WorldWideScience

Sample records for energy exchange model

  1. Energy exchange in thermal energy atom-surface scattering: impulsive models

    International Nuclear Information System (INIS)

    Barker, J.A.; Auerbach, D.J.

    1979-01-01

    Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)

  2. Energy exchange

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B. [SolArc, Inc. (United States)

    2000-09-01

    The article discusses the identification of efficiencies that can minimise transaction costs in energy trading and marketing. The article describes what is meant by 'trade management'. It is argued that a trade management system should be able to dovetail with existing or future ERP, advanced risk management, and financial management systems, to provide total enterprise integration. With the right trade management systems, traders have all the necessary information to help them manage exposure to financial risks in a world where energy trading companies are forced to accept very small margins. A trade management system can cover many aspects of a business including the winning of contracts for transportation deals, including rail, car, truck, barge and pipeline. There appears to be unprecedented opportunities for companies specialising in development and provision of trade management systems.

  3. Energy exchange

    International Nuclear Information System (INIS)

    Anderson, B.

    2000-01-01

    The article discusses the identification of efficiencies that can minimise transaction costs in energy trading and marketing. The article describes what is meant by 'trade management'. It is argued that a trade management system should be able to dovetail with existing or future ERP, advanced risk management, and financial management systems, to provide total enterprise integration. With the right trade management systems, traders have all the necessary information to help them manage exposure to financial risks in a world where energy trading companies are forced to accept very small margins. A trade management system can cover many aspects of a business including the winning of contracts for transportation deals, including rail, car, truck, barge and pipeline. There appears to be unprecedented opportunities for companies specialising in development and provision of trade management systems

  4. Fine modeling of energy exchanges between buildings and urban atmosphere

    International Nuclear Information System (INIS)

    Daviau-Pellegrin, Noelie

    2016-01-01

    This thesis work is about the effect of buildings on the urban atmosphere and more precisely the energetic exchanges that take place between these two systems. In order to model more finely the thermal effects of buildings on the atmospheric flows in simulations run under the CFD software Code-Saturne, we proceed to couple this tool with the building model BuildSysPro. This library is run under Dymola and can generate matrices describing the building thermal properties that can be used outside this software. In order to carry out the coupling, we use these matrices in a code that allows the building thermal calculations and the CFD to exchange their results. After a review about the physical phenomena and the existing models, we explain the interactions between the atmosphere and the urban elements, especially buildings. The latter can impact the air flows dynamically, as they act as obstacles, and thermally, through their surface temperatures. At first, we analyse the data obtained from the measurement campaign EM2PAU that we use in order to validate the coupled model. EM2PAU was carried out in Nantes in 2011 and represents a canyon street with two rows of four containers. Its distinctive feature lies in the simultaneous measurements of the air and wall temperatures as well as the wind speeds with anemometers located on a 10 m-high mast for the reference wind and on six locations in the canyon. This aims for studying the thermal influence of buildings on the air flows. Then the numerical simulations of the air flows in EM2PAU is carried out with different methods that allow us to calculate or impose the surface temperature we use for each of the container walls. The first method consists in imposing their temperatures from the measurements. For each wall, we set the temperature to the surface temperature that was measured during the EM2PAU campaign. The second method involves imposing the outdoor air temperature that was measured at a given time to all the

  5. High energy charge exchange np and antipp scattering using the dual fermion model

    International Nuclear Information System (INIS)

    Weigt, G.

    1976-01-01

    The five independent helicity amplitudes Phisub(i)(s, t) calculated by Mandelstam from the Neveu-Schwarz-Ramond model for fermion-antifermion scattering are used in the Regge limit for a phenomenological description of high energy np and antipp charge exchange scattering. A forward spike which widens with increasing energy as well as an energy dependence changing from lower to higher energy data are reproduced by these non-evasive dual Born amplitudes using π, A 2 and rho Regge pole t-channel exchanges. (author)

  6. Energy exchange analysis in droplet dynamics via the Navier–Stokes–Cahn–Hilliard model

    KAUST Repository

    Espath, L. F. R.

    2016-05-23

    We develop the energy budget equation of the coupled Navier-Stokes-Cahn-Hilliard (NSCH) system. We use the NSCH equations to model the dynamics of liquid droplets in a liquid continuum. Buoyancy effects are accounted for through the Boussinesq assumption. We physically interpret each quantity involved in the energy exchange to gain further insight into the model. Highly resolved simulations involving density-driven flows and the merging of droplets allow us to analyse these energy budgets. In particular, we focus on the energy exchanges when droplets merge, and describe flow features relevant to this phenomenon. By comparing our numerical simulations to analytical predictions and experimental results available in the literature, we conclude that modelling droplet dynamics within the framework of NSCH equations is a sensible approach worthy of further research. © 2016 Cambridge University Press.

  7. Energy exchange analysis in droplet dynamics via the Navier-Stokes-Cahn-Hilliard model

    Science.gov (United States)

    Espath, L. F. R.; Sarmiento, A. F.; Vignal, P.; Varga, B. O. N.; Cortes, A. M. A.; Dalcin, L.; Calo, V. M.

    2016-06-01

    We develop the energy budget equation of the coupled Navier-Stokes-Cahn-Hilliard (NSCH) system. We use the NSCH equations to model the dynamics of liquid droplets in a liquid continuum. Buoyancy effects are accounted for through the Boussinesq assumption. We physically interpret each quantity involved in the energy exchange to further insight into the model. Highly resolved simulations involving density-driven flows and merging of droplets allow us to analyze these energy budgets. In particular, we focus on the energy exchanges when droplets merge, and describe flow features relevant to this phenomenon. By comparing our numerical simulations to analytical predictions and experimental results available in the literature, we conclude that modeling droplet dynamics within the framework of NSCH equations is a sensible approach worth further research.

  8. Probability distributions in conservative energy exchange models of multiple interacting agents

    International Nuclear Information System (INIS)

    Scafetta, Nicola; West, Bruce J

    2007-01-01

    Herein we study energy exchange models of multiple interacting agents that conserve energy in each interaction. The models differ regarding the rules that regulate the energy exchange and boundary effects. We find a variety of stochastic behaviours that manifest energy equilibrium probability distributions of different types and interaction rules that yield not only the exponential distributions such as the familiar Maxwell-Boltzmann-Gibbs distribution of an elastically colliding ideal particle gas, but also uniform distributions, truncated exponential distributions, Gaussian distributions, Gamma distributions, inverse power law distributions, mixed exponential and inverse power law distributions, and evolving distributions. This wide variety of distributions should be of value in determining the underlying mechanisms generating the statistical properties of complex phenomena including those to be found in complex chemical reactions

  9. Statistical thermodynamics and energy exchanges

    International Nuclear Information System (INIS)

    Oudet, X.

    1987-01-01

    The probability of finding the energy of a particle in the vicinity of a given energy is determined, taking into account of the conservation of energy during the exchanges of energy. As a result the exchanges which determine the different probabilities also introduce a dependence between them, allowing a full calculation. The solution has the main properties of the distribution of Fermi-Dirac, with the mean energy per particle as variable in place of temperature. It allows to propose a localized model for the conduction electrons [fr

  10. Formation of vertically aligned carbon nanostructures in plasmas: numerical modelling of growth and energy exchange

    Energy Technology Data Exchange (ETDEWEB)

    Denysenko, I; Azarenkov, N A, E-mail: idenysenko@yahoo.com [School of Physics and Technology, V N Karazin Kharkiv National University, 4 Svobody sq., 61077 Kharkiv (Ukraine)

    2011-05-04

    Results on modelling of the plasma-assisted growth of vertically aligned carbon nanostructures and of the energy exchange between the plasma and the growing nanostructures are reviewed. Growth of carbon nanofibres and single-walled carbon nanotubes is considered. Focus is made on studies that use the models based on mass balance equations for species, which are adsorbed on catalyst nanoparticles or walls of the nanostructures. It is shown that the models can be effectively used for the study and optimization of nanostructure growth in plasma-enhanced chemical vapour deposition. The results from these models are in good agreement with the available experimental data on the growth of nanostructures. It is discussed how input parameters for the models may be obtained.

  11. A spin exchange model for singlet fission

    Science.gov (United States)

    Yago, Tomoaki; Wakasa, Masanobu

    2018-03-01

    Singlet fission has been analyzed with the Dexter model in which electron exchange occurs between chromophores, conserving the spin for each electron. In the present study, we propose a spin exchange model for singlet fission. In the spin exchange model, spins are exchanged by the exchange interaction between two electrons. Our analysis with simple spin functions demonstrates that singlet fission is possible by spin exchange. A necessary condition for spin exchange is a variation in exchange interactions. We also adapt the spin exchange model to triplet fusion and triplet energy transfer, which often occur after singlet fission in organic solids.

  12. Thermal modelling of borehole heat exchangers and borehole thermal energy stores; Zur thermischen Modellierung von Erdwaermesonden und Erdsonden-Waermespeichern

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dan

    2011-07-15

    The thermal use of the underground for heating and cooling applications can be done with borehole heat exchangers. This work deals with the further development of the modelling of thermal transport processes inside and outside the borehole as well as with the application of the further developed models. The combination of high accuracy and short computation time is achieved by the development of three-dimensional thermal resistance and capacity models for borehole heat exchangers. Short transient transport processes can be calculated by the developed model with a considerable higher dynamic and accuracy than with known models from literature. The model is used to evaluate measurement data of a thermal response test by parameter estimation technique with a transient three-dimensional model for the first time. Clear advantages like shortening of the test duration are shown. The developed borehole heat exchanger model is combined with a three-dimensional description of the underground in the Finite-Element-Program FEFLOW. The influence of moving groundwater on borehole heat exchangers and borehole thermal energy stores is then quantified.

  13. Critical validity assessment of theoretical models: charge-exchange at intermediate and high energies

    Science.gov (United States)

    Belkić, Dževad

    1999-06-01

    Exact comprehensive computations are carried out by means of four leading second-order approximations yielding differential cross sections dQ/ dΩ for the basic charge exchange process H ++H(1s)→H(1s)+H + at intermediate and high energies. The obtained extensive set of results is thoroughly tested against all the existing experimental data with the purpose of critically assessing the validity of the boundary corrected second-Born (CB2), continuum-distorted wave (CDW), impulse approximation (IA) and the reformulated impulse approximation (RIA). The conclusion which emerges from this comparative study clearly indicates that the RIA agrees most favorably with the measurements available over a large energy range 25 keV-5 MeV. Such a finding reaffirms the few-particle quantum scattering theory which imposes several strict conditions on adequate second-order methods. These requirements satisfied by the RIA are: (i) normalisations of all the scattering wave functions, (ii) correct boundary conditions in both entrance and exit channels, (iii) introduction of a mathematically justified two-center continuum state for the sum of an attractive and a repulsive Coulomb potential with the same interaction strength, (iv) inclusion of the multiple scattering effects neglected in the IA, (v) a proper description of the Thomas double scattering in good agreement with the experiments and without any unobserved peak splittings. Nevertheless, the performed comparative analysis of the above four approximations indicates that none of the methods is free from some basic shortcomings. Despite its success, the RIA remains essentially a high-energy model like the other three methods under study. More importantly, their perturbative character leaves virtually no room for further systematic improvements, since the neglected higher-order terms are prohibitively tedious for practical purposes and have never been computed exactly. To bridge this gap, we presently introduce the variational Pad

  14. Critical validity assessment of theoretical models: charge-exchange at intermediate and high energies

    International Nuclear Information System (INIS)

    Belkic, Dzevad

    1999-01-01

    Exact comprehensive computations are carried out by means of four leading second-order approximations yielding differential cross sections dQ/dΩ for the basic charge exchange process H + +H(1s)→H(1s)+H + at intermediate and high energies. The obtained extensive set of results is thoroughly tested against all the existing experimental data with the purpose of critically assessing the validity of the boundary corrected second-Born (CB2), continuum-distorted wave (CDW), impulse approximation (IA) and the reformulated impulse approximation (RIA). The conclusion which emerges from this comparative study clearly indicates that the RIA agrees most favorably with the measurements available over a large energy range 25 keV-5 MeV. Such a finding reaffirms the few-particle quantum scattering theory which imposes several strict conditions on adequate second-order methods. These requirements satisfied by the RIA are: (i) normalisations of all the scattering wave functions, (ii) correct boundary conditions in both entrance and exit channels, (iii) introduction of a mathematically justified two-center continuum state for the sum of an attractive and a repulsive Coulomb potential with the same interaction strength, (iv) inclusion of the multiple scattering effects neglected in the IA, (v) a proper description of the Thomas double scattering in good agreement with the experiments and without any unobserved peak splittings. Nevertheless, the performed comparative analysis of the above four approximations indicates that none of the methods is free from some basic shortcomings. Despite its success, the RIA remains essentially a high-energy model like the other three methods under study. More importantly, their perturbative character leaves virtually no room for further systematic improvements, since the neglected higher-order terms are prohibitively tedious for practical purposes and have never been computed exactly. To bridge this gap, we presently introduce the variational Pade

  15. Energy exchange analysis in droplet dynamics via the Navier–Stokes–Cahn–Hilliard model

    KAUST Repository

    Espath, L. F. R.; Sarmiento, Adel; Vignal, Philippe; Varga, B. O. N.; Cortes, Adriano Mauricio; Dalcin, Lisandro; Calo, Victor M.

    2016-01-01

    We develop the energy budget equation of the coupled Navier-Stokes-Cahn-Hilliard (NSCH) system. We use the NSCH equations to model the dynamics of liquid droplets in a liquid continuum. Buoyancy effects are accounted for through the Boussinesq

  16. Plan charge exchange scattering at high energies

    International Nuclear Information System (INIS)

    Saleem, M.; Bhatti, S.; Fazal-e-Aleem; Rafique, M.

    1980-01-01

    By a phenomenological choice of the residue functions, a very good fit with experiment for the pion-nucleon charge exchange reaction at Fermilab energies is obtained on a simple Regge-pole model using a quadratic rho trajectory and energy-independent parameters

  17. Primer on nuclear exchange models

    Energy Technology Data Exchange (ETDEWEB)

    Hafemeister, David [Physics Department, Cal Poly University, San Luis Obispo, California (United States)

    2014-05-09

    Basic physics is applied to nuclear force exchange models between two nations. Ultimately, this scenario approach can be used to try and answer the age old question of 'how much is enough?' This work is based on Chapter 2 of Physics of Societal Issues: Calculations on National Security, Environment and Energy (Springer, 2007 and 2014)

  18. Modeling the performance of hydrogen-oxygen unitized regenerative proton exchange membrane fuel cells for energy storage

    Science.gov (United States)

    Guarnieri, Massimo; Alotto, Piergiorgio; Moro, Federico

    2015-11-01

    Thanks to the independent sizing of power and energy, hydrogen-based energy storage is one of the very few technologies capable of providing long operational times in addition to the other advantages offered by electrochemical energy storage, for example scalability, site versatility, and mobile service. The typical design consists of an electrolyzer in charge mode and a separate fuel cell in discharge mode. Instead, a unitized regenerative fuel cell (URFC) is a single device performing both energy conversions, achieving a higher compactness and power-to-weight ratio. This paper presents a performance model of a URFC based on a proton exchange membrane (PEM) electrolyte and working on hydrogen and oxygen, which can provide high energy and power densities (>0.7 W cm-2). It provides voltage, power, and efficiency at varying load conditions as functions of the controlling physical quantities: temperature, pressure, concentration, and humidification. The model constitutes a tool for designing the interface and control sub-system as well as for exploring optimized cell/stack designs and operational conditions. To date, only a few of such analyses have been carried out and more research is needed in order to explore the true potential of URFCs.

  19. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction II: Nonplanar Molecules.

    Science.gov (United States)

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-11-14

    The crystal structure prediction (CSP) of a given compound from its molecular diagram is a fundamental challenge in computational chemistry with implications in relevant technological fields. A key component of CSP is the method to calculate the lattice energy of a crystal, which allows the ranking of candidate structures. This work is the second part of our investigation to assess the potential of the exchange-hole dipole moment (XDM) dispersion model for crystal structure prediction. In this article, we study the relatively large, nonplanar, mostly flexible molecules in the first five blind tests held by the Cambridge Crystallographic Data Centre. Four of the seven experimental structures are predicted as the energy minimum, and thermal effects are demonstrated to have a large impact on the ranking of at least another compound. As in the first part of this series, delocalization error affects the results for a single crystal (compound X), in this case by detrimentally overstabilizing the π-conjugated conformation of the monomer. Overall, B86bPBE-XDM correctly predicts 16 of the 21 compounds in the five blind tests, a result similar to the one obtained using the best CSP method available to date (dispersion-corrected PW91 by Neumann et al.). Perhaps more importantly, the systems for which B86bPBE-XDM fails to predict the experimental structure as the energy minimum are mostly the same as with Neumann's method, which suggests that similar difficulties (absence of vibrational free energy corrections, delocalization error,...) are not limited to B86bPBE-XDM but affect GGA-based DFT-methods in general. Our work confirms B86bPBE-XDM as an excellent option for crystal energy ranking in CSP and offers a guide to identify crystals (organic salts, conjugated flexible systems) where difficulties may appear.

  20. Modeling and Forecasting the Distribution of Energy Forward Returns - Evidence from the Nordic Power Exchange

    DEFF Research Database (Denmark)

    Lunde, Asger; Olesen, Kasper Vinther

    We explore intraday transaction records from NASDAQ OMX Commodities Europe from January 2006 to October 2013. We analyze empirical results for a selection of existing realized measures of volatility and incorporate them in a Realized GARCH framework for the joint modeling of returns and realized...... variances over time, which stresses the importance of careful modeling and forecasting of volatility. We show that improved model fit can be obtained in-sample by utilizing high-frequency data compared to standard models that use only daily observations. Additionally, we show that the intraday sampling...

  1. Offshore Energy Knowledge Exchange Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-04-12

    A report detailing the presentations and topics discussed at the Offshore Energy Knowledge Exchange Workshop, an event designed to bring together offshore energy industry representatives to share information, best practices, and lessons learned.

  2. Stochastic multi-objective model for optimal energy exchange optimization of networked microgrids with presence of renewable generation under risk-based strategies.

    Science.gov (United States)

    Gazijahani, Farhad Samadi; Ravadanegh, Sajad Najafi; Salehi, Javad

    2018-02-01

    The inherent volatility and unpredictable nature of renewable generations and load demand pose considerable challenges for energy exchange optimization of microgrids (MG). To address these challenges, this paper proposes a new risk-based multi-objective energy exchange optimization for networked MGs from economic and reliability standpoints under load consumption and renewable power generation uncertainties. In so doing, three various risk-based strategies are distinguished by using conditional value at risk (CVaR) approach. The proposed model is specified as a two-distinct objective function. The first function minimizes the operation and maintenance costs, cost of power transaction between upstream network and MGs as well as power loss cost, whereas the second function minimizes the energy not supplied (ENS) value. Furthermore, the stochastic scenario-based approach is incorporated into the approach in order to handle the uncertainty. Also, Kantorovich distance scenario reduction method has been implemented to reduce the computational burden. Finally, non-dominated sorting genetic algorithm (NSGAII) is applied to minimize the objective functions simultaneously and the best solution is extracted by fuzzy satisfying method with respect to risk-based strategies. To indicate the performance of the proposed model, it is performed on the modified IEEE 33-bus distribution system and the obtained results show that the presented approach can be considered as an efficient tool for optimal energy exchange optimization of MGs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Energy exchange increases supply security

    International Nuclear Information System (INIS)

    Van Baarle, D.

    2004-01-01

    Since October 5, 2004, Endex is an official futures market for energy. All the energy businesses and large-scale consumers in the Netherlands can trade electricity, and in the future also gas, anonymously [nl

  4. Energy Models

    Science.gov (United States)

    Energy models characterize the energy system, its evolution, and its interactions with the broader economy. The energy system consists of primary resources, including both fossil fuels and renewables; power plants, refineries, and other technologies to process and convert these r...

  5. Single- and double-charge exchange at low pion energies

    International Nuclear Information System (INIS)

    Baer, H.W.

    1991-01-01

    A review is given of pion single- and double-charge exchange reactions at incident energies of 25 to 65 MeV leading to isobaric analog states, and in the case of double-charge exchange leading to the ground state of the residual nucleus. The crucial role of the higher nuclear transparency at low pion energies for the analysis of the data in terms of single and double scattering is demonstrated. The large effects on double-charge exchange produced by the spatial correlations in nuclear wave functions are evident. The data on 1f 7/2 nuclei at 35 MeV are used to establish the general validity of a shell-model-based two-amplitude model for these transitions. Recent measurements of the energy dependence between 25 and 65 MeV of double-charge exchange cross sections at forward angles are presented and discussed. 33 refs., 19 figs

  6. Fragmentary model of exchange interactions

    CERN Document Server

    Kotov, V M

    2000-01-01

    This article makes attempt to refusal from using neutrino for explanation continuous distribution of beta particle energy by conversion to characteristic exchange interaction particles in nucleolus. It is taking formulation for nuclear position with many different fragments. It is computing half-value period of spontaneous fission of heavy nucleolus. (author)

  7. SPEEDUPtrademark ion exchange column model

    International Nuclear Information System (INIS)

    Hang, T.

    2000-01-01

    A transient model to describe the process of loading a solute onto the granular fixed bed in an ion exchange (IX) column has been developed using the SpeedUptrademark software package. SpeedUp offers the advantage of smooth integration into other existing SpeedUp flowsheet models. The mathematical algorithm of a porous particle diffusion model was adopted to account for convection, axial dispersion, film mass transfer, and pore diffusion. The method of orthogonal collocation on finite elements was employed to solve the governing transport equations. The model allows the use of a non-linear Langmuir isotherm based on an effective binary ionic exchange process. The SpeedUp column model was tested by comparing to the analytical solutions of three transport problems from the ion exchange literature. In addition, a sample calculation of a train of three crystalline silicotitanate (CST) IX columns in series was made using both the SpeedUp model and Purdue University's VERSE-LC code. All test cases showed excellent agreement between the SpeedUp model results and the test data. The model can be readily used for SuperLigtrademark ion exchange resins, once the experimental data are complete

  8. Modeling Carbon Exchange

    Science.gov (United States)

    Sellers, Piers

    2012-01-01

    Model results will be reviewed to assess different methods for bounding the terrestrial role in the global carbon cycle. It is proposed that a series of climate model runs could be scoped that would tighten the limits on the "missing sink" of terrestrial carbon and could also direct future satellite image analyses to search for its geographical location and understand its seasonal dynamics.

  9. Exchange energy of inhomogenous electron gas near a metal surface

    International Nuclear Information System (INIS)

    Miglio, L.; Tosi, M.P.; March, N.H.

    1980-12-01

    Using the first-order density matrix of an infinite-barrier model of a metal surface, the exchange energy density can be evaluated exactly as a function of distance z from the barrier. This result is compared with the local approximation -3/4e 2 (3/π)sup(1/3) rhosup(4/3)(z) where rho is the electron density in the model. The local approximation is demonstrated to be quantitatively accurate at all z. The integrated surface exchange energy is given to within 3% by the local theory. (author)

  10. Folding model study of the charge-exchange scattering to the isobaric analog state and implication for the nuclear symmetry energy

    International Nuclear Information System (INIS)

    Khoa, Dao T.; Thang, Dang Ngoc; Loc, Bui Minh

    2014-01-01

    The Fermi transition (ΔL = ΔS = 0 and ΔT = 1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p, n) or ( 3 He, t) reaction, can be considered as ''elastic'' scattering of proton or 3 He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p, n) or ( 3 He, t) scattering cross section to the IAS can be used, therefore, to probe the isospin dependence of the proton or 3 He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or 3 He optical potential to the cross section of the charge-exchange (p, n) or ( 3 He, t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density-dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p, n) or ( 3 He, t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. (orig.)

  11. Folding model study of the charge-exchange scattering to the isobaric analog state and implication for the nuclear symmetry energy

    Energy Technology Data Exchange (ETDEWEB)

    Khoa, Dao T.; Thang, Dang Ngoc [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); Loc, Bui Minh [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); University of Pedagogy, Ho Chi Minh City (Viet Nam)

    2014-02-15

    The Fermi transition (ΔL = ΔS = 0 and ΔT = 1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p, n) or ({sup 3}He, t) reaction, can be considered as ''elastic'' scattering of proton or {sup 3}He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p, n) or ({sup 3}He, t) scattering cross section to the IAS can be used, therefore, to probe the isospin dependence of the proton or {sup 3}He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or {sup 3}He optical potential to the cross section of the charge-exchange (p, n) or ({sup 3}He, t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density-dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p, n) or ({sup 3}He, t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. (orig.)

  12. Local density approximations for relativistic exchange energies

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1986-01-01

    The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented

  13. Numerical Modeling of Conjugate Thermogravitational Convection in a Closed System with a Radiant Energy Source in Conditions of Convective-Radiative Heat Exchange at the External Boundary

    Directory of Open Access Journals (Sweden)

    Nee Alexander

    2016-01-01

    Full Text Available Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert’s law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary. According to the results of the integral heat transfer analysis were established that the average Nusselt number (Nuav increasing occurs up to τ = 200 (dimensionless time. Further Nuav has changed insignificantly due to the temperature field equalization near the interfaces “gas – wall”.

  14. Using Leaf Chlorophyll to Parameterize Light-Use-Efficiency Within a Thermal-Based Carbon, Water and Energy Exchange Model

    Science.gov (United States)

    Houlborg, Rasmus; Anderson, Martha C.; Daughtry, C. S. T.; Kustas, W. P.; Rodell, Matthew

    2010-01-01

    Chlorophylls absorb photosynthetically active radiation and thus function as vital pigments for photosynthesis, which makes leaf chlorophyll content (C(sub ab) useful for monitoring vegetation productivity and an important indicator of the overall plant physiological condition. This study investigates the utility of integrating remotely sensed estimates of C(sub ab) into a thermal-based Two-Source Energy Balance (TSEB) model that estimates land-surface CO2 and energy fluxes using an analytical, light-use-efficiency (LUE) based model of canopy resistance. The LUE model component computes canopy-scale carbon assimilation and transpiration fluxes and incorporates LUE modifications from a nominal (species-dependent) value (LUE(sub n)) in response to short term variations in environmental conditions, However LUE(sub n) may need adjustment on a daily timescale to accommodate changes in plant phenology, physiological condition and nutrient status. Day to day variations in LUE(sub n) were assessed for a heterogeneous corn crop field in Maryland, U,S.A. through model calibration with eddy covariance CO2 flux tower observations. The optimized daily LUE(sub n) values were then compared to estimates of C(sub ab) integrated from gridded maps of chlorophyll content weighted over the tower flux source area. The time continuous maps of daily C(sub ab) over the study field were generated by focusing in-situ measurements with retrievals generated with an integrated radiative transfer modeling tool (accurate to within +/-10%) using at-sensor radiances in green, red and near-infrared wavelengths acquired with an aircraft imaging system. The resultant daily changes in C(sub ab) within the tower flux source area generally correlated well with corresponding changes in daily calibrated LUE(sub n) derived from the tower flux data, and hourly water, energy and carbon flux estimation accuracies from TSEB were significantly improved when using C(sub ab) for delineating spatio

  15. National Energy Outlook Modelling System

    Energy Technology Data Exchange (ETDEWEB)

    Volkers, C.M. [ECN Policy Studies, Petten (Netherlands)

    2013-12-15

    For over 20 years, the Energy research Centre of the Netherlands (ECN) has been developing the National Energy Outlook Modelling System (NEOMS) for Energy projections and policy evaluations. NEOMS enables 12 energy models of ECN to exchange data and produce consistent and detailed results.

  16. Exchange energy in the local Airy gas approximation

    DEFF Research Database (Denmark)

    Vitos, Levente; Johansson, B.; Kollár, J.

    2000-01-01

    The Airy gas model of the edge electron gas is used to construct an exchange-energy functional that is an alternative to those obtained in the local-density and generalized-gradient approximations. Test calculations for rare-gas atoms, molecules, solids, and surfaces show that the Airy gas...

  17. Complexity, rate of energy exchanges and stochasticity

    International Nuclear Information System (INIS)

    Casartelli, M.; Sello, S.

    1987-01-01

    The complexity of trajectories in the phase of anharmonic crystal (mostly a Lennard-Jones chain) is analysed by the variance of microcanonical density and by new parameters P and chi defined, respectively, as the mean value of the time averages and the relative variance of the absolute exchange rate of energies among the normal modes. Evidence is given to the trapping action of residual invariant surfaces in low stochastic regime of motion. The parameter chi, moreover, proves efficient in exploring the border of stochasticity. A simple power law for P vs. the specific energy is obtained and proved to be independent of stochasticity and of the type of anharmonic potential

  18. Rethinking exchange market models as optimization algorithms

    Science.gov (United States)

    Luquini, Evandro; Omar, Nizam

    2018-02-01

    The exchange market model has mainly been used to study the inequality problem. Although the human society inequality problem is very important, the exchange market models dynamics until stationary state and its capability of ranking individuals is interesting in itself. This study considers the hypothesis that the exchange market model could be understood as an optimization procedure. We present herein the implications for algorithmic optimization and also the possibility of a new family of exchange market models

  19. Exchanging and Storing Energy. Reducing Energy Demand through Heat Exchange between Functions and Temporary Storage

    Energy Technology Data Exchange (ETDEWEB)

    Sillem, E.

    2011-06-15

    As typical office buildings from the nineties have large heating and cooling installations to provide heat or cold wherever and whenever needed, more recent office buildings have almost no demand for heating due to high internal heat loads caused by people, lighting and office appliances and because of the great thermal qualities of the contemporary building envelope. However, these buildings still have vast cooling units to cool down servers and other energy consuming installations. At the same time other functions such as dwellings, swimming pools, sporting facilities, archives and museums still need to be heated most of the year. In the current building market there is an increasing demand for mixed-use buildings or so called hybrid buildings. The Science Business Centre is no different and houses a conference centre, offices, a museum, archives, an exhibition space and a restaurant. From the initial program brief it seemed that the building will simultaneously house functions that need cooling most of the year and functions that will need to be heated the majority of the year. Can this building be equipped with a 'micro heating and cooling network' and where necessary temporarily store energy? With this idea a research proposal was formulated. How can the demand for heating and cooling of the Science Business Centre be reduced by using energy exchange between different kinds of functions and by temporarily storing energy? In conclusion the research led to: four optimized installation concepts; short term energy storage in pavilion concept and museum; energy exchange between the restaurant and archives; energy exchange between the server space and the offices; the majority of heat and cold will be extracted from the soil (long term energy storage); the access heat will be generated by the energy roof; PV cells from the energy roof power all climate installations; a total energy plan for the Science Business Centre; a systematic approach for exchanging

  20. High energy multi-gluon exchange amplitudes

    International Nuclear Information System (INIS)

    Jaroszewicz, T.

    1980-11-01

    We examine perturbative high energy n-gluon exchange amplitudes calculated in the Coulomb gauge. If n exceeds the minimum required by the t-channel quantum numbers, such amplitudes are non-leading in lns. We derive a closed system of coupled integral equations for the corresponding two-particle n-gluon vertices, obtained by summing the leading powers of ln(N μ psup(μ)), where psup(μ) is the incident momentum and Nsup(μ) the gauge-defining vector. Our equations are infra-red finite, provided the external particles are colour singlets. (author)

  1. Cardioplegia heat exchanger design modelling using computational fluid dynamics.

    Science.gov (United States)

    van Driel, M R

    2000-11-01

    A new cardioplegia heat exchanger has been developed by Sorin Biomedica. A three-dimensional computer-aided design (CAD) model was optimized using computational fluid dynamics (CFD) modelling. CFD optimization techniques have commonly been applied to velocity flow field analysis, but CFD analysis was also used in this study to predict the heat exchange performance of the design before prototype fabrication. The iterative results of the optimization and the actual heat exchange performance of the final configuration are presented in this paper. Based on the behaviour of this model, both the water and blood fluid flow paths of the heat exchanger were optimized. The simulation predicted superior heat exchange performance using an optimal amount of energy exchange surface area, reducing the total contact surface area, the device priming volume and the material costs. Experimental results confirm the empirical results predicted by the CFD analysis.

  2. The calculation of exchange forces: General results and specific models

    International Nuclear Information System (INIS)

    Scott, T.C.; Babb, J.F.; Dalgarno, A.; Morgan, J.D. III

    1993-01-01

    In order to clarify questions about the calculation of the exchange energy of a homonuclear molecular ion, an analysis is carried out of a model problem consisting of the one-dimensional limit of H 2 + . It is demonstrated that the use of the infinite polarization expansion for the localized wave function in the Holstein--Herring formula yields an approximate exchange energy which at large internuclear distances R has the correct leading behavior to O(e -R ) and is close to but not equal to the exact exchange energy. The extension to the n-dimensional double-well problem is presented

  3. Enabling Detailed Energy Analyses via the Technology Performance Exchange: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D.; Fleming, K.; Lee, E.; Livingood, W.

    2014-08-01

    One of the key tenets to increasing adoption of energy efficiency solutions in the built environment is improving confidence in energy performance. Current industry practices make extensive use of predictive modeling, often via the use of sophisticated hourly or sub-hourly energy simulation programs, to account for site-specific parameters (e.g., climate zone, hours of operation, and space type) and arrive at a performance estimate. While such methods are highly precise, they invariably provide less than ideal accuracy due to a lack of high-quality, foundational energy performance input data. The Technology Performance Exchange was constructed to allow the transparent sharing of foundational, product-specific energy performance data, and leverages significant, external engineering efforts and a modular architecture to efficiently identify and codify the minimum information necessary to accurately predict product energy performance. This strongly-typed database resource represents a novel solution to a difficult and established problem. One of the most exciting benefits is the way in which the Technology Performance Exchange's application programming interface has been leveraged to integrate contributed foundational data into the Building Component Library. Via a series of scripts, data is automatically translated and parsed into the Building Component Library in a format that is immediately usable to the energy modeling community. This paper (1) presents a high-level overview of the project drivers and the structure of the Technology Performance Exchange; (2) offers a detailed examination of how technologies are incorporated and translated into powerful energy modeling code snippets; and (3) examines several benefits of this robust workflow.

  4. Social energy exchange theory for postpartum depression.

    Science.gov (United States)

    Posmontier, Bobbie; Waite, Roberta

    2011-01-01

    Postpartum depression (PPD), a significant health problem affecting about 19.4% of postpartum women worldwide, may result in long-term cognitive and behavior problems in children, spousal depression, widespread family dysfunction, and chronic and increasingly severe maternal depression. Although current theoretical frameworks provide a rich context for studying PPD,none provides a framework that specifically addresses the dynamic relationship of the inner personal experience with the social and cultural context of PPD. The authors propose the social energy exchange theory for postpartum depression to understand how PPD impedes this dynamic relationship and suggest it as a theoretical framework for the study of interventions that would target intra- and interpersonal disturbance within the social and cultural context.

  5. Merging and energy exchange between optical filaments

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, D. A., E-mail: dgeorgieva@tu-sofia.bg [Faculty of Applied Mathematics and Computer Science, Technical University of Sofia, 8 Kliment Ohridski Blvd., 1000 Sofia (Bulgaria); Kovachev, L. M. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradcko Chaussee Blvd., 1784 Sofia (Bulgaria)

    2015-10-28

    We investigate nonlinear interaction between collinear femtosecond laser pulses with power slightly above the critical for self-focusing P{sub cr} trough the processes of cross-phase modulation (CPM) and degenerate four-photon parametric mixing (FPPM). When there is no initial phase difference between the pulses we observe attraction between pulses due to CPM. The final result is merging between the pulses in a single filament with higher power. By method of moments it is found that the attraction depends on the distance between the pulses and has potential character. In the second case we study energy exchange between filaments. This process is described through FPPM scheme and requests initial phase difference between the waves.

  6. On exact and approximate exchange-energy densities

    DEFF Research Database (Denmark)

    Springborg, Michael; Dahl, Jens Peder

    1999-01-01

    Based on correspondence rules between quantum-mechanical operators and classical functions in phase space we construct exchange-energy densities in position space. Whereas these are not unique but depend on the chosen correspondence rule, the exchange potential is unique. We calculate this exchange......-energy density for 15 closed-shell atoms, and compare it with kinetic- and Coulomb-energy densities. It is found that it has a dominating local-density character, but electron-shell effects are recognizable. The approximate exchange-energy functionals that have been proposed so far are found to account only...

  7. Modeling and sizing of the heat exchangers of a new supercritical CO2 Brayton power cycle for energy conversion for fusion reactors

    International Nuclear Information System (INIS)

    Serrano, I.P.; Cantizano, A.; Linares, J.I.; Moratilla, B.Y.

    2014-01-01

    Highlights: •We propose a procedure to model the heat exchangers of a S-CO2 Brayton power cycle. •Discretization in sub-heat exchangers is performed due to complex behavior of CO 2 . •Different correlations have been tested, verifying them with CFD when necessary. •Obtained sizes are agree with usual values of printed circuit heat exchangers. -- Abstract: TECNO F US is a research program financed by the Spanish Government to develop technologies related to a dual-coolant (He/Pb–Li) breeding blanket design concept including the auxiliary systems for a future power reactor (DEMO). One of the main issues of this program is the optimization of heat recovery from the reactor and its conversion into electrical power. This paper is focused on the methodology employed for the design and sizing of all the heat exchangers of the supercritical CO 2 Brayton power cycle (S-CO2) proposed by the authors. Due to the large pressure difference between the fluids, and also to their compactness, Printed Circuit Heat Exchangers (PCHE) are suggested in literature for these type of cycles. Because of the complex behavior of CO 2 , their design is performed by a numerical discretization into sub-heat exchangers, thus a higher precision is reached when the thermal properties of the fluids vary along the heat exchanger. Different empirical correlations for the pressure drop and the Nusselt number have been coupled and assessed. The design of the precooler (PC) and the low temperature recuperator (LTR) is also verified by simulations using CFD because of the near-critical behavior of CO 2 . The size of all of the heat exchangers of the cycle have been assessed

  8. Modeling and sizing of the heat exchangers of a new supercritical CO{sub 2} Brayton power cycle for energy conversion for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, I.P.; Cantizano, A.; Linares, J.I., E-mail: linares@upcomillas.es; Moratilla, B.Y.

    2014-10-15

    Highlights: •We propose a procedure to model the heat exchangers of a S-CO2 Brayton power cycle. •Discretization in sub-heat exchangers is performed due to complex behavior of CO{sub 2}. •Different correlations have been tested, verifying them with CFD when necessary. •Obtained sizes are agree with usual values of printed circuit heat exchangers. -- Abstract: TECNO{sub F}US is a research program financed by the Spanish Government to develop technologies related to a dual-coolant (He/Pb–Li) breeding blanket design concept including the auxiliary systems for a future power reactor (DEMO). One of the main issues of this program is the optimization of heat recovery from the reactor and its conversion into electrical power. This paper is focused on the methodology employed for the design and sizing of all the heat exchangers of the supercritical CO{sub 2} Brayton power cycle (S-CO2) proposed by the authors. Due to the large pressure difference between the fluids, and also to their compactness, Printed Circuit Heat Exchangers (PCHE) are suggested in literature for these type of cycles. Because of the complex behavior of CO{sub 2}, their design is performed by a numerical discretization into sub-heat exchangers, thus a higher precision is reached when the thermal properties of the fluids vary along the heat exchanger. Different empirical correlations for the pressure drop and the Nusselt number have been coupled and assessed. The design of the precooler (PC) and the low temperature recuperator (LTR) is also verified by simulations using CFD because of the near-critical behavior of CO{sub 2}. The size of all of the heat exchangers of the cycle have been assessed.

  9. Model Uncertainty and Exchange Rate Forecasting

    NARCIS (Netherlands)

    Kouwenberg, R.; Markiewicz, A.; Verhoeks, R.; Zwinkels, R.C.J.

    2017-01-01

    Exchange rate models with uncertain and incomplete information predict that investors focus on a small set of fundamentals that changes frequently over time. We design a model selection rule that captures the current set of fundamentals that best predicts the exchange rate. Out-of-sample tests show

  10. Modelling and simulation of a heat exchanger

    Science.gov (United States)

    Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.

    1991-01-01

    Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.

  11. Tests of the single-pion exchange model

    International Nuclear Information System (INIS)

    Treiman, S.B.; Yang, C.N.

    1983-01-01

    The single-pion exchange model (SPEM) of high-energy particle reactions provides an attractively simple picture of seemingly complex processes and has accordingly been much discussed in recent times. The purpose of this note is to call attention to the possibility of subjecting the model to certain tests precisely in the domain where the model stands the best chance of making sense

  12. Energy and Environment. Electric power stock exchange

    International Nuclear Information System (INIS)

    Fazioli, R.; Antonioli, B.; Beccarello, M.; Da Rin, B.

    2000-01-01

    In this paper are reported the structural characteristics of electric power stock exchange in the processes liberalization of european electric markets. International experience are also considered [it

  13. Model Adoption Exchange Payment System: Executive Summary.

    Science.gov (United States)

    Ambrosino, Robert J.

    This executive summary provides a brief description of the Model Adoption Exchange Payment System (MAEPS), a unique payment system aimed at improving the delivery of adoption exchange services throughout the United States. Following a brief introductory overview, MAEPS is described in terms of (1) its six components (registration, listing,…

  14. Model Information Exchange System (MIXS).

    Science.gov (United States)

    2013-08-01

    Many travel demand forecast models operate at state, regional, and local levels. While they share the same physical network in overlapping geographic areas, they use different and uncoordinated modeling networks. This creates difficulties for models ...

  15. Magnon energies and exchange interactions in terbium

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden

    1968-01-01

    The magnon density of states, and hence the magnetic contribution to the specific heat, and also the exchange interaction between ions in the same sublattice have been calculated for Tb at 90°K, using experimental results obtained by inelastic neutron scattering.......The magnon density of states, and hence the magnetic contribution to the specific heat, and also the exchange interaction between ions in the same sublattice have been calculated for Tb at 90°K, using experimental results obtained by inelastic neutron scattering....

  16. Modeling Real Exchange Rate Persistence in Chile

    Directory of Open Access Journals (Sweden)

    Leonardo Salazar

    2017-07-01

    Full Text Available The long and persistent swings in the real exchange rate have for a long time puzzled economists. Recent models built on imperfect knowledge economics seem to provide a theoretical explanation for this persistence. Empirical results, based on a cointegrated vector autoregressive (CVAR model, provide evidence of error-increasing behavior in prices and interest rates, which is consistent with the persistence observed in the data. The movements in the real exchange rate are compensated by movements in the interest rate spread, which restores the equilibrium in the product market when the real exchange rate moves away from its long-run benchmark value. Fluctuations in the copper price also explain the deviations of the real exchange rate from its long-run equilibrium value.

  17. Theoretical evaluation on the impact of heat exchanger in Advanced Adiabatic Compressed Air Energy Storage system

    International Nuclear Information System (INIS)

    Yang, Ke; Zhang, Yuan; Li, Xuemei; Xu, Jianzhong

    2014-01-01

    Highlights: • A multi-stage AA-CAES system model is established based on thermodynamic theory. • Four Cases about pressure loss and effectiveness of heat exchanger are investigated. • The impact of pressure loss on conversion of heat energy in TES is more sensitive. • The impact of heat exchanger effectiveness in charge process on system is stronger. • Pressure loss in heat exchanger affects the change trends of system efficiency. - Abstract: Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) is a large-scale energy storage system based on gas turbine technology and thermal energy storage (TES). Electrical energy can be converted into internal energy of air and heat energy in TES during the charge process, while reverse energy conversion proceeds during discharge process. The performance of AA-CAES system requires further improvement in order to increase efficiency. In this paper, a multi-stage AA-CAES system model is established, and the influence of effectiveness and pressure loss in heat exchanger on energy conversion and utilization efficiency of AA-CAES system is analyzed theoretically based on the theory of thermodynamics. Four Cases about effectiveness and pressure loss of heat exchanger are investigated and compared with each other. It is found that effectiveness and pressure loss of heat exchanger are directly related to energy conversion and utilization in AA-CAES system. System efficiency changes with the variation of heat exchanger effectiveness and the impact of pressure loss on conversion of heat energy in TES is more sensitive than that of internal energy of air. Pressure loss can cause the complexity of system efficiency change. With appropriate selection of the values of heat exchanger effectiveness for both charge and discharge processes, an AA-CAES system with a higher efficiency could be expected

  18. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  19. Evaluating Predictive Uncertainty of Hyporheic Exchange Modelling

    Science.gov (United States)

    Chow, R.; Bennett, J.; Dugge, J.; Wöhling, T.; Nowak, W.

    2017-12-01

    Hyporheic exchange is the interaction of water between rivers and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic fluxes have been attributed to the representation of heterogeneous subsurface properties. This research aims to evaluate which aspect of the subsurface representation - the spatial distribution of hydrofacies or the model for local-scale (within-facies) heterogeneity - most influences the predictive uncertainty. Also, we seek to identify data types that help reduce this uncertainty best. For this investigation, we conduct a modelling study of the Steinlach River meander, in Southwest Germany. The Steinlach River meander is an experimental site established in 2010 to monitor hyporheic exchange at the meander scale. We use HydroGeoSphere, a fully integrated surface water-groundwater model, to model hyporheic exchange and to assess the predictive uncertainty of hyporheic exchange transit times (HETT). A highly parameterized complex model is built and treated as `virtual reality', which is in turn modelled with simpler subsurface parameterization schemes (Figure). Then, we conduct Monte-Carlo simulations with these models to estimate the predictive uncertainty. Results indicate that: Uncertainty in HETT is relatively small for early times and increases with transit times. Uncertainty from local-scale heterogeneity is negligible compared to uncertainty in the hydrofacies distribution. Introducing more data to a poor model structure may reduce predictive variance, but does not reduce predictive bias. Hydraulic head observations alone cannot constrain the uncertainty of HETT, however an estimate of hyporheic exchange flux proves to be more effective at reducing this uncertainty. Figure: Approach for evaluating predictive model uncertainty. A conceptual model is first developed from the field investigations. A complex model (`virtual reality') is then developed based on that conceptual model

  20. Energy modelling software

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available The construction industry has turned to energy modelling in order to assist them in reducing the amount of energy consumed by buildings. However, while the energy loads of buildings can be accurately modelled, energy models often under...

  1. The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, Sonia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osuna, Jessica [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Newman, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biraud, Sebastien [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. The LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.

  2. The empirical relationship between energy futures prices and exchange rates

    International Nuclear Information System (INIS)

    Sadorsky, P.

    2000-01-01

    This paper investigates the interaction between energy futures prices and exchange rates. Results are presented to show that futures prices for crude oil, heating oil and unleaded gasoline are co-integrated with a trade-weighted index of exchange rates. This is important because it means that there exists a long-run equilibrium relationship between these four variables. Granger causality results for both the long- and short-run are presented. Evidence is also presented that suggests exchange rates transmit exogenous shocks to energy futures prices. 22 refs

  3. Energy exchange in strongly coupled plasmas with electron drift

    International Nuclear Information System (INIS)

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-01-01

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam

  4. Two-Way communication with energy exchange

    DEFF Research Database (Denmark)

    Popovski, Petar; Simeone, Osvaldo

    2012-01-01

    one unit of energy, or an “off” signal (or “0”), which does not require any energy expenditure. Upon reception of a “1” signal, the recipient node “harvests” the energy contained in the signal and stores it for future communication tasks. Inner and outer bounds on the achievable rates are derived...

  5. The dielectric environment dependent exchange self-energy of the energy structure in graphene

    International Nuclear Information System (INIS)

    Yang, C.H.; Xu, W.

    2010-01-01

    We theoretically calculate the energy dispersion in the presence of the screened exchange self-energy in extrinsic monolayer graphene. It is found that the exchange self-energy enhances the renormalized Fermi velocity. With decreasing the dielectric constant, the screening effect and the electron correlation effect increase which induces the Fermi velocity increasing. The screened exchange energy has an energy shift at the Dirac points. The self-energy from the valance band carriers gives the main contribution to the effective energy. We also discuss the electron density dependence of the self-energy.

  6. The dielectric environment dependent exchange self-energy of the energy structure in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.H., E-mail: chyang@nuist.edu.c [Faculty of Maths and Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Xu, W. [Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2010-10-01

    We theoretically calculate the energy dispersion in the presence of the screened exchange self-energy in extrinsic monolayer graphene. It is found that the exchange self-energy enhances the renormalized Fermi velocity. With decreasing the dielectric constant, the screening effect and the electron correlation effect increase which induces the Fermi velocity increasing. The screened exchange energy has an energy shift at the Dirac points. The self-energy from the valance band carriers gives the main contribution to the effective energy. We also discuss the electron density dependence of the self-energy.

  7. Air to air fixed plate enthalpy heat exchanger, performance variation and energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, Mohammad Shakir [Universiti Teknologi Petronas, Bandar Seri Iskandar (Malaysia); Alwaked, Rafat [Prince Mohammad Bin Fahd University, Al Khobar (Saudi Arabia); Behnia, Masud [University of Sydney, Sydney (Australia); Morrison, Graham [The University of New South Wales, Sydney (Australia)

    2013-11-15

    The thermal performance of a Z shape enthalpy heat exchanger utilising 70 gsm Kraft paper as the heat and moisture transfer surface has been investigated. Effects of different inlet air humidity ratio conditions on the heat exchanger effectiveness and on the energy recovered by the heat exchanger have been the main focus of this investigation. A typical air conditioning cooling coil which incorporates an enthalpy heat exchanger has been modelled for tropical climate. Under test conditions, results have shown that latent effectiveness and the moisture resistance coefficient have strong dependency on the inlet air humidity ratio. Moreover, the latent effectiveness has been found to be strongly dependent on the moisture resistance coefficient rather than the convective mass transfer coefficient. Finally, annual energy analysis for Singapore weather conditions have also shown that energy recovered under variable inlet air conditions is 15% less than that recovered under constant inlet air conditions for the same heat exchanger.

  8. Bombarding energy dependence of nucleon exchange and energy dissipation in the strongly damped reaction 209Bi + 136Xe

    International Nuclear Information System (INIS)

    Wilcke, W.W.; Schroeder, W.U.; Huizenga, J.R.; Birkelund, J.R.; Randrup, J.

    1980-01-01

    Although considerable progress has been achieved in the understanding of strongly damped reactions at energies several MeV/u above the Coulomb barrier, some important experimental results are not yet clearly understood. Among these is the degree of correlation between the nucleon exchange and the large energy losses observed. Experimental evidence suggesting nucleon exchange as described by a one-body model to be the major component of the dissipation mechanism is discussed. It is concluded that the previously unexplained bombarding energy dependence between energy loss and fragment charge dispersion can be understood on the basis of a nucleon exchange model, provided the Pauli exclusion principle is taken into account. No necessity is seen to invoke further energy dissipation mechanisms. 7 figures

  9. Maximal energy extraction under discrete diffusive exchange

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M. J., E-mail: hay@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Schiff, J. [Department of Mathematics, Bar-Ilan University, Ramat Gan 52900 (Israel); Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2015-10-15

    Waves propagating through a bounded plasma can rearrange the densities of states in the six-dimensional velocity-configuration phase space. Depending on the rearrangement, the wave energy can either increase or decrease, with the difference taken up by the total plasma energy. In the case where the rearrangement is diffusive, only certain plasma states can be reached. It turns out that the set of reachable states through such diffusive rearrangements has been described in very different contexts. Building upon those descriptions, and making use of the fact that the plasma energy is a linear functional of the state densities, the maximal extractable energy under diffusive rearrangement can then be addressed through linear programming.

  10. Advanced proton-exchange materials for energy efficient fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  11. Modeling foreign exchange risk premium in Armenia

    Czech Academy of Sciences Publication Activity Database

    Poghosyan, T.; Kočenda, E.; Zemčík, Petr

    2008-01-01

    Roč. 44, č. 1 (2008), s. 41-61 ISSN 1540-496X R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : foreign exchange risk premium * Armenia * affine term structure models Subject RIV: AH - Economics Impact factor: 0.611, year: 2008

  12. Modeling foreign exchange risk premium in Armenia

    Czech Academy of Sciences Publication Activity Database

    Poghosyan, Tigran; Kočenda, Evžen; Zemčík, P.

    2008-01-01

    Roč. 44, č. 1 (2008), s. 41-61 ISSN 1540-496X R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:MSM0021620846 Keywords : foreign exchange risk premium * Armenia * affine term structure models Subject RIV: AH - Economics Impact factor: 0.611, year: 2008

  13. Modelling Regional Surface Energy Exchange and Boundary Layer Development in Boreal Sweden — Comparison of Mesoscale Model (RAMS Simulations with Aircraft and Tower Observations

    Directory of Open Access Journals (Sweden)

    Meelis Mölder

    2012-10-01

    Full Text Available Simulation of atmospheric and surface processes with an atmospheric model (RAMS during a period of ten days in August 2001 over a boreal area in Sweden were compared to tower measurements and aircraft measurements of vertical profiles as well as surface fluxes from low altitude flights. The shape of the vertical profiles was simulated reasonably well by the model although there were significant biases in absolute values. Surface fluxes were less well simulated and the model showed considerable sensitivity to initial soil moisture conditions. The simulations were performed using two different land cover databases, the original one supplied with the RAMS model and the more detailed CORINE database. The two different land cover data bases resulted in relatively large fine scale differences in the simulated values. The conclusion of this study is that RAMS has the potential to be used as a tool to estimate boundary layer conditions and surface fluxes and meteorology over a boreal area but also that further improvement is needed.

  14. Study of influence of exchange rate change on the supply and demand of energy

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Y.H.; Shin, D.C. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1997-08-01

    The change of relative prices of trading goods and non-trading goods due to appreciation or depreciation of real exchange rates influences industrial structure and trading infrastructure by changing output, consumption, import and export, and prices of domestic economy. Considering that energy is used as intermediate input of all industrial sectors as well as in final consumption in the Korean economy which lacks energy resources and relies on imported energy resources, I believe that assessing the concrete effects of the real exchange rate change onto the energy industry must be a very important item in establishing effective energy policy. In this thesis, I measure the elasticity of the exchange rate as endogenous factors related to the energy industry using a CGE model that breaks down the energy industry. One (1) % depreciation of real exchange rate increases the domestic sales prices of all energy industry sectors, and the price increase ratios of petroleum and coal products are calculated as the highest among these. Petroleum and coal products show the highest price increase ratios while both the output and export decrease. On the other hand, depreciation increases the domestic sales prices of power generation, city gas, and heating sectors, but it is found to increase the output apart from petroleum and coal products. Depreciation of the real exchange rate is found to change the composition of the energy industry from petroleum and coal products to power generation, city gas, and heating sectors. 11 refs., 1 fig., 6 tabs.

  15. Thermal energy storage systems using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T.; Shannon, L.

    1980-06-01

    A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.

  16. Hierarchic modeling of heat exchanger thermal hydraulics

    International Nuclear Information System (INIS)

    Horvat, A.; Koncar, B.

    2002-01-01

    Volume Averaging Technique (VAT) is employed in order to model the heat exchanger cross-flow as a porous media flow. As the averaging of the transport equations lead to a closure problem, separate relations are introduced to model interphase momentum and heat transfer between fluid flow and the solid structure. The hierarchic modeling is used to calculate the local drag coefficient C d as a function of Reynolds number Re h . For that purpose a separate model of REV is built and DNS of flow through REV is performed. The local values of heat transfer coefficient h are obtained from available literature. The geometry of the simulation domain and boundary conditions follow the geometry of the experimental test section used at U.C.L.A. The calculated temperature fields reveal that the geometry with denser pin-fins arrangement (HX1) heats fluid flow faster. The temperature field in the HX2 exhibits the formation of thermal boundary layer between pin-fins, which has a significant role in overall thermal performance of the heat exchanger. Although presented discrepancies of the whole-section drag coefficient C d are large, we believe that hierarchic modeling is an appropriate strategy for calculation of complex transport phenomena in heat exchanger geometries.(author)

  17. Energy exchange and transition to localization in the asymmetric Fermi-Pasta-Ulam oscillatory chain

    Science.gov (United States)

    Smirnov, Valeri V.; Shepelev, Denis S.; Manevitch, Leonid I.

    2013-01-01

    A finite (periodic) FPU chain is chosen as a convenient model for investigating the energy exchange phenomenon in nonlinear oscillatory systems. As we have recently shown, this phenomenon may occur as a consequence of the resonant interaction between high-frequency nonlinear normal modes. This interaction determines both the complete energy exchange between different parts of the chain and the transition to energy localization in an excited group of particles. In the paper, we demonstrate that this mechanism can exist in realistic (asymmetric) models of atomic or molecular oscillatory chains. Also, we study the resonant interaction of conjugated nonlinear normal modes and prove a possibility of linearization of the equations of motion. The theoretical constructions developed in this paper are based on the concepts of "effective particles" and Limiting Phase Trajectories. In particular, an analytical description of energy exchange between the "effective particles" in the terms of non-smooth functions is presented. The analytical results are confirmed with numerical simulations.

  18. Bag-model quantum chromodynamics for hyperons at low energy

    International Nuclear Information System (INIS)

    Weber, H.J.; Maslow, J.N.

    1980-01-01

    In a non-perturbative bag model framework, gluon exchange which mediates quark exchange scattering in conjunction with quark interchange is shown to be the basis of the OBE interactions of hyperons at low energy. (orig.)

  19. Magnetoelastic effect in an exchange model

    International Nuclear Information System (INIS)

    Vallejo, E.

    2009-01-01

    The effect of the interplay between magnetism, charge ordering and lattice distortion within a like double and super-exchange model is studied in low-dimensional systems. An important magnetoelastic effect that leads to a lattice contraction is presented in conjunction with an analytical minimization for a three-site one-dimensional model. The model is discussed in connection with the magnetism, charge ordering and the contraction of the rungs experimentally observed within the three-leg ladders (3LL) present in the oxyborate Fe 3 O 2 BO 3

  20. Generalized Bogoliubov Polariton Model: An Application to Stock Exchange Market

    International Nuclear Information System (INIS)

    Anh, Chu Thuy; Anh, Truong Thi Ngoc; Lan, Nguyen Tri; Viet, Nguyen Ai

    2016-01-01

    A generalized Bogoliubov method for investigation non-simple and complex systems was developed. We take two branch polariton Hamiltonian model in second quantization representation and replace the energies of quasi-particles by two distribution functions of research objects. Application to stock exchange market was taken as an example, where the changing the form of return distribution functions from Boltzmann-like to Gaussian-like was studied. (paper)

  1. Experimental investigation of using ambient energy to cool Internet Data Center with thermosyphon heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F.; Tian, X.; Ma, G. [Beijing Univ. of Technology, Beijing (China). College of Environmental and Energy Engineering

    2010-07-01

    The energy consumption of the air-conditioning system at the Internet Data Center (IDC) in Beijing comprises 40 per cent of the building's total energy consumption. Of all the energy energy management strategies available at the IDC, the most unique one is the use of ambient energy to cool the IDC by the thermosyphon heat exchanger. Atmospheric energy can reduce the air conditioner's running time while maintaining the humidity and cleanliness of the IDC. In this study, an IDC test model was set up to analyze the heat dissipating characteristics and the energy consumption of the thermosyphon heat exchanger and the air conditioner in the IDC for winter conditions. The heat dissipating capacity of the building envelope was measured and calculated. The energy consumption of the air conditioner was compared under different indoor and outdoor temperatures. The study showed that the heat dissipating need of the IDC cannot be met just by the heat dissipation of the building envelope in winter conditions. The heat dissipating capacity of the IDC building envelope comprises 19.5 per cent of the total heat load. The average energy consumption of the air conditioner is 3.5 to 4 kWh per day. The temperature difference between indoor and outdoor temperature in the IDC with the thermosyphon heat exchanger was less than 20 degrees C, and the energy consumption of the thermosyphon heat exchanger comprised only 41 per cent of that of the air conditioner. 8 refs., 1 tab., 8 figs.

  2. Nucleon exchange and excitation energy division in damped collisions

    International Nuclear Information System (INIS)

    Viola, V.E.; Planeta, R.; Kwiatkowski, K.; Zhou, S.H.; Breuer, H.

    1989-01-01

    In this paper we will examine both the dependence of nucleon exchange on target-projectile properties and the question of temperature equilibration and heat partition during scission. Primary emphasis will be placed on the results of a recent study of the 74 Ge + 165 Ho system, which allows us to address these two questions simultaneously. The results can thus be directly compared with the predictions of the nucleon-exchange model. (author)

  3. Modeling of the Bosphorus exchange flow dynamics

    Science.gov (United States)

    Sözer, Adil; Özsoy, Emin

    2017-04-01

    The fundamental hydrodynamic behavior of the Bosphorus Strait is investigated through a numerical modeling study using alternative configurations of idealized or realistic geometry. Strait geometry and basin stratification conditions allow for hydraulic controls and are ideally suited to support the maximal-exchange regime, which determines the rate of exchange of waters originating from the adjacent Black and Mediterranean Seas for a given net transport. Steady-state hydraulic controls are demonstrated by densimetric Froude number calculations under layered flow approximations when corrections are applied to account for high velocity shears typically observed in the Bosphorus. Analyses of the model results reveal many observed features of the strait, including critical transitions at hydraulic controls and dissipation by turbulence and hydraulic jumps. It is found that the solution depends on initialization, especially with respect to the basin initial conditions. Significant differences between the controlled maximal-exchange and drowned solutions suggest that a detailed modeling implementation involving coupling with adjacent basins needs to take full account of the Bosphorus Strait in terms of the physical processes to be resolved.

  4. Multiple exchange and high-energy fixed-angle scattering

    CERN Document Server

    Halliday, I G; Orzalesi, C A; Tau, M

    1975-01-01

    The application of the eikonal ansatz to fermion fermion elastic scattering with Abelian vector gluon exchanges is discussed. The behaviours of the elastic scattering amplitude and the elastic form factor are considered and an important mechanism for fixed angle high energy elastic scattering is identified. (6 refs).

  5. Enhancement of particle-wave energy exchange by resonance sweeping

    International Nuclear Information System (INIS)

    Berk, H.L.; Breizman, B.N.

    1995-10-01

    It is shown that as the resonance condition of the particle-wave interaction is varied adiabatically, that the particles trapped in the wave will form phase space holes or clumps that can enhance the particle-wave energy exchange. This mechanism can cause much larger saturation levels of instabilities, and even allow the free energy associated with instability, to be tapped in a system that is linearly stable due to background dissipation

  6. Experimental study of energy exchanges between two coupled granular gases

    OpenAIRE

    Chastaing , J.-Y; Géminard , J.-C; Naert , A

    2016-01-01

    International audience; We report on the energy exchanges between two granular gases of different densities coupled electrome-chanically by immersed blades attached to dc motors. Zeroing the energy flux between the two subsystems, we demonstrate that an immersed blade is a convenient way to assess the properties of the granular gases, provided that the dissipation in the motor is properly taken into account. In addition, when the two gases have different densities, the fluctuations of the ene...

  7. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    Science.gov (United States)

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in

  8. A dynamic model for helium core heat exchangers

    International Nuclear Information System (INIS)

    Schiesser, W.E.; Shih, H.J.; Hartozog, D.G.; Herron, D.M.; Nahmias, D.; Stuber, W.G.; Hindmarsh, A.C.

    1990-04-01

    To meet the helium (He) requirements of the superconducting supercollider (SSC), the cryogenic plants must be able to respond to time-varying loads. Thus the design and simulation of the cryogenic plants requires dynamic models of their principal components, and in particular, the core heat exchangers. In this paper, we detail the derivation and computer implementation of a model for core heat exchangers consisting of three partial differential equations (PDES) for each fluid stream (the continuity, energy and momentum balances for the He), and one PDE for each parting sheet (the energy balance for the parting sheet metal); the PDEs have time and axial position along the exchanger as independent variables. The computer code can accommodate any number of fluid streams and parting sheets in an adiabatic group. Features of the code include: rigorous or approximate thermodynamic properties for He, upwind and downwind approximation of the PDE spatial derivatives, and sparse matrix time integration. The outputs from the code include the time-dependent axial profiles of the fluid He mass flux, density, pressure, temperature, internal energy and enthalpy. The code is written in transportable Fortran 77, and can therefore be executed on essentially any computer

  9. A dynamic model for helium core heat exchangers

    International Nuclear Information System (INIS)

    Schiesser, W.E.; Shih, H.J.; Hartzog, D.G.; Herron, D.M.; Nahmias, D.; Stuber, W.G.; Hindmarsh, A.C.

    1990-01-01

    To meet the helium (He) requirements of the superconducting supercollider (SSC), the cryogenic plants must be able to respond to time-varying loads. Thus the design and simulation of the cryogenic plants requires dynamic models of their principal components, and in particular, the core heat exchangers. In this paper, we detail the derivation and computer implementation of a model for core heat exchangers consisting of three partial differential equations (PDEs) for each fluid stream (the continuity, energy and momentum balances for the He), and one PDE for each parting sheet (the energy balance for the parting sheet metal); the PDEs have time and axial position along the exchanger as independent variables. The computer code can accommodate any number of fluid streams and parting sheets in an adiabatic group. Features of the code include: rigorous or approximate thermodynamic properties for He, upwind and downwind approximation of the PDE spatial derivatives, and sparse matrix time integration. The outputs from the code include the time-dependent axial profiles of the fluid He mass flux, density, pressure, temperature, internal energy and enthalpy. The code is written in transportable Fortran 77, and can therefore be executed on essentially any computer. 10 refs., 10 figs

  10. Spin-density functional for exchange anisotropic Heisenberg model

    International Nuclear Information System (INIS)

    Prata, G.N.; Penteado, P.H.; Souza, F.C.; Libero, Valter L.

    2009-01-01

    Ground-state energies for antiferromagnetic Heisenberg models with exchange anisotropy are estimated by means of a local-spin approximation made in the context of the density functional theory. Correlation energy is obtained using the non-linear spin-wave theory for homogeneous systems from which the spin functional is built. Although applicable to chains of any size, the results are shown for small number of sites, to exhibit finite-size effects and allow comparison with exact-numerical data from direct diagonalization of small chains.

  11. Modeling the Volatility of Exchange Rates: GARCH Models

    Directory of Open Access Journals (Sweden)

    Fahima Charef

    2017-03-01

    Full Text Available The modeling of the dynamics of the exchange rate at a long time remains a financial and economic research center. In our research we tried to study the relationship between the evolution of exchange rates and macroeconomic fundamentals. Our empirical study is based on a series of exchange rates for the Tunisian dinar against three currencies of major trading partners (dollar, euro, yen and fundamentals (the terms of trade, the inflation rate, the interest rate differential, of monthly data, from jan 2000 to dec-2014, for the case of the Tunisia. We have adopted models of conditional heteroscedasticity (ARCH, GARCH, EGARCH, TGARCH. The results indicate that there is a partial relationship between the evolution of the Tunisian dinar exchange rates and macroeconomic variables.

  12. Resonance charge exchange mechanism at high and moderate energies

    International Nuclear Information System (INIS)

    Bogdanov, A.V.; Gevorkyan, A.S.

    1984-01-01

    Charge exchange mechanisms at high and medium energies are investigated, ta king the resonance charge exchange of a proton by an hydrogen atom as an example . It is established that there are two classical charge exchange mechanisms rel ated to direct proton knockout from the bound state and one quantum-mechanical mechanism corresponding to the electron tunnelling from one bound state to anoth er. The classical cross-section diverges for two of these mechanisms, and the quasiclassical scattering amplitude must be calculated on the base of a complex classical trajectory. Physical grounds for the choice of such trajectories are discussed and calculations of the Van Vleck determinant for these mechanisms a re presented. Contributions from different mechanisms to the total charge excha nge cross-section are analyzed. A comparison with experimental data and results of other authors is made

  13. Poster 29. Modelling of ion exchange processes in ultrapure water

    International Nuclear Information System (INIS)

    Berg, A.; Torstenfelt, B.; Fejes, P.; Foutch, G.L.

    1992-01-01

    The ion exchange process of the Reactor Water Clean-up (RWCU) system has been studied to better use the maximum possible exchange capacity of the ion exchange resin. Laboratory data have been correlated with computer simulations of the ion exchange process. Data were correlated using a mixed-bed ion exchange model for ultralow ionic concentrations developed at Oklahoma State University. Experimental results of the ion exchange column operation in the concentration range of 10 -3 M boric acid is compared with the simulated performance predicted by the computer model. The model is found to agree reasonably well with the data. (author)

  14. Replica Exchange Gaussian Accelerated Molecular Dynamics: Improved Enhanced Sampling and Free Energy Calculation.

    Science.gov (United States)

    Huang, Yu-Ming M; McCammon, J Andrew; Miao, Yinglong

    2018-04-10

    Through adding a harmonic boost potential to smooth the system potential energy surface, Gaussian accelerated molecular dynamics (GaMD) provides enhanced sampling and free energy calculation of biomolecules without the need of predefined reaction coordinates. This work continues to improve the acceleration power and energy reweighting of the GaMD by combining the GaMD with replica exchange algorithms. Two versions of replica exchange GaMD (rex-GaMD) are presented: force constant rex-GaMD and threshold energy rex-GaMD. During simulations of force constant rex-GaMD, the boost potential can be exchanged between replicas of different harmonic force constants with fixed threshold energy. However, the algorithm of threshold energy rex-GaMD tends to switch the threshold energy between lower and upper bounds for generating different levels of boost potential. Testing simulations on three model systems, including the alanine dipeptide, chignolin, and HIV protease, demonstrate that through continuous exchanges of the boost potential, the rex-GaMD simulations not only enhance the conformational transitions of the systems but also narrow down the distribution width of the applied boost potential for accurate energetic reweighting to recover biomolecular free energy profiles.

  15. International Energy Prices(Exchange Rate and PPP)

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Han; Yoo, Dong Heon [Korea Energy Economics Institute, Euiwang (Korea)

    2000-11-01

    Energy is to be specially important to the Korean economy. In the past the major purpose of Korea's energy policies was to ensure that the energy was supplied at the low cost to encourage and sustain economic development and growth. Therefore, energy prices are distorted by government intervention. And this was the cause of inefficiency in usage of energy. In order to improve the energy efficiency and reduce the environmental impact of energy consumption, new energy pricing should be needed to the energy industry and the Korean economy. It is necessary to compare the domestic energy prices with other countries to improve the energy pricing system including tax, the relative structure of energy price, etc. In order to compare the domestic energy prices to those of other countries, the exchange rate, purchasing power parity and Big Mac index are used for calculation of common currency. We select 12 countries, which are Belgium, France, Germany, Greece, Ireland, Italy, Portugal, Spain, Switzerland, Taiwan, Mexico and England. The oil products(gasoline, diesel, heavy fuel oil and light fuel oil), natural gas and electricity are selected to compare the price. (author). 12 refs., 13 tabs.

  16. Study of thermal energy storage using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T. E.; Shannon, L. J.; Ananth, K. P.

    1980-01-01

    The technical and economic feasibility of fluid bed heat exchangers (FBHX) for thermal energy storage (TES) in waste heat recovery applications is assessed by analysis of two selected conceptual systems, the rotary cement kiln and the electric arc furnace. It is shown that the inclusion of TES in the energy recovery system requires that the difference in off-peak and on-peak energy rates be large enough so that the value of the recovered energy exceeds the value of the stored energy by a wide enough margin to offset parasitic power and thermal losses. Escalation of on-peak energy rates due to fuel shortages could make the FBHX/TES applications economically attractive in the future.

  17. Teledyne Energy Systems, Inc., Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant. Test Report: Initial Benchmark Tests in the Original Orientation

    Science.gov (United States)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton Exchange Membrane (PEM) fuel cell technology is the leading candidate to replace the alkaline fuel cell technology, currently used on the Shuttle, for future space missions. During a 5-yr development program, a PEM fuel cell powerplant was developed. This report details the initial performance evaluation test results of the powerplant.

  18. STEP - Product Model Data Sharing and Exchange

    DEFF Research Database (Denmark)

    Kroszynski, Uri

    1998-01-01

    During the last fifteen years, a very large effort to standardize the product models employed in product design, manufacturing and other life-cycle phases has been undertaken. This effort has the acronym STEP, and resulted in the International Standard ISO-10303 "Industrial Automation Systems...... - Product Data Representation and Exchange", featuring at present some 30 released parts, and growing continuously. Many of the parts are Application Protocols (AP). This article presents an overview of STEP, based upon years of involvement in three ESPRIT projects, which contributed to the development...

  19. Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, M. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Opus International Consultants (New Zealand); AL-Waked, R. [Mechanical Engineering Department, Prince Mohammad Bin Fahd University (PMU), P.O. Box 1614, AlKhobar 31952 (Saudi Arabia); Morrison, G. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Behnia, M. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia)

    2010-10-15

    The thermal performance of an enthalpy/membrane heat exchanger is experimentally investigated. The heat exchanger utilizes a 60gsm Kraft paper as the heat and moisture transfer surface for HVAC energy recovery. The heat exchanger sensible, latent and total effectiveness have been determined through temperature and moisture content measurements. The annual energy consumption of an air conditioner coupled with an enthalpy/membrane heat exchanger is also studied and compared with a conventional air conditioning cycle using in-house modified HPRate software. The heat exchanger effectiveness are used as thermal performance indicators and incorporated in the modified software. Energy analysis showed that an air conditioning system coupled with a membrane heat exchanger consumes less energy than a conventional air conditioning system in hot and humid climates where the latent load is high. It has been shown that in humid climate a saving of up to 8% in annual energy consumption can be achieved when membrane heat exchanger is used instead of a conventional HVAC system. (author)

  20. A Range-Based Multivariate Model for Exchange Rate Volatility

    NARCIS (Netherlands)

    B. Tims (Ben); R.J. Mahieu (Ronald)

    2003-01-01

    textabstractIn this paper we present a parsimonious multivariate model for exchange rate volatilities based on logarithmic high-low ranges of daily exchange rates. The multivariate stochastic volatility model divides the log range of each exchange rate into two independent latent factors, which are

  1. Public outcry: madness masks method on Manhattan's energy exchange

    International Nuclear Information System (INIS)

    Faulkner, P.

    2000-01-01

    Operation of the NYMEX, a division of the New York Mercantile Exchange that deals almost exclusively in crude oil, heating oil, natural gas, electricity, propane, platinum and palladium trading, is described. The NYMEX where the big forces affecting the market such as OPEC, rising demands, limited oil production and tanker capacity, lagging natural gas supplies, pipeline bottlenecks, and cold snaps are translated into economic values, is considered by insiders as the best guarantee against under- or over-pricing, despite the appearance of bedlam and complete chaos. They consider commodity trading a service rather than an added risk in the energy industry. i. e. the NYMEX is seen as a model of order for transactions on a huge scale, aimed at establishing the value, at any given time under any given circumstances, of standardized energy commodities and sales-volume contracts at agreed points. NYMEX's chief strength is that it provides a completely visible and continuous measurement of value. It is also a factory, generating multiple financial instruments for hedging against risks of unfavorable price movements in the future. The anonymity of the buyers and sellers directing the traders is considered a crucial element of the system, ensuring that the market is about the commodity, not about who is producing or using it. Hedging is a key service wherein sellers (mostly oil companies) sell futures contracts to lock in prices to protect their sources of revenue, should market values fall. Buyers make the deals because they believe that prices will go the other way. Industry insiders maintain that hedgers do not try to make a killing on the market. That is the realm of speculators who are most often high income amateurs. By taking the opposite sides of bids or offers, they provide the market with liquidity

  2. European energy exchanges: Too many casino's and too little time

    International Nuclear Information System (INIS)

    Zewald, H.

    2001-01-01

    The European energy market has the potential of developing into a booming business, and not just for Europeans. Now that liberalization is seriously taking shape and internet trade has overcome its teething troubles, the Europeans are setting up one exchange after another and the Americans are crossing the Atlantic with a lot of dollar signs in front of their eyes to play poker or roulette. 1 ref

  3. A Model for Trading the Foreign Exchange Market

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    inflation rates, etc. have significant impacts on the exchange rate fluctuation. Existing foreign exchange ... Keywords: FOREX, marcov chain, model, neural network, trading robot. Introduction .... Support Vector Machine (SVM). Regression ...

  4. A two-particle exchange interaction model

    International Nuclear Information System (INIS)

    Lyubina, Julia; Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich

    2010-01-01

    The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation δM(H m ) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H m not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called δM-plot depends on whether the sample is ac-field or thermally demagnetised.

  5. A two-particle exchange interaction model

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, Julia, E-mail: j.lyubina@ifw-dresden.d [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany); Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany)

    2010-10-15

    The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation {delta}M(H{sub m}) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H{sub m} not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called {delta}M-plot depends on whether the sample is ac-field or thermally demagnetised.

  6. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    Science.gov (United States)

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.

  7. Model Adoption Exchange Payment System: Technical Specifications and User Instructions.

    Science.gov (United States)

    Ambrosino, Robert J.

    This user's manual, designed to meet the needs of adoption exchange administrators and program managers for a formal tool to assist them in the overall management and operation of their program, presents the Model Adoption Exchange Payment System (MAEPS), which was developed to improve the delivery of adoption exchange services throughout the…

  8. Nucleon charge-exchange reactions at intermediate energy

    International Nuclear Information System (INIS)

    Alford, W.P.; Spicer, B.M.

    1997-01-01

    An historical review of the development of ideas pertaining to Gamow-Teller giant resonances is given, and a description of the emergence of techniques for the study of charge exchange reactions - particularly the technical advances which yielded the recent volume of new date. The present status of charge exchange reactions is reviewed and assessed. Evidence is presented from the 14 C(p,n) reaction for the dominance of the spin-isospin component of the nucleon-nucleon interaction in intermediate energy reactions. In (p,n) reactions the Gamow-Teller giant resonance dominates the spectra, with higher multipoles contributing. By contrast, in (n,p) reactions in the heavier nuclei, the Gamow-Teller transitions are substantially Pauli-blocked and the spin dipole resonance dominates, with contributions from higher multipoles. Discussions of the multipole decomposition process, used to obtain from the data the contributions of the different multipoles, and the contributions of the multipoles, are given

  9. Charmonium suppression in a quark exchange model

    International Nuclear Information System (INIS)

    Martins, K.

    1995-01-01

    A diagrammatic approach to quark exchange processes in meson-meson scattering is applied to the case of inelastic reactions of the type (Q anti Q)+(q anti q)→(Q anti q)+(q anti Q), where Q and q refer to heavy and light quarks, respectively. This string-flip process is discussed as a microscopic mechanism for charmonium dissociation (absorption) in hadronic matter. The cross section for the reaction J/ψ+π→D+ anti D is calculated using a potential model. The behavior of a formed charmonium state in hadronic matter are discussed and consequences for ultrarelativistic hadron-nucleus and nucleus-nucleus collisions are discussed. (orig.)

  10. The ESRI Energy Model

    OpenAIRE

    Di Cosmo, Valeri; Hyland, Marie

    2012-01-01

    PUBLISHED In Ireland, the energy sector has undergone significant change in the last forty years. In this period, there has been a significant increase in the demand for energy. This increase has been driven by economic and demographic factors. Although the current deep recession has quelled the upward trend in the demand for energy, a future economic recovery will bring these issues back into focus. This paper documents a model of the Irish energy sector which relates energy demand to re...

  11. Exchange rate predictability and state-of-the-art models

    OpenAIRE

    Yeșin, Pınar

    2016-01-01

    This paper empirically evaluates the predictive performance of the International Monetary Fund's (IMF) exchange rate assessments with respect to future exchange rate movements. The assessments of real trade-weighted exchange rates were conducted from 2006 to 2011, and were based on three state-of-the-art exchange rate models with a medium-term focus which were developed by the IMF. The empirical analysis using 26 advanced and emerging market economy currencies reveals that the "diagnosis" of ...

  12. Modelling Exchange Rate Volatility by Macroeconomic Fundamentals in Pakistan

    OpenAIRE

    Munazza Jabeen; Saud Ahmad Khan

    2014-01-01

    What drives volatility in foreign exchange market in Pakistan? This paper undertakes an analysis of modelling exchange rate volatility in Pakistan by potential macroeconomic fundamentals well-known in the economic literature. For this, monthly data on Pak Rupee exchange rates in the terms of major currencies (US Dollar, British Pound, Canadian Dollar and Japanese Yen) and macroeconomics fundamentals is taken from April, 1982 to November, 2011. The results show thatthe PKR-USD exchange rate vo...

  13. Sensitivity of molecular vibrational dynamics to energy exchange rate constants

    International Nuclear Information System (INIS)

    Billing, G D; Coletti, C; Kurnosov, A K; Napartovich, A P

    2003-01-01

    The sensitivity of molecular vibrational population dynamics, governing the CO laser operated in fundamental and overtone transitions, to vibration-to-vibration rate constants is investigated. With this aim, three rate constant sets have been used, differing in their completeness (i.e. accounting for single-quantum exchange only, or for multi-quantum exchange with a limited number of rate constants obtained by semiclassical calculations, and, finally, with an exhaustive set of rate constants including asymmetric exchange processes, as well) and in the employed interaction potential. The most complete set among these three is introduced in this paper. An existing earlier kinetic model was updated to include the latter new data. Comparison of data produced by kinetic modelling with the above mentioned sets of rate constants shows that the vibrational distribution function, and, in particular, the CO overtone laser characteristics, are very sensitive to the choice of the model. The most complete model predicts slower evolution of the vibrational distribution, in qualitative agreement with experiments

  14. Brazilian energy model

    Science.gov (United States)

    1981-05-01

    A summary of the energy situation in Brazil is presented. Energy consumption rates, reserves of primary energy, and the basic needs and strategies for meeting energy self sufficiency are discussed. Conserving energy, increasing petroleum production, and utilizing other domestic energy products and petroleum by-products are discussed. Specific programs are described for the development and use of alcohol fuels, wood and charcoal, coal, schist, solar and geothermal energy, power from the sea, fresh biomass, special batteries, hydrogen, vegetable oil, and electric energy from water power, nuclear, and coal. Details of the energy model for 1985 are given. Attention is also given to the energy demands and the structure of global energy from 1975 to 1985.

  15. Inhomogeneity induced and appropriately parameterized semilocal exchange and correlation energy functionals in two-dimensions

    Science.gov (United States)

    Patra, Abhilash; Jana, Subrata; Samal, Prasanjit

    2018-04-01

    The construction of meta generalized gradient approximations based on the density matrix expansion (DME) is considered as one of the most accurate techniques to design semilocal exchange energy functionals in two-dimensional density functional formalism. The exchange holes modeled using DME possess unique features that make it a superior entity. Parameterized semilocal exchange energy functionals based on the DME are proposed. The use of different forms of the momentum and flexible parameters is to subsume the non-uniform effects of the density in the newly constructed semilocal functionals. In addition to the exchange functionals, a suitable correlation functional is also constructed by working upon the local correlation functional developed for 2D homogeneous electron gas. The non-local effects are induced into the correlation functional by a parametric form of one of the newly constructed exchange energy functionals. The proposed functionals are applied to the parabolic quantum dots with a varying number of confined electrons and the confinement strength. The results obtained with the aforementioned functionals are quite satisfactory, which indicates why these are suitable for two-dimensional quantum systems.

  16. Spatial variation in energy exchange across coastal environments in Greenland

    Science.gov (United States)

    Lund, M.; Abermann, J.; Citterio, M.; Hansen, B. U.; Larsen, S. H.; Stiegler, C.; Sørensen, L. L.; van As, D.

    2015-12-01

    The surface energy partitioning in Arctic terrestrial and marine areas is a crucial process, regulating snow, glacier ice and sea ice melt, and permafrost thaw, as well as modulating Earth's climate on both local, regional, and eventually, global scales. The Arctic region has warmed approximately twice as much as the global average, due to a number of feedback mechanisms related to energy partitioning, most importantly the snow and ice-albedo feedback. However, direct measurements of surface energy budgets in the Arctic are scarce, especially for the cold and dark winter period and over transects going from the ice sheet and glaciers to the sea. This study aims to describe annual cycles of the surface energy budget from various surface types in Arctic Greenland; e.g. glacier, snow, wet and dry tundra and sea ice, based on data from a number of measurement locations across coastal Greenland related to the Greenland Ecosystem Monitoring (GEM) program, including Station Nord/Kronprins Christians Land, Zackenberg/Daneborg, Disko, Qaanaq, Nuuk/Kobbefjord and Upernaviarsuk. Based on the available time series, we will analyze the sensitivity of the energy balance partitioning to variations in meteorological conditions (temperature, cloudiness, precipitation). Such analysis would allow for a quantification of the spatial variation in the energy exchange in aforementioned Arctic environments. Furthermore, this study will identify uncertainties and knowledge gaps in Arctic energy budgets and related climate feedback effects.

  17. A Range-Based Multivariate Model for Exchange Rate Volatility

    OpenAIRE

    Tims, Ben; Mahieu, Ronald

    2003-01-01

    textabstractIn this paper we present a parsimonious multivariate model for exchange rate volatilities based on logarithmic high-low ranges of daily exchange rates. The multivariate stochastic volatility model divides the log range of each exchange rate into two independent latent factors, which are interpreted as the underlying currency specific components. Due to the normality of logarithmic volatilities the model can be estimated conveniently with standard Kalman filter techniques. Our resu...

  18. The energy dependence of neutron-proton charge exchange

    International Nuclear Information System (INIS)

    Bouquet, A.; Diu, R.

    1978-01-01

    The new Fermilab data on up charge exchange are analysed phenomenologically, to determine the energy dependence of the amplitudes in the corresponding domain (60 2 trajectories. If one imposes the presence of standard rho-A 2 terms (three-component analysis), one has to introduce a pomeronlike contribution, with a trajectory α approximately equal to 1.0+0.25t. In both cases, the resulting parametrization gives a good description of the data from Psub(lab)=1GeV/c up to 300GeV/c

  19. Integrated O&M for energy generation and exchange facilities

    International Nuclear Information System (INIS)

    2016-01-01

    Ingeteam Service, part of the Ingeteam Group, is a leading company in the provision of integrated O&M services at energy generation and exchange facilities worldwide. From its head office in the Albacete Science and Technology Park, it manages the work of the 1,300 employees that make up its global workforce, rendering services to wind farms, PV installations and power generation plants. In addition, it maintains an active participation strategy in a range of R&D+i programmes that improve the existing technologies and are geared towards new production systems and new diagnostic techniques, applied to renewables installation maintenance. (Author)

  20. Energy exchange dynamics across L-H transitions in NSTX

    Science.gov (United States)

    Diallo, A.; Banerjee, S.; Zweben, S. J.; Stoltzfus-Dueck, T.

    2017-06-01

    We studied the energy exchange dynamics across the low-to-high-confinement (L-H) transition in NSTX discharges using the gas-puff imaging (GPI) diagnostic. The investigation focused on the energy exchange between flows and turbulence to help clarify the mechanism of the L-H transition. We applied this study to three types of heating schemes, including a total of 17 shots from the NSTX 2010 campaign run. Results show that the edge fluctuation characteristics (fluctuation levels, radial and poloidal correlation lengths) measured using GPI do not vary just prior to the H-mode transition, but change after the transition. Using a velocimetry approach (orthogonal-dynamics programming), velocity fields of a 24× 30 cm GPI view during the L-H transition were obtained with good spatial (˜1 cm) and temporal (˜2.5 μs) resolutions. Analysis using these velocity fields shows that the production term is systematically negative just prior to the L-H transition, indicating a transfer from mean flows to turbulence, which is inconsistent with the predator-prey paradigm. Moreover, the inferred absolute value of the production term is two orders of magnitude too small to explain the observed rapid L-H transition. These discrepancies are further reinforced by consideration of the ratio between the kinetic energy in the mean flow to the thermal free energy, which is estimated to be much less than 1, suggesting again that the turbulence depletion mechanism may not play an important role in the transition to the H-mode. Although the Reynolds work therefore appears to be too small to directly deplete the turbulent free energy reservoir, order-of-magnitude analysis shows that the Reynolds stress may still make a non-negligible contribution to the observed poloidal flows.

  1. MONETARY MODELS AND EXCHANGE RATE DETERMINATION ...

    African Journals Online (AJOL)

    Power Party [PPP] based on the law of one price asserts that the change in the exchange rate between .... exchange in international economic transactions has made it vitally evident that the management of ... One lesson from this episode is to ...

  2. Model Uncertainty and Exchange Rate Forecasting

    NARCIS (Netherlands)

    R.R.P. Kouwenberg (Roy); A. Markiewicz (Agnieszka); R. Verhoeks (Ralph); R.C.J. Zwinkels (Remco)

    2013-01-01

    textabstractWe propose a theoretical framework of exchange rate behavior where investors focus on a subset of economic fundamentals. We find that any adjustment in the set of predictors used by investors leads to changes in the relation between the exchange rate and fundamentals. We test the

  3. Modeling Multi-commodity Trade Information Exchange Methods

    CERN Document Server

    Traczyk, Tomasz

    2012-01-01

    Market mechanisms are entering into new fields of economy, in which some constraints of physical world, e.g. Kirchoffs Law in power grid, must be taken into account during trading. On such markets, some of commodities, like telecommunication bandwidth or electrical energy, appear to be non-storable, and must be exchanged in real-time. On the other hand, the markets tend to react at shortest possible time, so an idea to delegate some competency to autonomous software agents is very attractive. Multi-commodity mechanism addresses the aforementioned requirements. Modeling the relationships between the commodities allows to formulate new, more sophisticated models and mechanisms, which reflect decision situations in a better manner. Application of multi-commodity approach requires solving several issues related to data modeling, communication, semantics aspects of communication, reliability, etc. This book answers some of the questions and points out promising paths for implementation and development. Presented s...

  4. The effect of rotational and translational energy exchange on tracer diffusion in rough hard sphere fluids.

    Science.gov (United States)

    Kravchenko, Olga; Thachuk, Mark

    2011-03-21

    A study is presented of tracer diffusion in a rough hard sphere fluid. Unlike smooth hard spheres, collisions between rough hard spheres can exchange rotational and translational energy and momentum. It is expected that as tracer particles become larger, their diffusion constants will tend toward the Stokes-Einstein hydrodynamic result. It has already been shown that in this limit, smooth hard spheres adopt "slip" boundary conditions. The current results show that rough hard spheres adopt boundary conditions proportional to the degree of translational-rotational energy exchange. Spheres for which this exchange is the largest adopt "stick" boundary conditions while those with more intermediate exchange adopt values between the "slip" and "stick" limits. This dependence is found to be almost linear. As well, changes in the diffusion constants as a function of this exchange are examined and it is found that the dependence is stronger than that suggested by the low-density, Boltzmann result. Compared with smooth hard spheres, real molecules undergo inelastic collisions and have attractive wells. Rough hard spheres model the effect of inelasticity and show that even without the presence of attractive forces, the boundary conditions for large particles can deviate from "slip" and approach "stick."

  5. Flow with vibrational energy exchange, application to CO2 electric laser

    International Nuclear Information System (INIS)

    Dahan, Claude.

    1974-01-01

    The performances of a continuous wave (CO 2 , N 2 , He) laser ionized by an electron beam are calculated. Several types of phenomena are considered: energy exchange processes between molecules of laser medium, electron molecular excitation processes, aerodynamic phenomena: the energy exchanges accompanying the laser effect generate important quantities of heat, which have to be evacuated by the flow. After a survey of the fundamental assumptions on molecular phenomena, a computer code was developed for following, along the flow, the evolution of the thermodynamic parameters (pressure, temperature), of the laser gain, and of the electrical properties (electron density and temperature). To provide a finer description of the last ones, a model giving the energy distribution of the electrons in the laser medium was established [fr

  6. 76 FR 6128 - Energy Exchange International, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2011-02-03

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2730-000] Energy Exchange International, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding Energy Exchange International, LLC's application for market-based rate authority, with an...

  7. Reducing the energy consumption of an earth–air heat exchanger with a PID control system

    International Nuclear Information System (INIS)

    Diaz-Mendez, S.E.; Patiño-Carachure, C.; Herrera-Castillo, J.A.

    2014-01-01

    Highlights: • The application of control actions to green technologies has been simulated. • Energy consumption of green technologies can be reduced even more. • The efficiency of green technologies can be raised. • Environmental concerns can be diminished. • The sustainability of the planet can be increased. - Abstract: Reducing environmental emissions is one of the challenges that human being has to overcome. It can only be reached with a proper energetic efficiency and management of the processes that exist in the society nowadays. Several academic works have mentioned that raising the efficiency of a process it also increases sustainability and in turn decreases the environmental impact. One process that requires much attention is the cooling and heating of buildings; this process contributes to the major part of the electric bill, in particular, if a conventional and old air conditioning is used as commonly occurs in many countries. In recent years there have been developed new alternatives that are used in few countries, such as the earth–air heat exchanger, where air is passed through a heat exchanger buried a few meters below the ground. The heat exchanger takes advantage of the well-known difference between the temperature of the surrounding air and the temperature of the ground for cooling or heating the air that is subsequently injected into the buildings. This process requires less energy, then in the present work is thought that a PID (Proportional, Integral and Derivative) controller can be applied to an earth–air heat exchanger to reduce even more the energy consumption. Therefore, a simulation of a thermodynamic model of an earth–air heat exchanger was done and used along with a PID controller, to estimate savings in energy consumption. The results show that the energy consumption can be reduced up to 87% with the PID control, hence the efficiency of the process is increased as well as the sustainability of the planet and thus the

  8. Information Exchange of the Atomic Energy Society of Japan with Nuclear Societies Worldwide

    International Nuclear Information System (INIS)

    Masao Hori; Yasushi Tomita

    2000-01-01

    This paper describes committees of the Atomic Energy Society of Japan (AESJ) related to information exchange, AESJ publications, AESJ Internet applications, and means for future information exchange between nuclear societies

  9. A Model of B2B Exchanges

    OpenAIRE

    Gabor Fath; Miklos Sarvary

    2001-01-01

    B2B exchanges are revolutionizing the way businesses will buy and sell a variety of intermediary products and services. It is estimated that most of the roughly $7 trillion worth of business transactions are likely to go through these new institutions within the next decade. This paper tries to understand the economics governing the transactions within B2B exchanges and analyze their likely evolution over time. In doing so, we start by providing the rigorous definitions to a number of critica...

  10. Martingale Regressions for a Continuous Time Model of Exchange Rates

    OpenAIRE

    Guo, Zi-Yi

    2017-01-01

    One of the daunting problems in international finance is the weak explanatory power of existing theories of the nominal exchange rates, the so-called “foreign exchange rate determination puzzle”. We propose a continuous-time model to study the impact of order flow on foreign exchange rates. The model is estimated by a newly developed econometric tool based on a time-change sampling from calendar to volatility time. The estimation results indicate that the effect of order flow on exchange rate...

  11. Total energy calculations from self-energy models

    International Nuclear Information System (INIS)

    Sanchez-Friera, P.

    2001-06-01

    Density-functional theory is a powerful method to calculate total energies of large systems of interacting electrons. The usefulness of this method, however, is limited by the fact that an approximation is required for the exchange-correlation energy. Currently used approximations (LDA and GGA) are not sufficiently accurate in many physical problems, as for instance the study of chemical reactions. It has been shown that exchange-correlation effects can be accurately described via the self-energy operator in the context of many-body perturbation theory. This is, however, a computationally very demanding approach. In this thesis a new scheme for calculating total energies is proposed, which combines elements from many-body perturbation theory and density-functional theory. The exchange-correlation energy functional is built from a simplified model of the self-energy, that nevertheless retains the main features of the exact operator. The model is built in such way that the computational effort is not significantly increased with respect to that required in a typical density-functional theory calculation. (author)

  12. Thermodynamic analysis on theoretical models of cycle combined heat exchange process: The reversible heat exchange process

    International Nuclear Information System (INIS)

    Zhang, Chenghu; Li, Yaping

    2017-01-01

    Concept of reversible heat exchange process as the theoretical model of the cycle combined heat exchanger could be useful to determine thermodynamics characteristics and the limitation values in the isolated heat exchange system. In this study, the classification of the reversible heat exchange processes is presented, and with the numerical method, medium temperature variation tendency and the useful work production and usage in the whole process are investigated by the construction and solution of the mathematical descriptions. Various values of medium inlet temperatures and heat capacity ratio are considered to analyze the effects of process parameters on the outlet temperature lift/drop. The maximum process work transferred from the Carnot cycle region to the reverse cycle region is also researched. Moreover, influence of the separating point between different sub-processes on temperature variation profile and the process work production are analyzed. In addition, the heat-exchange-enhancement-factor is defined to study the enhancement effect of the application of the idealized process in the isolated heat exchange system, and the variation degree of this factor with process parameters change is obtained. The research results of this paper can be a theoretical guidance to construct the cycle combined heat exchange process in the practical system. - Highlights: • A theoretical model of Cycle combined heat exchange process is proposed. • The classification of reversible heat exchange process are presented. • Effects of Inlet temperatures and heat capacity ratio on process are analyzed. • Process work transmission through the whole process is studied. • Heat-exchange-enhancement-factor can be a criteria to express the application effect of the idealized process.

  13. Nucleon charge-exchange reactions at intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Alford, W.P. [Western Ontario Univ., London, ON (Canada). Dept. of Physics]|[TRIUMF, Vancouver, BC (Canada); Spicer, B.M. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    An historical review of the development of ideas pertaining to Gamow-Teller giant resonances is given, and a description of the emergence of techniques for the study of charge exchange reactions - particularly the technical advances which yielded the recent volume of new date. The present status of charge exchange reactions is reviewed and assessed. Evidence is presented from the {sup 14}C(p,n) reaction for the dominance of the spin-isospin component of the nucleon-nucleon interaction in intermediate energy reactions. In (p,n) reactions the Gamow-Teller giant resonance dominates the spectra, with higher multipoles contributing. By contrast, in (n,p) reactions in the heavier nuclei, the Gamow-Teller transitions are substantially Pauli-blocked and the spin dipole resonance dominates, with contributions from higher multipoles. Discussions of the multipole decomposition process, used to obtain from the data the contributions of the different multipoles, and the contributions of the multipoles, are given. 226 refs., 19 figs.

  14. Modeling Philippine Stock Exchange Composite Index Using Time Series Analysis

    Science.gov (United States)

    Gayo, W. S.; Urrutia, J. D.; Temple, J. M. F.; Sandoval, J. R. D.; Sanglay, J. E. A.

    2015-06-01

    This study was conducted to develop a time series model of the Philippine Stock Exchange Composite Index and its volatility using the finite mixture of ARIMA model with conditional variance equations such as ARCH, GARCH, EG ARCH, TARCH and PARCH models. Also, the study aimed to find out the reason behind the behaviorof PSEi, that is, which of the economic variables - Consumer Price Index, crude oil price, foreign exchange rate, gold price, interest rate, money supply, price-earnings ratio, Producers’ Price Index and terms of trade - can be used in projecting future values of PSEi and this was examined using Granger Causality Test. The findings showed that the best time series model for Philippine Stock Exchange Composite index is ARIMA(1,1,5) - ARCH(1). Also, Consumer Price Index, crude oil price and foreign exchange rate are factors concluded to Granger cause Philippine Stock Exchange Composite Index.

  15. SatisFactory Common Information Data Exchange Model

    OpenAIRE

    CERTH

    2016-01-01

    This deliverable defines the Common Information Data Exchange Model (CIDEM). The aim of CIDEM is to provide a model of information elements (e.g. concepts, even, relations, interfaces) used for information exchange between components as well as for modelling work performed by other tasks (e.g. knowledge models to support human resources optimization). The CIDEM definition is considered as a shared vocabulary that enables to address the information needs for the SatisFactory framework components.

  16. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    International Nuclear Information System (INIS)

    Walker, D.D.

    1999-01-01

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A ampersand 038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports

  17. Analyzing energy-water exchange dynamics in the Thar desert

    Science.gov (United States)

    Raja, P.; Singh, Nilendu; Srinivas, C. V.; Singhal, Mohit; Chauhan, Pankaj; Singh, Maharaj; Sinha, N. K.

    2017-07-01

    Regions of strong land-atmosphere coupling will be more susceptible to the hydrological impacts in the intensifying hydrological cycle. In this study, micrometeorological experiments were performed to examine the land-atmosphere coupling strength over a heat low region (Thar desert, NW India), known to influence the Indian summer monsoon (ISM). Within the vortex of Thar desert heat low, energy-water exchange and coupling behavior were studied for 4 consecutive years (2011-2014) based on sub-hourly measurements of radiative-convective flux, state parameters and sub-surface thermal profiles using lead-lag analysis between various E-W balance components. Results indicated a strong (0.11-0.35) but variable monsoon season (July-September) land-atmosphere coupling events. Coupling strength declined with time, becomes negative beyond 10-day lag. Evapotranspiration (LE) influences rainfall at the monthly time-scale (20-40 days). Highly correlated monthly rainfall and LE anomalies (r = 0.55, P < 0.001) suggested a large precipitation memory linked to the local land surface state. Sensible heating (SH) during March and April are more strongly (r = 0.6-0.7) correlated to ISM rainfall than heating during May or June (r = 0.16-0.36). Analyses show strong and weak couplings among net radiation (Rn)-vapour pressure deficit (VPD), LE-VPD and Rn-LE switching between energy-limited to water-limited conditions. Consistently, +ve and -ve residual energy [(dE) = (Rn - G) - (SH + LE)] were associated with regional wet and dry spells respectively with a lead of 10-40 days. Dew deposition (18.8-37.9 mm) was found an important component in the annual surface water balance. Strong association of variation of LE and rainfall was found during monsoon at local-scale and with regional-scale LE (MERRA 2D) but with a lag which was more prominent at local-scale than at regional-scale. Higher pre-monsoon LE at local-scale as compared to low and monotonous variation in regional-scale LE led to

  18. Energy loss and charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Poizat, J.C.; Andriamonje, S.; Anne, R.; Faria, N.V.d.C.; Chevallier, M.; Cohen, C.; Dural, J.; Farizon-Mazuy, B.; Gaillard, M.J.; Genre, R.; Hage-Ali, M.; Kirsch, R.; L'hoir, A.; Mory, J.; Moulin, J.; Quere, Y.; Remillieux, J.; Schmaus, D.; Toulemonde, M.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. Our experiments show that high energy heavy ion channeling deeply modifies their slowing down and charge exchange processes. This is due to the fact that channeled ions interact only with outershell target electrons, which means that the electron density they experience is very low and that the binding energy, and then the momentum distribution of these electrons, are quite different from the corresponding average values associated to random incidence. The two experimental studies presented here show the reduction of the energy loss rate for fast channeled heavy ions and illustrate the two aspects of channeling effects on charge exchange, the reduction of electron loss on one hand, and of electron capture on the other hand

  19. Dynamical contribution to the heat conductivity in stochastic energy exchanges of locally confined gases

    Science.gov (United States)

    Gaspard, Pierre; Gilbert, Thomas

    2017-04-01

    We present a systematic computation of the heat conductivity of the Markov jump process modeling the energy exchanges in an array of locally confined hard spheres at the conduction threshold. Based on a variational formula (Sasada 2016 (arXiv:1611.08866)), explicit upper bounds on the conductivity are derived, which exhibit a rapid power-law convergence towards an asymptotic value. We thereby conclude that the ratio of the heat conductivity to the energy exchange frequency deviates from its static contribution by a small negative correction, its dynamic contribution, evaluated to be -0.000 373 in dimensionless units. This prediction is corroborated by kinetic Monte Carlo simulations which were substantially improved compared to earlier results.

  20. Low-energy pion double charge exchange and nucleon-nucleon correlations in nuclei

    International Nuclear Information System (INIS)

    Leitch, M.J.

    1989-01-01

    Recent measurements of pion double-charge exchange (DCX) at energies 20 to 70 MeV are providing a new means for studying nucleon-nucleon correlations in nuclei. At these energies the nucleus is relatively transparent, allowing simpler theoretical models to be used in interpreting the data and leading to a clearer picture. Also the contribution to DCX of sequential charge-exchange scattering through the intermediate analog state is suppressed near 50 MeV and transitions through non-analog intermediate states become very important. Recent theoretical studies by several groups have shown that while transitions through the analog route involve relatively long nucleon-nucleon distances, those through non-analog intermediate states obtain nearly half their strength from nucleon pairs with less than 1 fermi separation. Thus DCX near 50 MeV is an excellent way to study short-range nucleon-nucleon correlations. 31 refs., 29 figs., 4 tabs

  1. Rasch models with exchangeable rows and columns

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt

    The article studies distributions of doubly infinite binary matrices with exchangeable rows and columns which satify the further property that the probability of any $m \\times n$ submatrix is a function of the row- and column sums of that matrix. We show that any such distribution is a (unique...

  2. Shapley Value-Based Payment Calculation for Energy Exchange between Micro- and Utility Grids

    Directory of Open Access Journals (Sweden)

    Robin Pilling

    2017-10-01

    Full Text Available In recent years, microgrids have developed as important parts of power systems and have provided affordable, reliable, and sustainable supplies of electricity. Each microgrid is managed as a single controllable entity with respect to the existing power system but demands for joint operation and sharing the benefits between a microgrid and its hosting utility. This paper is focused on the joint operation of a microgrid and its hosting utility, which cooperatively minimize daily generation costs through energy exchange, and presents a payment calculation scheme for power transactions based on a fair allocation of reduced generation costs. To fairly compensate for energy exchange between the micro- and utility grids, we adopt the cooperative game theoretic solution concept of Shapley value. We design a case study for a fictitious interconnection model between the Mueller microgrid in Austin, Texas and the utility grid in Taiwan. Our case study shows that when compared to standalone generations, both the micro- and utility grids are better off when they collaborate in power exchange regardless of their individual contributions to the power exchange coalition.

  3. EXCHANGE-RATES FORECASTING: EXPONENTIAL SMOOTHING TECHNIQUES AND ARIMA MODELS

    Directory of Open Access Journals (Sweden)

    Dezsi Eva

    2011-07-01

    Full Text Available Exchange rates forecasting is, and has been a challenging task in finance. Statistical and econometrical models are widely used in analysis and forecasting of foreign exchange rates. This paper investigates the behavior of daily exchange rates of the Romanian Leu against the Euro, United States Dollar, British Pound, Japanese Yen, Chinese Renminbi and the Russian Ruble. Smoothing techniques are generated and compared with each other. These models include the Simple Exponential Smoothing technique, as the Double Exponential Smoothing technique, the Simple Holt-Winters, the Additive Holt-Winters, namely the Autoregressive Integrated Moving Average model.

  4. Energy centre microgrid model

    Energy Technology Data Exchange (ETDEWEB)

    Pasonen, R.

    2011-09-15

    A simulation model of Energy centre microgrid made with PSCAD simulation software version 4.2.1 has been built in SGEM Smart Grids and Energy Markets (SGEM) work package 6.6. Microgrid is an autonomous electric power system which can operate separate from common distribution system. The idea of energy centre microgrid concept was considered in Master of Science thesis 'Community Microgrid - A Building block of Finnish Smart Grid'. The name of energy centre microgrid comes from a fact that production and storage units are concentrated into a single location, an energy centre. This centre feeds the loads which can be households or industrial loads. Power direction flow on the demand side remains same compared to the current distribution system and allows to the use of standard fuse protection in the system. The model consists of photovoltaic solar array, battery unit, variable frequency boost converter, inverter, isolation transformer and demand side (load) model. The model is capable to automatically switch to islanded mode when there is a fault in outside grid and back to parallel operation mode when fault is removed. The modelled system responses well to load changes and total harmonic distortion related to 50Hz base frequency is kept under 1.5% while operating and feeding passive load. (orig.)

  5. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies?

    Science.gov (United States)

    Nemykin, Victor N; Hadt, Ryan G; Belosludov, Rodion V; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2007-12-20

    A time-dependent density functional theory (TDDFT) approach coupled with 14 different exchange-correlation functionals was used for the prediction of vertical excitation energies in zinc phthalocyanine (PcZn). In general, the TDDFT approach provides a more accurate description of both visible and ultraviolet regions of the UV-vis and magnetic circular dichroism (MCD) spectra of PcZn in comparison to the more popular semiempirical ZINDO/S and PM3 methods. It was found that the calculated vertical excitation energies of PcZn correlate with the amount of Hartree-Fock exchange involved in the exchange-correlation functional. The correlation was explained on the basis of the calculated difference in energy between occupied and unoccupied molecular orbitals. The influence of PcZn geometry, optimized using different exchange-correlation functionals, on the calculated vertical excitation energies in PcZn was found to be relatively small. The influence of solvents on the calculated vertical excitation energies in PcZn was considered for the first time using a polarized continuum model TDDFT (PCM-TDDFT) method and was found to be relatively small in excellent agreement with the experimental data. For all tested TDDFT and PCM-TDDFT cases, an assignment of the Q-band as an almost pure a1u (HOMO)-->eg (LUMO) transition, initially suggested by Gouterman, was confirmed. Pure exchange-correlation functionals indicate the presence of six 1Eu states in the B-band region of the UV-vis spectrum of PcZn, while hybrid exchange-correlation functionals predict only five 1Eu states for the same energy envelope. The first two symmetry-forbidden n-->pi* transitions were predicted in the Q0-2 region and in the low-energy tail of the B-band, while the first two symmetry-allowed n-->pi* transitions were found within the B-band energy envelope when pure exchange-correlation functionals were used for TDDFT calculations. The presence of a symmetry-forbidden but vibronically allowed n

  6. Optimal design of a NGNP heat exchanger with cost model

    International Nuclear Information System (INIS)

    Ridluan, Artit; Danchus, William; Tokuhiro, Akira

    2009-01-01

    With steady increase in energy consumption, the vulnerability of the fossil fuel supply, and environmental concerns, the U.S. Department of Energy (DOE) has initiated the Next Generation Nuclear Power Plants (NGNP), also known as Very High Temperature Reactor (VHTR). The VHTR is planned to be operational by 2021 with possible demonstration of a hydrogen generating plant. Various engineering design studies on both the reactor plant and energy conversion system are underway. For this and related Generation IV plants, it is the goal to not only meet safety criteria but to also be efficient, economically competitive, and environmentally friendly (proliferation resistant). Traditionally, heat exchanger (HX) design is based on two main approaches: Log-Mean Temperature Difference (LMTD) and effectiveness-NTU (ε-NTU). These methods yield the dimension of the HX under anticipate condition and vice-versa. However, one is not assured that the dimension calculated give the best performing HX when economics are also considered. Here, we develop and show a specific optimization algorithm (exercise) using LMTD and simple (optimal) design theory to establish a reference case for the Printed Circuit Heat Exchanger (PCHE). Computational Fluid Dynamics (CFD) was further used as a design tool to investigate the optimal design of PCHE thermohydraulic flow. The CFD results were validated against the Blasius correlation before being subjected to optimal design analyses. Benchmark results for the pipe flow indicated that the predictive ability of SST k-ω is superior to the other (standard and RNG k-ε and RSM) turbulence models. The difference between CFD and the empirical expression is less than 10%. (author)

  7. Exchange rate risks and their impact upon the energy market

    Directory of Open Access Journals (Sweden)

    Abed Al-Zabidi

    2007-04-01

    Full Text Available The expansion of international business in Slovakia brought not only the opening of markets and expansion of enterprise possibilities but also an increase in the competition and new risks. One of such risks is also the exchange rate risk. The business that realizes a financial transaction exceeding borders of the state or derives his buying or selling prices in Slovak crowns from the foreign currency, is subjected to the exchange rate risks. The exchange rate risks are caused by volatility of exchange courses of Slovak crowns related to foreign currencies. The progress of exchange rates can considerably influence a real result of a transaction negatively; therefore it is important for enterprises to identify possible risks resulting from changes in exchange rates, so they could react accordingly.The proposed article is aimed at the explanation of basic techniques of minimizing exchange rate risks with the use of financial tools available on the financial market.

  8. Modelling and validation of Proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.

    2018-01-01

    This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.

  9. Action dependent heuristic dynamic programming based residential energy scheduling with home energy inter-exchange

    International Nuclear Information System (INIS)

    Xu, Yancai; Liu, Derong; Wei, Qinglai

    2015-01-01

    Highlights: • The algorithm is developed in the two-household energy management environment. • We develop the absent energy penalty cost for the first time. • The algorithm has ability to keep adapting in real-time operations. • Its application can lower total costs and achieve better load balancing. - Abstract: Residential energy scheduling is a hot topic nowadays in the background of energy saving and environmental protection worldwide. To achieve this objective, a new residential energy scheduling algorithm is developed for energy management, based on action dependent heuristic dynamic programming. The algorithm works under the circumstance of residential real-time pricing and two adjacent housing units with energy inter-exchange, which can reduce the overall cost and enhance renewable energy efficiency after long-term operation. It is designed to obtain the optimal control policy to manage the directions and amounts of electricity energy flux. The algorithm’s architecture is mainly constructed based on neural networks, denoting the learned characteristics in the linkage of layers. To get close to real situations, many constraints such as maximum charging/discharging power of batteries are taken into account. The absent energy penalty cost is developed for the first time as a part of the performance index function. When the environment changes, the residential energy scheduling algorithm gains new features and keeps adapting in real-time operations. Simulation results show that the developed algorithm is beneficial to energy conversation

  10. Can producer currency pricing models generate volatile real exchange rates?

    OpenAIRE

    Povoledo, L.

    2012-01-01

    If the elasticities of substitution between traded and nontraded and between Home and Foreign traded goods are sufficiently low, then the real exchange rate generated by a model with full producer currency pricing is as volatile as in the data.

  11. Monetary models and exchange rate determination: The Nigerian ...

    African Journals Online (AJOL)

    Monetary models and exchange rate determination: The Nigerian evidence. ... income levels and real interest rate differentials provide better forecasts of the ... partner can expect to suffer depreciation in the external value of her currency.

  12. Optimal model of radiocarbon residence time in exchange reservoir

    International Nuclear Information System (INIS)

    Dergachev, V.A.

    1977-01-01

    Radiocarbon content variations in the earth atmosphere were studied using a mathematical model. The so-called exchange reservoir was considered consisting of layers, and the radiocarbon exchange rate at the interfaces between these layers was supposed to be constant. The process of 14 C mixing and exchange in a dynamic system is described by a system of nonhomogeneous 1st order differential equations. The model also accounts for the change in rate of radiocarbon formation in the earth atmosphere due to cosmic and geophysical effects (solar activity, solar cycle, etc.). (J.P.)

  13. Transverse-to-longitudinal Emittance-exchange with an Energy Chirped Beam

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraj, J.; Ruan, J.; Johnson, A.S.; Thurman-Keup, R.; Lumpkin, A.H.; Santucci, J.; Sun, Y.-E; Maxwell, T.; Edwards, H.; /Fermilab

    2012-05-01

    Emittance exchange has been proposed to increase the performance of free electron lasers by tailoring the phase space of an electron beam. The principle of emittance exchange - where the transverse phase space of the electron beam is exchanged with the longitudinal phase space - has been demonstrated recently at the A0 photoinjector. The experiment used a low charge bunch (250 pC) with no energy chirp. Theory predicts an improvement in the emittance exchange scheme when the incoming beam has an energy chirp imparted on it. The energy chirp helps to overcome the thick lens effect of the deflecting mode cavity and other second order effects that might lead to an incomplete emittance exchange at higher charges. In this work, we report experimental and simulation results from operating the emittance exchange beam line using an energy chirped beam with higher charge (500 pC) at different RF-chirp settings.

  14. Role of energy exchange in vibrational dephasing processes in liquids and solids

    International Nuclear Information System (INIS)

    Marks, S.

    1981-08-01

    Three theories which claim relevance to the dephasing of molecular vibrations in condensed phase matter are presented. All of these theories predict (in certain limiting cases) that the widths and shifts of molecular vibrations will obey an Arrhenius temperature dependence. The basic tenets of the theories are detailed so that the differences between them may be used in an experiment to distinguish between them. One model, based on intermolecular energy exchange of low-frequency modes, results in dephasing the high-frequency modes when anharmonic coupling is present. A computer analysis of temperature dependent experimental lineshapes can result in the extraction of various parameters such as the anharmonic shifts and the exchange rates. It is shown that, in order to properly assess the relative validity of the three models, other evidence must be obtained such as the spectral parameters of the low-frequency modes, the combination bands, and the isotopic dilution behavior. This evidence is presented for d 14 -durene (perdeutero-1,2,4,5-tetramethylbenzene) and compared to previous data obtained on pure h 14 -durene. An extension of the (HSC) intermolecular energy exchange model which allows for the possibility of partial delocalization of the low-frequency modes gives an adequate description of the experimental evidence. Isotopic dilution experiments, in particular, have resulted in a detailed picture of the energy transfer dynamics of the low-frequency modes. A section in which some spontaneous Raman spectra support a model of inhomogeneous broadening in liquids based on results of picosecond stimulated Raman spectroscopy is presented. The model is that a distribution of environmental sites is created by a distribution in the local density and thus creates inhomogeneous broadening

  15. Track structure for low energy ions including charge exchange processes

    International Nuclear Information System (INIS)

    Uehara, S.; Nikjoo, H.

    2002-01-01

    The model and development is described of a new generation of Monte Carlo track structure codes. The code LEAHIST simulates full slowing down of low-energy proton history tracks in the range 1 keV-1 MeV and the code LEAHIST simulates low-energy alpha particle history tracks in the range 1 keV-8 MeV in water. All primary ion interactions are followed down to 1 keV and all electrons to 1 eV. Tracks of secondary electrons ejected by ions were traced using the electron code KURBUC. Microdosimetric parameters derived by analysis of generated tracks are presented. (author)

  16. Energy Exchange Dynamics across L-H transitions in NSTX

    Science.gov (United States)

    Diallo, Ahmed

    2017-10-01

    H-mode is planned for future devices such as ITER, and is preceded by a low (L) to high (H) transition. A key question remains. What is the mechanism behind the L-H transition? Most theoretical descriptions of the L-H transition are based on the shear of the radial electric field and coincident ExB poloidal flow shear, which is thought to be responsible for the onset of the anomalous transport suppression that leads to the L-H transition. This talk will focus on the analysis of the flow dynamics across the L-H transition in NSTX. We analyze the L-H transition dynamics using the velocimetry of 2D edge turbulence data from gas-puff imaging (GPI). We determine the velocity components at the edge across the L-H transition for 17 discharges with three types of heating power (NBI, ohmic, and RF). Using a reduced model equation of edge flows and turbulence, the energy transfer dynamics is compared with the turbulence depletion hypothesis of the predator-prey model. In order for Reynolds work to suppress the turbulence, it must deplete the total turbulent free energy, including the thermal free-energy term. For this to occur, the increase in kinetic energy in the mean flow over the L-H transition must be comparable to the pre-transition thermal free energy. However, this ratio was found to be of order 10-2. Although there are significant simplifications in the theoretical model, they are unlikely to cause inaccuracy by two orders of magnitude, suggesting that direct turbulence depletion by the Reynolds work may not be large enough to explain the L-H transition on NSTX, contrary to the predator-prey model. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  17. Monte Carlo study of the double and super-exchange model with lattice distortion

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, J R; Vallejo, E; Navarro, O [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, 04510 Mexico D. F. (Mexico); Avignon, M, E-mail: jrsuarez@iim.unam.m [Institut Neel, Centre National de la Recherche Scientifique (CNRS) and Universite Joseph Fourier, BP 166, 38042 Grenoble Cedex 9 (France)

    2009-05-01

    In this work a magneto-elastic phase transition was obtained in a linear chain due to the interplay between magnetism and lattice distortion in a double and super-exchange model. It is considered a linear chain consisting of localized classical spins interacting with itinerant electrons. Due to the double exchange interaction, localized spins tend to align ferromagnetically. This ferromagnetic tendency is expected to be frustrated by anti-ferromagnetic super-exchange interactions between neighbor localized spins. Additionally, lattice parameter is allowed to have small changes, which contributes harmonically to the energy of the system. Phase diagram is obtained as a function of the electron density and the super-exchange interaction using a Monte Carlo minimization. At low super-exchange interaction energy phase transition between electron-full ferromagnetic distorted and electron-empty anti-ferromagnetic undistorted phases occurs. In this case all electrons and lattice distortions were found within the ferromagnetic domain. For high super-exchange interaction energy, phase transition between two site distorted periodic arrangement of independent magnetic polarons ordered anti-ferromagnetically and the electron-empty anti-ferromagnetic undistorted phase was found. For this high interaction energy, Wigner crystallization, lattice distortion and charge distribution inside two-site polarons were obtained.

  18. Modeling ion exchange in clinoptilolite using the EQ3/6 geochemical modeling code

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-06-01

    Assessing the suitability of Yucca Mtn., NV as a potential repository for high-level nuclear waste requires the means to simulate ion-exchange behavior of zeolites. Vanselow and Gapon convention cation-exchange models have been added to geochemical modeling codes EQ3NR/EQ6, allowing exchange to be modeled for up to three exchangers or a single exchanger with three independent sites. Solid-solution models that are numerically equivalent to the ion-exchange models were derived and also implemented in the code. The Gapon model is inconsistent with experimental adsorption isotherms of trace components in clinoptilolite. A one-site Vanselow model can describe adsorption of Cs or Sr on clinoptilolite, but a two-site Vanselow exchange model is necessary to describe K contents of natural clinoptilolites

  19. A lumped parameter, low dimension model of heat exchanger

    International Nuclear Information System (INIS)

    Kanoh, Hideaki; Furushoo, Junji; Masubuchi, Masami

    1980-01-01

    This paper reports on the results of investigation of the distributed parameter model, the difference model, and the model of the method of weighted residuals for heat exchangers. By the method of weighted residuals (MWR), the opposite flow heat exchanger system is approximated by low dimension, lumped parameter model. By assuming constant specific heat, constant density, the same form of tube cross-section, the same form of the surface of heat exchange, uniform flow velocity, the linear relation of heat transfer to flow velocity, liquid heat carrier, and the thermal insulation of liquid from outside, fundamental equations are obtained. The experimental apparatus was made of acrylic resin. The response of the temperature at the exit of first liquid to the variation of the flow rate of second liquid was measured and compared with the models. The MWR model shows good approximation for the low frequency region, and as the number of division increases, good approximation spreads to higher frequency region. (Kato, T.)

  20. Energy exchange in systems of particles with nonreciprocal interaction

    Energy Technology Data Exchange (ETDEWEB)

    Vaulina, O. S.; Lisina, I. I., E-mail: Irina.Lisina@mail.ru; Lisin, E. A. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    A model is proposed to describe the sources of additional kinetic energy and its redistribution in systems of particles with a nonreciprocal interaction. The proposed model is shown to explain the qualitative specific features of the dust particle dynamics in the sheath region of an RF discharge. Prominence is given to the systems of particles with a quasi-dipole–dipole interaction, which is similar to the interaction induced by the ion focusing effects that occur in experiments on a laboratory dusty plasma, and with the shadow interaction caused by thermophoretic forces and Le Sage’s forces.

  1. Mixing rates of particle systems with energy exchange

    International Nuclear Information System (INIS)

    Grigo, A; Khanin, K; Szász, D

    2012-01-01

    A fundamental problem of non-equilibrium statistical mechanics is the derivation of macroscopic transport equations in the hydrodynamic limit. The rigorous study of such limits requires detailed information about rates of convergence to equilibrium for finite sized systems. In this paper, we consider the finite lattice {1, 2, …, N}, with an energy x i ∈ (0, ∞) associated with each site. The energies evolve according to a Markov jump process with nearest neighbour interaction such that the total energy is preserved. We prove that for an entire class of such models the spectral gap of the generator of the Markov process scales as O(N -2 ). Furthermore, we provide a complete classification of reversible stationary distributions of product type. We demonstrate that our results apply to models similar to the billiard lattice model considered in Gaspard and Gilbert (2009 J. Stat. Mech.: Theory Exp. 2009 24), and hence provide a first step in the derivation of a macroscopic heat equation for a microscopic stochastic evolution of mechanical origin. (paper)

  2. Screened exchange hybrid density functional for accurate and efficient structures and interaction energies.

    Science.gov (United States)

    Brandenburg, Jan Gerit; Caldeweyher, Eike; Grimme, Stefan

    2016-06-21

    We extend the recently introduced PBEh-3c global hybrid density functional [S. Grimme et al., J. Chem. Phys., 2015, 143, 054107] by a screened Fock exchange variant based on the Henderson-Janesko-Scuseria exchange hole model. While the excellent performance of the global hybrid is maintained for small covalently bound molecules, its performance for computed condensed phase mass densities is further improved. Most importantly, a speed up of 30 to 50% can be achieved and especially for small orbital energy gap cases, the method is numerically much more robust. The latter point is important for many applications, e.g., for metal-organic frameworks, organic semiconductors, or protein structures. This enables an accurate density functional based electronic structure calculation of a full DNA helix structure on a single core desktop computer which is presented as an example in addition to comprehensive benchmark results.

  3. Nucleon exchange and heat partition in 74Ge + 165Ho collision at energy 8.5 MeV/A

    International Nuclear Information System (INIS)

    Planeta, R.

    1990-01-01

    This paper reports that one of the distinctive features of damped heavy-ion reactions is the rapid conversion of relative kinetic energy into heat during the lifetime of the dinuclear system formed in the collision. Of particular interest in this regard are the questions: how heat, or excitation energy, is partitioned between the reaction partners; how heat partition depends on nucleon transfer. Damped collisions at energies near or just above the barrier have been generally interpreted in terms of transport models which account for energy dissipation in terms of nucleon exchange between the projectile-like (PLF) and target-like fragments. Thus, in this context statistical nucleon exchange is the mechanism for heating of the system. Transport model calculation have met considerable success in accounting for the major features of damped collisions, for example, energy dissipation and angular distributions. Nonetheless, many important uncertainties remain

  4. Real Exchange Rate and Productivity in an OLG Model

    OpenAIRE

    Thi Hong Thinh DOAN; Karine GENTE

    2013-01-01

    This article develops an overlapping generations model to show how demography and savings affect the relationship between real exchange rate (RER) and productivity. In high-saving (low-saving) countries and/or low-population-growth-rate countries, a rise in productivity leads to a real depreciation (appreciation) whereas the RER may appreciate or depreciate in highproduction-growth-rate. Using panel data, we conclude that a rise in productivity generally causes a real exchange rate appreciati...

  5. Thermal performance modeling of cross-flow heat exchangers

    CERN Document Server

    Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria

    2014-01-01

    This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges

  6. Improvement of Energy Efficiency and Environmental Safety of Thermal Energy Through the Implementation of Contact Energy Exchange Processes

    Science.gov (United States)

    Varlamov, Gennadii Borysovich; Romanova, Kateryna Alexandrovna; Nazarova, Iryna; Daschenko, Olga; Kapustiansky, Andry

    2017-12-01

    Energy efficiency improvement and ecological safety of heat power plants are urgent problems, which require scientifically grounded approaches and solutions. These problems can be solved partly within the presented heat-and-power cycles by including contact energy exchange equipment in the circuits of existing installations. A significant positive effect is obtained in the contact energy exchange installations, such as gas-steam installation `Aquarius' and the contact hydrogen heat generator that also can use hydrogen as a fuel. In these plants, the efficiency increases approximately by 10-12% in comparison with traditional installations, and the concentration of toxic substances, such as nitrogen oxides and carbon monoxide in flue gas can be reduced to 30 mg/m3 and to 5 mg/m3, respectively. Moreover, the plants additionally `generate' the clean water, which can be used for technical purposes.

  7. NETL's Energy Data Exchange (EDX) - a coordination, collaboration, and data resource discovery platform for energy science

    Science.gov (United States)

    Rose, K.; Rowan, C.; Rager, D.; Dehlin, M.; Baker, D. V.; McIntyre, D.

    2015-12-01

    Multi-organizational research teams working jointly on projects often encounter problems with discovery, access to relevant existing resources, and data sharing due to large file sizes, inappropriate file formats, or other inefficient options that make collaboration difficult. The Energy Data eXchange (EDX) from Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is an evolving online research environment designed to overcome these challenges in support of DOE's fossil energy goals while offering improved access to data driven products of fossil energy R&D such as datasets, tools, and web applications. In 2011, development of NETL's Energy Data eXchange (EDX) was initiated and offers i) a means for better preserving of NETL's research and development products for future access and re-use, ii) efficient, discoverable access to authoritative, relevant, external resources, and iii) an improved approach and tools to support secure, private collaboration and coordination between multi-organizational teams to meet DOE mission and goals. EDX presently supports fossil energy and SubTER Crosscut research activities, with an ever-growing user base. EDX is built on a heavily customized instance of the open source platform, Comprehensive Knowledge Archive Network (CKAN). EDX connects users to externally relevant data and tools through connecting to external data repositories built on different platforms and other CKAN platforms (e.g. Data.gov). EDX does not download and repost data or tools that already have an online presence. This leads to redundancy and even error. If a relevant resource already has an online instance, is hosted by another online entity, EDX will point users to that external host either using web services, inventorying URLs and other methods. EDX offers users the ability to leverage private-secure capabilities custom built into the system. The team is presently working on version 3 of EDX which will incorporate big data analytical

  8. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  9. CONTINUOUS MODELING OF FOREIGN EXCHANGE RATE OF USD VERSUS TRY

    Directory of Open Access Journals (Sweden)

    Yakup Arı

    2011-01-01

    Full Text Available This study aims to construct continuous-time autoregressive (CAR model and continuous-time GARCH (COGARCH model from discrete time data of foreign exchange rate of United States Dollar (USD versus Turkish Lira (TRY. These processes are solutions to stochastic differential equation Lévy-driven processes. We have shown that CAR(1 and COGARCH(1,1 processes are proper models to represent foreign exchange rate of USD and TRY for different periods of time February 2002- June 2010.

  10. Policy modeling for industrial energy use

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the

  11. Comparison of Moving Boundary and Finite-Volume Heat Exchanger Models in the Modelica Language

    Directory of Open Access Journals (Sweden)

    Adriano Desideri

    2016-05-01

    Full Text Available When modeling low capacity energy systems, such as a small size (5–150 kWel organic Rankine cycle unit, the governing dynamics are mainly concentrated in the heat exchangers. As a consequence, the accuracy and simulation speed of the higher level system model mainly depend on the heat exchanger model formulation. In particular, the modeling of thermo-flow systems characterized by evaporation or condensation requires heat exchanger models capable of handling phase transitions. To this aim, the finite volume (FV and the moving boundary (MB approaches are the most widely used. The two models are developed and included in the open-source ThermoCycle Modelica library. In this contribution, a comparison between the two approaches is presented. An integrity and accuracy test is designed to evaluate the performance of the FV and MB models during transient conditions. In order to analyze how the two modeling approaches perform when integrated at a system level, two organic Rankine cycle (ORC system models are built using the FV and the MB evaporator model, and their responses are compared against experimental data collected on an 11 kWel ORC power unit. Additionally, the effect of the void fraction value in the MB evaporator model and of the number of control volumes (CVs in the FV one is investigated. The results allow drawing general guidelines for the development of heat exchanger dynamic models involving two-phase flows.

  12. Pomeron models and exchange degeneracy of the Regge trajectories

    International Nuclear Information System (INIS)

    Kontros, J.; Kontros, K.; Lengyel, A.

    2000-01-01

    Two models for the Pomeron, supplemented by exchange-degenerate sub-leading Regge trajectories, are fitted to the forward scattering data for a number of reactions. By considering new Pomeron models, we extend the recent results of the COMPAS group, being consistent with our predecessors

  13. Flight Dynamic Model Exchange using XML

    Science.gov (United States)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2002-01-01

    The AIAA Modeling and Simulation Technical Committee has worked for several years to develop a standard by which the information needed to develop physics-based models of aircraft can be specified. The purpose of this standard is to provide a well-defined set of information, definitions, data tables and axis systems so that cooperating organizations can transfer a model from one simulation facility to another with maximum efficiency. This paper proposes using an application of the eXtensible Markup Language (XML) to implement the AIAA simulation standard. The motivation and justification for using a standard such as XML is discussed. Necessary data elements to be supported are outlined. An example of an aerodynamic model as an XML file is given. This example includes definition of independent and dependent variables for function tables, definition of key variables used to define the model, and axis systems used. The final steps necessary for implementation of the standard are presented. Software to take an XML-defined model and import/export it to/from a given simulation facility is discussed, but not demonstrated. That would be the next step in final implementation of standards for physics-based aircraft dynamic models.

  14. Multiphysics Numerical Modeling of a Fin and Tube Heat Exchanger

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2015-01-01

    In the present research work, a modeling effort to predict the performance of a liquid-gas type fin and tube heat exchanger design is made. Three dimensional (3D) steady state numerical model is developed using commercial software COMSOL Multiphysics based on finite element method (FEM......). For the purposes here, only gas flowing over the fin side is simulated assuming constant inner tube wall temperature. The study couples conjugate heat transfer mechanism with turbulent flow in order to describe the temperature and velocity profile. In addition, performance characteristics of the heat exchanger...... design in terms of heat transfer and pressure loss are determined by parameters such as overall heat transfer coefficient, Colburn j-factor, flow resistance factor, and efficiency index. The model provides useful insights necessary for optimization of heat exchanger design....

  15. A Continuous-Time Model for Valuing Foreign Exchange Options

    Directory of Open Access Journals (Sweden)

    James J. Kung

    2013-01-01

    Full Text Available This paper makes use of stochastic calculus to develop a continuous-time model for valuing European options on foreign exchange (FX when both domestic and foreign spot rates follow a generalized Wiener process. Using the dollar/euro exchange rate as input for parameter estimation and employing our FX option model as a yardstick, we find that the traditional Garman-Kohlhagen FX option model, which assumes constant spot rates, values incorrectly calls and puts for different values of the ratio of exchange rate to exercise price. Specifically, it undervalues calls when the ratio is between 0.70 and 1.08, and it overvalues calls when the ratio is between 1.18 and 1.30, whereas it overvalues puts when the ratio is between 0.70 and 0.82, and it undervalues puts when the ratio is between 0.86 and 1.30.

  16. Modeling canopy CO2 exchange in the European Russian Arctic

    DEFF Research Database (Denmark)

    Kiepe, Isabell; Friborg, Thomas; Herbst, Mathias

    2013-01-01

    In this study, we use the coupled photosynthesis-stomatal conductance model of Collatz et al. (1991) to simulate the current canopy carbon dioxide exchange of a heterogeneous tundra ecosystem in European Russia. For the parameterization, we used data obtained from in situ leaf level measurements...... in combination with meteorological data from 2008. The modeled CO2 fluxes were compared with net ecosystem exchange (NEE), measured by the eddy covariance technique during the snow-free period in 2008. The findings from this study indicated that the main state parameters of the exchange processes were leaf area...... index (LAI) and Rubisco capacity (v(cmax)). Furthermore, this ecosystem was found to be functioning close to its optimum temperature regarding carbon accumulation rates. During the modeling period from May to October, the net assimilation was greater than the respiration, leading to a net accumulation...

  17. A phenomenological study of the π- p → π0 n charge exchange reaction at high energy

    International Nuclear Information System (INIS)

    Michaud, Y.

    1995-01-01

    The aim of the study was to examine the behaviour of the proton-proton elastic scattering, for mass center energies around 10 GeV, and more especially to study the charge exchange reaction π - p → π 0 n for mass center energies between 3 and 20 GeV. A formalism based on the Glauber model has been used, and a Regge trajectory exchange term was introduced in the model in order to enable the description of the lower energy domain (inferior to 10 GeV) that is characterized by a large contribution of meson exchanges at the scattering amplitude. The Glauber model is then applied to the charge exchange reaction and the differential cross section is analyzed for a center mass energy comprised between 3 and 20 GeV, together with the polarization at 40 GeV/c. The approach is then validated through the study of the π - p → η n reaction. The size of the kernel of proton and pion components implied in the π - p → π 0 n reaction, is also investigated. 90 refs., 48 figs., 4 tabs., 5 appends

  18. Critique of a pion exchange model for interquark forces

    International Nuclear Information System (INIS)

    Isgur, Nathan

    2000-01-01

    I describe four serious defects of a widely discussed pion exchange model for interquark forces: it does not solve the ''spin-orbit problem'' as advertised, it fails to describe the internal structure of baryon resonances, it leads to disastrous conclusions when extended to mesons, and it is not reasonably connected to the physics of heavy-light systems. While extensions of the original pion exchange model may be able to correct these defects, this catalogue of criticisms defines some of the most formidable problems such elaborations must address. (c) 2000 The American Physical Society

  19. Predicted and measured velocity distribution in a model heat exchanger

    International Nuclear Information System (INIS)

    Rhodes, D.B.; Carlucci, L.N.

    1984-01-01

    This paper presents a comparison between numerical predictions, using the porous media concept, and measurements of the two-dimensional isothermal shell-side velocity distributions in a model heat exchanger. Computations and measurements were done with and without tubes present in the model. The effect of tube-to-baffle leakage was also investigated. The comparison was made to validate certain porous media concepts used in a computer code being developed to predict the detailed shell-side flow in a wide range of shell-and-tube heat exchanger geometries

  20. Modelling of the change in national exchange rate model depending on the economic parameters of a natural gas cogeneration system: Turkey case

    International Nuclear Information System (INIS)

    Inan, Aslan; Izgi, Ercan; Ay, Selim

    2009-01-01

    In this paper, to what extent a cogeneration system's fixed and variable costs and profits are affected from the exchange rate model implemented in the country is examined. An autoproductor system, as known, uses a part of its electrical energy production for its own requirements while selling the remaining energy to the regional energy corporation. As a function of the load factor and the fuel cost, the production cost and energy sale income of the system are influenced much by the exchange rate model of the country. A cost analysis of a natural gas cogeneration (autoproductor) system has been performed for the numerical application, based on the monetary program supported by the IMF commenced in January 2000. In order to investigate the effect of the change in exchange rate model (introducing the floating exchange rate model) on the fuel cost, both the characteristics of the IMF program and some various forecasting methods have been utilized

  1. XY model with higher-order exchange.

    Science.gov (United States)

    Žukovič, Milan; Kalagov, Georgii

    2017-08-01

    An XY model, generalized by inclusion of up to an infinite number of higher-order pairwise interactions with an exponentially decreasing strength, is studied by spin-wave theory and Monte Carlo simulations. At low temperatures the model displays a quasi-long-range-order phase characterized by an algebraically decaying correlation function with the exponent η=T/[2πJ(p,α)], nonlinearly dependent on the parameters p and α that control the number of the higher-order terms and the decay rate of their intensity, respectively. At higher temperatures the system shows a crossover from the continuous Berezinskii-Kosterlitz-Thouless to the first-order transition for the parameter values corresponding to a highly nonlinear shape of the potential well. The role of topological excitations (vortices) in changing the nature of the transition is discussed.

  2. Double and super-exchange model in one-dimensional systems

    International Nuclear Information System (INIS)

    Vallejo, E.; Navarro, O.; Avignon, M.

    2010-01-01

    We present an analytical and numerical study of the competition between double and super-exchange interactions in a one-dimensional model. For low super-exchange interaction energy we find phase separation between ferromagnetic and anti-ferromagnetic phases. When the super-exchange interaction energy gets larger, the conduction electrons are self-trapped within separate small magnetic polarons. These magnetic polarons contain a single electron inside two or three sites depending on the conduction electron density and form a Wigner crystallization. A new phase separation is found between these small polarons and the anti-ferromagnetic phase. Spin-glass behavior is obtained consistent with experimental results of the nickelate one-dimensional compound Y 2-x Ca x BaNiO 5 .

  3. Anion-exchange membranes in electrochemical energy systems

    NARCIS (Netherlands)

    Varcoe, J.R.; Atanassov, P.; Dekel, D.R.; Herring, A.M.; Hickner, M.A.; Kohl, P.A.; Kucernak, A. R.; Mustain, W.E.; Nijmeijer, K.; Scott, Keith; Xu, Tongwen; Zhuang, Lin

    2014-01-01

    This article provides an up-to-date perspective on the use of anion-exchange membranes in fuel cells, electrolysers, redox flow batteries, reverse electrodialysis cells, and bioelectrochemical systems (e.g. microbial fuel cells). The aim is to highlight key concepts, misconceptions, the current

  4. Exchange algebra and exotic supersymmetry in the Chiral Potts model

    International Nuclear Information System (INIS)

    Bernard, D.; Pasquier, V.

    1989-01-01

    We obtain an exchange algebra for the Chiral Potts model, the elements of which are linear in the parameters defining the rapidity curve. This enables us to connect the Chiral Potts model to a U q (GL(2)) algebra. On the other hand, looking at the model from the S-matrix point of view relates it to a Z N generalisation of the supersymmetric algebra

  5. Information exchange of the Atomic Energy Society of Japan with nuclear societies worldwide

    International Nuclear Information System (INIS)

    Hori, Masao; Tomita, Yasushi

    2000-01-01

    The Atomic Energy Society of Japan (AESJ) exchanges information with nuclear societies worldwide by intersocietal communication through international councils of nuclear societies and through bilateral agreements between foreign societies and by such media as international meetings, publications, and Internet applications

  6. Mathematical model development of heat and mass exchange processes in the outdoor swimming pool

    OpenAIRE

    M. V. Shaptala; D. E. Shaptala

    2014-01-01

    Purpose. Currently exploitation of outdoor swimming pools is often not cost-effective and, despite of their relevance, such pools are closed in large quantities. At this time there is no the whole mathematical model which would allow assessing qualitatively the effect of energy-saving measures. The aim of this work is to develop a mathematical model of heat and mass exchange processes for calculating basic heat and mass losses that occur during its exploitation. Methodology. The m...

  7. Critique of a pion exchange model for interquark forces

    International Nuclear Information System (INIS)

    Isgur, N.

    1999-01-01

    The author describes four serious defects of a widely discuss pion exchange model for interquark forces: it doesn't solve the ''spin-orbit problem'' as advertised, it fails to describe the internal structure of baryon resonances, it leads to disastrous conclusions when extended to mesons, and it is not reasonably connected to the physics of heavy-light systems

  8. Difficulty for Weinberg model of CP nonconservation through Higgs exchange

    International Nuclear Information System (INIS)

    Deshpande, N.G.

    1981-01-01

    We evaluate the CP violation parameter element of'/element of in the Weinberg model of CP nonconservation. When gluon exchange effects are included, we find element of'/element of approx. -.045, which is in conflict with the experimental measurement element of'/element of = -.003 +- .015

  9. A relativistic, meson exchange model of pion-nucleon scattering

    International Nuclear Information System (INIS)

    Pearces, B.C.; Jennings, B.K.

    1990-06-01

    A relativistic meson exchange approach to the pion-nucleon interaction is developed using a three-dimensional relativistic two-body propagator, and the results using different propagators are compared. The relativistic approach is able to describe low energy scattering up to 400 MeV above threshold, while preserving the soft pion theorems. The different propagators give similar results, as the form factors necessary to get a fit suppress much of the multiple scattering. (Author) (24 refs., 4 tabs., 6 figs.)

  10. Energy models: methods and trends

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, A [Division of Energy Management and Planning, Verbundplan, Klagenfurt (Austria); Kuehner, R [IER Institute for Energy Economics and the Rational Use of Energy, University of Stuttgart, Stuttgart (Germany); Wohlgemuth, N [Department of Economy, University of Klagenfurt, Klagenfurt (Austria)

    1997-12-31

    Energy environmental and economical systems do not allow for experimentation since this would be dangerous, too expensive or even impossible. Instead, mathematical models are applied for energy planning. Experimenting is replaced by varying the structure and some parameters of `energy models`, computing the values of depending parameters, comparing variations, and interpreting their outcomings. Energy models are as old as computers. In this article the major new developments in energy modeling will be pointed out. We distinguish between 3 reasons of new developments: progress in computer technology, methodological progress and novel tasks of energy system analysis and planning. 2 figs., 19 refs.

  11. Energy models: methods and trends

    International Nuclear Information System (INIS)

    Reuter, A.; Kuehner, R.; Wohlgemuth, N.

    1996-01-01

    Energy environmental and economical systems do not allow for experimentation since this would be dangerous, too expensive or even impossible. Instead, mathematical models are applied for energy planning. Experimenting is replaced by varying the structure and some parameters of 'energy models', computing the values of depending parameters, comparing variations, and interpreting their outcomings. Energy models are as old as computers. In this article the major new developments in energy modeling will be pointed out. We distinguish between 3 reasons of new developments: progress in computer technology, methodological progress and novel tasks of energy system analysis and planning

  12. Nonlocal exchange and kinetic-energy density functionals for electronic systems

    International Nuclear Information System (INIS)

    Glossman, M.D.; Rubio, A.; Balbas, L.C.; Alonso, J.A.

    1992-01-01

    The nonlocal weighted density approximation (WDA) to the exchange and kinetic-energy functionals of many electron systems proposed several years ago by Alonso and Girifalco is used to compute, within the framework of density functional theory, the ground-state electronic density and total energy of noble gas atoms and of neutral jellium-like sodium clusters containing up to 500 atoms. These results are compared with analogous calculations using the well known Thomas-Fermi-Weizsacker-Dirac (TFWD) approximations for the kinetic (TFW) and exchange (D) energy density functionals. An outstanding improvement of the total and exchange energies, of the density at the nucleus and of the expectation values is obtained for atoms within the WDA scheme. For sodium clusters the authors notice a sizeable contribution of the nonlocal effects to the total energy and to the density profiles. In the limit of very large clusters these effects should affect the surface energy of the bulk metal

  13. Experimental determination of a flow model in a plate exchanger

    International Nuclear Information System (INIS)

    Fontaine, J.; Lannoy, F.

    1975-01-01

    Starting from the conductivimetric measurement of the response of a plate exchanger to a stepped input signal, two techniques (i.e. one direct and one indirect) for the determination of the coefficients of the mathematical model describing the behaviour of the exchanger are compared. The results show that these coefficients can be obtained with a sufficient accuracy by the direct reading of two parameters of the response curve. Variation of these coefficients with rated conditions show, moreover that the phenomenon is not linear and that these coefficients must be considered as variable parameters [fr

  14. A Model of Exchange-Rate-Based Stabilization for Turkey

    OpenAIRE

    Ozlem Aytac

    2008-01-01

    The literature on the exchange-rate-based stabilization has focused almost exclusively in Latin America. Many other countries however, such as Egypt, Lebanon and Turkey; have undertaken this sort of programs in the last 10-15 years. I depart from the existing literature by developing a model specifically for the 2000-2001 heterodox exchange-rate-based stabilization program in Turkey: When the government lowers the rate of crawl, the rate of domestic credit creation is set equal to the lower r...

  15. Simplified modeling of liquid-liquid heat exchangers for use in control systems

    International Nuclear Information System (INIS)

    Laszczyk, Piotr

    2017-01-01

    For last decades various models of heat exchange processes have been developed to capture their specific dynamic nature. These models have different degrees of complexity depending on modeling assumptions and simplifications. Complexity of mathematical model can be very critical when the model is to be a basis for deriving the control law because it directly affects the complexity of mathematical transformations and complexity of final control algorithm. In this paper, the simplified cross convection model for wide class of heat exchangers is suggested. Apart from very few reports so far, the properties of this modeling approach have never been investigated in detail. The concept for this model is derived from the fundamental principle of energy conservation and combined with a simple dynamical approximation in the form of ordinary differential equations. Within this framework, the simplified tuning procedure of the proposed model is suggested and verified for plate and spiral tube heat exchangers based on experimental data. The dynamical properties and stability of the suggested model are addressed and sensitivity analysis is also presented. It is shown that such a modeling approach preserves high modeling accuracy at very low numerical complexity. The validation results show that the suggested modeling and tuning method is useful for practical applications.

  16. Modeling and predicting historical volatility in exchange rate markets

    Science.gov (United States)

    Lahmiri, Salim

    2017-04-01

    Volatility modeling and forecasting of currency exchange rate is an important task in several business risk management tasks; including treasury risk management, derivatives pricing, and portfolio risk evaluation. The purpose of this study is to present a simple and effective approach for predicting historical volatility of currency exchange rate. The approach is based on a limited set of technical indicators as inputs to the artificial neural networks (ANN). To show the effectiveness of the proposed approach, it was applied to forecast US/Canada and US/Euro exchange rates volatilities. The forecasting results show that our simple approach outperformed the conventional GARCH and EGARCH with different distribution assumptions, and also the hybrid GARCH and EGARCH with ANN in terms of mean absolute error, mean of squared errors, and Theil's inequality coefficient. Because of the simplicity and effectiveness of the approach, it is promising for US currency volatility prediction tasks.

  17. Numerical Simulation of Different Models of Heat Pipe Heat Exchanger Using AcuSolve

    Directory of Open Access Journals (Sweden)

    Zainal Nurul Amira

    2017-01-01

    Full Text Available In this paper, a numerical simulation of heat pipe heat exchanger (HPHE is computed by using CFD solver program i.e. AcuSolve. Two idealized model of HPHE are created with different variant of entry’s dimension set to be case 1 and case 2. The geometry of HPHE is designed in SolidWorks and imported to AcuSolve to simulate the fluid flow numerically. The design of HPHE is the key to provide a heat exchanger system to work proficient as expected. Finally, the result is used to optimize and improving heat recovery systems of the increasing demand for energy efficiency in industry.

  18. A Dealer Model of Foreign Exchange Market with Finite Assets

    Science.gov (United States)

    Hamano, Tomoya; Kanazawa, Kiyoshi; Takayasu, Hideki; Takayasu, Misako

    An agent-based model is introduced to study the finite-asset effect in foreign exchange markets. We find that the transacted price asymptotically approaches an equilibrium price, which is determined by the monetary balance between the pair of currencies. We phenomenologically derive a formula to estimate the equilibrium price, and we model its relaxation dynamics around the equilibrium price on the basis of a Langevin-like equation.

  19. Towards low carbon business park energy systems: Classification of techno-economic energy models

    International Nuclear Information System (INIS)

    Timmerman, Jonas; Vandevelde, Lieven; Van Eetvelde, Greet

    2014-01-01

    To mitigate climate destabilisation, human-induced greenhouse gas emissions urgently need to be curbed. A major share of these emissions originates from the industry and energy sectors. Hence, a low carbon shift in industrial and business park energy systems is called for. Low carbon business parks minimise energy-related carbon dioxide emissions by maximal exploitation of local renewable energy production, enhanced energy efficiency, and inter-firm heat exchange, combined in a collective energy system. The holistic approach of techno-economic energy models facilitates the design of such systems, while yielding an optimal trade-off between energetic, economic and environmental performances. However, no models custom-tailored for industrial park energy systems are detected in literature. In this paper, existing energy model classifications are scanned for adequate model characteristics and accordingly, a confined number of models are selected and described. Subsequently, a practical typology is proposed, existing of energy system evolution, optimisation, simulation, accounting and integration models, and key model features are compared. Finally, important features for a business park energy model are identified. - Highlights: • A holistic perspective on (low carbon) business park energy systems is introduced. • A new categorisation of techno-economic energy models is proposed. • Model characteristics are described per model category. • Essential model features for business park energy system modelling are identified. • A strategy towards a techno-economic energy model for business parks is proposed

  20. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Miles [Univ. of Nevada, Reno, NV (United States); Childress, Amy [Univ. of Nevada, Reno, NV (United States); Hiibel, Sage [Univ. of Nevada, Reno, NV (United States); Kim, Kwang [Univ. of Nevada, Reno, NV (United States); Park, Chanwoo [Univ. of Nevada, Reno, NV (United States); Wirtz, Richard [Univ. of Nevada, Reno, NV (United States)

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) and single phase convective heat/mass transfer.

  1. A run-around heat exchanger system to improve the energy efficiency of a home appliance using hot water

    International Nuclear Information System (INIS)

    Park, Jae Sung; Jacobi, Anthony M.

    2009-01-01

    A significant portion of the energy consumed by many home appliances using hot water is used to heat cold supply water. Such home appliances generally are supplied water at a temperature lower than the ambient temperature, and the supply water is normally heated to its maximum operating temperature, often using natural gas or an electrical heater. In some cases, it is possible to pre-heat the supply water and save energy that would normally be consumed by the natural gas or electrical heater. In order to save the energy consumed by an appliance using water heater, a run-around heat exchanger system is used to transfer heat from the ambient to the water before an electrical heater is energized. A simple model to predict the performance of this system is developed and validated, and the model is used to explore design and operating issues relevant to the run-around heat exchanger system. Despite the additional power consumption by the fan and pump of the run-around heat exchanger system, the experimental data and analysis show that for some systems the overall energy efficiency of the appliance can be improved, saving about 6% of the energy used by the baseline machine.

  2. ECONOMETRIC APPROACH TO DIFFERENCE EQUATIONS MODELING OF EXCHANGE RATES CHANGES

    Directory of Open Access Journals (Sweden)

    Josip Arnerić

    2010-12-01

    Full Text Available Time series models that are commonly used in econometric modeling are autoregressive stochastic linear models (AR and models of moving averages (MA. Mentioned models by their structure are actually stochastic difference equations. Therefore, the objective of this paper is to estimate difference equations containing stochastic (random component. Estimated models of time series will be used to forecast observed data in the future. Namely, solutions of difference equations are closely related to conditions of stationary time series models. Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modeling time varying volatility are GARCH type models and their variants. However, GARCH models will not be analyzed because the purpose of this research is to predict the value of the exchange rate in the levels within conditional mean equation and to determine whether the observed variable has a stable or explosive time path. Based on the estimated difference equation it will be examined whether Croatia is implementing a stable policy of exchange rates.

  3. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  4. Closed Loop Brain Model of Neocortical Information Based Exchange

    Directory of Open Access Journals (Sweden)

    James eKozloski

    2016-01-01

    Full Text Available Here we describe an information based exchange' model of brain function that ascribes to neocortex, basal ganglia, and thalamus distinct network functions. The model allows us to analyze whole brain system set point measures, such as the rate and heterogeneity of transitions in striatum and neocortex, in the context of neuromodulation and other perturbations. Our closed-loop model is grounded in neuroanatomical observations, proposing a novel Grand Loop through neocortex, and invokes different forms of plasticity at specific tissue interfaces and their principle cell synapses to achieve these transitions. By implementing a system for maximum information based exchange of action potentials between modeled neocortical areas, we observe changes to these measures in simulation. We hypothesize that similar dynamic set points and modulations exist in the brain's resting state activity, and that different modifications to information based exchange may shift the risk profile of different component tissues, resulting in different neurodegenerative diseases. This model is targeted for further development using IBM's Neural Tissue Simulator, which allows scalable elaboration of networks, tissues, and their neural and synaptic components towards ever greater complexity and biological realism.

  5. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Jager, de A.G.; Willems, F.P.T.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat

  6. A Novel Strategy for Optimising Decentralised Energy Exchange for Prosumers

    NARCIS (Netherlands)

    Sha, Ang; Aiello, Marco

    2016-01-01

    The realization of the Smart Grid vision will change the way of producing and distributing electrical energy. It paves the road for end-users to become pro-active in the distribution system and, equipped with renewable energy generators such as a photovoltaic panel, to become a so called “prosumer”.

  7. Energy-exchange collisions of dark-bright-bright vector solitons.

    Science.gov (United States)

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  8. Modelling, simulation and dynamic analysis of the time delay model of the recuperative heat exchanger

    Directory of Open Access Journals (Sweden)

    Debeljković Dragutin Lj.

    2016-01-01

    Full Text Available The heat exchangers are frequently used as constructive elements in various plants and their dynamics is very important. Their operation is usually controlled by manipulating inlet fluid temperatures or mass flow rates. On the basis of the accepted and critically clarified assumptions, a linearized mathematical model of the cross-flow heat exchanger has been derived, taking into account the wall dynamics. The model is based on the fundamental law of energy conservation, covers all heat accumulation storages in the process, and leads to the set of partial differential equations (PDE, which solution is not possible in closed form. In order to overcome this problem the approach based on physical discretization was applied with associated time delay on the positions where it was necessary and unavoidable. This is quite new approach, which represent the further extension of previous results which did not include significant time delay existing in the working media. Simulation results, were derived, showing progress in building such a model suitable for further treatment from the position of analysis as well as the needs for control synthesis problem.

  9. Italian energy scenarios: Markal model

    International Nuclear Information System (INIS)

    Gracceva, Francesco

    2005-01-01

    Energy scenarios carried out through formal models comply with scientific criteria such as internal coherence and transparency. Besides, Markal methodology allows a good understanding of the complex nature of the energy system. The business-as-usual scenario carried out through the Markal-Italy model shows that structural changes occurring in end-use sectors will continue to drive up energy consumption, in spite of the slow economic growth and the quite high energy prices [it

  10. Home Performance with ENERGY STAR(R) Exchange

    Energy Technology Data Exchange (ETDEWEB)

    2003-10-01

    Handout for the Energy and Environmental Building Association's Building Solutions 2003 Conference and Expo: Chicago, Illinois, October 2003 The following summaries, provided by implementers of ''Home Performance with ENERGY STAR{reg_sign}'' around the country, are for use in the October 15 discussion during the Energy & Environmental Building Association (EEBA) Building Solutions, 2003 Conference in Chicago. The summaries and session discussions provide an overview of ''Home Performance with ENERGY STAR'', along with results and lessons learned from existing ''Home Performance'' implementers in New York, Wisconsin, Massachusetts, California, and Kansas City. Five future pilot projects set to begin in Georgia/Alabama, Idaho, Missouri, New Jersey and Texas will also be presented and discussed. Session topics will include the use of different training approaches, methods of quality assurance, and the role contractor certification plays in several of the programs. The session will conclude with a roundtable discussion of Home Performance issues by current and emerging implementers, with time for participant questions. ''Home Performance with ENERGY STAR'' uses the growing awareness and credibility of the ENERGY STAR brand to encourage and facilitate whole-house energy improvements in existing homes through self-sustaining energy efficiency programs. Whether you're a state energy official, utility program manager, contractor training professional or efficiency program implementer, you're sure to benefit from the unique presentations and networking opportunities that this session will offer.

  11. Dynamic model of counter flow air to air heat exchanger for comfort ventilation with condensation and frost formation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Rose, Jørgen; Kragh, Jesper

    2009-01-01

    must be calculated under conditions with condensation and freezing. This article presents a dynamic model of a counter flow air to air heat exchanger taking into account condensation and freezing and melting of ice. The model is implemented in Simulink and results are compared to measurements......In cold climates heat recovery in the ventilation system is essential to reduce heating energy demand. Condensation and freezing occur often in efficient heat exchangers used in cold climates. To develop efficient heat exchangers and defrosting strategies for cold climates, heat and mass transfer...

  12. Potential energy surfaces for nucleon exchanging in dinuclear systems

    International Nuclear Information System (INIS)

    Li Jianfeng; Xu Hushan; Li Wenfei; Zuo Wei; Li Junqing; Wang Nan; Zhao Enguang

    2003-01-01

    The experimental measurements have provided the evidence that the suppression of fusion cross-section caused by quasi-fission is very important for the synthesis of super-heavy nuclei by heavy ion collisions. The potential energy surface due to the nucleon transfer in the collision process is the driven potential, which governs the nucleon transfer, so that governs the competition between the fusion and quasi-fission. The dinuclear system potential energy surface also gives the information about the optimum projectile-target combination, as well as the optimum excitation energy for the synthesis of super-heavy nuclei by heavy ion collisions

  13. Probing the exchange statistics of one-dimensional anyon models

    Science.gov (United States)

    Greschner, Sebastian; Cardarelli, Lorenzo; Santos, Luis

    2018-05-01

    We propose feasible scenarios for revealing the modified exchange statistics in one-dimensional anyon models in optical lattices based on an extension of the multicolor lattice-depth modulation scheme introduced in [Phys. Rev. A 94, 023615 (2016), 10.1103/PhysRevA.94.023615]. We show that the fast modulation of a two-component fermionic lattice gas in the presence a magnetic field gradient, in combination with additional resonant microwave fields, allows for the quantum simulation of hardcore anyon models with periodic boundary conditions. Such a semisynthetic ring setup allows for realizing an interferometric arrangement sensitive to the anyonic statistics. Moreover, we show as well that simple expansion experiments may reveal the formation of anomalously bound pairs resulting from the anyonic exchange.

  14. Entropy exchange and entanglement in the Jaynes-Cummings model

    International Nuclear Information System (INIS)

    Boukobza, E.; Tannor, D.J.

    2005-01-01

    The Jaynes-Cummings model (JCM) is the simplest fully quantum model that describes the interaction between light and matter. We extend a previous analysis by Phoenix and Knight [Ann. Phys. 186, 381 (1988)] of the JCM by considering mixed states of both the light and matter. We present examples of qualitatively different entropic correlations. In particular, we explore the regime of entropy exchange between light and matter, i.e., where the rate of change of the two are anticorrelated. This behavior contrasts with the case of pure light-matter states in which the rate of change of the two entropies are positively correlated and in fact identical. We give an analytical derivation of the anticorrelation phenomenon and discuss the regime of its validity. Finally, we show a strong correlation between the region of the Bloch sphere characterized by entropy exchange and that characterized by minimal entanglement as measured by the negative eigenvalues of the partially transposed density matrix

  15. I. Exchange currents in electron scattering from light nuclei. II. Heavy-ion scattering at intermediate and high energy

    International Nuclear Information System (INIS)

    Dubach, J.F.

    1976-01-01

    The purpose of this work is to develop a formalism that will allow one to search the wide variety of transitions presented by nuclei in order to locate situations in which the exchange-current effects are important or dominant and thus allow one to study the contributions of the meson exchanges to the electromagnetic densities within the nucleus. The nuclei studied are assumed to be described in a shell model using harmonic oscillator wave functions. The formalism needed to allow one to do a multipole analysis of these exchange currents within 1s and 1p nuclei is developed. This formalism is then applied to an examination of electron scattering from a series of light nuclei: 3 He, 6 Li, 7 Li, 9 Be, and 10 B. Three significant effects due to the inclusion of exchange currents are seen: (1) The exchange currents can often introduce new structure into the form factors. (2) At larger momentum transfer (700 to 1000 MeV/c) the exchange current contributions to the form factor dominate the simpler one-body form factor by a few orders of magnitude. (3) The exchange currents can excite E4 and M5 multipoles in the p shell which are forbidden to the simpler one-body currents. The elastic scattering of two heavy ions at intermediate and high energies (compared to the Coulomb barrier) is examined in the formalism of the WKB and ''Glauber theory'' approximations. As a concrete example, the scattering of 16 O from 60 Ni is studied assuming an optical-model potential that fits elastic scattering data at low energies. One immediate result is that the WKB approximation agrees quite well with ''exact'' numerical calculations at energies as low as 60 MeV. The Glauber theory fails below about 1 GeV but correction terms are developed that can extend the usefulness of the Glauber theory to much lower energies. The model problem of scattering from a black-sphere model of the nucleus is briefly examined

  16. Energy models for the FRG

    International Nuclear Information System (INIS)

    Voss, A.

    1976-01-01

    The development and application of energy models as helping factors in planning and decision making has gained more importance in all regions of energy economy and energy policy in recent times. This development not only covered models for the single branches and companies like, for example, for improving power plant systems, but also models showing the whole energy system. These models aim at analizing the possibilities of developing the energy supply with regard to aspects of the entire system, paying special attention to the integration of the energy system into economic and ecological side conditions. The following essay briefly explains the energy models developed for the Federal Republic of Germany after analizing the set of problems of energy and the demands on the energy planning methods arising from them. The energy model system developed by the programming team 'Systems research and technological development' of the nuclear research plant in Juelich is dealt with very intensively, explaining some model results as examples. Finally, the author gives his opinion on the problem of the integration and conversion of model studies in the process of decision making. (orig.) [de

  17. A threshold model for Australian Stock Exchange equities

    Science.gov (United States)

    Bertram, William K.

    2005-02-01

    In this paper, we present a threshold model to describe the phenomena of zero return enhancement that is present in Australian Stock Exchange data. We examine the intraday behaviour of the ASX data and construct a new measure for the market activity using principal component analysis. We use this measure to create a business time scale that keeps the level of zero return enhancement constant throughout trading hours. Operating in this new time scale we fit the model to data for small and large time scales and find that the model affords an excellent approximation of the distribution of stock returns.

  18. Charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Andriamonje, S.; Dural, J.; Toulemonde, M.; Groeneveld, K.O.; Maier, R.; Quere, Y.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REG), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC)

  19. Exchange bias of patterned systems: Model and numerical simulation

    International Nuclear Information System (INIS)

    Garcia, Griselda; Kiwi, Miguel; Mejia-Lopez, Jose; Ramirez, Ricardo

    2010-01-01

    The magnitude of the exchange bias field of patterned systems exhibits a notable increase in relation to the usual bilayer systems, where a continuous ferromagnetic film is deposited on an antiferromagnet insulator. Here we develop a model, and implement a Monte Carlo calculation, to interpret the experimental observations which is consistent with experimental results, on the basis of assuming a small fraction of spins pinned ferromagnetically in the antiferromagnetic interface layer.

  20. On the mathematic simulation of the energy efficiency for heat exchangers with the systems of impingement plane-parallel jets

    Directory of Open Access Journals (Sweden)

    Haritonova Larisa

    2017-01-01

    Full Text Available The article gives the analytical generalization of the data on the energy efficiency for heat exchangers with the flat heat exchange surface to which systems of impact plane parallel jets are sent. Functional relations of specific power consumption (per unit of area, which were obtained for the first time using the techniques of the similarity law, for moving a heat carrier are shown with regard to design and operation factors. The regression equations representing a mathematical model of the process enable to carry out an analysis of various factors impact on the parameter to be determined. The obtained results can be used to optimize or to create the calculation techniques for new highly-efficient heat exchange devices with jet plane -parallel impingement systems and also to reduce power consumption for moving a heat carrier.

  1. Local description of the energy transfer process in a packed bed heat exchanger

    International Nuclear Information System (INIS)

    Costa, M.L.M.; Sampaio, R.; Gama, R.M.S. da.

    1990-01-01

    The energy transfer process in a packed-bed heat exchanger, in counter0flow arrangement is considered. The phenomenon is described through a Continuum Theory of Mixtures approach, in which fluid and solid (porous matrix) are regarded as continuous constituents possessing, each one, its own temperature and velocity fields. The heat 'exchangers consists of two channels, separated by an impermeable wall without thermal resistence, in which there exists a saturated flow. Some particular cases are simulated. (author)

  2. A new graphical method for Pinch Analysis applications: Heat exchanger network retrofit and energy integration

    International Nuclear Information System (INIS)

    Gadalla, Mamdouh A.

    2015-01-01

    Energy integration is a key solution in chemical process and crude refining industries to minimise external fuel consumption and to face the impact of growing energy crises. Typical energy integration projects can reach a reduction of heating fuels and cold utilities by up to 40% compared with original designs or existing installations. Pinch Analysis is a leading tool and regarded as an efficient method to increase energy efficiency and minimise fuel flow consumptions. It is valid for both natures of design, grassroots and retrofit situations. It can practically be applied to synthesise a HEN (heat exchanger network) or modify an existing preheat train for minimum energy consumption. Heat recovery systems or HENs are networks for exchanging heat between hot and cold process sources. All heat transferred from hot process sources into cold process sinks represent the scope for energy integration. On the other hand, energies required beyond this integrated amount are to be satisfied by external utilities. Graphical representations of Pinch Analysis, such as Composite and Grand Composite Curves are very useful for grassroots designs. Nevertheless, in retrofit situation the analysis is not adequate and besides it is graphically tedious to represent existing exchangers on such graphs. This research proposes a new graphical method for the analysis of heat recovery systems, applicable to HEN retrofit. The new graphical method is based on plotting temperatures of process hot streams versus temperatures of process cold streams. A new graph is constructed for representing existing HENs. For a given network, each existing exchanger is represented by a straight line, whose slope is proportional to the ratio of heat capacities and flows. Further, the length of each exchanger line is related to the heat flow transferred across this exchanger. This new graphical representation can easily identify exchangers across the pinch, Network Pinch, pinching matches and improper placement

  3. Agriculture energy 2030. Report seminar. Summary of talks and exchanges

    International Nuclear Information System (INIS)

    2011-01-01

    Energy in agriculture is a major issue for its economic consequences for farms, for its relationships with environmental and climate issues, and for its influence on sector organisation and land planning. This seminar, through discussions on the relationships between energy, agriculture and territories and on the challenges for public action and research, proposes and discusses a comprehensive diagnosis of present challenges, as well as four scenarios by 2030. These scenarios are defined with respect to three evolution drivers: town-country mobility, economic dynamics, and natural resources

  4. Blockchain for Smart Grid Resilience: Exchanging Distributed Energy at Speed, Scale and Security

    Energy Technology Data Exchange (ETDEWEB)

    Mylrea, Michael E.; Gourisetti, Sri Nikhil Gup

    2017-09-18

    Blockchain may help solve several complex problems related to integrity and trustworthiness of rapid, distributed, complex energy transactions and data exchanges. In a move towards resilience, blockchain commoditizes trust and enables automated smart contracts to support auditable multiparty transactions based on predefined rules between distributed energy providers and customers. Blockchain based smart contracts also help remove the need to interact with third-parties, facilitating the adoption and monetization of distributed energy transactions and exchanges, both energy flows as well as financial transactions. This may help reduce transactive energy costs and increase the security and sustainability of distributed energy resource (DER) integration, helping to remove barriers to a more decentralized and resilient power grid.

  5. Energy modelling in sensor networks

    Science.gov (United States)

    Schmidt, D.; Krämer, M.; Kuhn, T.; Wehn, N.

    2007-06-01

    Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  6. Multilinear Model of Heat Exchanger with Hammerstein Structure

    Directory of Open Access Journals (Sweden)

    Dragan Pršić

    2016-01-01

    Full Text Available The multilinear model control design approach is based on the approximation of the nonlinear model of the system by a set of linear models. The paper presents the method of creation of a bank of linear models of the two-pass shell and tube heat exchanger. The nonlinear model is assumed to have a Hammerstein structure. The set of linear models is formed by decomposition of the nonlinear steady-state characteristic by using the modified Included Angle Dividing method. Two modifications of this method are proposed. The first one refers to the addition to the algorithm for decomposition, which reduces the number of linear segments. The second one refers to determination of the threshold value. The dependence between decomposition of the nonlinear characteristic and the linear dynamics of the closed-loop system is established. The decoupling process is more formal and it can be easily implemented by using software tools. Due to its simplicity, the method is particularly suitable in complex systems, such as heat exchanger networks.

  7. Wealth distribution of simple exchange models coupled with extremal dynamics

    Science.gov (United States)

    Bagatella-Flores, N.; Rodríguez-Achach, M.; Coronel-Brizio, H. F.; Hernández-Montoya, A. R.

    2015-01-01

    Punctuated Equilibrium (PE) states that after long periods of evolutionary quiescence, species evolution can take place in short time intervals, where sudden differentiation makes new species emerge and some species extinct. In this paper, we introduce and study the effect of punctuated equilibrium on two different asset exchange models: the yard sale model (YS, winner gets a random fraction of a poorer player's wealth) and the theft and fraud model (TF, winner gets a random fraction of the loser's wealth). The resulting wealth distribution is characterized using the Gini index. In order to do this, we consider PE as a perturbation with probability ρ of being applied. We compare the resulting values of the Gini index at different increasing values of ρ in both models. We found that in the case of the TF model, the Gini index reduces as the perturbation ρ increases, not showing dependence with the agents number. While for YS we observe a phase transition which happens around ρc = 0.79. For perturbations ρ <ρc the Gini index reaches the value of one as time increases (an extreme wealth condensation state), whereas for perturbations greater than or equal to ρc the Gini index becomes different to one, avoiding the system reaches this extreme state. We show that both simple exchange models coupled with PE dynamics give more realistic results. In particular for YS, we observe a power low decay of wealth distribution.

  8. ENERGY BALANCE AND CO2 EXCHANGE BEHAVIOUR IN SUB-TROPICAL YOUNG PINE (Pinus roxburghii PLANTATION

    Directory of Open Access Journals (Sweden)

    B. K. Bhattacharya

    2012-08-01

    Full Text Available A study was conducted to understand the seasonal and annual energy balance behaviour of young and growing sub-tropical chir pine (Pinus roxburghii plantation of eight years age in the Doon valley, India and its coupling with CO2 exchange. The seasonal cycle of dekadal daytime latent heat fluxes mostly followed net radiation cycle with two minima and range between 50–200 Wm-2 but differed from the latter during the period when soil wetness and cloudiness were not coupled. Dekadal evaporative fraction closely followed the seasonal dryness-wetness cycle thus minimizing the effect of wind on energy partitioning as compared to diurnal variation. Daytime latent heat fluxes were found to have linear relationship with canopy net assimilation rate (Y = 0.023X + 0.171, R2 = 0.80 though nonlinearity exists between canopy latent heat flux and hourly net CO2 assimilation rate . Night-time plant respiration was found to have linear relationship (Y = 0.088 + 1.736, R2 = 0.72 with night-time average vapour pressure deficit (VPD. Daily average soil respiration was found to be non-linearly correlated to average soil temperatures (Y = -0.034X2 + 1.676X – 5.382, R2 = 0.63 The coupled use of empirical models, seasonal energy fluxes and associated parameters would be useful to annual water and carbon accounting in subtropical pine ecosystem of India in the absence high-response eddy covariance tower.

  9. New Energy Utility Business Models

    International Nuclear Information System (INIS)

    Potocnik, V.

    2016-01-01

    Recently a lot of big changes happened in the power sector: energy efficiency and renewable energy sources are quickly progressing, distributed or decentralised generation of electricity is expanding, climate change requires reduction of greenhouse gas emissions and price volatility and incertitude of fossil fuel supply is common. Those changes have led to obsolescence of vertically integrated business models which have dominated in energy utility organisations for a hundred years and new business models are being introduced. Those models take into account current changes in the power sector and enable a wider application of energy efficiency and renewable energy sources, especially for consumers, with the decentralisation of electricity generation and complying with the requirements of climate and environment preservation. New business models also solve the questions of financial compensations for utilities because of the reduction of centralised energy generation while contributing to local development and employment.(author).

  10. Exchange of researchers of oil substituting energies in EU countries; EU shokoku no sekiyu daitai energy kenkyusha koryu jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In order to further promote smoother introduction of oil substituting energies and development of new energies and energy saving technologies, it was intended to exchange and acquire items of information effective to learn the current state and policy trends on research and development of new energies and energy conservation in the EU countries who are the industrialized countries like Japan and enthusiastic in developing oil substituting energies. Therefore, exchange of researchers was carried out with an objective to contribute to research and development of oil substituting energies by deepening mutual understanding on the development efforts and forming efficient cooperative relationship. The researchers who visited Japan are Dr. Robert Durand (France) and Prof. and Dr. Bruno Scrosati (Italy). Dr. Durand has a great knowledge about fuel cells and storage batteries, and Dr. Scrosati about electrolytes and lithium batteries. Both gentlemen have visited the Agency of Industrial Science and Technology and the Agency of Natural Resources and Energy of the Ministry of International Trade and Industry, NEDO, Toshiba, Sony, Sanyo Electric, Japan Storage Battery, Matsushita Battery Industry, the Industrial Technology Research Institute of Osaka, and Kansai Electric Power Company. Views and information were exchanged and a number of good results were rewarded.

  11. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    Science.gov (United States)

    McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.

    2002-01-01

    The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

  12. Optically tunable spin-exchange energy at donor:acceptor interfaces in organic solar cells

    International Nuclear Information System (INIS)

    Li, Mingxing; Wang, Hongfeng; He, Lei; Zang, Huidong; Xu, Hengxing; Hu, Bin

    2014-01-01

    Spin-exchange energy is a critical parameter in controlling spin-dependent optic, electronic, and magnetic properties in organic materials. This article reports optically tunable spin-exchange energy by studying the line-shape characteristics in magnetic field effect of photocurrent developed from intermolecular charge-transfer states based on donor:acceptor (P3HT:PCBM) system. Specifically, we divide magnetic field effect of photocurrent into hyperfine (at low field   10 mT) regimes. We observe that increasing photoexcitation intensity can lead to a significant line-shape narrowing in magnetic field effect of photocurrent occurring at the spin-exchange regime. We analyze that the line-shape characteristics is essentially determined by the changing rate of magnetic field-dependent singlet/triplet ratio when a magnetic field perturbs the singlet-triplet transition through spin mixing. Based on our analysis, the line-shape narrowing results indicate that the spin-exchange energy at D:A interfaces can be optically changed by changing photoexcitation intensity through the interactions between intermolecular charge-transfer states. Therefore, our experimental results demonstrate an optical approach to change the spin-exchange energy through the interactions between intermolecular charge-transfer states at donor:acceptor interface in organic materials.

  13. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.

    Science.gov (United States)

    Mussard, Bastien; Rocca, Dario; Jansen, Georg; Ángyán, János G

    2016-05-10

    Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results.

  14. A review on the performance and modelling of proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Boucetta, A., E-mail: abirboucetta@yahoo.fr; Ghodbane, H., E-mail: h.ghodbane@mselab.org; Bahri, M., E-mail: m.bahri@mselab.org [Department of Electrical Engineering, MSE Laboratory, Mohamed khider Biskra University (Algeria); Ayad, M. Y., E-mail: ayadmy@gmail.com [R& D, Industrial Hybrid Vehicle Applications (France)

    2016-07-25

    Proton Exchange Membrane Fuel Cells (PEMFC), are energy efficient and environmentally friendly alternative to conventional energy conversion for various applications in stationary power plants, portable power device and transportation. PEM fuel cells provide low operating temperature and high-energy efficiency with near zero emission. A PEM fuel cell is a multiple distinct parts device and a series of mass, energy, transport through gas channels, electric current transport through membrane electrode assembly and electrochemical reactions at the triple-phase boundaries. These processes play a decisive role in determining the performance of the Fuel cell, so that studies on the phenomena of gas flows and the performance modelling are made deeply. This paper gives a comprehensive overview of the state of the art on the Study of the phenomena of gas flow and performance modelling of PEMFC.

  15. Towards improved local hybrid functionals by calibration of exchange-energy densities

    International Nuclear Information System (INIS)

    Arbuznikov, Alexei V.; Kaupp, Martin

    2014-01-01

    A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities

  16. Modeling inflation rates and exchange rates in Ghana: application of multivariate GARCH models.

    Science.gov (United States)

    Nortey, Ezekiel Nn; Ngoh, Delali D; Doku-Amponsah, Kwabena; Ofori-Boateng, Kenneth

    2015-01-01

    This paper was aimed at investigating the volatility and conditional relationship among inflation rates, exchange rates and interest rates as well as to construct a model using multivariate GARCH DCC and BEKK models using Ghana data from January 1990 to December 2013. The study revealed that the cumulative depreciation of the cedi to the US dollar from 1990 to 2013 is 7,010.2% and the yearly weighted depreciation of the cedi to the US dollar for the period is 20.4%. There was evidence that, the fact that inflation rate was stable, does not mean that exchange rates and interest rates are expected to be stable. Rather, when the cedi performs well on the forex, inflation rates and interest rates react positively and become stable in the long run. The BEKK model is robust to modelling and forecasting volatility of inflation rates, exchange rates and interest rates. The DCC model is robust to model the conditional and unconditional correlation among inflation rates, exchange rates and interest rates. The BEKK model, which forecasted high exchange rate volatility for the year 2014, is very robust for modelling the exchange rates in Ghana. The mean equation of the DCC model is also robust to forecast inflation rates in Ghana.

  17. Energy modeling: nuclear energy as China's main energy after 2040

    International Nuclear Information System (INIS)

    Guo Xingqu

    1987-01-01

    According to the energy modeling and the strategic forecast of China's economic development and population, the energy demand in China in the coming century has been calculated yearly by computer simulation. It is shown by the calculation results that the primary energy consumption in 2050 will be 3.37-4.25 times as that of 2000. The fossil energy will still be the main energy during the early stage of 21st century, but it will be cut down rapidly since 2020s as its annual consumption is increased to 1.656-2.044 x 10 9 tce/a. Because the fossil fuel ressources in China are limited, more and more fossil fuel will be mainly turned to chemical products, and the environmental pollution will be serious if we still use the fossil as a main fuel widely. The amount of renewable energy will be increasing, but its share in the primary energy consumption will be cut down from 36% to about 20% during the first half of next century and then will maintain this portion. In this case, the nuclear energy will be developed rapidly during the early stage of next century and will become the main energy since 2040. The methodology of energy forecast has also been reviewed

  18. Heat pipe heat exchanger and its potential to energy recovery in the tropics

    Directory of Open Access Journals (Sweden)

    Yau Yat H.

    2015-01-01

    Full Text Available The heat recovery by the heat pipe heat exchangers was studied in the tropics. Heat pipe heat exchangers with two, four, six, and eight numbers of rows were examined for this purpose. The coil face velocity was set at 2 m/s and the temperature of return air was kept at 24°C in this study. The performance of the heat pipe heat exchangers was recorded during the one week of operation (168 hours to examine the performance data. Then, the collected data from the one week of operation were used to estimate the amount of energy recovered by the heat pipe heat exchangers annually. The effect of the inside design temperature and the coil face velocity on the energy recovery for a typical heat pipe heat exchanger was also investigated. In addition, heat pipe heat exchangers were simulated based on the effectiveness-NTU method, and their theoretical values for the thermal performance were compared with the experimental results.

  19. A strategic gaming model for health information exchange markets.

    Science.gov (United States)

    Martinez, Diego A; Feijoo, Felipe; Zayas-Castro, Jose L; Levin, Scott; Das, Tapas K

    2018-03-01

    Current market conditions create incentives for some providers to exercise control over patient data in ways that unreasonably limit its availability and use. Here we develop a game theoretic model for estimating the willingness of healthcare organizations to join a health information exchange (HIE) network and demonstrate its use in HIE policy design. We formulated the model as a bi-level integer program. A quasi-Newton method is proposed to obtain a strategy Nash equilibrium. We applied our modeling and solution technique to 1,093,177 encounters for exchanging information over a 7.5-year period in 9 hospitals located within a three-county region in Florida. Under a set of assumptions, we found that a proposed federal penalty of up to $2,000,000 has a higher impact on increasing HIE adoption than current federal monetary incentives. Medium-sized hospitals were more reticent to adopt HIE than large-sized hospitals. In the presence of collusion among multiple hospitals to not adopt HIE, neither federal incentives nor proposed penalties increase hospitals' willingness to adopt. Hospitals' apathy toward HIE adoption may threaten the value of inter-connectivity even with federal incentives in place. Competition among hospitals, coupled with volume-based payment systems, creates no incentives for smaller hospitals to exchange data with competitors. Medium-sized hospitals need targeted actions (e.g., outside technological assistance, group purchasing arrangements) to mitigate market incentives to not adopt HIE. Strategic game theoretic models help to clarify HIE adoption decisions under market conditions at play in an extremely complex technology environment.

  20. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    International Nuclear Information System (INIS)

    Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.

    1988-01-01

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N 2 and F 2 , which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules

  1. Universal model for water costs of gas exchange by animals and plants

    OpenAIRE

    Woods, H. Arthur; Smith, Jennifer N.

    2010-01-01

    For terrestrial animals and plants, a fundamental cost of living is water vapor lost to the atmosphere during exchange of metabolic gases. Here, by bringing together previously developed models for specific taxa, we integrate properties common to all terrestrial gas exchangers into a universal model of water loss. The model predicts that water loss scales to gas exchange with an exponent of 1 and that the amount of water lost per unit of gas exchanged depends on several factors: the surface t...

  2. Modeling Inflation Using a Non-Equilibrium Equation of Exchange

    Science.gov (United States)

    Chamberlain, Robert G.

    2013-01-01

    Inflation is a change in the prices of goods that takes place without changes in the actual values of those goods. The Equation of Exchange, formulated clearly in a seminal paper by Irving Fisher in 1911, establishes an equilibrium relationship between the price index P (also known as "inflation"), the economy's aggregate output Q (also known as "the real gross domestic product"), the amount of money available for spending M (also known as "the money supply"), and the rate at which money is reused V (also known as "the velocity of circulation of money"). This paper offers first a qualitative discussion of what can cause these factors to change and how those causes might be controlled, then develops a quantitative model of inflation based on a non-equilibrium version of the Equation of Exchange. Causal relationships are different from equations in that the effects of changes in the causal variables take time to play out-often significant amounts of time. In the model described here, wages track prices, but only after a distributed lag. Prices change whenever the money supply, aggregate output, or the velocity of circulation of money change, but only after a distributed lag. Similarly, the money supply depends on the supplies of domestic and foreign money, which depend on the monetary base and a variety of foreign transactions, respectively. The spreading of delays mitigates the shocks of sudden changes to important inputs, but the most important aspect of this model is that delays, which often have dramatic consequences in dynamic systems, are explicitly incorporated.macroeconomics, inflation, equation of exchange, non-equilibrium, Athena Project

  3. Extreme value modelling of Ghana stock exchange index.

    Science.gov (United States)

    Nortey, Ezekiel N N; Asare, Kwabena; Mettle, Felix Okoe

    2015-01-01

    Modelling of extreme events has always been of interest in fields such as hydrology and meteorology. However, after the recent global financial crises, appropriate models for modelling of such rare events leading to these crises have become quite essential in the finance and risk management fields. This paper models the extreme values of the Ghana stock exchange all-shares index (2000-2010) by applying the extreme value theory (EVT) to fit a model to the tails of the daily stock returns data. A conditional approach of the EVT was preferred and hence an ARMA-GARCH model was fitted to the data to correct for the effects of autocorrelation and conditional heteroscedastic terms present in the returns series, before the EVT method was applied. The Peak Over Threshold approach of the EVT, which fits a Generalized Pareto Distribution (GPD) model to excesses above a certain selected threshold, was employed. Maximum likelihood estimates of the model parameters were obtained and the model's goodness of fit was assessed graphically using Q-Q, P-P and density plots. The findings indicate that the GPD provides an adequate fit to the data of excesses. The size of the extreme daily Ghanaian stock market movements were then computed using the value at risk and expected shortfall risk measures at some high quantiles, based on the fitted GPD model.

  4. Energy modelling and capacity building

    International Nuclear Information System (INIS)

    2005-01-01

    The Planning and Economic Studies Section of the IAEA's Department of Nuclear Energy is focusing on building analytical capacity in MS for energy-environmental-economic assessments and for the elaboration of sustainable energy strategies. It offers a variety of analytical models specifically designed for use in developing countries for (i) evaluating alternative energy strategies; (ii) assessing environmental, economic and financial impacts of energy options; (iii) assessing infrastructure needs; (iv) evaluating regional development possibilities and energy trade; (v) assessing the role of nuclear power in addressing priority issues (climate change, energy security, etc.). These models can be used for analysing energy or electricity systems, and to assess possible implications of different energy, environmental or financial policies that affect the energy sector and energy systems. The models vary in complexity and data requirements, and so can be adapted to the available data, statistics and analytical needs of different countries. These models are constantly updated to reflect changes in the real world and in the concerns that drive energy system choices. They can provide thoughtfully informed choices for policy makers over a broader range of circumstances and interests. For example, they can readily reflect the workings of competitive energy and electricity markets, and cover such topics as external costs. The IAEA further offers training in the use of these models and -just as important- in the interpretation and critical evaluation of results. Training of national teams to develop national competence over the full spectrum of models, is a high priority. The IAEA maintains a broad spectrum of databanks relevant to energy, economic and environmental analysis in MS, and make these data available to analysts in MS for use in their own analytical work. The Reference Technology Data Base (RTDB) and the Reference Data Series (RDS-1) are the major vehicles by which we

  5. Application of an excited state LDA exchange energy functional for the calculation of transition energy of atoms within time-independent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, Md; Harbola, Manoj K, E-mail: sami@iitk.ac.i, E-mail: mkh@iitk.ac.i [Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India)

    2010-11-14

    Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.

  6. Application of an excited state LDA exchange energy functional for the calculation of transition energy of atoms within time-independent density functional theory

    International Nuclear Information System (INIS)

    Shamim, Md; Harbola, Manoj K

    2010-01-01

    Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.

  7. A study of model systems in anionic exchange

    International Nuclear Information System (INIS)

    Haegele, R.; Boeyens, J.C.A.

    1977-01-01

    Preliminary experiments are reported on the preparation and characterization of anionic sulphate and chloride complexes of UO 2+ 2 and iron(III), benzyl-trimethylammonium cation being used as a model substance for the simulation of positive sites in an anionic-exchange resin. The structure of (BTMA) 4 [UO 2 CL 3 -O 2 -CL 3 UO 2 ], a binuclear uranyl-peroxocomplex that has not been reported in the literature, was elucidated by single-crystal x-ray examination, and is described and discussed [af

  8. An Optimal Commitment Model of Exchange Rate Stabilization

    OpenAIRE

    Kyung-Soo Kim

    2006-01-01

    Recently East Asian countries that have amassed large US dollar reserves face a growing threat of big losses from a sudden decline in the dollar. This threat evokes an issue of the optimal commitment of exchange rate stabilization once raised by Isard (1995) who interpreted the cost of breaking the parity as the capital gain awarded to speculators, in the event the domestic currency is devalued. The only difference in this paper is revaluation. This paper models the central bank��s optima...

  9. Duality in an asset exchange model for wealth distribution

    Science.gov (United States)

    Li, Jie; Boghosian, Bruce M.

    2018-05-01

    Asset exchange models are agent-based economic models with binary transactions. Previous investigations have augmented these models with mechanisms for wealth redistribution, quantified by a parameter χ, and for trading bias favoring wealthier agents, quantified by a parameter ζ. By deriving and analyzing a Fokker-Planck equation for a particular asset exchange model thus augmented, it has been shown that it exhibits a second-order phase transition at ζ / χ = 1, between regimes with and without partial wealth condensation. In the "subcritical" regime with ζ / χ 1, a fraction 1 - χ / ζ of the wealth is condensed. Intuitively, one may associate the supercritical, wealth-condensed regime as reflecting the presence of "oligarchy," by which we mean that an infinitesimal fraction of the total agents hold a finite fraction of the total wealth in the continuum limit. In this paper, we further elucidate the phase behavior of this model - and hence of the generalized solutions of the Fokker-Planck equation that describes it - by demonstrating the existence of a remarkable symmetry between its supercritical and subcritical regimes in the steady-state. Noting that the replacement { ζ → χ , χ → ζ } , which clearly has the effect of inverting the order parameter ζ / χ, provides a one-to-one correspondence between the subcritical and supercritical states, we demonstrate that the wealth distribution of the subcritical state is identical to that of the corresponding supercritical state when the oligarchy is removed from the latter. We demonstrate this result analytically, both from the microscopic agent-level model and from its macroscopic Fokker-Planck description, as well as numerically. We argue that this symmetry is a kind of duality, analogous to the famous Kramers-Wannier duality between the subcritical and supercritical states of the Ising model, and to the Maldacena duality that underlies AdS/CFT theory.

  10. MATHEMATICAL MODELING OF UNSTEADY HEAT EXCHANGE IN A PASSENGER CAR

    Directory of Open Access Journals (Sweden)

    I. Yu. Khomenko

    2013-07-01

    Full Text Available Purpose.Existing mathematicalmodelsofunsteadyheatexchangeinapassengercardonotsatisfytheneedofthedifferentconstructivedecisionsofthelifesupportsystemefficiencyestimation. They also don’t allow comparing new and old life support system constructions influence on the inner environment conditions. Moreoverquite frequently unsteady heat exchange processes were studied at the initial car motion stage. Due to the new competitive engineering decisionsof the lifesupportsystemthe need of a new mathematical instrument that would satisfy the mentioned features and their influence on the unsteadyheatexchangeprocesses during the whole time of the road appeared. The purpose of this work is creation of the mathematicalmodel ofunsteadyheatexchangeinapassengercarthatcan satisfythe above-listed requirements. Methodology. Fortheassigned task realizationsystemofdifferentialequationsthatcharacterizesunsteadyheatexchangeprocessesinapassengercarwascomposed; forthesystemof equationssolution elementary balance method was used. Findings. Computational algorithm was developed andcomputer program for modeling transitional heat processes in the car was designed. It allows comparing different life support system constructions influence on the inner environment conditionsand unsteady heat exchange processes can be studied at every car motion stage. Originality.Mathematicalmodelofunsteadyheatexchangeinapassengercarwasimproved. That is why it can be used for the heat engineering studying of the inner car state under various conditions and for the operation of the different life support systems of passenger cars comparison. Mathematicalmodelingofunsteadyheatexchangeinapassengercarwas made by the elementary balance method. Practical value. Created mathematical model gives the possibility to simulate temperature changes in passenger car on unsteady thermal conditions with enough accuracy and to introduce and remove additional elements to the designed model. Thus different

  11. Relativistic one-boson-exchange model for the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Gross, F.; Van Orden, J.W.; Holinde, K.

    1992-01-01

    Nucleon-nucleon data below 300-MeV laboratory energy are described by a manifestly covariant wave equation in which one of the intermediate nucleons is restricted to its mass shell. Antisymmetrization of the kernel yields an equation in which the two nucleons are treated in an exactly symmetric manner, and in which all amplitudes satisfy the Pauli principle exactly. The kernel is modeled by the sum of one boson exchanges, and four models, all of which fit the data very well (χ 2 congruent 3 per data point) are discussed. Two models require the exchange of only the π, σ, ρ, and ω, but also require an admixture of γ 5 coupling for the pion, while two other models restrict the pion coupling to pure γ 5 γ μ , but require the exchange of six mesons, including the η, and a light scalar-isovector meson referred to as σ 1 . Deuteron wave functions resulting from these models are obtained. The singularities and relativistic effects which are a part of this approach are discussed, and a complete development of the theory is presented

  12. Gamow Teller strength from charge exchange reactions at intermediate energies

    International Nuclear Information System (INIS)

    Haeusser, O.

    1989-07-01

    Detailed studies of the spin-isospin structure of nuclear excitations are possible at TRIUMF's medium resolution spectrometer using the (n,p), ( p → , p →/ ) and (p,n) reactions. We discuss here results on isospin symmetry of inelastic nucleon scattering reactions populating isospin triads in A=6 and A=12 nuclei. The β + Gamow Teller strength function from (n,p) reactions on (sd) and (fp) shell targets is found to be substantially quenched compared to current nuclear structure models using the free-nucleon axial-vector coupling constant. (Author) 22 refs., 3 figs

  13. Charge exchange in low-energy Li/sup 3 +/-H collisions

    Energy Technology Data Exchange (ETDEWEB)

    Casaubon, J I [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina); Piacentini, R D [Rosario Univ. Nacional (Argentina). Dept. de Fisica; Observatorio Astronomico Municipal, Rosario (Argentina)); Salin, A [Bordeaux-1 Univ., 33 - Talence (France)

    1981-04-28

    The charge exchange between a completely stripped lithium ion and a hydrogen atom is studied in the framework of the impact parameter molecular approximation for relative velocities lower than one atomic unit. The total cross section shows a strong increase as a function of the energy. The results are compared with theoretical and experimental data of other authors.

  14. Exchange-correlation energies of atoms from efficient density functionals: influence of the electron density

    Science.gov (United States)

    Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua

    2017-12-01

    The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.

  15. Measuring the Effect of Exchange Rate Movements on Stock Market Returns Volatility: GARCH Model

    Directory of Open Access Journals (Sweden)

    Abdelkadir BESSEBA

    2017-06-01

    Full Text Available This paper aims to investigate the dynamic links between exchange rate fluctuations and stock market return volatility. For this purpose, we have employed a Generalized Autoregressive Conditional Heteroscedasticity model (GARCH model. Stock market returns sensitivities are found to be stronger for exchange rates, implying that exchange rate change plays an important role in determining the dynamics of the stock market returns.

  16. Energy efficiency in process plants with emphasis on heat exchanger networks : optimization, thermodynamics and insight

    Energy Technology Data Exchange (ETDEWEB)

    Anantharaman, Rahul

    2011-07-01

    This thesis focuses on energy recovery system design and energy integration to improve the energy efficiency of process plants. The objectives of this work are to (a) develop a systematic methodology based on thermodynamic principles to integrate energy intensive processes and (b) develop a mathematical programming based approach using thermodynamics and insight for solving industrial sized HENS problems. A novel energy integration methodology, Energy Level Composite Curves (ELCC), has been developed that is a synergy of Exergy Analysis and Composite Curves. ELCC is a graphical tool which provides the engineer with insights on energy integration and this work represents the first methodological attempt to represent thermal, mechanical and chemical energy in a graphical form similar to composite curves for the thermal integration of energy intensive processes. This method provides physical insight to integrate energy sources with sinks. The methodology is useful as a screening tool, functioning as an idea generator prior to the heat and power integration step. A simple energy targeting algorithm is developed to obtain utility targets. The ELCC was applied to a methanol plant to show the efficacy of the methodology.The Sequential Framework, an iterative and sequential methodology for Heat Exchanger Network Synthesis (HENS), is presented in this thesis. The main objective of the Sequential Framework is to solve industrial size problems. The subtasks of the design process are solved sequentially using Mathematical Programming. There are two main advantages of the methodology. First, the design procedure is, to a large extent, automated while keeping significant user interaction. Second, the subtasks of the framework (MILP and NLP problems) are much easier to solve numerically than the MINLP models that have been suggested for HENS. Application of the Sequential Framework to literature examples showed that the methodology generated solutions with total annualized costs

  17. Exchange currents in low-energy nucleon capture by 3He

    International Nuclear Information System (INIS)

    Wervelman, Rob.

    1991-01-01

    The studies described in this thesis concern absolute cross-section measurements of the radiative neutron capture reactions 3 He (n,γ) 4 He and 3 He(n,γγ) 4 He, and are complements with shell-model calculations on the radiative thermal neutron capture reaction by 3 He and on the weak 3 He(p,e + ν e ) 4 He reaction. The experiments have been performed at two neutron energies, with sub-thermal neutrons where s-wave capture is dominant, and with a quasi-monochromatic 24.5 keV neutron beam (p-wave capture). It has been found that the thermal neutron capture cross section of 3 He is 55±3 μb. Measured at 24.5 keV-neutron energy, the radiative capture cross section for p-wave neutrons turned out to be 9.1±0.8 μb. A measurement on the double-photon reaction 3 He(n th ,γγ) has yielded a cross-section value of 30±80 μb. In the theoretical part of the work a standard model of nuclear weak and electromagnetic interaction currents, consisting of a one-body impulse approximation and a two-body meson-exchange current part, has been applied to the process of nucleon capture by 3 He. Within the framework of a (0+2) (h/2π)ω shell-model calculation, using Sussex matrix elements for the 3 He and 4 He ground state wave functions, the empirical radiative cross sections for thermal neutrons of 3 He could be reproduced with satisfactory agreement. The total MEC correction to the radiative thermal neutron capture cross section is rather small because large cancellations occur between the various contributions. In the 3 He(p,e + ν e ) 4 He reaction meson-exchange contributions enlarge the astrophysical S-factor by more than a factor two. The matrix element ratio of the weak 3 He+p and the electromagnetic 3 He+n reaction is calculated to be (4.3±0.6)g A C 0 . This ratio has been found to be fairly insensitive to the percentage D-state admixtures in the 3 He and 4 He ground state wave functions. (author). 129 refs.; 24 figs.; 5 tabs

  18. One photon exchange processes and the calibration of polarization of high energy protons

    International Nuclear Information System (INIS)

    Margolis, B.; Thomas, G.H.

    1978-01-01

    Polarization phenomena in small momentum transfer high energy one-photon exchange processes in the reaction p + A → X + A where A is a complex nucleus and X is anything are examined. It is shown that these polarizations can be related directly to photoproduction polarization effects in the reaction γ + p → X at low energies. Explicit formulae are written for polarization effects in the case where X → π 0 + p

  19. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange

    DEFF Research Database (Denmark)

    Shrestha, Pravin Malla; Rotaru, Amelia-Elena; Aklujkar, Muktak

    2013-01-01

    Direct interspecies electron transfer (DIET) through biological electrical connections is an alternative to interspecies H2 transfer as a mechanism for electron exchange in syntrophic cultures. However, it has not previously been determined whether electrons received via DIET yield energy...... dehydrogenase, the pilus-associated c-type cytochrome OmcS and pili consistent with electron transfer via DIET. These results suggest that electrons transferred via DIET can serve as the sole energy source to support anaerobic respiration....

  20. Oscillatory Energy Exchange Between Waves Coupled by a Dynamic Artificial Crystal

    OpenAIRE

    Karenowska, Alexy D.; Tiberkevich, Vasil S.; Chumak, Andrii V.; Serga, Alexander A.; Gregg, John F.; Slavin, Andrei N.; Hillebrands, Burkard

    2011-01-01

    We describe a general mechanism of controllable energy exchange between waves propagating in a dynamic artificial crystal. We show that if a spatial periodicity is temporarily imposed on the transmission properties of a wave-carrying medium whilst a wave is inside, this wave is coupled to a secondary counter-propagating wave and energy oscillates between the two. The oscillation frequency is determined by the width of the spectral band gap created by the periodicity and the frequency differen...

  1. Rapid Energy Modeling Workflow Demonstration

    Science.gov (United States)

    2013-10-31

    trail at AutodeskVasari.com Considered a lightweight version of Revit for energy modeling and analysis Many capabilities are in process of...Journal of Hospitality & Tourism Research 32(1):3-21. DOD (2005) Energy Managers Handbook. Retrieved from www.wbdg.org/ccb/DOD/DOD4/dodemhb.pdf

  2. Variable sound speed in interacting dark energy models

    Science.gov (United States)

    Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy

    2018-04-01

    We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to ΛCDM.

  3. Macroeconomic models and energy transition

    International Nuclear Information System (INIS)

    Douillard, Pierre; Le Hir, Boris; Epaulard, Anne

    2016-02-01

    As a new policy for energy transition has just been adopted, several questions emerge about the best way to reduce CO 2 emissions, about policies which enable this reduction, and about their costs and opportunities. This note discusses the contribution macro-economic models may have in this respect, notably in the definition of policies which trigger behaviour changes, and those which support energy transition. The authors first discuss the stakes of the assessment of energy transition, and then describe macro-economic models which can be used for such an assessment, give and comment some results of simulations performed for France by using four of these models (Mesange, Numesis, ThreeME, and Imaclim-R France). The authors finally draw lessons about the way to use these models and to interpret their results within the frame of energy transition

  4. Linking pinch analysis and bridge analysis to save energy by heat-exchanger network retrofit

    International Nuclear Information System (INIS)

    Bonhivers, Jean-Christophe; Moussavi, Alireza; Alva-Argaez, Alberto; Stuart, Paul R.

    2016-01-01

    Highlights: • The flow rate of cascaded heat in exchangers is presented between composite curves. • Reducing energy consumption implies decreasing the flow rate of cascaded heat. • Removing cross-pinch transfers is not necessary to reduce energy consumption. • Bridge modifications are necessary to reduce energy consumption. • Bridge modifications are evaluated on the Heat Exchanger Load Diagram. - Abstract: Reduction of energy requirements in the process industries results in increased profitability and better environmental performance. Methods for heat exchanger network (HEN) retrofit are based on thermodynamic analysis and insights, numerical optimization, or combined approaches. Numerical optimization-based methods are highly complex and may not guarantee identification of the global optimum. Pinch analysis, which is an approach based on thermodynamic analysis and composite curves, is the most widely used in the industry. Its simplicity, the use of graphical tools, and the possibility for the user to interact at each step of the design process help identify solutions with consideration of practical feasibility. In the last few years, bridge analysis has been developed for HEN retrofit. It includes the following tools: (a) the definition of the necessary conditions to reduce energy consumption which are expressed in the bridge formulation, (b) a method for enumerating the bridges, (c) the representation of the flow rate of cascaded heat through each existing exchanger on the energy transfer diagram (ETD), and (4) the use of the Heat Exchanger Load Diagram (HELD) to identify a suitable HEN configuration corresponding to modifications. It has been shown that reducing energy consumption implies decreasing the flow rate of cascaded heat through the existing exchangers across the entire temperature range between the hot and cold utilities. The ETD shows all possibilities to reduce the flow rate of cascaded heat through a HEN. The objective of this paper is

  5. Modeling dynamic exchange of gaseous elemental mercury at polar sunrise.

    Science.gov (United States)

    Dastoor, Ashu P; Davignon, Didier; Theys, Nicolas; Van Roozendael, Michel; Steffen, Alexandra; Ariya, Parisa A

    2008-07-15

    At polar sunrise, gaseous elemental mercury (GEM) undergoes an exceptional dynamic exchange in the air and at the snow surface during which GEM can be rapidly removed from the atmosphere (the so-called atmospheric mercury depletion events (AMDEs)) as well as re-emitted from the snow within a few hours to days in the Polar Regions. Although high concentrations of total mercury in snow following AMDEs is well documented, there is very little data available on the redox transformation processes of mercury in the snow and the fluxes of mercury at the air/snow interface. Therefore, the net gain of mercury in the Polar Regions as a result of AMDEs is still an open question. We developed a new version of the global mercury model, GRAHM, which includes for the first time bidirectional surface exchange of GEM in Polar Regions in spring and summer by developing schemes for mercury halogen oxidation, deposition, and re-emission. Also for the first time, GOME satellite data-derived boundary layer concentrations of BrO have been used in a global mercury model for representation of halogen mercury chemistry. Comparison of model simulated and measured atmospheric concentrations of GEM at Alert, Canada, for 3 years (2002-2004) shows the model's capability in simulating the rapid cycling of mercury during and after AMDEs. Brooks et al. (1) measured mercury deposition, reemission, and net surface gain fluxes of mercury at Barrow, AK, during an intensive measurement campaign for a 2 week period in spring (March 25 to April 7, 2003). They reported 1.7, 1.0 +/- 0.2, and 0.7 +/- 0.2 microg m(-2) deposition, re-emission, and net surface gain, respectively. Using the optimal configuration of the model, we estimated 1.8 microg m(-2) deposition, 1.0 microg m(-2) re-emission, and 0.8 microg m(-2) net surface gain of mercury for the same time period at Barrow. The estimated net annual accumulation of mercury within the Arctic Circle north of 66.5 degrees is approximately 174 t with +/-7 t of

  6. Modelling world gold prices and USD foreign exchange relationship using multivariate GARCH model

    Science.gov (United States)

    Ping, Pung Yean; Ahmad, Maizah Hura Binti

    2014-12-01

    World gold price is a popular investment commodity. The series have often been modeled using univariate models. The objective of this paper is to show that there is a co-movement between gold price and USD foreign exchange rate. Using the effect of the USD foreign exchange rate on the gold price, a model that can be used to forecast future gold prices is developed. For this purpose, the current paper proposes a multivariate GARCH (Bivariate GARCH) model. Using daily prices of both series from 01.01.2000 to 05.05.2014, a causal relation between the two series understudied are found and a bivariate GARCH model is produced.

  7. Vacuum energy from noncommutative models

    Science.gov (United States)

    Mignemi, S.; Samsarov, A.

    2018-04-01

    The vacuum energy is computed for a scalar field in a noncommutative background in several models of noncommutative geometry. One may expect that the noncommutativity introduces a natural cutoff on the ultraviolet divergences of field theory. Our calculations show however that this depends on the particular model considered: in some cases the divergences are suppressed and the vacuum energy is only logarithmically divergent, in other cases they are stronger than in the commutative theory.

  8. Modeling of crude oil fouling in preheat exchangers of refinery distillation units

    Energy Technology Data Exchange (ETDEWEB)

    Jafari Nasr, Mohammad Reza; Majidi Givi, Mehdi [National Petrochemical Research and Technology Company (NPC-RT), P.O. Box 14385, Tehran (Iran)

    2006-10-15

    The aim of this paper is to propose a new model for crude oil fouling in preheat exchangers of crude distillation units. The experimental results of Australian light crude oil with the tube side surface temperature between 200 and 260{sup o}C and fluid velocity ranged 0.25-0.4m/s were used [Z. Saleh, R. Sheikholeslami, A.P. Watkinson, Heat exchanger fouling by a light australian crude oil, in: Heat Exchanger Fouling and Cleaning Fundamentals and Applications, Santa Fe, 2003]. The amount of activation energy depends on the surface temperature has been calculated. A new model including a term for fouling formation and a term for fouling removal due to chemical and tube wall shear stress was proposed, respectively. The main superiority of the model are independent to Pr number, thermal fouling removal and determination of {beta} based on experimental tests. Finally using the proposed model the fouling rate of Australian light crude oil has been calculated and the threshold curves to identify fouling and no fouling formation zones have been drawn. (author)

  9. Quantification of exploitable shallow geothermal energy by using Borehole Heat Exchanger coupled Ground Source Heat Pump systems

    International Nuclear Information System (INIS)

    Hein, Philipp; Zhu, Ke; Bucher, Anke; Kolditz, Olaf; Pang, Zhonghe; Shao, Haibing

    2016-01-01

    Highlights: • The amount of technically exploitable shallow geothermal energy was quantified. • Therefore, a comprehensive numerical borehole heat exchanger model was employed. • The concept of equivalent temperature drop is introduced. • For one BHE, an equivalent temperature drop of 1.8–2.8 °C over 30 years is realistic • The average extractable energy amount evaluates to be 3.5–5.4 kW h m"−"2 a"−"1. - Abstract: In previous studies, the amount of exploitable shallow geothermal energy was estimated by assuming a uniform temperature drop of 2–6 °C in the aquifer. In this work, a more comprehensive numerical model has been employed to evaluate the available amount of shallow geothermal energy by using Borehole Heat Exchanger coupled Ground Source Heat Pump systems. Numerical experiments have been performed by simulating the long-term evolution of the subsurface temperature field, which is subject to the operation of borehole heat exchangers and varying parameters like subsurface thermal conductivity and groundwater flow velocity. The concept of equivalent temperature drop is proposed as an auxiliary quantity for the subsurface. With the help of this parameter, a procedure has been established to quantify the amount of shallow geothermal potential. Following this approach, a realistic equivalent temperature reduction is found to be from −1.8 to −4.4 °C in the subsurface over a period of 30 years. This can be translated to an annual extractable geothermal energy value in a unit surface area, and it ranges from 3.5 to 8.6 kW h m"−"2 a"−"1. The exact value is site specific and heavily depends on the soil thermal conductivity, groundwater velocity, and borehole arrangement.

  10. Meson exchange current (MEC) models in neutrino interaction generators

    International Nuclear Information System (INIS)

    Katori, Teppei

    2015-01-01

    Understanding of the so-called 2 particle-2 hole (2p-2h) effect is an urgent program in neutrino interaction physics for current and future oscillation experiments. Such processes are believed to be responsible for the event excesses observed by recent neutrino experiments. The 2p-2h effect is dominated by the meson exchange current (MEC), and is accompanied by a 2-nucleon emission from the primary vertex, instead of a single nucleon emission from the charged-current quasi-elastic (CCQE) interaction. Current and future high resolution experiments can potentially nail down this effect. For this reason, there are world wide efforts to model and implement this process in neutrino interaction simulations. In these proceedings, I would like to describe how this channel is modeled in neutrino interaction generators

  11. Energy performance and thermal impact of a Borehole Heat Exchanger in a sandy aquifer: Influence of the groundwater velocity

    International Nuclear Information System (INIS)

    Angelotti, A.; Alberti, L.; La Licata, I.; Antelmi, M.

    2014-01-01

    Highlights: • A numerical model of a Borehole Heat Exchanger with groundwater flow is created. • The model is carefully validated against analytical solutions. • The mutual influence of the BHE heat rate and the ground temperature field is shown. • For 10 −1 ⩽ Pe ⩽ 1 the heat rate increase with respect to null velocity is 11–105%. • Large groundwater velocities reduce the benefits of operating in both seasons. - Abstract: In a saturated soil, the groundwater flow affects both the energy performance and the thermal impact on the surrounding soil of Borehole Heat Exchangers linked to Ground-Source Heat Pumps. In this paper a numerical model in MODFLOW/MT3DMS of a single U-pipe in a sandy aquifer is proposed in order to investigate the two issues in a coupled approach. After validating the model, the typical yearly operation of a Borehole Heat Exchanger extracting and injecting heat into the ground is simulated. For 0.1 ⩽ Pe ⩽ 1 cold and warm plumes develop and the heat rate increases non linearly from 11% to 105%

  12. Contrasting response of European forest and grassland energy exchange to heatwaves

    DEFF Research Database (Denmark)

    Teuling, A.J.; Seneviratne, S.I.; Stöckli, R.

    2010-01-01

    on the exchange of water and energy and the interaction of this exchange with the soil water balance during heatwaves is largely unknown. Here we analyse observations from an extensive network of flux towers in Europe that reveal a difference between the temporal responses of forest and grassland ecosystems...... and induces a critical shift in the regional climate system that leads to increased heating. We propose that this mechanism may explain the extreme temperatures in August 2003. We conclude that the conservative water use of forest contributes to increased temperatures in the short term, but mitigates...

  13. Modeling renewable energy company risk

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2012-01-01

    The renewable energy sector is one of the fastest growing components of the energy industry and along with this increased demand for renewable energy there has been an increase in investing and financing activities. The tradeoff between risk and return in the renewable energy sector is, however, precarious. Renewable energy companies are often among the riskiest types of companies to invest in and for this reason it is necessary to have a good understanding of the risk factors. This paper uses a variable beta model to investigate the determinants of renewable energy company risk. The empirical results show that company sales growth has a negative impact on company risk while oil price increases have a positive impact on company risk. When oil price returns are positive and moderate, increases in sales growth can offset the impact of oil price returns and this leads to lower systematic risk.

  14. Energy-economic policy modeling

    Science.gov (United States)

    Sanstad, Alan H.

    2018-01-01

    Computational models based on economic principles and methods are powerful tools for understanding and analyzing problems in energy and the environment and for designing policies to address them. Among their other features, some current models of this type incorporate information on sustainable energy technologies and can be used to examine their potential role in addressing the problem of global climate change. The underlying principles and the characteristics of the models are summarized, and examples of this class of model and their applications are presented. Modeling epistemology and related issues are discussed, as well as critiques of the models. The paper concludes with remarks on the evolution of the models and possibilities for their continued development.

  15. Activation energies for iodine-exchange systems containing organic iodine compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, N. (Takyo Univ. of Education (Japan). Faculty of Science) Takahashi, Yasuko

    1976-01-01

    In studies on the nonequilibrium isotopic exchange method for determining iodine in organic iodine compounds, activation energies have been measured to find systems having appropriate rate of exchange reactions. Activation energies are discussed by considering the effect of the structure of organic iodine compounds, the concentrations of reactants and solvent, etc. In homogeneous systems, activation energy is found to become larger in the order of CH/sub 3/Ienergy is less in 100% acetone than in 90% acetone solution. In heterogeneous systems, e.g. org. I(aq.)--I/sub 2/(CCL/sub 4/ or C/sub 2/H/sub 4/Cl/sub 2/), activation energy increases in the order of 3,5-diiodotyrosine<3-iodotyrosine<5-iodouracil. The catalytic effect of I/sub 2/ is large, and the iodine ratio between I/sub 2/ and organic iodine is a predominant factor in determining the rate of the exchange reaction.

  16. Short-range second order screened exchange correction to RPA correlation energies

    Science.gov (United States)

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-01

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  17. Thermodynamic performance analysis and algorithm model of multi-pressure heat recovery steam generators (HRSG) based on heat exchangers layout

    International Nuclear Information System (INIS)

    Feng, Hongcui; Zhong, Wei; Wu, Yanling; Tong, Shuiguang

    2014-01-01

    Highlights: • A general model of multi-pressure HRSG based on heat exchangers layout is built. • The minimum temperature difference is introduced to replace pinch point analysis. • Effects of layout on dual pressure HRSG thermodynamic performances are analyzed. - Abstract: Changes of heat exchangers layout in heat recovery steam generator (HRSG) will modify the amount of waste heat recovered from flue gas; this brings forward a desire for the optimization of the design of HRSG. In this paper the model of multi-pressure HRSG is built, and an instance of a dual pressure HRSG under three different layouts of Taihu Boiler Co., Ltd. is discussed, with specified values of inlet temperature, mass flow rate, composition of flue gas and water/steam parameters as temperature, pressure etc., steam mass flow rate and heat efficiency of different heat exchangers layout of HRSG are analyzed. This analysis is based on the laws of thermodynamics and incorporated into the energy balance equations for the heat exchangers. In the conclusion, the results of the steam mass flow rate, heat efficiency obtained for three heat exchangers layout of HRSGs are compared. The results show that the optimization of heat exchangers layout of HRSGs has a great significance for waste heat recovery and energy conservation

  18. Meson exchange currents in a relativistic model for electromagnetic one nucleon emission

    International Nuclear Information System (INIS)

    Meucci, Andrea; Giusti, Carlotta; Pacati, Franco Davide

    2002-01-01

    We analyze the role of meson exchange currents (MECs) in photon- and electron-induced one nucleon emission reactions in a fully relativistic model. The relativistic mean-field theory is used for the bound state and the Pauli reduction for the scattering state. Direct one-body and exchange two-body terms in the nuclear current are considered. Results for the 12 C(γ,p) and 16 O(γ,p) differential cross sections and photon asymmetries are displayed in an energy range between 60 and 196 MeV. The two-body seagull current affects the cross section less than in nonrelativistic analyses. In the case of the 16 O(γ,n) differential cross section, MEC effects are large but not sufficient to reproduce the data. MECs have a small effect on (e,e ' p) calculations

  19. Comparative analysis of different methods in mathematical modelling of the recuperative heat exchangers

    International Nuclear Information System (INIS)

    Debeljkovic, D.Lj.; Stevic, D.Z.; Simeunovic, G.V.; Misic, M.A.

    2015-01-01

    The heat exchangers are frequently used as constructive elements in various plants and their dynamics is very important. Their operation is usually controlled by manipulating inlet fluid temperatures or mass flow rates. On the basis of the accepted and critically clarified assumptions, a linearized mathematical model of the cross-flow heat exchanger has been derived, taking into account the wall dynamics. The model is based on the fundamental law of energy conservation, covers all heat accumulation storages in the process, and leads to the set of partial differential equations (PDE), which solution is not possible in closed form. In order to overcome the solutions difficulties in this paper are analyzed different methods for modeling the heat exchanger: approach based on Laplace transformation, approximation of partial differential equations based on finite differences, the method of physical discretization and the transport approach. Specifying the input temperatures and output variables, under the constant initial conditions, the step transient responses have been simulated and presented in graphic form in order to compare these results for the four characteristic methods considered in this paper, and analyze its practical significance. (author)

  20. Simplified models of the symmetric single-pass parallel-plate counterflow heat exchanger: a tutorial

    Science.gov (United States)

    Pickard, William F.; Abraham-Shrauner, Barbara

    2018-03-01

    The heat exchanger is important in practical thermal processes, especially those of (i) the molten-salt storage schemes, (ii) compressed air energy storage schemes and (iii) other load-shifting thermal storage presumed to undergird a Smart Grid. Such devices, although central to the utilization of energy from sustainable (but intermittent) renewable sources, will be unfamiliar to many scientists, who nevertheless need a working knowledge of them. This tutorial paper provides a largely self-contained conceptual introduction for such persons. It begins by modelling a novel quantized exchanger,1 impractical as a device, but useful for comprehending the underlying thermophysics. It then reviews the one-dimensional steady-state idealization which demonstrates that effectiveness of heat transfer increases monotonically with (device length)/(device throughput). Next, it presents a two-dimensional steady-state idealization for plug flow and from it derives a novel formula for effectiveness of transfer; this formula is then shown to agree well with a finite-difference time-domain solution of the two-dimensional idealization under Hagen-Poiseuille flow. These results are consistent with a conclusion that effectiveness of heat exchange can approach unity, but may involve unwelcome trade-offs among device cost, size and throughput.

  1. Numerical investigation of the energy performance of a guideless irregular heat and mass exchanger with corrugated heat transfer surface for dew point cooling

    International Nuclear Information System (INIS)

    Xu, Peng; Ma, Xiaoli; Diallo, Thierno M.O.; Zhao, Xudong; Fancey, Kevin; Li, Deying; Chen, Hongbing

    2016-01-01

    The paper presents an investigation into the energy performance of a novel irregular heat and mass exchanger for dew point cooling which, compared to the existing flat-plate heat exchangers, removed the use of the channel supporting guides and implemented the corrugated heat transfer surface, thus expecting to achieve the reduced air flow resistance, increased heat transfer area, and improved energy efficiency (i.e. Coefficient of Performance (COP)) of the air cooling process. CFD simulation was carried out to determine the flow resistance (K) factors of various elements within the dry and wet channels of the exchanger, while the ‘finite-element’ based ‘Newton-iteration’ numerical simulation was undertaken to investigate its cooling capacity, cooling effectiveness and COP at various geometrical and operational conditions. Compared to the existing flat-plate heat and mass exchangers with the same geometrical dimensions and operational conditions, the new irregular exchanger could achieve 32.9%–37% higher cooling capacity, dew-point and wet-bulb effectiveness, 29.7%–33.3% higher COP, and 55.8%–56.2% lower pressure drop. While undertaking dew point air cooling, the irregular heat and mass exchanger had the optimum air velocity of 1 m/s within the flow channels and working-to-intake air ratio of 0.3, which allowed the highest cooling capacity and COP to be achieved. In terms of the exchanger dimensions, the optimum height of the channel was 5 mm while its length was in the range 1–2 m. Overall, the proposed irregular heat and mass exchanger could lead to significant enhanced energy performance compared to the existing flat-plate dew point cooling heat exchanger of the same geometrical dimensions. To achieve the same amount cooling output, the irregular heat and mass exchanger had the reduced size and cost against the flat-plate ones. - Highlights: • Numerical investigation of an irregular heat and mass exchanger was undertaken. • A

  2. Modeling the dynamic operation of a small fin plate heat exchanger – parametric analysis

    Directory of Open Access Journals (Sweden)

    Motyliński Konrad

    2015-09-01

    Full Text Available Given its high efficiency, low emissions and multiple fuelling options, the solid oxide fuel cells (SOFC offer a promising alternative for stationary power generators, especially while engaged in micro-combined heat and power (μ-CHP units. Despite the fact that the fuel cells are a key component in such power systems, other auxiliaries of the system can play a critical role and therefore require a significant attention. Since SOFC uses a ceramic material as an electrolyte, the high operating temperature (typically of the order of 700–900 °C is required to achieve sufficient performance. For that reason both the fuel and the oxidant have to be preheated before entering the SOFC stack. Hot gases exiting the fuel cell stack transport substantial amount of energy which has to be partly recovered for preheating streams entering the stack and for heating purposes. Effective thermal integration of the μ-CHP can be achieved only when proper technical measures are used. The ability of efficiently preheating the streams of oxidant and fuel relies on heat exchangers which are present in all possible configurations of power system with solid oxide fuel cells. In this work a compact, fin plate heat exchanger operating in the high temperature regime was under consideration. Dynamic model was proposed for investigation of its performance under the transitional states of the fuel cell system. Heat exchanger was simulated using commercial modeling software. The model includes key geometrical and functional parameters. The working conditions of the power unit with SOFC vary due to the several factors, such as load changes, heating and cooling procedures of the stack and others. These issues affect parameters of the incoming streams to the heat exchanger. The mathematical model of the heat exchanger is based on a set of equations which are simultaneously solved in the iterative process. It enables to define conditions in the outlets of both the hot and the

  3. A Laboratory Exercise Using a Physical Model for Demonstrating Countercurrent Heat Exchange

    Science.gov (United States)

    Loudon, Catherine; Davis-Berg, Elizabeth C.; Botz, Jason T.

    2012-01-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of…

  4. Enterprise Networks for Competences Exchange: A Simulation Model

    Science.gov (United States)

    Remondino, Marco; Pironti, Marco; Pisano, Paola

    A business process is a set of logically related tasks performed to achieve a defined business and related to improving organizational processes. Process innovation can happen at various levels: incrementally, redesign of existing processes, new processes. The knowledge behind process innovation can be shared, acquired, changed and increased by the enterprises inside a network. An enterprise can decide to exploit innovative processes it owns, thus potentially gaining competitive advantage, but risking, in turn, that other players could reach the same technological levels. Or it could decide to share it, in exchange for other competencies or money. These activities could be the basis for a network formation and/or impact the topology of an existing network. In this work an agent based model is introduced (E3), aiming to explore how a process innovation can facilitate network formation, affect its topology, induce new players to enter the market and spread onto the network by being shared or developed by new players.

  5. Self-Service Banking: Value Creation Models and Information Exchange

    Directory of Open Access Journals (Sweden)

    Ragnvald Sannes

    2001-01-01

    Full Text Available This paper argues that most banks have failed to exploit the potential of self-service banking because they base their service design on an incomplete business model for self-service. A framework for evaluation of self-service banking concepts is developed on the basis of Stabell and Fjeldstad's three value configurations. The value network and the value shop are consistent with self-service banking while the value chain is inappropriate. The impact of the value configurations on information exchange and self-service functionality is discussed, and a framework for design of such services proposed. Current self-service banking practices are compared to the framework, and it is concluded that current practice matches the concept of a value network and not the value shop. However, current practices are only a partial implementation of a value network-based self-service banking concept.

  6. Atomic energy: exchange of letters between Canada and the European Atomic Energy Community (EURATOM)

    International Nuclear Information System (INIS)

    1978-01-01

    Letters exchanged between the Charge d'affaires, mission of Canada to the European Communites and the Commissioner of the European Communities, concerning safeguards, levels of physical protection, and further intra-Community trade of nuclear materials exported from Canada to the European Community

  7. Study of the mass and energy resolution of the E parallel B charge exchange analyzer for TFTR

    International Nuclear Information System (INIS)

    Kaita, R.; Medley, S.S.

    1979-09-01

    The charge exchange diagnostic for TFTR requires simultaneous multispecie (H + , D + , γ + ) analysis of particles in the energy range of 0.5 - 150 keV. The analyzer design chosen to provide this capability employs a wide gap semi-circular region of superimposed parallel electric and magnetic fields to accomplish mass and energy resolution, respectively. Combined with a large area, multi-anode microchannel plate detector, this arrangement will enable the energy distributions of protons, deuterions, and tritons to be measured concurrently as a function of time during each discharge. A computer simulation program for calculating ion trajectories through the analyzer was written that includes a realistic model of the magnetic and electrostatic fringe fields. This report presents the results of a study of the proposed E parallel B analyzer, and it reveals that the fringe fields are not detrimental to the performance of the analyzer

  8. Assessing the role of Hartree-Fock exchange, correlation energy and long range corrections in evaluating ionization potential, and electron affinity in density functional theory.

    Science.gov (United States)

    Vikramaditya, Talapunur; Lin, Shiang-Tai

    2017-06-05

    Accurate determination of ionization potentials (IPs), electron affinities (EAs), fundamental gaps (FGs), and HOMO, LUMO energy levels of organic molecules play an important role in modeling and predicting the efficiencies of organic photovoltaics, OLEDs etc. In this work, we investigate the effects of Hartree Fock (HF) Exchange, correlation energy, and long range corrections in predicting IP and EA in Hybrid Functionals. We observe increase in percentage of HF exchange results in increase of IPs and decrease in EAs. Contrary to the general expectations inclusion of both HF exchange and correlation energy (from the second order perturbation theory MP2) leads to poor prediction. Range separated Hybrid Functionals are found to be more reliable among various DFT Functionals investigated. DFT Functionals predict accurate IPs whereas post HF methods predict accurate EAs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Optimal energy exchange of an industrial cogeneration in a day-ahead electricity market

    International Nuclear Information System (INIS)

    Yusta, J.M.; De Oliveira-De Jesus, P.M.; Khodr, H.M.

    2008-01-01

    This paper addresses an optimal strategy for the daily energy exchange of a 22-MW combined-cycle cogeneration plant of an industrial factory operating in a liberalized electricity market. The optimization problem is formulated as a Mixed-Integer Linear Programming Problem (MILP) that maximizes the profit from energy exchange of the cogeneration, and is subject to the technical constraints and the industrial demand profile. The integer variables are associated with export or import of electricity whereas the real variables relate to the power output of gas and steam turbines, and to the electricity purchased from or sold to the market. The proposal is applied to a real cogeneration plant in Spain where the detailed cost function of the process is obtained. The problem is solved using a large-scale commercial package and the results are discussed and compared with different predefined scheduling strategies. (author)

  10. Comparison of Methods for Computing the Exchange Energy of quantum helium and hydrogen

    International Nuclear Information System (INIS)

    Cayao, J. L. C. D.

    2009-01-01

    I investigate approach methods to find the exchange energy for quantum helium and hydrogen. I focus on Heitler-London, Hund-Mullikan, Molecular Orbital and variational approach methods. I use Fock-Darwin states centered at the potential minima as the single electron wavefunctions. Using these we build Slater determinants as the basis for the two electron problem. I do a comparison of methods for two electron double dot (quantum hydrogen) and for two electron single dot (quantum helium) in zero and finite magnetic field. I show that the variational, Hund-Mullikan and Heitler-London methods are in agreement with the exact solutions. Also I show that the exchange energy calculation by Heitler-London (HL) method is an excellent approximation for large inter dot distances and for single dot in magnetic field is an excellent approximation the Variational method. (author)

  11. 7D Randall-Sundrum cosmology, brane-bulk energy exchange, and holography

    International Nuclear Information System (INIS)

    Mazzanti, Liuba

    2008-01-01

    We discuss the cosmological implications and the holographic dual theory of the 7D Randall-Sundrum gravitational setup. Adding generic matter in the bulk on the 7D gravity side, we study the cosmological evolution inferred by the nonvanishing value of the brane-bulk energy exchange parameter. This analysis is achieved in detail for specific assumptions on the internal space evolution, including analytical considerations and numerical results. The dual theory is then constructed, making use of the holographic renormalization procedure. The resulting renormalized 6D conformal field theory is anomalous and coupled to 6D gravity plus higher order corrections. The critical point analysis on the brane is performed. Finally, we sketch a comparison between the two dual descriptions. We moreover generalize the Ads/CFT dual theory to the nonconformal and interacting case, relating the energy exchange parameter of the bulk gravity description to the new interactions between hidden and visible sectors.

  12. Exchange interaction in the heavy rare-earth metals calculated from energy bands

    International Nuclear Information System (INIS)

    Lindgard, P.A.; Liu, S.H.

    1973-01-01

    The exchange interaction in the ordered phases was calculated and found to be significantly influenced by the magnetic perturbation of the conduction electron states. The exchange interaction is intrinsically temperature dependent and is anisotropic. The effect explains how it is possible to have a spiral phase of Tb, although spin wave measurements show no maximum in J/sub q/ for q not equal to 0. The energy difference between the ferromagnetic and spiral phases is of correct order of magnitude to be counterbalanced by the magnetoelastic energy. The wave vector dependent matrix element is found to be similar for Gd, Tb, Dy, and Er with a narrow central conduction electron contribution and a flat region. (U.S.)

  13. Surface energy exchanges along a tundra-forest transition and feedbacks to climate

    Science.gov (United States)

    Beringer, J.; Chapin, F. S.; Thompson, Catharine Copass; McGuire, A.D.

    2005-01-01

    Surface energy exchanges were measured in a sequence of five sites representing the major vegetation types in the transition from arctic tundra to forest. This is the major transition in vegetation structure in northern high latitudes. We examined the influence of vegetation structure on the rates of sensible heating and evapotranspiration to assess the potential feedbacks to climate if high-latitude warming were to change the distribution of these vegetation types. Measurements were made at Council on the Seward Peninsula, Alaska, at representative tundra, low shrub, tall shrub, woodland (treeline), and boreal forest sites. Structural differences across the transition from tundra to forest included an increase in the leaf area index (LAI) from 0.52 to 2.76, an increase in canopy height from 0.1 to 6.1 m, and a general increase in canopy complexity. These changes in vegetation structure resulted in a decrease in albedo from 0.19 to 0.10 as well as changes to the partitioning of energy at the surface. Bulk surface resistance to water vapor flux remained virtually constant across sites, apparently because the combined soil and moss evaporation decreased while transpiration increased along the transect from tundra to forest. In general, sites became relatively warmer and drier along the transect with the convective fluxes being increasingly dominated by sensible heating, as evident by an increasing Bowen ratio from 0.94 to 1.22. The difference in growing season average daily sensible heating between tundra and forest was 21 W m-2. Fluxes changed non-linearly along the transition, with both shrubs and trees substantially enhancing heat transfer to the atmosphere. These changes in vegetation structure that increase sensible heating could feed back to enhance warming at local to regional scales. The magnitude of these vegetation effects on potential high-latitude warming is two to three times greater than suggested by previous modeling studies. ?? 2005 Elsevier B.V. All

  14. Frontiers in propulsion research: Laser, matter-antimatter, excited helium, energy exchange thermonuclear fusion

    Science.gov (United States)

    Papailiou, D. D. (Editor)

    1975-01-01

    Concepts are described that presently appear to have the potential for propulsion applications in the post-1990 era of space technology. The studies are still in progress, and only the current status of investigation is presented. The topics for possible propulsion application are lasers, nuclear fusion, matter-antimatter annihilation, electronically excited helium, energy exchange through the interaction of various fields, laser propagation, and thermonuclear fusion technology.

  15. An Econometric Diffusion Model of Exchange Rate Movements within a Band - Implications for Interest Rate Differential and Credibility of Exchange Rate Policy

    OpenAIRE

    Rantala, Olavi

    1992-01-01

    The paper presents a model ofexchange rate movements within a specified exchange rate band enforced by central bank interventions. The model is based on the empirical observation that the exchange rate has usually been strictly inside the band, at least in Finland. In this model the distribution of the exchange rate is truncated lognormal from the edges towards the center of the band and hence quite different from the bimodal distribution of the standard target zone model. The model is estima...

  16. Modelling Age- and Density-Related Gas Exchange of Picea abies Canopies in the Fichtelgebirge, Germany

    OpenAIRE

    Falge, Eva; Tennhunen, John D.; Ryel, Ronald J.; Alsheimer, Martina; Köstner, Barbara

    2000-01-01

    International audience; Differences in canopy exchange of water and carbon dioxide that occur due to changes in tree structure and density in montane Norway spruce stands of Central Germany were analyzed with a three dimensional microclimate and gas exchange model STANDFLUX. The model was used to calculate forest radiation absorption, the net photosynthesis and transpiration of single trees, and gas exchange of tree canopies. Model parameterizations were derived for six stands of Picea abies ...

  17. Mathematical model development of heat and mass exchange processes in the outdoor swimming pool

    Directory of Open Access Journals (Sweden)

    M. V. Shaptala

    2014-12-01

    Full Text Available Purpose. Currently exploitation of outdoor swimming pools is often not cost-effective and, despite of their relevance, such pools are closed in large quantities. At this time there is no the whole mathematical model which would allow assessing qualitatively the effect of energy-saving measures. The aim of this work is to develop a mathematical model of heat and mass exchange processes for calculating basic heat and mass losses that occur during its exploitation. Methodology. The method for determination of heat and mass loses based on the theory of similarity criteria equations is used. Findings. The main types of heat and mass losses of outdoor pool were analyzed. The most significant types were allocated and mathematically described. Namely: by evaporation of water from the surface of the pool, by natural and forced convection, by radiation to the environment, heat consumption for water heating. Originality. The mathematical model of heat and mass exchange process of the outdoor swimming pool was developed, which allows calculating the basic heat and mass loses that occur during its exploitation. Practical value. The method of determining heat and mass loses of outdoor swimming pool as a software system was developed and implemented. It is based on the mathematical model proposed by the authors. This method can be used for the conceptual design of energy-efficient structures of outdoor pools, to assess their use of energy-intensive and selecting the optimum energy-saving measures. A further step in research in this area is the experimental validation of the method of calculation of heat losses in outdoor swimming pools with its use as an example the pool of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan. The outdoor pool, with water heating- up from the boiler room of the university, is operated year-round.

  18. Model of Nordic energy market

    International Nuclear Information System (INIS)

    Gjelsvik, E.; Johnsen, T.; Mysen, H.T.

    1992-01-01

    Simulation results are given of the consumption of electricity and oil in Denmark, Norway and Sweden based on the demand section of a Nordic energy market model which is in the process of being developed in Oslo under the auspices of the Nordic Council of Ministers. The model incorporates supply, and trade between countries so that it can be analyzed how trading can contribute to goals within energy and environmental policies and to cost effective activities aimed at reducing pollution. The article deals in some detail with the subject of how taxation on carbon dioxide emission can influence pollution abatement and with energy consumption development within individual sectors in individual Northern countries. The model of energy demand is described with emphasis on the individual sectors of industry, transport, service and private households. Simulation results giving the effects of energy consumption and increased taxation on fossil fuels are given. On this background the consequences of the adaption of power plants is discussed and a sketch is given of a Nordic electric power market incorporating trading. (AB) (15 refs.)

  19. Investigation of heat exchangers for energy conversion systems of megawatt-class space power plants

    Science.gov (United States)

    Ilmov, D. N.; Mamontov, Yu. N.; Skorohodov, A. S.; Smolyarov, V. A.; Filatov, N. I.

    2016-01-01

    The specifics of operation (high temperatures in excess of 1000 K and large pressure drops of several megapascals between "hot" and "cold" coolant paths) of heat exchangers in the closed circuit of a gasturbine power converter operating in accordance with the Brayton cycle with internal heat recovery are analyzed in the context of construction of space propulsion systems. The design of a heat-exchange matrix made from doubly convex stamped plates with a specific surface relief is proposed. This design offers the opportunity to construct heat exchangers with the required parameters (strength, rigidity, weight, and dimensions) for the given operating conditions. The diagram of the working area of a test bench is presented, and the experimental techniques are outlined. The results of experimental studies of heat exchange and flow regimes in the models of heat exchangers with matrices containing 50 and 300 plates for two pairs of coolants (gas-gas and gas-liquid) are detailed. A criterion equation for the Nusselt number in the range of Reynolds numbers from 200 to 20 000 is proposed. The coefficients of hydraulic resistance for each coolant path are determined as functions of the Reynolds number. It is noted that the pressure in the water path in the "gas-liquid" series of experiments remained almost constant. This suggests that no well-developed processes of vaporization occurred within this heat-exchange matrix design even when the temperature drop between gas and water was as large as tens or hundreds of degrees. The obtained results allow one to design flight heat exchangers for various space power plants.

  20. Energy-Water Modeling and Analysis | Energy Analysis | NREL

    Science.gov (United States)

    Generation (ReEDS Model Analysis) U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather Modeling and Analysis Energy-Water Modeling and Analysis NREL's energy-water modeling and analysis vulnerabilities from various factors, including water. Example Projects Renewable Electricity Futures Study

  1. Energy security, energy modelling and uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Markandya, Anil [Basque Centre for Climate Change (Spain); University of Bath (United Kingdom); Pemberton, Malcolm [University College London (United Kingdom)

    2010-04-15

    The paper develops a framework to analyze energy security in an expected utility framework, where there is a risk of disruption of imported energy. The analysis shows the importance of an energy tax as a tool in maximizing expected utility, and how the level of that tax varies according to the key parameters of the system: risk aversion, probability of disruption, demand elasticity and cost of disruption. (author)

  2. Energy security, energy modelling and uncertainty

    International Nuclear Information System (INIS)

    Markandya, Anil; Pemberton, Malcolm

    2010-01-01

    The paper develops a framework to analyze energy security in an expected utility framework, where there is a risk of disruption of imported energy. The analysis shows the importance of an energy tax as a tool in maximizing expected utility, and how the level of that tax varies according to the key parameters of the system: risk aversion, probability of disruption, demand elasticity and cost of disruption. (author)

  3. Towards hot electron mediated charge exchange in hyperthermal energy ion-surface interactions

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Thomsen, Lasse Bjørchmar

    2010-01-01

    shows that the primary energy loss mechanism is the atomic displacement of Au atoms in the thin film of the metal–oxide–semiconductor device. We propose that neutral particle detection of the scattered flux from a biased device could be a route to hot electron mediated charge exchange.......We have made Na + and He + ions incident on the surface of solid state tunnel junctions and measured the energy loss due to atomic displacement and electronic excitations. Each tunnel junction consists of an ultrathin film metal–oxide–semiconductor device which can be biased to create a band of hot...

  4. Bounded energy exchange as an alternative to the third law of thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, Matthias, E-mail: Heidrich_Matthias@web.de

    2016-10-15

    This paper introduces a postulate explicitly forbidding the extraction of an infinite amount of energy from a thermodynamic system. It also introduces the assumption that no measuring equipment is capable of detecting arbitrarily small energy exchanges. The Kelvin formulation of the second law is reinterpreted accordingly. Then statements related to both the unattainability version and the entropic version of the third law are derived. The value of any common thermodynamic potential of a one-component system at absolute zero of temperature is ascertained if some assumptions with regard to the state space can be made. The point of view is the phenomenological, macroscopic and non-statistical one of classical thermodynamics.

  5. Bounded energy exchange as an alternative to the third law of thermodynamics

    International Nuclear Information System (INIS)

    Heidrich, Matthias

    2016-01-01

    This paper introduces a postulate explicitly forbidding the extraction of an infinite amount of energy from a thermodynamic system. It also introduces the assumption that no measuring equipment is capable of detecting arbitrarily small energy exchanges. The Kelvin formulation of the second law is reinterpreted accordingly. Then statements related to both the unattainability version and the entropic version of the third law are derived. The value of any common thermodynamic potential of a one-component system at absolute zero of temperature is ascertained if some assumptions with regard to the state space can be made. The point of view is the phenomenological, macroscopic and non-statistical one of classical thermodynamics.

  6. Robustness of Component Models in Energy System Simulators

    DEFF Research Database (Denmark)

    Elmegaard, Brian

    2003-01-01

    During the development of the component-based energy system simulator DNA (Dynamic Network Analysis), several obstacles to easy use of the program have been observed. Some of these have to do with the nature of the program being based on a modelling language, not a graphical user interface (GUI......). Others have to do with the interaction between models of the nature of the substances in an energy system (e.g., fuels, air, flue gas), models of the components in a system (e.g., heat exchangers, turbines, pumps), and the solver for the system of equations. This paper proposes that the interaction...

  7. On quark model relations for hypercharge-exchange reactions

    International Nuclear Information System (INIS)

    Kluyver, J.C.; Blokzijl, R.; Massaro, G.G.G.; Wolters, G.F.; Grossmann, P.; Lamb, P.R.; Wells, J.

    1978-01-01

    Peripheral two-body reactions of the type K - p → M 0 + Λ, Σ 0 or Σ 0 (1385) are considered. Predictions based on the additive quark model and SU(6) baryon wave functions are tested against data on cross sections and polarisations for given momentum transfer. Data obtained in a high statistics experiment at 4.2 GeV/c K - momentum, as well as data from a large variety of other experiments are used. Highly significant violations of these predictions are observed in the data. These violations are shown to occur in a systematic fashion, according to which SU(6) must be relaxed, but the amplitude structure implied by additivity would remain valid. As an application an amplitude analysis for natural parity exchange reactions with M 0 = π, phi and rho respectively is performed, which determines a relative phase, which cannot be obtained in model-independent analysis. Also reactions with M 0 = delta or B are considered, and some implications for coupling constants are discussed. (Auth.)

  8. Ultraviolet complete dark energy model

    Science.gov (United States)

    Narain, Gaurav; Li, Tianjun

    2018-04-01

    We consider a local phenomenological model to explain a nonlocal gravity scenario which has been proposed to address dark energy issues. This nonlocal gravity action has been seen to fit the data as well as Λ -CDM and therefore demands a more fundamental local treatment. The induced gravity model coupled with higher-derivative gravity is exploited for this proposal, as this perturbatively renormalizable model has a well-defined ultraviolet (UV) description where ghosts are evaded. We consider a generalized version of this model where we consider two coupled scalar fields and their nonminimal coupling with gravity. In this simple model, one of the scalar field acquires a vacuum expectation value (VEV), thereby inducing a mass for one of the scalar fields and generating Newton's constant. The induced mass however is seen to be always above the running energy scale thereby leading to its decoupling. The residual theory after decoupling becomes a platform for driving the accelerated expansion under certain conditions. Integrating out the residual scalar generates a nonlocal gravity action. The leading term of which is the nonlocal gravity action used to fit the data of dark energy.

  9. The geothermal energy, a model energy

    International Nuclear Information System (INIS)

    2004-11-01

    This book, largely illustrated by photos maps and schemes, takes stock on the knowledge on the geothermal energy, the low and high energy applications and the evolutions. Examples describe the french context and the channels of heat and electric power production. (A.L.B.)

  10. Energy Model of Neuron Activation.

    Science.gov (United States)

    Romanyshyn, Yuriy; Smerdov, Andriy; Petrytska, Svitlana

    2017-02-01

    On the basis of the neurophysiological strength-duration (amplitude-duration) curve of neuron activation (which relates the threshold amplitude of a rectangular current pulse of neuron activation to the pulse duration), as well as with the use of activation energy constraint (the threshold curve corresponds to the energy threshold of neuron activation by a rectangular current pulse), an energy model of neuron activation by a single current pulse has been constructed. The constructed model of activation, which determines its spectral properties, is a bandpass filter. Under the condition of minimum-phase feature of the neuron activation model, on the basis of Hilbert transform, the possibilities of phase-frequency response calculation from its amplitude-frequency response have been considered. Approximation to the amplitude-frequency response by the response of the Butterworth filter of the first order, as well as obtaining the pulse response corresponding to this approximation, give us the possibility of analyzing the efficiency of activating current pulses of various shapes, including analysis in accordance with the energy constraint.

  11. Modeling and estimating the jump risk of exchange rates: Applications to RMB

    Science.gov (United States)

    Wang, Yiming; Tong, Hanfei

    2008-11-01

    In this paper we propose a new type of continuous-time stochastic volatility model, SVDJ, for the spot exchange rate of RMB, and other foreign currencies. In the model, we assume that the change of exchange rate can be decomposed into two components. One is the normally small-cope innovation driven by the diffusion motion; the other is a large drop or rise engendered by the Poisson counting process. Furthermore, we develop a MCMC method to estimate our model. Empirical results indicate the significant existence of jumps in the exchange rate. Jump components explain a large proportion of the exchange rate change.

  12. Modelling and dynamics analysis of heat exchanger as a distributed parameter process

    International Nuclear Information System (INIS)

    Savic, B.; Debeljkovic, D.Lj.

    2004-01-01

    A non-linear and afterwards linearized mathematical model of fuel oil cooling chamber has been developed. This chamber is a part of a recuperative heat exchanger of a tube-in-tube type and of opposite-direction acting, set in a heavy oil fraction discharge tubing. The model is defined as a range of assumptions and simplifications from which energy balance equations under non-stationary operating conditions are derived. The model is in the form of a set of partial differential equations with constant coefficients. Using appropriate numerical simulation of the transfer function, the dynamic of this process has been shown in the form of appropriate transient process responses which quite well correspond to the real process behavior

  13. Modelling and dynamics analysis of heat exchanger as a distributed parameter process

    Energy Technology Data Exchange (ETDEWEB)

    Savic, B.; Debeljkovic, D.Lj. [University of Belgrade, Department of Control Engineering, Belgrade (Yugoslavia)

    2004-07-01

    A non-linear and afterwards linearized mathematical model of fuel oil cooling chamber has been developed. This chamber is a part of a recuperative heat exchanger of a tube-in-tube type and of opposite-direction acting, set in a heavy oil fraction discharge tubing. The model is defined as a range of assumptions and simplifications from which energy balance equations under non-stationary operating conditions are derived. The model is in the form of a set of partial differential equations with constant coefficients. Using appropriate numerical simulation of the transfer function, the dynamic of this process has been shown in the form of appropriate transient process responses which quite well correspond to the real process behavior.

  14. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  15. Zeroth-order exchange energy as a criterion for optimized atomic basis sets in interatomic force calculations

    International Nuclear Information System (INIS)

    Varandas, A.J.C.

    1980-01-01

    A suggestion is made for using the zeroth-order exchange term, at the one-exchange level, in the perturbation development of the interaction energy as a criterion for optmizing the atomic basis sets in interatomic force calculations. The approach is illustrated for the case of two helium atoms. (orig.)

  16. High-Temperature Structural Analysis Model of the Process Heat Exchanger for Helium Gas Loop (II)

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, Heong Yeon; Kim, Chan Soo; Hong, Seong Duk; Park, Hong Yoon

    2010-01-01

    PHE (Process Heat Exchanger) is a key component required to transfer heat energy of 950 .deg. C generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established the helium gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype to be tested in the loop. In this study, as part of the high temperature structural-integrity evaluation of the PHE prototype, which is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal expansion analysis of the PHE prototype. The results obtained in this study will be used to design the performance test setup for the PHE prototype

  17. Down-Hole Heat Exchangers: Modelling of a Low-Enthalpy Geothermal System for District Heating

    Directory of Open Access Journals (Sweden)

    M. Carlini

    2012-01-01

    Full Text Available In order to face the growing energy demands, renewable energy sources can provide an alternative to fossil fuels. Thus, low-enthalpy geothermal plants may play a fundamental role in those areas—such as the Province of Viterbo—where shallow groundwater basins occur and conventional geothermal plants cannot be developed. This may lead to being fuelled by locally available sources. The aim of the present paper is to exploit the heat coming from a low-enthalpy geothermal system. The experimental plant consists in a down-hole heat exchanger for civil purposes and can supply thermal needs by district heating. An implementation in MATLAB environment is provided in order to develop a mathematical model. As a consequence, the amount of withdrawable heat can be successfully calculated.

  18. Exchange and spin-fluctuation superconducting pairing in the strong correlation limit of the Hubbard model

    International Nuclear Information System (INIS)

    Plakida, N. M.; Anton, L.; Adam, S. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO); Adam, Gh. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO)

    2001-01-01

    A microscopical theory of superconductivity in the two-band singlet-hole Hubbard model, in the strong coupling limit in a paramagnetic state, is developed. The model Hamiltonian is obtained by projecting the p-d model to an asymmetric Hubbard model with the lower Hubbard subband occupied by one-hole Cu d-like states and the upper Hubbard subband occupied by two-hole p-d singlet states. The model requires two microscopical parameters only, the p-d hybridization parameter t and the charge-transfer gap Δ. It was previously shown to secure an appropriate description of the normal state properties of the high -T c cuprates. To treat rigorously the strong correlations, the Hubbard operator technique within the projection method for the Green function is used. The Dyson equation is derived. In the molecular field approximation, d-wave superconducting pairing of conventional hole (electron) pairs in one Hubbard subband is found, which is mediated by the exchange interaction given by the interband hopping, J ij = 4 (t ij ) 2 / Δ. The normal and anomalous components of the self-energy matrix are calculated in the self-consistent Born approximation for the electron-spin-fluctuation scattering mediated by kinematic interaction of the second order of the intraband hopping. The derived numerical and analytical solutions predict the occurrence of singlet d x 2 -y 2 -wave pairing both in the d-hole and singlet Hubbard subbands. The gap functions and T c are calculated for different hole concentrations. The exchange interaction is shown to be the most important pairing interaction in the Hubbard model in the strong correlation limit, while the spin-fluctuation coupling results only in a moderate enhancement of T c . The smaller weight of the latter comes from two specific features: its vanishing inside the Brillouin zone (BZ) along the lines, |k x | + |k y |=π pointing towards the hot spots and the existence of a small energy shell within which the pairing is effective. By

  19. Statistical modelling of citation exchange between statistics journals.

    Science.gov (United States)

    Varin, Cristiano; Cattelan, Manuela; Firth, David

    2016-01-01

    Rankings of scholarly journals based on citation data are often met with scepticism by the scientific community. Part of the scepticism is due to disparity between the common perception of journals' prestige and their ranking based on citation counts. A more serious concern is the inappropriate use of journal rankings to evaluate the scientific influence of researchers. The paper focuses on analysis of the table of cross-citations among a selection of statistics journals. Data are collected from the Web of Science database published by Thomson Reuters. Our results suggest that modelling the exchange of citations between journals is useful to highlight the most prestigious journals, but also that journal citation data are characterized by considerable heterogeneity, which needs to be properly summarized. Inferential conclusions require care to avoid potential overinterpretation of insignificant differences between journal ratings. Comparison with published ratings of institutions from the UK's research assessment exercise shows strong correlation at aggregate level between assessed research quality and journal citation 'export scores' within the discipline of statistics.

  20. U.S. Department of Energy national technology information exchange workshops

    International Nuclear Information System (INIS)

    Daub, G.J.; Earle, S.D.; Smibert, A.M.; Wight, E.H.

    1994-01-01

    The U.S. Department of Energy National Technology Information Exchange (TIE) Workshops bring together environmental restoration and technology development personnel to exchange and share problems, needs, technological solutions, ideas, and successes and failures from lessons learned at DOE sites. The success of this forum is measured by the knowledge gained, contacts made, and program dollars saved by the people who actually do the work in the field. TIE is a unique opportunity to unite the DOE community and allow individuals to listen and to learn about each others' problems and solutions. By using today's technologies better, the National TIE Workshops help identify and implement cost-effective and appropriate technologies to meet the needs of the DOE environmental restoration program

  1. Multiple direct exchange in a Yang-Mills theory at high energy

    International Nuclear Information System (INIS)

    McCoy, B.M.; Wu, T.T.

    1976-01-01

    For eighth and higher orders, we obtain the leading high-energy behavior of the sum of all one-layer Feynman diagrams in Yang-Mills theory. These are the contributions from Feynman diagrams where the two incident fast particles exchange directly Yang-Mills bosons that are much less energetic. The incident particles may be either bosons or fermions of arbitrary isospin, and the result is also generalized to include the case of the Higgs scalar. The scattering amplitudes in all these cases are closely related, and all behave as s ln/sub n/ -1 s in the 2n + 2 order. Furthermore, in this leading order for n > or = 2, the exchanged isospins are always 0 and 2, no matter how high the isospins of the incident particles are

  2. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.

    2013-09-17

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  3. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.; Hickner, Michael A.; Logan, Bruce E.

    2013-01-01

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  4. Bayesian analysis for exponential random graph models using the adaptive exchange sampler

    KAUST Repository

    Jin, Ick Hoon

    2013-01-01

    Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the existence of intractable normalizing constants. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the issue of intractable normalizing constants encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.

  5. Land-use change arising from rural land exchange : an agent-based simulation model

    NARCIS (Netherlands)

    Bakker, Martha M.; Alam, Shah Jamal; van Dijk, Jerry|info:eu-repo/dai/nl/29612642X; Rounsevell, Mark D. A.

    Land exchange can be a major factor driving land-use change in regions with high pressure on land, but is generally not incorporated in land-use change models. Here we present an agent-based model to simulate land-use change arising from land exchange between multiple agent types representing

  6. A General Model for Cost Estimation in an Exchange

    Directory of Open Access Journals (Sweden)

    Benzion Barlev

    2014-03-01

    Full Text Available Current Generally Accepted Accounting Principles (GAAP state that the cost of an asset acquired for cash is the fair value (FV of the amount surrendered, and that of an asset acquired in a non-monetary exchange is the FV of the asset surrendered or, if it is more “clearly evident,” the FV of the acquired asset. The measurement method prescribed for a non-monetary exchange ignores valuable information about the “less clearly evident” asset. Thus, we suggest that the FV in any exchange be measured by the weighted average of the exchanged assets’ FV estimations, where the weights are the inverse of the variances’ estimations. This alternative valuation process accounts for the uncertainty involved in estimating the FV of each of the asset in the exchange. The proposed method suits all types of exchanges: monetary and non-monetary. In a monetary transaction, the weighted average equals the cash paid because the variance of its FV is nil.

  7. Energy exchangers with LCT as a precision method for diet control in LCHADD.

    Science.gov (United States)

    Mozrzymas, Renata; Konikowska, Klaudia; Regulska-Ilow, Bożena

    2017-01-01

    Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is a rare genetic disease. The LCHADD treatment is mainly based on special diet. In this diet, energy from long-chain triglycerides (LCT) cannot exceed 10%, however energy intake from the consumption of medium-chain triglycerides (MCTs) should increase. The daily intake of energy should be compatible with energy requirements and treatment should involve frequent meals including during the night to avoid periods of fasting. In fact, there are no recommendations for total content of LCT in all of the allowed food in the LCHADD diet. The aim of the study was to present a new method of diet composition in LCHADD with the use of blocks based on energy exchangers with calculated LCT content. In the study, the diet schema was shown for calculating the energy requirements and LCT content in the LCHADD diet. How to create the diet was also shown, based on a food pyramid developed for patients with LCHADD. The blocks will make it possible, in a quick and simple way, to create a balanced diet which provides adequate energy value, essential nutrients and LCT content. This method can be used by doctors and dietitians who specialize in treating rare metabolic diseases. It can also be used by patients and their families for accurate menu planning with limited LCT content.

  8. Quasi-steady-state model of a counter flow air-to-air heat exchanger with phase change

    DEFF Research Database (Denmark)

    Rose, Jørgen; Nielsen, Toke Rammer; Kragh, Jesper

    2008-01-01

    -exchanger. Developing highly efficient heat-exchangers and strategies to avoid/remove frost formation implies the use of detailed models to predict and evaluate different heat-exchanger designs and strategies. This paper presents a quasi-steady-state model of a counter-flow air-to-air heat-exchanger that takes...

  9. Measuring exchange market pressure in South Africa: an application of the Girton-Roper monetary model

    Directory of Open Access Journals (Sweden)

    Emmanuel Ziramba

    2013-02-01

    Full Text Available The monetary approach to the balance of payments is based on the assumption of a fixed exchange rate, while its approach to exchange rate determination is based on perfectly flexible exchange rate. Another monetary model called the Exchange Market Pressure model (EMP was designed to capture the properties of the managed float. This paper applies the monetary model of the EMP to the South African experience with floating exchange rate and managed float systems over the period 1970-1993. We show that the EMP model is superior to the traditional monetary approach. We do not find evidence of the impact of domestic real income on EMP. Diagnostic tests suggest that the model is well specified and the residuals pass the typical checking.

  10. Universal model for water costs of gas exchange by animals and plants.

    Science.gov (United States)

    Woods, H Arthur; Smith, Jennifer N

    2010-05-04

    For terrestrial animals and plants, a fundamental cost of living is water vapor lost to the atmosphere during exchange of metabolic gases. Here, by bringing together previously developed models for specific taxa, we integrate properties common to all terrestrial gas exchangers into a universal model of water loss. The model predicts that water loss scales to gas exchange with an exponent of 1 and that the amount of water lost per unit of gas exchanged depends on several factors: the surface temperature of the respiratory system near the outside of the organism, the gas consumed (oxygen or carbon dioxide), the steepness of the gradients for gas and vapor, and the transport mode (convective or diffusive). Model predictions were largely confirmed by data on 202 species in five taxa--insects, birds, bird eggs, mammals, and plants--spanning nine orders of magnitude in rate of gas exchange. Discrepancies between model predictions and data seemed to arise from biologically interesting violations of model assumptions, which emphasizes how poorly we understand gas exchange in some taxa. The universal model provides a unified conceptual framework for analyzing exchange-associated water losses across taxa with radically different metabolic and exchange systems.

  11. Magnetic ordering of four particle exchange model in BCC 3He

    International Nuclear Information System (INIS)

    Ishikawa, Koji; Okada, Isamu

    1978-01-01

    The low temperature magnetic ordering of BCC 3 He within the mean field approximation was studied. A model including four particle exchange interactions was considered. Two types of cyclic quadrupole exchange process, planar and folded, were taken into account. Assuming four sublattices, it was considered to minimize the spin energy with respect to the classical spin vector and to find out four ordered states at the absolute zero point. They are antiferromagnetic (AF), weak ferromagnetic (WF) and two kinds of simple cubic antiferromagnetic states (SCAF). The condition for the existence of each ordered state is given, and the free energies of the ordered states are calculated in the mean field approximation. The transition between AF or SCAF and the paramagnetic states is of the first order. The phase diagram is drawn in the parameter space. The phase diagram was obtained numerically at Hetherington and Willard's value and at its neighbouring values. The difference between the present result and HW's is that of magnetic field direction in the perpendicular simple cubic antiferromagnetic states. The second order transition disappears, and the WF state changes gradually into AF state. With respect to the first order transition, the transition temperature increases with magnetic field. In this case, a critical magnetic field exists. (Kato, T

  12. Approximating the Shifted Hartree-Exchange-Correlation Potential in Direct Energy Kohn-Sham Theory.

    Science.gov (United States)

    Sharpe, Daniel J; Levy, Mel; Tozer, David J

    2018-02-13

    Levy and Zahariev [Phys. Rev. Lett. 113 113002 (2014)] have proposed a new approach for performing density functional theory calculations, termed direct energy Kohn-Sham (DEKS) theory. In this approach, the electronic energy equals the sum of orbital energies, obtained from Kohn-Sham-like orbital equations involving a shifted Hartree-exchange-correlation potential, which must be approximated. In the present study, density scaling homogeneity considerations are used to facilitate DEKS calculations on a series of atoms and molecules, leading to three nonlocal approximations to the shifted potential. The first two rely on preliminary Kohn-Sham calculations using a standard generalized gradient approximation (GGA) exchange-correlation functional and the results illustrate the benefit of describing the dominant Hartree component of the shift exactly. A uniform electron gas analysis is used to eliminate the need for these preliminary Kohn-Sham calculations, leading to a potential with an unconventional form that yields encouraging results, providing strong motivation for further research in DEKS theory.

  13. Reaction mechanism and nuclear correlations study by low energy pion double charge exchange

    International Nuclear Information System (INIS)

    Weinfeld, Z.

    1993-06-01

    In pion double-charge-exchange (DCX) reactions, a positive (negative) pion is incident on a nucleus and a negative (positive) pion emerges. These reactions are of fundamental interest since the process must involve at least two nucleons in order to conserve charge. Although two nucleon processes are present in many reactions they are usually masked by the dominant single nucleon processes. DCX is unique in that respect since it is a two nucleon process in lowest order and thus may be sensitive to two-nucleon correlations. Measurements of low energy pion double-charge-exchange reactions to the double-isobaric-analog-state (DIAS) and ground-state (GS) of the residual nucleus provide new means for studying nucleon-nucleon correlations in nuclei. At low energies (T π 7/2 shell at energies ranging from 25 to 65 MeV. Cross sections were measured on 42,44,48 Ca, 46,50 Ti and 54 Fe. The calcium isotopes make a good set of nuclei on which to study the effects of correlations in DCX reactions

  14. Tundra shrub effects on growing season energy and carbon dioxide exchange

    Science.gov (United States)

    Lafleur, Peter M.; Humphreys, Elyn R.

    2018-05-01

    Increased shrub cover on the Arctic tundra is expected to impact ecosystem-atmosphere exchanges of carbon and energy resulting in feedbacks to the climate system, yet few direct measurements of shrub tundra-atmosphere exchanges are available to corroborate expectations. Here we present energy and carbon dioxide (CO2) fluxes measured using the eddy covariance technique over six growing seasons at three closely located tundra sites in Canada’s Low Arctic. The sites are dominated by the tundra shrub Betula glandulosa, but percent cover varies from 17%–60% and average shrub height ranges from 18–59 cm among sites. The site with greatest percent cover and height had greater snow accumulation, but contrary to some expectations, it had similar late-winter albedo and snow melt dates compared to the other two sites. Immediately after snowmelt latent heat fluxes increased more slowly at this site compared to the others. Yet by the end of the growing season there was little difference in cumulative latent heat flux among the sites, suggesting evapotranspiration was not increased with greater shrub cover. In contrast, lower albedo and less soil thaw contributed to greater summer sensible heat flux at the site with greatest shrub cover, resulting in greater total atmospheric heating. Net ecosystem exchange of CO2 revealed the potential for enhanced carbon cycling rates under greater shrub cover. Spring CO2 emissions were greatest at the site with greatest percent cover of shrubs, as was summer net uptake of CO2. The seasonal net sink for CO2 was ~2 times larger at the site with the greatest shrub cover compared to the site with the least shrub cover. These results largely agree with expectations that the growing season feedback to the atmosphere arising from shrub expansion in the Arctic has the potential to be negative for CO2 fluxes but positive for turbulent energy fluxes.

  15. Derivation of the tunnelling exchange time for the model of trap-assisted tunnelling

    International Nuclear Information System (INIS)

    Racko, J.; Ballo, P.; Benko, P.; Harmatha, L.; Grmanova, A.; Breza, J.

    2014-01-01

    We present derivation of the tunnelling exchange times that play the key role in the model of trap assisted tunnelling (TAT) considering the electron and hole exchange processes between the trapping centre lying in the forbidden band of the semiconductor and the conduction band, valence band or a metal. All exchange processes are quantitatively described by respective exchange times. The reciprocal values of these exchange times represent the frequency with which the exchange processes contribute to the probability of occupation of the trap by free charge carriers. The crucial problem in any model of TAT is the calculation of the occupation probability. In our approach this probability is expressed in terms of only thermal and tunnelling exchange times. The concept of tunnelling exchange times presents a dominant contribution to our model of TAT. The new approach allows to simply calculate the probability of occupation of the trapping centre by a free charge carrier and subsequently to get the thermal and tunnelling generation-recombination rates occurring in the continuity equations. This is why the TAT model based on thermal and tunnelling exchange times is suitable for simulating the electrical properties of semiconductor nanostructures in which quantum mechanical phenomena play a key role. (authors)

  16. Numerical calibration and experimental validation of a PCM-Air heat exchanger model

    International Nuclear Information System (INIS)

    Stathopoulos, N.; El Mankibi, M.; Santamouris, Mattheos

    2017-01-01

    Highlights: • Development of a PCM-Air heat exchanger experimental unit and its numerical model. • Differential Scanning Calorimetry for PCM properties. • Ineptitude of DSC obtained heat capacity curves. • Creation of adequate heat capacity curves depending on heat transfer rates. • Confrontation of numerical and experimental results and validation of the model. - Abstract: Ambitious goals have been set at international, European and French level for energy consumption and greenhouse gas emissions decrease of the building sector. Achieving them requires renewable energy integration, a technology that presents however an important drawback: intermittent energy production. In response, thermal energy storage (TES) technology applications have been developed in order to correlate energy production and consumption of the building. Phase Change Materials (PCMs) have been widely used in TES applications as they offer a high storage density and adequate phase change temperature range. It is important to accurately know the thermophysical properties of the PCM, both for experimental (system design) and numerical (correct prediction) purposes. In this paper, the fabrication of a PCM – Air experimental prototype is presented at first, along with the development of a numerical model simulating the downstream temperature evolution of the heat exchanger. Particular focus is given to the calibration method and the validation of the model using experimental characterization results. Differential scanning calorimetry (DSC) is used to define the thermal properties of the PCM. Initial numerical results are underestimated compared to experimental ones. Various factors were investigated, pointing to the ineptitude of the heat capacity parameter, as DSC results depend on heating/cooling rates. Adequate heat capacity curves were empirically determined, depending on heat transfer rates and based on DSC results and experimental observations. The results of the proposed model

  17. Ecosystem-Atmosphere Exchange of Carbon, Water and Energy over a Mixed Deciduous Forest in the Midwest

    Energy Technology Data Exchange (ETDEWEB)

    Danilo Dragoni; Hans Peter Schmid; C.S.B. Grimmond; J.C. Randolph; J.R. White

    2012-12-17

    During the project period we continued to conduct long-term (multi-year) measurements, analysis, and modeling of energy and mass exchange in and over a deciduous forest in the Midwestern United States, to enhance the understanding of soil-vegetation-atmosphere exchange of carbon. At the time when this report was prepared, results from nine years of measurements (1998 - 2006) of above canopy CO2 and energy fluxes at the AmeriFlux site in the Morgan-Monroe State Forest, Indiana, USA (see Table 1), were available on the Fluxnet database, and the hourly CO2 fluxes for 2007 are presented here (see Figure 1). The annual sequestration of atmospheric carbon by the forest is determined to be between 240 and 420 g C m-2 a-1 for the first ten years. These estimates are based on eddy covariance measurements above the forest, with a gap-filling scheme based on soil temperature and photosynthetically active radiation. Data gaps result from missing data or measurements that were rejected in qua)lity control (e.g., during calm nights). Complementary measurements of ecological variables (i.e. inventory method), provided an alternative method to quantify net carbon uptake by the forest, partition carbon allocation in each ecosystem components, and reduce uncertainty on annual net ecosystem productivity (NEP). Biometric datasets are available on the Fluxnext database since 1998 (with the exclusion of 2006). Analysis for year 2007 is under completion.

  18. Quark-exchange effects in a deuteron breakup at intermediate energy

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Syamtomov, A.I.; Glozman, L.Ya.

    1995-01-01

    Microscopical approach to a deuteron breakup at high and intermediate energies is proposed. We show that the quark exchange effects, resulting from the full asymmetry of the 6q-deuteron wave function with respect to the pair permutations of quark variables, strongly affect the proton momentum distribution in the deuteron, as well as the polarization observables of inclusive deuteron breakup, when the '' internal momentum '' in the deuteron is of order of a few hundreds MeV/c. 25 refs., 2 tab., 9 figs

  19. Quark-exchange effects in a deuteron breakup at intermediate energy.

    Energy Technology Data Exchange (ETDEWEB)

    Kobushkin, A P; Syamtomov, A I; Glozman, L Ya

    1996-12-31

    Microscopical approach to a deuteron breakup at high and intermediate energies is proposed. We show that the quark exchange effects, resulting from the full asymmetry of the 6q-deuteron wave function with respect to the pair permutations of quark variables, strongly affect the proton momentum distribution in the deuteron, as well as the polarization observables of inclusive deuteron breakup, when the `` internal momentum `` in the deuteron is of order of a few hundreds MeV/c. 25 refs., 2 tab., 9 figs.

  20. Modeling the exchange rate of the euro against the dollar using the ARCH/GARCH models

    Directory of Open Access Journals (Sweden)

    Kovačević Radovan

    2016-01-01

    Full Text Available The analysis of time series with conditional heteroskedasticity (changeable time variability, conditional variance instability, the phenomenon called volatility is the main task of ARCH and GARCH models. The aim of these models is to calculate some of the volatility indicators needed for financial decisions. This paper examines the performance of generalized autoregressive conditional heteroscedasticity (GARCH model in modeling the daily changes of the log exchange rate of the euro against the dollar. Several GARCH models have been applied for modeling the daily log exchange rate returns of the euro, with a different number of parameters. The characteristic of estimated GARCH models is that the obtained coefficients of lagged squared residuals and the conditional variance parameters in the equation of conditional variance have a strong statistical significance. The sum of these two coefficients' estimates is close to a unit, which is typical for GARCH models that are applied on the data of financial assets returns. This means that the shocks in the conditional variance equation will be long lasting. The great value of the sum of these two coefficients shows that the high rates of positive or negative returns leads to a large forecasted value of the variance in the prolonged period. The asymmetrical EGARCH (1,1 model has showed the best results in modeling the euro exchange rate returns. The asymmetry term in the conditional variance equation of this model is negative and statistically significant. A negative value of this term suggests that the positive shock has less impact on the conditional variance than the negative shocks. The asymmetric EGARCH (1,1 model provides evidence of a leverage effect.

  1. Asymptotic theory of charge exchange for relativistic velocities and binding energies

    International Nuclear Information System (INIS)

    Demkov, Yu.N.; Ostrovskij, V.N.; Shevchenko, S.I.

    1983-01-01

    The asymptotic theory of charge exchange (ATCE) at a large shock parameter rho is applied to the case of relativistic velocities and binding energies. The charge exchange reaction (1+e)+2 → 1+(e+2), when an electron from the bound 1Ssub(1/2) state on one particle transforms to the 1Ssub(1/2) state on the other, is considered. Oasic features of the method are as follows: 1) the representation of the transition amplitude in the form of multidimensional integral over some hypersurface; 2) the use of the saddle-point method for calculating necessary multidimensional integrals; 3) the refinement of wave functions as compared with the case of the absence of the interaction. The ATCE (at rho → infinity) makes it possible to obtain analytical results whose accuracy is determined solely with the shock parameter rho. A basic term of charge exchange amplitude asymptotics for 1Ssub(1/2) → 1Ssub(1/2) transitions has been calculated. It is possible to consider the ATCE as a peculiar reference with which theoretical and experimental results can be compared as well as to use the ATCE as boundary conditions during numerical calculations

  2. Specification of a STEP Based Reference Model for Exchange of Robotics Models

    DEFF Research Database (Denmark)

    Haenisch, Jochen; Kroszynski, Uri; Ludwig, Arnold

    robot programming, the descriptions of geometry, kinematics, robotics, dynamics, and controller data using STEP are addressed as major goals of the project.The Project Consortium has now released the "Specificatin of a STEP Based Reference Model for Exchange of Robotics Models" on which a series......ESPRIT Project 6457: "Interoperability of Standards for Robotics in CIME" (InterRob) belongs to the Subprogram "Computer Integrated Manufacturing and Engineering" of ESPRIT, the European Specific Programme for Research and Development in Information Technology supported by the European Commision....... InterRob aims to develop an integrated solution to precision manufacturing by combining product data and database technologies with robotic off-line programming and simulation. Benefits arise from the use of high level simulation tools and developing standards for the exchange of product model data...

  3. Evaluating energy efficiency policies with energy-economy models

    NARCIS (Netherlands)

    Mundaca, L.; Neij, L.; Worrell, E.; McNeil, M.

    2010-01-01

    The growing complexities of energy systems, environmental problems, and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically

  4. Evaluating Energy Efficiency Policies with Energy-Economy Models

    Energy Technology Data Exchange (ETDEWEB)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  5. Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model

    Directory of Open Access Journals (Sweden)

    K. Ashworth

    2016-12-01

    Full Text Available The FORCAsT canopy exchange model was used to investigate the underlying mechanisms governing foliage emissions of methanol and acetaldehyde, two short chain oxygenated volatile organic compounds ubiquitous in the troposphere and known to have strong biogenic sources, at a northern mid-latitude forest site. The explicit representation of the vegetation canopy within the model allowed us to test the hypothesis that stomatal conductance regulates emissions of these compounds to an extent that its influence is observable at the ecosystem scale, a process not currently considered in regional- or global-scale atmospheric chemistry models.We found that FORCAsT could only reproduce the magnitude and diurnal profiles of methanol and acetaldehyde fluxes measured at the top of the forest canopy at Harvard Forest if light-dependent emissions were introduced to the model. With the inclusion of such emissions, FORCAsT was able to successfully simulate the observed bidirectional exchange of methanol and acetaldehyde. Although we found evidence that stomatal conductance influences methanol fluxes and concentrations at scales beyond the leaf level, particularly at dawn and dusk, we were able to adequately capture ecosystem exchange without the addition of stomatal control to the standard parameterisations of foliage emissions, suggesting that ecosystem fluxes can be well enough represented by the emissions models currently used.

  6. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-01-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. CAFE utilizes the Master Chemical Mechanism (MCM and is the first model of its kind to incorporate a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  7. Model Based Controller Design for a Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. Nithya

    2007-10-01

    Full Text Available In all the process industries the process variables like flow, pressure, level and temperature are the main parameters that need to be controlled in both set point and load changes. The transfer of heat is one of the main important operation in the heat exchanger .The transfer of heat may be fluid to fluid, gas to gas i.e. in the same phase or the phase change can occur on either side of the heat exchanger. The control of heat exchanger is complex due to its nonlinear dynamics. For this nonlinear process of a heat exchanger the model is identified to be First Order plus Dead Time (FOPDT.The Internal Model Control (IMC is one of the model predictive control methods based on the predictive output of the process model. The conventional controller tuning is compared with IMC techniques and it found to be suitable for heat exchanger than the conventional PI tuning.

  8. The American Foreign Exchange Option in Time-Dependent One-Dimensional Diffusion Model for Exchange Rate

    International Nuclear Information System (INIS)

    Rehman, Nasir; Shashiashvili, Malkhaz

    2009-01-01

    The classical Garman-Kohlhagen model for the currency exchange assumes that the domestic and foreign currency risk-free interest rates are constant and the exchange rate follows a log-normal diffusion process.In this paper we consider the general case, when exchange rate evolves according to arbitrary one-dimensional diffusion process with local volatility that is the function of time and the current exchange rate and where the domestic and foreign currency risk-free interest rates may be arbitrary continuous functions of time. First non-trivial problem we encounter in time-dependent case is the continuity in time argument of the value function of the American put option and the regularity properties of the optimal exercise boundary. We establish these properties based on systematic use of the monotonicity in volatility for the value functions of the American as well as European options with convex payoffs together with the Dynamic Programming Principle and we obtain certain type of comparison result for the value functions and corresponding exercise boundaries for the American puts with different strikes, maturities and volatilities.Starting from the latter fact that the optimal exercise boundary curve is left continuous with right-hand limits we give a mathematically rigorous and transparent derivation of the significant early exercise premium representation for the value function of the American foreign exchange put option as the sum of the European put option value function and the early exercise premium.The proof essentially relies on the particular property of the stochastic integral with respect to arbitrary continuous semimartingale over the predictable subsets of its zeros. We derive from the latter the nonlinear integral equation for the optimal exercise boundary which can be studied by numerical methods

  9. Contributions of chemical exchange to T1ρ dispersion in a tissue model.

    Science.gov (United States)

    Cobb, Jared G; Xie, Jingping; Gore, John C

    2011-12-01

    Variations in T(1ρ) with locking-field strength (T(1ρ) dispersion) may be used to estimate proton exchange rates. We developed a novel approach utilizing the second derivative of the dispersion curve to measure exchange in a model system of cross-linked polyacrylamide gels. These gels were varied in relative composition of comonomers, increasing stiffness, and in pH, modifying exchange rates. Magnetic resonance images were recorded with a spin-locking sequence as described by Sepponen et al. These measurements were fit to a mono-exponential decay function yielding values for T(1ρ) at each locking-field measured. These values were then fit to a model by Chopra et al. for estimating exchange rates. For low stiffness gels, the calculated exchange values increased by a factor of 4 as pH increased, consistent with chemical exchange being the dominant contributor to T(1ρ) dispersion. Interestingly, calculated chemical exchange rates also increased with stiffness, likely due to modified side-chain exchange kinetics as the composition varied. This article demonstrates a new method to assess the structural and chemical effects on T(1ρ) relaxation dispersion with a suitable model. These phenomena may be exploited in an imaging context to emphasize the presence of nuclei of specific exchange rates, rather than chemical shifts. Copyright © 2011 Wiley Periodicals, Inc.

  10. STUDY ON ENERGY EXCHANGE PROCESSES IN NORMAL OPERATION OF METRO ROLLING STOCK WITH REGENERATIVE BRAKING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. O. Sulym

    2017-10-01

    Full Text Available Purpose. The analysis of the existing studies showed that the increasing of energy efficiency of metro rolling stock becomes especially important and requires timely solutions. It is known that the implementation of regenerative braking systems on rolling stock will allow significantly solving this problem. It was proved that one of the key issues regarding the introduction of the above-mentioned systems is research on efficient use of electric energy of regenerative braking. The purpose of the work is to evaluate the amount of excessive electric power of regenerative braking under normal operation conditions of the rolling stock with regenerative braking systems for the analysis of the energy saving reserves. Methodology. Quantifiable values of electrical energy consumed for traction, returned to the contact line and dissipated in braking resistors (excessive energy are determined using results of experimental studies of energy exchange processes under normal operating conditions of metro rolling stock with regenerative systems. Statistical methods of data processing were applied as well. Findings. Results of the studies analysis of metro rolling stock operation under specified conditions in Sviatoshinsko-Brovarskaia line of KP «Kyiv Metro system» stipulate the following: 1 introduction of regenerative braking systems into the rolling stock allows to return about 17.9-23.2% of electrical energy consumed for traction to the contact line; 2 there are reserves for improving of energy efficiency of rolling stock with regenerative systems at the level of 20.2–29.9 % of electrical energy consumed for traction. Originality. For the first time, it is proved that the most significant factor that influences the quantifiable values of the electrical energy regeneration is a track profile. It is suggested to use coefficients which indicate the amount and reserves of unused (excessive electrical energy for quantitative evaluation. Studies on

  11. The models for financial crisis detection in Indonesia based on import, export, and foreign exchange reserves

    Science.gov (United States)

    Sugiyanto; Wibowo, Supriyadi; Rizky Aristina Suwardi, Vivi

    2017-12-01

    The severity of the financial crisis that occurred in Indonesia required an early warning system of financial crisis. The financial crisis in Indonesia can be detected based on imports, exports, and foreign exchange reserves. The purpose of the research is to determine an appropriate model to detect the financial crisis in Indonesia based on imports, exports, and foreign exchange reserves. Markov switching is an alternative framework for the approach often used in financial crisis detection. Combined volatility and Markov switching model with three states assumptions can be established if an AR and volatility models have been obtained. Imports, exports, and foreign exchange reserves data from January 1990 to December 2016 have the heteroscedasticity effect so that an ARCH model is used as a volatility model. Research shows that SWARCH(3.1) model is an appropriate model for detecting financial crisis in Indonesia based on imports, exports, and foreign exchange reserves.

  12. Modelling distributed energy resources in energy service networks

    CERN Document Server

    Acha, Salvador

    2013-01-01

    Focuses on modelling two key infrastructures (natural gas and electrical) in urban energy systems with embedded technologies (cogeneration and electric vehicles) to optimise the operation of natural gas and electrical infrastructures under the presence of distributed energy resources

  13. Evaluation of soil thermal potential under Tunisian climate using a new conic basket geothermal heat exchanger: Energy and exergy analysis

    International Nuclear Information System (INIS)

    Boughanmi, Hassen; Lazaar, Mariem; Farhat, Abdelhamid; Guizani, Amenallah

    2017-01-01

    Highlights: • Conic geothermal basket heat exchanger (CBGHE) is experimentally investigated. • Charging and discharging processes of CBGHE are evaluated. • Energy and exergy efficiencies of CBGHE are performed. • High and stable performance of surface geothermal energy in Tunisia is established. - Abstract: Geothermal heat exchangers system composed of two conic baskets serially connected is designed and realized. Both heat exchangers are made in polyethylene high-density material and have a length of 3 m each one. They will be used for greenhouse cooling and heating through a geothermal heat pump. Its conical geometry is selected to reduce the operation cost and the exploited area, compared to vertical and horizontal geothermal heat exchangers often used. It also assures the maximum of heat exchange with the soil. The aim of this study is to determine the thermal performance of one Conic Basket Geothermal Heat Exchanger (CBGHE), buried at 3 m deep, in the exploitation of the soil thermal potential, in summer. A rate of heat exchange with the soil is determined and the global heat exchange of the CBGHE is assessed. Its energy and exergy efficiencies are also evaluated using both first and second law of thermodynamic. Results show that the specific heat exchange ranges between 20 W m"−"1 and 50 W m"−"1. Maximal energetic and exergetic efficiencies of the CBGHE, equal to 62% and 37% respectively, are reached for a mass flow rate of 0.1 kg s"−"1. For this value of mass flow rate, the overall heat exchange coefficient is of 52 W m"−"2 K"−"1.

  14. XML-based formulation of field theoretical models. A proposal for a future standard and data base for model storage, exchange and cross-checking of results

    International Nuclear Information System (INIS)

    Demichev, A.; Kryukov, A.; Rodionov, A.

    2002-01-01

    We propose an XML-based standard for formulation of field theoretical models. The goal of creation of such a standard is to provide a way for an unambiguous exchange and cross-checking of results of computer calculations in high energy physics. At the moment, the suggested standard implies that models under consideration are of the SM or MSSM type (i.e., they are just SM or MSSM, their submodels, smooth modifications or straightforward generalizations). (author)

  15. Computing Relative Free Energies of Solvation using Single Reference Thermodynamic Integration Augmented with Hamiltonian Replica Exchange.

    Science.gov (United States)

    Khavrutskii, Ilja V; Wallqvist, Anders

    2010-11-09

    This paper introduces an efficient single-topology variant of Thermodynamic Integration (TI) for computing relative transformation free energies in a series of molecules with respect to a single reference state. The presented TI variant that we refer to as Single-Reference TI (SR-TI) combines well-established molecular simulation methodologies into a practical computational tool. Augmented with Hamiltonian Replica Exchange (HREX), the SR-TI variant can deliver enhanced sampling in select degrees of freedom. The utility of the SR-TI variant is demonstrated in calculations of relative solvation free energies for a series of benzene derivatives with increasing complexity. Noteworthy, the SR-TI variant with the HREX option provides converged results in a challenging case of an amide molecule with a high (13-15 kcal/mol) barrier for internal cis/trans interconversion using simulation times of only 1 to 4 ns.

  16. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave.

    Science.gov (United States)

    Gershman, Daniel J; F-Viñas, Adolfo; Dorelli, John C; Boardsen, Scott A; Avanov, Levon A; Bellan, Paul M; Schwartz, Steven J; Lavraud, Benoit; Coffey, Victoria N; Chandler, Michael O; Saito, Yoshifumi; Paterson, William R; Fuselier, Stephen A; Ergun, Robert E; Strangeway, Robert J; Russell, Christopher T; Giles, Barbara L; Pollock, Craig J; Torbert, Roy B; Burch, James L

    2017-03-31

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  17. Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave

    Science.gov (United States)

    Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; hide

    2017-01-01

    Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  18. Ionic liquids in proton exchange membrane fuel cells: Efficient systems for energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Padilha, Janine C.; Basso, Juliana; da Trindade, Leticia G.; Martini, Emilse M.A.; de Souza, Michele O.; de Souza, Roberto F. [Institute of Chemistry, UFRGS, Av. Bento Goncalves 9500, Porto Alegre 91501-970, P.O. Box 15003 (Brazil)

    2010-10-01

    Proton exchange membrane fuel cells (PEMFCs) are used in portable devices to generate electrical energy; however, the efficiency of the PEMFC is currently only 40%. This study demonstrates that the efficiency of a PEMFC can be increased to 61% when 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF{sub 4}) ionic liquid (IL) is used together with the membrane electrode assembly (MEA). The results for ionic liquids (ILs) 1-butyl-3-methylimidazolium chloride (BMI.Cl) and 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF{sub 4}) in aqueous solutions are better than those obtained with pure water. The current and the power densities with IL are at least 50 times higher than those obtained for the PEMFC wetted with pure water. This increase in PEMFC performance can greatly facilitate the use of renewable energy sources. (author)

  19. Charge exchange during pion-nucleon scattering at low energy: experiment and analysis

    International Nuclear Information System (INIS)

    Vernin, Pascal

    1972-01-01

    This research thesis lies within the frame of a more general study of pion-nucleon scattering according to the following processes: π + p → π + p; π - p → π - p; π - p → π 0 n. It more precisely addresses the last reaction, so-called charge exchange. Pion-nucleon interactions are described by phase shifts of scattering waves. But the measurement of one of these phase shifts (that of the S wave) requires very low energy pions, and could not have been performed until now with a good precision. In order to fill this gap, the author performed charge exchange experiments at 180 deg. and for energies of 22.6, 33.9 and 42.6 MeV. After a recall on involved theoretical data, the author describes the experimental setup, and reports the detailed study of problems raised by neutron detection. He shows that the analysis of experimental data allows (a 3 - a 1 ) to be obtained with a precision which, without being as high as desired, is nevertheless satisfying [fr

  20. Conference on new consumption and commercialization models for photovoltaic energy

    International Nuclear Information System (INIS)

    Freier, Karin; Fontaine, Pierre; Mayer, Joerg; Jimenez, Julien; Richard, Pascal; Vogtmann, Michael; Schaefer, Felix; Martin, Nicolas; Buis, Sabine

    2014-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on new consumption and commercialization models for photovoltaic energy. In the framework of this French-German exchange of experience, about 120 participants exchanged views on the new economic models for solar energy producers while the photovoltaic industry has to face a progressive reduction of feed-in tariffs and of other incentive mechanisms. Beside the legal and economic aspects, technical questions around energy storage and integration of photovoltaic production to the grid were also addressed. This document brings together the available presentations (slides) made during this event: 1 - Stimulating self-consumption and direct selling within the EEG (Karin Freier); 2 - Development of PV self-consumption in France (Pierre Fontaine); 3 - experience from applying the new support program for solar energy storage systems (Joerg Mayer); 4 - Call for solar photovoltaic projects for own consumption in Aquitaine region (Julien Jimenez); 5 - SMA Flexible Storage System - New version of the Sunny Island inverter for smart photovoltaic energy storage (Pascal Richard); 6 - PV Own Consumption in industry and commerce - examples und Operating Concepts (Michael Vogtmann); 7 - Supplying tenants in multiple-family housing with solar power in the 'Neue Heimat' project (Felix Schaefer); 8 - How to manage PV-storage self-consumption from a grid point of view? (Nicolas Martin); 9 - Closing talk (Sabine Buis)

  1. Extreme nonlinear energy exchanges in a geometrically nonlinear lattice oscillating in the plane

    Science.gov (United States)

    Zhang, Zhen; Manevitch, Leonid I.; Smirnov, Valeri; Bergman, Lawrence A.; Vakakis, Alexander F.

    2018-01-01

    We study the in-plane damped oscillations of a finite lattice of particles coupled by linear springs under distributed harmonic excitation. Strong nonlinearity in this system is generated by geometric effects due to the in-plane stretching of the coupling spring elements. The lattice has a finite number of nonlinear transverse standing waves (termed nonlinear normal modes - NNMs), and an equal number of axial linear modes which are nonlinearly coupled to the transverse ones. Nonlinear interactions between the transverse and axial modes under harmonic excitation give rise to unexpected and extreme nonlinear energy exchanges in the lattice. In particular, we directly excite a transverse NNM by harmonic forcing (causing simulataneous indirect excitation of a corresponding axial linear mode due to nonlinear coupling), and identify three energy transfer mechanisms in the lattice. First, we detect the stable response of the directly excited transverse NNM (despite its instability in the absence of forcing), with simultaneous stability of the indirectly excited axial linear mode. Second, by changing the system and forcing parameters we report extreme nonlinear "energy explosions," whereby, after an initial regime of stability, the directly excited transverse NNM loses stability, leading to abrupt excitation of all transverse and axial modes of the lattice, at all possible wave numbers. This strong instability is triggered by the parametric instability of an indirectly excited axial mode which builds energy until the explosion. This is proved through theoretical analysis. Finally, in other parameter ranges we report intermittent, intense energy transfers from the directly excited transverse NNM to a small set of transverse NNMs with smaller wavelengths, and from the indirectly excited axial mode to a small set of axial modes, but with larger wavelengths. These intermittent energy transfers resemble energy cascades occurring in turbulent flows. Our results show that

  2. Relativistic one-boson-exchange model and elastic electron-deuteron scattering at high momentum transfer

    International Nuclear Information System (INIS)

    Hummel, E.; Tjon, J.A.

    1989-01-01

    Using the one-boson-exchange model a relativistic covariant analysis is carried out of the elastic electromagnetic form factors of the deuteron including the ρπγ and ωεγ mesonic-exchange-current contributions. The theoretical predictions are compared with the recent experimental data at high momentum transfer

  3. Models of information exchange between radio interfaces of Wi-Fi group of standards

    Science.gov (United States)

    Litvinskaya, O. S.

    2018-05-01

    This paper offers models of information exchange between radio interfaces of the Wi-Fi group of standards by the example of a real facility management system for the oil and gas industry. Interaction between the MU-MIMO and MIMO technologies is analyzed. An optimal variant of information exchange is proposed.

  4. Application of models for exchange of electronic documents in complex administrative services

    International Nuclear Information System (INIS)

    Glavev, Victor

    2015-01-01

    The report presents application of models for exchange of electronic documents between different administrations in government and business sectors. It shows the benefits of implementing electronic exchange of documents between different local offices of one administration in government sector such as a municipality and the way it is useful for implementing complex administrative services

  5. Application of models for exchange of electronic documents in complex administrative services

    Energy Technology Data Exchange (ETDEWEB)

    Glavev, Victor

    2015-11-30

    The report presents application of models for exchange of electronic documents between different administrations in government and business sectors. It shows the benefits of implementing electronic exchange of documents between different local offices of one administration in government sector such as a municipality and the way it is useful for implementing complex administrative services.

  6. An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Dinh An Nguyen

    2012-07-01

    Full Text Available Many of the Proton Exchange Membrane Fuel Cell (PEMFC models proposed in the literature consist of mathematical equations. However, they are not adequately practical for simulating power systems. The proposed model takes into account phenomena such as activation polarization, ohmic polarization, double layer capacitance and mass transport effects present in a PEM fuel cell. Using electrical analogies and a mathematical modeling of PEMFC, the circuit model is established. To evaluate the effectiveness of the circuit model, its static and dynamic performances under load step changes are simulated and compared to the numerical results obtained by solving the mathematical model. Finally, the applicability of our model is demonstrated by simulating a practical system.

  7. Theoretical calculation of reorganization energy for electron self-exchange reaction by constrained density functional theory and constrained equilibrium thermodynamics.

    Science.gov (United States)

    Ren, Hai-Sheng; Ming, Mei-Jun; Ma, Jian-Yi; Li, Xiang-Yuan

    2013-08-22

    Within the framework of constrained density functional theory (CDFT), the diabatic or charge localized states of electron transfer (ET) have been constructed. Based on the diabatic states, inner reorganization energy λin has been directly calculated. For solvent reorganization energy λs, a novel and reasonable nonequilibrium solvation model is established by introducing a constrained equilibrium manipulation, and a new expression of λs has been formulated. It is found that λs is actually the cost of maintaining the residual polarization, which equilibrates with the extra electric field. On the basis of diabatic states constructed by CDFT, a numerical algorithm using the new formulations with the dielectric polarizable continuum model (D-PCM) has been implemented. As typical test cases, self-exchange ET reactions between tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF) and their corresponding ionic radicals in acetonitrile are investigated. The calculated reorganization energies λ are 7293 cm(-1) for TCNE/TCNE(-) and 5939 cm(-1) for TTF/TTF(+) reactions, agreeing well with available experimental results of 7250 cm(-1) and 5810 cm(-1), respectively.

  8. Double Polarized Neutron-Proton Scattering and Meson-Exchange Nucleon-Nucleon Potential Models

    International Nuclear Information System (INIS)

    Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Penttilae, S.I.; Hoffmann, G.W.

    1999-01-01

    We report on polarized beam - polarized target measurements of the spin-dependent neutron-proton total cross-section differences in longitudinal and transverse geometries (Δσ L and Δσ T , respectively) between E n =5 and 20MeV. Single-parameter phase-shift analyses were performed to extract the phase-shift mixing parameter var-epsilon 1 , which characterizes the strength of the nucleon-nucleon tensor interaction at low energies. Consistent with the trend of previous determinations at E n =25 and 50MeV, our values for var-epsilon 1 imply a stronger tensor force than predicted by meson-exchange nucleon-nucleon potential models and nucleon-nucleon phase-shift analyses. copyright 1999 The American Physical Society

  9. Eddy covariance measurement of the spatial heterogeneity of surface energy exchanges over Heron Reef, Great Barrier Reef, Australia

    Science.gov (United States)

    MacKellar, M.; McGowan, H. A.; Phinn, S. R.

    2011-12-01

    Coral reefs cover 2.8 to 6.0 x 105 km2 of the Earth's surface and are warm, shallow regions that are believed to contribute enhanced sensible and latent heat to the atmosphere, relative to the surrounding ocean. To predict the impact of climate variability on coral reefs and their weather and climate including cloud, winds, rainfall patterns and cyclone genesis, accurate parameterisation of air-sea energy exchanges over coral reefs is essential. This is also important for the parameterisation and validation of regional to global scale forecast models to improve prediction of tropical and sub-tropical marine and coastal weather. Eddy covariance measurements of air-sea fluxes over coral reefs are rare due to the complexities of installing instrumentation over shallow, tidal water. Consequently, measurements of radiation and turbulent flux data for coral reefs have been captured remotely (satellite data) or via single measurement sites downwind of coral reefs (e.g. terrestrial or shipboard instrumentation). The resolution of such measurements and those that have been made at single locations on reefs may not capture the spatial heterogeneity of surface-atmosphere energy exchanges due to the different geomorphic and biological zones on coral reefs. Accordingly, the heterogeneity of coral reefs with regard to substrate, benthic communities and hydrodynamic processes are not considered in the characterization of the surface radiation energy flux transfers across the water-atmosphere interface. In this paper we present a unique dataset of concurrent in situ eddy covariance measurements made on instrumented pontoons of the surface energy balance over different geomorphic zones of a coral reef (shallow reef flat, shallow and deep lagoons). Significant differences in radiation transfers and air-sea turbulent flux exchanges over the reef were highlighted, with higher Bowen ratios over the shallow reef flat. Increasing wind speed was shown to increase flux divergence between

  10. Three-dimensional modeling of radiative and convective exchanges in the urban atmosphere

    International Nuclear Information System (INIS)

    Qu, Yongfeng

    2011-01-01

    In many micro-meteorological studies, building resolving models usually assume a neutral atmosphere. Nevertheless, urban radiative transfers play an important role because of their influence on the energy budget. In order to take into account atmospheric radiation and the thermal effects of the buildings in simulations of atmospheric flow and pollutant dispersion in urban areas, we have developed a three-dimensional (3D) atmospheric radiative scheme, in the atmospheric module of the Computational Fluid Dynamics model Code-Saturne. The radiative scheme was previously validated with idealized cases, using as a first step, a constant 3D wind field. In this work, the full coupling of the radiative and thermal schemes with the dynamical model is evaluated. The aim of the first part is to validate the full coupling with the measurements of the simple geometry from the 'Mock Urban Setting Test' (MUST) experiment. The second part discusses two different approaches to model the radiative exchanges in urban area with a comparison between Code-Saturne and SOLENE. The third part applies the full coupling scheme to show the contribution of the radiative transfer model on the airflow pattern in low wind speed conditions in a 3D urban canopy. In the last part we use the radiative-dynamics coupling to simulate a real urban environment and validate the modeling approach with field measurements from the 'Canopy and Aerosol Particles Interactions in Toulouse Urban Layer' (CAPITOUL). (author) [fr

  11. The ratio Rdp of the quasi-elastic nd → p(nn) to the elastic np → pn charge-exchange process yields at 0 deg over 0.55-2.0 GeV neutron beam energy region: 2. Comparison of the results with the model dependent calculations

    International Nuclear Information System (INIS)

    Sharov, V.I.; Morozov, A.A.; Shindin, R.A.; Chernykh, E.V.; Nomofilov, A.A.; Strunov, L.N.

    2008-01-01

    In our previous paper, the new experimental results on ratio R dp of the quasi-elastic charge-exchange yield at 0 Lab d eg for the nd → p + (nn) reaction to the elastic np → pn charge-exchange yield, were presented. The measurements were carried out at the Nuclotron of the Veksler and Baldin Laboratory of High Energies of the Joint Institute for Nuclear Research at the neutron beam kinetic energies of 0.55, 0.8, 1.0,1.2, 1.4, 1.8 and 2.0 GeV. In this paper, the comparison of these R dp data with the R dp calculations obtained within the impulse approximation by using the invariant amplitude sets from the GW/VPI phase-shift analysis, is made. The calculated R dp values with the set of invariant amplitude data for the elastic np → pn charge exchange at θ p,CM = 0 deg are in a good agreement with the experimental data. It has been confirmed that at θ p,CM = 0 deg the nd → pnn process is caused by the elastic np → pn charge-exchange reaction. Thus, it has been shown that the obtained experimental R dp results can be used for the Delta-Sigma experimental programme to reduce the total ambiguity in the extraction of the amplitude parts

  12. Global energy modeling - A biophysical approach

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Michael

    2010-09-15

    This paper contrasts the standard economic approach to energy modelling with energy models using a biophysical approach. Neither of these approaches includes changing energy-returns-on-investment (EROI) due to declining resource quality or the capital intensive nature of renewable energy sources. Both of these factors will become increasingly important in the future. An extension to the biophysical approach is outlined which encompasses a dynamic EROI function that explicitly incorporates technological learning. The model is used to explore several scenarios of long-term future energy supply especially concerning the global transition to renewable energy sources in the quest for a sustainable energy system.

  13. Proposed Design Procedure of a Helical Coil Heat Exchanger for an Orc Energy Recovery System for Vehicular Application

    Directory of Open Access Journals (Sweden)

    Giacomo Bonafoni

    2015-05-01

    Full Text Available There are several systems that produce energy from low grade heat sources such as Stirling engines, thermoelectric generators, and ORC (Organic Rankine Cycle systems. This paper shows the heat recovery from exhaust gases of a 1400 cc Diesel engine, to vaporize the working fluid of a small (<10 kW ORC system. The main objective is to have a system as compact as possible, to make it suitable for transport applications such as cars, ships, trains, etc. Three fluids were studied for this application: water and two refrigerant fluids: R134a and R245fa, which were found to be more appropriate than water at certain pressure and temperature values. Afterwards, a design procedure was proposed, then the heat exchanger was modeled and finally a steady-state thermal and structural analysis were carried out using a commercial software to find the temperature and the effects of the thermal stress on the material of the helical coiled tube.

  14. Nucleon charge exchange reaction and antiproton elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Kronenfeld, J.

    1985-02-01

    This work treats the medium energy nuclear (p,n) charge exchange reaction to analog states and the low energy elastic scattering of antiprotons and investigates the central aspects of a microscopic theory based on multiple-scattering series which are pertinent to these reactions. A two-step term of the Distorted Wave Impulse Approximation (DWIA) in treating the (p,n) reaction, was included. For the very absorptive p-bar interaction with nuclei we conjecture that a partial infinite summation, constituing a renormalization of the single scattering term of the optical potential series provides the dominant feature of this interaction. In this work the excitation of analog states is calculated and it was found that the (p,n) reaction is described fairly well by the DWIA. In the first part of the work the (p,n) reaction in the energy range 100-200 MeV was treated. The DWIA calculations were based on eikonalization. In the second part of the work the p-barA interaction with the selfconsistent scheme mentioned above, for scattering energies 30-120 MeV, was examined. (author)

  15. Parametric resonance energy exchange and induction phenomenon in a one-dimensional nonlinear oscillator chain

    Science.gov (United States)

    Yoshimura, K.

    2000-11-01

    We study analytically the induction phenomenon in the Fermi-Pasta-Ulam β oscillator chain under initial conditions consisting of single mode excitation. Our study is based on the analytical computation of the largest characteristic exponent of an approximate version of the variational equation. The main results can be summarized as follows: (1) the energy density ɛ scaling of the induction time T is given by T~ɛ-1, and T becomes smaller for higher-frequency mode excitation; (2) there is a threshold energy density ɛc such that the induction time diverges when ɛ∞ (3) the threshold ɛc vanishes as ɛc~N-2 in the limit N-->∞ (4) the threshold ɛc does not depend on the mode number k that is excited in the initial condition; (5) the two modes k+/-m have the largest exponential growth rate, and m increases with increasing ɛ as m/N=3βɛ/π. The above analytical results are thoroughly verified in numerical experiments. Moreover, we discuss the energy exchange process after the induction period in some energy density regimes, based on the numerical results.

  16. Effect of pion external distortion on low energy pion double-charge-exchange

    International Nuclear Information System (INIS)

    Khankhasaev, M.Kh.; Kurmanov, Zh.B.; Johnson, M.B.

    1993-01-01

    The effects of the external pion distortion for iso-elastic charge exchange scattering (within the framework of the isospin invariant optical model) is considered. An approximated method of taking into account the distortion based on the separable expansion of the optical potential in momentum space is developed. The result of external distortions for sequential scattering 14 C(π + , π - ) 14 O at 50 MeV is presented. It is shown that this distortion gives a small enhancement to forward and reduced the differential cross sections at large angels. 22 refs., 5 figs., 1 tab

  17. Modelling energy systems for developing countries

    International Nuclear Information System (INIS)

    Urban, F.; Benders, R.M.J.; Moll, H.C.

    2007-01-01

    Developing countries' energy use is rapidly increasing, which affects global climate change and global and regional energy settings. Energy models are helpful for exploring the future of developing and industrialised countries. However, energy systems of developing countries differ from those of industrialised countries, which has consequences for energy modelling. New requirements need to be met by present-day energy models to adequately explore the future of developing countries' energy systems. This paper aims to assess if the main characteristics of developing countries are adequately incorporated in present-day energy models. We first discuss these main characteristics, focusing particularly on developing Asia, and then present a model comparison of 12 selected energy models to test their suitability for developing countries. We conclude that many models are biased towards industrialised countries, neglecting main characteristics of developing countries, e.g. the informal economy, supply shortages, poor performance of the power sector, structural economic change, electrification, traditional bio-fuels, urban-rural divide. To more adequately address the energy systems of developing countries, energy models have to be adjusted and new models have to be built. We therefore indicate how to improve energy models for increasing their suitability for developing countries and give advice on modelling techniques and data requirements

  18. Exchange bias energy in Co/Pt/IrMn multilayers with perpendicular and in-plane anisotropy

    International Nuclear Information System (INIS)

    Czapkiewicz, M.; Stobiecki, T.; Rak, R.; Zoladz, M.; Dijken, S. van

    2007-01-01

    The magnetization reversal process in perpendicularly biased [Pt/Co] 3 /d Pt Pt/IrMn and in-plane biased Co/d Pt Pt/IrMn multilayers with 0nm= Pt = Pt =0.1nm. In both cases, the existence of large exchange bias fields correlates with a high domain density during magnetization reversal. The interface exchange coupling energy is larger for the in-plane biased films than for the perpendicularly biased multilayers

  19. Exchange splitting of the interaction energy and the multipole expansion of the wave function

    Energy Technology Data Exchange (ETDEWEB)

    Gniewek, Piotr, E-mail: pgniewek@tiger.chem.uw.edu.pl; Jeziorski, Bogumił, E-mail: jeziorsk@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2015-10-21

    The exchange splitting J of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula J{sub surf}[Φ], the volume-integral formula of the symmetry-adapted perturbation theory J{sub SAPT}[Φ], and a variational volume-integral formula J{sub var}[Φ]. The calculations are based on the multipole expansion of the wave function Φ, which is divergent for any internuclear distance R. Nevertheless, the resulting approximations to the leading coefficient j{sub 0} in the large-R asymptotic series J(R) = 2e{sup −R−1}R(j{sub 0} + j{sub 1}R{sup −1} + j{sub 2}R{sup −2} + ⋯) converge with the rate corresponding to the convergence radii equal to 4, 2, and 1 when the J{sub var}[Φ], J{sub surf}[Φ], and J{sub SAPT}[Φ] formulas are used, respectively. Additionally, we observe that also the higher j{sub k} coefficients are predicted correctly when the multipole expansion is used in the J{sub var}[Φ] and J{sub surf}[Φ] formulas. The symmetry adapted perturbation theory formula J{sub SAPT}[Φ] predicts correctly only the first two coefficients, j{sub 0} and j{sub 1}, gives a wrong value of j{sub 2}, and diverges for higher j{sub n}. Since the variational volume-integral formula can be easily generalized to many-electron systems and evaluated with standard basis-set techniques of quantum chemistry, it provides an alternative for the determination of the exchange splitting and the exchange contribution of the interaction potential in general.

  20. Calculating constants of the rates of the reactions of excitation, ionization, and atomic exchange: A model of a shock oscillator with a change of the Hamiltonian of the system

    Science.gov (United States)

    Tsyganov, D. L.

    2017-11-01

    A new model for calculating the rates of reactions of excitation, ionization, and atomic exchange is proposed. Diatomic molecule AB is an unstructured particle M upon the exchange of elastic-vibrational (VT) energy, i.e., a model of a shock forceful oscillator with a change in Hamiltonian (SFOH). The SFOH model is based on the quantum theory of strong perturbations. The SFOH model allows generalization in simulating the rates of the reactions of excitation, ionization, and atomic exchange in the vibrational-vibrational (VV) energy exchange of diatomic molecules, and the exchange of VV- and VT-energy of polyatomic molecules. The rate constants of the excitation of metastables A 3Σ u +, B 3Π g , W 3Δ u , B'3Σ u -, a'3Σ u -, and the ionization of a nitrogen molecules from ground state X2Σ g + upon a collision with a heavy structureless particle (a nitrogen molecule), are found as examples.

  1. Economic modelling of energy services: Rectifying misspecified energy demand functions

    International Nuclear Information System (INIS)

    Hunt, Lester C.; Ryan, David L.

    2015-01-01

    Although it is well known that energy demand is derived, since energy is required not for its own sake but for the energy services it produces – such as heating, lighting, and motive power – energy demand models, both theoretical and empirical, often fail to take account of this feature. In this paper, we highlight the misspecification that results from ignoring this aspect, and its empirical implications – biased estimates of price elasticities and other measures – and provide a relatively simple and empirically practicable way to rectify it, which has a strong theoretical grounding. To do so, we develop an explicit model of consumer behaviour in which utility derives from consumption of energy services rather than from the energy sources that are used to produce them. As we discuss, this approach opens up the possibility of examining many aspects of energy demand in a theoretically sound way that have not previously been considered on a widespread basis, although some existing empirical work could be interpreted as being consistent with this type of specification. While this formulation yields demand equations for energy services rather than for energy or particular energy sources, these are shown to be readily converted, without added complexity, into the standard type of energy demand equation(s) that is (are) typically estimated. The additional terms that the resulting energy demand equations include, compared to those that are typically estimated, highlight the misspecification that is implicit when typical energy demand equations are estimated. A simple solution for dealing with an apparent drawback of this formulation for empirical purposes, namely that information is required on typically unobserved energy efficiency, indicates how energy efficiency can be captured in the model, such as by including exogenous trends and/or including its possible dependence on past energy prices. The approach is illustrated using an empirical example that involves

  2. Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Xun Yang

    2017-08-01

    Full Text Available In this study, the dynamic melting process of the phase change material (PCM in a vertical cylindrical tube-in-tank thermal energy storage (TES unit was investigated through numerical simulations and experimental measurements. To ensure good heat exchange performance, a concentric helical coil was inserted into the TES unit to pipe the heat transfer fluid (HTF. A numerical model using the computational fluid dynamics (CFD approach was developed based on the enthalpy-porosity method to simulate the unsteady melting process including temperature and liquid fraction variations. Temperature measurements using evenly spaced thermocouples were conducted, and the temperature variation at three locations inside the TES unit was recorded. The effects of the HTF inlet parameters were investigated by parametric studies with different temperatures and flow rate values. Reasonably good agreement was achieved between the numerical prediction and the temperature measurement, which confirmed the numerical simulation accuracy. The numerical results showed the significance of buoyancy effect for the dynamic melting process. The system TES performance was very sensitive to the HTF inlet temperature. By contrast, no apparent influences can be found when changing the HTF flow rates. This study provides a comprehensive solution to investigate the heat exchange process of the TES system using PCM.

  3. Diffractive open charm production at DESY HERA. Experiment versus two-gluon exchange model

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, S.P. [P.N. Lebedev Inst. of Physics, Moscow (Russian Federation)

    2010-03-15

    Diffractive production of D{sup *} mesons at HERA conditions is considered in the framework of collinear two-gluon exchange model. Theoretical results are compared with recent experimental data. (orig.)

  4. A Linear Programming Approach to Complex Games: An Application to Nuclear Exchange Models

    National Research Council Canada - National Science Library

    Oelrich, I

    2002-01-01

    .... Like the MESA model, the exchange is cast in terms of game theory, using linear approximations and an optimal allocation defined by a user-specified objective function Solutions are better using...

  5. Dataset for Probabilistic estimation of residential air exchange rates for population-based exposure modeling

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset provides the city-specific air exchange rate measurements, modeled, literature-based as well as housing characteristics. This dataset is associated with...

  6. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling

    Science.gov (United States)

    Sasai, T.; Murakami, K.; Kato, S.; Matsunaga, T.; Saigusa, N.; Hiraki, K.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. However, most studies, which aimed at the estimation of carbon exchanges between ecosystem and atmosphere, remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. In this study, we show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. As methodology for computing the exchanges, we 1) developed a global 1km-grid climate and satellite dataset based on the approach in Setoyama and Sasai (2013); 2) used the satellite-driven biosphere model (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data: BEAMS) (Sasai et al., 2005, 2007, 2011); 3) simulated the carbon exchanges by using the new dataset and BEAMS by the use of a supercomputer that includes 1280 CPU and 320 GPGPU cores (GOSAT RCF of NIES). As a result, we could develop a global uniform system for realistically estimating terrestrial carbon exchange, and evaluate net ecosystem production in each community level; leading to obtain highly detailed understanding of terrestrial carbon exchanges.

  7. Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning

    Science.gov (United States)

    Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.

    2017-07-01

    As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.

  8. Energy-Efficient Implementation of ECDH Key Exchange for Wireless Sensor Networks

    Science.gov (United States)

    Lederer, Christian; Mader, Roland; Koschuch, Manuel; Großschädl, Johann; Szekely, Alexander; Tillich, Stefan

    Wireless Sensor Networks (WSNs) are playing a vital role in an ever-growing number of applications ranging from environmental surveillance over medical monitoring to home automation. Since WSNs are often deployed in unattended or even hostile environments, they can be subject to various malicious attacks, including the manipulation and capture of nodes. The establishment of a shared secret key between two or more individual nodes is one of the most important security services needed to guarantee the proper functioning of a sensor network. Despite some recent advances in this field, the efficient implementation of cryptographic key establishment for WSNs remains a challenge due to the resource constraints of small sensor nodes such as the MICAz mote. In this paper we present a lightweight implementation of the elliptic curve Diffie-Hellman (ECDH) key exchange for ZigBee-compliant sensor nodes equipped with an ATmega128 processor running the TinyOS operating system. Our implementation uses a 192-bit prime field specified by the NIST as underlying algebraic structure and requires only 5.20 ·106 clock cycles to compute a scalar multiplication if the base point is fixed and known a priori. A scalar multiplication using a random base point takes about 12.33 ·106 cycles. Our results show that a full ECDH key exchange between two MICAz motes consumes an energy of 57.33 mJ (including radio communication), which is significantly better than most previously reported ECDH implementations on comparable platforms.

  9. An Early Model for Value and Sustainability in Health Information Exchanges: Qualitative Study

    Science.gov (United States)

    2018-01-01

    Background The primary value relative to health information exchange has been seen in terms of cost savings relative to laboratory and radiology testing, emergency department expenditures, and admissions. However, models are needed to statistically quantify value and sustainability and better understand the dependent and mediating factors that contribute to value and sustainability. Objective The purpose of this study was to provide a basis for early model development for health information exchange value and sustainability. Methods A qualitative study was conducted with 21 interviews of eHealth Exchange participants across 10 organizations. Using a grounded theory approach and 3.0 as a relative frequency threshold, 5 main categories and 16 subcategories emerged. Results This study identifies 3 core current perceived value factors and 5 potential perceived value factors—how interviewees predict health information exchanges may evolve as there are more participants. These value factors were used as the foundation for early model development for sustainability of health information exchange. Conclusions Using the value factors from the interviews, the study provides the basis for early model development for health information exchange value and sustainability. This basis includes factors from the research: fostering consumer engagement; establishing a provider directory; quantifying use, cost, and clinical outcomes; ensuring data integrity through patient matching; and increasing awareness, usefulness, interoperability, and sustainability of eHealth Exchange. PMID:29712623

  10. An Early Model for Value and Sustainability in Health Information Exchanges: Qualitative Study.

    Science.gov (United States)

    Feldman, Sue S

    2018-04-30

    The primary value relative to health information exchange has been seen in terms of cost savings relative to laboratory and radiology testing, emergency department expenditures, and admissions. However, models are needed to statistically quantify value and sustainability and better understand the dependent and mediating factors that contribute to value and sustainability. The purpose of this study was to provide a basis for early model development for health information exchange value and sustainability. A qualitative study was conducted with 21 interviews of eHealth Exchange participants across 10 organizations. Using a grounded theory approach and 3.0 as a relative frequency threshold, 5 main categories and 16 subcategories emerged. This study identifies 3 core current perceived value factors and 5 potential perceived value factors-how interviewees predict health information exchanges may evolve as there are more participants. These value factors were used as the foundation for early model development for sustainability of health information exchange. Using the value factors from the interviews, the study provides the basis for early model development for health information exchange value and sustainability. This basis includes factors from the research: fostering consumer engagement; establishing a provider directory; quantifying use, cost, and clinical outcomes; ensuring data integrity through patient matching; and increasing awareness, usefulness, interoperability, and sustainability of eHealth Exchange. ©Sue S Feldman. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 30.04.2018.

  11. A thermoelectric power generating heat exchanger: Part II – Numerical modeling and optimization

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Bjørk, Rasmus; Lindeburg, N.

    2016-01-01

    In Part I of this study, the performance of an experimental integrated thermoelectric generator (TEG)-heat exchanger was presented. In the current study, Part II, the obtained experimental results are compared with those predicted by a finite element (FE) model. In the simulation of the integrated...... TEG-heat exchanger, the thermal contact resistance between the TEG and the heat exchanger is modeled assuming either an ideal thermal contact or using a combined Cooper–Mikic–Yovanovich (CMY) and parallel plate gap formulation, which takes into account the contact pressure, roughness and hardness...

  12. Optimization of Heat Exchangers

    International Nuclear Information System (INIS)

    Catton, Ivan

    2010-01-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics (pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger design.

  13. EFFECTS OF RUN-UP VELOCITY ON PERFORMANCE, KINEMATICS, AND ENERGY EXCHANGES IN THE POLE VAULT

    Directory of Open Access Journals (Sweden)

    Nicholas P. Linthorne

    2012-06-01

    Full Text Available This study examined the effect of run-up velocity on the peak height achieved by the athlete in the pole vault and on the corresponding changes in the athlete's kinematics and energy exchanges. Seventeen jumps by an experienced male pole vaulter were video recorded in the sagittal plane and a wide range of run-up velocities (4.5-8.5 m/s was obtained by setting the length of the athlete's run-up (2-16 steps. A selection of performance variables, kinematic variables, energy variables, and pole variables were calculated from the digitized video data. We found that the athlete's peak height increased linearly at a rate of 0.54 m per 1 m/s increase in run-up velocity and this increase was achieved through a combination of a greater grip height and a greater push height. At the athlete's competition run-up velocity (8.4 m/s about one third of the rate of increase in peak height arose from an increase in grip height and about two thirds arose from an increase in push height. Across the range of run-up velocities examined here the athlete always performed the basic actions of running, planting, jumping, and inverting on the pole. However, he made minor systematic changes to his jumping kinematics, vaulting kinematics, and selection of pole characteristics as the run-up velocity increased. The increase in run-up velocity and changes in the athlete's vaulting kinematics resulted in substantial changes to the magnitudes of the energy exchanges during the vault. A faster run-up produced a greater loss of energy during the take-off, but this loss was not sufficient to negate the increase in run-up velocity and the increase in work done by the athlete during the pole support phase. The athlete therefore always had a net energy gain during the vault. However, the magnitude of this gain decreased slightly as run-up velocity increased

  14. Self-consistent one-gluon exchange in soliton bag models

    International Nuclear Information System (INIS)

    Dodd, L.R.; Adelaide Univ.; Williams, A.G.

    1988-01-01

    The treatment of soliton bag models as two-point boundary value problems is extended to include self-consistent one-gluon exchange interactions. The colour-magnetic contribution to the nucleon-delta mass splitting is calculated self-consistently in the mean-field, one-gluon-exchange approximation for the Friedberg-Lee and Nielsen-Patkos models. Small glueball mass parameters (m GB ∝ 500 MeV) are favoured. Comparisons with previous calculations are made. (orig.)

  15. A Distributed Model of Oilseed Biorefining, via Integrated Industrial Ecology Exchanges

    Science.gov (United States)

    Ferrell, Jeremy C.

    As the demand for direct petroleum substitutes increases, biorefineries are poised to become centers for conversion of biomass into fuels, energy, and biomaterials. A distributed model offers reduced transportation, tailored process technology to available feedstock, and increased local resilience. Oilseeds are capable of producing a wide variety of useful products additive to food, feed, and fuel needs. Biodiesel manufacturing technology lends itself to smaller-scale distributed facilities able to process diverse feedstocks and meet demand of critical diesel fuel for basic municipal services, safety, sanitation, infrastructure repair, and food production. Integrating biodiesel refining facilities as tenants of eco-industrial parks presents a novel approach for synergistic energy and material exchanges whereby environmental and economic metrics can be significantly improved upon compared to stand alone models. This research is based on the Catawba County NC EcoComplex and the oilseed crushing and biodiesel processing facilities (capacity-433 tons biodiesel per year) located within. Technical and environmental analyses of the biorefinery components as well as agronomic and economic models are presented. The life cycle assessment for the two optimal biodiesel feedstocks, soybeans and used cooking oil, resulted in fossil energy ratios of 7.19 and 12.1 with carbon intensity values of 12.51 gCO2-eq/MJ and 7.93 gCO2-eq/MJ, respectively within the industrial ecology system. Economic modeling resulted in a biodiesel conversion cost of 1.43 per liter of fuel produced with used cooking oil, requiring a subsidy of 0.58 per liter to reach the break-even point. As subsidies continue significant fluctuation, metrics other than operating costs are required to justify small-scale biofuel projects.

  16. Two models for the dynamics of a cross flow heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Hopkinson, A [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1962-12-15

    Two models of a cross flow heat exchanger, a concentric tube counter flow model and a cross flow model, are studied theoretically. Differential equations describing the behaviour of the models are derived and from them equations for the steady state temperatures and the temperature transfer functions are obtained. (author)

  17. Molecular (Feshbach) treatment of charge exchange Li3++He collisions. I. Energies and couplings

    International Nuclear Information System (INIS)

    Martin, F.; Riera, A.; Yanez, M.

    1986-01-01

    We point out a fundamental difference between the molecular treatment of charge exchange X/sup n/++H(1s) and X/sup n/++He(1s 2 ) collisions, which is that the latter process involves molecular states that are formally autoionizing. Then standard ab initio methods do not, in general, yield the relevant wave functions that are needed in the collision treatment, irrespective of whether quasimolecular autoionization be significant or not during the collision. We implement a particularly simple and useful form of the Feshbach formalism to calculate the energies of those two electron systems, and a method to evaluate the corresponding dynamical couplings is presented for the first time. Our implementation of this formalism together with the new computational techniques involved are presented in detail

  18. Effect of injection energy on residual dose around the charge exchange foil

    Directory of Open Access Journals (Sweden)

    Kazami Yamamoto

    2012-12-01

    Full Text Available The rapid cycling synchrotron (RCS of Japan Proton Accelerator Research Complex (J-PARC and the accumulator ring (AR of Spallation Neutron Source (SNS can be used as high-power pulsed neutron sources. In both cases, the injection region becomes one of the highest activation areas in the ring. However, residual dose distributions have revealed that the highest activation points in the J-PARC RCS and the SNS AR are different in detail. The dose of the charge exchange chamber in the SNS is more than 100 times larger than that of the RCS though the ratio of beam power is less than 10. We investigated the reason of this difference by Geant4 and MARS, and the calculation results indicated that the difference was due to the dependence of the neutron and pion production rate on the injection energy.

  19. High power uv metal vapor ion lasers pumped by thermal energy charge exchange

    International Nuclear Information System (INIS)

    Kan, T.

    1975-01-01

    The requirement for efficient and scalable laser sources for laser isotope separation (LIS) has recently been brought into sharp focus. The lack of suitable coherent sources is particularly severe in the uv, a spectral region of interest for more efficient and advanced isotope separation schemes. This report explores the general class of metal vapor ion lasers pumped by thermal energy charge exchange (TECX) as possible scalable coherent sources for LIS with the following potential characteristics: (1) availability of discrete wavelengths spanning the wavelength region between 2000 A less than lambda less than 8000 A, (2) pulsed or cw operation in the multi-kilowatt average power levels, (3) overall device efficiencies approaching one percent, and (4) the engineering of practical laser devices using relatively benign electron beam technology. (U.S.)

  20. Molecular (Feshbach) treatment of charge exchange Li/sup 3 +/+He collisions. I. Energies and couplings

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Riera, A.; Yanez, M.

    1986-05-15

    We point out a fundamental difference between the molecular treatment of charge exchange X/sup n/++H(1s) and X/sup n/++He(1s/sup 2/) collisions, which is that the latter process involves molecular states that are formally autoionizing. Then standard ab initio methods do not, in general, yield the relevant wave functions that are needed in the collision treatment, irrespective of whether quasimolecular autoionization be significant or not during the collision. We implement a particularly simple and useful form of the Feshbach formalism to calculate the energies of those two electron systems, and a method to evaluate the corresponding dynamical couplings is presented for the first time. Our implementation of this formalism together with the new computational techniques involved are presented in detail.

  1. Exchange-correlation energy in the orbital occupancy method: electronic structure of organic molecules

    International Nuclear Information System (INIS)

    Oszwaldowski, R; Vazquez, H; Pou, P; Ortega, J; Perez, R; Flores, F

    2003-01-01

    A new DF-LCAO (density functional with local combination of atomic orbitals) method is used to calculate the electronic properties of 3,4,9,10 perylenetetracarboxylic dianhydride (PTCDA), C 6 H 6 , CH 4 , and CO. The method, called the OO (orbital occupancy) method, is a DF-based theory, which uses the OOs instead of ρ(r) to calculate the exchange and correlation energies. In our calculations, we compare the OO method with the conventional local density approximation approach. Our results show that, using a minimal basis set, we obtain equilibrium bond lengths and binding energies for PTCDA, C 6 H 6 , and CH 4 which are respectively within 6, and 10-15% of the experimental values. We have also calculated the affinity and ionization levels, as well as the optical gap, for benzene and PTCDA and have found that a variant of Koopmans' theorem works well for these molecules. Using this theorem we calculate the Koopmans relaxation energies of the σ- and π-orbitals for PTCDA and have obtained this molecule's density of states which compares well with experimental evidence

  2. Model-Driven Energy Intelligence

    Science.gov (United States)

    2015-03-01

    Construction Operations Building information exchange COTS commercial-off-the-shelf DCS digital control system DDC direct digital control DoD...facility management operation is hard pressed to stay on top of day-to-day issues. Direct digital control ( DDC ) systems or utility monitoring and...transferability to DoD facilities: the existence of a BIM for the building, and the existence of a UMCS with which a DDC system and necessary system

  3. Models of Energy Saving Systems

    DEFF Research Database (Denmark)

    Nørgård, Jørgen Stig

    1999-01-01

    only. The need for including also the economic policy in the energy planning is illustrated with what is termed the efficiency pittfall. This points towards difficulties in imaging an integrated resource planning combined with a liberalized market. The three variable parameters, population, energy...... service level and technology are demonstrated as the main determinants of future energy consumption. In the concluding remarks, the main flaws of present energy policy and some visions of the future are discussed....

  4. Recoil chemistry and solid state exchange in cobalt complexes : a new model

    International Nuclear Information System (INIS)

    Ramshesh, V.

    1981-01-01

    During the last thirty years considerable work has been done on various aspects of recoil chemistry and solid state exchange in cobalt complexes. Several interesting features such as 'oxygen effect', 'water of hydration effect', 'dilution with isomorphous materials', etc., have been observed. These data led workers to reject the older hypothesis based on 'fragmentation' and 'recombination' and suggest models based on exciton or electron induced exchange. However some recent data show that perhaps both the processes viz., thermal annealing in n-irradiated systems and solid state exchange are not bulk processes. This has led the author to propose a new model. In this model greater emphasis is placed on dissociation reactions followed by recombination and/or exchange reactions. (author)

  5. Capabilities and accuracy of energy modelling software

    CSIR Research Space (South Africa)

    Osburn, L

    2010-11-01

    Full Text Available Energy modelling can be used in a number of different ways to fulfill different needs, including certification within building regulations or green building rating tools. Energy modelling can also be used in order to try and predict what the energy...

  6. A multi-species exchange model for fully fluctuating polymer field theory simulations.

    Science.gov (United States)

    Düchs, Dominik; Delaney, Kris T; Fredrickson, Glenn H

    2014-11-07

    Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complex Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.

  7. Pharmacometrics Markup Language (PharmML): Opening New Perspectives for Model Exchange in Drug Development

    Science.gov (United States)

    Swat, MJ; Moodie, S; Wimalaratne, SM; Kristensen, NR; Lavielle, M; Mari, A; Magni, P; Smith, MK; Bizzotto, R; Pasotti, L; Mezzalana, E; Comets, E; Sarr, C; Terranova, N; Blaudez, E; Chan, P; Chard, J; Chatel, K; Chenel, M; Edwards, D; Franklin, C; Giorgino, T; Glont, M; Girard, P; Grenon, P; Harling, K; Hooker, AC; Kaye, R; Keizer, R; Kloft, C; Kok, JN; Kokash, N; Laibe, C; Laveille, C; Lestini, G; Mentré, F; Munafo, A; Nordgren, R; Nyberg, HB; Parra-Guillen, ZP; Plan, E; Ribba, B; Smith, G; Trocóniz, IF; Yvon, F; Milligan, PA; Harnisch, L; Karlsson, M; Hermjakob, H; Le Novère, N

    2015-01-01

    The lack of a common exchange format for mathematical models in pharmacometrics has been a long-standing problem. Such a format has the potential to increase productivity and analysis quality, simplify the handling of complex workflows, ensure reproducibility of research, and facilitate the reuse of existing model resources. Pharmacometrics Markup Language (PharmML), currently under development by the Drug Disease Model Resources (DDMoRe) consortium, is intended to become an exchange standard in pharmacometrics by providing means to encode models, trial designs, and modeling steps. PMID:26225259

  8. Pharmacometrics Markup Language (PharmML): Opening New Perspectives for Model Exchange in Drug Development.

    Science.gov (United States)

    Swat, M J; Moodie, S; Wimalaratne, S M; Kristensen, N R; Lavielle, M; Mari, A; Magni, P; Smith, M K; Bizzotto, R; Pasotti, L; Mezzalana, E; Comets, E; Sarr, C; Terranova, N; Blaudez, E; Chan, P; Chard, J; Chatel, K; Chenel, M; Edwards, D; Franklin, C; Giorgino, T; Glont, M; Girard, P; Grenon, P; Harling, K; Hooker, A C; Kaye, R; Keizer, R; Kloft, C; Kok, J N; Kokash, N; Laibe, C; Laveille, C; Lestini, G; Mentré, F; Munafo, A; Nordgren, R; Nyberg, H B; Parra-Guillen, Z P; Plan, E; Ribba, B; Smith, G; Trocóniz, I F; Yvon, F; Milligan, P A; Harnisch, L; Karlsson, M; Hermjakob, H; Le Novère, N

    2015-06-01

    The lack of a common exchange format for mathematical models in pharmacometrics has been a long-standing problem. Such a format has the potential to increase productivity and analysis quality, simplify the handling of complex workflows, ensure reproducibility of research, and facilitate the reuse of existing model resources. Pharmacometrics Markup Language (PharmML), currently under development by the Drug Disease Model Resources (DDMoRe) consortium, is intended to become an exchange standard in pharmacometrics by providing means to encode models, trial designs, and modeling steps.

  9. Evaluating humidity recovery efficiency of currently available heat and moisture exchangers: a respiratory system model study

    Directory of Open Access Journals (Sweden)

    Jeanette Janaina Jaber Lucato

    2009-06-01

    Full Text Available OBJECTIVES: To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. INTRODUCTION: Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers' humidifying performance. METHODS: Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37°C, a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH was calculated for each setting. RESULTS: Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. CONCLUSIONS: Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers.

  10. Stationarity test with a direct test for heteroskedasticity in exchange rate forecasting models

    Science.gov (United States)

    Khin, Aye Aye; Chau, Wong Hong; Seong, Lim Chee; Bin, Raymond Ling Leh; Teng, Kevin Low Lock

    2017-05-01

    Global economic has been decreasing in the recent years, manifested by the greater exchange rates volatility on international commodity market. This study attempts to analyze some prominent exchange rate forecasting models on Malaysian commodity trading: univariate ARIMA, ARCH and GARCH models in conjunction with stationarity test on residual diagnosis direct testing of heteroskedasticity. All forecasting models utilized the monthly data from 1990 to 2015. Given a total of 312 observations, the data used to forecast both short-term and long-term exchange rate. The forecasting power statistics suggested that the forecasting performance of ARIMA (1, 1, 1) model is more efficient than the ARCH (1) and GARCH (1, 1) models. For ex-post forecast, exchange rate was increased from RM 3.50 per USD in January 2015 to RM 4.47 per USD in December 2015 based on the baseline data. For short-term ex-ante forecast, the analysis results indicate a decrease in exchange rate on 2016 June (RM 4.27 per USD) as compared with 2015 December. A more appropriate forecasting method of exchange rate is vital to aid the decision-making process and planning on the sustainable commodities' production in the world economy.

  11. Three-Dimensional Thermal Modeling Analysis Of CST Media For The Small Ion Exchange Project

    International Nuclear Information System (INIS)

    Lee, S.; King, W.

    2011-01-01

    The Small Column Ion Exchange (SCIX) project is designed to accelerate closure of High Level Waste (HLW) tanks at the Savannah River Site (SRS). The SRS tanks store HLW in three forms: sludge, saltcake, and supernate. An in-tank ion exchange process is being designed to treat supernate and dissolved saltcake waste. Through this process, radioactive cesium from the salt solution is adsorbed into Crystalline Silicotitanate (CST) ion exchange media packed within a flow-through column. A packed column loaded with radioactive cesium generates significant heat from radiolytic decay. The waste supernate solution within the ion exchange bed will boil around 120 C. Solution superheating above the boiling point within the column could lead to violent hazardous energy releases. System heating from loaded CST is also of concern in other process modules, such as the waste tank. Due to tank structural integrity concerns, the wall temperature limit for the SRS waste tanks is 100 C. The transfer of cesium-loaded CST to the tank could result in localized hot spots on the tank floor and walls which may exceed this limit. As a result, thermal modeling calculations have been conducted to predict the maximum temperatures achievable both in the column and in the waste tank. As specified in the associated Technical Task Plan, one objective of the present work was to compute temperature distributions within the ion exchange column module under accident scenarios including loss of salt solution flow through the bed and loss of coolant system flow. The column modeling domain and the scope of the calculations in this case were broadened relative to previous two-dimensional calculations to include vertical temperature distributions within the packed bed of ion exchange media as well as the upper column plenum region containing only fluid. The baseline design conditions and in-column modeling domain for the ion-exchange column module are shown in Figure 1. These evaluations assumed the maximum

  12. Modeling net ecosystem carbon exchange of alpine grasslands with a satellite-driven model.

    Directory of Open Access Journals (Sweden)

    Wei Yan

    Full Text Available Estimate of net ecosystem carbon exchange (NEE between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP and ecosystem respiration (Reco has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model.

  13. Economics, modeling, planning and management of energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; Khan, A.M.; Furlan, G.

    1989-01-01

    The Workshop attended by 89 participants from 40 countries aimed to provide participants with an overview of global and regional issues and to familiarize them with analytical tools and modeling techniques appropriate for the analysis and planning of national energy systems. Emphasis was placed on energy-economy-interaction, modelling for balancing energy demand and supply, technical-economic evaluation of energy supply alternatives and energy demand management. This volume presents some of the lectures delivered at the Workshop. The material has been organized in five parts under the headings General Review of Current Energy Trends, Energy and Technology Menu, Basic Analytical Approaches, Energy Modeling and Planning, and Energy Management and Policy. A separate abstract was prepared for each of the lectures presented. Refs, figs and tabs

  14. Hybrid Energy System Modeling in Modelica

    Energy Technology Data Exchange (ETDEWEB)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  15. The broad component of hydrogen emission lines in nuclei of Seyfert galaxies: Comments on a charge exchange model

    International Nuclear Information System (INIS)

    Katz, A.

    1975-01-01

    A model to account for the broad hydrogen line emission from the nuclei of Seyfert galaxies based on charge exchange and collisional processes, as proposed by Ptak and Stoner, is investigated. The model consists of a source of fast (E approx. 10 5 eV) protons streaming through a medium of quiescent gas. One of the major problems that results from such a model concerns the strong narrow hydrogen line core that would be produced, in direct conflict with the observations. The lines cannot arise from gas arranged throughout a spherical volume surrounding the source of the fast particles because the fast protons would produce far more ionizations than the possible number of recombinations. A very dense shell source of less than 1 AU in thickness and at least several tens of parsecs in radius must be invoked to reproduce the asymmetric broad profiles observed. There must be absorption throughout the center of the shell to account for the line profiles. The gas cannot be arranged in dense clumps throughout a large volume because momentum exchange of the gas with the primary particles would quickly accelerate any clumps. The energy balance and energy requirements of such a model are investigated, and it is found that an energy equal to or greater than the total luminosity of most Seyfert galaxies is required to produce the hydrogen line alone. The gas must be mostly neutral and den []e (N approx. 10 7 ) if a reasonable temperature is to be maintained

  16. Two sustainable energy system analysis models

    DEFF Research Database (Denmark)

    Lund, Henrik; Goran Krajacic, Neven Duic; da Graca Carvalho, Maria

    2005-01-01

    This paper presents a comparative study of two energy system analysis models both designed with the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy....

  17. Origin of holographic dark energy models

    International Nuclear Information System (INIS)

    Myung, Yun Soo; Seo, Min-Gyun

    2009-01-01

    We investigate the origin of holographic dark energy models which were recently proposed to explain the dark energy-dominated universe. For this purpose, we introduce the spacetime foam uncertainty of δl≥l p α l α-1 . It was argued that the case of α=2/3 could describe the dark energy with infinite statistics, while the case of α=1/2 can describe the ordinary matter with Bose-Fermi statistics. However, two cases may lead to the holographic energy density if the latter recovers from the geometric mean of UV and IR scales. Hence the dark energy with infinite statistics based on the entropy bound is not an ingredient for deriving the holographic dark energy model. Furthermore, it is shown that the agegraphic dark energy models are the holographic dark energy model with different IR length scales

  18. A simple dynamic energy capacity model

    International Nuclear Information System (INIS)

    Gander, James P.

    2012-01-01

    I develop a simple dynamic model showing how total energy capacity is allocated to two different uses and how these uses and their corresponding energy flows are related and behave through time. The control variable of the model determines the allocation. All the variables of the model are in terms of a composite energy equivalent measured in BTU's. A key focus is on the shadow price of energy capacity and its behavior through time. Another key focus is on the behavior of the control variable that determines the allocation of overall energy capacity. The matching or linking of the model's variables to real world U.S. energy data is undertaken. In spite of some limitations of the data, the model and its behavior fit the data fairly well. Some energy policy implications are discussed. - Highlights: ► The model shows how energy capacity is allocated to current output production versus added energy capacity production. ► Two variables in the allocation are the shadow price of capacity and the control variable that determines the allocation. ► The model was linked to U.S. historical energy data and fit the data quite well. ► In particular, the policy control variable was cyclical and consistent with the model. ► Policy implications relevant to the allocation of energy capacity are discussed briefly.

  19. Exchange bias energy in Co/Pt/IrMn multilayers with perpendicular and in-plane anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Czapkiewicz, M. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland)]. E-mail: czapkiew@agh.edu.pl; Stobiecki, T. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland); Rak, R. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland); Zoladz, M. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland); Dijken, S. van [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland)

    2007-09-15

    The magnetization reversal process in perpendicularly biased [Pt/Co]{sub 3}/d{sub Pt} Pt/IrMn and in-plane biased Co/d{sub Pt} Pt/IrMn multilayers with 0nm=exchange bias field decreases monotonically with Pt insertion layer thickness, while its coercivity remains constant. The samples with perpendicular magnetic anisotropy, on the other hand, exhibit maximum exchange bias and minimum coercivity for d{sub Pt}=0.1nm. In both cases, the existence of large exchange bias fields correlates with a high domain density during magnetization reversal. The interface exchange coupling energy is larger for the in-plane biased films than for the perpendicularly biased multilayers.

  20. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: Model description

    International Nuclear Information System (INIS)

    Nikolov, Ned; Zeller, Karl F.

    2003-01-01

    A new biophysical model (FORFLUX) is presented to link ozone deposition with carbon and water cycles in terrestrial ecosystems. - A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO 2 - transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3 model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO 2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems

  1. Measuring and modeling changes in land-atmosphere exchanges and hydrologic response in forests undergoing insect-driven mortality

    Science.gov (United States)

    Gochis, D. J.; Brooks, P. D.; Harpold, A. A.; Ewers, B. E.; Pendall, E.; Barnard, H. R.; Reed, D.; Harley, P. C.; Hu, J.; Biederman, J.

    2010-12-01

    Given the magnitude and spatial extent of recent forest mortality in the western U.S. there is a pressing need to improve representation of such influences on the exchange of energy, water, biogeochemical and momentum fluxes in land-atmosphere parameterizations coupled to weather and climate models. In this talk we present observational data and model results from a new study aimed at improving understanding the impacts of mountain pine beetle-induced forest mortality in the central Rocky Mountains. Baseline observations and model runs from undisturbed lodgepole pine forest conditions are developed as references against which new observations and model runs from infested stands are compared. We will specifically look at the structure and evolution of sub-canopy energy exchange variables such as shortwave and longwave radiation and sub-canopy turbulence as well as sub-canopy precipitation, sapflow fluxes, canopy-scale fluxes and soil moisture and temperature. In this manner we seek to lay the ground work for evaluating the recent generation of land surface model changes aimed at representing insect-related forest dynamics in the CLM-C/N and Noah land surface models.

  2. Knowledge brokering on emissions modelling in Strategic Environmental Assessment of Estonian energy policy with special reference to the LEAP model

    International Nuclear Information System (INIS)

    Kuldna, Piret; Peterson, Kaja; Kuhi-Thalfeldt, Reeli

    2015-01-01

    Strategic Environmental Assessment (SEA) serves as a platform for bringing together researchers, policy developers and other stakeholders to evaluate and communicate significant environmental and socio-economic effects of policies, plans and programmes. Quantitative computer models can facilitate knowledge exchange between various parties that strive to use scientific findings to guide policy-making decisions. The process of facilitating knowledge generation and exchange, i.e. knowledge brokerage, has been increasingly explored, but there is not much evidence in the literature on how knowledge brokerage activities are used in full cycles of SEAs which employ quantitative models. We report on the SEA process of the national energy plan with reflections on where and how the Long-range Energy Alternatives Planning (LEAP) model was used for knowledge brokerage on emissions modelling between researchers and policy developers. Our main suggestion is that applying a quantitative model not only in ex ante, but also ex post scenario modelling and associated impact assessment can facilitate systematic and inspiring knowledge exchange process on a policy problem and capacity building of participating actors. - Highlights: • We examine the knowledge brokering on emissions modelling between researchers and policy developers in a full cycle of SEA. • Knowledge exchange process can evolve at any modelling stage within SEA. • Ex post scenario modelling enables systematic knowledge exchange and learning on a policy problem

  3. Knowledge brokering on emissions modelling in Strategic Environmental Assessment of Estonian energy policy with special reference to the LEAP model

    Energy Technology Data Exchange (ETDEWEB)

    Kuldna, Piret, E-mail: piret.kuldna@seit.ee [Stockholm Environment Institute Tallinn Centre, Lai 34, Tallinn 10133 (Estonia); Peterson, Kaja [Stockholm Environment Institute Tallinn Centre, Lai 34, Tallinn 10133 (Estonia); Kuhi-Thalfeldt, Reeli [Stockholm Environment Institute Tallinn Centre, Lai 34, Tallinn 10133 (Estonia); Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086 (Estonia)

    2015-09-15

    Strategic Environmental Assessment (SEA) serves as a platform for bringing together researchers, policy developers and other stakeholders to evaluate and communicate significant environmental and socio-economic effects of policies, plans and programmes. Quantitative computer models can facilitate knowledge exchange between various parties that strive to use scientific findings to guide policy-making decisions. The process of facilitating knowledge generation and exchange, i.e. knowledge brokerage, has been increasingly explored, but there is not much evidence in the literature on how knowledge brokerage activities are used in full cycles of SEAs which employ quantitative models. We report on the SEA process of the national energy plan with reflections on where and how the Long-range Energy Alternatives Planning (LEAP) model was used for knowledge brokerage on emissions modelling between researchers and policy developers. Our main suggestion is that applying a quantitative model not only in ex ante, but also ex post scenario modelling and associated impact assessment can facilitate systematic and inspiring knowledge exchange process on a policy problem and capacity building of participating actors. - Highlights: • We examine the knowledge brokering on emissions modelling between researchers and policy developers in a full cycle of SEA. • Knowledge exchange process can evolve at any modelling stage within SEA. • Ex post scenario modelling enables systematic knowledge exchange and learning on a policy problem.

  4. A computational fluid dynamics model for designing heat exchangers based on natural convection

    NARCIS (Netherlands)

    Dirkse, M.H.; Loon, van W.K.P.; Walle, van der T.; Speetjens, S.L.; Bot, G.P.A.

    2006-01-01

    A computational fluid dynamics model was created for the design of a natural convection shell-and-tube heat exchanger with baffles. The flow regime proved to be turbulent and this was modelled using the k¿¿ turbulence model. The features of the complex geometry were simplified considerably resulting

  5. Dynamic Models of Learning That Characterize Parent-Child Exchanges Predict Vocabulary Growth

    Science.gov (United States)

    Ober, David R.; Beekman, John A.

    2016-01-01

    Cumulative vocabulary models for infants and toddlers were developed from models of learning that predict trajectories associated with low, average, and high vocabulary growth rates (14 to 46 months). It was hypothesized that models derived from rates of learning mirror the type of exchanges provided to infants and toddlers by parents and…

  6. Exchange bias and asymmetric hysteresis loops from a microscopic model of core/shell nanoparticles

    International Nuclear Information System (INIS)

    Iglesias, Oscar; Batlle, Xavier; Labarta, Amilcar

    2007-01-01

    We present Monte Carlo simulations of hysteresis loops of a model of a magnetic nanoparticle with a ferromagnetic core and an antiferromagnetic shell with varying values of the core/shell interface exchange coupling which aim to clarify the microscopic origin of exchange bias observed experimentally. We have found loop shifts in the field direction as well as displacements along the magnetization axis that increase in magnitude when increasing the interfacial exchange coupling. Overlap functions computed from the spin configurations along the loops have been obtained to explain the origin and magnitude of these features microscopically

  7. Comparing holographic dark energy models with statefinder

    International Nuclear Information System (INIS)

    Cui, Jing-Lei; Zhang, Jing-Fei

    2014-01-01

    We apply the statefinder diagnostic to the holographic dark energy models, including the original holographic dark energy (HDE) model, the new holographic dark energy model, the new agegraphic dark energy (NADE) model, and the Ricci dark energy model. In the low-redshift region the holographic dark energy models are degenerate with each other and with the ΛCDM model in the H(z) and q(z) evolutions. In particular, the HDE model is highly degenerate with the ΛCDM model, and in the HDE model the cases with different parameter values are also in strong degeneracy. Since the observational data are mainly within the low-redshift region, it is very important to break this lowredshift degeneracy in the H(z) and q(z) diagnostics by using some quantities with higher order derivatives of the scale factor. It is shown that the statefinder diagnostic r(z) is very useful in breaking the low-redshift degeneracies. By employing the statefinder diagnostic the holographic dark energy models can be differentiated efficiently in the low-redshift region. The degeneracy between the holographic dark energy models and the ΛCDM model can also be broken by this method. Especially for the HDE model, all the previous strong degeneracies appearing in the H(z) and q(z) diagnostics are broken effectively. But for the NADE model, the degeneracy between the cases with different parameter values cannot be broken, even though the statefinder diagnostic is used. A direct comparison of the holographic dark energy models in the r-s plane is also made, in which the separations between the models (including the ΛCDM model) can be directly measured in the light of the current values {r 0 , s 0 } of the models. (orig.)

  8. Radiative loss and charge exchange in low energy Na - Ca+ collisions

    Science.gov (United States)

    McLaughlin, B. M.; McAlpine, K.; McCann, J. F.; Pattillo, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.

    2016-05-01

    Experiments on radiative loss and capture are currently being performed at the University of Connecticut. In response to this experimental effort we have performed detailed calculations for a variety of loss and capture processes. Several low lying states of the NaCa+ cation are used with the accurate potentials energy curves, transition dipole moments and non-adiabatic coupling matrix elements between the states, obtained at the MRCI+Q level of approximation with the MOLPRO suite of quantum chemistry codes. Cross sections and rate coefficients are calculated for radiative charge transfer (RCX), radiative association (RA) and charge exchange in a fully quantum molecular close-coupling (MOCC) approximation at the higher energies. We use a variety of approaches, the optical potential method, semi-classical and MOCC methods to compare and contrast approximations. In addition a kinetic theory recently applied to SiO is utilized which illustrates the dramatic impact resonances have on the radiative association rates. Supported by NASA and HLRS at Stuttgart University.

  9. Anomalous energy exchange in the gBL and quasilinear theories

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1992-02-01

    The rate of turbulence-induced energy exchange W o between species is computed in the framework of the quasilinear and gBL transport theories, and the relationship between these two theories, and the relationship between these two similar theories is thereby elucidated. For both theories, general formal expressions for W o are developed, and then applied to the trapped electron mode for illustration. The general expressions for W o in the two theories are formally closely related, but can yield predictions of very different magnitude in concrete applications. The fact that quasilinear theory is not valid for saturated steady-state turbulence gives rise to certain peculiarities in its predictions for this normal experimental situation, such as permitting energy to flow from the cooler to the hotter species, even in the limit of thermal equilibrium, where real-space gradients vanish. The gBL theory may be viewed as a modification of quasilinear theory to be valid for steady-state turbulence, keeping extra terms due to the self-consistent back reaction of particles on the fluctuations, which are just such as to eliminate these peculiarities

  10. Long Term Validity of Monetary Exchange Rate Model: Evidence from Turkey

    Directory of Open Access Journals (Sweden)

    Ugur Ahmet

    2014-03-01

    Full Text Available In this study, it was analyzed if there is a long term relationship among the nominal exchange rate and monetary fundamentals within the periods of 1998:1-2011:2 in Turkey. This relationship has been analysed by using structural VAR (SVAR model. Besides, Granger causality test and Dolado-Lütkepohl Granger causality test were used to determine if there were a causality relationship among the nominal exchange rate and monetary fundamentals. As a result of the SVAR model, the relationship among the series related to nominal exchange rate and money supply, GDP, interest rate in Turkey in long term were not determined and at the end of causality tests, causality relationship among the nominal exchange rate and monetary fundamentals were not determined.

  11. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    International Nuclear Information System (INIS)

    Smith, F.; Hamm, Luther; Aleman, Sebastian; Michael, Johnston

    2008-01-01

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system

  12. A CFD model for the IEA-R1 reactor neat exchanger inlet nozzle flow

    International Nuclear Information System (INIS)

    Andrade, Delvonei A.; Angelo, Gabriel; Gainer, Gerson; Angelo, Edvaldo; Umbehaun, Pedro E.; Torres, Walmir M.; Sabundjian, Gaiane; Macedo, Luiz A.; Belchior Junior, Antonio; Conti, Thadeu N.; Watanabe, Bruno C.; Sakai, Caio C.

    2011-01-01

    A previous preliminary model of the IEA-R1 heat exchanger inlet nozzle flow was developed and published in the International Nuclear Atlantic Conference-INAC-2009. A new model was created based on the preliminary one. It was improved concerning the actual heat exchanger tube bundle geometry. This became a very special issue. Difficulties with the size of the numerical mesh came out pointing to our computational system limits. New CFD calculations with this improved model were performed using ANSYS-CFX. In this paper, we present this model and discuss the results. (author)

  13. A quantitative approach to developing more mechanistic gas exchange models for field grown potato

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Andersen, Mathias Neumann; Poulsen, Rolf Thostrup

    2009-01-01

    In this study we introduce new gas exchange models that are developed under natural conditions of field grown potato. The new models could explain about 85% of the stomatal conductance variations, which was much higher than the well-known gas exchange models such as the Ball-Berry model [Ball...... of chemical and hydraulic signalling on stomatal conductance as exp(-β[ABA])exp(-δ|ψ|) in which [ABA] and |ψ| are xylem ABA concentration and absolute value of leaf or stem water potential. In this study we found that stem water potential could be a very reliable indicator of how plant water status affects...

  14. Turning Simulation into Estimation: Generalized Exchange Algorithms for Exponential Family Models.

    Directory of Open Access Journals (Sweden)

    Maarten Marsman

    Full Text Available The Single Variable Exchange algorithm is based on a simple idea; any model that can be simulated can be estimated by producing draws from the posterior distribution. We build on this simple idea by framing the Exchange algorithm as a mixture of Metropolis transition kernels and propose strategies that automatically select the more efficient transition kernels. In this manner we achieve significant improvements in convergence rate and autocorrelation of the Markov chain without relying on more than being able to simulate from the model. Our focus will be on statistical models in the Exponential Family and use two simple models from educational measurement to illustrate the contribution.

  15. A CFD model for the IEA-R1 reactor neat exchanger inlet nozzle flow

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei A.; Angelo, Gabriel; Gainer, Gerson; Angelo, Edvaldo; Umbehaun, Pedro E.; Torres, Walmir M.; Sabundjian, Gaiane; Macedo, Luiz A.; Belchior Junior, Antonio; Conti, Thadeu N.; Watanabe, Bruno C.; Sakai, Caio C., E-mail: delvonei@ipen.b, E-mail: gfainer@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A previous preliminary model of the IEA-R1 heat exchanger inlet nozzle flow was developed and published in the International Nuclear Atlantic Conference-INAC-2009. A new model was created based on the preliminary one. It was improved concerning the actual heat exchanger tube bundle geometry. This became a very special issue. Difficulties with the size of the numerical mesh came out pointing to our computational system limits. New CFD calculations with this improved model were performed using ANSYS-CFX. In this paper, we present this model and discuss the results. (author)

  16. Incorporating water-release and lateral protein interactions in modeling equilibrium adsorption for ion-exchange chromatography.

    Science.gov (United States)

    Thrash, Marvin E; Pinto, Neville G

    2006-09-08

    The equilibrium adsorption of two albumin proteins on a commercial ion exchanger has been studied using a colloidal model. The model accounts for electrostatic and van der Waals forces between proteins and the ion exchanger surface, the energy of interaction between adsorbed proteins, and the contribution of entropy from water-release accompanying protein adsorption. Protein-surface interactions were calculated using methods previously reported in the literature. Lateral interactions between adsorbed proteins were experimentally measured with microcalorimetry. Water-release was estimated by applying the preferential interaction approach to chromatographic retention data. The adsorption of ovalbumin and bovine serum albumin on an anion exchanger at solution pH>pI of protein was measured. The experimental isotherms have been modeled from the linear region to saturation, and the influence of three modulating alkali chlorides on capacity has been evaluated. The heat of adsorption is endothermic for all cases studied, despite the fact that the net charge on the protein is opposite that of the adsorbing surface. Strong repulsive forces between adsorbed proteins underlie the endothermic heat of adsorption, and these forces intensify with protein loading. It was found that the driving force for adsorption is the entropy increase due to the release of water from the protein and adsorbent surfaces. It is shown that the colloidal model predicts protein adsorption capacity in both the linear and non-linear isotherm regions, and can account for the effects of modulating salt.

  17. ELECTROMAGNETIC THERMAL INSTABILITY WITH MOMENTUM AND ENERGY EXCHANGE BETWEEN ELECTRONS AND IONS IN GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Nekrasov, Anatoly K.

    2011-01-01

    Thermal instability in an electron-ion magnetized plasma, which is relevant in the intragalactic medium of galaxy clusters, solar corona, and other two-component plasma objects, is investigated. We apply the multicomponent plasma approach where the dynamics of all species are considered separately through electric field perturbations. General expressions for the dynamical variables obtained in this paper can be applied over a wide range of astrophysical and laboratory plasmas also containing neutrals and dust grains. We assume that background temperatures of electrons and ions are different and include the energy exchange in thermal equations for electrons and ions along with the collisional momentum exchange in equations of motion. We take into account the dependence of collision frequency on density and temperature perturbations. The cooling-heating functions are taken for both electrons and ions. A condensation mode of thermal instability has been studied in the fast sound speed limit. We derive a new dispersion relation including different electron and ion cooling-heating functions and other effects mentioned above and find its simple solutions for growth rates in limiting cases. We show that the perturbations have an electromagnetic nature and demonstrate the crucial role of the electric field perturbation along the background magnetic field in the fast sound speed limit. We find that at the conditions under consideration, condensation must occur along the magnetic field while the transverse scale sizes can be both larger and smaller than the longitudinal ones. The results obtained can be useful for interpretating observations of dense cold regions in astrophysical objects.

  18. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    Varela, M.

    2001-01-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  19. A model for dark energy decay

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, Elcio, E-mail: eabdalla@usp.br [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970, São Paulo (Brazil); Graef, L.L., E-mail: leilagraef@usp.br [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970, São Paulo (Brazil); Wang, Bin, E-mail: wang_b@sjtu.edu.cn [INPAC and Department of Physics, Shanghai Jiao Tong University, 200240 Shanghai (China)

    2013-11-04

    We discuss a model of nonperturbative decay of dark energy. We suggest the possibility that this model can provide a mechanism from the field theory to realize the energy transfer from dark energy into dark matter, which is the requirement to alleviate the coincidence problem. The advantage of the model is the fact that it accommodates a mean life compatible with the age of the universe. We also argue that supersymmetry is a natural set up, though not essential.

  20. Rapid Energy Modeling Workflow Demonstration Project

    Science.gov (United States)

    2014-01-01

    app FormIt for conceptual modeling with further refinement available in Revit or Vasari. Modeling can also be done in Revit (detailed and conceptual...referenced building model while in the field. • Autodesk® Revit is a BIM software application with integrated energy and carbon analyses driven by Green...FormIt, Revit and Vasari, and (3) comparative analysis. The energy results of these building analyses are represented as annual energy use for natural

  1. Mathematical modelling of thermal and flow processes in vertical ground heat exchangers

    Directory of Open Access Journals (Sweden)

    Pater Sebastian

    2017-12-01

    Full Text Available The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.

  2. A QCD derivation of the additive quark model from two and three gluon exchanges

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1982-06-01

    The contributions to the Pomeron from two and three gluon exchanges are shown to give the correct combinatorial factors for the additive quark model relation between meson and baryon Pomeron couplings, even though two-quark and three-quark operators are involved. Similar results hold for the contributions to hadron masses from three-gluon vertices as well as one-gluon exchange. The color algebra reduces the multiquark couplings to a linear function of quark number. (author)

  3. Modeling and simulation of the dynamic behavior of portable proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, C.

    2005-07-01

    In order to analyze the operational behavior, a mathematical model of planar self-breathing fuel cells is developed and validated in Chapter 3 of this thesis. The multicomponent transport of the species is considered as well as the couplings between the transport processes of heat, charge, and mass and the electrochemical reactions. Furthermore, to explain the oxygen mass transport limitation in the porous electrode of the cathode side an agglomerate model for the oxygen reduction reaction is developed. In Chapter 4 the important issue of liquid water generation and transport in PEMFCs is addressed. One of the major tasks when operating this type of fuel cell is avoiding the complete flooding of the PEMFC during operation. A one-dimensional and isothermal model is developed that is based on a coupled system of partial differential equations. The model contains a dynamic and two-phase description of the proton exchange membrane fuel cell. The mass transport in the gas phase and in the liquid phase is considered as well as the phase transition between liquid water and water vapor. The transport of charges and the electrochemical reactions are part of the model. Flooding effects that are caused by liquid water accumulation are described by this model. Moreover, the model contains a time-dependent description of the membrane that accounts for Schroeder's paradox. The model is applied to simulate cyclic voltammograms. Chapter 5 is focused on the dynamic investigation of PEMFC stacks. Understanding the dynamic behavior of fuel cell stacks is important for the operation and control of fuel cell stacks. Using the single cell model of Chapter 3 and the dynamic model of Chapter 4 as basis, a mathematical model of a PEMFC stack is developed. However, due to the complexity of a fuel cell stack, the spatial resolution and dynamic description of the liquid water transport are not accounted for. These restrictions allow for direct comparison between the solution variables of

  4. Models for the energy performance of low-energy houses

    DEFF Research Database (Denmark)

    Andersen, Philip Hvidthøft Delff

    of buildings, the first topic analyzed is the variation of presence of occupants. As buildings get more energy-effcient, internal loads and user-behavior increasingly influence the energy consumption. Most simulation tools use deterministic occupancy profiles to simulate internal loads. However, such occupancy......The aim of this thesis is data-driven modeling of heat dynamics of buildings. Traditionally, thermal modeling of buildings is done using simulation tools which take information about the construction, weather data, occupancy etc. as inputs and generate deterministic energy profiles of the buildings....... The approach to modeling occupants’ presence provides a flexible method where no assumptions in the application. The rest of the thesis deals with statistical modeling of heat dynamics of buildings. First, discrete-time models are applied. Discrete-time models are computationally relatively simple and provide...

  5. Energy efficient reconcentration of diluted human urine using ion exchange membranes in bioelectrochemical systems.

    Science.gov (United States)

    Tice, Ryan C; Kim, Younggy

    2014-11-01

    Nutrients can be recovered from source separated human urine; however, nutrient reconcentration (i.e., volume reduction of collected urine) requires energy-intensive treatment processes, making it practically difficult to utilize human urine. In this study, energy-efficient nutrient reconcentration was demonstrated using ion exchange membranes (IEMs) in a microbial electrolysis cell (MEC) where substrate oxidation at the MEC anode provides energy for the separation of nutrient ions (e.g., NH4(+), HPO4(2-)). The rate of nutrient separation was magnified with increasing number of IEM pairs and electric voltage application (Eap). Ammonia and phosphate were reconcentrated from diluted human urine by a factor of up to 4.5 and 3.0, respectively (Eap = 1.2 V; 3-IEM pairs). The concentrating factor increased with increasing degrees of volume reduction, but it remained stationary when the volume ratio between the diluate (urine solution that is diluted in the IEM stack) and concentrate (urine solution that is reconcentrated) was 6 or greater. The energy requirement normalized by the mass of nutrient reconcentrated was 6.48 MJ/kg-N (1.80 kWh/kg-N) and 117.6 MJ/kg-P (32.7 kWh/kg-P). In addition to nutrient separation, the examined MEC reactor with three IEM pairs showed 54% removal of COD (chemical oxygen demand) in 47-hr batch operation. The high sulfate concentration in human urine resulted in substantial growth of both of acetate-oxidizing and H2-oxidizing sulfate reducing bacteria, greatly diminishing the energy recovery and Coulombic efficiency. However, the high microbial activity of sulfate reducing bacteria hardly affected the rate of nutrient reconcentration. With the capability to reconcentrate nutrients at a minimal energy consumption and simultaneous COD removal, the examined bioelectrochemical treatment method with an IEM application has a potential for practical nutrient recovery and sustainable treatment of source-separated human urine. Copyright © 2014

  6. Ground-state energies and highest occupied eigenvalues of atoms in exchange-only density-functional theory

    Science.gov (United States)

    Li, Yan; Harbola, Manoj K.; Krieger, J. B.; Sahni, Viraht

    1989-11-01

    The exchange-correlation potential of the Kohn-Sham density-functional theory has recently been interpreted as the work required to move an electron against the electric field of its Fermi-Coulomb hole charge distribution. In this paper we present self-consistent results for ground-state total energies and highest occupied eigenvalues of closed subshell atoms as obtained by this formalism in the exchange-only approximation. The total energies, which are an upper bound, lie within 50 ppm of Hartree-Fock theory for atoms heavier than Be. The highest occupied eigenvalues, as a consequence of this interpretation, approximate well the experimental ionization potentials. In addition, the self-consistently calculated exchange potentials are very close to those of Talman and co-workers [J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976); K. Aashamar, T. M. Luke, and J. D. Talman, At. Data Nucl. Data Tables 22, 443 (1978)].

  7. Directory of Energy Information Administration models 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This directory revises and updates the Directory of Energy Information Administration Models 1995, DOE/EIA-0293(95), Energy Information Administration (EIA), U.S. Department of Energy, July 1995. Four models have been deleted in this directory as they are no longer being used: (1) Market Penetration Model for Ground-Water Heat Pump Systems (MPGWHP); (2) Market Penetration Model for Residential Rooftop PV Systems (MPRESPV-PC); (3) Market Penetration Model for Active and Passive Solar Technologies (MPSOLARPC); and (4) Revenue Requirements Modeling System (RRMS).

  8. Dynamic energy models and carbon mitigation policies

    Science.gov (United States)

    Tilley, Luke A.

    In this dissertation I examine a specific class of energy models and their implications for carbon mitigation policies. The class of models includes a production function capable of reproducing the empirically observed phenomenon of short run rigidity of energy use in response to energy price changes and long run exibility of energy use in response to energy price changes. I use a theoretical model, parameterized using empirical data, to simulate economic performance under several tax regimes where taxes are levied on capital income, investment, and energy. I also investigate transitions from one tax regime to another. I find that energy taxes intended to reduce energy use can successfully achieve those goals with minimal or even positive impacts on macroeconomic performance. But the transition paths to new steady states are lengthy, making political commitment to such policies very challenging.

  9. High-energy-ion depletion in the charge exchange spectrum of Alcator C

    International Nuclear Information System (INIS)

    Schissel, D.P.

    1982-01-01

    A three-dimensional, guiding center, Monte Carlo code is developed to study ion orbits in Alcator C. The highly peaked ripple of the magnetic field of Alcator is represented by an analytical expression for the vector potential. The analytical ripple field is compared to the resulting magnetic field generated by a current model of the toroidal plates; agreement is excellent. Ion-Ion scattering is simulated by a pitch angle and an energy scattering operator. The equations of motion are integrated with a variable time step, extrapolating integrator. The code produces collisionless banana and ripple trapped loss cones which agree well with present theory. Global energy distributions have been calculated and show a slight depletion above 8.5 keV. Particles which are ripple trapped and lost are at energies below where depletion is observed. It is found that ions pitch angle scatter less as energy is increased. The result is that, when viewed in velocity space, ions form probability lobes the shape of mouse ears which are fat near the thermal energy. Therefore, particles enter the loss cone at low energies near the bottom of the core. Recommendations for future work include improving the analytic model of the ripple field, testing the effect of del . B not equal to 0 on ion orbits, and improving the efficiency of the code by either using a spline fit for the magnetic fields or by creating a vectorized Monte Carlo code

  10. A Test of the Optimality Approach to Modelling Canopy gas Exchange by Natural Vegetation

    Science.gov (United States)

    Schymanski, S. J.; Sivapalan, M.; Roderick, M. L.; Beringer, J.; Hutley, L. B.

    2005-12-01

    Natural vegetation has co-evolved with its environment over a long period of time and natural selection has led to a species composition that is most suited for the given conditions. Part of this adaptation is the vegetation's water use strategy, which determines the amount and timing of water extraction from the soil. Knowing that water extraction by vegetation often accounts for over 90% of the annual water balance in some places, we need to understand its controls if we want to properly model the hydrologic cycle. Water extraction by roots is driven by transpiration from the canopy, which in turn is an inevitable consequence of CO2 uptake for photosynthesis. Photosynthesis provides plants with their main building material, carbohydrates, and with the energy necessary to thrive and prosper in their environment. Therefore we expect that natural vegetation would have evolved an optimal water use strategy to maximise its `net carbon profit' (the difference between carbon acquired by photosynthesis and carbon spent on maintenance of the organs involved in its uptake). Based on this hypothesis and on an ecophysiological gas exchange and photosynthesis model (Cowan and Farquhar 1977; von Caemmerer 2000), we model the optimal vegetation for a site in Howard Springs (N.T., Australia) and compare the modelled fluxes with measurements by Beringer, Hutley et al. (2003). The comparison gives insights into theoretical and real controls on transpiration and photosynthesis and tests the optimality approach to modelling gas exchange of natural vegetation with unknown properties. The main advantage of the optimality approach is that no assumptions about the particular vegetation on a site are needed, which makes it very powerful for predicting vegetation response to long-term climate- or land use change. Literature: Beringer, J., L. B. Hutley, et al. (2003). "Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia." International

  11. An Empirical Model for Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scott, Paul [TransPower, Poway, CA (United States)

    2016-03-17

    Improved models of energy storage systems are needed to enable the electric grid’s adaptation to increasing penetration of renewables. This paper develops a generic empirical model of energy storage system performance agnostic of type, chemistry, design or scale. Parameters for this model are calculated using test procedures adapted from the US DOE Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage. We then assess the accuracy of this model for predicting the performance of the TransPower GridSaver – a 1 MW rated lithium-ion battery system that underwent laboratory experimentation and analysis. The developed model predicts a range of energy storage system performance based on the uncertainty of estimated model parameters. Finally, this model can be used to better understand the integration and coordination of energy storage on the electric grid.

  12. A Non-Local, Energy-Optimized Kernel: Recovering Second-Order Exchange and Beyond in Extended Systems

    Science.gov (United States)

    Bates, Jefferson; Laricchia, Savio; Ruzsinszky, Adrienn

    The Random Phase Approximation (RPA) is quickly becoming a standard method beyond semi-local Density Functional Theory that naturally incorporates weak interactions and eliminates self-interaction error. RPA is not perfect, however, and suffers from self-correlation error as well as an incorrect description of short-ranged correlation typically leading to underbinding. To improve upon RPA we introduce a short-ranged, exchange-like kernel that is one-electron self-correlation free for one and two electron systems in the high-density limit. By tuning the one free parameter in our model to recover an exact limit of the homogeneous electron gas correlation energy we obtain a non-local, energy-optimized kernel that reduces the errors of RPA for both homogeneous and inhomogeneous solids. To reduce the computational cost of the standard kernel-corrected RPA, we also implement RPA renormalized perturbation theory for extended systems, and demonstrate its capability to describe the dominant correlation effects with a low-order expansion in both metallic and non-metallic systems. Furthermore we stress that for norm-conserving implementations the accuracy of RPA and beyond RPA structural properties compared to experiment is inherently limited by the choice of pseudopotential. Current affiliation: King's College London.

  13. The Effects Of Asymmetric Transmission Of Exchange Rate On Inflation In Iran: Application Of Threshold Models

    Directory of Open Access Journals (Sweden)

    Naghdi Yazdan

    2015-08-01

    Full Text Available Given the recent fluctuation in the exchange rate and the presence of several factors such as the various economy-political sanctions (mainly embargos on oil and banking, extreme volatility in different economic fields, and consequently the devaluation of national and public procurement -A landmark that is emanating from exchange rate fluctuation - two points should be noted: First, it is essential to review the effect of exchange rate fluctuation on macro economic variables such as inflation and to provide appropriate policies. Second, the existence of this condition provides the chance to study the relation between exchange rate and inflation in a non-linear and asymmetric method. Hence, the present study seeks to use TAR model and, on the basis of monthly time series data over the period March 2002 to March 2014, to analyze the cross-asymmetric and non-linear exchange rate on consumer price index (CPI in Iran. The results also show the presence of an asymmetric long-term relationship between these variables (exchange rate and CPI. Also, in the Iranian economy, the effect of negative shocks of exchange rate on inflation is more sustainable than the one from positive shocks.

  14. Effects of invasive insects and fire on energy exchange and evapotranspiration in the New Jersey pine lands

    Science.gov (United States)

    Kenneth L. Clark; Nicholas Skowronski; Michael Gallagher; Hedi Renninger; Karina. Schafer

    2012-01-01

    We used eddy covariance and meteorological measurements to quantify energy exchange and evapotranspiration (Et) in three representative upland forest stands in the New Jersey Pinelands that were either defoliated by gypsy moth (Lymantria dispar L.) or burned in prescribed fires during the study period. Latent (λE) and sensible heat (H)...

  15. An one-dimensional model simulating the energy distribution of neutrals going out of a tokamak plasma

    International Nuclear Information System (INIS)

    Barrado, J.M.; Blazquez, J.B.; Perez-Navarro, A.; Zurro, B.

    1977-01-01

    An one-dimensional model to analyze the neutral atoms penetration into a hot plasma has been introduced in order to get the ionic temperature from the energy distribution of the charge exchange neutrals, which is obtained following a Montecarlo procedure. The model enhances the influence of the non homogeneous charge-exchange and temperature profiles over the energy distribution. It also shows haw the inner neutrals are screened by the plasma external layers and the dependence of the effective temperature on the charge-exchange cross section. Results agree with experimental data and with obtained through some others more elaborated models. (author) [es

  16. Numerical calculation of 'actual' radial profile of ion temperature from 'measured' energy spectra of charge-exchanged neutrals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo; Itoh, Satoshi

    1984-10-01

    The energy spectra of charge-exchanged neutrals are observed in the TRIAM-1 tokamak by vertical scanning of the neutral energy analyzer. The ''apparent'' ion temperature obtained directly from the energy spectrum observed in the peripheral region is much higher than that predicted by neoclassical transport theory. The ''actual'' ion temperature profile is derived numerically from the energy spectra observed at various positions taking into account the wall-reflection effect of neutrals and the impermeability of the plasma. As a result, the ''actual'' ion temperature profile is found to agree well with that predicted by neoclassical transport theory.

  17. Numerical calculation of 'actual' radial profile of ion temperature from 'measured' energy spectra of charge-exchanged neutrals

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo; Itoh, Satoshi

    1984-01-01

    The energy spectra of charge-exchanged neutrals are observed in the TRIAM-1 tokamak by vertical scanning of the neutral energy analyzer. The ''apparent'' ion temperature obtained directly from the energy spectrum observed in the peripheral region is much higher than that predicted by neoclassical transport theory. The ''actual'' ion temperature profile is derived numerically from the energy spectra observed at various positions taking into account the wall-reflection effect of neutrals and the impermeability of the plasma. As a result, the ''actual'' ion temperature profile is found to agree well with that predicted by neoclassical transport theory. (author)

  18. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers.

    Science.gov (United States)

    White, M J; Nellis, G F; Kelin, S A; Zhu, W; Gianchandani, Y

    2010-11-01

    Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid.

  19. Directory of Energy Information Administration Models 1994

    International Nuclear Information System (INIS)

    1994-07-01

    This directory revises and updates the 1993 directory and includes 15 models of the National Energy Modeling System (NEMS). Three other new models in use by the Energy Information Administration (EIA) have also been included: the Motor Gasoline Market Model (MGMM), Distillate Market Model (DMM), and the Propane Market Model (PPMM). This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses and requirements. Sources for additional information are identified. Included in this directory are 37 EIA models active as of February 1, 1994

  20. Directory of Energy Information Administration Models 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This directory revises and updates the 1993 directory and includes 15 models of the National Energy Modeling System (NEMS). Three other new models in use by the Energy Information Administration (EIA) have also been included: the Motor Gasoline Market Model (MGMM), Distillate Market Model (DMM), and the Propane Market Model (PPMM). This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses and requirements. Sources for additional information are identified. Included in this directory are 37 EIA models active as of February 1, 1994.

  1. Communication: Density functional theory model for multi-reference systems based on the exact-exchange hole normalization.

    Science.gov (United States)

    Laqua, Henryk; Kussmann, Jörg; Ochsenfeld, Christian

    2018-03-28

    The correct description of multi-reference electronic ground states within Kohn-Sham density functional theory (DFT) requires an ensemble-state representation, employing fractionally occupied orbitals. However, the use of fractional orbital occupation leads to non-normalized exact-exchange holes, resulting in large fractional-spin errors for conventional approximative density functionals. In this communication, we present a simple approach to directly include the exact-exchange-hole normalization into DFT. Compared to conventional functionals, our model strongly improves the description for multi-reference systems, while preserving the accuracy in the single-reference case. We analyze the performance of our proposed method at the example of spin-averaged atoms and spin-restricted bond dissociation energy surfaces.

  2. Communication: Density functional theory model for multi-reference systems based on the exact-exchange hole normalization

    Science.gov (United States)

    Laqua, Henryk; Kussmann, Jörg; Ochsenfeld, Christian

    2018-03-01

    The correct description of multi-reference electronic ground states within Kohn-Sham density functional theory (DFT) requires an ensemble-state representation, employing fractionally occupied orbitals. However, the use of fractional orbital occupation leads to non-normalized exact-exchange holes, resulting in large fractional-spin errors for conventional approximative density functionals. In this communication, we present a simple approach to directly include the exact-exchange-hole normalization into DFT. Compared to conventional functionals, our model strongly improves the description for multi-reference systems, while preserving the accuracy in the single-reference case. We analyze the performance of our proposed method at the example of spin-averaged atoms and spin-restricted bond dissociation energy surfaces.

  3. Making work safer: testing a model of social exchange and safety management.

    Science.gov (United States)

    DeJoy, David M; Della, Lindsay J; Vandenberg, Robert J; Wilson, Mark G

    2010-04-01

    This study tests a conceptual model that focuses on social exchange in the context of safety management. The model hypothesizes that supportive safety policies and programs should impact both safety climate and organizational commitment. Further, perceived organizational support is predicted to partially mediate both of these relationships. Study outcomes included traditional outcomes for both organizational commitment (e.g., withdrawal behaviors) as well as safety climate (e.g., self-reported work accidents). Questionnaire responses were obtained from 1,723 employees of a large national retailer. Using structural equation modeling (SEM) techniques, all of the model's hypothesized relationships were statistically significant and in the expected directions. The results are discussed in terms of social exchange in organizations and research on safety climate. Maximizing safety is a social-technical enterprise. Expectations related to social exchange and reciprocity figure prominently in creating a positive climate for safety within the organization. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Pion-nucleus double charge exchange and the nuclear shell model

    International Nuclear Information System (INIS)

    Auerbach, N.; Gibbs, W.R.; Ginocchio, J.N.; Kaufmann, W.B.

    1988-01-01

    The pion-nucleus double charge exchange reaction is studied with special emphasis on nuclear structure. The reaction mechanism and nuclear structure aspects of the process are separated using both the plane-wave and distorted-wave impulse approximations. Predictions are made employing both the seniority model and a full shell model (with a single active orbit). Transitions to the double analog state and to the ground state of the residual nucleus are computed. The seniority model yields particularly simple relations among double charge exchange cross sections for nuclei within the same shell. Limitations of the seniority model and of the plane-wave impulse approximation are discussed as well as extensions to the generalized seniority scheme. Applications of the foregoing ideas to single charge exchange are also presented

  5. Analysis of a compartmental model of amyloid beta production, irreversible loss and exchange in humans.

    Science.gov (United States)

    Elbert, Donald L; Patterson, Bruce W; Bateman, Randall J

    2015-03-01

    Amyloid beta (Aβ) peptides, and in particular Aβ42, are found in senile plaques associated with Alzheimer's disease. A compartmental model of Aβ production, exchange and irreversible loss was recently developed to explain the kinetics of isotope-labeling of Aβ peptides collected in cerebrospinal fluid (CSF) following infusion of stable isotope-labeled leucine in humans. The compartmental model allowed calculation of the rates of production, irreversible loss (or turnover) and short-term exchange of Aβ peptides. Exchange of Aβ42 was particularly pronounced in amyloid plaque-bearing participants. In the current work, we describe in much greater detail the characteristics of the compartmental model to two distinct audiences: physician-scientists and biokineticists. For physician-scientists, we describe through examples the types of questions the model can and cannot answer, as well as correct some misunderstandings of previous kinetic analyses applied to this type of isotope labeling data. For biokineticists, we perform a system identifiability analysis and a sensitivity analysis of the kinetic model to explore the global and local properties of the model. Combined, these analyses motivate simplifications from a more comprehensive physiological model to the final model that was previously presented. The analyses clearly demonstrate that the current dataset and compartmental model allow determination with confidence a single 'turnover' parameter, a single 'exchange' parameter and a single 'delay' parameter. When combined with CSF concentration data for the Aβ peptides, production rates may also be obtained. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. J/Ψ and φ Electro-production in Pomeron Exchange Model

    International Nuclear Information System (INIS)

    Liu Baorong; Tan Zhenqiang; Gu Yunting; He Xiaorong; Zhou Lijuan; Ma Weixing

    2007-01-01

    Based on Pomeron exchange model, J/Ψ and φ production in electro-proton interaction are investigated with both linear and non-linear Pomeron trajectory. The experimental differential cross sections measured as a function of the kinematic variable Q 2 ,W and t are reproduced successfully in the model. Our conclusions are that the Pomeron exchange model is a successful description of J/Ψ and φ electro-productions on the proton, and that the linear trajectory is a good approximation to non-linearity of the Pomeron trajectory.

  7. A modified wake oscillator model for predicting vortex induced vibration of heat exchanger tube

    International Nuclear Information System (INIS)

    Feng Zhipeng; Zang Fenggang; Zhang Yixiong; Ye Xianhui

    2014-01-01

    Base on the classical wake oscillator model, a new modified wake oscillator model is proposed, for predicting vortex induced vibration of heat exchanger tube in uniform current. The comparison between the new wake oscillator model and experimental show that the present model can simulate the characteristics of vortex induced vibration of tube. Firstly, the research shows that the coupled fluid-structure dynamical system should be modeled by combined displacement and acceleration mode. Secondly, the empirical parameter in wake oscillator model depends on the material properties of the structure, instead of being a universal constant. Lastly, the results are compared between modified wake oscillator model and fluid-structure interaction numerical model. It shows the present, predicted results are compared to the fluid-structure interaction numerical data. The new modified wake oscillator model can predict the vortex induced heat exchanger tube vibration feasibly. (authors)

  8. Modelling non-linear effects of dark energy

    Science.gov (United States)

    Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis

    2018-04-01

    We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.

  9. World energy projection system: Model documentation

    Science.gov (United States)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES), provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report.

  10. World energy projection system: Model documentation

    International Nuclear Information System (INIS)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) (Figure 1). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES) provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report

  11. Thermal modeling of a greenhouse integrated to an aquifer coupled cavity flow heat exchanger system

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141 008, Punjab (India); Sharma, S.K. [Energy Research Centre, Panjab University, Chandigarh 160 017, Punjab (India)

    2007-06-15

    A thermal model is developed for heating and cooling of an agricultural greenhouse integrated with an aquifer coupled cavity flow heat exchanger system (ACCFHES). The ACCFHES works on the principal of utilizing deep aquifer water available at the ground surface through an irrigation tube well already installed in every agricultural field at constant year-round temperature of 24 C. The analysis is based on the energy balance equations for different components of the greenhouse. Using the derived analytical expressions, a computer program is developed in C{sup ++} for computing the hourly greenhouse plant and room air temperature for various design and climatic parameters. Experimental validation of the developed model is carried out using the measured plant and room air temperature data of the greenhouse (in which capsicum is grown) for the winter and summer conditions of the year 2004-2005 at Chandigarh (31 N and 78 E), Punjab, India. It is observed that the predicted and measured values are in close agreement. Greenhouse room air and plant temperature is maintained 6-7 K and 5-6 K below ambient, respectively for an extreme summer day and 7-8 K and 5-6 K above ambient, respectively for an extreme winter night. Finally, parametric studies are conducted to observe the effect of various operating parameters such as mass of the plant, area of the plant, mass flow rate of the circulating air and area of the ACCFHES on the greenhouse room air and plant temperature. (author)

  12. A new dimensionless number highlighted from mechanical energy exchange during running.

    Science.gov (United States)

    Delattre, Nicolas; Moretto, Pierre

    2008-09-18

    This study aimed to highlight a new dimensionless number from mechanical energy transfer occurring at the centre of gravity (Cg) during running. We built two different-sized spring-mass models (SMM #1 and SMM #2). SMM #1 was built from the previously published data, and SMM #2 was built to be dynamically similar to SMM #1. The potential gravitational energy (E(P)), kinetic energy (E(K)), and potential elastic energy (E(E)) were taken into account to test our hypothesis. For both SMM #1 and SMM #2, N(Mo-Dela)=(E(P)+E(K))/E(E) reached the same mean value and was constant (4.1+/-0.7) between 30% and 70% of contact time. Values of N(Mo-Dela) obtained out of this time interval were due to the absence of E(E) at initial and final times of the simulation. This phenomenon does not occur during in vivo running because a leg muscle's pre-activation enables potential elastic energy storage prior to ground contact. Our findings also revealed that two different-sized spring-mass models bouncing with equal N(Mo-Dela) values moved in a dynamically similar fashion. N(Mo-Dela), which can be expressed by the combination of Strouhal and Froude numbers, could be of great interest in order to study animal and human locomotion under Earth's gravity or to induce dynamic similarity between different-sized individuals during bouncing gaits.

  13. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins

    Science.gov (United States)

    Gomez-Velez, Jesus D.; Harvey, Judson W.

    2014-09-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.

  14. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins

    Science.gov (United States)

    Gomez-Velez, Jesus D.; Harvey, Judson

    2014-01-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.

  15. A cultural model of household energy consumption

    International Nuclear Information System (INIS)

    Lutzenhiser, Loren

    1992-01-01

    In this paper, we consider the development of demand-side research, from an early interest in conservation behavior to a later focus on physical, economic, psychological and social models of energy consumption. Unfortunately, none of these models account satisfactorily for measured energy consumption in the residential sector. Growing interest in the end-uses of energy (e.g. in support of load forecasting, demand-side management and least-cost utility planning), increasing international studies of energy use, and continuing work in the energy and lifestyles research tradition now support an emerging cultural perspective on household energy use. The ecological foundations of the cultural model and its applications in energy research are discussed, along with some of the analytic consequences of this approach. (author)

  16. Modelling energy demand of Croatian industry sector

    DEFF Research Database (Denmark)

    Medić, Zlatko Bačelić; Pukšec, Tomislav; Mathiesen, Brian Vad

    2014-01-01

    Industry represents one of the most interesting sectors when analysing Croatian final energy demand. Croatian industry represents 20% of nation's GDP and employs 25% of total labour force making it a significant subject for the economy. Today, with around 60 PJ of final energy demand...... it is the third most energy intensive sector in Croatia after transport and households. Implementing mechanisms that would lead to improvements in energy efficiency in this sector seems relevant. Through this paper, long-term energy demand projections for Croatian industry will be shown. The central point...... for development of the model will be parameters influencing the industry in Croatia. Energy demand predictions in this paper are based upon bottom-up approach model. IED model produces results which can be compared to Croatian National Energy Strategy. One of the conclusions shown in this paper is significant...

  17. Modeling of renewable hybrid energy sources

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragos

    2009-12-01

    Full Text Available Recent developments and trends in the electric power consumption indicate an increasing use of renewable energy. Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth and plants. Virtually all regions of the world have renewable resources of one type or another. By this point of view studies on renewable energies focuses more and more attention. The present paper intends to present different mathematical models related to different types of renewable energy sources such as: solar energy and wind energy. It is also presented the validation and adaptation of such models to hybrid systems working in geographical and meteorological conditions specific to central part of Transylvania region. The conclusions based on validation of such models are also shown.

  18. Mathematical modeling and control of plate fin and tube heat exchangers

    International Nuclear Information System (INIS)

    Taler, Dawid

    2015-01-01

    Highlights: • A method for numerical modeling of plate fin and tube heat exchangers was proposed. • A numerical model of an automobile radiator was developed. • Numerical models of the radiator were compared with an exact analytical model. • A model-based control system of water outlet temperature was built and tested. • A digital proportional–integral–derivative controller of heat exchanger was tested. - Abstract: The aim of the study is to develop a new method for numerical modeling of tubular cross-flow heat exchangers. Using the method proposed in the paper, a numerical model of a car radiator was developed and implemented in a digital control system of the radiator. To evaluate the accuracy of the numerical method proposed in the paper, the numerical model of the car radiator was compared with an analytic model. The proposed method based on a finite volume method and integral averaging of gas temperature across a tube row is appropriate for modeling of plate fin and tube heat exchangers, especially for exchangers in which substantial gas temperature differences in one tube row occur. The target of control is to regulate the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a set value. Two control techniques were developed. The first is based on the numerical model of the heat exchanger developed in the paper while the second is a digital proportional–integral–derivative control. The first control method is very stable. The digital proportional–integral–derivative controller becomes unstable when the water volume flow rate varies considerably. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments show that the proportional–integral–derivative controller

  19. Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub

    International Nuclear Information System (INIS)

    Ma, Tengfei; Wu, Junyong; Hao, Liangliang

    2017-01-01

    Highlights: • Design a novel architecture for energy hub integrating power hub, cooling hub and heating hub. • The micro energy grid based on energy hub is introduced and its advantages are discussed. • Propose a generic modeling method for the energy flow of micro energy grid. • Propose an optimal operation model for micro energy grid with considering demand response. • The roles of renewable energy, energy storage devices and demand response are discussed separately. - Abstract: The energy security and environmental problems impel people to explore a more efficient, environment friendly and economical energy utilization pattern. In this paper, the coordinated operation and optimal dispatch strategies for multiple energy system are studied at the whole Micro Energy Grid level. To augment the operation flexibility of energy hub, the innovation sub-energy hub structure including power hub, heating hub and cooling hub is put forward. Basing on it, a generic energy hub architecture integrating renewable energy, combined cooling heating and power, and energy storage devices is developed. Moreover, a generic modeling method for the energy flow of micro energy grid is proposed. To minimize the daily operation cost, a day-ahead dynamic optimal operation model is formulated as a mixed integer linear programming optimization problem with considering the demand response. Case studies are undertaken on a community Micro Energy Grid in four different scenarios on a typical summer day and the roles of renewable energy, energy storage devices and demand response are discussed separately. Numerical simulation results indicate that the proposed energy flow modeling and optimal operation method are universal and effective over the entire energy dispatching horizon.

  20. Modeling Energy and Development : An Evaluation of Models and Concepts

    NARCIS (Netherlands)

    Ruijven, Bas van; Urban, Frauke; Benders, René M.J.; Moll, Henri C.; Sluijs, Jeroen P. van der; Vries, Bert de; Vuuren, Detlef P. van

    2008-01-01

    Most global energy models are developed by institutes from developed countries focusing primarily oil issues that are important in industrialized countries. Evaluation of the results for Asia of the IPCC/SRES models shows that broad concepts of energy and development. the energy ladder and the

  1. Heat exchanger with dirt separator for the use of the heat energy of waste water

    Energy Technology Data Exchange (ETDEWEB)

    1975-11-13

    Well-known heat exchanger systems consist of separate heat exchangers and dirt separators. In the case here in question both devices form a unit. A finned tube heat exchanger is positioned in the center of the dirt separator and is given extra protection through deflection sheets. A safety overflow is supplied so that no residue can appear in the waste water line when decanting.

  2. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic

  3. Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests

    DEFF Research Database (Denmark)

    Alberdi Pagola, Maria; Poulsen, Søren Erbs; Loveridge, Fleur

    2018-01-01

    This paper investigates the applicability of currently available analytical, empirical and numerical heat flow models for interpreting thermal response tests (TRT) of quadratic cross section precast pile heat exchangers. A 3D finite element model (FEM) is utilised for interpreting five TRTs by in...

  4. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the

  5. Model-based fault detection for proton exchange membrane fuel cell ...

    African Journals Online (AJOL)

    In this paper, an intelligent model-based fault detection (FD) is developed for proton exchange membrane fuel cell (PEMFC) dynamic systems using an independent radial basis function (RBF) networks. The novelty is that this RBF networks is used to model the PEMFC dynamic systems and residuals are generated based ...

  6. Exchange of parametric bridge models using a neutral data format

    NARCIS (Netherlands)

    Ji, Y.; Borrmann, André; Beetz, J.; Obergrießer, M.

    2013-01-01

    Parametric modeling is a well-established methodology in the field of mechanical engineering. It allows the creation of flexible geometric models using parameters for dimensions and makes it possible to define numeric relationships between these parameters by means of mathematical formulas and

  7. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna [ed.

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland has been

  8. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna (ed.)

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland

  9. Modelling smart energy systems in tropical regions

    DEFF Research Database (Denmark)

    Dominkovic, D. F.; Dobravec, V.; Jiang, Y.

    2018-01-01

    and water desalination sectors. Five different large scale storages were modelled, too. The developed linear optimization model further included endogenous decisions about the share of district versus individual cooling, implementation of energy efficiency solutions and implementation of demand response...... emissions, 15% higher particulate matter emissions and 2% larger primary energy consumption compared to a business-as-usual case....

  10. Holography and holographic dark energy model

    International Nuclear Information System (INIS)

    Gong Yungui; Zhang Yuanzhong

    2005-01-01

    The holographic principle is used to discuss the holographic dark energy model. We find that the Bekenstein-Hawking entropy bound is far from saturation under certain conditions. A more general constraint on the parameter of the holographic dark energy model is also derived

  11. Energy and externality environmental regional model

    International Nuclear Information System (INIS)

    Baldi, L.; Bianchi, A.; Peri, M.

    2000-01-01

    The use of environmental externalities in both territorial management and the direction of energy and environment, faces the difficulties arising from their calculation. The so-called MACBET regional model, which has been constructed for Lombardy, is a first brand new attempt to overcome them. MACBET is a calculation model to assess environmental and employment externalities connected to energy use [it

  12. A Markov chain approach to modelling charge exchange processes of an ion beam in monotonically increasing or decreasing potentials

    International Nuclear Information System (INIS)

    Shrier, O; Khachan, J; Bosi, S

    2006-01-01

    A Markov chain method is presented as an alternative approach to Monte Carlo simulations of charge exchange collisions by an energetic hydrogen ion beam with a cold background hydrogen gas. This method was used to determine the average energy of the resulting energetic neutrals along the path of the beam. A comparison with Monte Carlo modelling showed a good agreement but with the advantage that it required much less computing time and produced no numerical noise. In particular, the Markov chain method works well for monotonically increasing or decreasing electrostatic potentials. Finally, a good agreement is obtained with experimental results from Doppler shift spectroscopy on energetic beams from a hollow cathode discharge. In particular, the average energy of ions that undergo charge exchange reaches a plateau that can be well below the full energy that might be expected from the applied voltage bias, depending on the background gas pressure. For example, pressures of ∼20 mTorr limit the ion energy to ∼20% of the applied voltage

  13. Towards an energy management maturity model

    International Nuclear Information System (INIS)

    Antunes, Pedro; Carreira, Paulo; Mira da Silva, Miguel

    2014-01-01

    Energy management is becoming a priority as organizations strive to reduce energy costs, conform to regulatory requirements, and improve their corporate image. Despite the upsurge of interest in energy management standards, a gap persists between energy management literature and current implementation practices. This gap can be traced to the lack of an incremental improvement roadmap. In this paper we propose an Energy Management Maturity Model that can be used to guide organizations in their energy management implementation efforts to incrementally achieve compliance with energy management standards such as ISO 50001. The proposed maturity model is inspired on the Plan-Do-Check-Act cycle approach for continual improvement, and covers well-understood fundamental energy management activities common across energy management texts. The completeness of our proposal is then evaluated by establishing an ontology mapping against ISO 50001. - Highlights: • Real-world energy management activities are not aligned with the literature. • An Energy Management Maturity Model is proposed to overcome this alignment gap. • The completeness and relevance of proposed model are validated

  14. Modeling of battery energy storage in the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  15. Model based energy benchmarking for glass furnace

    International Nuclear Information System (INIS)

    Sardeshpande, Vishal; Gaitonde, U.N.; Banerjee, Rangan

    2007-01-01

    Energy benchmarking of processes is important for setting energy efficiency targets and planning energy management strategies. Most approaches used for energy benchmarking are based on statistical methods by comparing with a sample of existing plants. This paper presents a model based approach for benchmarking of energy intensive industrial processes and illustrates this approach for industrial glass furnaces. A simulation model for a glass furnace is developed using mass and energy balances, and heat loss equations for the different zones and empirical equations based on operating practices. The model is checked with field data from end fired industrial glass furnaces in India. The simulation model enables calculation of the energy performance of a given furnace design. The model results show the potential for improvement and the impact of different operating and design preferences on specific energy consumption. A case study for a 100 TPD end fired furnace is presented. An achievable minimum energy consumption of about 3830 kJ/kg is estimated for this furnace. The useful heat carried by glass is about 53% of the heat supplied by the fuel. Actual furnaces operating at these production scales have a potential for reduction in energy consumption of about 20-25%

  16. Activity systems modeling as a theoretical lens for social exchange studies

    Directory of Open Access Journals (Sweden)

    Ernest Jones

    2016-01-01

    Full Text Available The social exchange perspective seeks to acknowledge, understand and predict the dynamics of social interactions. Empirical research involving social exchange constructs have grown to be highly technical including confirmatory factor analysis to assess construct distinctiveness and structural equation modeling to assess construct causality. Each study seemingly strives to assess how underlying social exchange theoretic constructs interrelate. Yet despite this methodological depth and resultant explanatory and predictive power, a significant number of studies report findings that, once synthesized, suggest an underlying persistent threat of conceptual or construct validity brought about by a search for epistemological parsimony. Further, it is argued that a methodological approach that embraces inherent complexity such as activity systems modeling facilitates the search for simplified models while not ignoring contextual factors.

  17. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...... associates conjugate heat transfer phenomenon with the turbulent flow to describe the variable temperature and velocity profile. The performance of heat exchanger design is investigated in terms of overall heat transfer coefficient, Nusselt number, Colburn j-factor, flow resistance factor, and efficiency...... between fin and tube. The present numerical model predicts the performance of the heat exchanger design, therefore, can be applied to existing waste heat recovery systems to improve the overall performance with optimized design and process-dependent parameters....

  18. Multiphysics Model of Palladium Hydride Isotope Exchange Accounting for Higher Dimensionality

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Eliassi, Mehdi; Bon, Bradley Luis

    2015-03-01

    This report summarizes computational model developm ent and simulations results for a series of isotope exchange dynamics experiments i ncluding long and thin isothermal beds similar to the Foltz and Melius beds and a lar ger non-isothermal experiment on the NENG7 test bed. The multiphysics 2D axi-symmetr ic model simulates the temperature and pressure dependent exchange reactio n kinetics, pressure and isotope dependent stoichiometry, heat generation from the r eaction, reacting gas flow through porous media, and non-uniformities in the bed perme ability. The new model is now able to replicate the curved reaction front and asy mmetry of the exit gas mass fractions over time. The improved understanding of the exchange process and its dependence on the non-uniform bed properties and te mperatures in these larger systems is critical to the future design of such sy stems.

  19. Method for modeling social care processes for national information exchange.

    Science.gov (United States)

    Miettinen, Aki; Mykkänen, Juha; Laaksonen, Maarit

    2012-01-01

    Finnish social services include 21 service commissions of social welfare including Adoption counselling, Income support, Child welfare, Services for immigrants and Substance abuse care. This paper describes the method used for process modeling in the National project for IT in Social Services in Finland (Tikesos). The process modeling in the project aimed to support common national target state processes from the perspective of national electronic archive, increased interoperability between systems and electronic client documents. The process steps and other aspects of the method are presented. The method was developed, used and refined during the three years of process modeling in the national project.

  20. Balmorel open source energy system model

    DEFF Research Database (Denmark)

    Wiese, Frauke; Bramstoft, Rasmus; Koduvere, Hardi

    2018-01-01

    As the world progresses towards a cleaner energy future with more variable renewable energy sources, energy system models are required to deal with new challenges. This article describes design, development and applications of the open source energy system model Balmorel, which is a result...... of a long and fruitful cooperation between public and private institutions within energy system research and analysis. The purpose of the article is to explain the modelling approach, to highlight strengths and challenges of the chosen approach, to create awareness about the possible applications...... of Balmorel as well as to inspire to new model developments and encourage new users to join the community. Some of the key strengths of the model are the flexible handling of the time and space dimensions and the combination of operation and investment optimisation. Its open source character enables diverse...