WorldWideScience

Sample records for energy engineering sciences

  1. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  2. Argonne Chemical Sciences & Engineering - Center for Electrical Energy

    Science.gov (United States)

    Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Research Facilities People Publications Awards News & Highlights Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Conversion Electrochemical

  3. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  4. Proceedings of the fifteenth symposium on energy engineering sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This Proceedings Volume includes the technical papers that were presented during the Fifteenth Symposium on Energy Engineering Sciences on May 14-15, 1997, at Argonne National Laboratory, Argonne, Illinois. The Symposium was organized into eight technical sessions, which included 32 individual presentations followed by discussion and interaction with the audience. The topics of the eight sessions are: multiphase flows 1; multiphase flows 2; mostly optics; fluid mechanics; nonlinear fields; welding and cracks; materials; and controls. The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. It has the prime responsibility for establishing the basic scientific foundation upon which the Nation`s future energy options will have to be identified, developed, and built. It is committed to the generation of new knowledge necessary for the solution of present and future problems of energy exploration, production, conversion, and utilization, consistent with respect for the environment. Separate abstracts have been indexed into the energy database for contributions to this Symposium.

  5. Materials Science and Engineering |

    Science.gov (United States)

    Engineering? What Is Materials Science and Engineering? MSE combines engineering, physics and chemistry to solve problems in nanotechnology, biotechnology, information technology, energy, manufacturing, and more ,' which could replace steel. Materials Science and Mechanical Engineering Professors work together to

  6. Materials Science & Engineering | Classification | College of Engineering &

    Science.gov (United States)

    Biomedical Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  7. Research Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Multimedia Software Laboratory Computer Science Nanotechnology for Sustainable Energy and Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  8. Thirteenth symposium on energy engineering sciences: Proceedings. Fluid/thermal processes, systems analysis and control

    International Nuclear Information System (INIS)

    1995-01-01

    The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment, and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; and (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The meeting covered the following areas: (1) fluid mechanics 1--fundamental properties; (2) fluid mechanics 2--two phase flow; (3) thermal processes; (4) fluid mechanics 3; (5) process analysis and control; (6) fluid mechanics 4--turbulence; (7) fluid mechanics 5--chaos; (8) materials issues; and (9) plasma processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  9. Thirteenth symposium on energy engineering sciences: Proceedings. Fluid/thermal processes, systems analysis and control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment, and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; and (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The meeting covered the following areas: (1) fluid mechanics 1--fundamental properties; (2) fluid mechanics 2--two phase flow; (3) thermal processes; (4) fluid mechanics 3; (5) process analysis and control; (6) fluid mechanics 4--turbulence; (7) fluid mechanics 5--chaos; (8) materials issues; and (9) plasma processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. Eleventh symposium on energy engineering sciences: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The Eleventh Symposium on Energy Engineering Sciences was held on May 3--5, 1993, at the Argonne National Laboratory, Argonne, Illinois. These proceedings include the program, list of participants, and the papers that were presented during the eight technical sessions held at this meeting. This symposium was organized into eight technical sessions: Surfaces and interfaces; thermophysical properties and processes; inelastic behavior; nondestructive characterization; multiphase flow and thermal processes; optical and other measurement systems; stochastic processes; and large systems and control. Individual projects were processed separately for the databases

  11. Proc. of the sixteenth symposium on energy engineering sciences, May 13-15, 1998, Argonne, IL.

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-05-13

    This Proceedings Volume includes the technical papers that were presented during the Sixteenth Symposium on Energy Engineering Sciences on May 13--15, 1998, at Argonne National Laboratory, Argonne, Illinois. The Symposium was structured into eight technical sessions, which included 30 individual presentations followed by discussion and interaction with the audience. A list of participants is appended to this volume. The DOE Office of Basic Energy Sciences (BES), of which Engineering Research is a component program, is responsible for the long-term, mission-oriented research in the Department. The Office has prime responsibility for establishing the basic scientific foundation upon which the Nation's future energy options will be identified, developed, and built. BES is committed to the generation of new knowledge necessary to solve present and future problems regarding energy exploration, production, conversion, and utilization, while maintaining respect for the environment. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, prolonging the useful life of energy-related structures and equipment, and developing advanced manufacturing technologies and materials processing. The program emphasis is on reducing costs through improved industrial production and performance and expanding the nation's store of fundamental knowledge for solving anticipated and unforeseen engineering problems in energy technologies. To achieve these goals, the Engineering Research Program supports approximately 130 research projects covering a broad spectrum of topics that cut across traditional engineering disciplines. The program

  12. Argonne Chemical Sciences & Engineering - Awards Home

    Science.gov (United States)

    Argonne National Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Computational Postdoctoral Fellowships Contact Us CSE Intranet Awards Argonne's Chemical Sciences and

  13. College of Engineering & Applied Science

    Science.gov (United States)

    Computational Mechanics Laboratory Environmental Engineering Laboratory Geotechnical Engineering Laboratory Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  14. Solar energy sciences and engineering applications

    CERN Document Server

    Enteria, Napoleon

    2013-01-01

    Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is due to the various barriers to overcome and to deal with the economics of practical utilization of solar energy.This book will introduce the rapid development and progress in the field of solar energy applications for science and technology: the advanc

  15. Career Fairs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  16. Engineering sciences research highlights. Fiscal year 1983

    International Nuclear Information System (INIS)

    Tucker, E.F.; Dobratz, B.

    1984-05-01

    The Laboratory's overall mission is sixfold. We are charged with developing nuclear warheads for defense, technology for arms control, and new concepts for defense against nuclear attack; with supporting programs for both nonnuclear defense and energy research and development; and with advancing our knowledge of science and technology so that we can respond to other national needs. Major programs in support of this mission involve nuclear weapons, energy, environmental science, and basic research. Specific areas of investigation include the design, development, and testing of nuclear weapons; nuclear safeguards and security; inertial and magnetic fusion and nuclear, solar, fossil, and geothermal energy; and basic research in physics, chemistry, mathematics, engineering, and the computer and life sciences. With the staff and facilities maintained for these and other programs, the Laboratory can respond to specific national needs in virtually all areas of the physical and life sciences. Within the Laboratory's organization, most technical research activities are carried out in three directorates: Engineering Sciences; Physics and Mathematics; and Chemistry, Earth and Life Sciences. The activities highlighted here are examples of unclassified work carried out in the seven divisions that made up the Engineering Sciences Directorate at the end of fiscal year 1983. Brief descriptions of these divisions' goals and capabilities and summaries of selected projects illustrate the diversity of talent, expertise, and facilities maintained within the Engineering Sciences Directorate

  17. 3rd International Conference on Energy Equipment Science and Engineering (ICEESE 2017)

    Science.gov (United States)

    2018-03-01

    PREFACE On behalf of the organizing committee of the 2017 3rd International Conference on Energy Equipment Science and Engineering (ICEESE 2017), I would like to express a warm “Thank You” to all the participants, for their important contribution they brought to the Conference! I strongly appreciate the contribution of the authors, who submitted valuable papers and agreed to do successive revisions of their papers, following the recommendations received from the reviewers. ICEESE 2017 was held in Beijing, China during December28-31, 2017, which was organized by Wuhan University and Guizhou Minzu University. The conference provides a useful and wide platform both for display the latest research and for exchange of research results and thoughts in Energy Equipment Science and Engineering. The participants of the conference were from almost every part of the world, with background of either academia or industry, even well-known enterprise. The success and prosperity of the conference is reflected high level of the papers received. List of Committees available in this pdf.

  18. EnQuest | College of Engineering & Applied Science

    Science.gov (United States)

    engineering camp, in which high school girls explore careers in engineering. It is held at the University of Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  19. Career Services | College of Engineering & Applied Science

    Science.gov (United States)

    @ 10:00 am - 2:00 pm Wisconsin Room, UWM Student Union Register today! Engineering Careers Careers in Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  20. Basic Energy Sciences at NREL

    International Nuclear Information System (INIS)

    Moon, S.

    2000-01-01

    NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies

  1. Basic Energy Sciences at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.

    2000-12-04

    NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies.

  2. Weerts to lead Physical Sciences and Engineering directorate | Argonne

    Science.gov (United States)

    Physical Sciences and Engineering directorate By Lynn Tefft Hoff * August 10, 2015 Tweet EmailPrint Hendrik Engineering (PSE) directorate at the U.S. Department of Energy's Argonne National Laboratory. Weerts has , chemistry, materials science and nanotechnology. Weerts joined Argonne in 2005 as director of Argonne's High

  3. International Conference on Emerging Trends in Science, Engineering and Technology

    CERN Document Server

    Caroline, B; Jayanthi, J

    2012-01-01

    The present book is based on the research papers presented in the International Conference on Emerging Trends in Science, Engineering and Technology 2012, held at Tiruchirapalli, India. The papers presented bridges the gap between science, engineering and technology. This book covers a variety of topics, including mechanical, production, aeronautical, material science, energy, civil and environmental energy, scientific management, etc. The prime objective of the book is to fully integrate the scientific contributions from academicians, industrialists and research scholars.

  4. Proceedings of the 3rd Symposium on Engineering Sciences

    International Nuclear Information System (INIS)

    Ahmed, J.; Rizvi, S.Z.H.; Ahmad, R.; Saleem, M.

    2010-01-01

    The 3rd symposium on engineering sciences was held from March 10-12, 2010 in Lahore, Pakistan. More than twenty academic institutions and six industries participated in this conference. The foreign and Pakistani experts delivered their keynotes talk, contributor lectures and poster presentation on the conference topics. In three days of the symposium, Fifty four papers presented on different topics of Engineering Sciences including chemical engineering, energy engineering, metallurgy engineering, material engineering and electrical engineering. This symposium provided an ideal opportunity for exchange of information amongst scientists, engineers and researchers from all over Pakistan and other countries of the world. (A.B)

  5. Council of Energy Engineering Research. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Richard J.

    2003-08-22

    The Engineering Research Program, a component program of the DOE Office of Basic Energy Sciences (BES), was established in 1979 to aid in resolving the numerous engineering issues arising from efforts to meet U.S. energy needs. The major product of the program became part of the body of knowledge and data upon which the applied energy technologies are founded; the product is knowledge relevant to energy exploration, production, conversion and use.

  6. The Nuclear Energy Agency Mentoring a Future Generation of Female Leaders in Science and Engineering. Report on the International Mentoring Workshop in Science and Engineering in Chiba, Japan

    International Nuclear Information System (INIS)

    2017-01-01

    Despite progress over the past decades, women remain under-represented in executive positions in science, technology, engineering and mathematics. Female students tend to do very well in math and science early in their academic careers but often take other career paths. Many countries are working to close the gender gap and are developing policies to reverse this trend. However, considering the increasing demand worldwide for skilled workers in all areas of science and technology, including in the nuclear energy sector, more advocacy is needed to encourage the next generation and to capture their interest in these fields. Efforts to motivate young women to pursue careers in science, technology, engineering and mathematics (STEM fields), and to develop policies that support their progression, are worthwhile. Today, many NEA member countries are challenged in stimulating their youth to study in STEM fields. The looming shortfall has serious implications for the future. As part of its overall strategy and mission, the NEA has stated its support to members in their efforts to secure qualified human resources, nuclear skills capability building and the development of a new generation of nuclear experts. It is essential to ensure that all young people, including young women, have the opportunity to explore careers in science and technology. The NEA encourages its membership to explore ways of attracting, recruiting and retaining youth, in particular girls, in science and technology, as well as enhancing the conditions and prospects for women and girls at every stage of their careers and education. It is in this spirit that the NEA partnered with Japan's National Institutes for Quantum and Radiological Science and Technology (QST) to organise a mentoring workshop on July 25-26, 2017 in Chiba, Japan. This International Mentoring Workshop in Science and Engineering was a positive step, offering young Japanese women what was, for some, a life-changing experience. Seven

  7. Energy-related doctoral scientists and engineers in the United States, 1975

    Energy Technology Data Exchange (ETDEWEB)

    1977-11-01

    The pursuit of a vigorous research and development program to provide renewable and other resources to meet U. S. energy needs in the next century is an important objective of President Carter's National Energy Plan. A highly educated and motivated pool of engineers and scientists must be available for energy research and development if this objective is to be achieved. This report provides, for the first time, information about the number and characteristics of doctoral-level engineers and scientists in primarily energy-related activities. These data for the year 1975 will become part of the data base for a program of continuing studies on the employment and utilization of all scientists and engineers involved in energy-related activities. Information is provided for employment in the following fields: mathematics; physics/astronomy; chemistry; Earth, Environment, and Marine Sciences; Engineering; Life Sciences; Psychology; Social Sciences; Arts and Humanities; and Education and Business.

  8. Proceedings of the fourteenth symposium on energy engineering sciences: Mechanical sciences; Solids and fluids

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The 26 papers in this proceedings are arranged in the following topical sections: superconductors (4 papers); materials (7); controls (4); fluid mechanics (7); and thin films (4). Papers have been processed separately for inclusion on the data base.

  9. Mechanical engineering science in SI units

    CERN Document Server

    Gwyther, J L; Williams, G

    1970-01-01

    0.1 Mechanical Engineering Science covers various fundamental concepts that are essential in the practice of mechanical engineering. The title is comprised of 19 chapters that detail various topics, including chemical and physical laws. The coverage of the book includes Newtonian laws, mechanical energy, friction, stress, and gravity. The text also discusses the chemical aspects of mechanical engineering, which include gas laws, states of matter, and fuel combustion. The last chapter tackles concerns in laboratory experiments. The book will be of great use to students of mechanical eng

  10. Office of Basic Energy Sciences: 1984 summary report

    International Nuclear Information System (INIS)

    1984-11-01

    Subprograms of the OBES discussed in this document include: materials sciences, chemical sciences, nuclear sciences, engineering and geosciences, advanced energy projects, biological energy research, carbon dioxide research, HFBR, HFIR, NSLS, SSRL, IPNS, Combustion Research Facility, high-voltage and atomic resolution electron microscopic facilities, Oak Ridge Electron Linear Accelerator, Dynamitron Accelerator, calutrons, and Transuranium Processing Plant. Nickel aluminide and glassy metals are discussed

  11. Basic Energy Sciences: Summary of Accomplishments

    Science.gov (United States)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  12. Business | College of Engineering & Applied Science

    Science.gov (United States)

    & Environmental Engineering TA Online Application Civil & Environmental Engineering Research in Computer Science - FAQ's Computer Science TA Online Application Ph.D. Program in Computer Science Electrical Engineering Electrical Engineering TA Online Application Electrical Engineering Research

  13. Engineering Science, Skills, and Bildung

    DEFF Research Database (Denmark)

    Christensen, Jens

    The background for the book is a quest for a thorough analysis of engineering, engineering science, and engineering education. Focusing on the concepts of engineering science, skills, and Bildung, the book investigates the real challenges that are confronting engineering today, and discusses how...

  14. Basic Energy Sciences FY 2011 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  15. General and special engineering materials science. Vol. 1

    International Nuclear Information System (INIS)

    Ondracek, G.; Voehringer, O.

    1983-04-01

    The present report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes: Volume I treats general engineering materials science in 4 capital chapters on the structure of materials, the properties of materials, materials technology and materials testing and investigation supplemented by a selected detailed chapter about elasticity plasticity and rupture mechanics. Volume II concerns special engineering materials science with respect to nuclear materials under normal reactor operation conditions including reactor clad and structural materials, nuclear fuels and fuel elements and nuclear waste as a materials viewpoint. Volume III - also concerning special engineering materials science - considers nuclear materials with respect to off-normal (''accident'') reactor operation conditions including nuclear materials in loss-of-coolant accidents and nuclear materials in core melt accidents. (orig.) [de

  16. Nuclear Science and Engineering education at the Delft University of Technology

    International Nuclear Information System (INIS)

    Bode, P.

    2009-01-01

    There is a national awareness in the Netherlands for strengthening education in the nuclear sciences, because of the ageing workforce, and to ensure competence as acceptability increases of nuclear power as an option for diversification of the energy supply. This may be reflected by the rapidly increasing number of students at the Delft University of Technology with interest in nuclear science oriented courses, and related bachelor and MSc graduation projects. These considerations formed the basis of the Nuclear Science and Engineering concentration, effectively starting in 2009. The programme can be taken as focus of the Research and Development Specialisation within the Master Programme in Applied Physics or as a Specialisation within the Master's Programme in Chemical Engineering. Both programmes require successful completion of a total of 120 ECTS study points, consisting of two academic years of 60 ECTS (1680 hours of study). Of that total, 100 ECTS are in the field of Nuclear Science and Engineering, depending on students choices within the programme, including a (industrial) internship, to be taken in companies all over the world. In Chemical Engineering, there is a compulsory design project during which a product or process should be developed. Both programmes also require a final graduation project. In both curricula, Nuclear Science and Engineering comprises compulsory and elective courses, which allow students to focus on either health or energy. Examples of courses include Nuclear Science, Nuclear Chemistry, Nuclear Engineering, Reactor Physics, Chemistry of the Nuclear Fuel Cycle, Medical Physics and Radiation Technology and Radiological Health Physics. (Author)

  17. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  18. Basic Energy Sciences FY 2012 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  19. Basic Energy Sciences FY 2014 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  20. Science review of internal combustion engines

    International Nuclear Information System (INIS)

    Taylor, Alex M.K.P.

    2008-01-01

    Internal combustion engines used in transportation produce about 23% of the UK's carbon dioxide emission, up from 14% in 1980. The current science described in this paper suggests that there could be 6-15% improvements in internal combustion fuel efficiency in the coming decade, although filters to meet emission legislation reduce these gains. Using these engines as hybrids with electric motors produces a reduction in energy requirements in the order of 21-28%. Developments beyond the next decade are likely to be dominated by four topics: emission legislation and emission control, new fuels, improved combustion and a range of advanced concepts for energy saving. Emission control is important because current methods for limiting nitrogen oxides and particulate emissions imply extra energy consumption. Of the new fuels, non-conventional fossil-derived fuels are associated with larger greenhouse gas emissions than conventional petroleum-based fuels, while a vehicle propelled by fuel cells consuming non-renewable hydrogen does not necessarily offer an improvement in emissions over the best hybrid internal combustion engines. Improved combustion may be developed for both gasoline and diesel fuels and promises better efficiency as well as lower noxious emissions without the need for filtering. Finally, four advanced concepts are considered: new thermodynamic cycles, a Rankine bottoming cycle, electric turbo-compounding and the use of thermoelectric devices. The latter three all have the common theme of trying to extract energy from waste heat, which represents about 30% of the energy input to an internal combustion engine

  1. Engineering science as a "Discipline of the particular"? : types of generalization in engineering sciences

    NARCIS (Netherlands)

    Vries, de M.J.; Poel, van de I.; Goldberg, D.E.

    2010-01-01

    Literature suggests that in engineering sciences the possibilities to generalize knowledge are more limited than in natural sciences. This is related to the action-oriented nature of engineering sciences and to the role of values. I will discuss the contributions of abstraction and idealization to

  2. Journal of Applied Science, Engineering and Technology

    African Journals Online (AJOL)

    The Journal of Applied Science, Engineering and Technology covers research activities and development in the field of Applied Sciences and Technology as it relates to Agricultural Engineering, Biotechnology, Computer Science and Engineering Computations, Civil Engineering, Food Science and Technology, Electrical ...

  3. Research | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering & Applied Science. Please explore this webpage to learn about research activities and Associate Dean for Research College of Engineering and Applied Sciences Director, Center for Sustainable magazine. College ofEngineering & Applied Science Academics About People Students Research Business

  4. General and special engineering materials science. Vol. 3

    International Nuclear Information System (INIS)

    Ondracek, G.; Hofmann, P.

    1983-04-01

    The report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes. The present volume III concerns special engineering materials science and considers nuclear materials with respect to off-normal (''accident'') reactor operation conditions including nuclear materials in loss-of-coolant accident and nuclear materials in core melt accidents. (orig./IHOE) [de

  5. Science & Engineering Indicators 2016. National Science Board

    Science.gov (United States)

    National Science Foundation, 2016

    2016-01-01

    "Science and Engineering Indicators" (SEI) is first and foremost a volume of record comprising high-quality quantitative data on the U.S. and international science and engineering enterprise. SEI includes an overview and seven chapters that follow a generally consistent pattern. The chapter titles are as follows: (1) Elementary and…

  6. Eleventh symposium on energy engineering sciences: Proceedings. Solid mechanics and processing: Analysis, measurement and characterization

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Eleventh Symposium on Energy Engineering Sciences was held on May 3--5, 1993, at the Argonne National Laboratory, Argonne, Illinois. These proceedings include the program, list of participants, and the papers that were presented during the eight technical sessions held at this meeting. This symposium was organized into eight technical sessions: Surfaces and interfaces; thermophysical properties and processes; inelastic behavior; nondestructive characterization; multiphase flow and thermal processes; optical and other measurement systems; stochastic processes; and large systems and control. Individual projects were processed separately for the databases.

  7. General and special engineering materials science. Vol. 2

    International Nuclear Information System (INIS)

    Anderko, K.; Kummerer, K.R.; Ondracek, G.

    1983-04-01

    The present report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes. The present volume II concerns special engineering materials science with respect to nuclear materials under normal reactor operation conditions including 1. reactor clad and structural materials, 2. nuclear fuels and fuel elements, 3. nuclear waste as a materials viewpoint. (orig./IHOE) [de

  8. Silicon Carbide Defect Qubits/Quantum Memory with Field-Tuning: OSD Quantum Science and Engineering Program (QSEP)

    Science.gov (United States)

    2017-08-01

    TECHNICAL REPORT 3073 August 2017 Silicon Carbide Defect Qubits/Quantum Memory with Field-tuning: OSD Quantum Science and Engineering Program...Quantum Science and Engineering Program) by the Advanced Concepts and Applied Research Branch (Code 71730), the Energy and Environmental Sustainability...the Secretary of Defense (OSD) Quantum Science and Engineering Program (QSEP). Their collaboration topic was to examine the effect of electric-field

  9. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    Science.gov (United States)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-04-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.

  10. Energy and nuclear sciences international who's who. 4. ed.

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    For this fourth edition the directory has been reformatted to A4 size to allow for the restructuring of both the biological data and the cover. The fourth edition contains details of over 3,500 including 400 for the first time, scientists and engineers concerned with new and improved methods of generating electricity. A wide range of people used the information provided in the last edition, among them information scientists, administrators, conference organizers, market researchers, financiers seeking technical advice, embassy staff, consultants, biochemists and engineers. Biographical enquiry forms were sent to officers in scientific societies in each nation, to directors and section leaders in industrial and official institutions where significant numbers of scientists relating to power and energy research are employed to heads of relevant academic departments, and to editorial board members of relevant journals. Part one lists biographical profiles of scientists in alphabetical order of surname. The subject index by country in Part two centres around nuclear and energy sciences divided into the following areas; electrical power engineering, energy conservation, energy planning, energy storage, fuel production, fusion technology, geothermal energy, nuclear sciences, high energy physics, low energy physics, wind and/or ocean energy. This allows the reader to locate experts in each of the above topic areas in around 90 countries. (Author)

  11. Graduate Enrollment Increases in Science and Engineering Fields, Especially in Engineering and Computer Sciences. InfoBrief: Science Resources Statistics.

    Science.gov (United States)

    Burrelli, Joan S.

    This brief describes graduate enrollment increases in the science and engineering fields, especially in engineering and computer sciences. Graduate student enrollment is summarized by enrollment status, citizenship, race/ethnicity, and fields. (KHR)

  12. Decision Analysis: Engineering Science or Clinical Art

    Science.gov (United States)

    1979-11-01

    TECHNICAL REPORT TR 79-2-97 DECISION ANALYSIS: ENGINEERING SCIENCE OR CLINICAL ART ? by Dennis M. Buede Prepared for Defense Advanced Research...APPLICATIONS OF THE ENGINEER- ING SCIENCE AND CLINICAL ART EXTREMES 9 3.1 Applications of the Engineering Science Approach 9 3.1.1 Mexican electrical...DISCUSSION 29 4.1 Engineering Science versus Clinical Art : A Characterization of When Each is Most Attractive 30 4.2 The Implications of the Engineering

  13. International Conference of Applied Science and Technology for Infrastructure Engineering

    Science.gov (United States)

    Elvina Santoso, Shelvy; Hardianto, Ekky

    2017-11-01

    Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.

  14. Computer Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  15. Computer Resources | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  16. Computer Science | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  17. Food Engineering within Sciences of Food

    Directory of Open Access Journals (Sweden)

    Athanasios Kostaropoulos

    2012-10-01

    Full Text Available The aim of this paper is to clarify the identity of food engineering in sciences of food. A short historical description of the evolution of the branch in the Anglo Saxon and the Continental educational systems is given. Furthermore, the distinction of basic definitions such as food science, food science and technology, food technology, and food engineering is made. Finally, the objectives of food engineering within the branch of sciences of food are described.

  18. Teaching physics using project-based engineering curriculum with a theme of alternative energy

    Science.gov (United States)

    Tasior, Bryan

    The Next Generation Science Standards (NGSS) provide a new set of science standards that, if adopted, shift the focus from content knowledge-based to skill-based education. Students will be expected to use science to investigate the natural world and solve problems using the engineering design process. The world also is facing an impending crisis related to climate, energy supply and use, and alternative energy development. Education has an opportunity to help provide the much needed paradigm shift from our current methods of providing the energy needs of society. The purpose of this research was to measure the effectiveness of a unit that accomplishes the following objectives: uses project-based learning to teach the engineering process and standards of the NGSS, addresses required content expectations of energy and electricity from the HSCE's, and provides students with scientific evidence behind issues (both environmental and social/economic) relating to the energy crisis and current dependence of fossil fuels as our primary energy source. The results of the research indicate that a physics unit can be designed to accomplish these objectives. The unit that was designed, implemented and reported here also shows that it was highly effective at improving students' science content knowledge, implementing the engineering design standards of the NGSS, while raising awareness, knowledge and motivations relating to climate and the energy crisis.

  19. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    Abstract. This paper is written with the intention of simulating discussion on teaching materials science and engineering in the universities. The article illustrates the tasks, priorities, goals and means lying ahead in the teaching of materials science and engineering for a sustainable future.

  20. 16 CFR 1000.29 - Directorate for Engineering Sciences.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Directorate for Engineering Sciences. 1000... ORGANIZATION AND FUNCTIONS § 1000.29 Directorate for Engineering Sciences. The Directorate for Engineering Sciences, which is managed by the Associate Executive Director for Engineering Sciences, is responsible for...

  1. The metallurgy, science and engineering

    International Nuclear Information System (INIS)

    Pineau, A.; Quere, Y.

    2011-01-01

    Metallurgy, the science of metals and the technical discipline concerned with the production, shaping and assembling of metals, is one of the major assets of European economy. The French metallurgy industry - from producers (steel, light alloys, ...) to users (car, aviation, nuclear industries, ...) -- has achieved in many of its sectors a world-class level of excellence, based on high-quality research centres that are recognized both for their theoretical and experimental academic work. By contrast, public research is insufficiently concerned with engineering. In 2004, this industry employed 1 800 000 persons, 220 000 of which worked as engineers and managers in 45 000 companies, with a turnover of 420 billion euros. This state of grace is starting to decline. We are undergoing, in this sector as in others, a de-industrialization that affects upstream activities: courses in these disciplines, which have been previously outstanding, have partially disappeared; laboratories have shrunk; expertise has been dispersed; students are staying away from a discipline they consider 'unfruitful', like many other engineering sciences. Simultaneously, further up in this sector, decision centres have moved away from production centres and away from our country. France still maintains a few important R and D centres within international groups in spite of France's decreasing weight in world production. However, these groups see the future of R and D as being centred in the emerging countries (China, India...). The main users (transport, energy, ...) are losing their experts as are the technical centres on which rely a large network of small and medium businesses. The consequences are alarming in view of the already noticeable loss of technical control. This trend can and must be reversed. Because of its presence in many industrial sectors and its excellence, metallurgy - including both research and industry - is an essential activity in which France should remain a major player

  2. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    Science.gov (United States)

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-10-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This knowledge ultimately provides information about supporting professional development (PD) for science teachers' knowledge of engineering. Six science teachers (two elementary and four high school teachers) participated in the study as part of an online PD experience. Cunningham and Carlsen's (Journal of Science Teacher Education 25:197-210, 2014) relative emphases of science and engineering practices were used to frame the design of PD activities and the analyses of teachers' views. Analyses suggest misconceptions within the eight practices of science and engineering from the US Next Generation Science Standards in four areas. These are that: (1) the nature of the practices in both science and engineering research is determined by the long-term implications of the research regardless of the nature of the immediate work, (2) engineering and science are hierarchical, (3) creativity is inappropriate, and (4) research outcomes cannot be processes. We discuss the nature of these understandings among participants and the implications for engineering education PD for science teachers.

  3. Energy-related scientists and engineers: a statistical profile of recent entrants into the work force, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Sharon E.

    1979-12-01

    This report examines the educational and employment characteristics of scientists and engineers who graduated during the years 1972, 1974, 1975, and 1976, with special attention to those whose work involves energy. The characteristics of energy-related graduates are also compared to those of more experienced scientists and engineers involved in energy activities. Information is based on the results of the 1976 and 1978 National Surveys of Recent Science and Engineering Graduates, and the 1976 National Survey of Natural and Social Scientists and Engineers, sponsored by the National Science Foundation and the US Department of Energy. Tabulations are included for the first time on employment involving specific energy sources and activities. Other characteristics discussed include educational level, salary, primary work activity, type of employer, and the proportion of graduates who found employment in their major field.

  4. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  5. Women in science & engineering and minority engineering scholarships : year 5.

    Science.gov (United States)

    2011-06-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  6. Women in science & engineering and minority engineering scholarships : year 4.

    Science.gov (United States)

    2010-04-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  7. Advances in Computer Science, Engineering & Applications : Proceedings of the Second International Conference on Computer Science, Engineering & Applications

    CERN Document Server

    Zizka, Jan; Nagamalai, Dhinaharan

    2012-01-01

    The International conference series on Computer Science, Engineering & Applications (ICCSEA) aims to bring together researchers and practitioners from academia and industry to focus on understanding computer science, engineering and applications and to establish new collaborations in these areas. The Second International Conference on Computer Science, Engineering & Applications (ICCSEA-2012), held in Delhi, India, during May 25-27, 2012 attracted many local and international delegates, presenting a balanced mixture of  intellect and research both from the East and from the West. Upon a strenuous peer-review process the best submissions were selected leading to an exciting, rich and a high quality technical conference program, which featured high-impact presentations in the latest developments of various areas of computer science, engineering and applications research.

  8. Advances in Computer Science, Engineering & Applications : Proceedings of the Second International Conference on Computer Science, Engineering & Applications

    CERN Document Server

    Zizka, Jan; Nagamalai, Dhinaharan

    2012-01-01

    The International conference series on Computer Science, Engineering & Applications (ICCSEA) aims to bring together researchers and practitioners from academia and industry to focus on understanding computer science, engineering and applications and to establish new collaborations in these areas. The Second International Conference on Computer Science, Engineering & Applications (ICCSEA-2012), held in Delhi, India, during May 25-27, 2012 attracted many local and international delegates, presenting a balanced mixture of  intellect and research both from the East and from the West. Upon a strenuous peer-review process the best submissions were selected leading to an exciting, rich and a high quality technical conference program, which featured high-impact presentations in the latest developments of various areas of computer science, engineering and applications research.  

  9. World Congress on Engineering and Computer Science 2014

    CERN Document Server

    Amouzegar, Mahyar; Ao, Sio-long

    2015-01-01

    This volume contains thirty-nine revised and extended research articles, written by prominent researchers participating in the World Congress on Engineering and Computer Science 2014, held in San Francisco, October 22-24 2014. Topics covered include engineering mathematics, electrical engineering, circuit design, communications systems, computer science, chemical engineering, systems engineering, and applications of engineering science in industry. This book describes some significant advances in engineering technologies, and also serves as an excellent source of reference for researchers and graduate students.

  10. World Congress on Engineering and Computer Science 2015

    CERN Document Server

    Kim, Haeng; Amouzegar, Mahyar

    2017-01-01

    This proceedings volume contains selected revised and extended research articles written by researchers who participated in the World Congress on Engineering and Computer Science 2015, held in San Francisco, USA, 21-23 October 2015. Topics covered include engineering mathematics, electrical engineering, circuits, communications systems, computer science, chemical engineering, systems engineering, manufacturing engineering, and industrial applications. The book offers the reader an overview of the state of the art in engineering technologies, computer science, systems engineering and applications, and will serve as an excellent reference work for researchers and graduate students working in these fields.

  11. A decision science approach for integrating social science in climate and energy solutions

    Science.gov (United States)

    Wong-Parodi, Gabrielle; Krishnamurti, Tamar; Davis, Alex; Schwartz, Daniel; Fischhoff, Baruch

    2016-06-01

    The social and behavioural sciences are critical for informing climate- and energy-related policies. We describe a decision science approach to applying those sciences. It has three stages: formal analysis of decisions, characterizing how well-informed actors should view them; descriptive research, examining how people actually behave in such circumstances; and interventions, informed by formal analysis and descriptive research, designed to create attractive options and help decision-makers choose among them. Each stage requires collaboration with technical experts (for example, climate scientists, geologists, power systems engineers and regulatory analysts), as well as continuing engagement with decision-makers. We illustrate the approach with examples from our own research in three domains related to mitigating climate change or adapting to its effects: preparing for sea-level rise, adopting smart grid technologies in homes, and investing in energy efficiency for office buildings. The decision science approach can facilitate creating climate- and energy-related policies that are behaviourally informed, realistic and respectful of the people whom they seek to aid.

  12. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  13. Sandia technology engineering and science accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computational simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.

  14. The International Congress of Mechanical Engineering and Agricultural Sciences – CIIMCA 2013

    International Nuclear Information System (INIS)

    Remolina-Millán, Aduljay; Hernández-Arroyo, Emil

    2014-01-01

    The organizing committee of The International Congress of Mechanical Engineering and Agricultural Sciences – CIIMCA 2013 – are pleased to present CIIMCA-2013: the first international conference focused on subjects of materials science, mechanical engineering and renewable energy organized by Mechanical Engineering Faculty of the ''Universidad Pontificia Bolivariana'' in Bucaramanga, Colombia. This conference aims to be a place to produce discussions on whole topics of the congress, between the scientists of Colombia and the world. We strongly believe that knowledge is fundamental to the development of our countries. For that reason this multidisciplinary conference is looking forward to integrate engineering, agricultural science and nanoscience and nanotechnology to produce a synergy of this area of knowledge and to achieve scientific and technological developments. Agriculture is a very important topic for our conference; in Colombia, agricultural science needs more attention from the scientific community and the government. In the Faculty of Mechanical Engineering we are beginning to work on these issues to produce knowledge and improve the conditions in our country. The CIIMCA conference is a great opportunity to create interpersonal relationships and networks between scientists around the world. The interaction between scientists is very important in the process of the construction of knowledge. The general chairman encourages and invites you to make friends, relationships and participate strongly in the symposia and all program activities. PhD Aduljay Remolina-Millán Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress – CIIMCA Msc Emil Hernández-Arroyo Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress – CIIMCA Conferencephotograph Conferencephotograph 'Universidad Pontificia Bolivariana seccional Bucaramanga' host of the first

  15. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    Science.gov (United States)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-01-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about…

  16. Plasma science and engineering at NSF

    International Nuclear Information System (INIS)

    Goldberg, L.S.

    1996-01-01

    The author gives a perspective of the breadth of fundamental plasma science and engineering that the National Science Foundation supports through its Directorates for Engineering, Mathematical and Physical Sciences, Geosciences, and the Office of Polar Programs. He plans also to discuss the diverse interests and commitment within the Foundation to maintaining the vitality of research and education activities in this field

  17. The Fu Foundation School of Engineering & Applied Science - Columbia

    Science.gov (United States)

    Engineering Mechanics Computer Science Earth and Environmental Engineering Electrical Engineering Industrial Engineering & Applied Science - Columbia University Admissions Undergraduates Graduates Distance Learning Physics and Applied Mathematics Biomedical Engineering Chemical Engineering Civil Engineering and

  18. Advances in Computer Science and Engineering

    CERN Document Server

    Second International Conference on Advances in Computer Science and Engineering (CES 2012)

    2012-01-01

    This book includes the proceedings of the second International Conference on Advances in Computer Science and Engineering (CES 2012), which was held during January 13-14, 2012 in Sanya, China. The papers in these proceedings of CES 2012 focus on the researchers’ advanced works in their fields of Computer Science and Engineering mainly organized in four topics, (1) Software Engineering, (2) Intelligent Computing, (3) Computer Networks, and (4) Artificial Intelligence Software.

  19. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George [Argonne National Lab. (ANL), Argonne, IL (United States); Glotzer, Sharon [University of Michigan; McCurdy, Bill [University of California Davis; Roberto, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2010-07-26

    abating, has enabled the development of computer simulations and models of unprecedented fidelity. We are at the threshold of a new era where the integrated synthesis, characterization, and modeling of complex materials and chemical processes will transform our ability to understand and design new materials and chemistries with predictive power. In turn, this predictive capability will transform technological innovation by accelerating the development and deployment of new materials and processes in products and manufacturing. Harnessing the potential of computational science and engineering for the discovery and development of materials and chemical processes is essential to maintaining leadership in these foundational fields that underpin energy technologies and industrial competitiveness. Capitalizing on the opportunities presented by simulation-based engineering and science in materials and chemistry will require an integration of experimental capabilities with theoretical and computational modeling; the development of a robust and sustainable infrastructure to support the development and deployment of advanced computational models; and the assembly of a community of scientists and engineers to implement this integration and infrastructure. This community must extend to industry, where incorporating predictive materials science and chemistry into design tools can accelerate the product development cycle and drive economic competitiveness. The confluence of new theories, new materials synthesis capabilities, and new computer platforms has created an unprecedented opportunity to implement a "materials-by-design" paradigm with wide-ranging benefits in technological innovation and scientific discovery. The Workshop on Computational Materials Science and Chemistry for Innovation was convened in Bethesda, Maryland, on July 26-27, 2010. Sponsored by the Department of Energy (DOE) Offices of Advanced Scientific Computing Research and Basic Energy Sciences, the workshop

  20. The founding of ISOTT: the Shamattawa of engineering science and medical science.

    Science.gov (United States)

    Bruley, Duane F

    2014-01-01

    The founding of ISOTT was based upon the blending of Medical and Engineering sciences. This occurrence is portrayed by the Shamattawa, the joining of the Chippewa and Flambeau rivers. Beginning with Carl Scheele's discovery of oxygen, the medical sciences advanced the knowledge of its importance to physiological phenomena. Meanwhile, engineering science was evolving as a mathematical discipline used to define systems quantitatively from basic principles. In particular, Adolf Fick's employment of a gradient led to the formalization of transport phenomena. These two rivers of knowledge were blended to found ISOTT at Clemson/Charleston, South Carolina, USA, in 1973.The establishment of our society with a mission to support the collaborative work of medical scientists, clinicians and all disciplines of engineering was a supporting step in the evolution of bioengineering. Traditional engineers typically worked in areas not requiring knowledge of biology or the life sciences. By encouraging collaboration between medical science and traditional engineering, our society became one of the forerunners in establishing bioengineering as the fifth traditional discipline of engineering.

  1. Committee on Women in Science, Engineering, and Medicine (CWSEM)

    Science.gov (United States)

    harassment on women and their careers in science, engineering, and medicine. In addition to evidence-based Skip to Main Content Contact Us | Search: Search The National Academies of Sciences, Engineering and Medicine Committee on Women in Science, Engineering, and Medicine Committee on Women in Science

  2. Strengthening programs in science, engineering and mathematics. Third annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1997-09-30

    The Division of Natural Sciences and Mathematics at Claflin College consists of the Departments of Biology, Chemistry, Computer Science, Physics, Engineering and Mathematics. It offers a variety of major and minor academic programs designed to meet the mission and objectives of the college. The division`s pursuit to achieve excellence in science education is adversely impacted by the poor academic preparation of entering students and the lack of equipment, facilities and research participation, required to impart adequate academic training and laboratory skills to the students. Funds were received from the US Department of Energy to improve the divisional facilities and laboratory equipment and establish mechanism at pre-college and college levels to increase (1) the pool of high school students who will enroll in Science and Mathematics courses (2) the pool of well qualified college freshmen who will seek careers in Science, Engineering and Mathematics (3) the graduation rate in Science,engineering and Mathematics at the undergraduate level and (4) the pool of well-qualified students who can successfully compete to enter the graduate schools of their choice in the fields of science, engineering, and mathematics. The strategies that were used to achieve the mentioned objectives include: (1) Improved Mentoring and Advisement, (2) Summer Science Camp for 7th and 8th graders, (3) Summer Research Internships for Claflin SEM Seniors, (4) Summer Internships for Rising High School Seniors, (5) Development of Mathematical Skills at Pre-college/Post-secondary Levels, (6) Expansion of Undergraduate Seminars, (7) Exposure of Undergraduates to Guest Speakers/Roll Models, (8) Visitations by Undergraduate Students to Graduate Schools, and (9) Expanded Academic Program in Environmental Chemistry.

  3. International Journal of Engineering, Science and Technology ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: About this journal. Journal Home > International Journal of Engineering, Science and Technology: About this journal. Log in or Register to get access to full text downloads.

  4. International Journal of Engineering, Science and Technology ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: Journal Sponsorship. Journal Home > About the Journal > International Journal of Engineering, Science and Technology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  5. Student Interest in Engineering Design-Based Science

    Science.gov (United States)

    Selcen Guzey, S.; Moore, Tamara J.; Morse, Gillian

    2016-01-01

    Current reform efforts in science education around the world call on teachers to use integrated approaches to teach science. As a part of such reform efforts in the United States, engineering practices and engineering design have been identified in K-12 science education standards. However, there is relatively little is known about effective ways…

  6. New Science for a Secure and Sustainable Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  7. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    Science.gov (United States)

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  8. Developing the Next Generation of Science Data System Engineers

    Science.gov (United States)

    Moses, J. F.; Durachka, C. D.; Behnke, J.

    2015-12-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects. The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peer mentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breath of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multi-discipline science and practitioner communities expect to have access to all types of observational

  9. Developing the Next Generation of Science Data System Engineers

    Science.gov (United States)

    Moses, John F.; Behnke, Jeanne; Durachka, Christopher D.

    2016-01-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects.The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peermentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breadth of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multidiscipline science and practitioner communities expect to have access to all types of observational data

  10. International cooperation for promotion of nuclear science and engineering research

    International Nuclear Information System (INIS)

    Shibata, Toshikazu; Sugiyama, Kazusuke; Nakazawa, Masaharu; Katoh, Toshio; Kimura, Itsuro.

    1993-01-01

    For promotion of nuclear science and engineering research, examinations were made on the possibilities and necessary measures to extend joint research at international level. The present article is a summary of the reports of investigations performed during FY 1986 through 1991 by the Special Committee of the AESJ for Feasibility Study on International Cooperation for Promotion of Nuclear Science and Engineering Research, under contract with Science and Technology Agency of Japan. Background information was collected on the present status of scientific research facilities in US, European and Asian countries on one hand, and on the expectations and prospects of Japanese scientists on the other hand. Based on the analysis of these data, some measures necessary to expand the international cooperation were proposed. It was emphasized that international joint research on a reciprocal basis would be effective in order to strengthen the technological basis of peaceful uses of nuclear energy. Problems to be solved for the new development were also discussed. (author)

  11. Negotiating science and engineering: an exploratory case study of a reform-minded science teacher

    Science.gov (United States)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-05-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the perspective of the science teacher, this would require not only the development of knowledge and pedagogies associated with engineering, but also the construction of new identities operating within the reforms and within the context of their school. In this study, a middle school science teacher was observed and interviewed over a period of nine months to explore his experiences as he adopted new values, discourses, and practices and constructed his identity as a reform-minded science teacher. Our findings revealed that, as the teacher attempted to become a reform-minded science teacher, he constantly negotiated his professional identities - a dynamic process that created conflicts in his classroom practices. Several differences were observed between the teacher's science and engineering instruction: hands-on activities, depth and detail of content, language use, and the way the teacher positioned himself and his students with respect to science and engineering. Implications for science teacher professional development are discussed.

  12. World Congress on Engineering and Computer Science 2012

    CERN Document Server

    Ao, Sio-Iong; Amouzegar, Mahyar; Rieger, Burghard

    2014-01-01

    IAENG Transactions on Engineering Technologies contains forty-nine revised and extended research articles, written by prominent researchers participating in the conference. Topics covered include circuits, engineering mathematics, control theory, communications systems, systems engineering, manufacture engineering, computational biology, chemical engineering, and industrial applications. This book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent source of reference for researchers and graduate students working with/on engineering technologies and physical science and applications.

  13. Analysing the Integration of Engineering in Science Lessons with the Engineering-Infused Lesson Rubric

    Science.gov (United States)

    Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.; Ross, Julia M.

    2017-01-01

    Science teachers are being called on to incorporate engineering practices into their classrooms. This study explores whether the Engineering-Infused Lesson Rubric, a new rubric designed to target best practices in engineering education, could be used to evaluate the extent to which engineering is infused into online science lessons. Eighty lessons…

  14. MATLAB for Engineering and the Life Sciences

    CERN Document Server

    Tranquillo, Joseph

    2011-01-01

    In recent years, the life sciences have embraced simulation as an important tool in biomedical research. Engineers are also using simulation as a powerful step in the design process. In both arenas, Matlab has become the gold standard. It is easy to learn, flexible, and has a large and growing userbase. MATLAB for Engineering and the Life Sciences is a self-guided tour of the basic functionality of MATLAB along with the functions that are most commonly used in biomedical engineering and other life sciences. Although the text is written for undergraduates, graduate students and academics, those

  15. Evaluation of Research in Engineering Science in Norway

    DEFF Research Database (Denmark)

    Van Brussel, Hendrik Van Brussel; Lindberg, Bengt; Cederwall, Klas

    This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway .......This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway ....

  16. Reconstruction of nuclear science and engineering harmonized with human society

    International Nuclear Information System (INIS)

    2003-03-01

    At the beginning of the 21th century, the use of nuclear power has assumed very serious dimensions, because there are many problems not only safety technologies but also action of technical expert. The situation and problems of nuclear power are explained. It consists of six chapter as followings; introduction, history and R and D of nuclear power, paradigm change of nuclear science and engineering, energy science, investigation of micro world, how to research and development and education and training of special talent. The improvement plans and five proposals are stated as followings; 1) a scholar and engineer related to nuclear power have to understand ethics and build up closer connection with person in the various fields. 2) Nuclear power generation and nuclear fuel cycle are important in future, so that they have to be accepted by the society by means of opening to the public. Safety science, anti-pollution measurements, treatment and disposal of radioactive waste and development of new reactor and fusion reactor should be carried out. 3) It is necessary that the original researches of quantum beam and isotope have to step up. 4) The education of nuclear science and technology and upbringing special talent has to be reconstructed. New educational system such as 'nuclear engineering course crossing with many universities' is established. 5) Cooperation among industry, academic world and government. (S.Y.)

  17. Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study

    Science.gov (United States)

    Valtorta, Clara G.; Berland, Leema K.

    2015-01-01

    Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…

  18. The role of ethics in science and engineering.

    Science.gov (United States)

    Johnson, Deborah G

    2010-12-01

    It is generally thought that science and engineering should never cross certain ethical lines. The idea connects ethics to science and engineering, but it frames the relationship in a misleading way. Moral notions and practices inevitably influence and are influenced by science and engineering. The important question is how such interactions should take place. Anticipatory ethics is a new approach that integrates ethics into technological development. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Fuzzy logic applications in engineering science

    CERN Document Server

    Harris, J

    2006-01-01

    Fuzzy logic is a relatively new concept in science applications. Hitherto, fuzzy logic has been a conceptual process applied in the field of risk management. Its potential applicability is much wider than that, however, and its particular suitability for expanding our understanding of processes and information in science and engineering in our post-modern world is only just beginning to be appreciated. Written as a companion text to the author's earlier volume "An Introduction to Fuzzy Logic Applications", the book is aimed at professional engineers and students and those with an interest in exploring the potential of fuzzy logic as an information processing kit with a wide variety of practical applications in the field of engineering science and develops themes and topics introduced in the author's earlier text.

  20. Negotiating Science and Engineering: An Exploratory Case Study of a Reform-Minded Science Teacher

    Science.gov (United States)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-01-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the…

  1. Mechanical Engineering | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  2. Biomedical Engineering | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  3. Electrical Engineering | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  4. About | College of Engineering & Applied Science

    Science.gov (United States)

    ; Applied Science Powerful Ideas. Proven Results. Search for: Go This site All UWM Search Site Menu Skip to Degree Completion Program Graduate Programs Master of Science Programs Concentration in Biomedical Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on

  5. International Journal of Engineering, Science and Technology: Site ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: Site Map. Journal Home > About the Journal > International Journal of Engineering, Science and Technology: Site Map. Log in or Register to get access to full text downloads.

  6. 2016 TSRC Summer School on Fundamental Science for Alternative Energy

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Victor S. [Yale Univ., New Haven, CT (United States)

    2017-08-25

    The 2016 TSRC Summer School on Fundamental Science for Alternative Energy introduced principles, methods, and approaches relevant to the design of molecular transformations, energy transduction, and current applications for alternative energy. Energy and environment are likely to be key themes that will dominate the way science and engineering develop over the next few decades. Only an interdisciplinary approach with a team-taught structure as presented at the 2016 TSRC Summer School can be expected to succeed in the face of problems of such difficulty. The course inspired a new generation of 24 graduate students and 2 post-docs to continue work in the field, or at least to have something of an insider's point of view as the field develops in the next few decades.

  7. 10th International Conference on Management Science and Engineering Management

    CERN Document Server

    Hajiyev, Asaf; Nickel, Stefan; Gen, Mitsuo

    2017-01-01

    This book presents the proceedings of the Tenth International Conference on Management Science and Engineering Management (ICMSEM2016) held from August 30 to September 02, 2016 at Baku, Azerbaijan and organized by the International Society of Management Science and Engineering Management, Sichuan University (Chengdu, China) and Ministry of Education of Azerbaijan. The aim of conference was to foster international research collaborations in management science and engineering management as well as to provide a forum to present current research findings. The presented papers were selected and reviewed by the Program Committee, made up of respected experts in the area of management science and engineering management from around the globe. The contributions focus on identifying management science problems in engineering, innovatively using management theory and methods to solve engineering problems effectively and establishing novel management theories and methods to address new engineering management issues.

  8. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  9. Connecting NASA science and engineering with earth science applications

    Science.gov (United States)

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  10. Why Do Women Leave Science and Engineering?

    OpenAIRE

    Hunt, Jennifer

    2012-01-01

    I use the 1993 and 2003 National Surveys of College Graduates to examine the higher exit rate of women compared to men from science and engineering relative to other fields. I find that the higher relative exit rate is driven by engineering rather than science, and show that 60\\% of the gap can be explained by the relatively greater exit rate from engineering of women dissatisfied with pay and promotion opportunities. Contrary to the existing literature, I find that family--related constraint...

  11. Multicultural and multilingual approach: Mathematics, science, and engineering education for junior high school minority students and high school administrators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crumbly, I.J.; Hodges, J.

    1994-09-01

    During the 1993 school year, LLNL and the US Department of Energy`s San Francisco Field Office provided funds through grant {number_sign}DE-FG03-93SF20045/A000 to assist Cooperative Developmental Energy Program (CDEP) with its network coalition of high school counselors from 19 states and with its outreach and early intervention program in mathematics, science and engineering for minority junior high school students. The program for high school counselors is called the National Educators Orientation Program (NEOP) and the outreach program for minority junior high school students is called the Mathematics, Science and Engineering Academy (MSEA). A total of 35 minority and female rising eighth grade students participated in the Second Annual Mathematics, Science, and Engineering Academy sponsored by the Cooperative Developmental Energy Program of Fort Valley State College (FVSC). There were 24 students from the middle Georgia area, 4 students from Oakland, California, and 7 students from Portland, Oregon. Each student was selected by counselor in his or her respective school. The selection criteria were based on the students` academic performance in science and mathematics courses.

  12. 2016 Milwaukee Engineering Research Conference | College of Engineering &

    Science.gov (United States)

    Biomedical Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  13. 9th International Conference on Management Science and Engineering Management

    CERN Document Server

    Nickel, Stefan; Machado, Virgilio; Hajiyev, Asaf

    2015-01-01

    This is the Proceedings of the Ninth International Conference on Management Science and Engineering Management (ICMSEM) held from July 21-23, 2015 at Karlsruhe, Germany. The goals of the conference are to foster international research collaborations in Management Science and Engineering Management as well as to provide a forum to present current findings. These proceedings cover various areas in management science and engineering management. It focuses on the identification of management science problems in engineering and innovatively using management theory and methods to solve engineering problems effectively. It also establishes a new management theory and methods based on experience of new management issues in engineering. Readers interested in the fields of management science and engineering management will benefit from the latest cutting-edge innovations and research advances presented in these proceedings and will find new ideas and research directions. A total number of 132 papers from 15 countries a...

  14. Modern Engineering : Science and Education

    CERN Document Server

    2016-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2014 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  15. Molecularly Engineered Energy Materials, an Energy Frontier Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds [Univ. of California, Los Angeles, CA (United States). Materials Science and Engineering Dept.

    2016-09-28

    Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally designing, synthesizing and testing revolutionary new energy materials. Our mission was to achieve transformational improvements in the performance of materials via controlling the nano-and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular building blocks. MEEM has focused on materials that are inherently abundant, can be easily assembled from intelligently designed building blocks (molecules, nanoparticles), and have the potential to deliver transformative economic benefits in comparison with the current crystalline-and polycrystalline-based energy technologies. MEEM addressed basic science issues related to the fundamental mechanisms of carrier generation, energy conversion, as well as transport and storage of charge and mass in tunable, architectonically complex materials. Fundamental understanding of these processes will enable rational design, efficient synthesis and effective deployment of novel three-dimensional material architectures for energy applications. Three interrelated research directions were initially identified where these novel architectures hold great promise for high-reward research: solar energy generation, electrochemical energy storage, and materials for CO2 capture. Of these, the first two remained throughout the project performance period, while carbon capture was been phased out in consultation and with approval from BES program manager.

  16. Challenges of medical and biological engineering and science

    Energy Technology Data Exchange (ETDEWEB)

    Magjarevic, R [University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb (Croatia)

    2004-07-01

    All aspects of biomedical engineering and science, from research and development, education and training, implementation in health care systems, internationalisation and globalisation, and other, new issues are present in the strategy and in action plans of the International Federation for Medical and Biological Engineering (IFMBE) which, with help of a large number of highly motivated volunteers, will stay in leading position in biomedical engineering and science.

  17. Challenges of medical and biological engineering and science

    International Nuclear Information System (INIS)

    Magjarevic, R.

    2004-01-01

    All aspects of biomedical engineering and science, from research and development, education and training, implementation in health care systems, internationalisation and globalisation, and other, new issues are present in the strategy and in action plans of the International Federation for Medical and Biological Engineering (IFMBE) which, with help of a large number of highly motivated volunteers, will stay in leading position in biomedical engineering and science

  18. Engineering science and mechanics department head named

    OpenAIRE

    Nystrom, Lynn A.

    2004-01-01

    Ishwar K. Puri, professor of mechanical engineering and executive associate dean of engineering at the University of Illinois at Chicago, will become the head of Virginia Tech•À_ó»s Department of Engineering Science and Mechanics Aug. 1.

  19. Teaching to the Next Generation Science Standards with Energy, Climate, and Water Focused Games

    Science.gov (United States)

    Mayhew, M. A.; Hall, M.; Civjan, N.

    2015-12-01

    We produced two fun-to-play card games with the theme, The Nexus of Energy, Water, and Climate, that directly support teaching to the NGSS. In the games, players come to understand how demand for energy, water use, and climate change are tightly intertwined. Analysis by scientists from the national laboratories ensured that the games are reflect current data and research. The games have been tested with high school and informal science educators and their students and have received a formal evaluation. The games website http://isenm.org/games-for-learning shows how the games align with the NGSS, the Common Core, and the NRC's Strands of Science Learning. It also contains an extensive collection of accessible articles on the nexus to support use of the games in instruction. Thirst for Power is a challenging resource management game. Players, acting as governors of regions, compete to be the first to meet their citizens' energy needs. A governor can choose from a variety of carbon-based or renewable energy sources, but each source uses water and has an environmental—including climate change—impact. Energy needs must be met using only the water resources allocated to the region and without exceeding the environmental impact limit. "ACTION" cards alter game play and increase competition. Challenge and Persuade is a game of scientific argumentation, using evidence on nexus-related fact cards. Players must evaluate information, develop fact-based arguments, and communicate their findings. One card deck contains a set of adjectives, a second a series of fact cards. Players use their fact cards to make the best argument that aligns with an adjective selected by the "Judge". Players take turns being the "Judge," who determines who made the best argument. The games particularly align with NGSS elements: Connections to Engineering, Technology, and Application of Science. Players come to understand the science and engineering behind many energy sources and their impacts

  20. Master of Engineering Energy Systems Engineering Program: Smart Campus Energy Systems Demonstration DE-SC0005523

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, Martha [Lehigh Univ., Bethlehem, PA (United States); Coulter, John [Lehigh Univ., Bethlehem, PA (United States)

    2014-09-25

    Program Purpose and Position: The mission of the Master of Engineering in Energy Systems Engineering program is to invigorate the pipeline of new engineering graduates interested in energy oriented careers and thus produce a new generation of technical leaders for the energy and power industries. Over the next decade, nearly 50% of the skilled workers and technical leaders in the gas and electric utility industries will retire -- a much larger void than the current available and qualified professionals could fill [CEWD, 2012 survey]. The Masters of Engineering in Energy System Engineering program provides an opportunity for cross-discipline education for graduates interested in a career in the energy industry. It focuses on electric power and the challenges and opportunities to develop a sustainable, reliable and resilient system that meets human needs in an increasingly sustainable manner through the use of environmentally sound energy resources and delivery. Both graduates and employers benefit from a well-trained professional workforce that is ready to hit the road running and be immediately productive in meeting these challenges, through this innovative and unique program.

  1. Strategic plan for the restructured US fusion energy sciences program

    International Nuclear Information System (INIS)

    1996-08-01

    This plan reflects a transition to a restructured fusion program, with a change in focus from an energy technology development program to a fusion energy sciences program. Since the energy crisis of the early 1970's, the U.S. fusion program has presented itself as a goal- oriented fusion energy development program, with milestones that required rapidly increasing budgets. The Energy Policy Act of 1992 also called for a goal-oriented development program consistent with the Department's planning. Actual funding levels, however, have forced a premature narrowing of the program to the tokamak approach. By 1995, with no clear, immediate need driving the schedule for developing fusion energy and with enormous pressure to reduce discretionary spending, Congress cut fusion program funding for FY 1996 by one-third and called for a major restructuring of the program. Based on the recommendations of the Fusion Energy Advisory Committee (FEAC), the Department has decided to pursue a program that concentrates on world-class plasma, science, and on maintaining an involvement in fusion energy science through international collaboration. At the same time, the Japanese and Europeans, with energy situations different from ours, are continuing with their goal- oriented fusion programs. Collaboration with them provides a highly leveraged means of continued involvement in fusion energy science and technology, especially through participation in the engineering and design activities of the International Thermonuclear Experimental Reactor program, ITER. This restructured fusion energy sciences program, with its focus on fundamental fusion science and technology, may well provide insights that lead to more attractive fusion power plants, and will make use of the scientific infrastructure that will allow the United States to launch a fusion energy development program at some future date

  2. Journal of Applied Science, Engineering and Technology: Editorial ...

    African Journals Online (AJOL)

    Focus and Scope. Journal of Applied Science Engineering and Technology accepts and publishes articles on Engineering, Physical Sciences and all fields of Technology and Biotechnology. It is published twice a year by the FACULTY OF TECHNOLOGY, UNIVERSITY OF IBADAN, IBADAN, NIGERIA. The journal covers ...

  3. 75 FR 22576 - Minority Science and Engineering Improvement Program

    Science.gov (United States)

    2010-04-29

    ... DEPARTMENT OF EDUCATION [CFDA No. 84.120A] Minority Science and Engineering Improvement Program... the fiscal year (FY) 2009 grant slate for the Minority Science and Engineering Improvement Program. SUMMARY: The Secretary intends to use the grant slate developed in FY 2009 for the Minority Science and...

  4. Integral Methods in Science and Engineering

    CERN Document Server

    Constanda, Christian

    2011-01-01

    An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques

  5. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  6. Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering

    CERN Document Server

    Elleithy, Khaled

    2013-01-01

    Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning. This book includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2010). The proceedings are a set of rigorously reviewed world-class manuscripts presenting the state of international practice in Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications.

  7. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    Full text: In 2002, the US Department of Energy (US DOE) transferred sponsorship of the INEEL and ANL-W to the DOE Office of Nuclear Energy, Science and Technology and designated the INEEL and ANL-W as the nation's lead laboratories for nuclear reactor and nuclear fuel cycle research and development. This transfer acknowledged the laboratories' history, infrastructure, expertise and commitment to collaborate broadly in order to fulfill its assigned role as the nation's center for nuclear energy research and development. Key to this role is the availability of well-educated and trained nuclear engineers, professionals from other disciplines of engineering, nuclear scientists, and others with advanced degrees in supporting disciplines such as physics, chemistry, and math. In 2005 the INEEL and ANL-W will be combined into the Idaho National Laboratory (INL). One of US DOE's objectives for the INL will be for it to take a strong role in the revitalization of nuclear engineering and nuclear science education in the US. Responding to this objective for the INL and the national need to rejuvenate nuclear engineering and nuclear science research and education, ISU, University of Idaho (UI), Boise State University, the INEEL, and ANL-W are all supporting a new Institute of Nuclear Science and Engineering (INSE), initially proposed by and to be administered by ISU. The Institute will rely on the resources of both universities and the INL to create a US center for reactor and fuel cycle research to development and attract outstanding faculty and students to Idaho and to the INL. The Institute and other university based education development efforts represent only one component of a viable Human Resources Pipeline from university to leading edge laboratory researcher. Another critical component is the successful integration of new graduates into the laboratory research environment, the transfer of knowledge from senior researchers, and the development of these individuals into

  8. Renewable energy technology from underpinning physics to engineering application

    International Nuclear Information System (INIS)

    Infield, D G

    2008-01-01

    The UK Energy Research Centre (UKERC) in it's submission to the DTI's 2006 Energy Review reminded us that the 'UK has abundant wind, wave and tidal resources available; its mild climate lends itself to bio-energy production, and solar radiation levels are sufficient to sustain a viable solar industry'. These technologies are at different stages of development but they all draw on basic and applied Science and Engineering. The paper will briefly review the renewable energy technologies and their potential for contributing to a sustainable energy supply. Three research topics will be highlighted that bridge the gap between the physics underpinning the energy conversion, and the engineering aspects of development and deployment; all three are highly relevant to the Government's programme on micro-generation. Two are these are taken from field of thin film photovoltaics (PV), one related to novel device development and the other to a measurement technique for assessing the manufacturing quality of PV modules and their performance. The third topic concerns the development of small building integrated wind turbines and examines the complex flow associated with such applications. The paper will conclude by listing key research challenges that are central to the search for efficient and cost-effective renewable energy generation

  9. Digest of Key Science and Engineering Indicators, 2008. NSB-08-2

    Science.gov (United States)

    National Science Foundation, 2008

    2008-01-01

    This digest of key science and engineering indicators draws primarily from the National Science Board's two-volume "Science and Engineering Indicators, 2008" report. The digest serves two purposes: (1) to draw attention to important trends and data points from across the chapters and volumes of "Science and Engineering Indicators, 2008," and (2)…

  10. New trends in networking, computing, e-learning, systems sciences, and engineering

    CERN Document Server

    Sobh, Tarek

    2015-01-01

    This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers form the conference proceedings of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  • Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; • Includes chapters in the most advanced areas of Computing, Informatics, Systems Sciences, and Engineering; • Accessible to a wide range of readership, including professors, researchers, practitioners and...

  11. Innovations and Advances in Computer, Information, Systems Sciences, and Engineering

    CERN Document Server

    Sobh, Tarek

    2013-01-01

    Innovations and Advances in Computer, Information, Systems Sciences, and Engineering includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2011). The contents of this book are a set of rigorously reviewed, world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology and Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.

  12. Analysing the integration of engineering in science lessons with the Engineering-Infused Lesson Rubric

    Science.gov (United States)

    Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.; Ross, Julia M.

    2017-09-01

    Science teachers are being called on to incorporate engineering practices into their classrooms. This study explores whether the Engineering-Infused Lesson Rubric, a new rubric designed to target best practices in engineering education, could be used to evaluate the extent to which engineering is infused into online science lessons. Eighty lessons were selected at random from three online repositories, and coded with the rubric. Overall results documented the strengths of existing lessons, as well as many components that teachers might strengthen. In addition, a subset of characteristics was found to distinguish lessons with the highest level of engineering infusion. Findings are discussed in relation to the potential of the rubric to help teachers use research evidence-informed practice generally, and in relation to the new content demands of the U.S. Next Generation Science Standards, in particular.

  13. Electrochemical energy engineering: a new frontier of chemical engineering innovation.

    Science.gov (United States)

    Gu, Shuang; Xu, Bingjun; Yan, Yushan

    2014-01-01

    One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum.

  14. Robotic Manufacturing Science and Engineering Laboratory (RMSEL)

    International Nuclear Information System (INIS)

    1994-04-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Robotic Manufacturing Science and Engineering Laboratory (RMSEL) at Sandia National Laboratories/New Mexico (SNL). This facility is needed to integrate, consolidate, and enhance the robotics research and testing currently in progress at SNL. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  15. The science of structural engineering

    CERN Document Server

    Heyman, Jacques

    1999-01-01

    Structures cannot be created without engineering theory, and design rules have existed from the earliest times for building Greek temples, Roman aqueducts and Gothic cathedrals - and later, for steel skyscrapers and the frames for aircraft. This book is, however, not concerned with the description of historical feats, but with the way the structural engineer sets about his business. Galileo, in the seventeenth century, was the first to introduce recognizably modern science into the calculation of structures; he determined the breaking strength of beams. In the eighteenth century engineers move

  16. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  17. Innovations and advances in computing, informatics, systems sciences, networking and engineering

    CERN Document Server

    Elleithy, Khaled

    2015-01-01

    Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering  This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers from the conference proceedings of the Eighth and some selected papers of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2012 & CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  ·       Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; ·       Includes chapters in the most a...

  18. Building community partnerships to implement the new Science and Engineering component of the NGSS

    Science.gov (United States)

    Burke, M. P.; Linn, F.

    2013-12-01

    Partnerships between science professionals in the community and professional educators can help facilitate the adoption of the Next Generation Science Standards (NGSS). Classroom teachers have been trained in content areas but may be less familiar with the new required Science and Engineering component of the NGSS. This presentation will offer a successful model for building classroom and community partnerships and highlight the particulars of a collaborative lesson taught to Rapid City High School students. Local environmental issues provided a framework for learning activities that encompassed several Crosscutting Concepts and Science and Engineering Practices for a lesson focused on Life Science Ecosystems: Interactions, Energy, and Dynamics. Specifically, students studied local water quality impairments, collected and measured stream samples, and analyzed their data. A visiting hydrologist supplied additional water quality data from ongoing studies to extend the students' datasets both temporally and spatially, helping students to identify patterns and draw conclusions based on their findings. Context was provided through discussions of how science professionals collect and analyze data and communicate results to the public, using an example of a recent bacterial contamination of a local stream. Working with Rapid City High School students added additional challenges due to their high truancy and poverty rates. Creating a relevant classroom experience was especially critical for engaging these at-risk youth and demonstrating that science is a viable career path for them. Connecting science in the community with the problem-solving nature of engineering is a critical component of NGSS, and this presentation will elucidate strategies to help prospective partners maneuver through the challenges that we've encountered. We recognize that the successful implementation of the NGSS is a challenge that requires the support of the scientific community. This partnership

  19. International conference on Advances in Engineering Technologies and Physical Science

    CERN Document Server

    Ao, Sio-Iong; Rieger, Burghard; IAENG Transactions on Engineering Technologies : Special Edition of the World Congress on Engineering and Computer Science 2011

    2013-01-01

    This volume contains thirty revised and extended research articles written by prominent researchers participating in an international conference in engineering technologies and physical science and applications. The conference serves as good platforms for the engineering community to meet with each other and to exchange ideas. The conference has also struck a balance between theoretical and application development. The conference is truly international meeting with a high level of participation from many countries. Topics covered include chemical engineering, circuits, communications systems, control theory, engineering mathematics, systems engineering, manufacture engineering, and industrial applications. The book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent reference work for researchers and graduate students working with/on engineering technologies and physical science and applications.

  20. Proceeding of 29th domestic symposium on computational science and nuclear energy in the 21st century

    International Nuclear Information System (INIS)

    2001-10-01

    As the 29th domestic symposium of Atomic Energy Research Committee, the Japan Welding Engineering Society, the symposium was held titled as Computational science and nuclear energy in the 21st century'. Keynote speech was delivered titled as 'Nuclear power plants safety secured by computational science in the 21st century'. Three speakers gave lectures titled as 'Materials design and computational science', 'Development of advanced reactor in the 21st century' and 'Application of computational science to operation and maintenance management of plants'. Lectures held panel discussion titled as 'Computational science and nuclear energy in the 21st century'. (T. Tanaka)

  1. Emerging engineering and energy challenge

    International Nuclear Information System (INIS)

    Kakodkar, Anil

    2007-01-01

    Engineers today are in an enviable position to channelise new knowledge and evolving technologies through their innovative engineering abilities to create wealth and improve quality of life of our people. Talking in terms of energy, the energy associated with nucleus being millions-fold higher than that associated with a molecule, nuclear energy provides an inevitable sustainable option that can provide for all without any significant environmental impact. Here, we thus have a mission which can provide us with solutions which the scientists and engineers must come together and implement

  2. International symposium on clusters and nanomaterials (energy and life-sciences applications)

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Purusottam [Virginia Commonwealth Univ., Richmond, VA (United States)

    2017-02-09

    The International Symposium on Clusters and Nanomaterials was held in Richmond, Virginia during October 26-29, 2015. The symposium focused on the roles clusters and nanostructures play in solving outstanding problems in clean and sustainable energy and life sciences applications; two of the most important issues facing science and society. Many of the materials issues in renewable energies, environmental impacts of energy technologies as well as beneficial and toxicity issues of nanoparticles in health are intertwined. Realizing that both fundamental and applied materials issues require a multidisciplinary approach the symposium provided a forum by bringing researchers from physics, chemistry, materials science, and engineering fields to share their ideas and results, identify outstanding problems, and develop new collaborations. Clean and sustainable energy sessions addressed challenges in production, storage, conversion, and efficiency of renewable energies such as solar, wind, bio, thermo-electric, and hydrogen. Environmental issues dealt with air- and water-pollution and conservation, environmental remediation and hydrocarbon processing. Topics in life sciences included therapeutic and diagnostic methods as well as health hazards attributed to nanoparticles. Cross-cutting topics such as reactions, catalysis, electronic, optical, and magnetic properties were also covered. The symposium attracted 132 participants from 24 countries in the world. It featured 39 invited speakers in 14 plenary sessions, in addition to one key-note session. Eighty-five contributed papers were presented in two poster sessions and 14 papers from this list were selected to be presented orally at the end of each session to highlight hot topics. Papers presented at the symposium were reviewed and published in SPIE so that these can reach a wide audience. The symposium was highly interactive with ample time allotted for discussions and making new collaborations. The participants’ response

  3. Women in science & engineering and minority engineering scholarships : year 3, report for 2008-2009 activities.

    Science.gov (United States)

    2009-05-01

    Support made scholarships available to minority and women students interested in engineering and science and significantly increased : the number of minority and female students that Missouri S&T can recruit to its science and engineering programs. R...

  4. Snowmass 2002: The Fusion Energy Sciences Summer Study

    International Nuclear Information System (INIS)

    Sauthoff, N.; Navratil, G.; Bangerter, R.

    2002-01-01

    The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE [Department of Energy] and the FESAC [Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report

  5. Women in science & engineering and minority engineering scholarships : year 2 report for 2007-2008 activities.

    Science.gov (United States)

    2008-08-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  6. Energy Decision Science and Informatics | Integrated Energy Solutions |

    Science.gov (United States)

    NREL Decision Science and Informatics Energy Decision Science and Informatics NREL utilizes and advances state-of-the-art decision science and informatics to help partners make well-informed energy decisions backed by credible, objective data analysis and insights to maximize the impact of energy

  7. Assessment report of research and development activities. Activity: 'Nuclear science and engineering research' (Interim report)

    International Nuclear Information System (INIS)

    2013-11-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consults an assessment committee, 'Evaluation Committee of Research Activities for Nuclear Science and Engineering' (hereinafter referred to as 'Committee') for interim assessment of 'Nuclear Science and Engineering,' in accordance with 'General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by the JAEA. In response to the JAEA's request, the Committee assessed the research program of the Nuclear Science and Engineering Directorate (hereinafter referred to as 'NSED') and Center for Computational Science and e-Systems (hereinafter referred to as 'CCSE') during the period of about four years from September 2008 to September 2012. The Committee evaluated the management and research activities of the NSED and the CCSE based on explanatory documents prepared by the NSED and the CCSE, and oral presentations with questions-and-answers by unit managers etc. A CD-ROM is attached as an appendix. (J.P.N.)

  8. Computational Experiments for Science and Engineering Education

    Science.gov (United States)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  9. Future Students | College of Engineering & Applied Science

    Science.gov (United States)

    race car with the Society of Automotive Engineers. Members of the American Society of Mechanical . icons_100x100_Engage Over 20 engineering and computer science organizations await! Race a Baja car or concrete canoe

  10. Gender Equity in Materials Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Angus Rockett

    2008-12-01

    At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases

  11. Energy, information science, and systems science

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry C [Los Alamos National Laboratory; Mercer - Smith, Janet A [Los Alamos National Laboratory

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  12. Conference Modern Engineering : Science and Education

    CERN Document Server

    2017-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2016 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  13. Engineering success: Persistence factors of African American doctoral recipients in engineering and applied science

    Science.gov (United States)

    Simon, Tiffany Monique

    The purpose of this qualitative study was to identify factors that influence African Americans to pursue and complete doctoral degrees in engineering and applied science disciplines. Critical race theory (CRT), two models of doctoral student persistence, and graduate student persistence literature guided the conceptual framework of this study. In-depth and focus group interviews were conducted to learn the key factors that positively impacted the persistence of 19 African Americans who earned doctoral degrees in engineering and applied science. The following two factors were found to significantly contribute to the decision to pursue the doctorate: encouragement from others and participation in a research or internship program. Key factors impacting doctoral degree completion included: peer support, faculty adviser support, support from university administrators, and family support. In addition to identifying factors that influenced 19 African Americans to pursue and complete doctoral degrees in engineering and applied science, this study was about the importance of diversity and inclusion of multiple perspectives in education research and scholarship. To this end, the study served to promote and include the expert knowledge of African American doctoral degree recipients in engineering and applied science in the scholarly discourse on the issue of low participation rates of African Americans in engineering and applied science disciplines. Such knowledge will challenge traditional views on this issue and hopefully inspire new ways of addressing and remedying this issue. With African Americans and other minority populations growing at an exponential rate, people of color are quickly becoming the majority in key states across the nation. Therefore, it is imperative that all Americans have an opportunity to develop skills necessary to compete for professional positions in the science and engineering workforce. This mandate is required for the United States to maintain

  14. Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, United States of America

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 01: Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, USA (second from right) in the ATLAS assembly hall with from left to right Randi Ruchti, Peter Jenni and Robert Eisenstein, Senior Science Advisor, National Science Foundation, USA. Photo 02: Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, USA (second from right) in the ATLAS assembly hall with from left to right Randi Ruchti, Robert Eisenstein, Senior Science Advisor, National Science Foundation, USA and Peter Jenni. Photo 03: Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, USA (second from right) in front of the ATLAS End-Cap Toroid vacuum vessel in the ATLAS assembly hall with from left to right Peter Jenni, Robert Eisenstein, Senior Science Advisor, National Science Foundation, USA and Randi Ruchti ________________________________

  15. Department of Defense Laboratory Civilian Science and Engineering Workforce - 2013

    Science.gov (United States)

    2013-10-01

    Aerospace Engineering 1,995 2,207 2,166 -41 -1.9% Electrical Engineering 982 1,193 1,413 220 18.4% Chemistry 744 873 804 -69 -7.9% Operations Research...1313 Geophysics 180 Psychology 690 Industrial Hygiene 1315 Hydrology 184 Sociology 701 Veterinary Medical Science 1320 Chemistry 190 General...Engineering 1520 Mathematics 470 Soil Science 861 Aerospace Engineering 1529 Mathematical Statistician 471 Agronomy 871 Naval Architecture 1530

  16. Science, technology and engineering at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Mercer-smith, Janet A [Los Alamos National Laboratory; Wallace, Terry C [Los Alamos National Laboratory

    2011-01-06

    The Laboratory provides science solution to the mission areas of nuclear deterrence, global security, and energy security. The capabilities support the Laboratory's vision as the premier national security science laboratory. The strength of LANL's science is at the core of the Laboratory. The Laboratory addresses important science questions for stockpile stewardship, emerging threats, and energy. The underpinning science vitality to support mission areas is supported through the Post Doc program, the fundamental science program in LDRD, collaborations fostered through the Institutes, and the LANL user facilities. LANL fosters the strategy of Science that Matters through investments, people, and facilities.

  17. Formative Assessment Probes: Pendulums and Crooked Swings--Connecting Science and Engineering

    Science.gov (United States)

    Keeley, Page

    2013-01-01

    The "Next Generation Science Standards" provide opportunities for students to experience the link between science and engineering. In the December 2011 issue of "Science and Children," Rodger Bybee explains: "The relationship between science and engineering practices is one of complementarity. Given the inclusion of…

  18. Women in science and engineering

    International Nuclear Information System (INIS)

    Gauker, Lynn.

    1991-01-01

    Women constitute nearly half of Canada's graduates in law, medicine and commerce, but only 28% in mathematics and physical sciences, and only 13% in engineering and applied sciences. Reasons may include: a lack of role models, a lack of encouragement and financial assistance, and the prevalence of sexist attitudes. Remedies may include: promotional material, banning of sexual harassment, and the inclusion in coursed of social and ethical issues and of information about women scientists

  19. World Congress on Engineering and Computer Science 2013

    CERN Document Server

    Ao, Sio-Iong; Amouzegar, Mahyar

    2014-01-01

    This volume contains fifty-six revised and extended research articles, written by prominent researchers participating in the congress. Topics covered include electrical engineering, chemical engineering, circuits, computer science, communications systems, engineering mathematics, systems engineering, manufacture engineering, and industrial applications. This book offers theoretical advances in engineering technologies, and presents state of the art applications. It also serves as an excellent source of reference for researchers and graduate students working with/on engineering technologies.

  20. Exploring the Art and Science of Systems Engineering

    Science.gov (United States)

    Jansma, P. A.

    2012-01-01

    There has been much discussion of late in the NASA systems engineering community about the fact that systems engineering cannot be just about process and technical disciplines. The belief is that there is both an art and science to systems engineering, and that both aspects are necessary for designing and implementing a successful system or mission. How does one go about differentiating between and characterizing these two aspects? Some say that the art of systems engineering is about designing systems that not only function well, but that are also elegant, beautiful and engaging. What does that mean? How can you tell when a system has been designed with that holistic "art" component? This paper attempts to answer these questions by exploring various ways of looking at the Art and Science of Systems Engineering.

  1. 7th International Conference on Management Science and Engineering Management

    CERN Document Server

    Fry, John; Lev, Benjamin; Hajiyev, Asaf; Vol.I Focused on Electrical and Information Technology; Vol.II Focused on Electrical and Information Technology

    2014-01-01

    This book presents the proceedings of the Seventh International Conference on Management Science and Engineering Management (ICMSEM2013) held from November 7 to 9, 2013 at Drexel University, Philadelphia, Pennsylvania, USA and organized by the International Society of Management Science and Engineering Management, Sichuan University (Chengdu, China) and Drexel University (Philadelphia, Pennsylvania, USA).   The goals of the Conference are to foster international research collaborations in Management Science and Engineering Management as well as to provide a forum to present current research findings. The selected papers cover various areas in management science and engineering management, such as Decision Support Systems, Multi-Objective Decisions, Uncertain Decisions, Computational Mathematics, Information Systems, Logistics and Supply Chain Management, Relationship Management, Scheduling and Control, Data Warehousing and Data Mining, Electronic Commerce, Neural Networks, Stochastic Models and Simulation, F...

  2. Mathematics for engineering, technology and computing science

    CERN Document Server

    Martin, Hedley G

    1970-01-01

    Mathematics for Engineering, Technology and Computing Science is a text on mathematics for courses in engineering, technology, and computing science. It covers linear algebra, ordinary differential equations, and vector analysis, together with line and multiple integrals. This book consists of eight chapters and begins with a discussion on determinants and linear equations, with emphasis on how the value of a determinant is defined and how it may be obtained. Solution of linear equations and the dependence between linear equations are also considered. The next chapter introduces the reader to

  3. 78 FR 17234 - Advisory Committee for Mathematical Sciences and Physical Sciences #66; Notice of Meeting

    Science.gov (United States)

    2013-03-20

    ... Science Subcommittee, Optics & Photonics Subcommittee; Food/Energy/Water Subcommittee Update from the... Opportunities in Science and Engineering, and the Advisory Committee for International Science and Engineering...

  4. SIAM Conference on Computational Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-08-29

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third mode of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS

  5. Parallel science and engineering applications the Charm++ approach

    CERN Document Server

    Kale, Laxmikant V

    2016-01-01

    Developed in the context of science and engineering applications, with each abstraction motivated by and further honed by specific application needs, Charm++ is a production-quality system that runs on almost all parallel computers available. Parallel Science and Engineering Applications: The Charm++ Approach surveys a diverse and scalable collection of science and engineering applications, most of which are used regularly on supercomputers by scientists to further their research. After a brief introduction to Charm++, the book presents several parallel CSE codes written in the Charm++ model, along with their underlying scientific and numerical formulations, explaining their parallelization strategies and parallel performance. These chapters demonstrate the versatility of Charm++ and its utility for a wide variety of applications, including molecular dynamics, cosmology, quantum chemistry, fracture simulations, agent-based simulations, and weather modeling. The book is intended for a wide audience of people i...

  6. 8th International Conference on Management Science and Engineering Management

    CERN Document Server

    Cruz-Machado, Virgílio; Lev, Benjamin; Nickel, Stefan

    2014-01-01

    This is the Proceedings of the Eighth International Conference on Management Science and Engineering Management (ICMSEM) held from July 25 to 27, 2014 at Universidade Nova de Lisboa, Lisbon, Portugal and organized by International Society of Management Science and Engineering Management (ISMSEM), Sichuan University (Chengdu, China) and Universidade Nova de Lisboa (Lisbon, Portugal). The goals of the conference are to foster international research collaborations in Management Science and Engineering Management as well as to provide a forum to present current findings. A total number of 138 papers from 14 countries are selected for the proceedings by the conference scientific committee through rigorous referee review. The selected papers in the second volume are focused on Computing and Engineering Management covering areas of Computing Methodology, Project Management, Industrial Engineering and Information Technology.

  7. Snowmass 2002: The Fusion Energy Sciences Summer Study; TOPICAL

    International Nuclear Information System (INIS)

    N. Sauthoff; G. Navratil; R. Bangerter

    2002-01-01

    The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE[Department of Energy] and the FESAC[Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report will

  8. Environmental Science and Engineering Merit Badges: An Exploratory Case Study of a Non-Formal Science Education Program and the U.S. Scientific and Engineering Practices

    Science.gov (United States)

    Vick, Matthew E.; Garvey, Michael P.

    2016-01-01

    The Boy Scouts of America's Environmental Science and Engineering merit badges are two of their over 120 merit badges offered as a part of a non-formal educational program to U.S. boys. The Scientific and Engineering Practices of the U.S. Next Generation Science Standards provide a vision of science education that includes integrating eight…

  9. Benefiting Female Students in Science, Math, and Engineering: The Nuts and Bolts of Establishing a WISE (Women in Science and Engineering) Learning Community

    Science.gov (United States)

    Pace, Diana; Witucki, Laurie; Blumreich, Kathleen

    2008-01-01

    This paper describes the rationale and the step by step process for setting up a WISE (Women in Science and Engineering) learning community at one institution. Background information on challenges for women in science and engineering and the benefits of a learning community for female students in these major areas are described. Authors discuss…

  10. ETHICS AND JUSTICE IN ENVIRONMENTAL SCIENCE AND ENGINEERING

    Science.gov (United States)

    Science and engineering are built on trust. C.P. Snow's famous quote, "the only ethical principle which has made science possible is that the truth shall be told all the time" underscores the importance of honesty in science. Environmental scientists must do work that is useful...

  11. Engineering and physical sciences in oncology: challenges and opportunities.

    Science.gov (United States)

    Mitchell, Michael J; Jain, Rakesh K; Langer, Robert

    2017-11-01

    The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.

  12. Balancing Energy Processes in Turbine Engines

    Directory of Open Access Journals (Sweden)

    Balicki Włodzimierz

    2015-01-01

    Full Text Available The article discusses the issue of balancing energy processes in turbine engines in operation in aeronautic and marine propulsion systems with the aim to analyse and evaluate basic operating parameters. The first part presents the problem of enormous amounts of energy needed for driving fans and compressors of the largest contemporary turbofan engines commonly used in long-distance aviation. The amounts of the transmitted power and the effect of flow parameters and constructional properties of the engines on their performance and real efficiency are evaluated. The second part of the article, devoted to marine applications of turbine engines, presents the energy balance of the kinetic system of torque transmission from main engine turbines to screw propellers in the combined system of COGAG type. The physical model of energy conversion processes executed in this system is presented, along with the physical model of gasodynamic processes taking place in a separate driving turbine of a reversing engine. These models have made the basis for formulating balance equations, which then were used for analysing static and dynamic properties of the analysed type of propulsion, in particular in the aspect of mechanical loss evaluation in its kinematic system.

  13. Midwest Nuclear Science and Engineering Consortium

    International Nuclear Information System (INIS)

    Volkert, Wynn; Kumar, Arvind; Becker, Bryan; Schwinke, Victor; Gonzalez, Angel; McGregor, Douglas

    2010-01-01

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  14. Midwest Nuclear Science and Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  15. The women in science and engineering scholars program

    Science.gov (United States)

    Falconer, Etta Z.; Guy, Lori Ann

    1989-01-01

    The Women in Science and Engineering Scholars Program provides scientifically talented women students, including those from groups underrepresented in the scientific and technical work force, with the opportunity to pursue undergraduate studies in science and engineering in the highly motivating and supportive environment of Spelman College. It also exposes students to research training at NASA Centers during the summer. The program provides an opportunity for students to increase their knowledge of career opportunities at NASA and to strengthen their motivation through exposure to NASA women scientists and engineers as role models. An extensive counseling and academic support component to maximize academic performance supplements the instructional and research components. The program is designed to increase the number of women scientists and engineers with graduate degrees, particularly those with an interest in a career with NASA.

  16. Transforming the Professoriate: Preparing Women for Careers in Science & Engineering

    OpenAIRE

    Virginia Tech

    2006-01-01

    Schedule for 2006's Transforming the Professoriate: Preparing Women for Careers in Science & Engineering Conference. Transforming the Professoriate: Preparing Women for Careers in Science & Engineering took place from July 20 – 22, 2006 at the Inn at Virginia Tech and Skelton Conference Center

  17. Accelerator science and its civil and utility engineering work

    International Nuclear Information System (INIS)

    Yoshioka, Masakazu

    2006-01-01

    In large-scale accelerator projects such as TRISTAN and J-PARC, approximately half of the total project costs are spent on the civil and utility engineering work for the accelerator. In addition, the quality of civil and utility engineering has a large effect on the quality of the beam. With increasing scale of projects, there is growing specialization of the people in charge of the accelerator on the one hand, and the people in charge of civil and utility engineering on the other. Mutual understanding between the people in charge is therefore important in such cases. From the experience I have accumulated working on the facilities of many large projects, I have become keenly aware of the necessity for both accelerator-literate civil engineering specialists and civil engineering-literate accelerator researchers. A straight-forward method for satisfying this requirement is to systematize accelerator science as a science with civil and utility engineering for accelerators recognized as its sub-field. When new projects launched, the methodology of the natural sciences should be incorporated whereby past experience is fully utilized and then new technologies and knowledge are accumulated. (author)

  18. Enabling science and technology for marine renewable energy

    International Nuclear Information System (INIS)

    Mueller, Markus; Wallace, Robin

    2008-01-01

    This paper describes some of the key challenges to be met in the development of marine renewable energy technology, from its present prototype form to being a widely deployed contributor to future energy supply. Since 2000, a number of large-scale wave and tidal current prototypes have been demonstrated around the world, but marine renewable energy technology is still 10-15 years behind that of wind energy. UK-based developers are leading the way, with Pelamis from Pelamis Wave Power demonstrated in the open sea, generating electricity into the UK network and securing orders from Portugal. However, having started later, the developing technology can make use of more advanced science and engineering, and it is therefore reasonable to expect rapid progress. Although progress is underway through deployment and testing, there are still key scientific challenges to be addressed in areas including resource assessment and predictability, engineering design and manufacturability, installation, operation and maintenance, survivability, reliability and cost reduction. The research priorities required to meet these challenges are suggested in this paper and have been drawn from current roadmaps and vision documents, including more recent consultations within the community by the UK Energy Research Centre Marine Research Network. Many scientific advances are required to meet these challenges, and their likelihood is explored based on current and future capabilities

  19. Welding As Science: Applying Basic Engineering Principles to the Discipline

    Science.gov (United States)

    Nunes, A. C., Jr.

    2010-01-01

    This Technical Memorandum provides sample problems illustrating ways in which basic engineering science has been applied to the discipline of welding. Perhaps inferences may be drawn regarding optimal approaches to particular welding problems, as well as for the optimal education for welding engineers. Perhaps also some readers may be attracted to the science(s) of welding and may make worthwhile contributions to the discipline.

  20. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  1. Fusion energy science: Clean, safe, and abundant energy through innovative science and technology

    International Nuclear Information System (INIS)

    2001-01-01

    Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source

  2. Examining Teacher Talk in an Engineering Design-Based Science Curricular Unit

    Science.gov (United States)

    Aranda, Maurina L.; Lie, Richard; Selcen Guzey, S.; Makarsu, Murat; Johnston, Amanda; Moore, Tamara J.

    2018-03-01

    Recent science education reforms highlight the importance for teachers to implement effective instructional practices that promote student learning of science and engineering content and their practices. Effective classroom discussion has been shown to support the learning of science, but work is needed to examine teachers' enactment of engineering design-based science curricula by focusing on the content, complexity, structure, and orchestration of classroom discussions. In the present study, we explored teacher-student talk with respect to science in a middle school curriculum focused on genetics and genetic engineering. Our study was guided by the following major research question: What are the similarities and differences in teacher talk moves that occurred within an engineering design-based science unit enacted by two teachers? Through qualitative and quantitative approaches, we found that there were clear differences in two teachers' use of questioning strategies and presentation of new knowledge that affected the level of student involvement in classroom discourse and the richness and details of student contributions to the conversations. We also found that the verbal explanations of science content differed between two teachers. Collectively, the findings in this study demonstrate that although the teachers worked together to design an engineering designed-based science curriculum unit, their use of different discussion strategies and patterns, and interactions with students differed to affect classroom discourse.

  3. Classroom Implementation of Science, Technology, Engineering ...

    African Journals Online (AJOL)

    Zimbabwe Journal of Educational Research ... Understanding science, technology, engineering, and mathematics (STEM) education as a ... life skills in general and scientific literacy, along with a productive disposition and sense of social ...

  4. Energy-Aware Software Engineering

    DEFF Research Database (Denmark)

    Eder, Kerstin; Gallagher, John Patrick

    2017-01-01

    A great deal of energy in Information and Communication Technology (ICT) systems can be wasted by software, regardless of how energy-efficient the underlying hardware is. To avoid such waste, programmers need to understand the energy consumption of programs during the development process rather......, the chapter discusses how energy analysis and modelling techniques can be incorporated in software engineering tools, including existing compilers, to assist the energy-aware programmer to optimise the energy consumption of code....

  5. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    International Nuclear Information System (INIS)

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-01-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  6. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Amy [Univ. of Wisconsin, Madison, WI (United States); Callis, Richard [General Atomics, San Diego, CA (United States); Efthimion, Philip [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Foster, John [Univ. of Michigan, Ann Arbor, MI (United States); Keane, Christopher [Washington State Univ., Pullman, WA (United States); Onsager, Terry [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); O' Shea, Patrick [Univ. of Maryland, College Park, MD (United States)

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  7. Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering

    OpenAIRE

    Dincer, Ibrahim; Cengel, Yunus A.

    2001-01-01

    Abstract: Energy, entropy and exergy concepts come from thermodynamics and are applicable to all fields of science and engineering. Therefore, this article intends to provide background for better understanding of these concepts and their differences among various classes of life support systems with a diverse coverage. It also covers the basic principles, general definitions and practical applications and implications. Some illustrative examples are presented to highlight the importance of t...

  8. Evaluation of American Indian Science and Engineering Society Intertribal Middle School Science and Math Bowl Project

    Energy Technology Data Exchange (ETDEWEB)

    AISES, None

    2013-09-25

    The American Indian Science and Engineering Society (AISES) has been funded under a U.S. Department of Energy (DOE) grant (Grant Award No. DE-SC0004058) to host an Intertribal Middle-School Science and Math Bowl (IMSSMB) comprised of teams made up of a majority of American Indian students from Bureau of Indian Education-funded schools and public schools. The intent of the AISES middle school science and math bowl is to increase participation of American Indian students at the DOE-sponsored National Science Bowl. Although national in its recruitment scope, the AISES Intertribal Science and Math Bowl is considered a “regional” science bowl, equivalent to the other 50 regional science bowls which are geographically limited to states. Most regional bowls do not have American Indian student teams competing, hence the AISES bowl is meant to encourage American Indian student teams to increase their science knowledge in order to participate at the national level. The AISES competition brings together teams from various American Indian communities across the nation. Each team is provided with funds for travel to and from the event, as well as for lodging and meals. In 2011 and 2012, there were 10 teams participating; in 2013, the number of teams participating doubled to 20. Each Science and Math Bowl team is comprised of four middle school — grades 6 through 8 — students, one alternate, and a teacher who serves as advisor and coach — although in at least two cases, the coach was not a teacher, but was the Indian Education Coordinator. Each team member must have at least a 3.0 GPA. Furthermore, the majority of students in each team must be comprised of American Indian, Alaska Native or Native Hawaiian students. Under the current DOE grant, AISES sponsored three annual middle school science bowl competitions over the years 2011, 2012 and 2013. The science and math bowls have been held in late March concurrently with the National American Indian Science and

  9. Conference “Modern Engineering : Science and Education”

    CERN Document Server

    2015-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2013 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines, and engineering graduates.

  10. Colloquy on Minority Males in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Didion, Catherine; Fortenberry, Norman L.; Cady, Elizabeth

    2012-01-01

    On August 8-12, 2010 the National Academy of Engineering (NAE), with funding from the National Science Foundation (NSF), convened the Colloquy on Minority Males in Science, Technology, Engineering, and Mathematics (STEM), following the release of several reports highlighting the educational challenges facing minority males. The NSF recognized the…

  11. Fusion Energy Sciences Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [ESNet, Berkeley, CA (United States); Tierney, Brian [ESNet, Berkeley, CA (United States)

    2012-09-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Office of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  12. 8th International Conference on Management Science and Engineering Management

    CERN Document Server

    Cruz-Machado, Virgílio; Lev, Benjamin; Nickel, Stefan

    2014-01-01

    This is the Proceedings of the Eighth International Conference on Management Science and Engineering Management (ICMSEM) held from July 25 to 27, 2014 at Universidade Nova de Lisboa, Lisbon, Portugal and organized by International Society of Management Science and Engineering Management (ISMSEM), Sichuan University (Chengdu, China) and Universidade Nova de Lisboa (Lisbon, Portugal). The goals of the conference are to foster international research collaborations in Management Science and Engineering Management as well as to provide a forum to present current findings. A total number of 138 papers from 14 countries are selected for the proceedings by the conference scientific committee through rigorous referee review. The selected papers in the first volume are focused on Intelligent System and Management Science covering areas of Intelligent Systems, Decision Support Systems, Manufacturing and Supply Chain Management.

  13. 78 FR 24241 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Science.gov (United States)

    2013-04-24

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology.... SUMMARY: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National Science and...

  14. 77 FR 61448 - Nanoscale Science, Engineering and Technology Subcommittee Committee on Technology, National...

    Science.gov (United States)

    2012-10-09

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering and Technology Subcommittee...: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National Science and...

  15. Attracting Girls to Science, Engineering and Technology: An Australian Perspective

    Science.gov (United States)

    Little, Alison J.; Leon de la Barra, Bernardo A.

    2009-01-01

    This paper describes a project undertaken by the school outreach team at the School of Engineering, University of Tasmania, Australia, to attract girls to science, engineering and technology (SET). The project was a pilot program designed to engage female students from upper primary to senior secondary in the teaching of physical sciences. A…

  16. First-Year University Science and Engineering Students' Understanding of Plagiarism

    Science.gov (United States)

    Yeo, Shelley

    2007-01-01

    This paper is a case study of first-year science and engineering students' understandings of plagiarism. Students were surveyed for their views on scenarios illustrating instances of plagiarism in the context of the academic work and assessment of science and engineering students. The aim was to explore their understandings of plagiarism and their…

  17. Science Educators Teaching Engineering Design: An Examination across Science Professional Development Sites

    Science.gov (United States)

    Grubbs, Michael E.; Love, Tyler S.; Long, David E.; Kittrell, Danielle

    2016-01-01

    Although the currently employed STEM (science, technology, engineering, and mathematics) acronym is of recent origin, dating to the early 2000s (Chute, 2009), the United States has long emphasized the importance of teaching STEM in its public schools. Early efforts, such as "Science, the Endless Frontier" (Bush, 1945) and the…

  18. Engineers, energy and public concern

    International Nuclear Information System (INIS)

    Forrest, J.S.

    1981-01-01

    This lecture points out that the majority of engineers are content to allow their profession to be undervalued in the eyes of society. On many issues, energy in particular, the engineer has an authoritative voice to speak with, and an incisive point to argue. U.K. energy policy is discussed and a programme is suggested to include breeder reactors and generation of 60% of the electricity demand by nuclear stations by A.D. 2000. (U.K.)

  19. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  20. The Science of Solubility: Using Reverse Engineering to Brew a Perfect Cup of Coffee

    Science.gov (United States)

    West, Andrew B.; Sickel, Aaron J.; Cribbs, Jennifer D.

    2015-01-01

    The Next Generation Science Standards call for the integration of science and engineering. Often, the introduction of engineering activities occurs after instruction in the science content. That is, engineering is used as a way for students to elaborate on science ideas that have already been explored. However, using only this sequence of…

  1. 76 FR 49757 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Services Administration, notice is hereby given that the Fusion Energy Sciences Advisory Committee will be... science, fusion science, and fusion technology related to the Fusion Energy Sciences program. Additionally...

  2. Women Working in Engineering and Science

    Science.gov (United States)

    Luna, Bernadette; Kliss, Mark (Technical Monitor)

    1998-01-01

    The presentation will focus on topics of interest to young women pursuing an engineering or scientific career, such as intrinsic personality traits of most engineers, average salaries for the various types of engineers, appropriate preparation classes at the high school and undergraduate levels, gaining experience through internships, summer jobs and graduate school, skills necessary but not always included in engineering curricula (i.e., multimedia, computer skills, communication skills), the work environment, balancing family and career, and sexual harassment. Specific examples from the speaker's own experience in NASA's Space Life Sciences Program will be used to illustrate the above topics. In particular, projects from Extravehicular Activity and Protective Systems research and Regenerative Life Support research will be used as examples of real world problem-solving to enable human exploration of the solar system.

  3. Mechanical Engineering Department technical review

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E (eds.)

    1982-01-01

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  4. Current fundamental science challenges in low temperature plasma science that impact energy security and international competitiveness

    Science.gov (United States)

    Hebner, Greg

    2010-11-01

    Products and consumer goods that utilize low temperature plasmas at some point in their creation touch and enrich our lives on almost a continuous basis. Examples are many but include the tremendous advances in microelectronics and the pervasive nature of the internet, advanced material coatings that increase the strength and reliability of products from turbine engines to potato chip bags, and the recent national emphasis on energy efficient lighting and compact fluorescent bulbs. Each of these products owes their contributions to energy security and international competiveness to fundamental research investments. However, it would be a mistake to believe that the great commercial success of these products implies a robust understanding of the complicated interactions inherent in plasma systems. Rather, current development of the next generation of low temperature plasma enabled products and processes is clearly exposing a new set of exciting scientific challenges that require leaps in fundamental understanding and interdisciplinary research teams. Emerging applications such as liquid-plasma systems to improve water quality and remediate hazardous chemicals, plasma-assisted combustion to increase energy efficiency and reduce emissions, and medical applications promise to improve our lives and the environment only if difficult science questions are solved. This talk will take a brief look back at the role of low temperature plasma science in enabling entirely new markets and then survey the next generation of emerging plasma applications. The emphasis will be on describing the key science questions and the opportunities for scientific cross cutting collaborations that underscore the need for increased outreach on the part of the plasma science community to improve visibility at the federal program level. This work is supported by the DOE, Office of Science for Fusion Energy Sciences, and Sandia National Laboratories, a multi-program laboratory managed and operated

  5. Science | Argonne National Laboratory

    Science.gov (United States)

    Security Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Scientific Publications Researchers Postdocs Exascale Computing Institute for Molecular Engineering at Argonne Work with Us About Safety News Careers Education Community Diversity Directory Argonne National Laboratory

  6. Distance Learning and Skill Acquisition in Engineering Sciences: Present State and Prospects

    Science.gov (United States)

    Potkonjak, Veljko; Jovanovic, Kosta; Holland, Owen; Uhomoibhi, James

    2013-01-01

    Purpose: The purpose of this paper is to present an improved concept of software-based laboratory exercises, namely a Virtual Laboratory for Engineering Sciences (VLES). Design/methodology/approach: The implementation of distance learning and e-learning in engineering sciences (such as Mechanical and Electrical Engineering) is still far behind…

  7. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    International Nuclear Information System (INIS)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis

  8. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  9. Physical sciences and engineering advances in life sciences and oncology a WTEC global assessment

    CERN Document Server

    Fletcher, Daniel; Gerecht, Sharon; Levine, Ross; Mallick, Parag; McCarty, Owen; Munn, Lance; Reinhart-King, Cynthia

    2016-01-01

    This book presents an Assessment of Physical Sciences and Engineering Advances in Life Sciences and Oncology (APHELION) by a panel of experts. It covers the status and trends of applying physical sciences and engineering principles to oncology research in leading laboratories and organizations in Europe and Asia. The book elaborates on the six topics identified by the panel that have the greatest potential to advance understanding and treatment of cancer, each covered by a chapter in the book. The study was sponsored by the National Cancer Institute (NCI) at the National Institute of Health (NIH), the National Science Foundation (NSF) and the National Institute of Biomedical Imaging and Bioengineering at the NIH in the US under a cooperative agreement with the World Technology Evaluation Center (WTEC).

  10. The Gender Differences: Hispanic Females and Males Majoring in Science or Engineering

    Science.gov (United States)

    Brown, Susan Wightman

    Documented by national statistics, female Hispanic students are not eagerly rushing to major in science or engineering. Using Seidman's in-depth interviewing method, 22 Hispanic students, 12 female and 10 male, majoring in science or engineering were interviewed. Besides the themes that emerged with all 22 Hispanic students, there were definite differences between the female and male Hispanic students: role and ethnic identity confusion, greater college preparation, mentoring needed, and the increased participation in enriched additional education programs by the female Hispanic students. Listening to these stories from successful female Hispanic students majoring in science and engineering, educators can make changes in our school learning environments that will encourage and enable more female Hispanic students to choose science or engineering careers.

  11. International Conference for Innovation in Biomedical Engineering and Life Sciences

    CERN Document Server

    Usman, Juliana; Mohktar, Mas; Ahmad, Mohd

    2016-01-01

    This volumes presents the proceedings of ICIBEL 2015, organized by the Centre for Innovation in Medical Engineering (CIME) under Innovative Technology Research Cluster, University of Malaya. It was held in Kuala Lumpur, Malaysia, from 6-8 December 2015. The ICIBEL 2015 conference promotes the latest researches and developments related to the integration of the Engineering technology in medical fields and life sciences. This includes the latest innovations, research trends and concerns, challenges and adopted solution in the field of medical engineering and life sciences. .

  12. The Humanistic Side of Engineering: Considering Social Science and Humanities Dimensions of Engineering in Education and Research

    OpenAIRE

    Hynes, Morgan; Swenson, Jessica

    2013-01-01

    Mathematics and science knowledge/skills are most commonly associated with engineering’s pre-requisite knowledge. Our goals in this paper are to argue for a more systematic inclusion of social science and humanities knowledge in the introduction of engineering to K-12 students. As part of this argument, we present a construct for framing the humanistic side of engineering with illustrative examples of what appealing to the humanistic side of engineering can look like in a classroom setting, a...

  13. Institute for Computer Applications in Science and Engineering (ICASE)

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period April 1, 1983 through September 30, 1983 is summarized.

  14. Student science enrichment training program

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objective was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.

  15. Earth Science Research in DUSEL; a Deep Underground Science and Engineering Laboratory in the United States

    Science.gov (United States)

    Fairhurst, C.; Onstott, T. C.; Tiedje, J. M.; McPherson, B.; Pfiffner, S. M.; Wang, J. S.

    2004-12-01

    A summary of efforts to create one or more Deep Underground Science and Engineering Laboratories (DUSEL) in the United States is presented. A workshop in Berkeley, August 11-14, 2004, explored the technical requirements of DUSEL for research in basic and applied geological and microbiological sciences, together with elementary particle physics and integrated education and public outreach. The workshop was organized by Bernard Sadoulet, an astrophysicist and the principal investigator (PI) of a community-wide DUSEL program evolving in coordination with the National Science Foundation. The PI team has three physicists (in nuclear science, high-energy physics, and astrophysics) and three earth scientists (in geoscience, biology and engineering). Presentations, working group reports, links to previous workshop/meeting talks, and information about DUSEL candidate sites, are presented in http://neutrino.lbl.gov/DUSELS-1. The Berkeley workshop is a continuation of decades of efforts, the most recent including the 2001 Underground Science Conference's earth science and geomicrobiology workshops, the 2002 International Workshop on Neutrino and Subterranean Science, and the 2003 EarthLab Report. This perspective (from three earth science co-PIs, the lead author of EarthLab report, the lead scientist of education/outreach, and the local earth science organizer) is to inform the community on the status of this national initiative, and to invite their active support. Having a dedicated facility with decades-long, extensive three-dimensional underground access was recognized as the most important single attribute of DUSEL. Many research initiatives were identified and more are expected as the broader community becomes aware of DUSEL. Working groups were organized to evaluate hydrology and coupled processes; geochemistry; rock mechanics/seismology; applications (e.g., homeland security, environment assessment, petroleum recovery, and carbon sequestration); geomicrobiology and

  16. Energy and labor cost of gasoline engine remanufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Venta, E.R.; Wolsky, A.M.

    1978-09-01

    This report presents a detailed estimate of the labor and energy, by fuel type, required by the U.S. economy to remanufacture gasoline-fueled automobile and truck engines. Th estimate was obtained by combining data provided by several remanufacturers with the results of input--output analysis. A rough estimate of the labor and energy required to manufacture new engines is also given. These estimates suggest that remanufactured engines require 50% of the energy and 67% of the labor that new engines require.

  17. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  18. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the Minority Science and Engineering... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement...

  19. Getting the engineering right is not always enough: Researching the human dimensions of the new energy technologies

    International Nuclear Information System (INIS)

    Webler, Thomas; Tuler, Seth P.

    2010-01-01

    Achieving the ambitious targets for carbon emissions reductions that are necessary to reduce the risks associated with climate change will require significant changes in the way people use energy. Redesigning energy technologies at a societal level is certainly a major scientific challenge, however, succeeding in this endeavor requires more than getting the engineering right. Technologies can fail to win public approval for a variety of reasons. Good social science research, coordinated properly with technological R and D, is an essential part of the solution. Social science research is needed to: clarify the behavioral changes that can reduce energy consumption; characterize public understandings and concerns of new energy technologies; help overcome barriers to public adoption; maximize the benefits for users; and better understand society's needs and abilities to make energy transitions. We argue that social science research into the human dimensions of new energy technologies be promoted and overseen by a new office of social science research to be established in the United States Department of Energy. The funding levels needed for these endeavors are a tiny fraction of the amount that was allocated to carbon sequestration research in the 2009 stimulus bill.

  20. Science Activities in Energy: Electrical Energy.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 16 activities relating to electrical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined in a single card which is introduced by a question. A teacher's…

  1. Bringing Real World Underwater Science, Engineering and Technology in Tomorrow's Classroom

    Science.gov (United States)

    Livingston, C.

    2012-04-01

    What do Remotely Operated Vehicles (ROVs), Ocean Science, Engineering and Technology have in common with science education in today's classroom? They all meet the growing demand for science, technology, engineering, and mathematics (STEM) professionals in tomorrow's U.S. workforce. Engaging students in real world science experiences will help them develop skills such as critical thinking, problem solving, collaboration, communication, innovation, and creativity. These skills are crucial to building a strong, competitive workforce in an integrated global economy. Fifth grade students from St. Andrew's School of Math and Science in Charleston, SC, USA science classes were introduced to engineering and robotics by using a combination of two underwater ROVs programs from the Office of Naval Research (SeaPerch) and Marine Advanced Technology Education (MATE). Students were grouped in teams as "real scientists" to design and construct a ROV. Students selected their role from a list of engineering positions, and researched how to construct the best ROV. Students created blueprints and models of their ROV design. Scientists/engineers from various local agencies were scheduled to come and share their expertise with the students. On World Ocean Day, a presentation was planned for fifth grade students to work closely with kindergarten through fourth grade students. The purpose of the day was two-fold; it provided students the opportunity to peer teach and the opportunity to present their experiences to a wide audience. All students presented their designs and demonstrated their ROV's movement capabilities in child size pools. They also modeled how submersible pilots communicate with scientists and other researchers while operating their newly designed ROV. As a culminating event, students visited a local marine science high school class with similar ROVs and evaluated their engineering designs in a fresh water pond.

  2. The Humanistic Side of Engineering: Considering Social Science and Humanities Dimensions of Engineering in Education and Research

    Science.gov (United States)

    Hynes, Morgan; Swenson, Jessica

    2013-01-01

    Mathematics and science knowledge/skills are most commonly associated with engineering's pre-requisite knowledge. Our goals in this paper are to argue for a more systematic inclusion of social science and humanities knowledge in the introduction of engineering to K-12 students. As part of this argument, we present a construct for framing the…

  3. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy: 3, Energy, Engines, and the Industrial Revolution, Grades 8, 9.

    Science.gov (United States)

    Childs, Barbara; And Others

    This instructional unit for grades 8-9 combines science and social studies in a look at the broad social and economic upheavals that took place during the industrial revolution, giving special emphasis to the role of energy. The invention and development of the steam engine is highlighted in one lesson. Other lessons show how the industrial…

  4. Annual report of the Science and Engineering Research Council 1992-1993

    International Nuclear Information System (INIS)

    1993-01-01

    Details of expenditure and reports of the activities of the four Boards which operate as the Science and Engineering Research Council are given. These are the Astronomical and Planetry Science Board, the Engineering Board, the Nuclear Physics Board and the Science Board. There is also a report on the optical physics and optoelectronic research supported by the Council. Committee membership, studentship, fellowships research grants and administration details are reported. (UK)

  5. 77 FR 56681 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Science.gov (United States)

    2012-09-13

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology...: Notice of webinar. SUMMARY: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  6. Bio-based targeted chemical engineering education : Role and impact of bio-based energy and resourcedevelopment projects

    NARCIS (Netherlands)

    N.M. Márquez Luzardoa; Dr. ir. Jan Venselaar

    2012-01-01

    Avans University of Applied Sciences is redrafting its courses and curricula in view of sustainability. For chemical engineering in particular that implies a focus on 'green' and bio-based processes, products and energy. Avans is situated in the Southwest region of the Netherlands and specifically

  7. Supporting indigenous women in science, technology, engineering ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Supporting indigenous women in science, technology, engineering and mathematics careers in Mexico and Central ... ROSSA's latest bulletin puts a focus on women. ... IDRC invites applications for the IDRC Doctoral Research Awards.

  8. 77 FR 5246 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2012-02-02

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy...

  9. 78 FR 2259 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-01-10

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770... Energy Sciences; U.S. Department of Energy; 1000 Independence Avenue SW.; Washington, DC 20585-1290...

  10. The Association between Science Summer Camps and Career Interest in Science and Engineering

    Science.gov (United States)

    Kong, Xiaoqing; Dabney, Katherine P.; Tai, Robert H.

    2014-01-01

    This study addresses the association between middle-school students' reported participation in science summer programmes and their reported expectation of a career in science and engineering. Data were collected on 1,580 students from eight middle schools in five states, applying an accelerated longitudinal design. Two consecutive cohorts were…

  11. A study of the historical role of African Americans in science, engineering and technology

    Science.gov (United States)

    Jones, Keith Wayne

    2000-11-01

    The purpose of this study was to determine if there is adequate documentation of an historical role of African and African American involvement in science, engineering, and technology. Through the use of history of science and technology research methodology, along with an examination of the sociological and economic impacts of adequately accredited innovations and inventions contributed by Africans and African Americans, the researcher investigated their contributions to the following areas of science and technology: life science, physical sciences and chemistry, engineering, and science education. In regard to the timeframe for this study, the researcher specifically investigated African and African American involvement in science and technology that includes periods prior to black enslavement, scientific racism and colonialism, as well as during and after those periods. This research study reveals that there are adequate historical data regarding African and African American contributions to science, engineering, and technology. The data reveals that for many millennia African peoples have been continually involved in science and world science histories. The data further show that the numbers of African Americans acquiring BS, MS, Ph.D., Doctor of Science and Doctor of Engineering degrees in science and engineering disciplines are increasing. That these increases are not happening at a rate representative of the present or future African American percentages of the population. Consequently, because of future changes in our nation's demographics, increasing the numbers of people from under-represented groups who pursue scientific and engineering professions has become a matter of national security at the highest levels of government. Moreover, African Americans, Hispanics, and Native Americans are not pursuing careers or taking courses in science and engineering at a rate high enough to fulfill the prospective needs for the United States' industries, government

  12. 76 FR 48147 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-08-08

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY... that the Basic Energy Sciences Advisory Committee will be renewed for a two-year period beginning July...

  13. 78 FR 6088 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-01-29

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine, Office of Basic Energy Sciences, U.S. Department of Energy; SC-22...

  14. The LAILAPS Search Engine: Relevance Ranking in Life Science Databases

    Directory of Open Access Journals (Sweden)

    Lange Matthias

    2010-06-01

    Full Text Available Search engines and retrieval systems are popular tools at a life science desktop. The manual inspection of hundreds of database entries, that reflect a life science concept or fact, is a time intensive daily work. Hereby, not the number of query results matters, but the relevance does. In this paper, we present the LAILAPS search engine for life science databases. The concept is to combine a novel feature model for relevance ranking, a machine learning approach to model user relevance profiles, ranking improvement by user feedback tracking and an intuitive and slim web user interface, that estimates relevance rank by tracking user interactions. Queries are formulated as simple keyword lists and will be expanded by synonyms. Supporting a flexible text index and a simple data import format, LAILAPS can easily be used both as search engine for comprehensive integrated life science databases and for small in-house project databases.

  15. Offshore Wind Energy Systems Engineering Curriculum Development

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Jon G. [Univ. of Massachusetts, Amherst, MA (United States); Manwell, James F. [Univ. of Massachusetts, Amherst, MA (United States); Lackner, Matthew A. [Univ. of Massachusetts, Amherst, MA (United States)

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This course was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.

  16. Women in science & engineering scholarships and summer camp outreach programs : year 6.

    Science.gov (United States)

    2012-08-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  17. A Spacelab Expert System for Remote Engineering and Science

    Science.gov (United States)

    Groleau, Nick; Colombano, Silvano; Friedland, Peter (Technical Monitor)

    1994-01-01

    NASA's space science program is based on strictly pre-planned activities. This approach does not always result in the best science. We describe an existing computer system that enables space science to be conducted in a more reactive manner through advanced automation techniques that have recently been used in SLS-2 October 1993 space shuttle flight. Advanced computing techniques, usually developed in the field of Artificial Intelligence, allow large portions of the scientific investigator's knowledge to be "packaged" in a portable computer to present advice to the astronaut operator. We strongly believe that this technology has wide applicability to other forms of remote science/engineering. In this brief article, we present the technology of remote science/engineering assistance as implemented for the SLS-2 space shuttle flight. We begin with a logical overview of the system (paying particular attention to the implementation details relevant to the use of the embedded knowledge for system reasoning), then describe its use and success in space, and conclude with ideas about possible earth uses of the technology in the life and medical sciences.

  18. Sandia and General Motors: Advancing Clean Combustion Engines with

    Science.gov (United States)

    , storage, and disposal. Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy Safety Components and Systems Improving battery performance, economics, and safety for transportation. Batteries Sciences and Engineering Chemical Sciences Geosciences Fusion Energy Sciences Advanced Scientific Computing

  19. 75 FR 41838 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2010-07-19

    ... Basic Energy Sciences Computational Materials Science and Chemistry for Innovation Workshop Final Report... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic...

  20. Proceedings of the international symposium for research scholars on metallurgy, materials science and engineering

    International Nuclear Information System (INIS)

    2010-01-01

    Topics covered in this symposium are: steels, functional materials posters, computational materials science, casting and solidification, polymer matrix composites, posters electronic materials, environmental degradation processing of non-metallic materials posters, energy materials, materials forming technology, biomaterials, magnetic materials, mechanical behaviour of materials posters, phase transformations and physical metallurgy, surface engineering, nanostructured materials, ceramics, processing of metals, materials joining technology and optical materials. Papers relevant to INIS are indexed separately

  1. Optimization in science and engineering in honor of the 60th birthday of Panos M. Pardalos

    CERN Document Server

    Floudas, Christodoulos; Butenko, Sergiy

    2014-01-01

    Optimization in Science and Engineering is dedicated in honor of the 60th birthday of Distinguished Professor Panos M. Pardalos. Pardalos’s past and ongoing work has made a significant impact on several theoretical and applied areas in modern optimization. As tribute to the diversity of Dr. Pardalos’s work in Optimization, this book comprises a collection of contributions from experts in various fields of this rich and diverse area of science. Topics highlight recent developments and include: Deterministic global optimization Variational inequalities and equilibrium problems Approximation and complexity in numerical optimization Non-smooth optimization Statistical models and data mining Applications of optimization in medicine, energy systems, and complex network analysis This volume will be of great interest to graduate students, researchers, and practitioners, in the fields of optimization and engineering.

  2. SemMat: Federated Semantic Services Platform for Open materials Science and Engineering

    Science.gov (United States)

    2017-01-01

    SEMMAT: FEDERATED SEMANTIC SERVICES PLATFORM FOR OPEN MATERIALS SCIENCE AND ENGINEERING WRIGHT STATE UNIVERSITY JANUARY 2017 FINAL TECHNICAL...COVERED (From - To) JUL 2013 – JUN 2016 4. TITLE AND SUBTITLE SemMat: FEDERATED SEMANTIC SERVICES PLATFORM FOR OPEN MATERIALS SCIENCE AND ENGINEERING...models to represent materials data. This provides a data exchange scheme for materials science , which also includes provenance information to promote

  3. Construction informatics - Issues in engineering, computer science and ontology

    DEFF Research Database (Denmark)

    Eir, Asger

    2004-01-01

    and conceptual modelling of civil engineering and design. Due to the interdisciplinary content, the first half of the study has been carried out at Department of Civil Engineering (BYG"DTU), The Technical University of Denmark; whereas the second half has been carried out at Informatics and Mathematical....... With origin in civil engineering and design issues, the study was directed towards computer science oriented theories in an attempt to introduce such theories in modelling and clarification of the domain. This strategy turned out to be a strength for the study and this thesis. However, it also discovered some...... problems in carrying out such a truly interdisciplinary Ph.D. study. Per Galle s and Dines Bjørner's common background in computer science has been essential for the success of this study. The original title of the Ph.D. project was Design and application of a civil engineering ontology. However, it became...

  4. Improving Student Writing: Methods You Can Use in Science and Engineering Classrooms

    Science.gov (United States)

    Hitt, S. J.; Bright, K.

    2013-12-01

    Many educators in the fields of science and engineering assure their students that writing is an important and necessary part of their work. According to David Lindsay, in Scientific Writing=Thinking in Words, 99% of scientists agree that writing is an integral part of their jobs. However, only 5% of those same scientists have ever had formal instruction in scientific writing, and those who are also educators may then feel unconfident in teaching this skill to their students (2). Additionally, making time for writing instruction in courses that are already full of technical content can cause it to be hastily and/or peremptorily included. These situations may be some of the contributing factors to the prevailing attitude of frustration that pervades the conversation about writing in science and engineering classrooms. This presentation provides a summary of past, present, and ongoing Writing Center research on effective writing tutoring in order to give science and engineering educators integrated approaches for working with student writers in their disciplines. From creating assignments, providing instruction, guiding revisions, facilitating peer review, and using assessments, we offer a comprehensive approach to getting your students motivated to improve their writing. Our new research study focuses on developing student writing resources and support in science and engineering institutions, with the goal of utilizing cross-disciplinary knowledge that can be used by the various constituencies responsible for improving the effectiveness of writing among student engineers and scientists. We will will draw upon recent findings in the study of the rhetoric and compositional pedagogy and apply them to the specific needs of the science and engineering classroom. The fields of communication, journalism, social sciences, rhetoric, technical writing, and philosophy of science have begun to integrate these findings into classroom practice, and we will show how these can also

  5. A Science, Engineering and Technology (SET) Approach Improves Science Process Skills in 4-H Animal Science Participants

    Science.gov (United States)

    Clarke, Katie C.

    2010-01-01

    A new Science, Engineering and Technology (SET) approach was designed for youth who participated in the Minnesota State Fair Livestock interview process. The project and evaluation were designed to determine if the new SET approach increased content knowledge and science process skills in participants. Results revealed that youth participants not…

  6. Formalization of the engineering science discipline - knowledge engineering

    Science.gov (United States)

    Peng, Xiao

    Knowledge is the most precious ingredient facilitating aerospace engineering research and product development activities. Currently, the most common knowledge retention methods are paper-based documents, such as reports, books and journals. However, those media have innate weaknesses. For example, four generations of flying wing aircraft (Horten, Northrop XB-35/YB-49, Boeing BWB and many others) were mostly developed in isolation. The subsequent engineers were not aware of the previous developments, because these projects were documented such which prevented the next generation of engineers to benefit from the previous lessons learned. In this manner, inefficient knowledge retention methods have become a primary obstacle for knowledge transfer from the experienced to the next generation of engineers. In addition, the quality of knowledge itself is a vital criterion; thus, an accurate measure of the quality of 'knowledge' is required. Although qualitative knowledge evaluation criteria have been researched in other disciplines, such as the AAA criterion by Ernest Sosa stemming from the field of philosophy, a quantitative knowledge evaluation criterion needs to be developed which is capable to numerically determine the qualities of knowledge for aerospace engineering research and product development activities. To provide engineers with a high-quality knowledge management tool, the engineering science discipline Knowledge Engineering has been formalized to systematically address knowledge retention issues. This research undertaking formalizes Knowledge Engineering as follows: 1. Categorize knowledge according to its formats and representations for the first time, which serves as the foundation for the subsequent knowledge management function development. 2. Develop an efficiency evaluation criterion for knowledge management by analyzing the characteristics of both knowledge and the parties involved in the knowledge management processes. 3. Propose and develop an

  7. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-04-01

    The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid

  8. Imprinting Community College Computer Science Education with Software Engineering Principles

    Science.gov (United States)

    Hundley, Jacqueline Holliday

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and maintenance. We proposed that some software engineering principles can be incorporated into the introductory-level of the computer science curriculum. Our vision is to give community college students a broader exposure to the software development lifecycle. For those students who plan to transfer to a baccalaureate program subsequent to their community college education, our vision is to prepare them sufficiently to move seamlessly into mainstream computer science and software engineering degrees. For those students who plan to move from the community college to a programming career, our vision is to equip them with the foundational knowledge and skills required by the software industry. To accomplish our goals, we developed curriculum modules for teaching seven of the software engineering knowledge areas within current computer science introductory-level courses. Each module was designed to be self-supported with suggested learning objectives, teaching outline, software tool support, teaching activities, and other material to assist the instructor in using it.

  9. Supporting Scientific Research with the Energy Sciences Network

    CERN Multimedia

    CERN. Geneva; Monga, Inder

    2016-01-01

    The Energy Sciences Network (ESnet) is a high-performance, unclassified national network built to support scientific research. Funded by the U.S. Department of Energy’s Office of Science (SC) and managed by Lawrence Berkeley National Laboratory, ESnet provides services to more than 40 DOE research sites, including the entire National Laboratory system, its supercomputing facilities, and its major scientific instruments. ESnet also connects to 140 research and commercial networks, permitting DOE-funded scientists to productively collaborate with partners around the world. ESnet Division Director (Interim) Inder Monga and ESnet Networking Engineer David Mitchell will present current ESnet projects and research activities which help support the HEP community. ESnet  helps support the CERN community by providing 100Gbps trans-Atlantic network transport for the LHCONE and LHCOPN services. ESnet is also actively engaged in researching connectivity to cloud computing resources for HEP workflows a...

  10. A Vision for Systems Engineering Applied to Wind Energy (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Felker, F.; Dykes, K.

    2015-01-01

    This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

  11. An Engineering Innovation Tool: Providing Science Educators a Picture of Engineering in Their Classroom

    Science.gov (United States)

    Ross, Julia Myers; Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.

    2018-01-01

    An Engineering Innovation Tool was designed to support science teachers as they navigate the opportunities and challenges the inclusion of engineering affords by providing a useful tool to be used within the professional development environment and beyond. The purpose of this manuscript is to share the design, development and substance of the tool…

  12. The Use of Web Search Engines in Information Science Research.

    Science.gov (United States)

    Bar-Ilan, Judit

    2004-01-01

    Reviews the literature on the use of Web search engines in information science research, including: ways users interact with Web search engines; social aspects of searching; structure and dynamic nature of the Web; link analysis; other bibliometric applications; characterizing information on the Web; search engine evaluation and improvement; and…

  13. Archives: International Journal of Engineering, Science and ...

    African Journals Online (AJOL)

    Items 1 - 43 of 43 ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Archives: International Journal of Engineering, Science and Technology ... Vol 10, No 1 (2018) ... Vol 9, No 1 (2017) ... Vol 5, No 4 (2013) ... Current Issue Atom logo

  14. High energy density propulsion systems and small engine dynamometer

    Science.gov (United States)

    Hays, Thomas

    2009-07-01

    Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.

  15. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    Science.gov (United States)

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  16. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods

    NARCIS (Netherlands)

    Waltman, L.R.; Van, Raan A.F.J.; Smart, S.

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach

  17. 76 FR 61118 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Science.gov (United States)

    2011-10-03

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and... Computer and Information Science and Engineering (1115). Date and Time: November 1, 2011 from 12 p.m.-5:30... Computer and Information Science and Engineering, National Science Foundation, 4201 Wilson Blvd., Suite...

  18. Science meeting. Abstracts

    International Nuclear Information System (INIS)

    2000-01-01

    the document is a collection of the science meeting abstracts in the fields of nuclear physics, medical sciences, chemistry, agriculture, environment, engineering, material sciences different aspects of energy and presents research done in 2000 in these fields

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... SANKARASUBRAMANIAN1 BYUNGCHEOL LEE2. Center for Electrochemical Science and Engineering, Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago 60616, USA; Quantum Optics Laboratory, Korea Atomic Energy Research Institute, Yuseong-gu 305-353, South Korea ...

  20. 77 FR 13159 - Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology...

    Science.gov (United States)

    2012-03-05

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology... public meeting. SUMMARY: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  1. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students

    Science.gov (United States)

    Dubetz, Terry A.; Wilson, Jo Ann

    2013-01-01

    Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…

  2. Office of Research Support | College of Engineering & Applied Science

    Science.gov (United States)

    Professor and Associate Dean for Research College of Engineering and Applied Sciences Director, Center for Academics Admission Student Life Research Schools & Colleges Libraries Athletics Centers & ; Applied Science Powerful Ideas. Proven Results. Search for: Go This site All UWM Search Site Menu Skip to

  3. An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool.

    Science.gov (United States)

    Boon, Mieke

    2017-10-01

    In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in particular in systems biology and synthetic biology. This article aims at the articulation of the supposed engineering paradigm by contrast with the physics paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of a disciplinary matrix, which indicates what constitutes a paradigm. It is argued that the core of the physics paradigm is its metaphysical and ontological presuppositions, whereas the core of the engineering paradigm is the epistemic aim of producing useful knowledge for solving problems external to the scientific practice. Therefore, the two paradigms involve distinct notions of knowledge. Whereas the physics paradigm entails a representational notion of knowledge, the engineering paradigm involves the notion of 'knowledge as epistemic tool'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Participatory modeling - engineering and social sciences in tandem

    Science.gov (United States)

    Class, Holger; Kissinger, Alexander; Knopf, Stefan; Konrad, Wilfried; Noack, Vera; Scheer, Dirk

    2017-04-01

    The modeling of flow and transport processes in the context of engineering in the subsurface often takes place within a field of conflict from different interests, where societal issues are touched or involved. Carbon Capture and Storage, Fracking, or nuclear waste disposal are just a few prominent examples, where engineering (or: natural sciences) and social sciences have a common field of research. It is only consequent for both disciplines to explore methods and tools to achieve best possible mutual benefits. Participatory modeling (PM) is such an idea, where so-called stakeholders can be involved during different phases of the modeling process. This can be accomplished by very different methods of participation and for different reasons (public acceptance, public awareness, transparency, improved understanding through collective learning, etc). Therefore, PM is a generic approach, open for different methods to be used in order to facilitate early expert and stakeholder integration in science development. We have used PM recently in two examples, both in the context of Carbon Capture and Storage. The first one addressed the development and evaluation (by stakeholders) of a screening criterion for site selection. The second one deals with a regional-scale brine migration scenario where stakeholders have been involved in evaluating the general importance of brine migration, the design of a representative geological model for a case study and in the definition of scenarios to be simulated. This contribution aims at summarizing our experiences and share it with the modeling community. References: A Kissinger, V Noack, S Knopf, D Scheer, W Konrad, H Class Characterization of reservoir conditions for CO2 storage using a dimensionless gravitational number applied to the North German Basin, Sustainable Energy Technologies and Assessments 7, 209-220, 2014 D Scheer, W Konrad, H Class, A Kissinger, S Knopf, V Noack Expert involvement in science development: (re

  5. Energy and Resource Recovery from Sludge. State of Science Report

    Energy Technology Data Exchange (ETDEWEB)

    Kalogo, Y; Monteith, H [Hydromantis Inc., Hamilton, ON (Canada)

    2008-07-01

    There is general consensus among sanitary engineering professionals that municipal wastewater and wastewater sludge is not a 'waste', but a potential source of valuable resources. The subject is a major interest to the members of the Global Water Research Coalition (GWRC). The GWRC is therefore preparing a strategic research plan related to energy and resource recovery from wastewater sludge. The initial focus of the strategy will be on sewage sludge as water reuse aspects have been part of earlier studies. The plan will define new research orientations for deeper investigation. The current state of science (SoS) Report was prepared as the preliminary phase of GWRC's future strategic research plan on energy and resource recovery from sludge.

  6. Workshop on materials science and the physics of non-conventional energy sources

    International Nuclear Information System (INIS)

    Furlan, G.; Nobili, D.; Sayigh, A.M.; Seraphin, B.O.

    1989-01-01

    The non-conventional energy activities started in 1974, on the island of Procida, Italy. About 50 leading physicists and engineers got together for two weeks in September to discuss the states of the art and consult with each other about various devices and ways of energy conversion. The esteemed Nobel Prize Laureate, Professor Abdus Salam, accepted to have the first meeting on non-conventional energy at the ICTP, Trieste, in September 1977. In 1987, the meeting was once again back in Trieste, Italy. Also, during the even years since 1978 until 1986, meetings were held in Trieste in the French language. The results of the last 10 years at ICTP are very clear to all fellow scientist and engineers. Some 150 applicants are chosen every year. The workshop is being graded gradually to emphasize the high technology and up-to-date achievements in the field. A good proportion of the physicists who were with us from the beginning are now top experts in the field and in charge of existing programmes in their own countries. The present programme emphasized the following topics: Material Science; Solar Energy Conversion with concentration on Photovoltaic Conversion; and Energy Storage. Refs, figs and tabs

  7. From Science to Business: Preparing Female Scientists and Engineers for Successful Transitions into Entrepreneurship--Summary of a Workshop

    Science.gov (United States)

    Didion, Catherine Jay; Guenther, Rita S.; Gunderson, Victoria

    2012-01-01

    Scientists, engineers, and medical professionals play a vital role in building the 21st- century science and technology enterprises that will create solutions and jobs critical to solving the large, complex, and interdisciplinary problems faced by society: problems in energy, sustainability, the environment, water, food, disease, and healthcare.…

  8. Resource Review: Why So Few? Women in Science, Technology, Engineering, and Mathematics

    OpenAIRE

    Patricia A. Dawson

    2014-01-01

    “Why So Few? Women in Science, Technology, Engineering and Mathematics” (Hill, C., Corbett, C., Rose, A., 2010) reports on an extensive study of women’s underrepresentation in science, technology, engineering, and mathematics professions. Funded by the National Science Foundation, the project was conducted by American Association of University Women. The resource includes findings from eight research studies which examined social and environmental factors which contribute to women’s underrepr...

  9. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 7, No 3 (2015) >. Log in or Register to get access to full text downloads.

  10. Retraction | Editor | International Journal of Engineering, Science ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 8, No 4 (2016) >. Log in or Register to get access to full text downloads.

  11. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 11 (2010) >. Log in or Register to get access to full text downloads.

  12. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 8, No 3 (2016) >. Log in or Register to get access to full text downloads.

  13. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3, No 3 (2011) >. Log in or Register to get access to full text downloads.

  14. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 2 (2010) >. Log in or Register to get access to full text downloads.

  15. 78 FR 47677 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-08-06

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... hereby given that the Basic Energy Sciences Advisory Committee's (BESAC) charter will be renewed for a two-year period. The Committee will provide advice and recommendations to the Office of Science on the...

  16. A proposal to establish an international network in molecular microbiology and genetic engineering for scientific cooperation and prevention of misuse of biological sciences in the framework of science for peace

    International Nuclear Information System (INIS)

    Becker, Y.

    1998-01-01

    The conference on 'Science and Technology for Construction of Peace' which was organized by the Landau Network Coordination Center and A. Volta Center for Scientific Culture dealt with conversion of military and technological capacities into sustainable civilian application. The ideas regarding the conversion of nuclear warheads into nuclear energy for civilian-use led to the idea that the extension of this trend of thought to molecular biology and genetic engineering, will be a useful contribution to Science for Peace. This idea of developing a Cooperation Network in Molecular Biology and Genetic Engineering that will function parallel to and with the Landau Network Coordination in the 'A. Volta' Center was discussed in the Second International Symposium on Science for Peace, Jerusalem, January 1997. It is the reason for the inclusion of the biological aspects in the deliberations of our Forum. It is hoped that the establishment of an international network in molecular biology and genetic engineering, similar to the Landau Network in physics, will support and achieve the decommissioning of biological weapons. Such a network in microbiology and genetic engineering will contribute to the elimination of biological weapons and to contributions to Science for Peace and to Culture of Peace activities of UNESCO. (author)

  17. Second-career science teachers' classroom conceptions of science and engineering practices examined through the lens of their professional histories

    Science.gov (United States)

    Antink-Meyer, Allison; Brown, Ryan A.

    2017-07-01

    Science standards in the U.S. have shifted to emphasise science and engineering process skills (i.e. specific practices within inquiry) to a greater extent than previous standards' emphases on broad representations of inquiry. This study examined the alignment between second-career science teachers' personal histories with the latter and examined the extent to which they viewed that history as a factor in their teaching. Four, second-career science teachers with professional backgrounds in engineering, environmental, industrial, and research and development careers participated. Through the examination of participants' methodological and contextual histories in science and engineering, little evidence of conflict with teaching was found. They generally exemplified the agency and motivation of a second-career teacher-scientist that has been found elsewhere [Gilbert, A. (2011). There and back again: Exploring teacher attrition and mobility with two transitioning science teachers. Journal of Science Teacher Education, 22(5), 393-415; Grier, J. M., & Johnston, C. C. (2009). An inquiry into the development of teacher identities in STEM career changers. Journal of Science Teacher Education, 20(1), 57-75]. The methodological and pedagogical perspectives of participants are explored and a discussion of the implications of findings for science teacher education are presented.

  18. 78 FR 15937 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-03-13

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The Federal Advisory Committee Act requires that public notice of...

  19. 78 FR 32475 - Committee on Equal Opportunities in Science and Engineering; Notice of Meeting

    Science.gov (United States)

    2013-05-30

    ... participation in science and engineering. Agenda: Opening Statement by the CEOSE Chair [[Page 32476... Broader Impacts NCSES Report, Women, Minorities and Persons with Disabilities in Science and Engineering... Director of the National Science Foundation Discussion of CEOSE Unfinished Business and New Business Dated...

  20. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    International Nuclear Information System (INIS)

    Sanders, Y.D.; Freeman, Y.B.; George, M.C.

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements)

  1. 75 FR 6369 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2010-02-09

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  2. 75 FR 8685 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2010-02-25

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...

  3. 76 FR 41234 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  4. 78 FR 38696 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-06-27

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat...

  5. 77 FR 41395 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2012-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  6. 76 FR 8358 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-02-14

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  7. 76 FR 40714 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-07-11

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...

  8. Biomimetics: forecasting the future of science, engineering, and medicine

    Directory of Open Access Journals (Sweden)

    Hwang J

    2015-09-01

    Full Text Available Jangsun Hwang,1 Yoon Jeong,1,2 Jeong Min Park,3 Kwan Hong Lee,1,2,4 Jong Wook Hong,1,2 Jonghoon Choi1,2 1Department of Bionano Technology, Graduate School, Hanyang University, Seoul, 2Department of Bionano Engineering, Hanyang University ERICA, Ansan, Korea; 3Department of Biomedical Engineering, Boston University, 4OpenView Venture Partners, Boston, MA, USA Abstract: Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark’s skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations. Keywords: biomimicry, tissue engineering, biomaterials, nature, nanotechnology, nanomedicine

  9. Science Activities in Energy: Wind Energy.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 12 activities related to wind energy for elementary students. Each activity is outlined on a single card and is introduced by a question. Topics include: (1) At what time of day is there enough wind to make electricity where you live?; (2) Where is the windiest spot on your schoolground?; and…

  10. The art of insight in science and engineering mastering complexity

    CERN Document Server

    Mahajan, Sanjoy

    2014-01-01

    In this book, Sanjoy Mahajan shows us that the way to master complexity is through insight rather than precision. Precision can overwhelm us with information, whereas insight connects seemingly disparate pieces of information into a simple picture. Unlike computers, humans depend on insight. Based on the author's fifteen years of teaching at MIT, Cambridge University, and Olin College, The Art of Insight in Science and Engineering shows us how to build insight and find understanding, giving readers tools to help them solve any problem in science and engineering. To master complexity, we can organize it or discard it. The Art of Insight in Science and Engineering first teaches the tools for organizing complexity, then distinguishes the two paths for discarding complexity: with and without loss of information. Questions and problems throughout the text help readers master and apply these groups of tools. Armed with this three-part toolchest, and without complicated mathematics, readers can estimate the flight ...

  11. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The journal covers all branches of engineering science and technology including mechanics (fluid, solid, thermal), computer science, electronics, energy, ... either because the work is fundamental or because it reflects the best in current technology; also on summaries of special projects of interest to engineering scientists.

  12. Learning Styles of Mexican Food Science and Engineering Students

    Science.gov (United States)

    Palou, Enrique

    2006-01-01

    People have different learning styles that are reflected in different academic strengths, weaknesses, skills, and interests. Given the almost unlimited variety of job descriptions within food science and engineering, it is safe to say that students with every possible learning style have the potential to succeed as food scientists and engineers.…

  13. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    In a joint effort with the Argonne National Laboratory - West (ANL-W), the Idaho National Engineering and Environmental Laboratory (INEEL) has assumed the lead role for nuclear energy reactor research for the United States Government. In 2005, these two laboratories will be combined into one entity, the Idaho National Laboratory (INL). There are two objectives for the INL: (1) to act as the lead systems integrator for the Department of Energy's Office of Nuclear Energy Science and Technology and, (2) to establish a Center for Advanced Energy Studies. Focusing on the Center for Advanced Energy Studies, this paper presents a Human Resources Pipeline Model outlining a nuclear educational pathway that leads to university and industry research partnerships. The pathway progresses from education to employment and into retirement. Key to the model is research and mentoring and their impact upon each stage. The Center's success will be the result of effective and advanced communications, faculty/student involvement, industry support, inclusive broadbased involvement, effective long-term partnering, and increased federal and state support. (author)

  14. Key Science and Engineering Indicators: 2010 Digest. NSB 10-02

    Science.gov (United States)

    Roesel, Cheryl, Ed.

    2010-01-01

    The National Science Board (Board) is required under the National Science Foundation (NSF) Act, 42 U.S.C. (United States Code) Section 1863 (j) (1) to prepare and transmit the biennial "Science and Engineering Indicators" ("SEI") report to the President and to the Congress by January 15 of every even-numbered year. The report…

  15. Applying Systems Engineering on Energy Challenges

    NARCIS (Netherlands)

    Safi, J.; Muller, G.; Bonnema, Gerrit Maarten

    2012-01-01

    Systems engineering is a discipline with methods and techniques to address complex problems. We want to study how Systems Engineering methods can help to address today's grand challenges, such as the energy problem. The first step is problem definition which aims at articulating the problem in its

  16. Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science

    Science.gov (United States)

    Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)

    2001-01-01

    Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are

  17. Teaching contextual knowledge in engineering education – Theory of Engineering Science and the Core Curriculum at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Brodersen, Søsser

    2011-01-01

    practice. Consequently courses added into engineering curricula emphasizing contextual issues stay in stark contrast to the dominant instrumental disciplines of mathematics and techno-science content of core engineering courses. Based on several years of teaching and experimenting with Theory of Science...

  18. 2nd International Colloquium on Sports Science, Exercise, Engineering and Technology 2015

    CERN Document Server

    Sulaiman, Norasrudin; Adnan, Rahmat

    2016-01-01

    The proceeding is a collection of research papers presented at the 2nd International Colloquium on Sports Science, Exercise, Engineering and Technology (ICoSSEET2015), a conference dedicated to address the challenges in the areas of sports science, exercise, sports engineering and technology including other areas of sports, thereby presenting a consolidated view to the interested researchers in the aforesaid fields. The goal of this conference was to bring together researchers and practitioners from academia and industry to focus on the scope of the conference and establishing new collaborations in these areas. The topics of interest are in mainly (1) Sports and Exercise Science (2) Sports Engineering and Technology Application (3) Sports Industry and Management.

  19. Energy and Resource Recovery from Sludge. State of Science Report

    Energy Technology Data Exchange (ETDEWEB)

    Kalogo, Y.; Monteith, H. [Hydromantis Inc., Hamilton, ON (Canada)

    2008-07-01

    There is general consensus among sanitary engineering professionals that municipal wastewater and wastewater sludge is not a 'waste', but a potential source of valuable resources. The subject is a major interest to the members of the Global Water Research Coalition (GWRC). The GWRC is therefore preparing a strategic research plan related to energy and resource recovery from wastewater sludge. The initial focus of the strategy will be on sewage sludge as water reuse aspects have been part of earlier studies. The plan will define new research orientations for deeper investigation. The current state of science (SoS) Report was prepared as the preliminary phase of GWRC's future strategic research plan on energy and resource recovery from sludge.

  20. Why So Few? Women in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Hill, Catherine; Corbett, Christianne; St. Rose, Andresse

    2010-01-01

    The number of women in science and engineering is growing, yet men continue to outnumber women, especially at the upper levels of these professions. In elementary, middle, and high school, girls and boys take math and science courses in roughly equal numbers, and about as many girls as boys leave high school prepared to pursue science and…

  1. Taxonomy for science and engineering indicators: a reassessment

    OpenAIRE

    Mary Kathleen Feeney; Barry Bozeman

    2005-01-01

    Science policy researchers and scientists themselves know reflexively that differences among scientific fields matter. However, sets of government-sponsored science and engineering (S&E) indicators are quite general and in most instances do not report differences among fields. We evaluate the current limitations of S&E indicators, identifying particular data needs about scientific fields. We suggest developing a disaggregated, flexible S&E classification. We argue that disaggregating S&E indi...

  2. Report of the Science and Engineering Research Council, 1 April 1993 - 31 March 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This final Annual Report of the Science and Engineering Research Council (SERC) covers the work of the organization for 1993-1994 and explains the structures and missions of the organizations which replace it. SERC funds and supports United Kingdom research programs covering many aspects of science and engineering. Its work will be split between the new Engineering and Physical Sciences Research Council, the Particle Physics and Astronomy Research Council, the Biotechnology and Biological Sciences Research Council and the Natural Environment Research Council. Research achievements and training initiatives are reported for each of SERC's current Boards. (UK)

  3. Annual report of R and D activities in center for promotion of computational science and engineering from April 1, 2004 to March 31, 2005

    International Nuclear Information System (INIS)

    2005-09-01

    This report provides an overview of research and development activities in Center for Promotion of Computational Science and Engineering (CCSE), JAERI, in the fiscal year 2004 (April 1, 2004 - March 31, 2005). The activities have been performed by Research Group for Computational Science in Atomic Energy, Research Group for Computational Material Science in Atomic Energy, R and D Group for Computer Science, R and D Group for Numerical Experiments, and Quantum Bioinformatics Group in CCSE. The ITBL (Information Technology Based Laboratory) project is performed mainly by the R and D Group for Computer Science and the Research Group for Computational Science in Atomic Energy. According to the mid-term evaluation for the ITBL project conducted by the MEXT, the achievement of the ITBL infrastructure software developed by JAERI has been remarked as outstanding at the 13th Information Science and Technology Committee in the Subdivision on R and D Planning and Evaluation of the Council for Science and Technology on April 26th, 2004. (author)

  4. Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society

    Science.gov (United States)

    Akimoto, Katsuhiro; Suzuki, Yoshikazu; Monirul Islam, Muhammad

    2015-04-01

    This volume of the Journal of Physics: Conference Series contains papers presented at the Tunisia-Japan Symposium: R&D of Energy and Material Sciences for Sustainable Society (TJS 2014) held at Gammarth, Republic of Tunisia on November 28-30, 2014. The TJS 2014 is based on the network of the Tunisia-Japan Symposium on Science, Society and Technology (TJASSST) which has been regularly organized since 2000. The symposium was focused on the technological developments of energy and materials for the realization of sustainable society. To generate technological breakthrough and innovation, it seems to be effective to discuss with various fields of researchers such as solid-state physicists, chemists, surface scientists, process engineers and so on. In this symposium, there were as many as 109 attendees from a wide variety of research fields. The technical session consisted of 106 contributed presentations including 3 plenary talks and 7 key-note talks. We hope the Conference Series and publications like this volume will contribute to the progress in research and development in the field of energy and material sciences for sustainable society and in its turn contribute to the creation of cultural life and peaceful society.

  5. High Performance Computing in Science and Engineering '14

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2015-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS). The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and   engineers. The book comes with a wealth of color illustrations and tables of results.  

  6. Numerical modeling in materials science and engineering

    CERN Document Server

    Rappaz, Michel; Deville, Michel

    2003-01-01

    This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.

  7. Nanoscale control of energy and matter: challenges and opportunities for plasma science

    International Nuclear Information System (INIS)

    Ostrikov, Kostya

    2013-01-01

    Multidisciplinary challenges and opportunities in the ultimate ability to achieve nanoscale control of energy and matter are discussed using an example of the Plasma Nanoscience. This is an emerging multidisciplinary research field at the cutting edge of a large number of disciplines including but not limited to physics and chemistry of plasmas and gas discharges, materials science, surface science, nanoscience and nanotechnology, solid state physics, space physics and astrophysics, photonics, optics, plasmonics, spintronics, quantum information, physical chemistry, biomedical sciences and related engineering subjects. The origin, progress and future perspectives of this research field driven by the global scientific and societal challenges, is examined. The future potential of the Plasma Nanoscience to remain as a highly topical area in the global research and technological agenda in the Age of Fundamental-Level Control for a Sustainable Future is assessed using a framework of the five Grand Challenges for Basic Energy Sciences recently mapped by the US Department of Energy. It is concluded that the ongoing research is very relevant and is expected to substantially expand to competitively contribute to the solution of all of these Grand Challenges. The approach to control energy and matter at nano- and subnanoscales is based on identifying the prevailing carriers and transfer mechanisms of the energy and matter at the spatial and temporal scales that are most relevant to any particular nanofabrication process. Strong accent is made on the competitive edge of the plasma-based nanotechnology in applications related to the major socio-economic issues (energy, food, water, health and environment) that are crucial for a sustainable development of humankind. Several important emerging topics, opportunities and multidisciplinary synergies for the Plasma Nanoscience are highlighted. The main nanosafety issues are also discussed and the environment- and human health

  8. Knowledge and Technology Transfer in Materials Science and Engineering in Europe

    OpenAIRE

    Bressler, Patrick; Dürig, Urs; González-Elipe, Agustin; Quandt, Eckhard; Ritschkoff, Anne-Christine; Vahlas, Constantin

    2015-01-01

    Advanced Materials is one of the Key Enabling 3 Technologies identified by the European Commission1. Together with Advanced Manufacturing it underpins almost all other Key Enabling and Industrial Technologies. The basic science and engineering research that results in the development of Advanced Materials lies within the field of Materials Science and Engineering (MSE). The transfer of knowledge from basic research into final products and applications in the field of MSE involves certain MSE-...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Harnessing renewable solar energy through different technologies is greatly dependent on the advancement of solar grade materials' science and engineering. In this article, the prominent solar energy technologies, namely solarphotovoltaic and concentrated solar power and other relevant technologies, and aspects ...

  10. A practical example of implementing TQM within a science and engineering company

    International Nuclear Information System (INIS)

    Taylor, L.G.; Hickey, W.J.

    1992-01-01

    EG and G Energy Measurements is committed to being the best and most productive management and operating contractor in the Department of Energy (DOE) complex. The company provides instrumentation for underground testing at the Nevada Test Site and do engineering and research and development for the Department of Energy, Lawrence Livermore, Los Alamos, and Sandia National Laboratories. The also conducts aerial surveys nation-wide to monitor radiation and other impacts on the environment. In 1986, EG and G, along with all the other defense contractors, entered the era of declining budgets, known to some as the era of Gramm-Rudman, and to others as the simple and obvious need to reduce the federal deficit in order to save our national economy. In order to meet this challenge, EG and G Energy Measurements, Inc. has chosen a two-pronged approach to implementing Total Quality Management (TQM): management initiatives and employee initiatives. This presentation presents a practical example of how a TQM system is being implemented in a science, engineering, and research and development culture. The TQM concept is discussed as it pertains to the DOE/contractor relationship. Emphasis is given to the quality improvement process as it relates to quality control and quality assurance. Special emphasis is given in the areas of definitions, philosophies of experts, cultural challenges, creation of an infrastructure, resistance to change, quality improvement teams, cost of quality, DOE Orders, customer interface, and recognition issues

  11. Laser fusion and high energy density science

    International Nuclear Information System (INIS)

    Kodama, Ryosuke

    2005-01-01

    High-power laser technology is now opening a variety of new fields of science and technology using laser-produced plasmas. The laser plasma is now recognized as one of the important tools for the investigation and application of matter under extreme conditions, which is called high energy density science. This chapter shows a variety of applications of laser-produced plasmas as high energy density science. One of the more attractive industrial and science applications is the generation of intense pulse-radiation sources, such as the generation of electro-magnetic waves in the ranges of EUV (Extreme Ultra Violet) to gamma rays and laser acceleration of charged particles. The laser plasma is used as an energy converter in this regime. The fundamental science applications of high energy density physics are shown by introducing laboratory astrophysics, the equation of state of high pressure matter, including warm dense matter and nuclear science. Other applications are also presented, such as femto-second laser propulsion and light guiding. Finally, a new systematization is proposed to explore the possibility of the high energy density plasma application, which is called high energy plasma photonics''. This is also exploration of the boundary regions between laser technology and beam optics based on plasma physics. (author)

  12. Global Conference on Applied Computing in Science and Engineering

    CERN Document Server

    2016-01-01

    The Global Conference on Applied Computing in Science and Engineering is organized by academics and researchers belonging to different scientific areas of the C3i/Polytechnic Institute of Portalegre (Portugal) and the University of Extremadura (Spain) with the technical support of ScienceKnow Conferences. The event has the objective of creating an international forum for academics, researchers and scientists from worldwide to discuss worldwide results and proposals regarding to the soundest issues related to Applied Computing in Science and Engineering. This event will include the participation of renowned keynote speakers, oral presentations, posters sessions and technical conferences related to the topics dealt with in the Scientific Program as well as an attractive social and cultural program. The papers will be published in the Proceedings e-books. The proceedings of the conference will be sent to possible indexing on Thomson Reuters (selective by Thomson Reuters, not all-inclusive) and Google Scholar...

  13. Infrastructure Development of the Science and Engineering Alliance (IDSEA). Annual report, 1995--1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This document is intended to serve two purposes: (1) a program status report on the progress the Science and Engineering Alliance (SEA) made since receiving initial Department of Energy (DOE) support for infrastructure development; and (2) a summary report of the activities administered by the SEA compiled in a single document under the auspices of the SEA Program. In 1995, a universal resource locator (URL) on the World Wide Web (WWW) was established for easy access to pertinent information about the SEA Program. The information pointed to by the URL is updated periodically, and the interested reader is urged to access the WWW for more information. The SEA is a university-government-industry partnership that seeks ways to enhance the research and teaching capability of its members. The SEA program continues to evolve into a very successful interdisciplinary program. It is a model inter-HBCU collaboration, and an excellent example of how cooperation between universities and a national laboratory can capitalize on their individual strengths to expand research opportunities for minority students and researchers. The members are committed to developing collaborative research programs, enhance teaching techniques, and modify science and engineering curriculum to improve student training.

  14. Science and Engineering Indicators: Digest 2012. NSB 12-02

    Science.gov (United States)

    National Science Foundation, 2012

    2012-01-01

    The United States holds a preeminent position in science and engineering (S&E) in the world, derived in large part from its long history of public and private investment in S&E research and development (R&D) and education. Investment in R&D, science, technology, and education correlate strongly with economic growth, as well the development of a…

  15. Petroleum Science and Technology Institute with the TeXas Earth and Space Science (TXESS) Revolution

    Science.gov (United States)

    Olson, H. C.; Olson, J. E.; Bryant, S. L.; Lake, L. W.; Bommer, P.; Torres-Verdin, C.; Jablonowski, C.; Willis, M.

    2009-12-01

    The TeXas Earth and Space Science (TXESS) Revolution, a professional development program for 8th- thru 12th-grade Earth Science teachers, presented a one-week Petroleum Science and Technology Institute at The University of Texas at Austin campus. The summer program was a joint effort between the Jackson School of Geosciences and the Department of Petroleum and Geosystems Engineering. The goal of the institute was to focus on the STEM components involved in the petroleum industry and to introduce teachers to the larger energy resources theme. The institute kicked off with a welcoming event and tour of a green, energy-efficient home (LEED Platinum certified) owned by one of the petroleum engineering faculty. Tours of the home included an introduction to rainwater harvesting, solar energy, sustainable building materials and other topics on energy efficiency. Classroom topics included drilling technology (including a simulator lab and an overview of the history of the technology), energy use and petroleum geology, well-logging technology and interpretation, reservoir engineering and volumetrics (including numerous labs combining chemistry and physics), risk assessment and economics, carbon capture and storage (CO2 sequestration technology) and hydraulic fracturing. A mid-week field trip included visiting the Ocean Star offshore platform in Galveston, the Weiss Energy Hall at the Houston Museum of Science and Schlumberger (to view 3-D visualization technology) in Houston. Teachers remarked that they really appreciated the focused nature of the institute and especially found the increased use of mathematics both a tool for professional growth, as well as a challenge for them to use more math in their science classes. STEM integration was an important feature of the summer institute, and teachers found the integration of science (earth sciences, geophysics), technology, engineering (petroleum, chemical and reservoir) and mathematics particularly valuable. Pre

  16. 75 FR 30874 - National Nanotechnology Coordination Office, Nanoscale Science, Engineering and Technology...

    Science.gov (United States)

    2010-06-02

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY National Nanotechnology Coordination Office, Nanoscale Science, Engineering and Technology Subcommittee, National Science and Technology Council, Committee on Technology; The National Nanotechnology Initiative (NNI) Strategic Planning Stakeholder Workshop: Public...

  17. Why Do Women Leave Science and Engineering? NBER Working Paper No. 15853

    Science.gov (United States)

    Hunt, Jennifer

    2010-01-01

    I use the 1993 and 2003 National Surveys of College Graduates to examine the higher exit rate of women compared to men from science and engineering relative to other fields. I find that the higher relative exit rate is driven by engineering rather than science, and show that 60% of the gap can be explained by the relatively greater exit rate from…

  18. General engineering ethics and multiple stress of atomic energy engineering

    International Nuclear Information System (INIS)

    Takeda, Kunihiko

    1999-01-01

    The factors, by which the modern engineering ethics has been profoundly affected, were classified to three categories, namely mental blow, the destruction of human function and environment damage. The role of atomic energy engineering in the ethic field has been shown in the first place. It is pointed out that it has brought about the mental blow by the elucidation of universal truth and discipline and the functional disorder by the power supply. However, the direct effect of radiation to the human kinds is only a part of the stresses comparing to the accumulation of the social stress which should be taken into account of by the possibility of disaster and the suspicion of the atomic energy politics. An increase in the multiple stresses as well as the restriction of criticism will place obstacles on the promotion of atomic energy. (author)

  19. General engineering ethics and multiple stress of atomic energy engineering

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kunihiko [Shibaura Inst. of Tech., Tokyo (Japan)

    1999-08-01

    The factors, by which the modern engineering ethics has been profoundly affected, were classified to three categories, namely mental blow, the destruction of human function and environment damage. The role of atomic energy engineering in the ethic field has been shown in the first place. It is pointed out that it has brought about the mental blow by the elucidation of universal truth and discipline and the functional disorder by the power supply. However, the direct effect of radiation to the human kinds is only a part of the stresses comparing to the accumulation of the social stress which should be taken into account of by the possibility of disaster and the suspicion of the atomic energy politics. An increase in the multiple stresses as well as the restriction of criticism will place obstacles on the promotion of atomic energy. (author)

  20. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  1. Activities of the Institute for Computer Applications in Science and Engineering

    Science.gov (United States)

    1985-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1985 through October 2, 1985 is summarized.

  2. Academic Design Of Canada's Energy Systems And Nuclear Science Research Centre

    International Nuclear Information System (INIS)

    Bereznai, G.; Perera, S.

    2010-01-01

    The University of Ontario Institute of Technology (UOIT) is at the forefront of alternative energy and nuclear research that focuses on the energy challenges that are faced by the province of Ontario, the industrial heartland of Canada. While the university was established as recently as 2002 and opened its doors to its first students in 2003, it has already developed a comprehensive set of undergraduate and graduate programs, and a reputation for research intensiveness. UOIT offers dedicated programs in nuclear engineering and energy systems engineering to ensure a continued supply of trained employees in these fields. The ability to provide talented and skilled personnel to the energy sector has emerged as a critical requirement of ensuring Ontario's energy future, and to meet this need UOIT requires additional teaching and research space in order to offer its energy related programs. The Governments of Canada and of the Province of Ontario recognized UOIT's achievements and contributions to post-secondary education in the field of clean energy in general and nuclear power in particular, and as part of the economic stimuli funded by both levels of government, approved $45 M CAD for the construction of a 10,000 m 2 'Energy Systems and Nuclear Science Research Centre' at UOIT. The building is scheduled to be ready for occupancy in the summer of 2011. The paper presents the key considerations that lead to the design of the building, and gives details of the education and research programs that were the key in determining the design and layout of the research centre. (authors)

  3. A comprehensive program of nuclear engineering and science education

    International Nuclear Information System (INIS)

    Bereznai, G.; Lewis, B.

    2014-01-01

    The University of Ontario Institute of Technology offers undergraduate degrees in nuclear engineering, nuclear power, health physics and radiation science, graduate degrees (masters as well as doctorate) in nuclear engineering, and graduate diplomas that encompass a wide range of nuclear engineering and technology topics. Professional development programs tailored to specific utility needs are also offered, and the sharing of course material between the professional development and university education courses has strengthened both approaches to ensuring the high qualification levels required of professionals in the nuclear industry. (author)

  4. Editors’ Overview Perspectives on Teaching Social Responsibility to Students in Science and Engineering

    DEFF Research Database (Denmark)

    Zandvoort, Henk; Bird, Stephanie J.; Børsen, Tom

    2013-01-01

    . If the social responsibility of scientists and engineers implies a duty to safeguard or promote a peaceful, just and sustainable world society, then science and engineering education should empower students to fulfil this responsibility. The contributions to this special issue present European examples...... of teaching social responsibility to students in science and engineering, and provide examples and discussion of how this teaching can be promoted, and of obstacles that are encountered. Speaking generally, education aimed at preparing future scientists and engineers for social responsibility is presently...... very limited and seemingly insufficient in view of the enormous ethical and social problems that are associated with current science and technology. Although many social, political and professional organisations have expressed the need for the provision of teaching for social responsibility, important...

  5. 2000 U.S. Department of Energy Strategic Plan: Strength through Science Powering the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    None,

    2000-09-01

    The Department of Energy conducts programs relating to energy resources, national nuclear security, environmental quality, and science. In each of these areas, the US is facing significant challenges. Our economic well-being depends on the continuing availability of reliable and affordable supplies of clean energy. Our Nation's security is threatened by the proliferation of weapons of mass destruction. Our environment is under threat from the demands a more populated planet and the legacies of 20th-century activities. Science and the technology derived from it offer the promise to improve the Nation's health and well-being and broadly expand human knowledge. In conducting its programs, the Department of Energy (DOE) employs unique scientific and technical assets, including 30,000 scientists, engineers, and other technical staff, in a complex of outstanding national laboratories that have a capital value of over $45 billion. Through its multidisciplinary research and development activities and its formidable assemblage of scientific and engineering talent, DOE focuses its efforts on four programmatic business lines: (1) Energy Resources--promoting the development and deployment of systems and practices that provide energy that is clean, efficient, reasonably priced, and reliable. (2) National Nuclear Security--enhancing national security through military application of nuclear technology and by reducing global danger from the potential spread of weapons of mass destruction. (3) Environmental Quality--cleaning up the legacy of nuclear weapons and nuclear research activities, safely managing nuclear materials, and disposing of radioactive wastes. (4) Science--advancing science and scientific tools to provide the foundation for DOE's applied missions and to provide remarkable insights into our physical and biological world. In support of the above four business lines, DOE provides management services to ensure that the technical programs can run efficiently. Our

  6. Integral methods in science and engineering theoretical and practical aspects

    CERN Document Server

    Constanda, C; Rollins, D

    2006-01-01

    Presents a series of analytic and numerical methods of solution constructed for important problems arising in science and engineering, based on the powerful operation of integration. This volume is meant for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students.

  7. Report of the Science and Engineering Research Council for the year 1987-88

    International Nuclear Information System (INIS)

    1988-12-01

    The paper presents the Annual Report of the Science and Engineering Research Council (SERC), United Kingdom 1987/8. The contents contains the reports of the four Boards of the Council - the Astronomy and Planetary Science Board, the Engineering Board, the Nuclear Physics Board and the Science Board. The SERC report also contains eleven review articles on major advances in Science in recent years, including high temperature superconductivity and the supernova in the Large Magellanic Cloud, as well as details of fourteen ''highlights'' of 1987/8 including the dating of the Turin Shroud. (U.K.)

  8. Air Force-Wide Needs for Science, Technology, Engineering, and Mathematics (STEM) Academic Degrees

    Science.gov (United States)

    2014-01-01

    anthropology (0190), mathematical statistics (1529), general math (AFIT faculty only), metallurgy (1321), and actuarial science (1510). 97 Tier II. Few...linking or frEE DownloAD At www.rand.org C O R P O R A T I O N Research Report Air Force–Wide Needs for Science , Technology, Engineering, and...00-00-2014 4. TITLE AND SUBTITLE Air Force-Wide Needs for Science , Technology, Engineering, and Mathematics (STEM) Academic Degrees 5a. CONTRACT

  9. Applications of sliding mode control in science and engineering

    CERN Document Server

    Lien, Chang-Hua

    2017-01-01

    Gathering 20 chapters contributed by respected experts, this book reports on the latest advances in and applications of sliding mode control in science and engineering. The respective chapters address applications of sliding mode control in the broad areas of chaos theory, robotics, electrical engineering, physics, chemical engineering, memristors, mechanical engineering, environmental engineering, finance, and biology. Special emphasis has been given to papers that offer practical solutions, and which examine design and modeling involving new types of sliding mode control such as higher order sliding mode control, terminal sliding mode control, super-twisting sliding mode control, and integral sliding mode control. This book serves as a unique reference guide to sliding mode control and its recent applications for graduate students and researchers with a basic knowledge of electrical and control systems engineering.

  10. Coherence and Divergence of Megatrends in Science and Engineering

    Science.gov (United States)

    Roco, M. C.

    2002-04-01

    Scientific discoveries and technological innovations are at the core of human endeavor, and it is estimated that their role will only increase in time. Such advancements evolve in coherence, with areas of confluence and temporary divergences, which bring synergism and that stimulate further developments following in average an exponential growth. Six increasingly interconnected megatrends are perceived as dominating the scene for the next decades: (a) information and computing, (b) nanoscale science and engineering (S&E), (c) biology and bio-environmental approaches, (d) medical sciences and enhancing human physical capabilities, (e) cognitive sciences and enhancing intellectual abilities, and (f) collective behavior and system approach. This paper presents a perspective on the process of identification, planning and program implementation of S&E megatrends, with illustration for the US research initiative on nanoscale science, engineering, and technology. The interplay between coherence and divergence, leading to unifying science and converging technologies, does not develop only among simultaneous scientific trends but also along time and across geopolitical boundaries. There is no single way of development of S&E, and here is the role of taking visionary measures. Societal implication scientists need to be involved from the conceptual phase of a program responding to a S&E megatrend.

  11. Coherence and Divergence of Megatrends in Science and Engineering

    International Nuclear Information System (INIS)

    Roco, M.C.

    2002-01-01

    Scientific discoveries and technological innovations are at the core of human endeavor, and it is estimated that their role will only increase in time. Such advancements evolve in coherence, with areas of confluence and temporary divergences, which bring synergism and that stimulate further developments following in average an exponential growth. Six increasingly interconnected megatrends are perceived as dominating the scene for the next decades: (a) information and computing, (b) nanoscale science and engineering (S and E), (c) biology and bio-environmental approaches, (d) medical sciences and enhancing human physical capabilities, (e) cognitive sciences and enhancing intellectual abilities, and (f) collective behavior and system approach.This paper presents a perspective on the process of identification, planning and program implementation of S and E megatrends, with illustration for the US research initiative on nanoscale science, engineering, and technology. The interplay between coherence and divergence, leading to unifying science and converging technologies, does not develop only among simultaneous scientific trends but also along time and across geopolitical boundaries. There is no single way of development of S and E, and here is the role of taking visionary measures. Societal implication scientists need to be involved from the conceptual phase of a program responding to a S and E megatrend

  12. Taiwanese Preservice Teachers' Science, Technology, Engineering, and Mathematics Teaching Intention

    Science.gov (United States)

    Lin, Kuen-Yi; Williams, P. John

    2016-01-01

    This study applies the theory of planned behavior as a basis for exploring the impact of knowledge, values, subjective norms, perceived behavioral controls, and attitudes on the behavioral intention toward science, technology, engineering, and mathematics (STEM) education among Taiwanese preservice science teachers. Questionnaires (N = 139)…

  13. Developing Elementary Math and Science Process Skills Through Engineering Design Instruction

    Science.gov (United States)

    Strong, Matthew G.

    This paper examines how elementary students can develop math and science process skills through an engineering design approach to instruction. The performance and development of individual process skills overall and by gender were also examined. The study, preceded by a pilot, took place in a grade four extracurricular engineering design program in a public, suburban school district. Students worked in pairs and small groups to design and construct airplane models from styrofoam, paper clips, and toothpicks. The development and performance of process skills were assessed through a student survey of learning gains, an engineering design packet rubric (student work), observation field notes, and focus group notes. The results indicate that students can significantly develop process skills, that female students may develop process skills through engineering design better than male students, and that engineering design is most helpful for developing the measuring, suggesting improvements, and observing process skills. The study suggests that a more regular engineering design program or curriculum could be beneficial for students' math and science abilities both in this school and for the elementary field as a whole.

  14. Gender Differences in the Consistency of Middle School Students’ Interest in Engineering and Science Careers

    OpenAIRE

    Ing, Marsha; Aschbacher, Pamela R; Tsai, Sherry M

    2014-01-01

    This longitudinal study analyzes survey responses in seventh, eighth, and ninth grade from diverse public school students (n = 482) to explore gender differences in engineering and science career preferences. Females were far more likely to express interest in a science career (31%) than an engineering career (13%), while the reverse was true for males (58% in engineering, 39% in science). After controlling for student and school demographic characteristics, females were as consistent as male...

  15. 78 FR 61870 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Science.gov (United States)

    2013-10-04

    ... Committee for Computer and Information Science and Engineering (1115). Date/Time: Oct 31, 2013: 12:30 p.m... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting In accordance with Federal Advisory Committee Act (Pub. L. 92-463, as amended...

  16. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What definitions apply to the Minority Science and... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering...

  17. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What regulations apply to the Minority Science and... Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering...

  18. Food, Environment, Engineering and Life Sciences Program (Invited)

    Science.gov (United States)

    Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.

    2009-12-01

    Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.

  19. Renewable Energy Park - Preliminary Feasibility & Engineering Report

    Energy Technology Data Exchange (ETDEWEB)

    Ariwite, Roderick [Fallon Paiute Shoshone Tribe, NV (United States)

    2015-07-31

    This "Renewable Energy Park - Preliminary Feasibility & Engineering Report" seeks to provide an overall assessment and review of renewable energy development opportunities on the Fallon Indian Reservation and Colony Lands.

  20. Free Energy and Internal Combustion Engine Cycles

    OpenAIRE

    Harris, William D.

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  1. 3rd International Conference on Innovations in Computer Science and Engineering

    CERN Document Server

    Sayal, Rishi; Rawat, Sandeep

    2016-01-01

    The book is a collection of high-quality peer-reviewed research papers presented at the third International Conference on Innovations in Computer Science and Engineering (ICICSE 2015) held at Guru Nanak Institutions, Hyderabad, India during 7 – 8 August 2015. The book discusses a wide variety of industrial, engineering and scientific applications of the emerging techniques. Researchers from academic and industry present their original work and exchange ideas, information, techniques and applications in the field of Communication, Computing, and Data Science and Analytics.

  2. Sustaining Global Pressures: Women in Science and Engineering

    Indian Academy of Sciences (India)

    Women in Science and Engineering. (SGPW 2008). Next Generation. Challenges and Opportunities. January 3 - 5, 2008. Venue. SRI Convention Centre,. Anupuram, Kalpakkam,. Tamil Nadu, India www.iwsakalpakkam.com. Organised by. Indian Women Scientists' Association (IWSA). Kalpakkam Branch. IWSA. IN DA.

  3. DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

    2007-12-12

    This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

  4. Earth Sciences report, 1989--1990

    International Nuclear Information System (INIS)

    Younker, L.W.; Peterson, S.J.; Price, M.E.

    1991-03-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) conducts work in support of the Laboratory's energy, defense, environmental, and basic research programs. The Department comprises more than 100 professional scientific personnel spanning a variety of subdisciplines: geology, seismology, physics, geophysics, geochemistry, geohydrology, chemical engineering, and mechanical engineering. Resident technical support groups add significant additional technical expertise, including Containment Engineering, Computations, Electronic Engineering, Mechanical Engineering, Chemistry and Materials Science, and Technical Information. In total, approximately 180 professional scientists and engineers are housed in the Earth Sciences Department, making it one of the largest geo-science research groups in the nation. Previous Earth Sciences reports have presented an outline of the technical capabilities and accomplishments of the groups within the Department. In this FY 89/90 Report, we have chosen instead to present twelve of our projects in full-length technical articles. This Overview introduces those articles and highlights other significant research performed during this period

  5. Earth Sciences report, 1989--1990

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Peterson, S.J.; Price, M.E. (eds.)

    1991-03-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) conducts work in support of the Laboratory's energy, defense, environmental, and basic research programs. The Department comprises more than 100 professional scientific personnel spanning a variety of subdisciplines: geology, seismology, physics, geophysics, geochemistry, geohydrology, chemical engineering, and mechanical engineering. Resident technical support groups add significant additional technical expertise, including Containment Engineering, Computations, Electronic Engineering, Mechanical Engineering, Chemistry and Materials Science, and Technical Information. In total, approximately 180 professional scientists and engineers are housed in the Earth Sciences Department, making it one of the largest geo-science research groups in the nation. Previous Earth Sciences reports have presented an outline of the technical capabilities and accomplishments of the groups within the Department. In this FY 89/90 Report, we have chosen instead to present twelve of our projects in full-length technical articles. This Overview introduces those articles and highlights other significant research performed during this period.

  6. Characterizing Elementary Teachers' Enactment of High-Leverage Practices through Engineering Design-Based Science Instruction

    Science.gov (United States)

    Capobianco, Brenda M.; DeLisi, Jacqueline; Radloff, Jeffrey

    2018-01-01

    In an effort to document teachers' enactments of new reform in science teaching, valid and scalable measures of science teaching using engineering design are needed. This study describes the development and testing of an approach for documenting and characterizing elementary science teachers' multiday enactments of engineering design-based science…

  7. Expanding UCR’s Interdisciplinary Materials Science and Engineering Faculty

    Science.gov (United States)

    2018-02-27

    and Engineering Faculty 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-16-1-2298 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Cindy Larive, Provost Shane...Cybart, Assistant Professor Mitch Boretz, Office of the Dean, Bourns College of Engineering 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...the Materials Science and Engineering program. Dr. Cybart’s expertise is in superconducting materials, specifically complex oxide devices. His work has

  8. Tiger Team Assessment, Energy Technology Engineering Center

    International Nuclear Information System (INIS)

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies

  9. Tiger Team Assessment, Energy Technology Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies.

  10. The Blue Blazer Club: Masculine Hegemony in Science, Technology, Engineering, and Math Fields

    Science.gov (United States)

    Page, Melanie C.; Bailey, Lucy E.; Van Delinder, Jean

    2009-01-01

    The under-representation of women in Science, Technology, Engineering, and Math (STEM) fields is of continuing concern, as is the lack of women in senior positions and leadership roles. During a time of increasing demand for science and engineering enterprise, the lack of women and minorities in these academic disciplines needs to be addressed by…

  11. Integration, Authenticity, and Relevancy in College Science through Engineering Design

    Science.gov (United States)

    Turner, Ken L., Jr.; Hoffman, Adam R.

    2018-01-01

    Engineering design is an ideal perspective for engaging students in college science classes. An engineering design problem-solving framework was used to create a general chemistry lab activity focused on an important environmental issue--dead zones. Dead zones impact over 400 locations around the world and are a result of nutrient pollution, one…

  12. Investigation into the past and future of women in science and engineering.

    Science.gov (United States)

    Frize, M

    2009-01-01

    Covering the Ancient Greek era, the Middle Ages, the Renaissance, the Enlightenment, the 19th and 20th C., this paper explores the visions of the abilities of women, their access to education, and their roles in these epochs. Recent data on the participation rate of women in science and engineering, the culture in these fields, and strategies to increase their presence are discussed. The paper ends with a discussion on how science and engineering could benefit from integrating and valuing a blend of masculine and feminine perspectives. Biomedical engineering as a field frequently chosen by women is mentioned.

  13. Biomimetics: forecasting the future of science, engineering, and medicine.

    Science.gov (United States)

    Hwang, Jangsun; Jeong, Yoon; Park, Jeong Min; Lee, Kwan Hong; Hong, Jong Wook; Choi, Jonghoon

    2015-01-01

    Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark's skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations.

  14. Biomimetics: forecasting the future of science, engineering, and medicine

    Science.gov (United States)

    Hwang, Jangsun; Jeong, Yoon; Park, Jeong Min; Lee, Kwan Hong; Hong, Jong Wook; Choi, Jonghoon

    2015-01-01

    Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark’s skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations. PMID:26388692

  15. A content-oriented model for science exhibit engineering

    DEFF Research Database (Denmark)

    Achiam, Marianne

    2013-01-01

    Recently, science museums have begun to review their educational purposes and redesign their pedagogies. At the most basic level, this entails accounting for the performance of individual exhibits, and indeed, in some cases, research indicates shortcomings in exhibit design: While often successful......: as a means to operationalize the link between exhibit features and visitor activities; and as a template to transform scientists’ practices in the research context into visitors’ activities in the exhibit context. The resulting model of science exhibit engineering is presented and exemplified, and its...... implications for science exhibit design are discussed at three levels: the design product, the design process, and the design methodology....

  16. Science, Engineering, Mathematics and Aerospace Academy

    Science.gov (United States)

    1997-01-01

    This is an annual report on the Science, Engineering, Mathematics, and Aerospace Academy (SEMAA), which is run as a collaborative effort of NASA Lewis Research Center, and Cuyahgoga Community College. The purpose of SEMA is to increase the percentage of African Americans, and Hispanics in the fields of science and technology. The SEMAA program reaches from kindergarden, to grade 12, involving the family of under-served minorities in the education of the children. The year being reported (i.e., 1996-1997) saw considerable achievement. The program served over 1,939 students, and 120 parents were involved in various seminars. The report goes on to review the program and its implementation for each grade level. It also summarizes the participation, by gender and ethnicity.

  17. Breathing Life into Engineering: A Lesson Study Life Science Lesson

    Science.gov (United States)

    Lawrence, Maria; Yang, Li-Ling; Briggs, May; Hession, Alicia; Koussa, Anita; Wagoner, Lisa

    2016-01-01

    A fifth grade life science lesson was implemented through a lesson study approach in two fifth grade classrooms. The research lesson was designed by a team of four elementary school teachers with the goal of emphasizing engineering practices consistent with the "Next Generation Science Standards" (NGSS) (Achieve Inc. 2013). The fifth…

  18. Implementing Concepts of Pharmaceutical Engineering into High School Science Classrooms

    Science.gov (United States)

    Kimmel, Howard; Hirsch, Linda S.; Simon, Laurent; Burr-Alexander, Levelle; Dave, Rajesh

    2009-01-01

    The Research Experience for Teachers was designed to help high school science teachers develop skills and knowledge in research, science and engineering with a focus on the area of pharmaceutical particulate and composite systems. The experience included time for the development of instructional modules for classroom teaching. Results of the…

  19. Interdisciplinary research and education at the biology-engineering-computer science interface: a perspective.

    Science.gov (United States)

    Tadmor, Brigitta; Tidor, Bruce

    2005-09-01

    Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.

  20. Forging the Solution to the Energy Challenge: The Role of Materials Science and Materials Scientists

    Science.gov (United States)

    Wadsworth, Jeffrey

    2010-05-01

    The energy challenge is central to the most important strategic problems facing the United States and the world. It is increasingly clear that even large-scale deployments of the best technologies available today cannot meet the rising energy demands of a growing world population. Achieving a secure and sustainable energy future will require full utilization of, and substantial improvements in, a comprehensive portfolio of energy systems and technologies. This goal is complicated by several factors. First, energy strategies are inextricably linked to national security and health issues. Second, in developing and deploying energy technologies, it is vital to consider not only environmental issues, such as global climate change, but also economic considerations, which strongly influence both public and political views on energy policy. Third, a significant and sustained effort in basic and applied research and development (R&D) will be required to deliver the innovations needed to ensure a desirable energy future. Innovations in materials science and engineering are especially needed to overcome the limits of essentially all energy technologies. A wealth of historical evidence demonstrates that such innovations are also the key to economic prosperity. From the development of the earliest cities around flint-trading centers, to the Industrial Revolution, to today’s silicon-based global economy, the advantage goes to those who lead in exploiting materials. I view our challenge by considering the rate of innovation and the transition of discovery to the marketplace as the relationship among R&D investment, a skilled and talented workforce, business innovations, and the activities of competitors. Most disturbing in analyzing this relationship is the need for trained workers in science, technology, engineering, and mathematics (STEM). To develop the STEM workforce needed for innovation, we need sustainable, positive change in STEM education at all levels from preschool

  1. History of nuclear engineering curricula

    International Nuclear Information System (INIS)

    Murphy, G.

    1975-01-01

    With the realization that nuclear energy had a vast potential for peacetime development, universities throughout the country began to develop courses in nuclear energy. A pioneering educational effort was necessary because there was an inadequate number of trained faculty, no established curricula, no textbooks, and very little suitable equipment. Nevertheless, by the early 1950's, several programs in nuclear science and engineering were beginning to provide instruction to potential nuclear engineers. At that time, the American Society for Engineering Education (ASEE) established a nuclear committee to cooperate with the U. S. Atomic Energy Commission (AEC) in nuclear education matters. With the financial support of the AEC, textbook material was developed, faculty training programs were instituted, and funds were made available for equipment. Because of the large interest shown in the field, many colleges and universities began to develop nuclear engineering curricula. After a few years, the need arose for general guidelines in curricular development. This led to the development of a Committee on Objective Criteria in Nuclear Engineering Education in which ASEE and the American Nuclear Society cooperated with the support of AEC. The committee report emphasized basic science, nuclear energy concepts, and nuclear technology, which have continued to be the significant components of a nuclear engineering curriculum. The last ten years have brought increased emphasis on BS programs, the introduction of extensive computer-based instruction, and an increasing emphasis on the engineering aspects of nuclear reactor power systems

  2. Nuclear energy and professional engineers. Possibility of utilization of professional engineer system

    International Nuclear Information System (INIS)

    Tanaka, Shunichi; Nariai, Hideki; Madarame, Haruki; Hattori, Takuya; Kitamura, Masaharu; Fujie, Takao

    2008-01-01

    Nuclear and radiation professional engineer system started in 2004 and more than 250 persons have passed the second-step professional engineer examination, while more than 1,000 persons for the first-step examination. This special issue on possibility of utilization of professional engineer system consists of six relevant articles from experts of nuclear organizations and academia. They expect the role of professional engineer in the area of nuclear energy to enhance technology advancement and awareness of professional ethics from their respective standpoints. (T. Tanaka)

  3. Energy challenge and nano-sciences

    International Nuclear Information System (INIS)

    Romulus, Anne-Marie; Chamelot, Pierre; Chaudret, Bruno; Comtat, Maurice; Fajerwerg, Katia; Philippot, Karine; Geoffron, Patrice; Lacroix, Jean-Christophe; Abanades, Stephane; Flamant, Gilles; HUERTA-ORTEGA, Benjamin; Cezac, Pierre; Lincot, Daniel; Roncali, Jean; Artero, Vincent; GuiLLET, Nicolas; Fauvarque, Jean-Francois; Simon, Patrice; Taberna, Pierre-Louis

    2013-01-01

    This book first describes the role of energy in the development of nano-sciences, discusses energy needs, the perception of nano-sciences by societies as far as the energy challenge is concerned, describes the contribution of nano-catalyzers to energy and how these catalyzers are prepared. A second part addresses the new perspectives regarding carbon: production of biofuels from biomass, process involved in CO 2 geological storage, improvement of solar fuel production with the use of nano-powders. The third part describes the new orientations of solar energy: contribution of the thin-layer inorganic sector to photovoltaic conversion, perspectives for organic photovoltaic cells, operation of new dye-sensitized nanocrystalline solar cells. The fourth part addresses the hydrogen sector: credibility, contribution of biomass in hydrogen production, production of hydrogen by electrochemistry, new catalyzers for electrolyzers and fuel cells. The last part address improved electrochemical reactors

  4. WTEC Panel Report on International Assessment of Research and Development in Simulation-Based Engineering and Science

    Energy Technology Data Exchange (ETDEWEB)

    Glotzer, S. C.; Kim, S.; Cummings, P. T.; Deshmukh, A.; Head-Gordon, M.; Karniadakis, G.; Petzold, L.; Sagui, C.; Shinozuka, M.

    2013-07-30

    This WTEC panel report assesses the international research and development activities in the field of Simulation- Based Engineering and Science (SBE&S). SBE&S involves the use of computer modeling and simulation to solve mathematical formulations of physical models of engineered and natural systems. SBE&S today has reached a level of predictive capability that it now firmly complements the traditional pillars of theory and experimentation/observation. As a result, computer simulation is more pervasive today – and having more impact – than at any other time in human history. Many critical technologies, including those to develop new energy sources and to shift the cost-benefit factors in healthcare, are on the horizon that cannot be understood, developed, or utilized without simulation. A panel of experts reviewed and assessed the state of the art in SBE&S as well as levels of activity overseas in the broad thematic areas of life sciences and medicine, materials, and energy and sustainability; and in the crosscutting issues of next generation hardware and algorithms; software development; engineering simulations; validation, verification, and uncertainty quantification; multiscale modeling and simulation; and SBE&S education. The panel hosted a U.S. baseline workshop, conducted a bibliometric analysis, consulted numerous experts and reports, and visited 59 institutions and companies throughout East Asia and Western Europe to explore the active research projects in those institutions, the computational infrastructure used for the projects, the funding schemes that enable the research, the collaborative interactions among universities, national laboratories, and corporate research centers, and workforce needs and development for SBE&S.

  5. Science and Engineering Alliance: A new resource for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Lawrence Livermore National Laboratory and four major Historically Black Colleges and Universities with strong research and development capabilities in science, engineering and computer technology have formed the Science and Engineering Alliance. Located in California, Alabama, Mississippi, Louisiana and Texas, each brings to the Alliance a tradition of research and development and educational excellence. This unique consortium is now available to perform research development and training to meet the needs of the public and private sectors. The Alliance was formed to help assure an adequate supply of top-quality minority scientists in the next century, while simultaneously meeting the research and development needs of the public and private sectors.

  6. Atomic science and engineering in the economy of the Soviet Union

    International Nuclear Information System (INIS)

    Kruglov, A.K.

    1976-01-01

    The main achievements of Soviet atomic science and engineering are presented. Even now, due to the development of the atomic industry, it is possible to produce at atomic stations cheaper energy in kWh cost than at thermal electrical stations. The successful operation of the VVER reactor at the Novo Voronezh Atomic Station and the RBMK reactor at the Leningrad Atomic Station, makes it possible to proceed to the development of more economic thermal reactors with a unit power over 1,500,000 kW. Methods are analysed allowing the atomic industry to be supplied with cheap nuclear fuel on the basis of poor uranium ores. The introduction of radioactive isotopes into the national economy has allowed a number of industries to automate control, to improve technologies and safety measures, etc. Isotopes are being more and more widely used in medicine. Some aspects are considered of using nuclear explosions in the gas and oil industry, in constructing hydraulic engineering works and creating places for the disposal of harmful or radioacmive wastes

  7. Outreach Inside the Library: Attracting and Engaging Millennial Engineering and Science Students

    OpenAIRE

    Shepherd, Susan

    2009-01-01

    This poster displays ways in which the Science & Engineering (S&E) Library at UC San Diego has capitalized on the values of Millennials to attract and engage undergraduates in science and engineering with inside-the-library exhibits and events. Appealing to characteristics of Millennials, the S&E Library showcases various types of student work, sponsors engaging and innovative library events, and freely experiments with new ways to draw students into the library.

  8. 4th International Conference on Innovations in Computer Science and Engineering

    CERN Document Server

    Sayal, Rishi; Rawat, Sandeep

    2017-01-01

    The book is a collection of high-quality peer-reviewed research papers presented at the Fourth International Conference on Innovations in Computer Science and Engineering (ICICSE 2016) held at Guru Nanak Institutions, Hyderabad, India during 22 – 23 July 2016. The book discusses a wide variety of industrial, engineering and scientific applications of the emerging techniques. Researchers from academic and industry present their original work and exchange ideas, information, techniques and applications in the field of data science and analytics, artificial intelligence and expert systems, mobility, cloud computing, network security, and emerging technologies.

  9. Computer-aided engineering in High Energy Physics

    International Nuclear Information System (INIS)

    Bachy, G.; Hauviller, C.; Messerli, R.; Mottier, M.

    1988-01-01

    Computing, standard tool for a long time in the High Energy Physics community, is being slowly introduced at CERN in the mechanical engineering field. The first major application was structural analysis followed by Computer-Aided Design (CAD). Development work is now progressing towards Computer-Aided Engineering around a powerful data base. This paper gives examples of the power of this approach applied to engineering for accelerators and detectors

  10. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2009-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  11. Energy geostructures innovation in underground engineering

    CERN Document Server

    Laloui, Lyesse

    2013-01-01

    Energy geostructures are a tremendous innovation in the field of foundation engineering and are spreading rapidly throughout the world. They allow the procurement of a renewable and clean source of energy which can be used for heating and cooling buildings. This technology couples the structural role of geostructures with the energy supply, using the principle of shallow geothermal energy. This book provides a sound basis in the challenging area of energy geostructures.The objective of this book is to supply the reader with an exhaustive overview on the most up-to-date and available knowledge

  12. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2013-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  13. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    Science.gov (United States)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  14. THERMODYNAMICS USED IN ENVIRONMENTAL ENGINEERING

    Science.gov (United States)

    Thermodynamics is a science in which energy transformations are studied as well as their relationships to the changes in the chemical properties of a system. It is the fundamental basis of many engineering fields. The profession of environmental engineering is no exception. In pa...

  15. Energy Sciences Network (ESnet)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Sciences Network is the Department of Energy’s high-speed network that provides the high-bandwidth, reliable connections that link scientists at national...

  16. Nuclear science and engineering workshop for secondary science teachers

    International Nuclear Information System (INIS)

    Miller, W.H.; Neumeyer, G.M.; Langhorst, S.M.

    1992-01-01

    A 2-week workshop has been held for the past 10 yr at the University of Missouri-Columbia for secondary science teachers to increase their knowledge of nuclear science and its applications. It is sponsored jointly by Union Electric Company (St. Louis, Missouri), the University of Missouri-Columbia, the American Nuclear Society (ANS) student branch at the University of Missouri-Columbia, and the Central/Eastern Section of the ANS. The workshop focuses on two principal educational areas: basic nuclear science and its applications and nuclear energy systems. The philosophy of the workshop is to provide factual information without emphasis on the political issues of the use of nuclear without emphasis on the political issues of the use of nuclear science in the modern society, allowing the participants to form their own perceptions of the risks and benefits of nuclear technology. The paper describes the workshop organization, curriculum, and evaluation

  17. Proceedings ICTEA 2004, the 1. international conference on thermal engineering : theory and applications

    International Nuclear Information System (INIS)

    Saghir, M.Z.; Nasr, G.

    2004-01-01

    This conference provided an opportunity to share research trends in thermal energy, including fluid flow in porous media as encountered in different branches of science and engineering ranging from agricultural, chemical, civil and petroleum engineering, to food and soil sciences. The economic importance of enhanced oil recovery was emphasized along with growing concerns about pollution and ground water quality. Several presentations focused on the application of experimental, analytical or theoretical thermal and energy engineering. New technologies that improve the energy efficiency of engines, reduce exhaust emission levels and explore energy alternatives were also highlighted. The sessions of the conference were entitled: heat transfer; porous media; combustion; environment; enhanced oil recovery; double diffusion; turbulent flow; and, material science. The conference featured 77 presentations, of which 11 have been catalogued separately for inclusion in this database. refs., tabs., figs

  18. Economically Disadvantaged Minority Girls' Knowledge and Perceptions of Science and Engineering and Related Careers

    Science.gov (United States)

    Wang, Hui-Hui; Billington, Barbara L.

    2016-01-01

    This article addresses economically disadvantaged minority girls' knowledge and perceptions of science and engineering and the influence of their experiences with science, technology, engineering, and mathematics (STEM) on their choices for future careers. We interviewed three girls who participated in a 4-H-led gender-inclusive STEM program. Our…

  19. Social and ethical dimensions of nanoscale science and engineering research.

    Science.gov (United States)

    Sweeney, Aldrin E

    2006-07-01

    Continuing advances in human ability to manipulate matter at the atomic and molecular levels (i.e. nanoscale science and engineering) offer many previously unimagined possibilities for scientific discovery and technological development. Paralleling these advances in the various science and engineering sub-disciplines is the increasing realization that a number of associated social, ethical, environmental, economic and legal dimensions also need to be explored. An important component of such exploration entails the identification and analysis of the ways in which current and prospective researchers in these fields conceptualize these dimensions of their work. Within the context of a National Science Foundation funded Research Experiences for Undergraduates (REU) program in nanomaterials processing and characterization at the University of Central Florida (2002-2004), here I present for discussion (i) details of a "nanotechnology ethics" seminar series developed specifically for students participating in the program, and (ii) an analysis of students' and participating research faculty's perspectives concerning social and ethical issues associated with nanotechnology research. I conclude with a brief discussion of implications presented by these issues for general scientific literacy and public science education policy.

  20. Teaching science, technology, and society to engineering students: a sixteen year journey.

    Science.gov (United States)

    Ozaktas, Haldun M

    2013-12-01

    The course Science, Technology, and Society is taken by about 500 engineering students each year at Bilkent University, Ankara. Aiming to complement the highly technical engineering programs, it deals with the ethical, social, cultural, political, economic, legal, environment and sustainability, health and safety, reliability dimensions of science, technology, and engineering in a multidisciplinary fashion. The teaching philosophy and experiences of the instructor are reviewed. Community research projects have been an important feature of the course. Analysis of teaching style based on a multi-dimensional model is given. Results of outcome measurements performed for ABET assessment are provided. Challenges and solutions related to teaching a large class are discussed.

  1. Buffer thermal energy storage for an air Brayton solar engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  2. Annual conference on engineering and the physical sciences in medicine

    International Nuclear Information System (INIS)

    Le Heron, J.

    1999-01-01

    The venue for the 1998 annual conference on Engineering and the Physical Sciences in Medicine was the Wrest Point Casino Convention Centre, Hobart, from 15 to 19 November. Jointly sponsored by the Australasian College of Physical Scientists and Engineers in Medicine, the College of Biomedical Engineers and the Society of Medical and Biomedical Engineering, this meeting is a major forum for professionals working in these areas in Australasia. The theme for the conference was Relevance beyond rationalism - charting a course for the future. This reviewer will consider only those presentations concerned with the use of radiation in medicine. (author)

  3. Writing for science and engineering papers, presentations and reports

    CERN Document Server

    Silyn-Roberts, Heather

    2013-01-01

    Learning how to write clearly and concisely is an integral part of furthering your research career; however, doing so is not always easy. In this second edition, fully updated and revised, Dr. Silyn-Roberts explains in plain English the steps to writing abstracts, theses, journal papers, funding bids, literature reviews, and more. The book also examines preparing seminar and conference presentations. Written in a practical and easy to follow style specifically for postgraduate students in Engineering and Sciences, this book is essential in learning how to create powerful documents. Writing for Science and Engineering will prove invaluable in all areas of research and writing due its clear, concise style. The practical advice contained within the pages alongside numerous examples to aid learning will make the preparation of documentation much easier for all students.

  4. Education and training in nuclear science/engineering in Taiwan

    International Nuclear Information System (INIS)

    Chung, C.

    1994-01-01

    The present status of nuclear education and training in Taiwan is reviewed. The nuclear science/engineering program has been established in Taiwan under the College of Nuclear Science at the National Tsing Hua University since 1956; it remains the only program among 123 universities and colleges in Taiwan where education and training in nuclear fields are offered. The program, with 52 faculty members, offers advanced studies leading to BSc, MSc, and PhD degrees. Lectures and lab classes are given to 600 students currently registered in the program. Career placement program geared for the 200 graduate and 400 undergraduate students is to orientate them into the local nuclear power utilities as well as agricultural, medical, industrial, academic and governmental sectors where nuclear scientists and engineers at all levels are needed. 8 refs., 1 fig

  5. Activities of the Institute for Computer Applications in Science and Engineering (ICASE)

    Science.gov (United States)

    1988-01-01

    This report summarizes research conducted at the Institute for Computer Applications Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 2, 1987 through March 31, 1988.

  6. [Research Conducted at the Institute for Computer Applications in Science and Engineering

    Science.gov (United States)

    1997-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1996 - 31 Mar. 1997.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    , Faculty of Science, Babol University of Technology, Babol 47148-71167, Iran; Biofuel & Renewable Energy Research Center, Faculty of Chemical Engineering, Babol University of Technology, Babol 47148-71167, Iran; Faculty of Chemical ...

  8. Efficiency of Energy Transduction in a Molecular Chemical Engine

    OpenAIRE

    Sasaki, Kazuo; Kanada, Ryo; Amari, Satoshi

    2006-01-01

    A simple model of the two-state ratchet type is proposed for molecular chemical engines that convert chemical free energy into mechanical work and vice versa. The engine works by catalyzing a chemical reaction and turning a rotor. Analytical expressions are obtained for the dependences of rotation and reaction rates on the concentrations of reactant and product molecules, from which the performance of the engine is analyzed. In particular, the efficiency of energy transduction is discussed in...

  9. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  10. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  11. New software engineering paradigm based on complexity science an introduction to NSE

    CERN Document Server

    Xiong, Jay

    2011-01-01

    This book describes a revolution in software engineering - the Nonlinear Software Engineering paradigm, which complies with the essential principles of complexity science and can help double productivity, halve costs and reduce defects in software products.

  12. Factors Affecting Students' Choice of Science and Engineering in Portugal.

    Science.gov (United States)

    de Almeida, Maria Jose B. M.; Leite, Maria Salete S. C. P.; Woolnough, Brian E.

    This paper presents the results of a study undertaken in Portugal to determine the influence of different factors on students' (n=499) decisions to study or refuse to study in one of the physical sciences or engineering. Some influencing factors are related to what goes on in school and during science lessons, and other factors are related to the…

  13. Women of Science, Technology, Engineering, and Mathematics: A Qualitative Exploration into Factors of Success

    Science.gov (United States)

    Olund, Jeanine K.

    2012-01-01

    Although the number of women entering science, technology, engineering, and mathematics (STEM) disciplines has increased in recent years, overall there are still more men than women completing four-year degrees in these fields, especially in physics, engineering, and computer science. At higher levels of education and within the workplace, the…

  14. Math and science education programs from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students

  15. New frontiers in biomedical science and engineering during 2014-2015.

    Science.gov (United States)

    Liu, Feng; Lee, Dong-Hoon; Lagoa, Ricardo; Kumar, Sandeep

    2015-01-01

    The International Conference on Biomedical Engineering and Biotechnology (ICBEB) is an international meeting held once a year. This, the fourth International Conference on Biomedical Engineering and Biotechnology (ICBEB2015), will be held in Shanghai, China, during August 18th-21st, 2015. This annual conference intends to provide an opportunity for researchers and practitioners at home and abroad to present the most recent frontiers and future challenges in the fields of biomedical science, biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, etc. The papers published in this issue are selected from this Conference, which witness the advances in biomedical engineering and biotechnology during 2014-2015.

  16. Energy conservation attitudes, knowledge, and behaviors in science laboratories

    International Nuclear Information System (INIS)

    Kaplowitz, Michael D.; Thorp, Laurie; Coleman, Kayla; Kwame Yeboah, Felix

    2012-01-01

    Energy use per square foot from science research labs is disproportionately higher than that of other rooms in buildings on campuses across the nation. This is partly due to labs’ use of energy intensive equipment. However, laboratory management and personnel behavior may be significant contributing factors to energy consumption. Despite an apparent increasing need for energy conservation in science labs, a systematic investigation of avenues promoting energy conservation behavior in such labs appears absent in scholarly literature. This paper reports the findings of a recent study into the energy conservation knowledge, attitude and behavior of principle investigators, laboratory managers, and student lab workers at a tier 1 research university. The study investigates potential barriers as well as promising avenues to reducing energy consumption in science laboratories. The findings revealed: (1) an apparent lack of information about options for energy conservation in science labs, (2) existing operational barriers, (3) economic issues as barriers/motivators of energy conservation and (4) a widespread notion that cutting edge science may be compromised by energy conservation initiatives. - Highlights: ► Effective energy conservation and efficiency depend on social systems and human behaviors. ► Science laboratories use more energy per square foot than any other academic and research spaces. ► Time, money, quality control, and convenience overshadow personnel’s desire to save energy. ► Ignorance of conservation practices is a barrier to energy conservation in labs.

  17. Enabling Arctic Research Through Science and Engineering Partnerships

    Science.gov (United States)

    Kendall, E. A.; Valentic, T. A.; Stehle, R. H.

    2014-12-01

    Under an Arctic Research Support and Logistics contract from NSF (GEO/PLR), SRI International, as part of the CH2M HILL Polar Services (CPS) program, forms partnerships with Arctic research teams to provide data transfer, remote operations, and safety/operations communications. This teamwork is integral to the success of real-time science results and often allows for unmanned operations which are both cost-effective and safer. The CPS program utilizes a variety of communications networks, services and technologies to support researchers and instruments throughout the Arctic, including Iridium, VSAT, Inmarsat BGAN, HughesNet, TeleGreenland, radios, and personal locator beacons. Program-wide IT and communications limitations are due to the broad categories of bandwidth, availability, and power. At these sites it is essential to conserve bandwidth and power through using efficient software, coding and scheduling techniques. There are interesting new products and services on the horizon that the program may be able to take advantage of in the future such as Iridium NEXT, Inmarsat Xpress, and Omnispace mobile satellite services. Additionally, there are engineering and computer software opportunities to develop more efficient products. We will present an overview of science/engineering partnerships formed by the CPS program, discuss current limitations and identify future technological possibilities that could further advance Arctic science goals.

  18. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  19. Proceedings of the Sixth International Conference on Management Science and Engineering Management : Focused on Electrical and Information Technology

    CERN Document Server

    Yasinzai, Masoom; Lev, Benjamin

    2013-01-01

    Welcome to the proceedings of the Sixth International Conference on Management Science and Engineering Management (ICMSEM2012) held from November 11 to 14, 2012 at Quaid-i-Azam University, Islamabad, Pakistan and supported by Sichuan University (Chengdu, China), Quaid-i-Azam University (Islamabad, Pakistan) and The National Natural Science Foundation of China. The International Conference on Management Science and Engineering Management is the annual conference organized by the International Society of Management Science and Engineering Management. The goals of the Conference are to foster international research collaborations in Management Science and Engineering Management as well as to provide a forum to present current research results. The papers are classified into 8 sections: Computer and Networks, Information Technology, Decision Support System, Industrial Engineering, Supply Chain Management, Project Management, Manufacturing and Ecological Engineering. The key issues of the sixth ICMSEM cover variou...

  20. Earthquakes and Earthquake Engineering. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    An earthquake is a shaking of the ground resulting from a disturbance in the earth's interior. Seismology is the (1) study of earthquakes; (2) origin, propagation, and energy of seismic phenomena; (3) prediction of these phenomena; and (4) investigation of the structure of the earth. Earthquake engineering or engineering seismology includes the…

  1. Full-participation of students with physical disabilities in science and engineering laboratories.

    Science.gov (United States)

    Jeannis, Hervens; Joseph, James; Goldberg, Mary; Seelman, Katherine; Schmeler, Mark; Cooper, Rory A

    2018-02-01

    To conduct a literature review identifying barriers and facilitators students with physical disabilities (SwD-P) may encounter in science and engineering (S&E) laboratories. Publications were identified from 1991 to 2015 in ERIC, web of science via web of knowledge, CINAHL, SCOPUS, IEEEXplore, engineering village, business source complete and PubMed databases using search terms and synonyms for accommodations, advanced manufacturing, additive manufacturing, assistive technology (AT), barriers, engineering, facilitators, instructor, laboratory, STEM education, science, students with disabilities and technology. Twenty-two of the 233 publications that met the review's inclusion criteria were examined. Barriers and facilitators were grouped based on the international classification of functioning, disability and health framework (ICF). None of the studies directly found barriers or facilitators to SwD-P in science or engineering laboratories within postsecondary environments. The literature is not clear on the issues specifically related to SwD-P. Given these findings, further research (e.g., surveys or interviews) should be conducted to identify more details to obtain more substantial information on the barriers that may prevent SwD-P from fully participating in S&E instructional laboratories. Implications for Rehabilitation Students with disabilities remain underrepresented going into STEM careers. A need exist to help uncover barriers students with disabilities encounter in STEM laboratory. Environments. Accommodations and strategies that facilitate participation in STEM laboratory environments are promising for students with disabilities.

  2. Characterisation, control, and energy management of electrified turbocharged diesel engines

    International Nuclear Information System (INIS)

    Zhao, Dezong; Winward, Edward; Yang, Zhijia; Stobart, Richard; Steffen, Thomas

    2017-01-01

    Highlights: • A real-time energy management framework for electrified engines is proposed. • A multi-variable robust controller is designed. • Characterisation on the air system of electrified diesel engines is given. • Reliable for engine downsizing because of the promising transient performance. - Abstract: The electrification of engine components offers significant opportunities for fuel efficiency improvements. The electrified turbocharger is one of the most attractive options since it recovers part of the engine exhaust gas mechanical energy to assist boosting. Therefore, the engine can be downsized through improved transient responsiveness. In the electrified turbocharger, an electric machine is mounted on the turbine shaft and changes the air system dynamics, so characterisation of the new layout is essential. A systematic control solution is required to manage energy flows in the hybrid system. In this paper, a framework for characterisation, control, and energy management for an electrified turbocharged diesel engine is proposed. The impacts of the electric machine on fuel economy and air system variables are analysed. Based on the characterisation, a two-level control structure is proposed. A real-time energy management strategy is employed as the supervisory level controller to generate the optimal values of critical variables, while a model-based multi-variable controller is designed as the low level controller to track the values. The two controllers work together in a cascade to address both fuel economy optimisation and battery state-of-charge maintenance. The proposed control strategy is validated on a high fidelity physical engine model. The tracking performance shows the proposed framework is a promising solution in regulating the behavior of electrified engines.

  3. A Complex Formula: Girls and Women in Science, Technology, Engineering and Mathematics in Asia

    Science.gov (United States)

    Salmon, Aliénor

    2015-01-01

    What factors might be causing the low participation of women Science, Technology, Engineering and Mathematics (STEM) fields? What can be done to attract more girls and women into STEM in Asia and beyond? The report, "A Complex Formula. Girls and Women in Science, Technology, Engineering and Mathematics in Asia", answers three fundamental…

  4. Female and male Hispanic students majoring in science or engineering: Their stories describing their educational journeys

    Science.gov (United States)

    Brown, Susan Wightman

    National statistics clearly demonstrate an underrepresentation of minorities in the fields of science and engineering. Blacks, Hispanics, American Indians, and Asians do not typically choose science or engineering as their college major; therefore, there is a very small representation of these minorities in the science and engineering labor force. The decision not to major in science and engineering may begin as soon as the child can begin to recognize role models in the media. News stories, magazine articles, television programs, teachers, parents, administrators, and other agencies have painted the picture of a scientist or engineer as being dominantly a White male. Schools have continued society's portrayal by using curriculum, textbooks, role models, instructional strategies, and counseling that continues to encourage the White male to succeed in science and engineering, but discourages the minority students, male and female, from succeeding in these fields. In this qualitative study, 22 Hispanic students, 12 female and 10 male, who are majoring in science or engineering, were interviewed using Seidman's in-depth interviewing technique. These students were shadowed in their college science or engineering classes; their high school and college transcripts were analyzed; and, a focus group was brought together at the end of the interviewing process in order to allow interaction between the participants. The goal was to explore the educational journeys of the 22 Hispanic students. What made a difference in the journeys of these 22 students so that they could succeed in majors that have historically discouraged minority students? Seven themes emerged: family support, honors program, challenging and interactive curriculum, college preparation in high school courses, caring and kind teachers, small class size, and small communities. Gender comparison of the educational journeys documents these differences between the females and males: college preparation, mentoring

  5. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  6. Developing an Understanding of Higher Education Science and Engineering Learning Communities

    Science.gov (United States)

    Coll, Richard K.; Eames, Chris

    2008-01-01

    This article sets the scene for this special issue of "Research in Science & Technological Education", dedicated to understanding higher education science and engineering learning communities. We examine what the literature has to say about the nature of, and factors influencing, higher education learning communities. A discussion of…

  7. Using Food Science Demonstrations to Engage Students of All Ages in Science, Technology, Engineering, and Mathematics (STEM)

    Science.gov (United States)

    Schmidt, Shelly J.; Bohn, Dawn M.; Rasmussen, Aaron J.; Sutherland, Elizabeth A.

    2012-01-01

    The overarching goal of the Science, Technology, Engineering, and Mathematics (STEM) Education Initiative is to foster effective STEM teaching and learning throughout the educational system at the local, state, and national levels, thereby producing science literate citizens and a capable STEM workforce. To contribute to achieving this goal, we…

  8. Enrolling in Science and Engineering Academic Programs—Motivating and Deterring Factors

    Science.gov (United States)

    Pomazan, Valentina; Mihalaşcu, Doina; Petcu, Lucian C.; Gîrtu, Mihai A.

    2010-01-01

    We report the results of the student responses to a survey aiming to determine the factors influencing the young generation in choosing a career in science and technology. The goal of the study is twofold: to identify the motives that determine students to enroll in university programs in science and technology and to engage in applied science and engineering careers and to discover the barriers that manifest at different age levels, preventing students from making such choices. The study was conducted at the Ovidius University and the "Energetic" Technical High School, both in Constanta, Romania, with samples of 257 and 106 students respectively, based on a 38 item online questionnaire. The samples selected from the student population allow for a wide range of analyses with respect to gender, family and educational background, field of study, etc. We discuss the role of the raw models, parents, educators, and we comment on ways to increase student enrollment in science and engineering.

  9. Engineering, technology and science disciplines and gender difference: a case study among Indian students

    Science.gov (United States)

    Cheruvalath, Reena

    2018-01-01

    It is proposed to examine the argument that females cannot perform better in engineering and science fields because of their poor mathematical or logical reasoning. The major reason for the reduced number of females in the above fields in India is the socio-cultural aversion towards females choosing the field and restriction in providing higher education for them by their parents. The present study shows that the females who get the opportunity to study engineering and science perform equal to or better than their male counterparts. An analysis of CGPA (Cumulative Grade Point Average) of 2631 students who have completed their engineering or science programme in one of the top engineering colleges in India for five years shows that female academic performance is equal to or better than that of males. Mathematical, logical, verbal and mechanical reasoning are tested while calculating CGPA.

  10. Advances in Computer Science and Information Engineering Volume 2

    CERN Document Server

    Lin, Sally

    2012-01-01

    CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.

  11. Advances in Computer Science and Information Engineering Volume 1

    CERN Document Server

    Lin, Sally

    2012-01-01

    CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.

  12. International Colloquium on Sports Science, Exercise, Engineering and Technology 2014

    CERN Document Server

    Ismail, Shariman; Sulaiman, Norasrudin

    2014-01-01

    The proceeding is a collection of research papers presented at the International Colloquium on Sports Science, Exercise, Engineering and Technology (ICoSSEET2014), a conference dedicated to address the challenges in the areas of sports science, exercise, sports engineering and technology including other areas of sports, thereby presenting a consolidated view to the interested researchers in the aforesaid fields. The goal of this conference was to bring together researchers and practitioners from academia and industry to focus on the scope of the conference and establishing new collaborations in these areas. The topics of interest are as follows but are not limited to:1. Sports and Exercise Science • Sports Nutrition • Sports Biomechanics • Strength and Conditioning • Motor Learning and Control • Sports Psychology • Sports Coaching • Sports and Exercise Physiology • Sports Medicine and Athletic Trainer • Fitness and Wellness • Exercise Rehabilitation • Adapted Physical Activity...

  13. Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle

    Science.gov (United States)

    2015-08-03

    AND SUBTITLE Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle...Center program to be able to expose Science Technology, Engineering and Mathematics (STEM) space-inspired science centers for DC Metro beltway schools

  14. Computational Science and Innovation

    International Nuclear Information System (INIS)

    Dean, David Jarvis

    2011-01-01

    Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.

  15. Doctoral scientists and engineers working in energy-related activities, 1981

    International Nuclear Information System (INIS)

    1983-04-01

    The Department of Energy has a responsibility to help ensure the supply of highly trained personnel by providing supply and demand information on energy-related manpower to public and private planners and the general public. This report provides information about the number and characteristics of doctoral-level engineers and scientists working primarily in energy-related activities. The data for the year 1981 are part of the information base for a program of continuing studies of the employment and utilization of all scientists and engineers involved in energy-related activities. Information from these studies will provide input to consideration of actions necessary to ensure that adequate numbers of qualified scientists and engineers are available, when needed, to develop the nation's energy resources and technologies

  16. Infrastructure Development of the Science and Engineering Alliance (IDSEA) Annual Report 1995 - 1996

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-10-14

    This document is intended to serve two purposes: (1) a program status report on the progress the Science and Engineering Alliance (SEA) made since receiving initial Department of Energy (DOE) support for infrastructure development; and (2) a summary report of the activities administered by the SEA compiled in a single document under the auspices of the SEA Program. In 1995, a universal resource locator (URL) on the World Wide Web (WWW) was established for easy access to pertinent information about the SEA Program. The information pointed to by the URL is updated periodically, and the interested reader is urged to access the WWW for more information.

  17. Building a better search engine for earth science data

    Science.gov (United States)

    Armstrong, E. M.; Yang, C. P.; Moroni, D. F.; McGibbney, L. J.; Jiang, Y.; Huang, T.; Greguska, F. R., III; Li, Y.; Finch, C. J.

    2017-12-01

    Free text data searching of earth science datasets has been implemented with varying degrees of success and completeness across the spectrum of the 12 NASA earth sciences data centers. At the JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC) the search engine has been developed around the Solr/Lucene platform. Others have chosen other popular enterprise search platforms like Elasticsearch. Regardless, the default implementations of these search engines leveraging factors such as dataset popularity, term frequency and inverse document term frequency do not fully meet the needs of precise relevancy and ranking of earth science search results. For the PO.DAAC, this shortcoming has been identified for several years by its external User Working Group that has assigned several recommendations to improve the relevancy and discoverability of datasets related to remotely sensed sea surface temperature, ocean wind, waves, salinity, height and gravity that comprise a total count of over 500 public availability datasets. Recently, the PO.DAAC has teamed with an effort led by George Mason University to improve the improve the search and relevancy ranking of oceanographic data via a simple search interface and powerful backend services called MUDROD (Mining and Utilizing Dataset Relevancy from Oceanographic Datasets to Improve Data Discovery) funded by the NASA AIST program. MUDROD has mined and utilized the combination of PO.DAAC earth science dataset metadata, usage metrics, and user feedback and search history to objectively extract relevance for improved data discovery and access. In addition to improved dataset relevance and ranking, the MUDROD search engine also returns recommendations to related datasets and related user queries. This presentation will report on use cases that drove the architecture and development, and the success metrics and improvements on search precision and recall that MUDROD has demonstrated over the existing PO.DAAC search

  18. Driven by Beliefs: Understanding Challenges Physical Science Teachers Face When Integrating Engineering and Physics

    Science.gov (United States)

    Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.

    2014-01-01

    It is difficult to ignore the increased use of technological innovations in today's world, which has led to various calls for the integration of engineering into K-12 science standards. The need to understand how engineering is currently being brought to science classrooms is apparent and necessary in order to address these calls for integration.…

  19. Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-3)

    Science.gov (United States)

    Dulikravich, George S. (Editor)

    1991-01-01

    Papers from the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES) are presented. The papers discuss current research in the general field of inverse, semi-inverse, and direct design and optimization in engineering sciences. The rapid growth of this relatively new field is due to the availability of faster and larger computing machines.

  20. The Retention of Women in Science, Technology, Engineering, and Mathematics: A Framework for Persistence

    Science.gov (United States)

    White, Jeffry L.; Massiha, G. H.

    2016-01-01

    Women make up 47% of the total U.S. workforce, but are less represented in engineering, computer sciences, and the physical sciences. In addition, race and ethnicity are salient factors and minority women comprise fewer than 1 in 10 scientist or engineer. In this paper, a review of the literature is under taken that explores the many challenges…

  1. Thermochemical Surface Engineering: A Playground for Science and Innovation

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Jellesen, Morten Stendahl

    2017-01-01

    Surface engineering by thermochemical processing is the intentional change of the composition of a material at elevated temperature with the purpose to improve materials performance. In thermochemical processing components from the starting material are essential in the development of the phases...... at the surface. Current research and innovation activities are used to exemplify thermochemical surface engineering and the interplay of science and innovation. The examples given encompass aspects of the synthesis of extremely porous materials, low temperature surface hardening of stainless steel, surface...

  2. 13th International Conference on Integral Methods in Science and Engineering

    CERN Document Server

    Kirsch, Andreas

    2015-01-01

    This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering.  Written by internationally recognized researchers, the chapters in this book are based on talks given at the Thirteenth International Conference on Integral Methods in Science and Engineering, held July 21–25, 2014, in Karlsruhe, Germany.   A broad range of topics is addressed, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches.   This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.

  3. Energy Storage. Teachers Guide. Science Activities in Energy.

    Science.gov (United States)

    Jacobs, Mary Lynn, Ed.

    Included in this science activities energy package for students in grades 4-10 are 12 activities related to energy storage. Each activity is outlined on the front and back of a single sheet and is introduced by a key question. Most of the activities can be completed in the classroom with materials readily available in any community. Among the…

  4. Energy secretary Spencer Abraham announces department of energy 20-year science facility plan

    CERN Multimedia

    2003-01-01

    "In a speech at the National Press Club today, U.S. Energy Secretary Spencer Abraham outlined the Department of Energy's Office of Science 20-year science facility plan, a roadmap for future scientific facilities to support the department's basic science and research missions. The plan prioritizes new, major scientific facilities and upgrades to current facilities" (1 page).

  5. Energy conversion in engines and machines. 7. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Kalide, W.

    1989-01-01

    In view of the modern engineers training methods in which the emphasis is laid on basic training, the book is a profound and easily understandable introduction to the complex field of energy conversion. First a simple introduction is given to the physical fundamentals of thermodynamics and fluid dynamics. The technical processes in piston engines and turbomachinery are explained with particular regard to a comprehensible and physically correct description of the energy conversion processes. Engines are discussed at length, due to the fact that knowledge on primary and secondary energy conversion is an important part of engineers training in this age of energy crises. Types of engines and machines are presented according to their present importance. The new edition covers further some environmental problems, as waste heat, noise and air pollution. (orig./GL) With 313 figs., 11 tabs [de

  6. Energy: can science change the deal?

    International Nuclear Information System (INIS)

    Papon, Pierre

    2012-01-01

    This document briefly presents a book in which the author tries to identify which will be the technological breakthroughs for the emergence of new energy productions or new modes of energy consumption. He notably addresses the issue of future engines and of new fuels, nuclear energy, the photovoltaic sector, electricity storage and electricity distribution by means of adapted grids; and the relationship between tomorrow's energy and tomorrow's society

  7. Jackson State University (JSU)’s Center of Excellence in Science, Technology, Engineering, and Mathematics Education (CESTEME)

    Science.gov (United States)

    2016-01-08

    Actuarial Science Taylor, Triniti Lanier Alcorn State University Animal Science Tchounwou, Hervey Madison Central Jackson State University Computer...for Public Release; Distribution Unlimited Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering...Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering, and Mathematics Education (CESTEME) Report

  8. The Generalized Principle of the Golden Section and its applications in mathematics, science, and engineering

    International Nuclear Information System (INIS)

    Stakhov, A.P.

    2005-01-01

    The 'Dichotomy Principle' and the classical 'Golden Section Principle' are two of the most important principles of Nature, Science and also Art. The Generalized Principle of the Golden Section that follows from studying the diagonal sums of the Pascal triangle is a sweeping generalization of these important principles. This underlies the foundation of 'Harmony Mathematics', a new proposed mathematical direction. Harmony Mathematics includes a number of new mathematical theories: an algorithmic measurement theory, a new number theory, a new theory of hyperbolic functions based on Fibonacci and Lucas numbers, and a theory of the Fibonacci and 'Golden' matrices. These mathematical theories are the source of many new ideas in mathematics, philosophy, botanic and biology, electrical and computer science and engineering, communication systems, mathematical education as well as theoretical physics and physics of high energy particles

  9. The role of nuclear science and engineering in the twenty first century

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    1998-01-01

    For the sustainable development of the world and the welfare of mankind in the 21st century, nuclear energy and radiation including particle and photon beams must play an important role, although there is a large negative side in them. As in the 20th century, the activities of both research and education in Nuclear Science and Engineering (NSE) should be positively promoted and enhanced for safer nuclear energy and wider utilization of radiation and various beams and for the diminishment of their negative side. In this paper, a brief history of NSE in the 20th century and its implications are given first. As an example, the NSE activity in the 100 years' history of Kyoto University is shown. And then the 40 years' development of NSE in Japan is briefly introduced. Finally, presented is the way that the research and education in NSE in the 21st century should be. (author)

  10. Assessment of the Fusion Energy Sciences Program. Final Report

    International Nuclear Information System (INIS)

    2001-01-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study

  11. Elementary science teachers' integration of engineering design into science instruction: results from a randomised controlled trial

    Science.gov (United States)

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-07-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197-210] guidelines for ED PD and promoted inclusion of ED within science teaching. The treatment group included 219 teachers from 83 schools. Participants in the control group included 145 teachers from 60 schools in a mid-Atlantic state. Data sources, including lesson overviews and videotaped classroom observations, were analysed quantitatively to determine the frequency of ED integration and qualitatively to describe how teachers incorporated ED into instruction after attending the PD. Results indicated more participants who attended the PD (55%) incorporated ED into instruction compared with the control participants (24%), χ2(1, n = 401) = 33.225, p .05) through ED lessons. In ED lessons, students typically conducted research and created and tested initial designs. The results suggest the PD supported teachers in implementing ED into their science instruction and support the efficacy of using Cunningham and Carlsen's (2014) guidelines to inform ED PD design.

  12. Search and rescue in collapsed structures: engineering and social science aspects.

    Science.gov (United States)

    El-Tawil, Sherif; Aguirre, Benigno

    2010-10-01

    This paper discusses the social science and engineering dimensions of search and rescue (SAR) in collapsed buildings. First, existing information is presented on factors that influence the behaviour of trapped victims, particularly human, physical, socioeconomic and circumstantial factors. Trapped victims are most often discussed in the context of structural collapse and injuries sustained. Most studies in this area focus on earthquakes as the type of disaster that produces the most extensive structural damage. Second, information is set out on the engineering aspects of urban search and rescue (USAR) in the United States, including the role of structural engineers in USAR operations, training and certification of structural specialists, and safety and general procedures. The use of computational simulation to link the engineering and social science aspects of USAR is discussed. This could supplement training of local SAR groups and USAR teams, allowing them to understand better the collapse process and how voids form in a rubble pile. A preliminary simulation tool developed for this purpose is described. © 2010 The Author(s). Journal compilation © Overseas Development Institute, 2010.

  13. Proceedings of the Nuclear Engineering Science and Technology - NESTeT 2008 Transactions

    International Nuclear Information System (INIS)

    2008-01-01

    This important European Nuclear Society (ENS) conference is dedicated to networking in nuclear education and training across the fields of engineering, science and technology. An OECD study in 2000, 'Nuclear Education and Training: Cause for Concern?' recommended the following: -Governments have a strategic role to play in energy planning. Governments should contribute to, if not take responsibility for, integrated planning to ensure that necessary human resources are available. There should also be adequate resources for vibrant nuclear research and development programmes including modernisation of facilities; -The provision of basic and attractive educational programmes at university level is among the challenges of revitalising nuclear education; -Rigorous training programmes are needed to meet specific needs and exciting research projects should also be developed to attract quality students and employees to research institutes; -Industry, research institutes and universities need to work together to better co-ordinate efforts to encourage the younger generation and develop and promote a programme of collaboration in nuclear education and training. There should also be mechanisms for sharing best practices in promoting nuclear courses. The world is responding. From the Americas to Europe and Asia networks have been established to maintain nuclear knowledge and to ensure there is a suitably qualified nuclear workforce for the future. NESTet 2008 is designed to facilitate an exchange of information, collaboration and the sharing of best practices in nuclear education and training in engineering science and technology. (authors)

  14. The Benefits of Using Engineering as a Context for Science Lessons

    Science.gov (United States)

    Taylor, Gemma

    2014-01-01

    "Real life" learning has often been suggested as a good method for engaging students in the science curriculum. In this article, an evidence-based rationale for the use of engineering as a context for "real life" science study is explained. This has been achieved through development work undertaken by the National Science…

  15. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei; Pistikopoulos, Efstratios N. [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li, Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach. (author)

  16. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    International Nuclear Information System (INIS)

    Liu Pei; Pistikopoulos, Efstratios N.; Li Zheng

    2010-01-01

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  17. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu Pei [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Pistikopoulos, Efstratios N., E-mail: e.pistikopoulos@imperial.ac.u [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  18. Myths and Motives behind STEM (Science, Technology, Engineering, and Mathematics) Education and the STEM-Worker Shortage Narrartive

    Science.gov (United States)

    Stevenson, Heidi J.

    2014-01-01

    The Business Roundtable (2013) website presents a common narrative in regard to STEM (Science, Technology, Engineering and Mathematics) education, "American students are falling behind in math and science. Fewer and fewer students are pursuing careers in science, technology, engineering and mathematics, and American students are performing at…

  19. The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education.

    OpenAIRE

    Stoet, G; Geary, DC

    2018-01-01

    The underrepresentation of girls and women in science, technology, engineering, and mathematics (STEM) fields is a continual concern for social scientists and policymakers. Using an international database on adolescent achievement in science, mathematics, and reading ( N = 472,242), we showed that girls performed similarly to or better than boys in science in two of every three countries, and in nearly all countries, more girls appeared capable of college-level STEM study than had enrolled. P...

  20. The Gender and Race-Ethnicity of Faculty in Top Science and Engineering Research Departments

    Science.gov (United States)

    Beutel, Ann M.; Nelson, Donna J.

    This study examines the gender and racial-ethnic composition of faculty in top research departments for science and engineering "S-E - disciplines. There are critical masses of at least 15% women in top research departments in biological sciences, psychology, and social sciences but not in physical sciences and engineering. Blacks and Hispanics together make up only 4.1% of the faculty in our study. Black and Hispanic females are the most poorly represented groups; together, they make up only 1% of the faculty in top S-E research departments. For most S-E disciplines, less than 15% of full professors in top research departments are women or non-Whites.

  1. Metrology as part and parcel of training programmes for science and engineering

    NARCIS (Netherlands)

    Regtien, Paulus P.L.

    2007-01-01

    At many universities and training institutes education in metrology or measurement science is in strong competition with upcoming disciplines. Its importance for science and engineering remains, however, evident. Advanced instruments make measuring almost a routine activity, but it is shown that a

  2. A Case Study of Coaching in Science, Technology, Engineering, and Math Professional Development

    Science.gov (United States)

    DeChenne, Sue Ellen; Nugent, Gwen; Kunz, Gina; Luo, Linlin; Berry, Brandi; Craven, Katherine; Riggs, April

    2012-01-01

    A professional development experience for science and mathematics teachers that included coaches was provided for ten science and math teachers. This professional development experience had the teachers develop a lesson that utilized the engineering context to teach a science or mathematics concept through guided inquiry as an instructional…

  3. Research in progress at the Institute for Computer Applications in Science and Engineering

    Science.gov (United States)

    1987-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April 1, 1987 through October 1, 1987.

  4. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  5. Gender Differences in the Consistency of Middle School Students' Interest in Engineering and Science Careers

    Science.gov (United States)

    Ing, Marsha; Aschbacher, Pamela R.; Tsai, Sherry M.

    2014-01-01

    This longitudinal study analyzes survey responses in seventh, eighth, and ninth grade from diverse public school students (n = 482) to explore gender differences in engineering and science career preferences. Females were far more likely to express interest in a science career (31%) than an engineering career (13%), while the reverse was true for…

  6. Beyond access to transformations: A cross-national analysis of women in science and engineering education, 1970--2000

    Science.gov (United States)

    Wotipka, Christine Min

    2001-12-01

    Over the years, attention to the issue of women in science has tended to focus on individual and organizational efforts to encourage women's greater participation in science and engineering fields of study and occupations. With more intense globalization processes that increasingly shape and are shaped by science, national- and global-level understandings of the situation of women in science and engineering as well as methods to boost their greater and more equal participation in these fields are necessary. This study is a cross-national and longitudinal study of women's participation in science and engineering fields of study at the higher education level. In order to explain the growth in women's participation in these fields of study between 1972--1992, I use a world society theoretical perspective to argue that national linkages to global models regarding women's educational equality and women in science may positively influence their participation in these fields. In multivariate statistical analyses, women's participation in higher education, measured as female enrollment in non-science and non-engineering fields of study, exerted a positive effect on women in science and engineering as did male enrollment in science and engineering higher education. The fact that linkage variables and those measuring women's status and other national-level factors were not found to be influential suggests that world-level factors may be contributing to women's greater participation in these fields. To better understand processes at this level, I use feminist critiques of science to examine the efforts made by the United Nations Educational, Scientific, and Cultural Organization (UNESCO), the United Nations Children's Fund (UNICEF), and the World Bank to address women in science and engineering education over a thirty year time period. My examination of their publications as well as conference declarations and platforms of action from ten international conferences finds a

  7. Computational error and complexity in science and engineering computational error and complexity

    CERN Document Server

    Lakshmikantham, Vangipuram; Chui, Charles K; Chui, Charles K

    2005-01-01

    The book "Computational Error and Complexity in Science and Engineering” pervades all the science and engineering disciplines where computation occurs. Scientific and engineering computation happens to be the interface between the mathematical model/problem and the real world application. One needs to obtain good quality numerical values for any real-world implementation. Just mathematical quantities symbols are of no use to engineers/technologists. Computational complexity of the numerical method to solve the mathematical model, also computed along with the solution, on the other hand, will tell us how much computation/computational effort has been spent to achieve that quality of result. Anyone who wants the specified physical problem to be solved has every right to know the quality of the solution as well as the resources spent for the solution. The computed error as well as the complexity provide the scientific convincing answer to these questions. Specifically some of the disciplines in which the book w...

  8. Engineering for Life Sciences: A Fruitful Collaboration Enabled by Chemistry.

    Science.gov (United States)

    Niemeyer, Christof M

    2017-02-13

    "… The interaction of engineering and life sciences has a long history that is characterized by a mutual dependency. The role of chemistry in these developments is to connect the engineers' instrumentation with the life scientists' specimens. This very successful partnership will further continue to produce essential and innovative solutions for future challenges …" Read more in the Guest Editorial by Christof M. Niemeyer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Conference handbook. Seventh Conference on Nuclear Science and Engineering in Australia

    International Nuclear Information System (INIS)

    2007-01-01

    The Australian Nuclear Association (ANA) inaugurated a series of biennial national conferences in 1995 to be held in alternate years to the series of international Pacific Basin Nuclear Conferences, of which the ANA hosted the Ninth in the series in Sydney in May 1994 and the Fifteenth in Sydney in 2006. The main objective of these national conferences is to present information on important aspects of the peaceful uses of nuclear science and engineering in Australia and to place this information in a world context and in a readily understood form. These conferences have the general title of Nuclear Science and Engineering in Australia and have consisted mainly of papers invited from leading experts in areas of topical interest in nuclear science and technology supported by contributed poster papers. This seventh conference in 2007 has the special theme A Nuclear Future and also includes papers by invited speakers and contributed posters

  10. Style and Ethics of Communication in Science and Engineering

    CERN Document Server

    Humphrey, Jay D

    2008-01-01

    Scientists and engineers seek to discover and disseminate knowledge so that it can be used to improve the human condition. Style and Ethics of Communication in Science and Engineering serves as a valuable aid in this pursuit-it can be used as a textbook for undergraduate or graduate courses on technical communication and ethics, a reference book for senior design courses, or a handbook for young investigators and beginning faculty members. In addition to presenting methods for writing clearly and concisely and improving oral presentations, this compact book provides practical guidelines for pr

  11. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1992-09-01

    The programs of the Office of Energy Research provide basic science support for energy technologies as well as advancing understanding in general science and training future scientists. Energy Research provides insights into fundamental science and associated phenomena and develops new or advanced concepts and techniques. Research of this type has been supported by the Department of Energy and its predecessors for over 40 years and includes research in the natural and physical sciences, including high energy and nuclear physics; magnetic fusion energy; biological and environmental research; and basic energy sciences research in the materials, chemical, and applied mathematical sciences, engineering and geosciences, and energy biosciences. These basic research programs help build the science and technology base that underpins energy development by Government and industry

  12. Second-Career Science Teachers' Classroom Conceptions of Science and Engineering Practices Examined through the Lens of Their Professional Histories

    Science.gov (United States)

    Antink-Meyer, Allison; Brown, Ryan A.

    2017-01-01

    Science standards in the U.S. have shifted to emphasise science and engineering process skills (i.e. specific practices within inquiry) to a greater extent than previous standards' emphases on broad representations of inquiry. This study examined the alignment between second-career science teachers' personal histories with the latter and examined…

  13. Basic Science for a Secure Energy Future

    Science.gov (United States)

    Horton, Linda

    2010-03-01

    Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.

  14. Women's Leadership in Science, Technology, Engineering and Mathematics: Barriers to Participation

    Science.gov (United States)

    McCullough, Laura

    2011-01-01

    Despite gains overall, women are still under-represented in leadership positions in science, technology, engineering, and mathematics (STEM) fields. Data in the US suggest around one-quarter of deans and department heads are women; in science this drops to nearly 1 in 20. Part of this problem of under-representation stems from the population pool:…

  15. Exascale for Energy: The Role of Exascale Computing in Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    2010-07-15

    How will the United States satisfy energy demand in a tightening global energy marketplace while, at the same time, reducing greenhouse gas emissions? Exascale computing -- expected to be available within the next eight to ten years ? may play a crucial role in answering that question by enabling a paradigm shift from test-based to science-based design and engineering. Computational modeling of complete power generation systems and engines, based on scientific first principles, will accelerate the improvement of existing energy technologies and the development of new transformational technologies by pre-selecting the designs most likely to be successful for experimental validation, rather than relying on trial and error. The predictive understanding of complex engineered systems made possible by computational modeling will also reduce the construction and operations costs, optimize performance, and improve safety. Exascale computing will make possible fundamentally new approaches to quantifying the uncertainty of safety and performance engineering. This report discusses potential contributions of exa-scale modeling in four areas of energy production and distribution: nuclear power, combustion, the electrical grid, and renewable sources of energy, which include hydrogen fuel, bioenergy conversion, photovoltaic solar energy, and wind turbines. Examples of current research are taken from projects funded by the U.S. Department of Energy (DOE) Office of Science at universities and national laboratories, with a special focus on research conducted at Lawrence Berkeley National Laboratory.

  16. The LAILAPS search engine: a feature model for relevance ranking in life science databases.

    Science.gov (United States)

    Lange, Matthias; Spies, Karl; Colmsee, Christian; Flemming, Steffen; Klapperstück, Matthias; Scholz, Uwe

    2010-03-25

    Efficient and effective information retrieval in life sciences is one of the most pressing challenge in bioinformatics. The incredible growth of life science databases to a vast network of interconnected information systems is to the same extent a big challenge and a great chance for life science research. The knowledge found in the Web, in particular in life-science databases, are a valuable major resource. In order to bring it to the scientist desktop, it is essential to have well performing search engines. Thereby, not the response time nor the number of results is important. The most crucial factor for millions of query results is the relevance ranking. In this paper, we present a feature model for relevance ranking in life science databases and its implementation in the LAILAPS search engine. Motivated by the observation of user behavior during their inspection of search engine result, we condensed a set of 9 relevance discriminating features. These features are intuitively used by scientists, who briefly screen database entries for potential relevance. The features are both sufficient to estimate the potential relevance, and efficiently quantifiable. The derivation of a relevance prediction function that computes the relevance from this features constitutes a regression problem. To solve this problem, we used artificial neural networks that have been trained with a reference set of relevant database entries for 19 protein queries. Supporting a flexible text index and a simple data import format, this concepts are implemented in the LAILAPS search engine. It can easily be used both as search engine for comprehensive integrated life science databases and for small in-house project databases. LAILAPS is publicly available for SWISSPROT data at http://lailaps.ipk-gatersleben.de.

  17. FEATURES TERMINOLOGY IN MODERN MEDICAL SCIENCE AND ENGINEERING

    Directory of Open Access Journals (Sweden)

    Zlepko S.M.

    2016-02-01

    Full Text Available The article is devoted to the problem of compliance with terms and definitions in medical science and engineering to the actual essence. One of the components of successful development of these trends is adequate linguistic support of the process of development and operation, basic level of determination and terms which indicated certain principles, approaches, processes and so on.

  18. A biotic game design project for integrated life science and engineering education.

    Science.gov (United States)

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  19. An Efficient Energy Regeneration System for Diesel Engines

    OpenAIRE

    HUANG, Ying; YANG, Fuyuan; OUYANG, Minggao; CHEN, Lin; GAO, Guojing; He, Yongsheng

    2010-01-01

    In order to further improve the fuel economy of vehicles, an efficient energy regeneration system for diesel engines is designed and constructed. An additional automatic clutch is added between the engine and the motor in a conventional ISG (Integrated Starter and Generator) system. During regenerative braking, the clutch can be disengaged and the engine braking is avoided. Control strategy is redesigned to determine the braking torque distribution and coordinate all the components. The gener...

  20. The Generalized Principle of the Golden Section and its applications in mathematics, science, and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Stakhov, A.P. [International Club of the Golden Section, 6 McCreary Trail, Bolton, ON, L7E 2C8 (Canada)] e-mail: goldenmuseum@rogers.com

    2005-10-01

    The 'Dichotomy Principle' and the classical 'Golden Section Principle' are two of the most important principles of Nature, Science and also Art. The Generalized Principle of the Golden Section that follows from studying the diagonal sums of the Pascal triangle is a sweeping generalization of these important principles. This underlies the foundation of 'Harmony Mathematics', a new proposed mathematical direction. Harmony Mathematics includes a number of new mathematical theories: an algorithmic measurement theory, a new number theory, a new theory of hyperbolic functions based on Fibonacci and Lucas numbers, and a theory of the Fibonacci and 'Golden' matrices. These mathematical theories are the source of many new ideas in mathematics, philosophy, botanic and biology, electrical and computer science and engineering, communication systems, mathematical education as well as theoretical physics and physics of high energy particles.

  1. Engagement in Science and Engineering through Animal-Based Curricula

    Science.gov (United States)

    Mueller, Megan Kiely; Byrnes, Elizabeth M.; Buczek, Danielle; Linder, Deborah E.; Freeman, Lisa M.; Webster, Cynthia R. L.

    2018-01-01

    One of the persistent challenges in science, technology, engineering, and math (STEM) education is increasing interest, learning, and retention, particularly with regard to girls and students in underserved areas. Educational curricula that promote process and content knowledge development as well as interest and engagement in STEM are critical in…

  2. Materials Science Programs

    International Nuclear Information System (INIS)

    1990-03-01

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  3. Introduction to probability and statistics for science, engineering, and finance

    CERN Document Server

    Rosenkrantz, Walter A

    2008-01-01

    Data Analysis Orientation The Role and Scope of Statistics in Science and Engineering Types of Data: Examples from Engineering, Public Health, and Finance The Frequency Distribution of a Variable Defined on a Population Quantiles of a Distribution Measures of Location (Central Value) and Variability Covariance, Correlation, and Regression: Computing a Stock's Beta Mathematical Details and Derivations Large Data Sets Probability Theory Orientation Sample Space, Events, Axioms of Probability Theory Mathematical Models of Random Sampling Conditional Probability and Baye

  4. Contemporary issues in systems science and engineering

    CERN Document Server

    Zhou, M; Weijnen, M

    2015-01-01

    This volume provides a comprehensive overview of all important areas in systems science and engineering and poses the issues and challenges in these areas in order to deal with ever-increasingly complex systems and newly emergent applications. The topics range from discrete event systems, distributed intelligent systems, grey systems, and enterprise information systems to conflict resolution, robotics and intelligent sensing, smart grids, and system of systems approaches. Individual chapters are written by leading experts in the field.

  5. Nonlinear approaches in engineering applications 2

    CERN Document Server

    Jazar, Reza N

    2013-01-01

    Provides updated principles and applications of the nonlinear approaches in solving engineering and physics problems Demonstrates how nonlinear approaches may open avenues to better, safer, cheaper systems with less energy consumption Has a strong emphasis on the application, physical meaning, and methodologies of nonlinear approaches in different engineering and science problems

  6. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    Science.gov (United States)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  7. A Short Course in Problems in Applied Science and Engineering.

    Science.gov (United States)

    Nicholson, H. W.

    1987-01-01

    Provides a description of a concentrated four-week term course that provided students with opportunities of association with applied science and engineering professionals. Reviews the program's organizational structure, project requirements, and summarizes students reactions to the course. (ML)

  8. Summary of research in applied mathematics, numerical analysis and computer science at the Institute for Computer Applications in Science and Engineering

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period October 1, 1983 through March 31, 1984 is summarized.

  9. Report of the evaluation by the Ad Hoc Review Committee on Computational Science and Engineering. Result evaluation in fiscal year 2000

    International Nuclear Information System (INIS)

    2001-06-01

    The Research Evaluation Committee, which consisted of 14 members from outside of the Japan Atomic Energy Research Institute (JAERI), set up an Ad Hoc Review Committee on Computational Science and Engineering in accordance with the 'Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations in order to evaluate the R and D accomplishments achieved for five years from Fiscal Year 1995 to Fiscal Year 1999 at Center for Promotion of Computational Science and Engineering of JAERI. The Ad Hoc Review Committee consisted of seven specialists from outside of JAERI. The Ad Hoc Review Committee conducted its activities from December 2000 to March 2001. The evaluation was performed on the basis of the materials submitted in advance and of the oral presentations made at the Ad Hoc Review Committee meeting which was held on December 27, 2000, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Ad Hoc Review Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on March 16, 2001. This report describes the result of the evaluation by the Ad Hoc Review Committee on Computational Science and Engineering. (author)

  10. Bridging the Design-Science Gap with Tools: Science Learning and Design Behaviors in a Simulated Environment for Engineering Design

    Science.gov (United States)

    Chao, Jie; Xie, Charles; Nourian, Saeid; Chen, Guanhua; Bailey, Siobhan; Goldstein, Molly H.; Purzer, Senay; Adams, Robin S.; Tutwiler, M. Shane

    2017-01-01

    Many pedagogical innovations aim to integrate engineering design and science learning. However, students frequently show little attempt or have difficulties in connecting their design projects with the underlying science. Drawing upon the Cultural-Historical Activity Theory, we argue that the design tools available in a learning environment…

  11. University/Science Center Collaborations (A Science Center Perspective): Developing an Infrastructure of Partnerships with Science Centers to Support the Engagement of Scientists and Engineers in Education and Outreach for Broad Impact

    Science.gov (United States)

    Marshall, Eric

    2009-03-01

    Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.

  12. 76 FR 20051 - Advisory Committee for Computer and Information; Science and Engineering; Notice of Meeting

    Science.gov (United States)

    2011-04-11

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information; Science and... Committee for Computer and Information Science and Engineering--(1115). Date and Time: May 6, 2011 8:30 a.m... Meeting: Open. Contact Person: Carmen Whitson, Directorate for Computer and Information, Science and...

  13. 78 FR 64255 - Advisory Committee for Computer and Information Science and Engineering; Cancellation of Meeting

    Science.gov (United States)

    2013-10-28

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and... National Science Foundation is issuing this notice to cancel the October 31 to November 1, 2013 Advisory Committee for Computer and Information Science and Engineering meeting. The public notice for this committee...

  14. Science, Technology, Engineering, and Mathematics (STEM) Education Issues and Legislative Options

    National Research Council Canada - National Science Library

    Kuenzi, Jeffrey J; Matthews, Christine M; Mangan, Bonnie F

    2006-01-01

    There is growing concern that the United States is not preparing a sufficient number of students, teachers, and practitioners in the areas of science, technology, engineering, and mathematics (STEM...

  15. Teaching Interdisciplinary Engineering and Science Educations

    DEFF Research Database (Denmark)

    Kofoed, Lise B.; S. Stachowicz, Marian

    2014-01-01

    In this paper we study the challenges for the involved teachers who plan and implement interdisciplinary educations. They are confronted with challenges regarding their understanding of using known disciplines in a new interdisciplinary way and see the possibilities of integrating disciplines when...... creating new knowledge. We will address the challenges by defining the term interdisciplinary in connection with education, and using the Problem Based Learning educational approach and experience from the engineering and science educational areas to find the obstacles. Two cases based on interdisciplinary...... and understand how different expertise can contribute to an interdisciplinary education....

  16. Management Science/Industrial Engineering Techniques to Reduce Food Costs.

    Science.gov (United States)

    Greenberg, Murray

    This paper examines the contributions of Industrial Engineering and Management Science toward reduction in the cost of production and distribution of food. Food processing firms were requested to respond to a questionnaire which asked for examples of their use of various operations research tools and information on the number of operations…

  17. Undergraduate Origins of Recent Science and Engineering Doctorate Recipients.

    Science.gov (United States)

    Hill, Susan T.; And Others

    Because undergraduate education is the foundation for graduate studies, it is important to know where our Nation's science and engineering (S&E) doctorate recipients are receiving their undergraduate training. Specifically, this report addresses the following broad questions: (1) What are the undergraduate origins of S&E doctorate holders? (2)…

  18. Evaluation of Students' Energy Conception in Environmental Science

    Science.gov (United States)

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  19. Opportunities and challenges in applying the compressive sensing framework to nuclear science and engineering

    International Nuclear Information System (INIS)

    Mille, Matthew; Su, Lin; Yazici, Birsen; Xu, X. George

    2011-01-01

    Compressive sensing is a 5-year old theory that has already resulted in an extremely large number of publications in the literature and that has the potential to impact every field of engineering and applied science that has to do with data acquisition and processing. This paper introduces the mathematics, presents a simple demonstration of radiation dose reduction in x-ray CT imaging, and discusses potential application in nuclear science and engineering. (author)

  20. Identifying barriers to Science, Technology, Society and environment (STSE) educational goals and pedagogy in science education: A case study of UMASS Lowell undergraduate engineering

    Science.gov (United States)

    Phaneuf, Tiffany

    The implementation of sustainable development in higher education is a global trend. Engineers, as gatekeepers of technological innovation, confront increasingly complex world issues ranging from economic and social to political and environmental. Recently, a multitude of government reports have argued that solving such complex problems requires changes in the pedagogy of engineering education, such as that prescribed by the Science, Technology, Society, and education (STS) movement that grew out of the environmental movement in the 70s. In STS students are engaged in the community by understanding that scientific progress is innately a sociopolitical process that involves dimensions of power, wealth and responsibility. United States accreditation criteria now demand "the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context" (ABET Engineering Accreditation Commission 2005). With such emphasis on STS education as necessary to address complex world issues, it is vital to assess the barriers in the traditional engineering curriculum that may inhibit the success of such educational reform. This study identifies barriers to STS goals and pedagogy in post secondary science education by using the Francis College of Engineering at UMASS Lowell as a single case study. The study draws on existing literature to develop a theoretical framework for assessing four hypothesized barriers to STS education in undergraduate engineering. Identification of barriers to STS education in engineering generates a critical reflection of post secondary science education and its role in preparing engineers to be active citizens in shaping a rapidly globalizing world. The study offers policy recommendations for enabling post secondary science education to incorporate STS education into its curriculum.

  1. A New Open Access Journal of Marine Science and Engineering

    Directory of Open Access Journals (Sweden)

    Anthony S. Clare

    2013-03-01

    Full Text Available The oceans cover approximately 71% of the Earth’s surface and contain more than 97% of the planet’s water, representing over 100 times more liveable volume than the terrestrial habitat. Approximately fifty percent of the species on the planet occupy this ocean biome, much of which remains unexplored. The health and sustainability of the oceans are threatened by a combination of pressures associated with climate change and the ever-increasing demands we place on them for food, recreation, trade, energy and minerals. The biggest threat, however, is the pace of change to the oceans, e.g., ocean acidification, which is unprecedented in human history. Consequently, there has never been a greater need for the rapid and widespread dissemination of the outcomes of research aimed at improving our understanding of how the oceans work and solutions to their sustainable use. It is our hope that this new online, open-access Journal of Marine Science and Engineering will go some way to fulfilling this need. [...

  2. Social Science Energy Review: a quarterly publication. Vol. 1, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Gould, L C [ed.

    1978-01-01

    The Yale University Institution for Social and Policy Studies Mapping Project on Energy and the Social Sciences brings together an interdisciplinary group of Yale and visiting faculty, ISPS staff, and Yale graduate students meeting weekly to discuss topics in energy and the social sciences and to study and evaluate the importance for social policy of existing and potential social science energy research projects. The primary purposes of the project are: (1) to encourage timely social science investigations into important energy-related social issues, (2) to explore the present and potential roles for academic social science research in energy decision-making, and (3) to advise DOE and other government personnel in the planning of social science energy research. In addition to an overview of the Mapping Project, this report contains the following: (1) Social Science Research on ''The Energy Boomtown,'' by Leroy C. Gould--contains literature survey (66 references) and conveys Mapping Project's suggestions as to priorities on future social science research on ''energy boomtowns.'' (2) Men and Coal in Appalachia: a Survey of the Academic Literature, by Peter B. Allison (bibliography cites 7 journals, 3 government documents, and 70 books and articles). (3) Energy Research in Psychology, by John Sweeney (reprint of review of current status of energy research in psychology that appeared in December, 1977 issue of APA Monitor under the title, ''Boosting Energy Research'').

  3. Outline of scientific and research activities of the Faculty of Nuclear Science and Physical Engineering

    International Nuclear Information System (INIS)

    Loncar, G.

    1982-01-01

    A survey is presented of scientific and research activities carried out in the departments of the Faculty of Nuclear Science and Physical Engineering of the Czech Technical University in Prague. The first section lists the principal results achieved in the course of the 6th Five-Year Plan in Physical Electronics, Solid State Engineering, Materials Structure and Properties, Nuclear Physics, Theory and Technology of Nuclear Reactors, Dosimetry and Application of Ionizing Radiation and Nuclear Chemistry. The second part gives a summary of scientific and research work carried out in the Faculty of Nuclear Science and Physical Engineering in the 7th Five-Year Plan in all branches of science represented. The Faculty's achievements in international scientific cooperation are assessed. (author)

  4. Awakening awareness on energy consumption in software engineering

    NARCIS (Netherlands)

    Jagroep, Erik; Broekman, Jordy; Van Der Werf, Jan Martijn E.M.; Brinkkemper, Sjaak; Lago, Patricia; Blom, Leen; Van Vliet, Rob

    2017-01-01

    Software producing organizations have the ability to address the energy impact of their ICT solutions during the development process. However, while industry is convinced of the energy impact of hardware, the role of software has mostly been acknowledged by researchers in software engineering.

  5. Engineering Encounters: Blasting off with Engineering

    Science.gov (United States)

    Dare, Emily A.; Childs, Gregory T.; Cannaday, E. Ashley; Roehrig, Gillian H

    2014-01-01

    What better way to engage young students in physical science concepts than to have them engineer flying toy rockets? The integration of engineering into science classrooms is advocated by the "Next Generation Science Standards" (NGSS) and researchers alike (Brophy et al. 2008), as engineering provides: (1) A "real-world…

  6. Perspectives of best Practices for Learning Gender-Inclusive Science: Influences of Extracurricular Science for Gifted Girls and Electrical Engineering for Women

    Science.gov (United States)

    Wood, Shaunda L.

    Gifted girls in elementary school must follow the set curriculum, but their choices of extracurricular activities may indicate future subject preferences. This study attempted to explore the perceptions of gifted girls regarding how the family, home, and school environments influenced their choices to take extracurricular science classes. A mixed methodology was adopted: qualitative, to understand the girls' perceptions of influence, and quantitative, to measure their attitudes toward science. Influential factors identified in this study highlight fun as occurring with the highest frequency and four emergent factors: doubt, traditional sex roles, boredom, and group work. In addition, findings from a focused case study of a graduate electrical engineer are interwoven with the girls' perspectives of science. The varying ages and experiences with science of the participants provide interesting views. This study adds knowledge to the field of science education, specifically on withingender differences of gifted girls and women in engineering.

  7. 78 FR 79014 - Advisory Committee for Computer and Information Science and Engineering Notice of Meeting

    Science.gov (United States)

    2013-12-27

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and...), the National Science Foundation announces the following meeting: NAME: Advisory Committee for Computer and Information Science and Engineering (1115) DATE/TIME: January 14, 2014, 3:00 p.m. to 5:00 p.m...

  8. 77 FR 24538 - Advisory Committee for Computer and Information Science And Engineering; Notice of Meeting

    Science.gov (United States)

    2012-04-24

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science And... amended), the National Science Foundation announces the following meeting: Name: Advisory Committee for Computer and Information Science and Engineering (1115). Date and Time: May 10, 2012 12 p.m.-5:30 p.m., May...

  9. 75 FR 19428 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Science.gov (United States)

    2010-04-14

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and... amended), the National Science Foundation announces the following meeting: Name: Advisory Committee for Computer and Information Science and Engineering--(1115). Date and Time: May 7, 2010, 8:30 a.m.-5 p.m...

  10. Materials science and engineering. An introduction; Materialwissenschaften und Werkstofftechnik. Eine Einfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Callister, William D. Jr. [Utah Univ., Salt Lake City, UT (United States). Dept. of Metallurgical Engineering; Rethwisch, David G. [Utah Univ., UT (United States). Dept. of Chemical and Biochemical Engineering

    2013-02-01

    William Callister's bestseller ''Materials Science and Engineering'' is THE textbook of materials science. This is the new German language edition, whose contents have been adapted optimally to the requirements of German students. The ''Callister'' covers all aspects of materials science and engineering for studies and preparation of exams. It follows a well-tried didactic concept, favouring understanding over formalism, and supports the students' learning process: 1. Clearly defined learning goals; 2. At regular intervals, questions to check the understanding of the subject matter just learned; 3. Summaries at the end of each chapter comprising subject matter, equations, key words and cross-references to other chapters; 4. Exemplary calculations, questions and answers, problems and solutions; 5. Digressions to industrial applications; 6. Units and materials names adapted to the German language area. [German] William Callisters englischsprachiger Bestseller ''Materials Science and Engineering'' ist das klassische Lehrbuch der Materialwissenschaften. Nun erscheint die deutsche Ausgabe, deren Inhalte optimal auf die Beduerfnisse der hiesigen Studenten angepasst wurden. Der ''Callister'' bietet den gesamten Stoff der Materialwissenschaften und Werkstofftechnik fuer Studium und Pruefungsvorbereitung. Das erprobte didaktische Konzept zielt ab auf ''Verstaendnis vor Formalismus'' und unterstuetzt den Lernprozess der Studierenden: 1. ausformulierte Lernziele; 2. regelmaessig eingestreute Verstaendnisfragen zum gerade vermittelten Stoff; 3. Kapitelzusammenfassungen mit Lernstoff, Gleichungen, Schluesselwoertern und Querverweisen auf andere Kapitel; 4. durchgerechnete Beispiele, Fragen und Antworten sowie Aufgaben und Loesungen; 5. Exkurse in die industrielle Anwendung; und 6. an den deutschen Sprachraum angepasste Einheiten und Werkstoffbezeichnungen.

  11. Influence of Precollege Experience on Self-Concept among Community College Students in Science, Mathematics, and Engineering

    Science.gov (United States)

    Starobin, Soko S.; Laanan, Frankie Santos

    Female and minority students have historically been underrepresented in the field of science, mathematics, and engineering at colleges and universities. Although a plethora of research has focused on students enrolled in 4-year colleges or universities, limited research addresses the factors that influence gender differences in community college students in science, mathematics, and engineering. Using a target population of 1,599 aspirants in science, mathematics, and engineering majors in public community colleges, this study investigates the determinants of self-concept by examining a hypothetical structural model. The findings suggest that background characteristics, high school academic performance, and attitude toward science have unique contributions to the development of self-concept among female community college students. The results add to the literature by providing new theoretical constructs and the variables that predict students' self-concept.

  12. A biotic game design project for integrated life science and engineering education.

    Directory of Open Access Journals (Sweden)

    Nate J Cira

    2015-03-01

    Full Text Available Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course. We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  13. A thermal engine for underwater glider driven by ocean thermal energy

    International Nuclear Information System (INIS)

    Yang, Yanan; Wang, Yanhui; Ma, Zhesong; Wang, Shuxin

    2016-01-01

    Highlights: • Thermal engine with a double-tube structure is developed for underwater glider. • Isostatic pressing technology is effective to increase volumetric change rate. • Actual volumetric change rate reaches 89.2% of the theoretical value. • Long term sailing of 677 km and 27 days is achieved by thermal underwater glider. - Graphical Abstract: - Abstract: Underwater glider is one of the most popular platforms for long term ocean observation. Underwater glider driven by ocean thermal energy extends the duration and range of underwater glider powered by battery. Thermal engine is the core device of underwater glider to harvest ocean thermal energy. In this paper, (1) model of thermal engine was raised by thermodynamics method and the performance of thermal engine was investigated, (2) thermal engine with a double-tube structure was developed and isostatic pressing technology was applied to improve the performance for buoyancy driven, referencing powder pressing theory, (3) wall thickness of thermal engine was optimized to reduce the overall weight of thermal engine, (4) material selection and dimension determination were discussed for a faster heat transfer design, by thermal resistance analysis, (5) laboratory test and long term sea trail were carried out to test the performance of thermal engine. The study shows that volumetric change rate is the most important indicator to evaluating buoyancy-driven performance of a thermal engine, isostatic pressing technology is effective to improve volumetric change rate, actual volumetric change rate can reach 89.2% of the theoretical value and the average power is about 124 W in a typical diving profile. Thermal engine developed by Tianjin University is a superior thermal energy conversion device for underwater glider. Additionally, application of thermal engine provides a new solution for miniaturization of ocean thermal energy conversion.

  14. Energy, mining, and the commercial success of the Newcomen "steam" engine

    Science.gov (United States)

    Murphy, John Paul

    This dissertation is about energy; specifically how prime movers changed at the beginning of the Industrial Revolution. These power needs are explored via the history of the Newcomen atmospheric engine, as it was used in the 18th century to drive pumps in flooded mines. This approach examines society as an energy-converting phenomenon, and uses the concept of an energy rent. The dissertation seeks to reach past the 19th century's "high-pressure historiography" of the first engines powered by fire; instead, it traces the actual low-pressure atmospheric technology of the first commercially successful engines, and the surprising, rather than inevitable, transformation they engendered. The costs of fuel are shown to be an essential factor in the success or failure of the first Newcomen engines. Thomas Newcomen's failed first attempts in Cornwall (1710) are contrasted with success in collieries, located in the relatively distant region of the Midlands, only two years later. To test the suggestion that coal is needed for a Newcomen engine to be profitable, two detailed case histories compare 18th century engines, both fired using wood fuel, at iron ore mines. The first was a failed engine at Dannemora, Sweden (1728); the second a successful machine built by the Brown brothers at Cranston, Rhode Island (1783). The Brown engine's case history was based on extensive original archive research, and also provides a detailed history of the Hope Furnace, which used the ore from Cranston. Success for the Browns in Rhode Island is found to have been rooted in their careful planning for fuel needs. The two mines were also found to have significantly different construction of gender roles, suggesting the Rhode Island context had established more thoroughly capitalist relations. The work shows that the demand for more extensive power, which led to these engines, was propelled by the ability of the evolving commercial market place to convert energy profitably (16th and 17th centuries

  15. Where Are All the Talented Girls? How Can We Help Them Achieve in Science Technology Engineering and Mathematics?

    Directory of Open Access Journals (Sweden)

    Monica MEADOWS

    2016-12-01

    Full Text Available Women’s participation in science, technology, engineering and mathematics (STEM courses and careers lags behind that of men. Multiple factors contribute to the underrepresentation of women and girls in STEM. Academic research suggests three areas, which account for the under representation of girls in STEM: social and environmental factors, the school climate and the influence of bias. In order to engage and to retain girls in STEM, educators need to: eliminate bias in the classroom, change school culture, introduce female role models, help girls assess their abilities accurately and develop talent in areas related to science, technology, engineering, and mathematics. Educators should encourage young girls to ask questions about the world, to problem solve, and to develop creativity through play and experimentation. Women have made impressive gains in science and engineering but remain a distinct minority in many science and engineering fields. Creating environments that support girls’ and women’s achievements and interests in science and engineering will encourage more girls and women to pursue careers in these vital fields.

  16. Recommendations on the Nature and Level of U.S. Participation in the International Thermonuclear Experimental Reactor Extension of the Experimental Reactor Extension of the Engineering Design Activities. Panel Report To Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    1998-01-01

    The DOE Office of Energy Research chartered through the Fusion Energy Sciences Advisory Committee (FESAC) a panel to 'address the topic of U. S. participation in an ITER construction phase, assuming the ITER Parties decide to proceed with construction.' (Attachment 1: DOE Charge, September 1996). Given that there is expected to be a transition period of three to five years between the conclusion of the Engineering Design Activities (EDA) and the possible construction start, the DOE Office of Energy Research expanded the charge to 'include the U.S. role in an interim period between the EDA and construction.' (Attachment 2: DOE Expanded Charge, May 1997). This panel has heard presentations and received input from a wide cross-section of parties with an interest in the fusion program. The panel concluded it could best fulfill its responsibility under this charge by considering the fusion energy science and technology portion of the U.S. program in its entirety. Accordingly, the panel is making some recommendations for optimum use of the transition period considering the goals of the fusion program and budget pressures.

  17. Young Engineers and Sciences (YES) - Mentoring High School Students

    Science.gov (United States)

    Boice, Daniel C.; Asbell, E.; Reiff, P. H.

    2008-09-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  18. Explicatory Dictionary for Exact Sciences. Nuclear Energy, EN2. Nuclear Power. Romanian/English/French

    International Nuclear Information System (INIS)

    Dragan, Gleb; Rapeanu, S.N.; Comsa, Olivia

    2002-01-01

    The explicative dictionary for nuclear power, accomplished in the frame of the Commission for Scientific Terminology of the Romanian Academy, represents the second issue in a series running from Nuclear Energy EN 1 through Nuclear Energy EN 10 covering the following fields: EN 1. General terminology; EN 2. Nuclear power; EN 3. Physical protection and nuclear safeguards; EN 4. Nuclear fuel cycle; EN 5. Radioactive wastes; EN 6. Safety of nuclear facilities and materials; EN 7. Radioprotection and dosimetry; EN 8. Nuclear reactors; EN 9. Nuclear sciences and engineering; EN 10. Nuclear law and legislation. The main body of the dictionary's contents was selected by specialists working with the Center of Technology and Engineering for Nuclear Projects - CITON, based on their experience of more than 20 years in introducing and implementing nuclear power in Romania, as well as, on collaboration with nuclear physics and engineering research institutes and physics departments of Romanian universities. The project of a nuclear dictionary in 10 issues aims at supporting the program of nuclear power development in Romania and is at the same time part of nuclear knowledge management policy boosted by IAEA which encourages publication of informative materials highly specialized but also accessible to the public at large. The project aims also to establish the Romanian standardized terminology in the nuclear domain as much in line as possible with the terminologies of the largest communities worldwide most active in nuclear science and technology. Under the guidance of continuos build-up and evolution of nuclear knowledge the present work is intended to be upgraded permanently. The explanation of the terms was based on SR ISO standards, terminology adopted by Organization for Economic and Cooperation Development, OECD/NEA, and IAEA. This series is targeting translators, specialists, students, and the public at large

  19. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    It is a leading journal of Engineering Sciences in India since 1978. From 2007, Sadhana is co-published with the International Publisher, m/s Springer. ... computer science, Energy systems including solar and nuclear technologies, Smart cities, ... papers, or preliminary results of significant current research of wide interest.

  20. A Novel Coupling Pattern in Computational Science and Engineering Software

    Science.gov (United States)

    Computational science and engineering (CSE) software is written by experts of certain area(s). Due to the specialization,existing CSE software may need to integrate other CSE software systems developed by different groups of experts. Thecoupling problem is one of the challenges f...