applying a boost H-bridge and a composite energy storage system more power could be extracted from linear wave energy converters. Simulation results have shown that the super capacitors charge and discharge often to handle the frequent power fluctuations, and the batteries charge and discharge slowly for handling the intermittent power of wave energy converters. Hardware systems have been constructed to control the linear wave energy converter and the composite energy storage system. The performance of the composite energy storage system has been verified in experiments by using electronics-based wave energy emulators.

  13. Energy Efficiency in Manufacturing Systems

    CERN Document Server

    Thiede, Sebastian

    2012-01-01

    Energy consumption is of great interest to manufacturing companies. Beyond considering individual processes and machines, the perspective on process chains and factories as a whole holds major potentials for energy efficiency improvements. To exploit these potentials, dynamic interactions of different processes as well as auxiliary equipment (e.g. compressed air generation) need to be taken into account. In addition, planning and controlling manufacturing systems require  balancing technical, economic and environmental objectives. Therefore, an innovative and comprehensive methodology – with a generic energy flow-oriented manufacturing simulation environment as a core element – is developed and embedded into a step-by-step application cycle. The concept is applied in its entirety to a wide range of case studies such as aluminium die casting, weaving mills, and printed circuit board assembly in order to demonstrate the broad applicability and the benefits that can be achieved.

  14. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

    2014-09-30

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

  15. Interaction of Plant Extracts with Central Nervous System Receptors

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom

    2017-02-01

    Full Text Available Background: Plant extracts have been used in traditional medicine for the treatment of various maladies including neurological diseases. Several central nervous system receptors have been demonstrated to interact with plant extracts and components affecting the pharmacology and thereby potentially playing a role in human disease and treatment. For instance, extracts from Hypericum perforatum (St. John’s wort targeted several CNS receptors. Similarly, extracts from Piper nigrum, Stephania cambodica, and Styphnolobium japonicum exerted inhibition of agonist-induced activity of the human neurokinin-1 receptor. Methods: Different methods have been established for receptor binding and functional assays based on radioactive and fluorescence-labeled ligands in cell lines and primary cell cultures. Behavioral studies of the effect of plant extracts have been conducted in rodents. Plant extracts have further been subjected to mood and cognition studies in humans. Results: Mechanisms of action at molecular and cellular levels have been elucidated for medicinal plants in support of standardization of herbal products and identification of active extract compounds. In several studies, plant extracts demonstrated affinity to a number of CNS receptors in parallel indicating the complexity of this interaction. In vivo studies showed modifications of CNS receptor affinity and behavioral responses in animal models after treatment with medicinal herbs. Certain plant extracts demonstrated neuroprotection and enhanced cognitive performance, respectively, when evaluated in humans. Noteworthy, the penetration of plant extracts and their protective effect on the blood-brain-barrier are discussed. Conclusion: The affinity of plant extracts and their isolated compounds for CNS receptors indicates an important role for medicinal plants in the treatment of neurological disorders. Moreover, studies in animal and human models have confirmed a scientific basis for the

  16. In situ Orbit Extraction from Live, High Precision Collisionless Simulations of Systems Formed by Cold Collapse

    Science.gov (United States)

    Noriega-Mendoza, H.; Aguilar, L. A.

    2018-04-01

    We performed high precision, N-body simulations of the cold collapse of initially spherical, collisionless systems using the GYRFALCON code of Dehnen (2000). The collapses produce very prolate spheroidal configurations. After the collapse, the systems are simulated for 85 and 170 half-mass radius dynamical timescales, during which energy conservation is better than 0.005%. We use this period to extract individual particle orbits directly from the simulations. We then use the TAXON code of Carpintero and Aguilar (1998) to classify 1 to 1.5% of the extracted orbits from our final, relaxed configurations: less than 15% are chaotic orbits, 30% are box orbits and 60% are tube orbits (long and short axis). Our goal has been to prove that direct orbit extraction is feasible, and that there is no need to "freeze" the final N-body system configuration to extract a time-independent potential.

  17. Total energy system in the future

    International Nuclear Information System (INIS)

    Hijikata, K.

    1994-01-01

    The possibility of improving the thermal efficiency of energy systems from an exergy point of view is discussed. In total energy systems, we should employ multi-pass recycling consisting of thermal and chemical energies. The recycling system is supported by electrical energy, which is provided by a renewable energy source or by excess commercial electric power. This total energy system should be considered not only in one country, but all around the globe. (author). 6 figs., 4 tabs., 8 refs

  18. DYNAMIC PARTICLE SYSTEMS FOR OBJECT STRUCTURE EXTRACTION

    Directory of Open Access Journals (Sweden)

    Olivier Lavialle

    2011-05-01

    Full Text Available A new deformable model based on the use of a particle system is introduced. By defining the local behavior of each particle, the system behaves as an active contour model showing a variable topology and regularization properties. The efficiency of the particle system is illustrated by two applications: the first one concerns the use of the system as a skeleton extractor based on the propagation of particles inside a treeshaped object. Using this method, it is possible to generate a cartography of structures such as veins or channels. In a second illustration, the system avoids the problem of initialization of a piecewise cubic Bspline network used to straighten curved text lines.

  19. Study of methane hydrate as a future energy resource: low emission extraction and power generation

    Science.gov (United States)

    Chen, L.; Yamada, H.; Kanda, Y.; Sasaki, H.; Okajima, J.; Iga, Y.; Komiya, A.; Maruyama, S.

    2016-08-01

    With the fast increase of world energy consumption in recent years, new and sustainable energy sources are becoming more and more important. Methane Hydrate is one promising candidate for the future energy supply of humankind, due to its vast existence in permafrost regions and near-coast seabed. This study is focused on the effective low emission utilization of methane hydrate from deep seabed. The Nankai Trough of Japan is taken as the target region in this study for methane hydrate extraction and utilization system design. Low emission system and power generation system with CCS (Carbon Capture and Sequestration) processes are proposed and analyzed for production rate and electricity generation efficiency problem study. It is found that the gas production price can reach the current domestic natural gas supply price level if the production rate can be improved. The optimized system is estimated to have power efficiency about 35%. In addition, current development and analysis from micro-to-macro scale methane hydrate production and dissociation dynamics are also discussed into detail in this study.

  20. Antioxidant Activity of Flaxseed Extracts in Lipid Systems

    Directory of Open Access Journals (Sweden)

    Adriana Slavova-Kazakova

    2015-12-01

    Full Text Available The aim of this work was to compare the antioxidant activity of the extract of flaxseed and its alkaline hydrolysate in two model systems: lipid autoxidation of triacylglycerols of sunflower oil (TGSO—in a homogeneous lipid media and during β-carotene-linoleate emulsion system. In addition, pure lignans were tested. The material was defatted with hexane and then phenolic compounds were extracted using dioxane-ethanol (50:50, v/v mixture. Carbohydrates were removed from the crude extract using an Amberlite XAD-16 column chromatography. The content of total phenolic compounds in the crude extract and after alkaline hydrolysis was determined using a Folin-Ciocalteu’s phenol reagent. Individual phenolic compounds were determined by nordihydroguaiaretic acid (RP-HPLC method in gradient system. The alkaline hydrolysis increased the content of total phenolics in the extract approximately by 10%. In the extracts of flaxseed, phenolic compounds were present in the form of macromolecular complex. In the alkaline hydrolysate, secoisolariciresinol diglucoside (SDG was found as the main phenolic compound. Small amounts of p-coumaric and ferulic acids were also determined. SDG and both extracts were not able to inhibit effectively lipid autoxidation. The kinetics of TGSO autoxidation at 80 °C in absence and in presence of the extract before hydrolysis (EBH and after hydrolysis (EAH was monitored and compared with known standard antioxidants. Ferulic acid (FA and butylated hydroxyl toluene (BHT showed much higher antioxidant efficiency and reactivity than that of both extracts. Secoisolariciresinol (SECO showed a higher activity in both model systems than SDG. However, the activity of SECO was much lower than that of nordihydroquaiaretic acid (NDGA.

  1. System of extraction of volatiles from soil using microwave processes

    Science.gov (United States)

    Ethridge, Edwin C. (Inventor); Kaukler, William F. (Inventor)

    2013-01-01

    A device for the extraction and collection of volatiles from soil or planetary regolith. The device utilizes core drilled holes to gain access to underlying volatiles below the surface. Microwave energy beamed into the holes penetrates through the soil or regolith to heat it, and thereby produces vapor by sublimation. The device confines and transports volatiles to a cold trap for collection.

  2. Calibration Measurements of the LHC Beam Dumping System Extraction Kicker Magnets

    CERN Document Server

    Uythoven, J; Ducimetière, L; Goddard, B; Gräwer, G; Olivieri, F; Pereira, L; Vossenberg, Eugène B

    2006-01-01

    The LHC beam dumping system must protect the LHC machine from damage by reliably and safely extracting and absorbing the circulating beams when requested. Two sets of 15 extraction kicker magnets form the main active part of this system. They have been produced, tested and calibrated by measuring the integrated magnetic field and the magnet current at different beam energies. The calibration data have been analysed, and the critical parameters are compared with the specifications. Implications for the configuration, control and operation of the beam dumping system are discussed.

  3. Energy extraction from a Konoplya–Zhidenko rotating non-Kerr black hole

    Directory of Open Access Journals (Sweden)

    Fen Long

    2018-01-01

    Full Text Available We have investigated the properties of the ergosphere and the energy extraction by Penrose process in a Konoplya–Zhidenko rotating non-Kerr black hole spacetime. We find that the ergosphere becomes thin and the maximum efficiency of energy extraction decreases as the deformation parameter increases. For the case with aM, we find that the maximum efficiency can reach so high that it is almost unlimited as the positive deformation parameter is close to zero, which is a new feature of energy extraction in such kind of rotating non-Kerr black hole spacetime.

  4. Integrating Information Extraction Agents into a Tourism Recommender System

    Science.gov (United States)

    Esparcia, Sergio; Sánchez-Anguix, Víctor; Argente, Estefanía; García-Fornes, Ana; Julián, Vicente

    Recommender systems face some problems. On the one hand information needs to be maintained updated, which can result in a costly task if it is not performed automatically. On the other hand, it may be interesting to include third party services in the recommendation since they improve its quality. In this paper, we present an add-on for the Social-Net Tourism Recommender System that uses information extraction and natural language processing techniques in order to automatically extract and classify information from the Web. Its goal is to maintain the system updated and obtain information about third party services that are not offered by service providers inside the system.

  5. Energy harvesting solar, wind, and ocean energy conversion systems

    CERN Document Server

    Khaligh, Alireza

    2009-01-01

    Also called energy scavenging, energy harvesting captures, stores, and uses ""clean"" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, ""green"" resources and converting them into electrical energy.Recognizing t

  6. Energy-extraction processes from a Kerr black hole immersed in a magnetic field. I. Negative-energy states

    International Nuclear Information System (INIS)

    Dhurandhar, S.V.; Dadhich, N.

    1984-01-01

    This is the first of two papers on the energy-extraction processes near a Kerr black hole immersed in a magnetic field. In this paper we shall consider the consequences of a dipole field extending to infinity matched on to a uniform field in the interior which contains the Kerr black hole. The magnetic fields considered are perturbative in nature. The matching of the fields is imperative owing to the ''no-hair theorem'' and the second law of black-hole physics. Two intriguing situations arising in this context are discussed, namely, (1) the second law of black-hole physics and (2) the law of conservation of energy in an energy-extraction process. At first sight both these laws seem to be violated. These issues arise basically because in the presence of the magnetic field there can exist negative-energy states even for L>0 particles. These issues get resolved by realizing that it is the sign of P/sub c/phi = L-eA/sub cphi/ and not L which determines a corotating or counterrotating orbit. It is also shown that negative-energy states can exist away from the horizon in the presence of either of the fields, the dipole and the uniform, thus favoring energy-extraction processes away from the black hole. This type of energy extraction is solely a consequence of the magnetic field. Also, a fairly detailed analysis of the effective-potential curves is provided, mainly relevant to the existence of negative energies and energy extraction. The formalism of the energy-extraction process will be considered in the second paper

  7. The Island Smart Energy System and Market

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Jørgensen, Bo Nørregaard

    2017-01-01

    developing island smart energy systems with the integration of renewable energy resources can increase the energy supply and address the global island energy issues. The island smart energy system operates either in a single-island or in multi-islands. However the island characteristics and influ...

  8. Energy Systems Group. Annual Progress Report 1984

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik; Larsen, Hans Hvidtfeldt; Villadsen, B.

    The report describes the work of the Energy Systems Group at Risø National Laboratory during 1984. The activities may be roughly classified as development and use of energy-economy models, energy systems analysis, energy technology assessment and energy planning. The report includes a list of staff...

  9. Energy Systems Group annual progress report 1984

    International Nuclear Information System (INIS)

    Grohnheit, P.E.; Larsen, H.; Villadsen, B.

    1985-02-01

    The report describes the work of the Energy Systems Group at Risoe National Laboratory during 1984. The activities may be roughly classified as development and use of energy-economy models, energy systems analysis, energy technology assessment and energy planning. The report includes a list of staff members. (author)

  10. The North American Energy System: Chapter 3 of SOCCR-2

    Science.gov (United States)

    Gurney, K. R.; Marcotullio, P. J.; McGlynn, E.; Bruhwiler, L.; Davis, K. J.; Davis, S. J.; Engel-Cox, J.; Field, J.; Gately, C.; Kammen, D. M.; McMahon, J.; Morrow, W.; Torrie, R.

    2017-12-01

    North America (Canada, Mexico and the United States), has a large and complex energy system, which in this case includes the extraction and conversion of primary energy sources and their storage, transmission, distribution and ultimate end use in the building, transportation and industrial sectors. The presentation assesses the contribution of this energy system to the carbon cycle. The assessment includes the identification of CO2 emissions from fossil fuel use in the different end use, changes over the past 10 years (since the last SOCCR) and the drivers of change. The assessment focuses on our understanding of the energy trends and system feedback dynamics, key drivers of change as a basis for carbon management. The energy systems' carbon emissions from the North American system are placed in global context and a review of scenarios into the future emissions levels, which demonstrate the requirements for de-carbonization in the medium and longer term.

  11. Synergy in extraction system chemistry: combining configurational entropy, film bending and perturbation of complexation

    International Nuclear Information System (INIS)

    Rey, Julien

    2016-01-01

    Separative chemistry is a pillar of technologic development in extraction, separation and selective remediation of metals and molecules. It finds its applications in the fields of electronic, renewable energy, medicine and chemistry, which require more than ever the use of 'Strategic Metals'. The liquid-liquid extraction is a separation technique that is involved in hydrometallurgical processes for the recovery of strategic metals from primary deposits, secondary and urban mines. This work is part of global vision of optimization of liquid-liquid extraction processes used in synergy, consisting in understanding the mechanisms underlying the synergy, and generalizing these mechanisms to all synergistic extraction systems. The understanding of these mechanisms underlying synergism aims at predicting and developing new synergistic extractants mixtures.To better understand the driving forces at the origin of synergistic phenomena, a suitable methodology for the characterization of supramolecular structures of extractant in the organic phase was exploited during this thesis work. The use of techniques like Small Angle Neutron/X-ray Scattering (SAXS/ANS) and interfacial tensiometry was crucial for the understanding of the synergistic mechanisms. A thermodynamical was also proposed to estimate quantitatively the key driving forces involved in the liquid-liquid extraction mechanisms. The application of these keys of comprehension helped to design a new synergistic system for the extraction of rare earths elements from phosphoric medium. (author) [fr

  12. Compressive Information Extraction: A Dynamical Systems Approach

    Science.gov (United States)

    2016-01-24

    significantly benefit society. Systems endowed with activity analysis capabilities can prevent crime, allow elderly people to continue living independently...keynote speaker at the 2014 IEEE International Conference on Distributed Smart Cameras. 9 2.5 Transitions The theoretical framework developed under...FBI Deputy Director, June 2013) and the Hon. Theresa May (U.K. Home Secretary, Sept. 2014). It was also covered in a N.Y. Times article that appeared

  13. Qualitative feature extractions of chaotic systems

    International Nuclear Information System (INIS)

    Vicha, T.; Dohnal, M.

    2008-01-01

    The theory of chaos offers useful tools for systems analysis. However, models of complex systems are based on a network of inconsistent, space and uncertain knowledge items. Traditional quantitative methods of chaos analysis are therefore not applicable. The paper by the same authors [Vicha T, Dohnal M. Qualitative identification of chaotic systems behaviours. Chaos, Solitons and Fractals, in press, [Log. No. 601019] ] presents qualitative interpretation of some chaos concepts. There are only three qualitative values positive/increasing, negative/decreasing and zero/constant. It means that any set of qualitative multidimensional descriptions of unsteady state behaviours is discrete and finite. A finite upper limit exists for the total number of qualitatively distinguishable scenarios. A set of 21 published chaotic models is solved qualitatively and 21 sets of all existing qualitative scenarios are presented. The intersection of all 21 scenario sets is empty. There is no such a behaviour which is common for all 21 models. The set of 21 qualitative models (e.g. Lorenz, Roessler) can be used to compare chaotic behaviours of an unknown qualitative model with them to evaluate if its chaotic behaviours is close to e.g. Lorenz chaotic model and how much

  14. Geothermal pump down-hole energy regeneration system

    Science.gov (United States)

    Matthews, Hugh B.

    1982-01-01

    Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

  15. Causal extraction of black hole rotational energy by various kinds of electromagnetic fields

    International Nuclear Information System (INIS)

    Koide, Shinji; Baba, Tamon

    2014-01-01

    Recent general relativistic magnetohydrodynamics (MHD) simulations have suggested that relativistic jets from active galactic nuclei (AGNs) have been powered by the rotational energy of central black holes. Some mechanisms for extraction of black hole rotational energy have been proposed, like the Penrose process, Blandford-Znajek mechanism, MHD Penrose process, and superradiance. The Blandford-Znajek mechanism is the most promising mechanism for the engines of the relativistic jets from AGNs. However, an intuitive interpretation of this mechanism with causality is not yet clarified, while the Penrose process has a clear interpretation for causal energy extraction from a black hole with negative energy. In this paper, we present a formula to build physical intuition so that in the Blandford-Znajek mechanism, as well as in other electromagnetic processes, negative electromagnetic energy plays an important role in causal extraction of the rotational energy of black holes.

  16. Integrated energy optimization with smart home energy management systems

    NARCIS (Netherlands)

    Asare-Bediako, B.; Ribeiro, P.F.; Kling, W.L.

    2012-01-01

    Optimization of energy use is a vital concept in providing solutions to many of the energy challenges in our world today. Large chemical, mechanical, pneumatic, hydraulic, and electrical systems require energy efficiency as one of the important aspects of operating systems. At the micro-scale, the

  17. Power Management for Energy Systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel

    In this thesis, we consider the control of two different industrial applications that belong at either end of the electricity grid; a power consumer in the form of a commercial refrigeration system, and wind turbines for power production. Our primary studies deal with economic model predictive...... penetration of renewable, fossil-free energy sources such as solar and wind power. To facilitate such intermittent power producers, we must not only control the production of electricity, but also the consumption, in an ecient and exible manner. By enabling the use of thermal energy storage in supermarkets...... of temperature dependent efficiencies in the refrigeration cycle. -Nonlinear economic MPC with uncertain predictions and the implementation of very simple predictors that use entirely historical data of, e.g., electricity prices and outdoor temperatures. Economic MPC for wind turbines, including -Optimal steady...

  18. Integrated solar energy system optimization

    Science.gov (United States)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  19. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  20. Excavation-drier method of energy-peat extraction reduces long-term climatic impact

    Energy Technology Data Exchange (ETDEWEB)

    Silvan, N.; Silvan, K.; Laine, J. [Finnish Forest Research Inst., Parkano (Finland)], e-mail: niko.silvan@metla.fi; Vaisanen, S.; Soukka, R. [Lappeenranta Univ.of Techology (Finland)

    2012-11-01

    Climatic impacts of energy-peat extraction are of increasing concern due to EU emissions trading requirements. A new excavation-drier peat extraction method has been developed to reduce the climatic impact and increase the efficiency of peat extraction. To quantify and compare the soil GHG fluxes of the excavation drier and the traditional milling methods, as well as the areas from which the energy peat is planned to be extracted in the future (extraction reserve area types), soil CO{sub 2}, CH{sub 4} and N{sub 2}O fluxes were measured during 2006-2007 at three sites in Finland. Within each site, fluxes were measured from drained extraction reserve areas, extraction fields and stockpiles of both methods and additionally from the biomass driers of the excavation-drier method. The Life Cycle Assessment (LCA), described at a principal level in ISO Standards 14040:2006 and 14044:2006, was used to assess the long-term (100 years) climatic impact from peatland utilisation with respect to land use and energy production chains where utilisation of coal was replaced with peat. Coal was used as a reference since in many cases peat and coal can replace each other in same power plants. According to this study, the peat extraction method used was of lesser significance than the extraction reserve area type in regards to the climatic impact. However, the excavation-drier method seems to cause a slightly reduced climatic impact as compared with the prevailing milling method. (orig.)

  1. Opportunities for switchable solvents for lipid extraction from wet algal biomass: an energy evaluation

    NARCIS (Netherlands)

    Du, Ying; Schuur, Boelo; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2015-01-01

    Algae are considered an important sustainable feedstock for lipid extraction to produce food ingredients, cosmetics, pharmaceutical products and biofuels. Next to the costs for cultivation, this route is especially hindered by the energy intensity of drying algae prior to extraction and solvent

  2. Extractive text summarization system to aid data extraction from full text in systematic review development.

    Science.gov (United States)

    Bui, Duy Duc An; Del Fiol, Guilherme; Hurdle, John F; Jonnalagadda, Siddhartha

    2016-12-01

    Extracting data from publication reports is a standard process in systematic review (SR) development. However, the data extraction process still relies too much on manual effort which is slow, costly, and subject to human error. In this study, we developed a text summarization system aimed at enhancing productivity and reducing errors in the traditional data extraction process. We developed a computer system that used machine learning and natural language processing approaches to automatically generate summaries of full-text scientific publications. The summaries at the sentence and fragment levels were evaluated in finding common clinical SR data elements such as sample size, group size, and PICO values. We compared the computer-generated summaries with human written summaries (title and abstract) in terms of the presence of necessary information for the data extraction as presented in the Cochrane review's study characteristics tables. At the sentence level, the computer-generated summaries covered more information than humans do for systematic reviews (recall 91.2% vs. 83.8%, p<0.001). They also had a better density of relevant sentences (precision 59% vs. 39%, p<0.001). At the fragment level, the ensemble approach combining rule-based, concept mapping, and dictionary-based methods performed better than individual methods alone, achieving an 84.7% F-measure. Computer-generated summaries are potential alternative information sources for data extraction in systematic review development. Machine learning and natural language processing are promising approaches to the development of such an extractive summarization system. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. UAS Flight Planning Tool for Atmospheric Energy Extraction, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft have been flying point to point missions for the past 100 years. Each flight, the fuel energy is burned based upon an assumed time requirement to transport...

  4. Power management for energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gybel Hovgaard, T.

    2013-02-15

    In this thesis, we consider the control of two different industrial applications that belong at either end of the electricity grid; a power consumer in the form of a commercial refrigeration system, and wind turbines for power production. Our primary studies deal with economic model predictive control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms, e.g., in supermarkets. For control of the commercial refrigeration application as well as the wind turbine application, we propose an economic optimizing model predictive controller, economic MPC. Our investigations are primarily concerned with: 1) modeling of the applications to suit the chosen control framework; 2) formulating the MPC controller laws to overcome challenges introduced by the industrial applications, and defining economic objectives that reect the real physics of the systems as well as our control objectives; 3) solving the involved, non-trivial optimization problems eciently in real-time; 4) demonstrating the feasibility and potential of the proposed methods by extensive simulation and comparison with existing control methods and evaluation of data from systems in actual operation. We demonstrate, i.a., substantial cost savings, on the order of 30 %, compared to a standard thermostat-based supermarket refrigeration system and show how our methods exhibit sophisticated demand response to real-time variations in electricity prices. Violations of the temperature ranges can be kept at a very low frequency of occurrence inspite of the presence of uncertainty. For the power output from wind turbines, ramp rates, as low a 3 % of the rated power per minute, can be effectively ensured with the use of energy storage and we show how the active use of rotor inertia as an additional energy storage can reduce the needed storage capacity by up to 30 % without reducing the power output. (Author)

  5. Energy and environmental evaluation of tri-generation energy systems

    International Nuclear Information System (INIS)

    Chicco, G.; Mancarella, P.

    2008-01-01

    Tri generation facilities manufactured with various technologies represent an important alternative solution for the development more efficient energy systems and low environmental impact. Are described the issues related to modelling and energy and environmental evaluation [it

  6. Use of ethyl lactate to extract bioactive compounds from Cytisus scoparius: Comparison of pressurized liquid extraction and medium scale ambient temperature systems.

    Science.gov (United States)

    Lores, Marta; Pájaro, Marta; Álvarez-Casas, Marta; Domínguez, Jorge; García-Jares, Carmen

    2015-08-01

    An important trend in the extraction of chemical compounds is the application of new environmentally friendly, food grade solvents. Ethyl lactate (ethyl 2-hydroxypropanoate), produced by fermentation of carbohydrates, is miscible with both hydrophilic and hydrophobic compounds being a potentially good solvent for bioactive compounds. Despite its relatively wide use as a general solvent, the utilization of ethyl lactate as an extraction solvent has only recently been considered. Here, we evaluate the possible use of ethyl lactate to extract phenolic compounds from wild plants belonging to Cytisus scoparius, and we compare the characteristics of the extracts obtained by Pressurized Solvent Extraction (the total phenolics content, the antioxidant activity and the concentration of the major polyphenols) with those of other extracts obtained with methanol. In order to explore the industrial production of the ethyl lactate Cytisus extract, we also evaluate medium scale ambient temperature setups. The whole plant and the different parts (flowers, branches, and seed pods) were evaluated separately as potential sources of polyphenols. All extracts were analyzed by LC-MS/MS for accurate identification of the major polyphenols. Similar phenolic profiles were obtained when using ethyl lactate or methanol. The main bioactives found in the Cytisus extract were the non-flavonoid phenolic compounds caffeic and protocatechuic acids and 3,4-dihydroxybenzaldehyde; the flavonoids rutin, kaempferol and quercetin; the flavones chrysin, orientin and apigenin; and the alkaloid lupanine. Regarding the comparison of the extraction systems, although the performance of the PLE was much better than that of the ambient-temperature columns, the energy consumption was also much higher. Ethyl lactate has resulted an efficient extraction solvent for polyphenols from C. scoparius, yielding extracts with high levels of plant phenolics and antioxidant activity. The antimicrobial activity of these

  7. Enthalpy restoration in geothermal energy processing system

    Science.gov (United States)

    Matthews, Hugh B.

    1983-01-01

    A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

  8. Loss energy states of nonstationary quantum systems

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man'ko, V.I.

    1978-01-01

    The concept of loss energy states is introduced. The loss energy states of the quantum harmonic damping oscillator are considered in detail. The method of constructing the loss energy states for general multidimensional quadratic nonstationary quantum systems is briefly discussed

  9. Battery storage for supplementing renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  10. Engineered Geothermal Systems Energy Return On Energy Investment

    Energy Technology Data Exchange (ETDEWEB)

    Mansure, A J

    2012-12-10

    Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use efficiency when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the minimum EROI an energy production system should have to be an asset rather than a liability.

  11. Arc detector system for extraction switches in LHC CERN

    CERN Document Server

    Dahlerup-Petersen, K; Kuper, E; Ovchar, V; Zverev, S

    2006-01-01

    The opening switches, which will be used in case of quenches or other failures in CERN’s future LHC collider to extract the large amounts of energy stored in the magnetic field of the superconducting chains of main dipoles (8 chains with 1350 MJ each) and main quadrupoles (16 chains with about 24 MJ each) consist of an array of series/parallel connected, electro-mechanical D.C. breakers, specifically designed for this particular application. During the opening process the magnet excitation current is transferred from the cluster of breakers to extraction resistors for rapid de-excitation of the magnet chain. An arc detector has been developed in order to facilitate the determination of the need for maintenance interventions on the switches. The paper describes the arc detector and highlight results from operation of the detector with a LHC pilot extraction...

  12. Extracting renewable energy from a salinity difference using a capacitor.

    Science.gov (United States)

    Brogioli, Doriano

    2009-07-31

    Completely renewable energy can be produced by using water solutions of different salinity, like river water and sea water. Many different methods are already known, but development is still at prototype stage. Here I report a novel method, based on electric double-layer capacitor technology. Two porous electrodes, immersed in the salt solution, constitute a capacitor. It is first charged, then the salt solution is brought into contact with fresh water. The electrostatic energy increases as the salt concentration of the solution is reduced due to diffusion. This device can be used to turn sources of salinity difference into completely renewable sources of energy. An experimental demonstration is given, and performances and possible improvements are discussed.

  13. Fossil energy savings potential of sugar cane bio-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T. [Department of Agroecology, Aarhus University, Tjele (Denmark); The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Hermansen, John E. [Department of Agroecology, Aarhus University, Tjele (Denmark); Sagisaka, Masayuki [Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2009-11-15

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts to 15 million barrels of oil a year. Whether the saving benefits could be fully realized, however, depends on how well the potential land use change resulting from an expansion of ethanol production is managed. The results presented serve as a useful guidance to formulate strategies that enable optimum utilization of biomass as an energy source. (author)

  14. Blockchain-Assisted Crowdsourced Energy Systems

    OpenAIRE

    Wang, Shen; Taha, Ahmad; Wang, Jianhui

    2018-01-01

    Crowdsourcing relies on people's contributions to meet product- or system-level objectives. Crowdsourcing-based methods have been implemented in various cyber-physical systems and realtime markets. This paper explores a framework for Crowdsourced Energy Systems (CES), where small-scale energy generation or energy trading is crowdsourced from distributed energy resources, electric vehicles, and shapable loads. The merits/pillars of energy crowdsourcing are discussed. Then, an operational model...

  15. Bio energy: Bio energy in the Energy System of the Future

    International Nuclear Information System (INIS)

    Finden, Per; Soerensen, Heidi; Wilhelmsen, Gunnar

    2001-01-01

    This is Chapter 7, the final chapter, of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Factors leading to changes in the energy systems, (2) The energy systems of the future, globally, (3) The future energy system in Norway and (4) Norwegian energy policy at the crossroads

  16. A Risk Assessment System with Automatic Extraction of Event Types

    Science.gov (United States)

    Capet, Philippe; Delavallade, Thomas; Nakamura, Takuya; Sandor, Agnes; Tarsitano, Cedric; Voyatzi, Stavroula

    In this article we describe the joint effort of experts in linguistics, information extraction and risk assessment to integrate EventSpotter, an automatic event extraction engine, into ADAC, an automated early warning system. By detecting as early as possible weak signals of emerging risks ADAC provides a dynamic synthetic picture of situations involving risk. The ADAC system calculates risk on the basis of fuzzy logic rules operated on a template graph whose leaves are event types. EventSpotter is based on a general purpose natural language dependency parser, XIP, enhanced with domain-specific lexical resources (Lexicon-Grammar). Its role is to automatically feed the leaves with input data.

  17. A Sustainable Energy System in Latvia

    DEFF Research Database (Denmark)

    Rasmussen, Lotte Holmberg

    2002-01-01

    This paper presents some of the problems in the Latvian energy system, the Latvian economy and how a sustainable restructuring of the energy system with renewable energy, co-generation and the production of energy technology can help solve some of the problems....

  18. Energy systems Diagnosis in developing countries

    International Nuclear Information System (INIS)

    Girod, J.

    1991-01-01

    Energy systems diagnosis is necessary to allow evaluation of energy balance by administration and political authorities of a country. First, the author describes the principle stages of energetic diagnosis. Then this work is divided into three parts: First part: Energy consumption diagnosis in several districts (families, utilities, agriculture, transport, industry) Second part: Energy supplies diagnosis (energy markets). Third part: Interactions between energy consumption and energy supply. 28 figs.; 52 tabs.; 107 refs

  19. Systems approach in energy management

    International Nuclear Information System (INIS)

    Dutta-Choudhury, K.

    1993-01-01

    Several years ago when the author was working in the chemicals division of a paper company in Instrumentation and Controls, one experience had a lasting impact on his work approach which is systems approach. The maintenance manager told the author that a very important piece of boiler instrument of the power plant had broken down and delivery of the replacement needed to be expedited. The instrument was ordered over the phone in another city. The purchase order was personally delivered at the supplier's office and arrangements were made so the instrument was put on the next flight. A week later the maintenance manager indicated that the particular instrument still had not arrived in the plant and he could not run the power plant. Thus the company incurred substantial losses. Further inquiries showed that the instrument did indeed arrive at the plant stores on time. But, in the absence of any instructions thereon, the instrument was not delivered to the power plant. The sense of urgency was lost in the existing delivery process. In other words, the process or system failed. The whole process from requisitioning to delivery of ordered items was analyzed and corrective procedures were incorporated to prevent future repetitions. This brings up the subject of systems approach in engineering management in general and energy management in particular. This involves defining an objective and designing a system for an effective way of getting there

  20. Energy Efficient Bioethanol Purification by Heat Pump Assisted Extractive Distillation

    NARCIS (Netherlands)

    Kiss, Anton A.; Luo, Hao; Bildea, Costin Sorin

    2015-01-01

    The purification of bioethanol fuel requires an energy demanding separation process to concentrate the diluted streams obtained in the fermentation stage and to overcome the azeotropic behaviour of ethanol-water mixture. The classic separation sequence consists of three distillation columns that

  1. SMES for wind energy systems

    Science.gov (United States)

    Paul Antony, Anish

    simulation results the utility of SMES in voltage sag mitigation for momentary interruptions. The 1MJ SMES mitigates voltage sags for a useful duration ~50 seconds. In conclusion (Chapter 7), we believe that in this dissertation, we have documented the design of SMES for both momentary and sustained interruptions in wind turbines. We have put forth some novel and relevant hypotheses, developed and performed suitable simulation studies to validate these hypotheses. By doing so, we have been able to expand our knowledge in our quest to grasp the underlying mechanisms of storage systems in wind energy integration. Although the resulting analysis has allowed us to gain valuable insight, we feel that it is only the tip of the iceberg, and that many yet unknown discoveries are to be made. We remain hopeful that the future of SMES for wind energy will only look brighter from here onward. (Abstract shortened by UMI.).

  2. Two sustainable energy system analysis models

    DEFF Research Database (Denmark)

    Lund, Henrik; Goran Krajacic, Neven Duic; da Graca Carvalho, Maria

    2005-01-01

    This paper presents a comparative study of two energy system analysis models both designed with the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy....

  3. Potential of renewable energy systems in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO2 emitting country in the world. In this case...... system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy...... system. The conclusion is that China’s domestic renewable energy sources are abundant and show the possibility to cover future energy demand; the methodologies used to analyse a 100% renewable energy system are applicable in China. Therefore, proposing an analysis of a 100% renewable energy system...

  4. Federal Tax Incentives for Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Katherine H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Settle, Donald E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-16

    Investments in renewable energy are more attractive due to the contribution of two key federal tax incentives. The investment tax credit (ITC) and the Modified Accelerated Cost Recovery System (MACRS) depreciation deduction may apply to energy storage systems such as batteries depending on who owns the battery and how the battery is used. The guidelines in this fact sheet apply to energy storage systems installed at the same time as the renewable energy system.

  5. Advanced integrated solvent extraction and ion exchange systems

    International Nuclear Information System (INIS)

    Horwitz, P.

    1996-01-01

    Advanced integrated solvent extraction (SX) and ion exchange (IX) systems are a series of novel SX and IX processes that extract and recover uranium and transuranics (TRUs) (neptunium, plutonium, americium) and fission products 90 Sr, 99 Tc, and 137 Cs from acidic high-level liquid waste and that sorb and recover 90 Sr, 99 Tc, and 137 Cs from alkaline supernatant high-level waste. Each system is based on the use of new selective liquid extractants or chromatographic materials. The purpose of the integrated SX and IX processes is to minimize the quantity of waste that must be vitrified and buried in a deep geologic repository by producing raffinates (from SX) and effluent streams (from IX) that will meet the specifications of Class A low-level waste

  6. Portable blood extraction device integrated with biomedical monitoring system

    Science.gov (United States)

    Khumpuang, S.; Horade, M.; Fujioka, K.; Sugiyama, S.

    2006-01-01

    Painless and portable blood extraction device has been immersed in the world of miniaturization on bio-medical research particularly in manufacturing point-of-care systems. The fabrication of a blood extraction device integrated with an electrolyte-monitoring system is reported in this paper. The device has advantages in precise controlled dosage of blood extracted including the slightly damaged blood vessels and nervous system. The in-house blood diagnostic will become simple for the patients. Main components of the portable system are; the blood extraction device and electrolyte-monitoring system. The monitoring system consists of ISFET (Ion Selective Field Effect Transistor) for measuring the concentration level of minerals in blood. In this work, we measured the level of 3 ions; Na+, K+ and Cl-. The mentioned ions are frequently required the measurement since their concentration levels in the blood can indicate whether the kidney, pancreas, liver or heart is being malfunction. The fabrication of the whole system and experimentation on each ISM (Ion Sensitive Membrane) will be provided. Taking the advantages of LIGA technology, the 100 hollow microneedles fabricated by Synchrotron Radiation deep X-ray lithography through PCT (Plane-pattern to Cross-section Transfer) technique have been consisted in 5x5 mm2 area. The microneedle is 300 μm in base-diameter, 500 μm-pitch, 800 μm-height and 50 μm hole-diameter. The total size of the blood extraction device is 2x2x2 cm 3. The package is made from a plastic socket including slots for inserting microneedle array and ISFET connecting to an electrical circuit for the monitoring. Through the dimensional design for simply handling and selection of disposable material, the patients can self-evaluate the critical level of the body minerals in anywhere and anytime.

  7. Extraction of potential energy in charge asymmetry coordinate from experimental fission data

    Energy Technology Data Exchange (ETDEWEB)

    Pasca, H. [Joint Institute for Nuclear Research, Dubna (Russian Federation); ' ' Babes-Bolyai' ' Univ., Cluj-Napoca (Romania); Andreev, A.V.; Adamian, G.G. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Tomsk Polytechnic Univ. (Russian Federation). Mathematical Physics Dept.

    2016-12-15

    For fissioning isotopes of Ra, Ac, Th, Pa, and U, the potential energies as a function of the charge asymmetry coordinate are extracted from the experimental charge distributions of the fission fragment and compared with the calculated scission-point driving potentials. The role of the potential energy surfaces in the description of the fission charge distribution is discussed. (orig.)

  8. Impact of Wire Geometry in Energy Extraction from Salinity Differences Using Capacitive Technology

    NARCIS (Netherlands)

    Sales, B.B.; Burheim, O.S.; Liu, F.; Schaetzle, O.; Buisman, C.J.N.; Hamelers, H.V.M.

    2012-01-01

    Energy extraction based on capacitive Donnan potential (CDP) is a recently suggested technique for sustainable power generation. CDP combines the use of ion-exchange membranes and porous carbon electrodes to convert the Gibbs free energy of mixing sea and river water into electric work. The

  9. Career Directions--Renewable Energy Systems Integrator

    Science.gov (United States)

    Fleeman, Stephen R.

    2012-01-01

    Renewable energy systems are beginning to appear everywhere. Solar modules are creating "blue roofs" that convert the energy from the sun into household electricity. Solar thermal systems on roofs can generate hot water. Wind turbines catch breezes to provide even more electricity. Recommendations for saving energy, specifying systems for…

  10. An enterprise energy-information system

    Energy Technology Data Exchange (ETDEWEB)

    Swords, B.; Coyle, E. [School of Control Systems and Electrical Engineering, Dublin Institute of Technology, Kevin St., Dublin 8 (Ireland); Norton, B. [President, Dublin Institute of Technology, Aungier St., Dublin 2 (Ireland)

    2008-01-15

    This paper outlines the background, development, and assessment of a prototype enterprise energy information system (EEIS) that supports strategic energy-management by providing comprehensive energy monitoring and targeting, integrating with energy modelling software and enterprise business databases, and supporting measurement and verification (M and V). The EEIS prototype system was developed and assessed in an industrial site and a third-level education institution with colleges throughout Dublin. The industrial site provided the opportunity for the EEIS to meet the requirements of a large energy intensive site, and to integrate with energy modelling software. The higher education establishment accommodated the development of a networked energy-information system. (author)

  11. Central nervous system activity of Illicium verum fruit extracts.

    Science.gov (United States)

    Chouksey, Divya; Upmanyu, Neeraj; Pawar, R S

    2013-11-01

    To research the acute toxicity of Illicium verum (I. verum) fruit extracts and its action on central nervous system. The TLC and HPTLC techniques were used as fingerprints to determine the chemical components present in I. verum. Male albino rats and mice were utilized for study. The powdered material was successively extracted with n-hexane, ethyl acetate and methanol using a Soxhlet extractor. Acute toxicity studies were performed as per OECD guidelines. The CNS activity was evaluated on parameters of general behavior, sleeping pattern, locomotor activity, anxiety and myocoordination activity. The animals were trained for seven days prior to experiments and the divided into five groups with six animals in each. The drug was administered by intraperitoneal route according to body weight. The dosing was done as prescribed in each protocol. Toxicity studies reported 2 000 mg/kg as toxicological dose and 1/10 of the same dose was taken as therapeutic dose Intraperitoneal injection of all extracts at dose of 200 mg prolonged phenobarbitone induced sleeping time, produced alteration in general behavior pattern, reduced locomotor activity and produced anxiolytic effects but the extracts do not significantly alter muscles coordination activity. The three extracts of I. verum at the dose of 200 mg, methanol extract was found to produce more prominent effects, then hexane and ethylacetate extracts. The observation suggested that the extracts of I. verum possess potent CNS depressant action and anxiolytic effect without interfering with motor coordination. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  12. Renewable energy delivery systems and methods

    Science.gov (United States)

    Walker, Howard Andrew

    2013-12-10

    A system, method and/or apparatus for the delivery of energy at a site, at least a portion of the energy being delivered by at least one or more of a plurality of renewable energy technologies, the system and method including calculating the load required by the site for the period; calculating the amount of renewable energy for the period, including obtaining a capacity and a percentage of the period for the renewable energy to be delivered; comparing the total load to the renewable energy available; and, implementing one or both of additional and alternative renewable energy sources for delivery of energy to the site.

  13. Effect of non-condensable gas on heat transfer in steam turbine condenser and modelling of ejector pump system by controlling the gas extraction rate through extraction tubes

    International Nuclear Information System (INIS)

    Strušnik, Dušan; Golob, Marjan; Avsec, Jurij

    2016-01-01

    Graphical abstract: Control of the amount of the pumped gases through extraction tubes. The connecting locations interconnect the extraction tubes for STC gas pumping. The extraction tubes are fitted with 3 control valves to control the amount of the pumped gas depending on the temperature of the pumped gas. The amount of the pumped gas increases through the extraction tubes, where the pumped gases are cooler and decreases, at the same time, through the extraction tubes, where the pumped gases are warmer. As a result, pumping of a larger amount of NCG is ensured and of a smaller amount of CG, given that the NCG concentration is the highest on the colder places. This way, the total amount of the pumped gases from the STC can be reduced, the SEPS operates more efficiently and consumes less energy for its operation. - Highlights: • Impact of non-condensable gas on heat transfer in a steam turbine condenser. • The ejector system is optimised by selecting a Laval nozzle diameter. • Simulation model of the control of the amount of pumped gases through extraction tubes. • Neural network and fuzzy logic systems used to control gas extraction rate. • Simulation model was designed by using real process data from the thermal power plant. - Abstract: The paper describes the impact of non-condensable gas (NCG) on heat transfer in a steam turbine condenser (STC) and modelling of the steam ejector pump system (SEPS) by controlling the gas extraction rate through extraction tubes. The ideal connection points for the NCG extraction from the STC are identified by analysing the impact of the NCG on the heat transfer and measuring the existing system at a thermal power plant in Slovenia. A simulation model is designed using the Matlab software and Simulink, Neural Net Work, Fuzzy Logic and Curve Fitting Toolboxes, to control gas extraction rate through extraction tubes of the gas pumped from the STC, thus optimising the operation of the steam ejector pump system (SEPS). The

  14. Superradiance energy extraction, black-hole bombs and implications for astrophysics and particle physics

    CERN Document Server

    Brito, Richard; Pani, Paolo

    2015-01-01

    This volume gives a unified picture of the multifaceted subject of superradiance, with a focus on recent developments in the field, ranging from fundamental physics to astrophysics. Superradiance is a radiation enhancement process that involves dissipative systems. With a 60 year-old history, superradiance has played a prominent role in optics, quantum mechanics and especially in relativity and astrophysics. In Einstein's General Relativity, black-hole superradiance is permitted by dissipation at the event horizon, which allows energy extraction from the vacuum, even at the classical level. When confined, this amplified radiation can give rise to strong instabilities known as "blackhole bombs'', which have applications in searches for dark matter, in physics beyond the Standard Model and in analog models of gravity. This book discusses and draws together all these fascinating aspects of superradiance.

  15. Potential of renewable energy systems in China

    International Nuclear Information System (INIS)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad; Zhang, Xiliang

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO 2 emitting country in the world. In this case, the inappropriate energy consumption structure should be changed. As an alternative, a suitable infrastructure for the implementation of renewable energy may serve as a long-term sustainable solution. The perspective of a 100% renewable energy system has been analyzed and discussed in some countries previously. In this process, assessment of domestic renewable energy sources is the first step. Then appropriate methodologies are needed to perform energy system analyses involving the integration of more sustainable strategies. Denmark may serve as an example of how sustainable strategies can be implemented. The Danish system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy system. The conclusion is that China's domestic renewable energy sources are abundant and show the possibility to cover future energy demand; the methodologies used to analyse a 100% renewable energy system are applicable in China. Therefore, proposing an analysis of a 100% renewable energy system in China is not unreasonable. (author)

  16. The control system for SSRF injection and extraction

    International Nuclear Information System (INIS)

    Yuan Qibing; Gu Ming; Wang Ruiping; Cheng Zhihao; Fan Xuerong; Zhu Haijun

    2007-01-01

    This paper introduces the injection and extraction control system design for SSRF, which is a distributed control system aimed at stability and reliability of the pulse power supplies, PPS (Personnel Protection System) and MPS (Machine Protection System). The hardware environment is mainly based on PLC (Programmable Logic Controller), and ARM (Advanced RISC Machine) is also applied for studying stability of the power supplies. WinCC and EPICS (Experimental Physics and Industrial Control System) have been selected as the platforms of SCADA (Supervisory Control and Data Acquisition). For unifying the interfacing to the control computer, all front-end equipments are connected via Industrial Ethernet. (authors)

  17. Evaluation of two typical distributed energy systems

    Science.gov (United States)

    Han, Miaomiao; Tan, Xiu

    2018-03-01

    According to the two-natural gas distributed energy system driven by gas engine driven and gas turbine, in this paper, the first and second laws of thermodynamics are used to measure the distributed energy system from the two parties of “quantity” and “quality”. The calculation results show that the internal combustion engine driven distributed energy station has a higher energy efficiency, but the energy efficiency is low; the gas turbine driven distributed energy station energy efficiency is high, but the primary energy utilization rate is relatively low. When configuring the system, we should determine the applicable natural gas distributed energy system technology plan and unit configuration plan according to the actual load factors of the project and the actual factors such as the location, background and environmental requirements of the project. “quality” measure, the utilization of waste heat energy efficiency index is proposed.

  18. Recent advances in automated system model extraction (SME)

    International Nuclear Information System (INIS)

    Narayanan, Nithin; Bloomsburgh, John; He Yie; Mao Jianhua; Patil, Mahesh B; Akkaraju, Sandeep

    2006-01-01

    In this paper we present two different techniques for automated extraction of system models from FEA models. We discuss two different algorithms: for (i) automated N-DOF SME for electrostatically actuated MEMS and (ii) automated N-DOF SME for MEMS inertial sensors. We will present case studies for the two different algorithms presented

  19. MBA: a literature mining system for extracting biomedical abbreviations.

    Science.gov (United States)

    Xu, Yun; Wang, ZhiHao; Lei, YiMing; Zhao, YuZhong; Xue, Yu

    2009-01-09

    The exploding growth of the biomedical literature presents many challenges for biological researchers. One such challenge is from the use of a great deal of abbreviations. Extracting abbreviations and their definitions accurately is very helpful to biologists and also facilitates biomedical text analysis. Existing approaches fall into four broad categories: rule based, machine learning based, text alignment based and statistically based. State of the art methods either focus exclusively on acronym-type abbreviations, or could not recognize rare abbreviations. We propose a systematic method to extract abbreviations effectively. At first a scoring method is used to classify the abbreviations into acronym-type and non-acronym-type abbreviations, and then their corresponding definitions are identified by two different methods: text alignment algorithm for the former, statistical method for the latter. A literature mining system MBA was constructed to extract both acronym-type and non-acronym-type abbreviations. An abbreviation-tagged literature corpus, called Medstract gold standard corpus, was used to evaluate the system. MBA achieved a recall of 88% at the precision of 91% on the Medstract gold-standard EVALUATION Corpus. We present a new literature mining system MBA for extracting biomedical abbreviations. Our evaluation demonstrates that the MBA system performs better than the others. It can identify the definition of not only acronym-type abbreviations including a little irregular acronym-type abbreviations (e.g., ), but also non-acronym-type abbreviations (e.g., ).

  20. Hybrid Energy System Modeling in Modelica

    Energy Technology Data Exchange (ETDEWEB)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  1. Energy Management Systems to Reduce Electrical Energy Consumption

    OpenAIRE

    Oriti, Giovanna

    2015-01-01

    EXECUTIVE SUMMARY An energy management system comprises an electrical energy storage element such as a battery, renewable electrical energy sources such as solar and wind, a digital signal processing controller and a solid state power converter to interface the elements together. This hardware demonstration in the lab at the Naval Postgraduate School will focus on solid state power conversion methods to improve the reliability and efficiency of electrical energy consumption by Navy facilit...

  2. Minimizing the water and air impacts of unconventional energy extraction

    Science.gov (United States)

    Jackson, R. B.

    2014-12-01

    Unconventional energy generates income and, done well, can reduce air pollution compared to other fossil fuels and even water use compared to fossil fuels and nuclear energy. Alternatively, it could slow the adoption of renewables and, done poorly, release toxic chemicals into water and air. Based on research to date, some primary threats to water resources come from surface spills, wastewater disposal, and drinking-water contamination through poor well integrity. For air resources, an increase in volatile organic compounds and air toxics locally is a potential health threat, but the switch from coal to natural gas for electricity generation will reduce sulfur, nitrogen, mercury, and particulate pollution regionally. Critical needs for future research include data for 1) estimated ultimate recovery (EUR) of unconventional hydrocarbons; 2) the potential for further reductions of water requirements and chemical toxicity; 3) whether unconventional resource development alters the frequency of well-integrity failures; 4) potential contamination of surface and ground waters from drilling and spills; and 5) the consequences of greenhouse gases and air pollution on ecosystems and human health.

  3. Energy Signal Tool for Decision Support in Building Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

    2014-12-01

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

  4. Power electronics for renewable energy systems

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    2009-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......, wind energy and photovoltaics, which by means of power electronics are changing from being minor energy sources to be acting as important power sources in the energy system....

  5. Industrial application of PV/T solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, S.A.; Tripanagnostopoulos, Y.

    2007-01-01

    Hybrid photovoltaic/thermal (PV/T) systems consist of PV modules and heat extraction units mounted together. These systems can simultaneously provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation than plain photovoltaics. Industries show high demand of energy for both heat and electricity and the hybrid PV/T systems could be used in order to meet this requirement. In this paper the application aspects in the industry of PV/T systems with water heat extraction is presented. The systems are analyzed with TRNSYS program for three locations Nicosia, Athens and Madison that are located at different latitudes. The system comprises 300 m 2 of hybrid PV/T collectors producing both electricity and thermal energy and a 10 m 3 water storage tank. The work includes the study of an industrial process heat system operated at two load supply temperatures of 60 deg. C and 80 deg. C. The results show that the electrical production of the system, employing polycrystalline solar cells, is more than the amorphous ones but the solar thermal contribution is slightly lower. A non-hybrid PV system produces about 25% more electrical energy but the present system covers also, depending on the location, a large percentage of the thermal energy requirement of the industry considered. The economic viability of the systems is proven, as positive life cycle savings are obtained in the case of hybrid systems and the savings are increased for higher load temperature applications. Additionally, although amorphous silicon panels are much less efficient than the polycrystalline ones, better economic figures are obtained due to their lower initial cost, i.e., they have better cost/benefit ratio

  6. Extracted-beam-detection system around synchrotron saturne

    International Nuclear Information System (INIS)

    Anne, Remy; Milleret, Gerard; Giuliani, Arlette; Lefol, Andre; Perret, Robert; Poupard, Joseph; Trogno, Andre; Van den Bossche, Maurice; N'Guyen Sieu Viet.

    1977-07-01

    The extracted-beam-detection system working around the synchrotron Saturne is presented. The whole system is composed of about forty multiwire chambers used for beam tuning and providing beams profiles. Optic beam parameters such as position, divergence, dimension, emittance can be easily measured, or calculated with a program running on a computer. They are working in large range intensity beams (10 2 to 5.10 11 p/cm 2 /s of protons, alpha particles, deutons, pions, tritons and electrons [fr

  7. The Dark Energy Survey Data Management System

    International Nuclear Information System (INIS)

    Mohr, Joseph J.; Darnell, J.Anthony; Beldica, Cristina; Barkhouse, Wayne; Bertin, Emmanuel; Dora Cai, Y.; Daues, Gregory E.; Gower, Michelle; Nicolaci da Costa, Luiz A.; Jarvis, Michael; Lin, Huan

    2008-01-01

    The Dark Energy Survey (DES) collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the resulting science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at the National Center for Supercomputing Applications (NCSA) and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our approach leverages investments in publicly available HPC systems, greatly reducing hardware and maintenance costs to the project, which must deploy and maintain only the storage, database platforms and orchestration and web portal nodes that are specific to DESDM. In Fall 2007, we tested the current DESDM system on both simulated and real survey data. We used TeraGrid to process 10 simulated DES nights (3TB of raw data), ingesting and calibrating approximately 250 million objects into the DES Archive database. We also used DESDM to process and calibrate over 50 nights of survey data acquired with the Mosaic2 camera. Comparison to truth tables in the case of the simulated data and internal crosschecks in the case of the real data indicate that astrometric and photometric data quality is excellent

  8. The Dark Energy Survey Data Management System

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, Joseph J.; /Illinois U., Urbana, Astron. Dept. /Illinois U., Urbana; Barkhouse, Wayne; /North Dakota U.; Beldica, Cristina; /Illinois U., Urbana; Bertin, Emmanuel; /Paris, Inst. Astrophys.; Dora Cai, Y.; /NCSA, Urbana; Nicolaci da Costa, Luiz A.; /Rio de Janeiro Observ.; Darnell, J.Anthony; /Illinois U., Urbana, Astron. Dept.; Daues, Gregory E.; /NCSA, Urbana; Jarvis, Michael; /Pennsylvania U.; Gower, Michelle; /NCSA, Urbana; Lin, Huan; /Fermilab /Rio de Janeiro Observ.

    2008-07-01

    The Dark Energy Survey (DES) collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the resulting science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at the National Center for Supercomputing Applications (NCSA) and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our approach leverages investments in publicly available HPC systems, greatly reducing hardware and maintenance costs to the project, which must deploy and maintain only the storage, database platforms and orchestration and web portal nodes that are specific to DESDM. In Fall 2007, we tested the current DESDM system on both simulated and real survey data. We used TeraGrid to process 10 simulated DES nights (3TB of raw data), ingesting and calibrating approximately 250 million objects into the DES Archive database. We also used DESDM to process and calibrate over 50 nights of survey data acquired with the Mosaic2 camera. Comparison to truth tables in the case of the simulated data and internal crosschecks in the case of the real data indicate that astrometric and photometric data quality is excellent.

  9. Electric vehicle energy management system

    Science.gov (United States)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  10. Studies on energy system for an energy-saving society; Sho energy gata shakai ni okeru energy system kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The system to which new energy technology and energy saving technology were introduced was constructed for case studies of urban areas including core cities and the peripheral areas, and the quantitative analysis was conducted on environmental effects, etc. In the energy supply system model, the following element technologies were all considered: cogeneration system, sewage water heat, river water heat, the photovoltaic power generation, energy storage/heat storage/cold heat storage, adsorption type refrigerator, etc. Also considered were power interchange between clusters, system power buying/power selling, heat interchange or no heat interchange, etc. As a result, it was found that when constructing the energy system which synthetically takes into account thermoelectric ratios, rates of simultaneous loads, ratios of daytime/nighttime in the energy supply and demand in the urban area, the energy saving effect multiplicatively increases, and the energy system using cogeneration and unused energy such as refuse and sewage in the urban area and river water brings an energy saving effect of 32% especially in the concentrated cluster. 83 figs., 45 tabs.

  11. Models of Energy Saving Systems

    DEFF Research Database (Denmark)

    Nørgård, Jørgen Stig

    1999-01-01

    only. The need for including also the economic policy in the energy planning is illustrated with what is termed the efficiency pittfall. This points towards difficulties in imaging an integrated resource planning combined with a liberalized market. The three variable parameters, population, energy...... service level and technology are demonstrated as the main determinants of future energy consumption. In the concluding remarks, the main flaws of present energy policy and some visions of the future are discussed....

  12. RF-knockout Extraction System for the CNAO Synchrotron

    CERN Document Server

    Carmignani, Nicola; Serio, Mario; Balbinot, Giovanni; Bressi, Erminia; Caldara, Michele; Pullia, Marco; Bosser, Jacques; Venchi, Giuseppe

    2010-01-01

    The National Centre for Oncological Hadrontherapy (CNAO) is a centre in Italy for the treatment of patients affected by tumours with proton and carbon ions beams accelerated in a synchrotron. The synchrotron extraction method is based on the use of a betatron core. This work aims to verify, through a theoretical study and a simulation, the possibility of using the RF-knockout extraction method exploiting the existing hardware. A simulation program has been written to simulate the extraction system of the synchrotron with the purpose to define the parameters of the radio frequency. Two types of radio frequencies have been compared in order to obtain a constant spill with the minimum ripple: a carrier wave with a frequency and amplitude modulation, and a gaussian narrow band noise modulated in amplitude. Results of the simulation and considerations on the kicker characteristics are presented

  13. Power Electronics for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Choi, U. M.; Lee, K. B.; Blaabjerg, Frede

    2012-01-01

    The use of renewable energy sources are increased because of the depletion of natural resources and the increasing pollution level from energy production. The wind energy and the solar energy are most widely used among the renewable energy sources. Power electronics is needed in almost all kinds...... of renewable energy system. It controls the renewable source and interfaces with the load effectively, which can be grid-connected or van work in stand-alone mode. In this presentation, overview of wind and photovoltaic energy systems are introduced. Next, the power electronic circuits behind the most common...

  14. Energy technology sources, systems and frontier conversion

    CERN Document Server

    Ohta, Tokio

    1994-01-01

    This book provides a concise and technical overview of energy technology: the sources of energy, energy systems and frontier conversion. As well as serving as a basic reference book for professional scientists and students of energy, it is intended for scientists and policy makers in other disciplines (including practising engineers, biologists, physicists, economists and managers in energy related industries) who need an up-to-date and authoritative guide to the field of energy technology.Energy systems and their elemental technologies are introduced and evaluated from the view point

  15. Identification of wind energy systems

    NARCIS (Netherlands)

    Van der Veen, G.J.

    2013-01-01

    In the next decades wind energy is expected to secure a firm share of the total energy production capacity in many countries. To increase competitiveness of wind power with other power sources it is essential to lower the cost of wind energy. Given the design of a turbine, this objective can be

  16. Energy Use in Food System

    NARCIS (Netherlands)

    Dutilh, C.; Blonk, H.; Linnemann, A.R.

    2014-01-01

    Nature generates the raw materials for food, fuelled by energy from the sun. However, before food can be consumed, (mineral) energy is required for cultivation, transportation, preparation and conservation purposes. This paper presents and discusses the energy requirements for various categories of

  17. Integrated electrofuels and renewable energy systems

    DEFF Research Database (Denmark)

    Ridjan, Iva

    energy into chemical energy by means of electrolysers, thus connecting fluctuating renewable energy to the vast amount of fuel storage already available in today’s energy systems. The conducted research indicates that electrofuels for heavy-duty transportation are technically and economically viable...... in energy systems and could play an important role in future energy systems. The cross-sector approach in the fuel production, by redirecting the excess electricity to the transport sector, is creating the flexibility and storage buffer for fluctuating electricity. The key concern in the short term should...

  18. Energy analysis of a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Jensen, Jakob Munch; Jakobsen, Arne; Rasmussen, Bjarne D.

    1999-01-01

    From 1995 to 1998, an energy test method for supermarket refrigeration systems was developed in a project financed by the Danish Energy Agency. The purpose of the energy test method is to provide the means for evaluating the energy efficiency of these systems. The test method requires measurements...... of air temperatures and energy consumption to be carried out on the selected supermarket refrigeration system. In addition to the measurements required by the method, more measurements of individual energy consumptions have been carried in the case described in this paper. The purpose of the additional...

  19. Factors influencing phase-disengagement rates in solvent-extraction systems employing tertiary amine extractants

    International Nuclear Information System (INIS)

    Moyer, B.A.; McDowell, W.J.

    1981-01-01

    The primary purpose of the present investigation was to examine the effects of amine size and structure on phase disengagement. Nine commercial tertiary amines were tested together with four laboratory-quality amines for uranium extraction and both organic-continuous (OC) and aqueous-continuous (AC) phase disengagement under Amex-type conditions. Synthetic acid sulfate solutions with and without added colloidal silica and actual ore leach solutions were used as the aqueous phases. Phase disengagement results were correlated with amine size and branching and solution wetting behavior on a silicate (glass) surface. The results suggest that the performance of some Amex systems may be improved by using branched chain tertiary amine extractants of higher molecular weight than are now normally used

  20. The molecular interactions in the extraction system: acetylacetone-InCl3-water

    International Nuclear Information System (INIS)

    Kulawik, I.; Bogon, E.

    1978-01-01

    The extraction process in the chelate system: acetylacetone-InCl 3 -Water and possibility of the investigations of some physico-chemical properties of this system were discussed. The preliminary measurements for determination the adsorption kinetics and the equilibrium in the system were presented. Also extraction coefficient of indium salt was determined. The results of the principal measurements of the surface and interfacial tension as a function of concentration and temperature in the phases were presented. The measurements were done in different conditions when the both phases were in contact during the same time but in the various temperature. The experimental data served also for the calculation of the work of cohesion and adhesion in the system. The entropy and surface energy of the particular phases of the system were also determined. (author)

  1. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  2. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  3. Abnormally large energy spread of electron beams extracted from plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H [Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Physik

    1976-07-01

    Intense electron beams extracted from DUOPLASMATRON-plasma cathodes show a high degree of modulation in intensity and an abnormally large energy spread; these facts cannot be explained simply by the temperature of the plasma electrons and the discharge structure. However, an analysis of the discharge stability behaviour and the interaction of source- and extracted beam-plasma leads to an explanation for the observed effects.

  4. Energy Systems in the Era of Energy Vectors A Key to Define, Analyze and Design Energy Systems Beyond Fossil Fuels

    CERN Document Server

    Orecchini, Fabio

    2012-01-01

    What lies beyond the era of fossil fuels? While most answers focus on different primary energy resources, Energy Systems in the Era of Energy Vectors provides a completely new approach. Instead of providing a traditional consumption analysis of classical primary energy resources such as oil, coal, nuclear power and gas, Energy Systems in the Era of Energy Vectors describes and assesses energy technologies, markets and future strategies, focusing on their capacity to produce, exchange, and use energy vectors. Special attention is given to the renewable energy resources available in different areas of the world and made exploitable by the integration of energy vectors in the global energy system. Clear definitions of energy vectors and energy systems are used as the basis for a complete explanation and assessment of up-to-date, available technologies for energy resources, transport and storage systems, conversion and use. The energy vectors scheme allows the potential realisation of a worldwide sustainable ener...

  5. Energy storage for power systems

    CERN Document Server

    Ter-Gazarian, Andrei

    2011-01-01

    The supply of energy from primary sources is not constant and rarely matches the pattern of demand from consumers. Electricity is also difficult to store in significant quantities. Therefore, secondary storage of energy is essential to increase generation capacity efficiency and to allow more substantial use of renewable energy sources that only provide energy intermittently. Lack of effective storage has often been cited as a major hurdle to substantial introduction of renewable energy sources into the electricity supply network.This 2nd edition, without changing the existing structure of the

  6. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL January 2018 Blockchain concept demonstrated Blockchain to Enable Energy Market in BlockCypher Partnership NREL is partnering with BlockCypher, a blockchain Web services provider, to demonstrate how blockchain technology can support distributed energy markets. For some, the language and

  7. Arduino-based automation of a DNA extraction system.

    Science.gov (United States)

    Kim, Kyung-Won; Lee, Mi-So; Ryu, Mun-Ho; Kim, Jong-Won

    2015-01-01

    There have been many studies to detect infectious diseases with the molecular genetic method. This study presents an automation process for a DNA extraction system based on microfluidics and magnetic bead, which is part of a portable molecular genetic test system. This DNA extraction system consists of a cartridge with chambers, syringes, four linear stepper actuators, and a rotary stepper actuator. The actuators provide a sequence of steps in the DNA extraction process, such as transporting, mixing, and washing for the gene specimen, magnetic bead, and reagent solutions. The proposed automation system consists of a PC-based host application and an Arduino-based controller. The host application compiles a G code sequence file and interfaces with the controller to execute the compiled sequence. The controller executes stepper motor axis motion, time delay, and input-output manipulation. It drives the stepper motor with an open library, which provides a smooth linear acceleration profile. The controller also provides a homing sequence to establish the motor's reference position, and hard limit checking to prevent any over-travelling. The proposed system was implemented and its functionality was investigated, especially regarding positioning accuracy and velocity profile.

  8. Rethinking Participation in Smart Energy System Planning

    NARCIS (Netherlands)

    Lammers, Imke; Arentsen, Maarten J.

    2017-01-01

    While the technical layout of smart energy systems is well advanced, the implementation of these systems is slowed down by the current decision-making practice regarding such energy infrastructures. We call for a reorganisation of the decision-making process on local energy planning and address the

  9. The intelligent energy system for tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Morthorst, Poul Erik; Bindslev, Henrik; Sonderberg Petersen, Leif

    2010-09-15

    In a future energy system non-fossil fuels have taken the lead, end-use technologies are highly efficient and closely interlinked to supply through intelligent energy systems. Climate change issues, security of supply and economic development need to be pursued concurrently. This calls for flexible and intelligent energy system infrastructures that effectively accommodate large amounts of fluctuating renewable energy and let the end-user interact with the supply through advanced ICT. The second important characteristic is intelligent integration of the entire transport sector. The third key area is advanced energy storage facilities in the system and the introduction of super-grids.

  10. Energy Systems Integration: A Convergence of Ideas

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Garrett, B.; MacMillan, S.; Rice, B.; Komomua, C.; O' Malley, M.; Zimmerle, D.

    2012-07-01

    Energy systems integration (ESI) enables the effective analysis, design, and control of these interactions and interdependencies along technical, economic, regulatory, and social dimensions. By focusing on the optimization of energy from all systems, across all pathways, and at all scales, we can better understand and make use of the co-benefits that result to increase reliability and performance, reduce cost, and minimize environmental impacts. This white paper discusses systems integration and the research in new control architectures that are optimized at smaller scales but can be aggregated to optimize energy systems at any scale and would allow replicable energy solutions across boundaries of existing and new energy pathways.

  11. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  12. Value of sensitive in-situ environmental assets in energy resource extraction

    International Nuclear Information System (INIS)

    Thampapillai, Dodo J.

    2011-01-01

    The extraction of energy resources and the preservation of sensitive in-situ environmental assets are invariably mutually exclusive alternatives. The opportunity cost value of preserving the environmental assets can be assessed by recourse to resource rent taxes, and threshold values. The case study analysis carried out in this paper suggests that the preservation of these assets could be justifiable on the grounds of “acceptable sacrifice”. - Highlights: ► Resource rents owed to the state from energy resource extraction can be significant. ► Benefits if mining energy resources are over-stated when the role of sensitive environmental assets is ignored. ► Threshold values could help to resolve conflicts between environmental preservation and resource extraction.

  13. Adaptive control of energy storage systems for power smoothing applications

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.

    2017-01-01

    Energy storage systems (ESSs) are desired and widely applied for power smoothing especially in systems with renewable generation and pulsed loads. High-pass-filter (HPF) is commonly applied in those applications in which the HPF extracts the high frequency fluctuating power and uses...... that as the power reference for ESS. The cut-off frequency, as the critical parameter, actually decides the power/energy compensated by ESS. Practically the state-of-charge (SoC) of the ESS has to be limited for safety and life-cycle considerations. In this paper an adaptive cut-off frequency design is proposed...

  14. Modular Energy Storage System for Alternative Energy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna Electronics Inc., Auburn Hills, MI (United States); Ervin, Frank [Magna Electronics Inc., Auburn Hills, MI (United States)

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  15. Pulse distortion, energy extraction, and ASE in an HF amplifier with angular multiplexing

    International Nuclear Information System (INIS)

    McGuire, E.J.

    1976-09-01

    It has been proposed that 1 ns pulses can be efficiently extracted from the e-beam initiated HF laser by angular multiplexing, i.e., filling the amplifier with the 1 ns pulses, 1 ns apart in time, each pulse at a slightly different angle; each pulse has an input intensity of 1 W/cm 2 per line and almost fills the amplifier. We have treated this in a one dimensional model, neglecting transverse amplified spontaneous emission. We conclude that the scheme is efficient, and that most of the pulses are amplified but not distorted. The first few pulses are distorted by transient effects and the last pulse has an enhanced tail. The ratio of peak pulse intensity to forward ASE at the output is 10 4 . We then include transverse ASE and find a drastically different situation. ASE saturates the inversion after a short time depending on pulse intensity (4 ns at I/sub o/ = 1 W/cm 2 , 7 ns at I/sub o/ = 100 W/cm 2 ). The saturation time is only weakly dependent on the transverse reflection coefficient. Calculations were done on an amplifier system designed for 10 KJ output. At an incident peak pulse intensity of 10 4 W/cm 2 -line (.77 MW/cm 2 for 77 lines) 2.5 KJ was obtained in amplified pulse energy, i.e., only 6 pulses of the 24 pulse train were fully amplified. The calculations indicate that double passing the pulse train through the amplifier would enhance the energy extracted

  16. The extraction of uranyl nitrate and chloride in octaethyltetraamidopyrophosphate (OETAPP)-HCl, HNO3 systems

    International Nuclear Information System (INIS)

    Jankowska, M.; Kulawik, J.; Mikulski, J.

    1975-01-01

    The extraction of uranium was studied in the system of 0.1 M OETAPP in CHCl 3 /HCl or HNO 3 . The distribution coefficients of HCl and HNO 3 were calculated as a function of OETAPP concentration. The amount of OETAPP in the aqueous phase containing HCl and HNO 3 was found from the measurements of surface tension of this phase. The distribution of HCl or HNO 3 between the organic and aqueous phases was studied as a function of the concentration of the acid used in the aqueous phase. The solvation energy of the extracted complexes was calculated from the measured potential differences. Cohesion and adhesion energies of the studied systems are also given. (author)

  17. Environmentally-adapted local energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Moe, N; Oefverholm, E [NUTEK, Stockholm (Sweden); Andersson, Owe [EKAN Gruppen (Sweden); Froste, H [Swedish Environmental Protection Agency, Stockholm (Sweden)

    1997-10-01

    Energy companies, municipalities, property companies, firms of consultants, environmental groups and individuals are examples of players working locally to shape environmentally adapted energy systems. These players have needed information making them better able to make decisions on cost-efficient, environmentally-adapted energy systems. This book answers many of the questions they have put. The volume is mainly based on Swedish handbooks produced by the Swedish National Board for Industrial and Technical Development, NUTEK, together with the Swedish Environmental Protection Agency. These handbooks have been used in conjunction with municipal energy planning, local Agenda 21 work, to provide a basis for deciding on concrete local energy systems. The contents in brief: -The book throws new light on the concept of energy efficiency; -A section on the environment compares how air-polluting emissions vary with different methods of energy production; -A section contains more than 40 ideas for measures which can be profitable, reduce energy consumption and the impact on the environment all at the same time; -The book gives concrete examples of new, alternative and environmentally-adapted local energy systems. More efficient use of energy is included as a possible change of energy system; -The greatest emphasis is laid upon alternative energy systems for heating. It may be heating in a house, block of flats, office building or school; -Finally, there are examples of environmentally-adapted local energy planning.

  18. Energy Doubler cryoloop temperature monitor system

    International Nuclear Information System (INIS)

    Pucci, G.; Howard, D.

    1981-10-01

    The Cryoloop Temperature Monitor System is a fully electronic system designed to monitor temperature at key points in the Energy Doubler cryoloop system. It is used for cryoloop diagnostics, temperature studies, and cooldown valve control

  19. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  20. Introduction to wind energy systems

    Science.gov (United States)

    Wagner, H.-J.

    2017-07-01

    This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.

  1. Microcontroller based two axis microtron beam extraction system

    International Nuclear Information System (INIS)

    Ashoka, H.; Jathar, M.; Meshram, V.; Rao, Nageswara

    2009-01-01

    Microtron is an electron accelerator which is used to accelerate the electron beam. The Microtron consists of electro magnet with two poles separated by yoke for completion of path for magnetic flux lines. A compact Microtron capable of accelerating electrons up to 12 MeV has been developed in RRCAT. The beam from the Microtron has to be extracted from various orbits depending upon the user requirement (X-Y stage is built with an accuracy of 100 μm). This paper describes the design and development of microcontroller based two axis beam extraction system for Microtron, with a resolution of 50 μm to position the extraction tube with respect to selected orbit. Two axis motion controller is developed using current controlled micro-stepping driver mechanism, which uses Bipolar Chopper Drive for driving stepper motors. Each phase has 2A continuous driving capability. The system is provided with user selectable controls like speed, steps, direction, and mode. This system is provided with RS-232 interface, to accept commands from PC. This system also has local keyboard and LCD interface to use in Stand-alone mode (local Mode). (author)

  2. CMOS circuits for piezoelectric energy harvesters efficient power extraction, interface modeling and loss analysis

    CERN Document Server

    Hehn, Thorsten

    2014-01-01

    This book deals with the challenge of exploiting ambient vibrational energy which can be used to power small and low-power electronic devices, e.g. wireless sensor nodes. Generally, particularly for low voltage amplitudes, low-loss rectification is required to achieve high conversion efficiency. In the special case of piezoelectric energy harvesting, pulsed charge extraction has the potential to extract more power compared to a single rectifier. For this purpose, a fully autonomous CMOS integrated interface circuit for piezoelectric generators which fulfills these requirements is presented.Due

  3. Controlled cooling of an electronic system for reduced energy consumption

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  4. Controlled cooling of an electronic system for reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2018-01-30

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  5. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    distributed energy resourcessolar panels, wind turbines, microgrids, and battery storagethat use smart ) panels respond to changes in solar conditions. In addition to the design and construction of the new

  6. Simulation of equilibrium distribution data in a solvent extraction system

    International Nuclear Information System (INIS)

    Mondal, S.; Giriyalkar, A.B.; Singh, A.K.; Singh, D.K.; Hubli, R.C.

    2014-01-01

    In hydrometallurgy, solvent extraction has been proved to be the purification method to recover metal in high-pure form from impure solution. Any solvent extraction process is complex and based on some operating parameters which always lure the scientists to model them. Operating parameters like aqueous to organic volume ratio and concentration of feed are related to required number of stages for a product with specific recovery. So to determine final feed concentration or aqueous to organic volume ratio for a specific extractant concentration, one needs to carry out a number of extraction experiments tediously supported by analysis. Here an attempt is being made to model the distribution of solute between organic and aqueous phases with minimum analytical and experimental support for any system. The model can predict the effect on solvent extraction for a change in the aqueous to organic volume ratio i.e. slope of operating line, percentage loading of solvent, feed concentration, solvent concentration, number of stages and in the process it can help in optimizing conditions for the best result from a solvent extraction system. Uranium-7% TBP in dodecane system was taken up to validate the model. The predicted values of the model was tallied against uranium distribution between aqueous and organic phases in a running mixer settler. The equation for operating line i.e. straight line is derived from O/A=1.5 and considering barren organic contains 2 ppm uranium: y 1 = 0.667x 0 - .002. The extraction isotherm i.e. parabola equation came as : x 1 = 0.003y 0 2 + 0.723y 0 considering three points i.e. (0,0), (13,16.7) (uranium analysis for first stage of mixer-settler) and (25, 30.69) (feed concentration, loading capacity of solvent). Using these two equations the results that were obtained, predicted the solute distribution across different stages exactly as it is in the running mixer settler. Individual isotherms could also be drawn with the predicted results from the

  7. The energy efficiency of oil sands extraction: Energy return ratios from 1970 to 2010

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Englander, Jacob; Bharadwaj, Sharad

    2013-01-01

    It has been argued that the oil sands industry is not energy efficient: comparatively large energy inputs are required per unit of energy output from oil sands operations. Unfortunately, quantitative work to date in this area has suffered from poor data availability and uncertain methods. We apply a new methodology and new dataset to compute ERRs (energy return ratios) for the oil sands industry. We collected monthly oil sands energy consumption and output data from 1970 to 2010. Current oil sands operations have mine mouth NERs (net energy returns) of about 6 GJ output per GJ of energy consumed and point of use energy returns of about 3 GJ/GJ. Long-term trends show oil sands operations becoming significantly more efficient: point of use NER increased from about 1 GJ/GJ in 1970 to 3 GJ/GJ in 2010. These energy returns are lower than those observed in historical conventional oil operations, but low energy returns are not likely to hinder development of oil sands operations due to the large resource in place and the ability for largely self-fueled pathways to return significant amounts of energy to society for every unit of external energy supplied. - Highlights: • Oil sands operations have become significantly more energy efficient over the history of the industry. • Oil sands production is largely fueled with energy from the bitumen resource itself, making external energy returns high. • Oil sands production is still significantly less efficient than conventional oil production

  8. Energy field of thermodynamic syste'ms

    International Nuclear Information System (INIS)

    Volchenkova, R.A.

    1984-01-01

    To reveal the qualitative and quantitative rules, regulating the properties of macro- and microsystems consideration is being given to the dependence of system enthalpy on environmental conditions. It was concluded that the dependence of material system enthalpy on temperature represents the energy field, containing the energy boundaries of phase states, described by exponential functions, in which the elements are arranged monotonically in the sequence of change of interatomic bonds, correlated with their physicomechanical properties; energy boundaries of phase states at that emanate from a single point, which is a reference a single point, which a reference one for the whole material system and determining its energy state in initial position. The presented energy field of thermodynamic systems enables to consider the change of their physicomechanical properties and energy state in dynamic process, depending on environmental parameters. Energy characteristics of single-component systems (W, Re, Hf, Nb, Mo etc) are given

  9. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei; Pistikopoulos, Efstratios N. [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li, Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach. (author)

  10. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    International Nuclear Information System (INIS)

    Liu Pei; Pistikopoulos, Efstratios N.; Li Zheng

    2010-01-01

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  11. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu Pei [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Pistikopoulos, Efstratios N., E-mail: e.pistikopoulos@imperial.ac.u [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  12. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.; Hagstroem, M.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The main technical constraint in solar energy systems which operate around the year is the lack of suitable long-term energy storage. Conventional solutions to overcome the problem of seasonal storage in PV power systems are to use oversized batteries as a seasonal energy storage, or to use a diesel back-up generator. However, affordable lead-acid batteries are not very suitable for seasonal energy storage because of a high self-discharge rate and enhanced deterioration and divergence of the single cells during prolonged periods of low state of charge in times of low irradiation. These disadvantages can be avoided by a back-up system, e.g. a diesel generator, which car supply energy to the loads and charge the battery to the full state of charge to avoid the above mentioned disadvantages. Unfortunately, diesel generators have several disadvantages, e.g. poor starting reliability, frequent need for maintenance and noise

  13. Microfluidic process monitor for industrial solvent extraction system

    Science.gov (United States)

    Gelis, Artem; Pereira, Candido; Nichols, Kevin Paul Flood

    2016-01-12

    The present invention provides a system for solvent extraction utilizing a first electrode with a raised area formed on its surface, which defines a portion of a microfluidic channel; a second electrode with a flat surface, defining another portion of the microfluidic channel that opposes the raised area of the first electrode; a reversibly deformable substrate disposed between the first electrode and second electrode, adapted to accommodate the raised area of the first electrode and having a portion that extends beyond the raised area of the first electrode, that portion defining the remaining portions of the microfluidic channel; and an electrolyte of at least two immiscible liquids that flows through the microfluidic channel. Also provided is a system for performing multiple solvent extractions utilizing several microfluidic chips or unit operations connected in series.

  14. Development of the High Energy Linac Systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Han Sung; Chung, Byung Chul; Jang, Ji Ho; Gao, Changgi; Li, Yingmin; Sun, An; Tang, Yazhe; Zhang, Lipoing; Hwang, Yong Seok

    2008-05-01

    The main purpose of this project is studying the extension plan of the proton engineering frontier project (PEFP) 100-MeV Linac. It includes three categories. One is studying operation plan of the PEFP linac and its extended accelerators, and developing a distribution system of 100-MeV proton beams with a laser striping. Other is designing superconducting RF (SRF) modules and fabricating and testing a copper cavity model. The other is designing a rapid cycling synchrotron (RCS). The operation scheme of the PEFP linac is related to the optimization in the operation of the 100-MeV linac, 200-MeV SRF, and RCS. We studied several operational method to increase the validity of the accelerators. The beam distribution system has two roles. One is supplying proton beams of 100 MeV to the user group. The laser stripping of the negative hydrogen atoms is used in this case. The other beams are directed to the next high energy accelerators. This study contributes to increase the availability of the proton beams. The SRF is one of candidates to extend the PEFP linac system. Since the accelerating gradient of the SRF is much higher than the normal conducting accelerator, a lot of institutes over the world are developing the SRF structure. Main purposes are designing an SRF module, fabricating and testing an copper model which has similar material properties as Nb of the usual SRF cavity material. The RCS is a synchrotron whose injector is the PEFP 100-MeV linac. Main purposes are determining the lattice structure, studying the fast and slow extraction system, simulating beam behavior in the designed synchrotron. The RCS will be used as the spallation neutron source and tools in the basic and applied science including medical application

  15. Energy Prices and Internal Costs in Croatian Energy System Restructuring

    International Nuclear Information System (INIS)

    Potocnik, V. , Magdic, M.

    1995-01-01

    After social and political changes in 1990, energy prices in Croatia have been getting closer to the West European averages, faster than in the most European countries in transition. The energy prices for industry are almost at the West European level, while the energy prices of electricity and natural gas for households and those of the gasoline are well behind. If the population purchasing power parity (PPP) is taken into account, these relations change. While the internalization of external energy costs is under way in the developed world, it has not practically started yet in Croatia. The Croatian energy system restructuring shall require gradual adjustment of energy prices, together with multistage internalization of external energy costs. (author). 6 refs., 3 tabs., 2 figs

  16. Extraction of Trivalent Actinides and Lanthanides from Californium Campaign Rework Solution Using TODGA-based Solvent Extraction System

    Energy Technology Data Exchange (ETDEWEB)

    Benker, Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dryman, Joshua Cory [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results of tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.

  17. Hydraulic power take-off for wave energy systems

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    2001-01-01

    Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces to a co...... to a continous rotation of an electric generator. The experiments document efficiencies and losses for the conversion process. The experiments are used for verification and update of a computer model.......Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces...

  18. Financial overview of integrated community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Croke, K. G.; Hurter, A. P.; Lerner, E.; Breen, W.; Baum, J.

    1977-01-01

    This report is designed to analyze the commercialization potential of various concepts of community-scale energy systems that have been termed Integrated Community Energy Systems (ICES). A case analysis of alternative ICES concepts applied to a major metropolitan development complex is documented. The intent of this study is twofold: (1) to develop a framework for comparing ICES technologies to conventional energy supply systems and (2) to identify potential problems in the commercialization of new systems approaches to energy conservation. In brief, the ICES Program of the ERDA Office of Energy Conservation is intended to identify the opportunities for energy conservation in the community context through analysis, development, and/or demonstration of: location and design of buildings, building complexes, and infrastructure links; engineering and systems design of existing, emerging, and advanced energy production and delivery technologies and systems; regulatory designs for public planning, administration, and regulation of energy-conserving community development and energy services; and financial planning for energy-conserving community development and energy supply systems.

  19. Energy system impacts of desalination in Jordan

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Lund, Henrik; Mathiesen, Brian Vad

    2014-01-01

    and Multi Stage Flash (MSF) desalination driven by Cogeneration of Heat and Power (CHP). The two systems impact the energy systems in different ways due to the technologies’ particular characteristics. The systems are analyses in the energy systems analysis model EnergyPLAN to determine the impacts......Climate change mitigation calls for energy systems minimising end-use demands, optimising the fuel efficiency of conversion systems, increasing the use of renewable energy sources and exploiting synergies wherever possible. In parallel, global fresh water resources are strained due to amongst...... others population and wealth increase and competitive water uses from agriculture and industry is causing many nations to turn to desalination technologies. This article investigates a Jordanian energy scenario with two different desalination technologies; reverse osmosis (RO) driven by electricity...

  20. An energy saving system for hospital laundries

    Energy Technology Data Exchange (ETDEWEB)

    Katsanis, J.S.; Tsarabaris, P.T.; Polykrati, A.D.; Proios, A.N. [National Technical Univ. of Athens, Athens (Greece). School of Electrical and Computer Engineering; Koufakis, E.I. [Public Power Corp. S.A., Crete (Greece)

    2009-07-01

    Hospital laundries are one of the largest consumers of water and electrical and thermal energy. This paper examined the energy savings achieved by a system using the hot wastewater from the washing process. Hospital laundries consume thermal energy using steam, which is produced in boilers by burning diesel oil or natural gas. Electrical energy for the mechanical drives, ventilation and also the lighting required in the laundry area are big consumers of energy. The paper presented the proposed system and discussed the parameters of the system and system dimensioning. The paper also provided and discussed an interpretation of steam and energy savings. The proposed system was considered to be economically viable, simple in its construction, installation and operation. From the application of the suggested system, the cost savings resulted in a satisfactory payback period for the capital invested of approximately three to five years. 14 refs., 4 tabs., 2 figs.

  1. Analysis of entropy extraction efficiencies in random number generation systems

    Science.gov (United States)

    Wang, Chao; Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-05-01

    Random numbers (RNs) have applications in many areas: lottery games, gambling, computer simulation, and, most importantly, cryptography [N. Gisin et al., Rev. Mod. Phys. 74 (2002) 145]. In cryptography theory, the theoretical security of the system calls for high quality RNs. Therefore, developing methods for producing unpredictable RNs with adequate speed is an attractive topic. Early on, despite the lack of theoretical support, pseudo RNs generated by algorithmic methods performed well and satisfied reasonable statistical requirements. However, as implemented, those pseudorandom sequences were completely determined by mathematical formulas and initial seeds, which cannot introduce extra entropy or information. In these cases, “random” bits are generated that are not at all random. Physical random number generators (RNGs), which, in contrast to algorithmic methods, are based on unpredictable physical random phenomena, have attracted considerable research interest. However, the way that we extract random bits from those physical entropy sources has a large influence on the efficiency and performance of the system. In this manuscript, we will review and discuss several randomness extraction schemes that are based on radiation or photon arrival times. We analyze the robustness, post-processing requirements and, in particular, the extraction efficiency of those methods to aid in the construction of efficient, compact and robust physical RNG systems.

  2. Energy storage systems: power grid and energy market use cases

    Directory of Open Access Journals (Sweden)

    Komarnicki Przemysław

    2016-09-01

    Full Text Available Current power grid and market development, characterized by large growth of distributed energy sources in recent years, especially in Europa, are according energy storage systems an increasingly larger field of implementation. Existing storage technologies, e.g. pumped-storage power plants, have to be upgraded and extended by new but not yet commercially viable technologies (e.g. batteries or adiabatic compressed air energy storage that meet expected demands. Optimal sizing of storage systems and technically and economically optimal operating strategies are the major challenges to the integration of such systems in the future smart grid. This paper surveys firstly the literature on the latest niche applications. Then, potential new use case and operating scenarios for energy storage systems in smart grids, which have been field tested, are presented and discussed and subsequently assessed technically and economically.

  3. Development of alternate extractant systems for fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Vasudeva Rao, P.R.; Suresh, A.; Venkatesan, K.A.; Srinivasan, T.G.; Raj, Baldev

    2007-01-01

    Due to the limitations of TBP in processing of high burn-up, Pu-rich fast reactor fuels, there is a need to develop alternate extractants for fast reactor fuel processing. In this context, our Centre has been examining the suitability of alternate tri-alkyl phosphates. Third phase formation in the extraction of Th(IV) by TBP, tri-n-amyl phosphate (TAP) and tri-2-methyl-butyl phosphate (T2MBP) from nitric acid media has been investigated under various conditions to derive conclusions on their application for extraction of Pu at macro levels. The chemical and radiolytic degradation of tri-n-amyl-phosphate (TAP) diluted in normal paraffin hydrocarbon (NPH) in the presence of nitric acid has been investigated by the measurement of plutonium retention in organic phase. The potential application of room temperature ionic liquids (RTILs) for reprocessing of spent nuclear fuel has been explored. Extraction of uranium (VI) and palladium (II) from nitric acid medium by commercially available RTIL and tri-n-butyl phosphate solution in RTIL have been studied and the feasibility of electrodeposition of uranium as uranium oxide (UO 2 ) and palladium (II) as metallic palladium from the loaded organic phase have been demonstrated. This paper describes results of the above studies and discusses the suitability of the systems for fast reactor fuel reprocessing. (authors)

  4. Energy accounting in nuclear power systems

    International Nuclear Information System (INIS)

    Symonds, J.L.; Essam, P.; Stocks, K.

    1976-01-01

    Energy analysis is a systematic way of tracing and accounting for the flows of energy through an industrial system and apportioning a quantity of the primary energy input to each of the goods and services sent out. The application of energy accounting to nuclear power stations and their growth in generating systems is discussed. Misunderstandings arising from discrepancies and weaknesses in some published simple analyses of hypothetical growth situations are outlined. Results of a more complex energy flow analysis are used to demonstrate that current nuclear energy programs are running at an energy profit. Large fossil fuel savings will occur in a real electrical grid system under anticipated nuclear power growth rates. These savings will give a new dimension in planning the use of fossil energy resources which will still be needed for transport and industrial processes, such as steelmaking, for some time to come. (author)

  5. Energy accounting in nuclear power systems

    International Nuclear Information System (INIS)

    Symonds, J.L.; Essam, P.; Stocks, K.

    1975-10-01

    Energy analysis is a systematic way of tracing and accounting for the flows of energy through an industrial system and apportioning a quantity of the primary energy input of the goods and services sent out. The application of energy accounting to nuclear power stations and their growth in generating systems is discussed. Misunderstandings arising from discrepancies and weaknesses in some published simple analyses of hypothetical growth situations are outlined. Results of a more complex energy flow analysis are used to demonstrate that current nuclear energy programs are running at an energy profit. Large fossil fuel savings will occur in a real electrical grid system under anticipated nuclear power growth rates. These savings will give a new dimension in planning the use of fossil energy resources which will still be needed for transport and industrial processes, such as steel-making, for some time to come. (author)

  6. Solar Energy Systems for Ohioan Residential Homeowners

    Science.gov (United States)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  7. An Energy Conservation Approach to Adsorbate-Induced Surface Stress and the Extraction of Binding Energy Using Nanomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, Lal A [ORNL; Boiadjiev, Vassil I [ORNL; Fernando, G. W. [University of Connecticut, Storrs; Hawk, J. E. [Oak Ridge National Laboratory (ORNL); Wijewardhana, L.C. R. [University of Cincinnati; Gehl, Anthony C [ORNL

    2008-01-01

    Microcantilevers are ideally-suited for the study of surface phenomena due to their large surface-to-volume ratios, which amplify surface effects. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. When the excess energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such experiments were conducted for three binding processes in vapor phase experiments: physisorption, hydrogen bonding, and chemisorption. To our knowledge, such an energy conservation approach has not been taken into account in adsorbate-induced surface effect investigations. Furthermore, these experiments illustrate that detailed molecular-level information on binding energies can be extracted from this simple micromechanical sensor.

  8. Calculations of energy consumption in ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kreslins, Andris; Ramata, Anna [Riga Technical University (Latvia)], e-mail: kreslins@rbf.rtu.lv, email: Anna.Ramata@rtu.lv

    2011-07-01

    Energy cost is an important economic factor in the food industry production process. With the rising price of energy, a reduction in energy consumption would greatly impact production and the end product. The aim of this study was to develop a methodology for optimizing energy consumption. A comparison between a traditional ventilation system and a mechanical system was carried out; the necessary enthalpy for heating the air supply and thermal energy consumption were calculated and compared for both systems during the heating season, from October to April, using climatological data for Latvia. Results showed that energy savings of 46% to 87% can be achieved by applying the methodology in the design of industrial buildings; in addition, a well-designed ventilation system increases the workers' productivity. This study presented a methodology which can optimize energy consumption in the food industry sector.

  9. Energy information systems: a general overview

    International Nuclear Information System (INIS)

    Sen, B.K.

    1991-01-01

    The unprecedented energy crises that engulfed the world in early 1970s brought about a spurt in energy research all over the world, which in turn caused the rapid growth of literature in the field. In order to achieve effective bibliographical control, proper dissemination of information, and rapid access to the desired document, energy information systems of diverse scope came into being. The paper describes the special features of several information systems like (i) International Nuclear Information Systems, which covers world literature on nuclear science and technology (ii) Energy Information Services which takes cares of energy information transfer among the Commonwealth countries of the Asia and Pacific region; (ii) Information Network on New Energy Sources and Technologies for Asia And Pacific. This system is being developed to ensure smooth energy information transfer amongst non-commonwealth countries of Asia and the Pacific. (author)

  10. Energy system impacts of desalination in Jordan

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2014-02-01

    Full Text Available Climate change mitigation calls for energy systems minimising end-use demands, optimising the fuel efficiency of conversion systems, increasing the use of renewable energy sources and exploiting synergies wherever possible. In parallel, global fresh water resources are strained due to amongst others population and wealth increase and competitive water uses from agriculture and industry is causing many nations to turn to desalination technologies. This article investigates a Jordanian energy scenario with two different desalination technologies; reverse osmosis (RO driven by electricity and Multi Stage Flash (MSF desalination driven by Cogeneration of Heat and Power (CHP. The two systems impact the energy systems in different ways due to the technologies’ particular characteristics. The systems are analyses in the energy systems analysis model EnergyPLAN to determine the impacts on energy system performance. Results indicate that RO and MSF are similar in fuel use. While there is no use of waste heat from condensing mode plants, efficiencies for CHP and MSF are not sufficiently good to results in lower fuel usage than RO. The Jordanian energy system is somewhat inflexible giving cause to Critical Excess Electricity Production (CEEP even at relatively modest wind power penetrations. Here RO assists the energy system in decreasing CEEP – and even more if water storage is applied.

  11. Risk management and energy systems

    International Nuclear Information System (INIS)

    Carlevaro, F.; Romerio, F.

    1992-01-01

    In five sessions the following topics were dealt with: risk problems, risk analysis and evaluation tools, risks in industrial societies, risks of energy production, technological risks, ethics and political-social consensus. figs., tabs., refs

  12. Energy analysis of power systems

    International Nuclear Information System (INIS)

    2004-01-01

    Next to economic viability, the holistic energy balance of electricity generation options' is a factor of major importance. All aspects of the energy balance, i. e. all expenditures and all revenues, are compared in a life cycle analysis. This turns out to be a complex task, especially because of the large number of input quantities to be determined, including the balancing limits to be taken into account. The article presents in detail the findings of analyses of energy balances for various types of nuclear power plants as well as electricity generation in fossil-fired power plants, and for renewable energies. The analyses and their databases are discussed. Moreover, the findings are presented for the energetic amortization periods and the amounts of CO 2 emissions specific to the respective generating technologies. (orig.)

  13. Facilitating energy transition through energy commons : An application of socio-ecological systems framework for integrated community energy systems

    NARCIS (Netherlands)

    Acosta, Cristina; Ortega, Mariana; Bunsen, Till; Koirala, B.P.; Ghorbani, A.

    2018-01-01

    Integrated Community Energy Systems (ICES) are an emerging local energy system focusing on the collective use of distributed energy resources (DER). These socio-technical systems (STSs) have a high potential to advance the transition towards socially inclusive, environmentally-friendly energy

  14. Facilitating energy transition through energy commons : An application of socio-ecological systems framework for integrated community energy systems

    NARCIS (Netherlands)

    Acosta, Cristina; Ortega, Mariana; Bunsen, Till; Koirala, Binod Prasad; Ghorbani, Amineh

    2018-01-01

    Integrated Community Energy Systems (ICES) are an emerging local energy system focusing on the collective use of distributed energy resources (DER). These socio-technical systems (STSs) have a high potential to advance the transition towards socially inclusive, environmentally-friendly energy

  15. Energy database system of NEDO

    International Nuclear Information System (INIS)

    Kimura, Noburu

    1990-01-01

    As to the offer of technical information and others to foreign countries by Japan, the state of more import than export has been criticized internationally. The NEDO energy data base explained in this report is to make the international contribution of information, and based on the Energy Technology Data Exchange Agreement concluded between 13 countries taking part in the IEA and France, the participating countries offer their own technical information on energy, the operating organization collects them and makes the data base, and NEDO systematizes it for distribution. The IEA and the activities of exchanging information, the course of starting the Energy Technology Data Exchange Agreement and its contents, and the works of NEDO based on the Agreement are described. As for the literatures which are not sold on the market, their texts are exchanged. As to the composition of the data base, according to the example in 1988, about 1/3 were directly related to energy, and the rest 2/3 were indirectly related to energy technology. The features of the data base and the method of its utilization are explained. (K.I.)

  16. PCA Fault Feature Extraction in Complex Electric Power Systems

    Directory of Open Access Journals (Sweden)

    ZHANG, J.

    2010-08-01

    Full Text Available Electric power system is one of the most complex artificial systems in the world. The complexity is determined by its characteristics about constitution, configuration, operation, organization, etc. The fault in electric power system cannot be completely avoided. When electric power system operates from normal state to failure or abnormal, its electric quantities (current, voltage and angles, etc. may change significantly. Our researches indicate that the variable with the biggest coefficient in principal component usually corresponds to the fault. Therefore, utilizing real-time measurements of phasor measurement unit, based on principal components analysis technology, we have extracted successfully the distinct features of fault component. Of course, because of the complexity of different types of faults in electric power system, there still exists enormous problems need a close and intensive study.

  17. Model-Based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Elizabeth M. [General Electric Global Research Center, Niskayuna, NY (United States); Moore, David Roger [General Electric Global Research Center, Niskayuna, NY (United States); Li, Li [Pennsylvania State Univ., University Park, PA (United States); Kumar, Manish [Pennsylvania State Univ., University Park, PA (United States)

    2017-05-28

    Over the last 1.5 years, GE Global Research and Pennsylvania State University defined a model-based, scalable, and multi-stage extracted water desalination system that yields clean water, concentrated brine, and, optionally, salt. The team explored saline brines that ranged across the expected range for extracted water for carbon sequestration reservoirs (40,000 up to 220,000 ppm total dissolved solids, TDS). In addition, the validated the system performance at pilot scale with field-sourced water using GE’s pre-pilot and lab facilities. This project encompassed four principal tasks, in addition to Project Management and Planning: 1) identify a deep saline formation carbon sequestration site and a partner that are suitable for supplying extracted water; 2) conduct a techno-economic assessment and down-selection of pre-treatment and desalination technologies to identify a cost-effective system for extracted water recovery; 3) validate the downselected processes at the lab/pre-pilot scale; and 4) define the scope of the pilot desalination project. Highlights from each task are described below: Deep saline formation characterization The deep saline formations associated with the five DOE NETL 1260 Phase 1 projects were characterized with respect to their mineralogy and formation water composition. Sources of high TDS feed water other than extracted water were explored for high TDS desalination applications, including unconventional oil and gas and seawater reverse osmosis concentrate. Technoeconomic analysis of desalination technologies Techno-economic evaluations of alternate brine concentration technologies, including humidification-dehumidification (HDH), membrane distillation (MD), forward osmosis (FO), turboexpander-freeze, solvent extraction and high pressure reverse osmosis (HPRO), were conducted. These technologies were evaluated against conventional falling film-mechanical vapor recompression (FF-MVR) as a baseline desalination process. Furthermore, a

  18. Mainstreaming Governance in Tajikistan through its Energy, Extractives, and Public Procurement Sectors

    OpenAIRE

    Mikulova, Kristina; Johns, Kimberly; Kunicova, Jana

    2014-01-01

    The governance partnership facility (GPF) supported program mainstreaming governance in Tajikistan portfolio (FY2010-14) was a landmark achievement in applying governance analysis and looking for entry points to improve transparency and accountability in key sectors in Tajikistan. This brief provides recommendations from its energy-efficiency audit, the extractive industries sector, and pu...

  19. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose. Chapter 3 presents a sequential simulation model of a general wind hydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to

  20. Programming models for energy-aware systems

    Science.gov (United States)

    Zhu, Haitao

    Energy efficiency is an important goal of modern computing, with direct impact on system operational cost, reliability, usability and environmental sustainability. This dissertation describes the design and implementation of two innovative programming languages for constructing energy-aware systems. First, it introduces ET, a strongly typed programming language to promote and facilitate energy-aware programming, with a novel type system design called Energy Types. Energy Types is built upon a key insight into today's energy-efficient systems and applications: despite the popular perception that energy and power can only be described in joules and watts, real-world energy management is often based on discrete phases and modes, which in turn can be reasoned about by type systems very effectively. A phase characterizes a distinct pattern of program workload, and a mode represents an energy state the program is expected to execute in. Energy Types is designed to reason about energy phases and energy modes, bringing programmers into the optimization of energy management. Second, the dissertation develops Eco, an energy-aware programming language centering around sustainability. A sustainable program built from Eco is able to adaptively adjusts its own behaviors to stay on a given energy budget, avoiding both deficit that would lead to battery drain or CPU overheating, and surplus that could have been used to improve the quality of the program output. Sustainability is viewed as a form of supply and demand matching, and a sustainable program consistently maintains the equilibrium between supply and demand. ET is implemented as a prototyped compiler for smartphone programming on Android, and Eco is implemented as a minimal extension to Java. Programming practices and benchmarking experiments in these two new languages showed that ET can lead to significant energy savings for Android Apps and Eco can efficiently promote battery awareness and temperature awareness in real

  1. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning me...

  2. Smart and usable home energy management systems

    NARCIS (Netherlands)

    Van Dam, S.S.

    2009-01-01

    This paper reviews research into Home Energy Management Systems (HEMS). These are intermediary products that can visualize, manage, and/or monitor the energy use of other products or whole households. HEMS have lately received increasing attention for their possible role in conserving energy within

  3. Combined solar collector and energy storage system

    Science.gov (United States)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  4. Energy Systems Integration: Demonstrating Distributed Resource Communications

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Overview fact sheet about the Electric Power Research Institute (EPRI) and Schneider Electric Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  5. Model-based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, Rachel; Dees, Elizabeth

    2017-03-23

    The focus of this research effort centered around water recovery from high Total Dissolved Solids (TDS) extracted waters (180,000 mg/L) using a combination of water recovery (partial desalination) technologies. The research goals of this project were as follows: 1. Define the scope and test location for pilot-scale implementation of the desalination system, 2.Define a scalable, multi-stage extracted water desalination system that yields clean water, concentrated brine, and, salt from saline brines, and 3. Validate overall system performance with field-sourced water using GE pre-pilot lab facilities. Conventional falling film-mechanical vapor recompression (FF-MVR) technology was established as a baseline desalination process. A quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to the base case FF-MVR technology, including but not limited to: membrane distillation (MD), forward osmosis (FO), and high pressure reverse osmosis (HPRO). Technoeconomic analysis of high pressure reverse osmosis (HPRO) was performed comparing the following two cases: 1. a hybrid seawater RO (SWRO) plus HPRO system and 2. 2x standard seawater RO system, to achieve the same total pure water recovery rate. Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Improvements in membrane materials of construction were considered as necessary next steps to achieving further improvement in element performance at high pressure. Several modifications showed promising results in their ability to withstand close to 5,000 PSI without gross failure.

  6. Five paradox on energy system management

    International Nuclear Information System (INIS)

    Frisch, J.R.

    1995-01-01

    Five paradox are detailed on energy management: internationalization of energy questions but always regional management is present, short term problems must be solved but without forgetting long term problems in environment, the third paradox is : we have time but we are in a hurry, we have reserves but ten, twenty or thirty years are necessary to adapt our energy system; the fourth paradox is : we cannot manage energy by managing only energy, for example : finances system development and environment importance. The last and fifth paradox is : the market, yes, but state too, as regulative force

  7. Energy Systems Modelling Research and Analysis

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Alberg Østergaard, Poul

    2015-01-01

    This editorial introduces the seventh volume of the International Journal of Sustainable Energy Planning and Management. The volume presents part of the outcome of the project Energy Systems Modelling Research and Analysis (ENSYMORA) funded by the Danish Innovation Fund. The project carried out b...... by 11 university and industry partners has improved the basis for decision-making within energy planning and energy scenario making by providing new and improved tools and methods for energy systems analyses.......This editorial introduces the seventh volume of the International Journal of Sustainable Energy Planning and Management. The volume presents part of the outcome of the project Energy Systems Modelling Research and Analysis (ENSYMORA) funded by the Danish Innovation Fund. The project carried out...

  8. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  9. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows low as 10% of its full load level). The 60-ton chiller cools water with continuous thermal control

  10. Implementation of Renewable Energy Systems in Denmark

    DEFF Research Database (Denmark)

    Meyer, Niels I

    1997-01-01

    Denmark has been one of the first countries in the world to commit itself to a sustainable energy development. This has been substantiated by two official action plans from 1990 and 1996 with emphasis on energy efficiency and supply systems based on renewable energy. In year 2005, renewable energy...... sources are planned to cover 12-14% and in year 2030 about 35% of total Danish energy demand. This paper reviews the experiences with implementation of renewable energy in Denmark with a focus on wind power and biomass....

  11. An energy storage and regeneration system

    DEFF Research Database (Denmark)

    2006-01-01

      The present invention relates to a method and a system for storing excess energy produced by an electric power plant during periods of lower energy demand than the power plant production capacity. The excess energy is stored by hydrolysis of water and storage of hydrogen and oxygen in underground...... caverns. When the energy demand exceeds the power production capacity of the plant, the stored gases are burned and the thermal energy is converted into electricity in gas turbine generators. The regenerated electrical power is then used to supplement the output of the electric power plant to meet...... the higher level of energy demand....

  12. Microelectronic circuit design for energy harvesting systems

    CERN Document Server

    Di Paolo Emilio, Maurizio

    2017-01-01

    This book describes the design of microelectronic circuits for energy harvesting, broadband energy conversion, new methods and technologies for energy conversion. The author also discusses the design of power management circuits and the implementation of voltage regulators. Coverage includes advanced methods in low and high power electronics, as well as principles of micro-scale design based on piezoelectric, electromagnetic and thermoelectric technologies with control and conditioning circuit design. Provides a single-source reference to energy harvesting and its applications; Serves as a practical guide to microelectronics design for energy harvesting, with application to mobile power supplies; Enables readers to develop energy harvesting systems for wearable/mobile electronics.

  13. Performance of multi-aperture grid extraction systems for an ITER-relevant RF-driven negative hydrogen ion source

    Science.gov (United States)

    Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Fröschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Stäbler, A.; Wünderlich, D.

    2011-07-01

    The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 × 0.9 m2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( {\\sim}\\frac{1}{8} of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density—being consistent with ion trajectory calculations—and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.

  14. Performance of multi-aperture grid extraction systems for an ITER-relevant RF-driven negative hydrogen ion source

    International Nuclear Information System (INIS)

    Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Froeschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Staebler, A.; Wuenderlich, D.

    2011-01-01

    The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 x 0.9 m 2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( ∼ 1/8 of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density-being consistent with ion trajectory calculations-and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.

  15. ADVANCES IN ZERO ENERGY TRANSPORTATION SYSTEMS

    OpenAIRE

    Ahmad, Othman

    2017-01-01

    Hyperloop mass transportation systems are activelydeveloped at the moment. They represent the forefront development of the ZeroEnergy Transportation systems where air drag is minimized by travelling in avacuum and friction is reduced by non-contact bearings. Hyperloop supportersare confident that the cost of their transportation systems would be lowcompared to existing transportation systems because of the low loss andtherefore low energy consumption as well as other cost-saving techniquesdoc...

  16. Comparative risk assessment of total energy systems

    International Nuclear Information System (INIS)

    Soerensen, B.

    1982-01-01

    The paper discusses a methodology for total impact assessment of energy systems, ideally evaluating all the impacts that a given energy system has on the society in which it is imbedded or into which its introduction is being considered. Impacts from the entire energy conversion chain ('fuel cycle' if the system is fuel-based), including energy storage, transport and transmission, as well as the institutions formed in order to manage the system, should be compared on the basis of the energy service provided. A number of impacts are considered, broadly classified as impacts on satisfaction of biological needs, on health, on environment, on social relations and on the structure of society. Further considerations include impacts related to cost and resilience, and, last but not least, impacts on global relations. The paper discusses a number of published energy studies in the light of the comparative impact assessment methodology outlined above. (author)

  17. Biodigester as an energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Borges Neto, M.R.; Lopes, L.C.N. [Federal Institute of Education, Science and Technology of Sertao Pernambucano (IFSertao-PE), Petrolina, PE (Brazil)], Emails: rangel@cefetpet.br; Pinheiro Neto, J.S.; Carvalho, P.C.M. [Federal University of Ceara (UFC), Fortaleza, CE (Brazil). Dept. of Electrical Engineering], Emails: neto@tbmtextil.com.br, carvalho@dee.ufc.br; Silveira, G.C.; Moreira, A.P.; Borges, T.S.H. [Federal Institute of Education, Science and Technology of Ceara (IFCE), Fortaleza, CE (Brazil)], Emails: gcsilveira@cefet-ce.br, apmoreira@ifce.edu.br, thatyanys@yahoo.com.br

    2009-07-01

    Electricity supply for rural and remote areas is becoming an increasing priority to developing countries. The high initial cost of renewable energy based unities usually needs an energy storage system; due its operational and even replacement cost contributes to a higher final cost. The choice of energy storage systems depends on the sort and size of adopted power supply. This paper has a main goal to introduce a renewable energy based storage system weakly explored in Brazil: biogas from anaerobic digestion. It also brings a review of the main energy storage systems applied to electrical energy generation. As reference an experiment with an adapted Indian digester of 5 m{sup 3} that produced nearly 2m{sup 3} of biogas daily. The obtained biogas met the consumption of at least 4 typical Brazilian low income households with installed load of 500 W each and was enough to replace the use of 420 Ah lead-acid batteries. (author)

  18. Wind energy systems information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

  19. Restructuring the Energy System. Report of the Energy Commission

    International Nuclear Information System (INIS)

    1995-01-01

    The commission was instructed to examine the current energy policy programs for restructuring and developing the energy system (i.e. phasing out nuclear power and moving to renewable sources) and to analyze the needs for changes; to propose measures for ensuring an efficient electricity supply under the new conditions of a liberalized electricity market; and to present proposals for a schedule for reorganizing the energy system. The report gives a full picture of the Swedish energy system including supply, consumption, prices, environmental impacts, R and D, and international aspects. The commission concludes that one nuclear power plant can be closed during the 1990's without upsetting the power balances. Phasing out all nuclear plants by year 2010 will create problems with the price levels of electricity supply, and will conflict with the CO 2 reduction objective. The proposals for economic control measures for performing the restructuring include: An environmental bonus (or investment support) for environmentally sound electricity production financed by an electricity tax, a tax on nuclear power increasing with the age of the reactors, a reorganization fund to finance new and environmentally acceptable electricity production. Also, energy research should be allotted greater resources, in particular for new technology for electricity production. The commission points towards the possibilities for reducing energy consumption, and especially electricity consumption. Space heating should gradually move away from electric heating. Examples are given on measures for improving energy efficiency and problems with financing such measures should be studied

  20. Energy accounting and optimization for mobile systems

    Science.gov (United States)

    Dong, Mian

    Energy accounting determines how much a software process contributes to the total system energy consumption. It is the foundation for evaluating software and has been widely used by operating system based energy management. While various energy accounting policies have been tried, there is no known way to evaluate them directly simply because it is hard to track every hardware use by software in a heterogeneous multi-core system like modern smartphones and tablets. In this thesis, we provide the ground truth for energy accounting based on multi-player game theory and offer the first evaluation of existing energy accounting policies, revealing their important flaws. The proposed ground truth is based on Shapley value, a single value solution to multi-player games of which four axiomatic properties are natural and self-evident to energy accounting. To obtain the Shapley value-based ground truth, one only needs to know if a process is active during the time under question and the system energy consumption during the same time. We further provide a utility optimization formulation of energy management and show, surprisingly, that energy accounting does not matter for existing energy management solutions that control the energy use of a process by giving it an energy budget, or budget based energy management (BEM). We show an optimal energy management (OEM) framework can always outperform BEM. While OEM does not require any form of energy accounting, it is related to Shapley value in that both require the system energy consumption for all possible combination of processes under question. We provide a novel system solution that meet this requirement by acquiring system energy consumption in situ for an OS scheduler period, i.e.,10 ms. We report a prototype implementation of both Shapley value-based energy accounting and OEM based scheduling. Using this prototype and smartphone workload, we experimentally demonstrate how erroneous existing energy accounting policies can

  1. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  2. A fully continuous supercritical fluid extraction system for contaminated soil

    International Nuclear Information System (INIS)

    Ryan, M.; Stiver, W.H.

    2007-01-01

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO 2 ) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs

  3. A fully continuous supercritical fluid extraction system for contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.; Stiver, W.H. [Guelph Univ., ON (Canada). School of Engineering

    2007-04-15

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO{sub 2}) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs.

  4. Expected energy production evaluation for photovoltaic systems

    DEFF Research Database (Denmark)

    Ding, Yi; Østergaard, Jacob; Peng, Wang

    2011-01-01

    A photovoltaic (PV) system consists of many solar panels, which are connected in series, parallel or a combination of both. Energy production for the PV system with various configurations is different. In this paper, a methodology is developed to evaluate and analyze the expected energy production...

  5. New coal-based energy systems

    International Nuclear Information System (INIS)

    Barnert, H.

    1986-01-01

    Conversion of coal into liquid fuels or into coal gas is considered and the use of high temperature nuclear reactors whose waste heat can be used for remote (district) heating mentioned. The use of high temperature reactors as energy source for coal gasification is also examined and, finally, the extraction of heat from combined coal, steel and high temperature nuclear reactors is suggested. (G.M.E.)

  6. Energy system impacts of desalination in Jordan

    OpenAIRE

    Poul Alberg Østergaard; Henrik Lund; Brian Vad Mathiesen

    2014-01-01

    Climate change mitigation calls for energy systems minimising end-use demands, optimising the fuel efficiency of conversion systems, increasing the use of renewable energy sources and exploiting synergies wherever possible. In parallel, global fresh water resources are strained due to amongst others population and wealth increase and competitive water uses from agriculture and industry is causing many nations to turn to desalination technologies. This article investigatesa Jordanian energy sc...

  7. Energy consumption in the food supply system

    DEFF Research Database (Denmark)

    Kamp, Andreas; Østergård, Hanne; Hauggaard-Nielsen, Henrik

    2016-01-01

    Historically, productivity gains have been possible by the application of energy intensive technologies. In the future, new technologies and practices based on energy from renewable resources are central for the development of our food supply system and they will contribute in two different ways....... As the energy sector increasingly bases energy supply on renewable sources, the energy requirements of the food sector will automatically substitute renewable energy for non-renewable energy in all stages of food supply. In principle, the food sector does not need to change if renewable energy is sufficient...... and available as the energy carriers that we are used to today. We may think of this as passive adaptation. A passive adaptation strategy may support a development towards the image ‘high input – high output’. The food sector, however, may also actively adapt to a future without fossil fuels and change...

  8. Modelling energy systems for developing countries

    International Nuclear Information System (INIS)

    Urban, F.; Benders, R.M.J.; Moll, H.C.

    2007-01-01

    Developing countries' energy use is rapidly increasing, which affects global climate change and global and regional energy settings. Energy models are helpful for exploring the future of developing and industrialised countries. However, energy systems of developing countries differ from those of industrialised countries, which has consequences for energy modelling. New requirements need to be met by present-day energy models to adequately explore the future of developing countries' energy systems. This paper aims to assess if the main characteristics of developing countries are adequately incorporated in present-day energy models. We first discuss these main characteristics, focusing particularly on developing Asia, and then present a model comparison of 12 selected energy models to test their suitability for developing countries. We conclude that many models are biased towards industrialised countries, neglecting main characteristics of developing countries, e.g. the informal economy, supply shortages, poor performance of the power sector, structural economic change, electrification, traditional bio-fuels, urban-rural divide. To more adequately address the energy systems of developing countries, energy models have to be adjusted and new models have to be built. We therefore indicate how to improve energy models for increasing their suitability for developing countries and give advice on modelling techniques and data requirements

  9. Sustainable automotive energy system in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiliang (ed.) [Tsinghua Univ. Beijing (China). China Automotive Energy Research Center

    2013-06-01

    The latest research available on automotive energy system analysis in China. Thorough introduction on automotive energy system in China. Provides the broad perspective to aid in planning sustainable road transport in China. Sustainable Automotive Energy System in China aims at identifying and addressing the key issues of automotive energy in China in a systematic way, covering demography, economics, technology and policy, based on systematic and in-depth, multidisciplinary and comprehensive studies. Five scenarios of China's automotive energy development are created to analyze the possible contributions in the fields of automotive energy, vehicle fuel economy improvement, electric vehicles, fuel cell vehicles and the 2nd generation biofuel development. Thanks to this book, readers can gain a better understanding of the nature of China's automotive energy development and be informed about: (1) the current status of automotive energy consumption, vehicle technology development, automotive energy technology development and policy; (2) the future of automotive energy development, fuel consumption, propulsion technology penetration and automotive energy technology development, and (3) the pathways of sustainable automotive energy transformation in China, in particular, the technological and the policy-related options. This book is intended for researchers, engineers and graduates students in the low-carbon transportation and environmental protection field.

  10. Monitoring systems and energy management

    International Nuclear Information System (INIS)

    Roldan Oliva, J. J.

    2011-01-01

    The current situation in the general economic framework as well as the environmental context that surrounds us, has meant that increasingly more companies and institutions concerned with the control and expenditure of resources used. Among these, as an element common to any industry, building or installation, are energy resources, respondents more strongly every year. (Author)

  11. Internet Renewable energy Information System (IRIS)

    DEFF Research Database (Denmark)

    Bäurle, Britta; Nielsen, Vilhjalmur; Ménard, Lionel

    1999-01-01

    Even though the Internet is now a widely accessible data source, the unorganised flood of information makes a specific request e.g. for renewable energy products inefficient. In addition, existing databases on renewable energies are often old and incomplete. The objective of IRIS has been...... to organise and retrieve renewable energy product information on the Internet instead of collecting it manually. Updating coincides with the self interestself-interest of manufacturers to present their latest renewable energy products on their own HTML documents. IRIS is based on a set of powerful tools...... and intends to find, extract, collect and index HTML documents with standardised META tags that are widely spread across web servers on the Internet. This paper presents the structure of IRIS, the software tools, and gives one example of how to categorise and prepare web-sites with product information...

  12. Contribution to the modelization of liquid-liquid extraction systems. Application to metallic nitrate extraction by TBP in nitric medium

    International Nuclear Information System (INIS)

    Ly, J.

    1984-10-01

    The validity of theoretical expression for activity coefficients, in concentrated aqueous solution, proposed by Mikulin-Stokes-Robinson and Ryazanov-Vdovenko is confirmed by numerous tests. This allows a better control of the reactivity of chemicals in the extraction system: nitric aqueous solution-TBP organic solution used in nuclear hydrometallurgy. A reliable methodology is proposed for the study of metal extraction mechanism. Application to palladium (II) evidences extracted species in the organic phase. Influence of degradation product from extractant radiolysis on the behavior of this metallic element is effected. 187 refs [fr

  13. Thermal energy systems design and analysis

    CERN Document Server

    Penoncello, Steven G

    2015-01-01

    IntroductionThermal Energy Systems Design and AnalysisSoftwareThermal Energy System TopicsUnits and Unit SystemsThermophysical PropertiesEngineering DesignEngineering EconomicsIntroductionCommon Engineering Economics NomenclatureEconomic Analysis Tool: The Cash Flow DiagramTime Value of MoneyTime Value of Money ExamplesUsing Software to Calculate Interest FactorsEconomic Decision MakingDepreciation and TaxesProblemsAnalysis of Thermal Energy SystemsIntroductionNomenclatureThermophysical Properties of SubstancesSuggested Thermal Energy Systems Analysis ProcedureConserved and Balanced QuantitiesConservation of MassConservation of Energy (The First Law of Thermodynamics)Entropy Balance (The Second Law of Thermodynamics)Exergy Balance: The Combined LawEnergy and Exergy Analysis of Thermal Energy CyclesDetailed Analysis of Thermal Energy CyclesProblemsFluid Transport in Thermal Energy SystemsIntroductionPiping and Tubing StandardsFluid Flow FundamentalsValves and FittingsDesign and Analysis of Pipe NetworksEconomi...

  14. Energy Production System Management - Renewable energy power supply integration with Building Automation System

    International Nuclear Information System (INIS)

    Figueiredo, Joao; Martins, Joao

    2010-01-01

    Intelligent buildings, historically and technologically, refers to the integration of four distinctive systems: Building Automation Systems (BAS), Telecommunication Systems, Office Automation Systems and Computer Building Management Systems. The increasing sophisticated BAS has become the 'heart and soul' of modern intelligent buildings. Integrating energy supply and demand elements - often known as Demand-Side Management (DSM) - has became an important energy efficiency policy concept. Nowadays, European countries have diversified their power supplies, reducing the dependence on OPEC, and developing a broader mix of energy sources maximizing the use of renewable energy domestic sources. In this way it makes sense to include a fifth system into the intelligent building group: Energy Production System Management (EPSM). This paper presents a Building Automation System where the Demand-Side Management is fully integrated with the building's Energy Production System, which incorporates a complete set of renewable energy production and storage systems.

  15. Birch Bark Dry Extract by Supercritical Fluid Technology: Extract Characterisation and Use for Stabilisation of Semisolid Systems

    Directory of Open Access Journals (Sweden)

    Markus Armbruster

    2017-03-01

    Full Text Available Triterpene compounds like betulin, betulinic acid, erythrodiol, oleanolic acid and lupeol are known for many pharmacological effects. All these substances are found in the outer bark of birch. Apart from its pharmacological effects, birch bark extract can be used to stabilise semisolid systems. Normally, birch bark extract is produced for this purpose by extraction with organic solvents. Employing supercritical fluid technology, our aim was to develop a birch bark dry extract suitable for stabilisation of lipophilic gels with improved properties while avoiding the use of toxic solvents. With supercritical carbon dioxide, three different particle formation methods from supercritical solutions have been tested. First, particle deposition was performed from a supercritical solution in an expansion chamber. Second, the Rapid Expansion of Supercritical Solutions (RESS method was used for particle generation. Third, a modified RESS-procedure, forming the particles directly into the thereby gelated liquid, was developed. All three methods gave yields from 1% to 5.8%, depending on the techniques employed. The triterpene composition of the three extracts was comparable: all three gave more stable oleogels compared to the use of an extract obtained by organic solvent extraction. Characterizing the rheological behaviour of these gels, a faster gelling effect was seen together with a lower concentration of the extract required for the gel formation with the supercritical fluid (SCF-extracts. This confirms the superiority of the supercritical fluid produced extracts with regard to the oleogel forming properties.

  16. Self-consistent nuclear energy systems

    International Nuclear Information System (INIS)

    Shimizu, A.; Fujiie, Y.

    1995-01-01

    A concept of self-consistent energy systems (SCNES) has been proposed as an ultimate goal of the nuclear energy system in the coming centuries. SCNES should realize a stable and unlimited energy supply without endangering the human race and the global environment. It is defined as a system that realizes at least the following four objectives simultaneously: (a) energy generation -attain high efficiency in the utilization of fission energy; (b) fuel production - secure inexhaustible energy source: breeding of fissile material with the breeding ratio greater than one and complete burning of transuranium through recycling; (c) burning of radionuclides - zero release of radionuclides from the system: complete burning of transuranium and elimination of radioactive fission products by neutron capture reactions through recycling; (d) system safety - achieve system safety both for the public and experts: eliminate criticality-related safety issues by using natural laws and simple logic. This paper describes the concept of SCNES and discusses the feasibility of the system. Both ''neutron balance'' and ''energbalance'' of the system are introduced as the necessary conditions to be satisfied at least by SCNES. Evaluations made so far indicate that both the neutron balance and the energy balance can be realized by fast reactors but not by thermal reactors. Concerning the system safety, two safety concepts: ''self controllability'' and ''self-terminability'' are introduced to eliminate the criticality-related safety issues in fast reactors. (author)

  17. The comparison of extraction of energy in two-cascade and one-cascade targets

    Energy Technology Data Exchange (ETDEWEB)

    Dolgoleva, G. V., E-mail: dolgg@list.ru [National Research Tomsk State University, 36, Lenin Ave., 634050, Tomsk (Russian Federation); Ponomarev, I. V., E-mail: wingof17@mail.ru [Moscow State University, Department of Mechanics and Mathematics, 1, Vorobyovy Gory, Moscow,119961 (Russian Federation)

    2016-01-15

    The paper is devoted to numerical designing of cylindrical microtargets on the basis of shock-free compression. When designing microtargets for the controlled thermonuclear fusion, the core tasks are to select geometry and make-up of layers, and the law of energy embedding as well, which allow receiving of “burning” of deuterium- tritium mix, that is, the existence of thermonuclear reactions of working area. Yet, the energy yield as a result of thermonuclear reactions has to be more than the embedded energy (the coefficient of amplification is more than a unit). So, an important issue is the value of the embedded energy. The purpose of the present paper is to study the extraction of energy by working DT area in one-cascade and two-cascade targets. A bigger extraction of energy will contribute to a better burning of DT mix and a bigger energy yield as a result of thermonuclear reactions. The comparison of analytical results to numerical calculations is carried out. The received results show advantages of a two-cascade target compared to a one-cascade one.

  18. Planetary Airplane Extraction System Development and Subscale Testing

    Science.gov (United States)

    Teter, John E., Jr.

    2006-01-01

    The Aerial Regional-scale Environmental Survey (ARES) project will employ an airplane as the science platform from which to collect science data in the previously inaccessible, thin atmosphere of Mars. In order for the airplane to arrive safely in the Martian atmosphere, a number of sequences must occur. A critical element in the entry sequence at Mars is an extraction maneuver to separate the airplane quickly (in less than a second) from its protective backshell to reduce the possibility of re-contact, potentially leading to mission failure. This paper describes the development, testing, and lessons learned from building a 1/3 scale model of this airplane extraction system. This design, based on the successful Mars Exploration Rover (MER) extraction mechanism, employs a series of trucks rolling along tracks located on the surface of the central parachute can. Numerous tests using high speed video were conducted at the Langley Research Center to validate this concept. One area of concern was that that although the airplane released cleanly, a pitching moment could be introduced. While targeted for a Mars mission, this concept will enable environmental surveys by aircraft in other planetary bodies with a sensible atmosphere such as Venus or Saturn's moon, Titan.

  19. A hybrid energy efficient building ventilation system

    International Nuclear Information System (INIS)

    Calay, Rajnish Kaur; Wang, Wen Chung

    2013-01-01

    The present paper presents a high performance cooling/heating ventilation system using a rotary heat exchanger (RHE), together with a reverse-cycle heat pump (RCHP) that can be integrated with various heat sources. Energy consumption in the building sector is largely dominated by the energy consumed in maintaining comfortable conditions indoors. For example in many developed countries the building heating, ventilation and air conditioning (HVAC) systems consume up to 50% of the total energy consumed in buildings. Therefore energy efficient HVAC solutions in buildings are critical for realising CO 2 targets at local and global level. There are many heating/cooling concepts that rely upon renewable energy sources and/or use natural low temperature heat sources in the winter and heat sinks in the summer. In the proposed system, waste energy from the exhaust air stream is used to precondition the outdoor air before it is supplied into the building. The hybrid system provides heating in the winter and cooling in the summer without any need for additional heating or cooling devices as required in conventional systems. Its performance is better than a typical reheat or air conditioning system in providing the same indoor air quality (IAQ) levels. It is shown that an energy saving up to 60% (heat energy) is achieved by using the proposed hybrid system in building ventilation applications. -- Highlights: • Hybrid ventilation system: the hybrid ventilation system uses a rotating regenerator and a reversible heat pump. • Heat recovery: heat recovery from exhaust air stream by rotary wheel type heat exchanger. • Reversible cycle heat pump (RCHP): additional heating or cooling of the supply air is provided by the RCHP. • Energy efficiency: energy savings of up to 60% using the proposed system are achievable

  20. Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Dale, Michael; Barnhart, Charles J.

    2013-01-01

    In this paper we expand the work of Brandt and Dale (2011) on ERRs (energy return ratios) such as EROI (energy return on investment). This paper describes a “bottom-up” mathematical formulation which uses matrix-based computations adapted from the LCA (life cycle assessment) literature. The framework allows multiple energy pathways and flexible inclusion of non-energy sectors. This framework is then used to define a variety of ERRs that measure the amount of energy supplied by an energy extraction and processing pathway compared to the amount of energy consumed in producing the energy. ERRs that were previously defined in the literature are cast in our framework for calculation and comparison. For illustration, our framework is applied to include oil production and processing and generation of electricity from PV (photovoltaic) systems. Results show that ERR values will decline as system boundaries expand to include more processes. NERs (net energy return ratios) tend to be lower than GERs (gross energy return ratios). External energy return ratios (such as net external energy return, or NEER (net external energy ratio)) tend to be higher than their equivalent total energy return ratios. - Highlights: • An improved bottom-up mathematical method for computing net energy return metrics is developed. • Our methodology allows arbitrary numbers of interacting processes acting as an energy system. • Our methodology allows much more specific and rigorous definition of energy return ratios such as EROI or NER

  1. Synchronous timing of multi-energy fast beam extraction during a single AGS cycle

    International Nuclear Information System (INIS)

    Gabusi, J.; Naase, S.

    1985-01-01

    Synchronous triggering of fast beams is required because the field of Kicker Magnets must rise within the open space between one beam bunch and the next. Within the Brookhaven AGS, Fast Extracted Beam (FEB) triggering combines nominal timing, based on beam energy with bunch-to-bunch synchronization, based on the accelerating rf waveform. During beam acceleration, a single bunch is extracted at 22 GeV/c and within the same AGS cycle, the remaining eleven bunches are extracted at 28.4 GeV/c. When the single bunch is extracted, a ''hole'', which is left in the remaining circulating beam, can appear in random locations within the second extraction during successive AGS cycles. To overcome this problem, a synchronous rf/12 counting scheme and logic circuitry are used to keep track of the bunch positions relative to each other, and to place the ''hole'' in any desired location within the second extraction. The rf/12 signal is used also to synchronize experimenters triggers

  2. Energy Management of Smart Distribution Systems

    Science.gov (United States)

    Ansari, Bananeh

    Electric power distribution systems interface the end-users of electricity with the power grid. Traditional distribution systems are operated in a centralized fashion with the distribution system owner or operator being the only decision maker. The management and control architecture of distribution systems needs to gradually transform to accommodate the emerging smart grid technologies, distributed energy resources, and active electricity end-users or prosumers. The content of this document concerns with developing multi-task multi-objective energy management schemes for: 1) commercial/large residential prosumers, and 2) distribution system operator of a smart distribution system. The first part of this document describes a method of distributed energy management of multiple commercial/ large residential prosumers. These prosumers not only consume electricity, but also generate electricity using their roof-top solar photovoltaics systems. When photovoltaics generation is larger than local consumption, excess electricity will be fed into the distribution system, creating a voltage rise along the feeder. Distribution system operator cannot tolerate a significant voltage rise. ES can help the prosumers manage their electricity exchanges with the distribution system such that minimal voltage fluctuation occurs. The proposed distributed energy management scheme sizes and schedules each prosumer's ES to reduce the electricity bill and mitigate voltage rise along the feeder. The second part of this document focuses on emergency energy management and resilience assessment of a distribution system. The developed emergency energy management system uses available resources and redundancy to restore the distribution system's functionality fully or partially. The success of the restoration maneuver depends on how resilient the distribution system is. Engineering resilience terminology is used to evaluate the resilience of distribution system. The proposed emergency energy

  3. A critical discussion of the extraction of the {rho} - parameter at high energy hadron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, B. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1996-12-31

    A new and general method is proposed for the extraction of the semi theoretical {rho}-parameter from the raw dN/dt data. By using this method it is shown that the exponential form of the hadron amplitude in the diffraction peak at high energy is doubtful and that the value {rho} = 0.135 {+-} 0.015, extracted from the very precise UA4/2 dN/dt data at {radical}s 541 GeV, is probably wrong. (author) 4 refs.

  4. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  5. Energy efficiency information systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    It is well known that different cultures and countries are receptive in different ways to information transfer. Modern information technology, including computers, videos, and telecommunications, can provide a very useful tool for the dissemination of information. At the same time, however, the use of new media involves many new and varied challenges. It is important therefore that the new dissemination methods are developed and utilised in the most effective way depending on the subjects distinctive character, needs and traditions. This workshop was designed to gather experts from all the CADDET member countries, to share knowledge, experiences and ideas about the use of new methods of information exchange and training in the field of energy efficiency. The workshop was divided into four plenary sessions: dissemination of information on energy efficient technologies; training technologies and effective learning; computer-based training tools on energy efficiency; databases and network resources. Two discussion groups followed the plenary sessions, to concentrate on: different aspects of information exchange; and different aspects of state-of-the-art training tools. The workshop was attended by 44 participants from 17 countries, and included 14 speakers

  6. Greener energy systems energy production technologies with minimum environmental impact

    CERN Document Server

    Jeffs, Eric

    2012-01-01

    Recent years have seen acceleration in the development of cleaner energy systems. In Europe and North America, many old coal-fired power plants will be shut down in the next few years and will likely be replaced by combined cycle plants with higher-efficiency gas turbines that can start up and load quickly. With the revival of nuclear energy, designers are creating smaller nuclear reactors of a simpler integrated design that could expand the application of clean, emission-free energy to industry. And a number of manufacturers now offer hybrid cars with an electric motor and a gasoline engine t

  7. Ion extraction capabilities of two-grid accelerator systems

    International Nuclear Information System (INIS)

    Rovang, D.C.; Wilbur, P.J.

    1984-02-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems

  8. Assessing reliability in energy supply systems

    International Nuclear Information System (INIS)

    McCarthy, Ryan W.; Ogden, Joan M.; Sperling, Daniel

    2007-01-01

    Reliability has always been a concern in the energy sector, but concerns are escalating as energy demand increases and the political stability of many energy supply regions becomes more questionable. But how does one define and measure reliability? We introduce a method to assess reliability in energy supply systems in terms of adequacy and security. It derives from reliability assessment frameworks developed for the electricity sector, which are extended to include qualitative considerations and to be applicable to new energy systems by incorporating decision-making processes based on expert opinion and multi-attribute utility theory. The method presented here is flexible and can be applied to any energy system. To illustrate its use, we apply the method to two hydrogen pathways: (1) centralized steam reforming of imported liquefied natural gas with pipeline distribution of hydrogen, and (2) on-site electrolysis of water using renewable electricity produced independently from the electricity grid

  9. Spoken Language Understanding Systems for Extracting Semantic Information from Speech

    CERN Document Server

    Tur, Gokhan

    2011-01-01

    Spoken language understanding (SLU) is an emerging field in between speech and language processing, investigating human/ machine and human/ human communication by leveraging technologies from signal processing, pattern recognition, machine learning and artificial intelligence. SLU systems are designed to extract the meaning from speech utterances and its applications are vast, from voice search in mobile devices to meeting summarization, attracting interest from both commercial and academic sectors. Both human/machine and human/human communications can benefit from the application of SLU, usin

  10. Complex energy system management using optimization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bridgeman, Stuart; Hurdowar-Castro, Diana; Allen, Rick; Olason, Tryggvi; Welt, Francois

    2010-09-15

    Modern energy systems are often very complex with respect to the mix of generation sources, energy storage, transmission, and avenues to market. Historically, power was provided by government organizations to load centers, and pricing was provided in a regulatory manner. In recent years, this process has been displaced by the independent system operator (ISO). This complexity makes the operation of these systems very difficult, since the components of the system are interdependent. Consequently, computer-based large-scale simulation and optimization methods like Decision Support Systems are now being used. This paper discusses the application of a DSS to operations and planning systems.

  11. Energy sources for future. Change to a sustainable energy system

    International Nuclear Information System (INIS)

    Morris, C.

    2005-01-01

    Can Germany give up gasoline and power from coal or nuclear energy and how much does it cost? The book does away with all common misunderstandings due to renewable energy sources and describes a compatible model for a sustainable energy mixing in future. Nevertheless fossil fuels are not denounced but seen as a platform for the advanced system. The author explains first why objections to renewable energy sources base on bad information, and pursues quite an other argumentation as such authors emphasizing the potential of these energy sources. Than he shows in detail the possibility of the optimal energy mixing for biomass, solar power, wind power, geothermal energy, hydropower and energy efficiency. The environment will reward us for this and instead buying expensive resources from foreign countries we will create work places at home. The number of big power plants - taking into account safety risks - will decrease and small units of on-site power generation feeded with this renewable sources will play more and more an important role. (GL) [de

  12. Renewable energy for sustainable electrical energy system in India

    International Nuclear Information System (INIS)

    Mallah, Subhash; Bansal, N.K.

    2010-01-01

    Present trends of electrical energy supply and demand are not sustainable because of the huge gap between demand and supply in foreseeable future in India. The path towards sustainability is exploitation of energy conservation and aggressive use of renewable energy systems. Potential of renewable energy technologies that can be effectively harnessed would depend on future technology developments and breakthrough in cost reduction. This requires adequate policy guidelines and interventions in the Indian power sector. Detailed MARKAL simulations, for power sector in India, show that full exploitation of energy conservation potential and an aggressive implementation of renewable energy technologies lead to sustainable development. Coal and other fossil fuel (gas and oil) allocations stagnated after the year 2015 and remain constant up to 2040. After the year 2040, the requirement for coal and gas goes down and carbon emissions decrease steeply. By the year 2045, 25% electrical energy can be supplied by renewable energy and the CO 2 emissions can be reduced by 72% as compared to the base case scenario. (author)

  13. Policies for 100% Renewable Energy Systems

    DEFF Research Database (Denmark)

    Hvelplund, Frede

    2014-01-01

    The official Danish energy policy goal is both to increase the wind power share of electricity consumption from 33% in 2014 to 50% by 2020 and to have a 100% renewable energy based energy system by 2050. This is a huge technological change from stored, scarce and polluting fossil fuels...... to fluctuating, abundant and clean energy sources. “Stored” fossil fuels can be used when needed; fluctuating energy sources must be captured when available and transformed to meet the energy needs of society in the right amounts and at the right time. We are amidst this change. Renewable energy has come of age...... and is no longer a minor technology experimenting in the corner of the energy scene, but has become a large new technology taking away considerable market shares from the old fossil fuel technologies....

  14. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Charles J.; Ton, Dan T. (U.S. Department of Energy, Washington, D.C.); Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  15. An Empirical Model for Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scott, Paul [TransPower, Poway, CA (United States)

    2016-03-17

    Improved models of energy storage systems are needed to enable the electric grid’s adaptation to increasing penetration of renewables. This paper develops a generic empirical model of energy storage system performance agnostic of type, chemistry, design or scale. Parameters for this model are calculated using test procedures adapted from the US DOE Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage. We then assess the accuracy of this model for predicting the performance of the TransPower GridSaver – a 1 MW rated lithium-ion battery system that underwent laboratory experimentation and analysis. The developed model predicts a range of energy storage system performance based on the uncertainty of estimated model parameters. Finally, this model can be used to better understand the integration and coordination of energy storage on the electric grid.

  16. Energy Flexibility in the Power System

    DEFF Research Database (Denmark)

    Billanes, Joy Dalmacio; Ma, Zheng; Jørgensen, Bo Nørregaard

    2017-01-01

    Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low electricity cost and sustainability. Various situations and factors influence...... the adoption of the flexibility solutions, such as flexible electricity generation, demand-response, and electricity storage. This paper tries to analyze the current energy flexibility solutions and the factors that can influence the energy flexibility adoption. This paper takes Philippines as case study...... to provide an overview of the current condition of the Philippines’ power system and discuss the energy flexibility in the Philippines’ power system. A further discussion and recommendation is conducted in the end of the paper....

  17. Energy innovation systems indicator report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M. [Technical Univ. of Denmark. DTU Management Engineering, Kgs. Lyngby (Denmark); Klitkou, A.; Iversen, E. [Nordic Institute for Studies in Innovation, Research and Education, Oslo (Norway)

    2012-12-15

    Knowledge about the innovation systems with respect to new energy solutions and technologies is of central importance for understanding the dynamics of change in the energy sector and assessment of opportunities for moving towards more climate-friendly and sustainable energy systems and for socio-economic development in the field, creation of new businesses, work places, etc.. This is the topic that in general is addressed in the research activities of the ''EIS - Strategic research alliance for Energy Innovation Systems and their dynamics - Denmark in global competition''. As part of this, the present report gives an overview of the available indicators of energy innovation systems and points out some of the limitations and potentials there currently are in this connection. Focus is on Denmark. Figures for other countries, primarily Nordic or European, are in some cases showed as well, offering a comparative perspective. (Author)

  18. Applications of plasma core reactors to terrestrial energy systems

    International Nuclear Information System (INIS)

    Lantham, T.S.; Biancardi, F.R.; Rodgers, R.J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrail applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times

  19. Energy-efficient fault-tolerant systems

    CERN Document Server

    Mathew, Jimson; Pradhan, Dhiraj K

    2013-01-01

    This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.

  20. Energy Innovation Systems Indicator Report 2012

    DEFF Research Database (Denmark)

    Klitkou, Antje; Borup, Mads; Iversen, Eric

    This report is the first report in a series of reports on energy innovation system indicators produced as part of the activities in the “EIS Strategic research alliance for Energy Innovation Systems and their dynamics – Denmark in global competition”. The work is based on a number of existing......). The report received also valuable input from a project commissioned by IPTS. This project addressed co-operation patterns and knowledge flows in patent documents in the fields of wind energy, photovoltaic energy and concentrating solar power (Iversen and Patel, 2010). The results relevant for this project...

  1. Environmental health risk assessment: Energy systems

    International Nuclear Information System (INIS)

    Krewski, D.; Somers, E.; Winthrop, S.O.

    1984-01-01

    Most industrialized nations have come to rely on a variety of systems for energy production, both of a conventional and non-conventional nature. In the paper, the spectrum of energy systems currently in use in Canada is outlined along with their potential health risks. Several examples of environmental health studies involving both outdoor and indoor air pollution related to energy production in Canada are reported. The limitations of current technologies for assessing health risks are discussed and possible approaches to managing energy related health risks are indicated. (author)

  2. Kinetic Storage as an Energy Management System

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.

    2007-01-01

    The possibility of storing energy is increasingly important and necessary. The reason is that storage modifies the basic equation of the energy production balance which states that the power produced should equal the power consumed. When there is a storage device in the grid, this equation is modified such that, in the new balance, the energy produced should equal the algebraic sum of the energy consumed and the energy stored (positive in storage phase and negative when released). This means that the generation profile can be uncoupled from the consumption profile, with the resulting improvement of efficiency. Even small-sized storage systems can be very effective. (Author) 10 refs

  3. Photovoltaic energy systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The ongoing research, development, and demonstration efforts of the Photovoltaics Program are highlighted and each of the US Department of Energy's current photovoltaics projects initiated or renewed during fiscal year 1981 is described, including its title, directing organization, project engineer, contractor, principal investigator, contract period, funding, and objectives. The Photovoltaics Program is briefly summarized, including the history and organization and highlights of the research and development and of planning, assessment, and integration. Also summarized is the Federal Photovoltaic Utilization Program. An exhaustive bibliography is included. (LEW)

  4. Advanced energy conversion & mechatronics systems

    NARCIS (Netherlands)

    Lomonova, E.A.

    2015-01-01

    Ultra-high precision systems are encountered in high-tech industrial applications including semiconductor lithography equipment, pick-and-place machines for the manufacturing of electronic components, microsurgery equipment, MRI equipment and calibration devices in electron microscopes. The

  5. Optimization of the beam extraction systems for the Linac4 H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. A.; Lettry, J.; Scrivens, R.; Steyaert, D. [CERN, 1211 Geneva 23 (Switzerland); Midttun, Ø. [University of Oslo, P.O. Box 1048, 0316 Oslo (Norway); CERN, 1211 Geneva 23 (Switzerland); Valerio-Lizarraga, C. A. [Departamento de Investigación en Fisica, Universidad de Sonora, Hermosillo (Mexico); CERN, 1211 Geneva 23 (Switzerland)

    2015-04-08

    The development of the Linac 4 and its integration into CERN’s acceleration complex is part of the foreseen luminosity upgrade of the Large Hadron Collider (LHC). The goal is to inject a 160 MeV H{sup −} beam into the CERN PS Booster (PSB) in order to increase the beam brightness by a factor of 2 compared to the 50 MeV proton linac, Linac 2, that is currently in operation. The requirements for the ion source are a 45 keV H{sup −} beam of 80 mA intensity, 2 Hz repetition rate and 0.5 ms pulse length within a normalized rms-emittance of 0.25 mm· mrad. The previously installed beam extraction system has been designed for an H{sup −} ion beam intensity of 20 mA produced by an RF-volume source with an electron to H{sup −} ratio of up to 50. For the required intensity upgrades of the Linac4 ion source, a new beam extraction system is being produced and tested; it is optimized for a cesiated surface RF-source with a nominal beam current of 40 mA and an electron to H{sup −} ratio of 4. The simulations, based on the IBSIMU code, are presented. At the Brookhaven National Laboratory (BNL), a peak beam current of more than 100 mA was demonstrated with a magnetron H{sup −} source at an energy of 35 keV and a repetition rate of 2 Hz. A new extraction system is required to operate at an energy of 45 keV; simulation of a two stage extraction system dedicated to the magnetron is presented.

  6. Low-energy ion beam extraction and transport: Experiment--computer comparison

    International Nuclear Information System (INIS)

    Spaedtke, P.; Brown, I.; Fojas, P.

    1994-01-01

    Ion beam formation at low energy (∼1 keV or so) is more difficult to accomplish than at high energy because of beam blowup by space-charge forces in the uncompensated region within the extractor, an effect which is yet more pronounced for heavy ions and for high beam current density. For the same reasons, the extracted ion beam is more strongly subject to space charge blowup than higher energy beams if it is not space-charge neutralized to a high degree. A version of vacuum arc ion source with an extractor that produces low-energy metal ion beams at relatively high current (∼0.5--10 kV at up to ∼100 mA) using a multi-aperture, accel--decel extractor configuration has been created. The experimentally observed beam extraction characteristics of this source is compared with those predicted using the AXCEL-INP code, and the implied downstream beam transport with theoretical expectations. It is concluded that the low-energy extractor performance is in reasonable agreement with the code, and that good downstream space charge neutralization is obtained. Here, the code and the experimental results are described, and the features that contribute to good low-energy performance are discussed

  7. Systems and methods for multi-fluid geothermal energy systems

    Science.gov (United States)

    Buscheck, Thomas A.

    2017-09-19

    A method for extracting geothermal energy from a geothermal reservoir formation. A production well is used to extract brine from the reservoir formation. At least one of nitrogen (N.sub.2) and carbon dioxide (CO.sub.2) may be used to form a supplemental working fluid which may be injected into a supplemental working fluid injection well. The supplemental working fluid may be used to augment a pressure of the reservoir formation, to thus drive a flow of the brine out from the reservoir formation.

  8. CHANGE OF PARADIGM IN UNDERGROUND HARD COAL MINING THROUGH EXTRACTION AND CAPITALIZATION OF METHANE FOR ENERGY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Valeriu PLESEA

    2014-05-01

    Full Text Available Besides oil and gas, coal is the most important fossil fuel for energy production. Of the energy mixture of our country, the internal production gas share is 80% of the required annual consumption, of about 14 billion cubic meters, the rest of 20% being insured by importing, by the Russian company Gazprom. The share of coal in the National Power System (NPS is of 24% and is one of the most profitable energy production sources, taking into account the continuous increase of gas price and its dependence on external suppliers. Taking into account the infestation of the atmosphere and global warming as effect of important release of greenhouse gas and carbon dioxide as a result of coal burning for energy production in thermal power plants, there is required to identify new solutions for keeping the environment clean. Such a solution is presented in the study and analysis shown in the paper and is the extraction and capitalization of methane from the coal deposits and the underground spaces remaining free after mine closures. Underground methane extraction is considered even more opportune because, during coal exploitation, large quantities of such combustible gas are released and exhausted into the atmosphere by the degasification and ventilation stations from the surface, representing and important pollution factor for the environment, as greenhouse gas with high global warming potential (high GWP of about 21 times higher than carbon dioxide.

  9. Energy efficient residential house wall system

    International Nuclear Information System (INIS)

    Aldawi, Fayez; Date, Abhijit; Alam, Firoz; Khan, Iftekhar; Alghamdi, Mohammed

    2013-01-01

    The energy consumption and greenhouse gas emission by the residential housing sector are considered to be one of the largest in economically developed countries. The larger energy consumption and greenhouse gas emission not only put additional pressure on finite fossil fuel resources but also cause global warming and climate change. Additionally, the residential housing sector will be consuming more energy as the house demand and average house floor area are progressively increasing. With currently used residential house wall systems, it is hard to reduce energy consumption for ongoing house space heating and cooling. A smart house wall envelope with optimal thermal masses and insulation materials is vital for reducing our increasing energy consumption. The major aim of this study is to investigate thermal performance and energy saving potential of a new house wall system for variable climate conditions. The thermal performance modelling was carried out using commercially developed software AccuRate ® . The findings indicate that a notable energy savings can be accomplished if a smart house wall system is used. -- Highlights: • Smart house wall system. • Thermal performance modelling and star energy rating. • Energy savings and greenhouse gas reduction

  10. Soil Vapor Extraction System Optimization, Transition, and Closure Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Becker, Dave; Simon, Michelle A.; Oostrom, Martinus; Rice, Amy K.; Johnson, Christian D.

    2013-02-08

    Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. A diminishing rate of contaminant extraction over time is typically observed due to 1) diminishing contaminant mass, and/or 2) slow rates of removal for contamination in low-permeability zones. After a SVE system begins to show indications of diminishing contaminant removal rate, SVE performance needs to be evaluated to determine whether the system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. This guidance specifically addresses the elements of this type of performance assessment. While not specifically presented, the approach and analyses in this guidance could also be applied at the onset of remediation selection for a site as a way to evaluate current or future impacts to groundwater from vadose zone contamination. The guidance presented here builds from existing guidance for SVE design, operation, optimization, and closure from the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, and the Air Force Center for Engineering and the Environment. The purpose of the material herein is to clarify and focus on the specific actions and decisions related to SVE optimization, transition, and/or closure.

  11. Energy efficiency of milkmaid systems in Uruguay

    International Nuclear Information System (INIS)

    LLanos, E.; Astigarraga, L.; Jacques, R.; Picasso, V.

    2013-01-01

    Reducing fossil fuel consumption and increasing energy efficiency of agricultural systems may result in environmental and economic benefits. The aim of this study was to analyze dairy production systems from an energy perspective, to identify the main variables affecting energy efficiency and fossil energy consumption, through a model of inputs and outputs. The model included as inputs energy costs of food, labor, electricity, agrochemicals, fuels and machinery, and as outputs dairy and meat production. We analyzed a database of 30 dairy farms from southern Uruguay, from the Cooperative Nacional de Product ores de Leche (Conaprole), organized in three strata based on their dairy productivity per hectare. The fossil energy use was 2.40, 3.63 y 3.80 MJ.l-1 for productivity strata low, medium and high respectively (P<0.01). Energy efficiency averages were 1.40, 0.90 y 0.86 for the same strata (P<0.01). Fossil energy of agrochemicals and fuel accounted for more than 80% of the energy consumed in the three strata. The greater the percentage of concentrate in the diet, the lower energy efficiency (P<0.01). These results suggest the existence of a negative relationship between the intensification of dairy production and energy efficiency

  12. Application of the code Slac to the study of Ion Extraction Systems in Neutral Injectors

    International Nuclear Information System (INIS)

    Garcia, M.; Liniers, M.; Guasp, J.

    1997-01-01

    In this study different extraction geometries for intense ion beams have been analyzed with the code SLAC, in view of its possible application to the neutral injectors of TJ-II. With this aim, we have introduced several modifications in the code in order to correctly simulate the transition between the ion source plasma and the extraction region, which has great impact on the beam optics. These modifications include the introduction of a population of Boltzmann electrons in the transition region, and the implementation of an option to simulate the thermal velocity of the ions in the source. We have found a better agreement between the results obtained with the new version of the code and the experimental data in two well known systems. With this new version of the code two different studies have been carried out: in the first place an optimization of the ATF injectors extraction system for its use on TJ-II, leading to an optimum value of the gap in the energy range 30-40 KeV, and in the second place a systematic study of extraction geometries at 40 KeV. As a result of this second study we have found the combinations of parameters that can be used under different working conditions (e.g. different pulse lengths), leading to acceptable values of the beam divergence. (Author)

  13. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  14. Energy-Aware Cognitive Radio Systems

    KAUST Repository

    Bedeer, Ebrahim

    2016-01-15

    The concept of energy-aware communications has spurred the interest of the research community in the most recent years due to various environmental and economical reasons. It becomes indispensable for wireless communication systems to shift their resource allocation problems from optimizing traditional metrics, such as throughput and latency, to an environmental-friendly energy metric. Although cognitive radio systems introduce spectrum efficient usage techniques, they employ new complex technologies for spectrum sensing and sharing that consume extra energy to compensate for overhead and feedback costs. Considering an adequate energy efficiency metric—that takes into account the transmit power consumption, circuitry power, and signaling overhead—is of momentous importance such that optimal resource allocations in cognitive radio systems reduce the energy consumption. A literature survey of recent energy-efficient based resource allocations schemes is presented for cognitive radio systems. The energy efficiency performances of these schemes are analyzed and evaluated under power budget, co-channel and adjacent-channel interferences, channel estimation errors, quality-of-service, and/or fairness constraints. Finally, the opportunities and challenges of energy-aware design for cognitive radio systems are discussed.

  15. Stochastic Modelling of Energy Systems

    DEFF Research Database (Denmark)

    Andersen, Klaus Kaae

    2001-01-01

    is that the model structure has to be adequate for practical applications, such as system simulation, fault detection and diagnosis, and design of control strategies. This also reflects on the methods used for identification of the component models. The main result from this research is the identification......In this thesis dynamic models of typical components in Danish heating systems are considered. Emphasis is made on describing and evaluating mathematical methods for identification of such models, and on presentation of component models for practical applications. The thesis consists of seven...... research papers (case studies) together with a summary report. Each case study takes it's starting point in typical heating system components and both, the applied mathematical modelling methods and the application aspects, are considered. The summary report gives an introduction to the scope...

  16. Planning for rural energy system: Part 2

    International Nuclear Information System (INIS)

    Devadas, V.

    2001-01-01

    This paper discusses the central importance of energy inputs in development, and presents the complex interactions within subsystems that contribute a Rural Energy System. This paper also brings about the importance of the primary data for realistic renewable energy planning at the micro level in a given rural system. Factors that render secondary data somewhat inadequate for such applications are discussed. The differences between energy related data from secondary and primary sources in respect of representative villages in Kanyakumari District of Tamil Nadu, India, are detailed. A rural system model for computing the output from various components of a rural system is also presented. This projection is made by making use of a set of technical coefficients, which relate the inputs to the outputs from individual segments of the rural production system. While some of the technical coefficients are developed based on previously published data, a large number have been quantified on the basis of careful survey. The usefulness of the model is discussed. The paper also presents a Linear Programming Model for optimum resource allocation in a rural system. The objective function of the Linear Programming Model is maximizing the revenue of the rural system where in optimum resource allocation is made subject to a number of energy and non-energy related relevant constraints. The model also quantifies the major yields as well as the byproducts of different sectors of the rural economic system. (Author)

  17. Miniature photovoltaic energy system for lighting

    International Nuclear Information System (INIS)

    Awais, M.

    1999-01-01

    In this project a miniature photovoltaic energy system has been designed and developed, that may be used in remote areas and villages for lighting purposes. System sizing is the important part of the project because it affects the cost of the system. Therefore, first of all system sizing has been done. For conversion of dc voltage of the battery into ac voltage, an inverter has been designed. To charge the battery when the sun is not shining, a standby system has been developed using a bicycle and dynamo. To indicate the battery's state of charge and discharge, a battery monitoring circuit has also been developed. Similarly, to protect the battery from over discharging, a battery protection circuit has been designed. In order to measure how much energy is going from standby system to the battery, an efficient dc electronic energy meter has been designed and developed. The working of the overall system has been tested and found to give good performance. (author)

  18. Seasonal energy storage - PV-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, J. [Neste Oy/NAPS (Finland)

    1998-10-01

    PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

  19. A Bayesian approach to extracting meaning from system behavior

    Energy Technology Data Exchange (ETDEWEB)

    Dress, W.B.

    1998-08-01

    The modeling relation and its reformulation to include the semiotic hierarchy is essential for the understanding, control, and successful re-creation of natural systems. This presentation will argue for a careful application of Rosen`s modeling relationship to the problems of intelligence and autonomy in natural and artificial systems. To this end, the authors discuss the essential need for a correct theory of induction, learning, and probability; and suggest that modern Bayesian probability theory, developed by Cox, Jaynes, and others, can adequately meet such demands, especially on the operational level of extracting meaning from observations. The methods of Bayesian and maximum Entropy parameter estimation have been applied to measurements of system observables to directly infer the underlying differential equations generating system behavior. This approach by-passes the usual method of parameter estimation based on assuming a functional form for the observable and then estimating the parameters that would lead to the particular observed behavior. The computational savings is great since only location parameters enter into the maximum-entropy calculations; this innovation finesses the need for nonlinear parameters altogether. Such an approach more directly extracts the semantics inherent in a given system by going to the root of system meaning as expressed by abstract form or shape, rather than in syntactic particulars, such as signal amplitude and phase. Examples will be shown how the form of a system can be followed while ignoring unnecessary details. In this sense, the authors are observing the meaning of the words rather than being concerned with their particular expression or language. For the present discussion, empirical models are embodied by the differential equations underlying, producing, or describing the behavior of a process as measured or tracked by a particular variable set--the observables. The a priori models are probability structures that

  20. Design and installation of earth energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Loggia, S; Adragna, M; Coyle, S; Foley, C; Hawryn, S; Martin, A; McConnell, J [eds.

    2002-07-01

    This first edition of the Canadian Standards Association (CSA) Standard C448 Series, replaces CSA Standards CAN/CSA-C445-M92 entitled Design and Installation of Earth Energy Heat Pump Systems for Residential and Other Small Buildings, as well as C447-94 entitled Design and Installation of Earth Energy Heat Pump Systems for Commercial and Institutional Buildings. This standard document consists of three parts: (C448.1) Design and installation of earth energy systems for commercial and institutional buildings; (C448.2) Design and installation of earth energy systems for residential and small buildings; and, (C448.3) Design and installation of underground thermal energy storage systems for commercial and institutional buildings. In C448.1, the requirements applicable to any system falling within the scope of the C448 series were included. Alternative requirements for houses and small buildings were added in C448.2. It was noted that either standard may be implemented. The standards applicable to the intentional storage of energy in the earth for later use were presented in C448.3. This latter section includes a brief introduction on underground thermal energy storage (UTES). tabs.

  1. Army Energy and Water Reporting System Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

    2011-09-01

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating

  2. Photo-generated carriers lose energy during extraction from polymer-fullerene solar cells

    KAUST Repository

    Melianas, Armantas

    2015-11-05

    In photovoltaic devices, the photo-generated charge carriers are typically assumed to be in thermal equilibrium with the lattice. In conventional materials, this assumption is experimentally justified as carrier thermalization completes before any significant carrier transport has occurred. Here, we demonstrate by unifying time-resolved optical and electrical experiments and Monte Carlo simulations over an exceptionally wide dynamic range that in the case of organic photovoltaic devices, this assumption is invalid. As the photo-generated carriers are transported to the electrodes, a substantial amount of their energy is lost by continuous thermalization in the disorder broadened density of states. Since thermalization occurs downward in energy, carrier motion is boosted by this process, leading to a time-dependent carrier mobility as confirmed by direct experiments. We identify the time and distance scales relevant for carrier extraction and show that the photo-generated carriers are extracted from the operating device before reaching thermal equilibrium.

  3. Balmorel open source energy system model

    DEFF Research Database (Denmark)

    Wiese, Frauke; Bramstoft, Rasmus; Koduvere, Hardi

    2018-01-01

    As the world progresses towards a cleaner energy future with more variable renewable energy sources, energy system models are required to deal with new challenges. This article describes design, development and applications of the open source energy system model Balmorel, which is a result...... of a long and fruitful cooperation between public and private institutions within energy system research and analysis. The purpose of the article is to explain the modelling approach, to highlight strengths and challenges of the chosen approach, to create awareness about the possible applications...... of Balmorel as well as to inspire to new model developments and encourage new users to join the community. Some of the key strengths of the model are the flexible handling of the time and space dimensions and the combination of operation and investment optimisation. Its open source character enables diverse...

  4. Risks of disaster in the energy system

    International Nuclear Information System (INIS)

    Kristoferson, L.; Kjellstroem, B.; Svenningsson, P.J.

    1986-10-01

    The perception of environmental effects and risks is discussed concerning the difficulties to making objective comparisons between different energy sources. Risks may influence the choice of strategies of the replacement of nuclear electric power in the Swedish energy system. Risks for major accidents and disasters to occur at a small level of probability are presented concerning the existing or future energy sources. The choice of strategies is discussed by means of calculated examples

  5. Evaluation of degree of readsorption of radionuclides during sequential extraction in soil: comparison between batch and dynamic extraction systems

    DEFF Research Database (Denmark)

    Petersen, Roongrat; Hansen, Elo Harald; Hou, Xiaolin

    . However, the techniques have an important problem with redistribution as a result of readsorption of dissolved analytes onto the remaining solids phases during extraction. Many authors have demonstrated the readsorption problem and inaccuracy from it. In our previous work, a dynamic extraction system......Sequential extraction techniques have been widely used to fractionate metals in solid samples (soils, sediments, solid wastes, etc.) due to their leachability. The results are useful for obtaining information about bioavailability, potential mobility and transport of element in natural environments...... developed in our laboratory for heavy metal fractionation has shown the reduction of readsorption problem in comparison with the batch techniques. Moreover, the system shows many advantages over the batch system such as speed of extraction, simple procedure, fully automatic, less risk of contamination...

  6. EFFECT OF EXTRACTIVES AND CARBONIZATION TEMPERATURE ON ENERGY CHARACTERISTICS OF WOOD WASTE IN AMAZON RAINFOREST

    Directory of Open Access Journals (Sweden)

    Jordão Cabral Moulin

    2017-06-01

    Full Text Available The objective of this study was to evaluate the effect of extractives soluble in hot water, besides final carbonization temperatures, on the gravimetric yield and properties of charcoal for waste of three native forest species from the Amazon region. Waste cuttings of Ipé, Grapia and Maçaranduba species, from the machine processing for joinery of a company in the State of Pará, were used. Carbonization was carried out in an adapted electric furnace with a heating rate of 1.67°C min-1 and final temperatures of 500, 600 and 700°C. The waste was carbonized fresh after extraction in hot water to remove extractives. Gravimetric yields were analyzed, as well as chemical features and high heating value. In the evaluation of the experiment, arranged in a factorial scheme with three factors (species x temperature x material with and without extraction, and Principal Component Analysis used too. The presence of extractives (soluble in hot water from wood waste had little influence on the gravimetric yield and immediate chemical composition of charcoal; however, it showed a greater high heating value and lower contents of hydrogen and nitrogen. The increase in the final carbonization temperature reduced the gravimetric yield in charcoal, the content of volatile materials and hydrogen, with a higher content of fixed carbon, carbon and high heating value. The treatments with the best energy characteristics were obtained from Ipé and Maçaranduba charcoals with extractives produced at 600°C, in addition to Ipê and Maçaranduba charcoals with and without extractives obtained at 700°C.

  7. Analytical energy spectrum for hybrid mechanical systems

    International Nuclear Information System (INIS)

    Zhong, Honghua; Xie, Qiongtao; Lee, Chaohong; Guan, Xiwen; Gao, Kelin; Batchelor, Murray T

    2014-01-01

    We investigate the energy spectrum for hybrid mechanical systems described by non-parity-symmetric quantum Rabi models. A set of analytical solutions in terms of the confluent Heun functions and their analytical energy spectrum is obtained. The analytical energy spectrum includes regular and exceptional parts, which are both confirmed by direct numerical simulation. The regular part is determined by the zeros of the Wronskian for a pair of analytical solutions. The exceptional part is relevant to the isolated exact solutions and its energy eigenvalues are obtained by analyzing the truncation conditions for the confluent Heun functions. By analyzing the energy eigenvalues for exceptional points, we obtain the analytical conditions for the energy-level crossings, which correspond to two-fold energy degeneracy. (paper)

  8. Adaptive, full-spectrum solar energy system

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  9. Energy Devices and Political Consumerism in Reconfigured Energy Systems

    NARCIS (Netherlands)

    Kloppenburg, S.; Vliet, van B.J.M.

    2018-01-01

    This chapter discusses political consumerism in the context of a transformation towards a low-carbon electricity system. Over the past decades, deregulation, liberalisation, and privatisation have opened up spaces for Western consumers to influence the greening of energy provision and consumption

  10. Environmental benefits of domestic solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, Soteris A.

    2004-01-01

    All nations of the world depend on fossil fuels for their energy needs. However the obligation to reduce CO 2 and other gaseous emissions in order to be in conformity with the Kyoto agreement is the reason behind which countries turn to non-polluting renewable energy sources. In this paper the pollution caused by the burning of fossil fuels is initially presented followed by a study on the environmental protection offered by the two most widely used renewable energy systems, i.e. solar water heating and solar space heating. The results presented in this paper show that by using solar energy, considerable amounts of greenhouse polluting gasses are avoided. For the case of a domestic water heating system, the saving, compared to a conventional system, is about 80% with electricity or Diesel backup and is about 75% with both electricity and Diesel backup. In the case of space heating and hot water system the saving is about 40%. It should be noted, however, that in the latter, much greater quantities of pollutant gasses are avoided. Additionally, all systems investigated give positive and very promising financial characteristics. With respect to life cycle assessment of the systems, the energy spent for manufacture and installation of the solar systems is recouped in about 1.2 years, whereas the payback time with respect to emissions produced from the embodied energy required for the manufacture and installation of the systems varies from a few months to 9.5 years according to the fuel and the particular pollutant considered. Moreover, due to the higher solar contribution, solar water heating systems have much shorter payback times than solar space heating systems. It can, therefore, be concluded that solar energy systems offer significant protection to the environment and should be employed whenever possible in order to achieve a sustainable future

  11. Energy from CO2 using capacitive electrodes – A model for energy extraction cycles

    NARCIS (Netherlands)

    Paz-García, J.M.; Dykstra, J.E.; Biesheuvel, P.M.; Hamelers, H.V.M.

    2015-01-01

    A model is presented for the process of harvesting electrical energy from CO2 emissions using capacitive cells. The principle consists of controlling the mixing process of a concentrated CO2 gas stream with a dilute CO2 gas stream (as, for example, exhaust gas and air), thereby converting part of

  12. Thermal energy storage and utilization system

    International Nuclear Information System (INIS)

    1976-01-01

    The power output from a nuclear power plant or fossil fuel power plant operating under constant reactor (or furnace) and boiler conditions is varied by regulating the rate of turbine extraction steam and primary high pressure steam used to heat boiler feed water (BFW). During periods of low power demand, excess extraction steam is drawn off to heat excess quantities of boiler feed water. Such boiler feed water can be heated to the maximum extent possible and used to reheat interstage steam before being sent at slightly reduced temperature to the boilers. In this way, maximum use can be made of the thermal energy stored in the low vapor pressure organic material. Alternatively, or simultaneously, the stored hot LVP organic material can be used to raise intermediate pressure steam and this steam can be injected into the steam turbines between appropriate stages or into auxiliary turbines used solely for this purpose

  13. Final Report - Energy Reduction and Advanced Water Removal via Membrane Solvent Extraction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Reed, John; Fanselow, Dan; Abbas, Charles; Sammons, Rhea; Kinchin, Christopher

    2014-08-06

    3M and Archer Daniels Midland (ADM) collaborated with the U.S. Department of Energy (DOE) to develop and demonstrate a novel membrane solvent extraction (MSE) process that can substantially reduce energy and water consumption in ethanol production, and accelerate the fermentation process. A cross-flow membrane module was developed, using porous membrane manufactured by 3M. A pilot process was developed that integrates fermentation, MSE and vacuum distillation. Extended experiments of 48-72 hours each were conducted to develop the process, verify its performance and begin establishing commercial viability.

  14. Extracting the σ-term from low-energy pion-nucleon scattering

    Science.gov (United States)

    Ruiz de Elvira, Jacobo; Hoferichter, Martin; Kubis, Bastian; Meißner, Ulf-G.

    2018-02-01

    We present an extraction of the pion-nucleon (π N) scattering lengths from low-energy π N scattering, by fitting a representation based on Roy-Steiner equations to the low-energy data base. We show that the resulting values confirm the scattering-length determination from pionic atoms, and discuss the stability of the fit results regarding electromagnetic corrections and experimental normalization uncertainties in detail. Our results provide further evidence for a large π N σ-term, {σ }π N=58(5) {{MeV}}, in agreement with, albeit less precise than, the determination from pionic atoms.

  15. A Rigorous Treatment of Energy Extraction from a Rotating Black Hole

    Science.gov (United States)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    2009-05-01

    The Cauchy problem is considered for the scalar wave equation in the Kerr geometry. We prove that by choosing a suitable wave packet as initial data, one can extract energy from the black hole, thereby putting supperradiance, the wave analogue of the Penrose process, into a rigorous mathematical framework. We quantify the maximal energy gain. We also compute the infinitesimal change of mass and angular momentum of the black hole, in agreement with Christodoulou’s result for the Penrose process. The main mathematical tool is our previously derived integral representation of the wave propagator.

  16. Corn silk aqueous extracts and intraocular pressure of systemic and non-systemic hypertensive subjects.

    Science.gov (United States)

    George, Gladys O; Idu, Faustina K

    2015-03-01

    Hypotensive properties have been attributed to the stigma/style of Zea mays L (corn silk). Although the effect of corn silk extract on blood pressure has been documented in animal studies, we are not aware of any study on its effect on human blood pressure and intraocular pressure. A randomised study was carried out on the effect of water only, masked doses of corn silk aqueous extract (60, 130, 192.5 and 260 mg/kg body weight) on intraocular pressure and blood pressure of 20 systemic and 20 non-systemic hypertensive subjects. Intraocular pressure and blood pressure were measured at baseline and every hour for eight hours after administering water or a masked dose of corn silk aqueous extract. Each dose was administered at two-week intervals to each subject in the two study groups. The results showed that the last three doses of corn silk aqueous extract gave a statistically significant reduction (p Corn silk aqueous extract has a lowering effect on intraocular pressure in systemic and non-systemic hypertensive subjects. This may have resulted from the fall in blood pressure that is due to potassium-induced natriuresis and diuresis caused by the high potassium content in the high doses of the corn silk extract. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  17. A sustainable energy-system in Latvia

    DEFF Research Database (Denmark)

    Rasmussen, Lotte Holmberg

    2003-01-01

    but a negative trade-balance. With this in mind, it is important that Latvia is able to meet the challenge and use the economic development to develop a sustainable energy-system and a sounder trade-balance. A combination of energy planning, national economy and innovation processes in boiler companies will form...

  18. Downscaling of Airborne Wind Energy Systems

    NARCIS (Netherlands)

    Fechner, U.; Schmehl, R.

    2016-01-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that can not be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the

  19. The effect of pulse current on energy saving during Electrochemical Chloride Extraction (ECE) in concrete

    DEFF Research Database (Denmark)

    Sun, Tian R.; Geiker, Mette R.; Ottosen, Lisbeth M.

    2012-01-01

    Energy consumption is a factor influencing the cost of Electrochemical Chloride Extraction (ECE) in concrete. The aims of this work were to investigate the possibility for energy saving when using a pulsed electric field during ECE and the effect of the pulsed current on removal of chloride. Four...... experiments with artificially polluted concrete under same charge transfer were conducted. Results showed that the energy consumption was decreased 15% by pulse current in experiments with 0.2 mA/cm2 current density, which was higher than that of 0.1 mA/cm2 experiments with a decrease of 9.6%. When comparing...... the voltage drop at different parts of the experimental cells, it was found that the voltage drop of the area across the concrete was the major contributor to energy consumption, and results indicated that the pulse current could decrease the voltage drop of this part by re-distribution of ions in pore fluid...

  20. Energy-correction photon counting pixel for photon energy extraction under pulse pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daehee; Park, Kyungjin; Lim, Kyung Taek; Cho, Gyuseong, E-mail: gscho@kaist.ac.kr

    2017-06-01

    A photon counting detector (PCD) has been proposed as an alternative solution to an energy-integrating detector (EID) in medical imaging field due to its high resolution, high efficiency, and low noise. The PCD has expanded to variety of fields such as spectral CT, k-edge imaging, and material decomposition owing to its capability to count and measure the number and the energy of an incident photon, respectively. Nonetheless, pulse pile-up, which is a superimposition of pulses at the output of a charge sensitive amplifier (CSA) in each PC pixel, occurs frequently as the X-ray flux increases due to the finite pulse processing time (PPT) in CSAs. Pulse pile-up induces not only a count loss but also distortion in the measured X-ray spectrum from each PC pixel and thus it is a main constraint on the use of PCDs in high flux X-ray applications. To minimize these effects, an energy-correction PC (ECPC) pixel is proposed to resolve pulse pile-up without cutting off the PPT by adding an energy correction logic (ECL) via a cross detection method (CDM). The ECPC pixel with a size of 200×200 µm{sup 2} was fabricated by using a 6-metal 1-poly 0.18 µm CMOS process with a static power consumption of 7.2 μW/pixel. The maximum count rate of the ECPC pixel was extended by approximately three times higher than that of a conventional PC pixel with a PPT of 500 nsec. The X-ray spectrum of 90 kVp, filtered by 3 mm Al filter, was measured as the X-ray current was increased using the CdTe and the ECPC pixel. As a result, the ECPC pixel dramatically reduced the energy spectrum distortion at 2 Mphotons/pixel/s when compared to that of the ERCP pixel with the same 500 nsec PPT.

  1. NAPS renewable energy systems R and D

    International Nuclear Information System (INIS)

    Spiers, D.J.

    1990-01-01

    Neste Advanced Power Systems (NAPS) is a renewable energy systems company supplying complete power systems based on photovoltaics, wind turbine generator, diesel generators, or hybrid systems combining two or more of these. Except for a few demonstration systems linked to the electricity grid, these are stand-alone power supplies which include storage batteries. Our present market areas are: Domestic systems for remote houses, largely in the Nordic countries. Systems for developing countries, mostly for lighting, health care and water supply and industrial and professional systems for use anywhere in the world, mainly for telecommunications and navigation aids

  2. An efficient and not polluting bottom ash extraction system

    International Nuclear Information System (INIS)

    Carrea, A.

    1992-01-01

    This paper reports that boiler waste water effluent must meet more and more tighter requirements to comply with environmental regulations; sluice water resulting from bottom ash handling is one of the main problems in this context, and many utilities are under effort to maximize the reuse of the sluice water, and, if possible, to meet the aim of zero water discharge from bottom ash handling system. At the same time ash reuse efforts gain strength in order to minimize waste production. One solution to these problems can be found in an innovative Bottom Ash Extraction System (MAC System), marked by the peculiarity to be a continuous dry ash removal; the system has been developed in the last four years by MAGALDI INDUSTRIE SRL in collaboration with ANSALDO Ricerche, the R and D department of ANSALDO, the main Italian Boiler Manufacturer, and is now installed in six ENEL Boilers. The elimination of the water as separation element between the bottom part of the furnace and the outside atmosphere gives advantages mainly from the environmental view point, but a certain improvement in the boiler efficiency has also been demonstrated by the application of the system

  3. Combining extractant systems for the simultaneous extraction of transuranic elements and selected fission products

    International Nuclear Information System (INIS)

    Horwitz, E.P.

    1993-01-01

    The popularity of solvent extraction (SX) stems from its ability to operate in a continuous mode, to achieve high throughputs and high decontamination factors of product streams, and to utilize relatively small quantities of very selective chemical compounds as metal ion complexants. The chemical pretreatment of nuclear waste for the purpose of waste minimization will probably utilize one or more SX processes. Because of the diversity and complexity of nuclear waste, perhaps the greatest difficulty for the separation chemist is to develop processes that remove not only actinides but also selected fission products in a single process. A stand alone acid-side SX process (TRUEX) for removal of uranium and transuranic elements (Np, Pu, Am) from nuclear waste has been widely reported. Recently, an acid-side SX process (SREX) to extract and recover 90 Sr from high-level nuclear waste has also been reported. Both the TRUEX and SREX processes extract Tc to a significant extent although not as efficiently as they extract transuranics and Sr. Ideally one would like to have a process that can extract and recover all actinides as well as 99 Tc, 90 Sr, and 137 Cs. A possible solution to multielement extraction is to mix two extractants with totally different properties into a single process solvent formulation. For this approach to be successful, both extractants must be essentially the same type, either neutral, liquid cationic, or liquid anionic. Experimental work has been carried out on mixed TRUEX and SREX processes, for synthetically created waste, and demonstrates the combined solvent formulation is effective at extracting both the actinides and Tc, as well as Sr. There is no evidence for the presence of either synergistic or antagonistic effects between the two extractants. This demonstates the feasibility of at least part of a combined solvent extraction scheme

  4. Smart Cities and National Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    Energy system analysis follows two tracks, either through plans for future transitions of national energy systems, or local development of smart cities and regions. These two tracks seldom overlap. National plans neglect the local implementation of intermittent renewable technology and use of local...... resources, and smart cities and local development do not relate to national targets and fail to evaluate sub-optimization. Thus, there is a need for approaches that help researchers creating links between country analyses and local energy system transitions. This paper investigates the effects...... of such an approach, by investigating Western Denmark. By splitting Western Denmark into regions, it is possible to create individual energy systems for each region. Through interconnection, these regions can exchange electricity with each other. This enables analyses of interaction between smart cities and national...

  5. Energy and environmental management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.K. (Energy Auditing Agency Ltd., Milton Keynes (United Kingdom))

    1993-01-01

    The threat of global warming, environmental instability and the possible use of green or carbon taxes on fossil fuels has increased the need for energy efficiency. Energy Conservation is now recognised as one of the easiest and most cost-effective ways of limiting or reducing CO[sub 2] emissions. Large UK companies are now assessing how much CO[sub 2] they dissipate to the environment and reviewing strategies to reduce this either in response to consumer demand or as a corporate policy decision. Computer-based information systems already exist to monitor and report on fluctuations in energy consumption. These are called Monitoring and Targeting (M and T) systems. This paper explains what M and T systems are and how they are being extended to cover reporting on corporate fuel-based CO[sub 2] emissions to help provide an integrated energy and environmental-management information system. (author).

  6. Description of the Energy System of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Caldes, N; Lechon, Y; Labriet, M; Cabal, H; Rua, C de la; Saez, R; Varela, M

    2008-07-01

    The objective of this report is to describe the complete Spain energy system, in order to make possible its modelling with the TIMES model within the NEEDS project (http://www.needs-project.org). (Author) 56 refs.

  7. Potential future waste-to-energy systems

    OpenAIRE

    Thorin, Eva; Guziana, Bozena; Song, Han; Jääskeläinen, Ari; Szpadt, Ryszard; Vasilic, Dejan; Ahrens, Thorsten; Anne, Olga; Lõõnik, Jaan

    2012-01-01

    This report discusses potential future systems for waste-to-energy production in the Baltic Sea Region, and especially for the project REMOWE partner regions, the County of Västmanland in Sweden, Northern Savo in Finland, Lower Silesia in Poland, western part of Lithuania and Estonia. The waste-to-energy systems planned for in the partner regions are combustion of municipal solid waste (MSW) and solid recovered fuels from household and industry as well as anaerobic digestion of sewage sludge ...

  8. Practical aspects of decentralized wind energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, H J.M.

    1982-11-01

    Some practical aspects of wind energy systems are described with emphasis on small wind energy conversion systems, both horizontal and vertical axis turbines. Reviewed are the power train of the installation including the speed control and power construction. Power efficiency of small wind turbines available and in operation in the Netherlands is dealt with. Environmental aspects such as noise, disturbance of tv and radio signals, impact on birds and the landscape are mentioned briefly.

  9. Technical Design of Flexible Sustainable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper presents technical designs of potential future flexible energy systems in Denmark, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid.......The paper presents technical designs of potential future flexible energy systems in Denmark, which will be able both to balance production and demand and to secure voltage and frequency requirements on the grid....

  10. 3rd annual biomass energy systems conference

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The main objectives of the 3rd Annual Biomass Energy Systems Conference were (1) to review the latest research findings in the clean fuels from biomass field, (2) to summarize the present engineering and economic status of Biomass Energy Systems, (3) to encourage interaction and information exchange among people working or interested in the field, and (4) to identify and discuss existing problems relating to ongoing research and explore opportunities for future research. Abstracts for each paper presented were edited separately. (DC)

  11. COSMO-RS-based extractant screening for phenol extraction as model system

    NARCIS (Netherlands)

    Burghoff, B.; Goetheer, E.L.V.; Haan, A.B. de

    2008-01-01

    The focus of this investigation is the development of a fast and reliable extractant screening approach. Phenol extraction is selected as the model process. A quantum chemical conductor-like screening model for real solvents (COSMO-RS) is combined with molecular design considerations. For this

  12. THE PROBLEM OF ENERGY EFFICIENCY OF THE GEOTHERMAL CIRCULATION SYSTEM IN DIFFERENT MODES OF REINJECTION OF THE COOLANT

    OpenAIRE

    D. K. Djavatov; A. A. Azizov

    2017-01-01

    Aim. Advanced technologies are crucial for widespread use of geothermal energy to ensure its competitiveness with conventional forms of energy. To date, the basis for the development of geothermal energy is the technology of extracting the heat transfer fluids from the subsoil. There are the following ways to extract the coolant: freeflow; pumping and circular methods. Of greatest interest is the technology to harness the geothermal energy based on geothermal circulatory system (GCS). There i...

  13. The captains of energy systems dynamics from an energy perspective

    CERN Document Server

    Prantil, Vincent C

    2015-01-01

    In teaching an introduction to transport or systems dynamics modeling at the undergraduate level, it is possible to lose pedagogical traction in a sea of abstract mathematics. What the mathematical modeling of time-dependent system behavior offers is a venue in which students can be taught that physical analogies exist between what they likely perceive as distinct areas of study in the physical sciences. We introduce a storyline whose characters are superheroes that store and dissipate energy in dynamic systems. Introducing students to the overarching conservation laws helps develop the analog

  14. High energy density, long life energy storage capacitor dielectric system

    International Nuclear Information System (INIS)

    Nichols, D.H.; Wilson, S.R.

    1977-01-01

    The evolution of energy storage dielectric systems shows a dramatic improvement in life and joule density, culminating in a 50% to 300% life improvement of polypropylene film-paper-phthalate ester over paper-castor oil depending on service. The physical and electrical drawbacks of castor oil are not present in the new system, allowing the capacitor designer to utilize the superior insulation resistance, dielectric strength, and corona resistance to full advantage. The result is longer life for equal joule density or greater joule density for equal life. Field service proof of the film-Geconol system superiority is based on 5 megajoule in operation and 16 megajoule on order

  15. The challenge of greening energy systems

    International Nuclear Information System (INIS)

    Joseph, A.; Hughes, L.

    2006-01-01

    The current state of world energy supply and demand was examined along with future challenges facing population growth, economic growth, energy-demand growth, fossil energy supply, technology improvements, renewable energy solutions, and conservation measures. It was suggested that in order to implement cleaner and greener energy technology, it is important to understand the nature of global energy systems. The challenge of defining the related ideologies of green energy and sustainability was discussed. In this paper, green energy was defined as indicating environmental compatibility with little or no negative environmental impact. This differs from the concept of sustainability, which was defined as an action that can be repeated continuously without depleting or diminishing resources. In general, green energy options include most technologies that do not involve fossil fuels. However, this paper considered a spectrum of shades of green with some options being low-impact and cleaner, and others having high environmental impacts. As an example, the authors presented the ongoing debate over nuclear energy and hydro power. Although both energy sources can be sustainable over hundreds of years, they may or may not be environmentally compatible because they are often considered to have problematic attributes. Energy from renewable sources currently accounts for less than 20 per cent of world primary energy supply because price and implementation challenges in the renewables sector do not generally compare well to other energy sources. With high energy-demands beginning to strain finite fossil-energy supplies, the energy sector is now subject to more frequent disruptions and price fluctuations. Future growth from emerging economies will demand more energy and resources. This paper also emphasized that the proportion of green sources of energy has not increased substantially in the past 3 decades, and despite many technological advances, there continue to be significant

  16. The challenge of greening energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, A.; Hughes, L. [Dalhousie Univ., Halifax, NS (Canada). Dept. of Electrical and Computer Engineering, Energy Research Group

    2006-07-01

    The current state of world energy supply and demand was examined along with future challenges facing population growth, economic growth, energy-demand growth, fossil energy supply, technology improvements, renewable energy solutions, and conservation measures. It was suggested that in order to implement cleaner and greener energy technology, it is important to understand the nature of global energy systems. The challenge of defining the related ideologies of green energy and sustainability was discussed. In this paper, green energy was defined as indicating environmental compatibility with little or no negative environmental impact. This differs from the concept of sustainability, which was defined as an action that can be repeated continuously without depleting or diminishing resources. In general, green energy options include most technologies that do not involve fossil fuels. However, this paper considered a spectrum of shades of green with some options being low-impact and cleaner, and others having high environmental impacts. As an example, the authors presented the ongoing debate over nuclear energy and hydro power. Although both energy sources can be sustainable over hundreds of years, they may or may not be environmentally compatible because they are often considered to have problematic attributes. Energy from renewable sources currently accounts for less than 20 per cent of world primary energy supply because price and implementation challenges in the renewables sector do not generally compare well to other energy sources. With high energy-demands beginning to strain finite fossil-energy supplies, the energy sector is now subject to more frequent disruptions and price fluctuations. Future growth from emerging economies will demand more energy and resources. This paper also emphasized that the proportion of green sources of energy has not increased substantially in the past 3 decades, and despite many technological advances, there continue to be significant

  17. Energy and tannin extract supplementation for dairy cows on annual winter pastures

    Directory of Open Access Journals (Sweden)

    Tiago Pansard Alves

    2017-05-01

    Full Text Available Energy supplementation can increase the consumption of metabolizable energy and substrate for microbial growth, while condensed tannins aid in increasing the duodenal flow of foodborne metabolizable proteins. The objective of this study was to evaluate the effects of energy supplementation and the inclusion of tannin extract (TE from Acacia mearnsii (Weibull Black, Tanac S. A., Montenegro, Brazil on the production performance of dairy cows grazing on winter pastures. Nine multiparous Holstein cows in mid lactation were distributed in a 3 × 3 Latin square experimental design over three periods of 28 days (21 adaptation and 7 sampling. The treatments were: without supplementation (WS, supplementation with 4 kg of corn grain (CG, and corn grain + 80 g of tannin extract (TE. The dry matter (DM intake from pastures was similar among treatments, but the consumption of DM of the supplement was higher in the CG treatment than that in the TE treatment. The total DM intake was higher for the supplemented animals (17.3 kg?day-1 than that for the unsupplemented animals (14.9 kg?day-1 and in the TE treatment (17.7 kg?day-1 than in the CG treatment (16.7 kg day-1. Milk production increased from the unsupplemented to the supplemented animals (20.9 to 23.5 kg, respectively, while the content of urea N in the milk decreased (12.6 to 10.5 mg?100 mL-1, respectively. There were no differences in milk production or content of milk urea N between the CG and TE treatments. Energy supplementation is a tool for improving the nutritional profile and the performance of dairy cows in mid lactation grazing on annual winter pastures, while tannin extract aids in improving the energy balance.

  18. Design, demonstration and evaluation of a thermal enhanced vapor extraction system

    International Nuclear Information System (INIS)

    Phelan, J.; Reavis, B.; Swanson, J.

    1997-08-01

    The Thermal Enhanced Vapor Extraction System (TEVES), which combines powerline frequency heating (PLF) and radio frequency (RF) heating with vacuum soil vapor extraction, was used to effectively remove volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) from a pit in the chemical waste landfill (CWL) at Sandia National Laboratories (SNL) within a two month heating period. Volume average temperatures of 83 degrees C and 112 degrees C were reached for the PLF and RF heating periods, respectively, within the 15 ft x 45 ft x 18.5 ft deep treated volume. This resulted in the removal of 243 lb of measured toxic organic compounds (VOCs and SVOCs), 55 gallons of oil, and 11,000 gallons of water from the site. Reductions of up to 99% in total chromatographic organics (TCO) was achieved in the heated zone. Energy balance calculations for the PLF heating period showed that 36.4% of the heat added went to heating the soil, 38.5% went to evaporating water and organics, 4.2% went to sensible heat in the water, 7.1% went to heating the extracted air, and 6.6% was lost. For the RF heating period went to heating the soil, 23.5% went to evaporating water and organics, 2.4% went to sensible heat in the water, 7.5% went to heating extracted air, and 9.7% went to losses. Energy balance closure was 92.8% for the PLF heating and 98% for the RF heating. The energy input requirement per unit soil volume heated per unit temperature increase was 1.63 kWH/yd 3 -degrees C for PLF heating and 0.73 kWH/yd 3 degrees C for RF heating

  19. Optimisation of integrated energy and materials systems

    International Nuclear Information System (INIS)

    Gielen, D.J.; Okken, P.A.

    1994-06-01

    To define cost-effective long term CO2 reduction strategies an integrated energy and materials system model for the Netherlands for the period 2000-2040 is developed. The model is based upon the energy system model MARKAL, which configures an optimal mix of technologies to satisfy the specified energy and product/materials service demands. This study concentrates on CO 2 emission reduction in the materials system. For this purpose, the energy system model is enlarged with a materials system model including all steps 'from cradle to grave'. The materials system model includes 29 materials, 20 product groups and 30 waste materials. The system is divided into seven types of technologies; 250 technologies are modeled. The results show that the integrated optimisation of the energy system and the materials system can significantly reduce the emission reduction costs, especially at higher reduction percentages. The reduction is achieved through shifts in materials production and waste handling and through materials substitution in products. Shifts in materials production and waste management seem cost-effective, while the cost-effectiveness of shifts in product composition is sensitive due to the cost structure of products. For the building sector, transportation applications and packaging, CO 2 policies show a significant impact on prices, and shifts in product composition could occur. For other products, the reduction through materials substitution seems less promising. The impact on materials consumption seems most significant for cement (reduced), timber and aluminium (both increased). For steel and plastics, the net effect is balanced, but shifts between applications do occur. The MARKAL-approach is feasible to study integrated energy and materials systems. The progress compared to other environmental system analysis instruments is much more insight in the interaction of technologies on a national scale and in time

  20. Design for Reliability in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Zhou, Dao; Sangwongwanich, Ariya

    2017-01-01

    Power electronics are widely used in renewable energy systems to achieve lower cost of energy, higher efficiency and high power density. At the same time, the high reliability of the power electronics products is demanded, in order to reduce the failure rates and ensure cost-effective operation...... of the renewable energy systems. This paper thus describes the basic concepts used in reliability engineering, and presents the status and future trends of Design for Reliability (DfR) in power electronics, which is currently undergoing a paradigm shift to a physics-of-failure approach. Two case studies of a 2 MW...

  1. State energy-price system: 1981 update

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.M.; Imhoff, K.L.; Hood, L.J.

    1983-08-01

    This report updates the State Energy Price Data System (STEPS) to include state-level energy prices by fuel and by end-use sectors for 1981. Both physical unit prices and Btu prices are presented. Basic documentation of the data base remains generally the same as in the original report: State Energy Price System; Volume 1: Overview and Technical Documentation (DOE/NBB-0029 Volume 1 of 2, November 1982). The present report documents only the changes in procedures necessitated by the update to 1981 and the corrections to the basic documentation.

  2. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  3. System and method for free-boundary surface extraction

    KAUST Repository

    Algarni, Marei

    2017-10-26

    A method of extracting surfaces in three-dimensional data includes receiving as inputs three-dimensional data and a seed point p located on a surface to be extracted. The method further includes propagating a front outwardly from the seed point p and extracting a plurality of ridge curves based on the propagated front. A surface boundary is detected based on a comparison of distances between adjacent ridge curves and the desired surface is extracted based on the detected surface boundary.

  4. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  5. Thermal enhanced vapor extraction systems: Design, application and performance prediction including contaminant behavior

    International Nuclear Information System (INIS)

    Phelan, J.M.; Webb, S.W.

    1994-01-01

    Soil heating technologies have been proposed as a method to accelerate contaminant removal from subsurface soils. These methods include the use of hot air, steam, conductive heaters, in-situ resistive heating and in-situ radiofrequency heating (Buettner et.al., EPA, Dev et.al., Heath et.al.). Criteria for selection of a particular soil heating technology is a complex function of contaminant and soil properties, and efficiency in energy delivery and contaminant removal technologies. The work presented here seeks to expand the understanding of the interactions of subsurface water, contaminant, heat and vacuum extraction through model predictions and field data collection. Field demonstration will involve the combination of two soil heating technologies (resistive and dielectric) with a vacuum vapor extraction system and will occur during the summer of 1994

  6. Modeling and Simulation of Smart Energy Systems

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2015-01-01

    At a global level, it is essential that the world transfers from fossil fuels to renewable energy resources to minimize the implications of climate change, which has been clearly demonstrated by the Intergovernmental Panel on Climate Change (IPCC, 2007a). At a national level, for most countries, ...... are presented on individual technologies and complete energy system strategies, which outline how it is possible to reach a 100% renewable energy system in the coming decades.......At a global level, it is essential that the world transfers from fossil fuels to renewable energy resources to minimize the implications of climate change, which has been clearly demonstrated by the Intergovernmental Panel on Climate Change (IPCC, 2007a). At a national level, for most countries......, the transition to renewable energy will improve energy security of supply, create new jobs, enhance trade, and consequently grow the national economy. However, even with such promising consequences, renewable energy only provided approximately 13% of the world's energy in 2007 (International Energy Agency, 2009a...

  7. Multiple Solvent Extraction System with Flow Injection Technology.

    Science.gov (United States)

    1981-09-30

    encounters a back extraction step where the direction of the extraction is from organic to aqueous solvent. Thus it is advantageous to incorporate both...stainless steel ( Alltech Associates, Arlington Heights, IQ) and prepared from a single section of 180 cmn in length. The Section 2 mixing and extraction

  8. Guidelines for Datacenter Energy Information System

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Reshma [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mahdavi, Rod [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shukla, Yash [Center for Environmental Planning and Technology (CEPT) Univ., Ahmedabad (India)

    2013-12-01

    The purpose of this document is to provide structured guidance to data center owners, operators, and designers, to empower them with information on how to specify and procure data center energy information systems (EIS) for managing the energy utilization of their data centers. Data centers are typically energy-intensive facilities that can consume up to 100 times more energy per unit area than a standard office building (FEMP 2013). This guidance facilitates “data-driven decision making,” which will be enabled by following the approach outlined in the guide. This will bring speed, clarity, and objectivity to any energy or asset management decisions because of the ability to monitor and track an energy management project’s performance.

  9. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Lund, H.; Nørgård, Per Bromand

    2007-01-01

    Governments worldwide aim at reducing CO2 emissions and expanding renewable energy. A key element in achieving such a goal is to use renewable energy in transport such as biofuels. However, efforts to promote single transport technologies and single fuels only represent a partial solution...... transport. It is concluded that a 100 per cent renewable energy transport system is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production. The integration of the transport with the remaining energy....... No single technology can solve the problem of ever increasing CO2 emissions from transport. Transport must be integrated into energy planning, as electricity and heating. In this paper, a coherent effort to integrate transport into energy planning is proposed, using multiple means promoting sustainable...

  10. COMBINED SYSTEMS OF ENERGY GENERATION – A CHARACTERISATION AND CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Jan Gilewski

    2014-09-01

    Full Text Available The study presents issues concerning technical solutions of combined systems of energy generation which can be used primarily in low-level power plants, installed in various types of public utility sites. A detailed description is given of selected ways of powering combined energy generation systems, presenting conceptual outlines of their operation and information on their advantages, disadvantages and applications. The following systems are introduced: gas-steam, back-pressure steam turbine, extraction-condensing steam turbine, gas turbine, gas microturbine, Stirling engine, fuel cells and internal combustion piston engine. Moreover, the study addresses economic aspects of energy generation in combined systems, discussing different methodologies of cost calculation, including the one used by the European Union. The article also gives a detailed review of piston engine combined-system aggregates available in the Polish market. Type series of associated systems designed for low-power appliances are shown, produced by Polish and foreign companies such as Viessmann, Centrum Elektroniki Stosowanej CES, H. Cegielski – Poznań, KWE Technika Energetyczna, TEDOM Poland or the EPS System.

  11. Energy condensed packaged systems. Composition, production, properties

    Directory of Open Access Journals (Sweden)

    Igor L. Kovalenko

    2015-03-01

    Full Text Available In this paper it is presented the substantiation of choice of fuel phase composition and optimal technology of emulsion production on the basis of binary solution of ammonium and calcium nitrates, which provide the obtaining of energy condensed packaged systems with specified properties. The thermal decomposition of energy condensed systems on the basis of ammonium nitrate is investigated. It is shown that the fuel phase of emulsion systems should be based on esters of polyunsaturated acids or on combinations thereof with petroleum products. And ceresin or petroleum wax can be used as the structuring additive. The influence of the technology of energy condensed systems production on the physicochemical and detonation parameters of emulsion explosives is considered. It is shown the possibility of obtaining of emulsion systems with dispersion of 1.3...1.8 microns and viscosity higher than 103 Pa∙s in the apparatus of original design. The sensitizing effect of chlorinated paraffin CP-470 on the thermolysis of energy condensed emulsion system is shown. The composition and production technology of energy condensed packaged emulsion systems of mark Ukrainit-P for underground mining in mines not dangerous on gas and dust are developed.

  12. Nuclear technologies for local energy systems

    International Nuclear Information System (INIS)

    McDonnell, F.N.; Lynch, G.F.

    1990-03-01

    If nuclear energy is to realize its full potential as a safe and cost-effective alternative to fossil fuels, applications beyond those that are currently being serviced by large, central nuclear power stations must be identified and appropriate reactors developed. The Canadian program on reactor systems for local energy supply is at the forefront of these developments. This program emphasizes design simplicity, low power density and fuel rating, reliance on natural processes, passive systems, and reduced reliance on operator action. The first product, the SLOWPOKE Energy System, is a 10 MW heat source specifically designed to provide hot water to satisfy the needs of local heating systems for building complexes, institutions and municipal district heating systems. A demonstration heating reactor has been constructed at the Whiteshell Nuclear Research Establishment in Manitoba and has been undergoing an extensive test program since first operation in 1987 July. Based on the knowledge learned from the design, construction, licensing and operational testing of this facility, the design of the 10 MW commercial-size unit is well advanced, and Atomic Energy of Canada Limited is prepared to commit the construction of the first commercial unit. Although the technical demonstration of the concept is important, it is recognized that another crucial element is the public and regulatory acceptance of small nuclear systems in urban areas. The decision by a community to commit the construction of a SLOWPOKE Energy System brings to a sharp focus the current public apprehension about nuclear technologies

  13. Advanced energy system with nuclear reactors as an energy source

    International Nuclear Information System (INIS)

    Kato, Y.; Ishizuka, T.; Nikitin, K.

    2007-01-01

    About two-thirds of the energy generated in a light water reactors (LWRs) core is currently dissipated to the ocean as lukewarm water through steam condensers; more than half the energy in helium (He) gas turbine high temperature gas cooled reactors (HTGRs) is dissipated through pre-coolers and inter coolers. The new waste heat recovery system efficiently recovers the waste heat from reactors using boiling heat transfer of 20 degree C liquid carbon dioxide (CO 2 ) instead of conventional sea water as a cooling medium. The CO 2 gasified in the cooling process is used directly as a working fluid of mechanical heat pumps for hot water supply. In LWRs, the net energy utilization fraction to total heat generation in the core exceeds 85% through the waste heat recovery. This cogeneration system is about 2.5 times more effective than current systems in reducing global warming gas emissions and long half- life radioactive material accumulation. It also increases uranium resource utilization relative to current LWRs. In the HTGR cogeneration system, the waste heat is also useful for cold water supply by introducing an adsorption refrigeration system since the gas temperature is still as high as about 190 degree Celsius. When the heat recovery system is incorporated into the HTGR, the electricity to heat-supply ratio of the HTGR cogeneration system accommodates the demand ratio in cities well; it would be suited to dispersed energy sources. The heat supply cost is expected to be lower than those of conventional fossil-fired boilers beyond operation of about four years. The waste heat recovered is able to be utilized not only for local heat supply but also for methane and methanol production from waste products of cities and farms through high-temperature fermentation, e.g., garbage, waste wood and used paper that are produced in cities, along with excreta produced through farming. The methane and methanol can be used to generate hydrogen for fuel cells. The new waste heat

  14. Nuclear Hybrid Energy Systems: Imperatives, Prospects, and Challenges

    International Nuclear Information System (INIS)

    Aumeier, Steven E.

    2010-01-01

    certainly not new, renewed interest in more tightly coupled energy product plants (such as HES) that meet the objectives outline above have gained additional interest recently, an interest likely sparked by sharpening energy security concerns. Studies have shown that non-nuclear integrated (hybrid) energy systems can have appealing attributes in terms of overall process efficiency, enhanced electric grid stability, renewable energy integration, and economic performance, and lifecycle greenhouse gas emissions. These attributes seem to be sufficiently compelling that several significant commercial investments in fossil-renewable HES are being made in the United States while the U.S. Defense Advanced Research Projects Agency (DARPA) has openly solicited information regarding nuclear energy integration schemes. The challenges of nuclear energy integration include myriad issues associated with the following RD and D areas, or 'platforms': (1) feedstock processing (e.g. bio-feedstock integration with coal, carbon feedstock extraction using nuclear energy); (2) heat/energy management (e.g. advanced heat exchangers, process design); (3) energy storage (e.g. H2 production, liquid fuels synthesis); (4) byproduct management (e.g. CO2 recycle approaches); (5) systems dynamics, integration and control (e.g. process dynamics analyses and optimization, advanced prognostics, diagnostics, variable time scale control and flow sheet optimization).

  15. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclay

    Energy Technology Data Exchange (ETDEWEB)

    Delferriere, O.; Gobin, R.; Harrault, F.; Nyckees, S.; Sauce, Y.; Tuske, O. [Commissariat a l' Energie Atomique, CEA/Saclay, DSM/IRFU, 91191 Gif/Yvette (France)

    2012-02-15

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  16. Binary Solvent Extraction System and Extraction Time Effects on Phenolic Antioxidants from Kenaf Seeds (Hibiscus cannabinus L.) Extracted by a Pulsed Ultrasonic-Assisted Extraction

    OpenAIRE

    Yu Hua Wong; Hwee Wen Lau; Chin Ping Tan; Kamariah Long; Kar Lin Nyam

    2014-01-01

    The aim of this study was to determine the best parameter for extracting phenolic-enriched kenaf (Hibiscus cannabinus L.) seeds by a pulsed ultrasonic-assisted extraction. The antioxidant activities of ultrasonic-assisted kenaf seed extracts (KSE) were determined by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, β -carotene bleaching inhibition assay, and ferric reducing antioxi...

  17. Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN

    DEFF Research Database (Denmark)

    Münster, Marie

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste......-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows...... the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also...

  18. Modeling and optimization of a utility system containing multiple extractions steam turbines

    International Nuclear Information System (INIS)

    Luo, Xianglong; Zhang, Bingjian; Chen, Ying; Mo, Songping

    2011-01-01

    Complex turbines with multiple controlled and/or uncontrolled extractions are popularly used in the processing industry and cogeneration plants to provide steam of different levels, electric power, and driving power. To characterize thermodynamic behavior under varying conditions, nonlinear mathematical models are developed based on energy balance, thermodynamic principles, and semi-empirical equations. First, the complex turbine is decomposed into several simple turbines from the controlled extraction stages and modeled in series. THM (The turbine hardware model) developing concept is applied to predict the isentropic efficiency of the decomposed simple turbines. Stodola's formulation is also used to simulate the uncontrolled extraction steam parameters. The thermodynamic properties of steam and water are regressed through linearization or piece-wise linearization. Second, comparison between the simulated results using the proposed model and the data in the working condition diagram provided by the manufacturer is conducted over a wide range of operations. The simulation results yield small deviation from the data in the working condition diagram where the maximum modeling error is 0.87% among the compared seven operation conditions. Last, the optimization model of a utility system containing multiple extraction turbines is established and a detailed case is analyzed. Compared with the conventional operation strategy, a maximum of 5.47% of the total operation cost is saved using the proposed optimization model. -- Highlights: → We develop a complete simulation model for steam turbine with multiple extractions. → We test the simulation model using the performance data of commercial turbines. → The simulation error of electric power generation is no more than 0.87%. → We establish a utility system operational optimization model. → The optimal industrial operation scheme featured with 5.47% of cost saving.

  19. Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system.

    Science.gov (United States)

    Moribe, Kunikazu; Fukino, Mika; Tozuka, Yuichi; Higashi, Kenjirou; Yamamoto, Keiji

    2009-10-01

    Prednisolone nanoparticles were prepared in the presence of a hydrophilic polymer and a surfactant by the aerosol solvent extraction system (ASES). A ternary mixture of prednisolone, polyethylene glycol (PEG), and sodium dodecyl sulfate (SDS) dissolved in methanol was sprayed through a nozzle into the reaction vessel filled with supercritical carbon dioxide. After the ASES process was repeated, precipitates of the ternary components were obtained by depressurizing the reaction vessel. When a methanolic solution of prednisolone/PEG 4000/SDS at a weight ratio of 1:6:2 was sprayed under the optimized ASES conditions, the mean particle size of prednisolone obtained after dispersing the precipitates in water was observed to be ca. 230 nm. Prednisolone nanoparticles were not obtained by the binary ASES process for prednisolone, in the presence of either PEG or SDS. Furthermore, ternary cryogenic cogrinding, as well as solvent evaporation, was not effective for the preparation of prednisolone nanoparticles. As the ASES process can be conducted under moderate temperature conditions, the ASES process that was applied to the ternary system appeared to be one of the most promising methods for the preparation of drug nanoparticles using the multicomponent system.

  20. Trust and the transformation of energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rayner, Steve [James Martin Institute for Science and Civilization, Said Business School, Park End Street, Oxford, OX1 1HP (United Kingdom)

    2010-06-15

    The author looks at diverse concepts and roles of trust in the challenge of decarbonising energy systems, drawing on 25 years of personal experience in the fields of energy and environmental policy research. The paper focuses on three issues-public trust in science, institutional trust in making technology choices, and the idea that high-trust societies are more sustainable than those exhibiting low-trust. While trust is a key concept in understanding the public acceptability of technology choices, it is only one of a suite of interrelated concepts that must be addressed, which also includes liability, consent, and fairness. Furthermore, rational distrust among competing institutional world views may be critical in understanding the role of social capital in socioeconomic and technological development. Thus the concept of trust has become a portmanteau, carrying a diverse range of ideas and conditions for sustainable energy systems. The paper concludes with three emphases for decision makers. First, the issue is the energy system, not particular generating technologies. Second, the energy system must be recognized to be as much a social system as it is a technical one. Third, the system requires incorporation of the minimum level of diversity of engineering technologies and social actors to be sustainable. (author)