WorldWideScience

Sample records for energy district heating

  1. District heating in sequential energy supply

    International Nuclear Information System (INIS)

    Persson, Urban; Werner, Sven

    2012-01-01

    Highlights: ► European excess heat recovery and utilisation by district heat distribution. ► Heat recovery in district heating systems – a structural energy efficiency measure. ► Introduction of new theoretical concepts to express excess heat recovery. ► Fourfold potential for excess heat utilisation in EU27 compared to current levels. ► Large scale excess heat recovery – a collaborative challenge for future Europe. -- Abstract: Increased recovery of excess heat from thermal power generation and industrial processes has great potential to reduce primary energy demands in EU27. In this study, current excess heat utilisation levels by means of district heat distribution are assessed and expressed by concepts such as recovery efficiency, heat recovery rate, and heat utilisation rate. For two chosen excess heat activities, current average EU27 heat recovery levels are compared to currently best Member State practices, whereby future potentials of European excess heat recovery and utilisation are estimated. The principle of sequential energy supply is elaborated to capture the conceptual idea of excess heat recovery in district heating systems as a structural and organisational energy efficiency measure. The general conditions discussed concerning expansion of heat recovery into district heating systems include infrastructure investments in district heating networks, collaboration agreements, maintained value chains, policy support, world market energy prices, allocation of synergy benefits, and local initiatives. The main conclusion from this study is that a future fourfold increase of current EU27 excess heat utilisation by means of district heat distribution to residential and service sectors is conceived as plausible if applying best Member State practice. This estimation is higher than the threefold increase with respect to direct feasible distribution costs estimated by the same authors in a previous study. Hence, no direct barriers appear with

  2. Energy and exergy analysis of low temperature district heating network

    International Nuclear Information System (INIS)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand. The space heating demand is supplied through floor heating in the bathroom and low temperature radiators in the rest of rooms. The network thermal and hydraulic conditions are simulated under steady state. A district heating network design and simulation code is developed to incorporate the network optimization procedure and the network simultaneous factor. Through the simulation, the overall system energy and exergy efficiencies are calculated and the exergy losses for the major district heating system components are identified. Based on the results, suggestions are given to further reduce the system energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply. -- Highlights: ► Exergy and energy analysis for low and medium temperature district heating systems. ► Different district heating network dimensioning methods are analyzed. ► Major exergy losses are identified in the district heating network and the in-house substations. ► Advantages to apply low temperature district heating are highlighted through exergy analysis. ► The influence of thermal by-pass on system exergy/energy performance is analyzed.

  3. Regional Energy Planning Tool for Renewable Integrated Low-Energy District Heating Systems

    DEFF Research Database (Denmark)

    Tol, Hakan; Dincer, Ibrahim; Svendsen, Svend

    2013-01-01

    Low-energy district heating systems, operating at low temperature of 55 °C as supply and 25°C as return, can be the energy solution as being the prevailing heating infrastructure in urban areas, considering future energy schemesaiming at increased exploitation of renewable energy sources together...... with low-energy houses in focus with intensified energy efficiency measures. Employing low-temperature operation allows the ease to exploit not only any type of heat source but also low-grade sources, i.e., renewable and industrial waste heat, which would otherwise be lost. In this chapter, a regional...... energy planning tool is described considered with various energy conversion systems based on renewable energy sources to be supplied to an integrated energy infrastructure involving a low-energy district heating, a district cooling, and an electricity grid. The developed tool is performed for two case...

  4. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Ford, Rufus; Pietruschka, Dirk; Sipilä, Kari

    participants being VTT Technical Research Centre of Finland (VTT), Technical University of Denmark (DTU), Norwegian University of Science and Technology (NTNU), Stuttgart Technology University of Applied Sciences (HFT) and SSE Enterprise in United Kingdom. The demonstration cases described in the report......This report titled “Case studies and demonstrations” is the subtask D report of the IEA DHC|CHP Annex TS1 project “Low Temperature District Heating for Future Energy Systems” carried out between 2013 and 2016. The project was led by Fraunhofer Institute for Building Physics (IBP) with the other...... include examples on low temperature district heating systems, solar heating in a district heating system, heat pump based heat supply and energy storages for both peak load management and for seasonal heat storage. Some demonstrations have been implemented while others are at planning phase...

  5. District Heating in Areas with Low Energy Houses

    DEFF Research Database (Denmark)

    Tol, Hakan Ibrahim

    -energy houses involved, together with the idea of utilizing booster pumps in the district heating network and (ii) use of network layouts of either a branched (tree-like) or a looped type. The methods developed were applied in a case study, the data of which was provided by the municipality of Roskilde...... in Denmark. The second case study was aimed at solving another regional energy planning scheme, one concerned with already existing houses, the heat requirements of which were currently being met by use of a natural gas grid or a conventional high-temperature district heating network. The idea considered......This PhD thesis presents a summary of a three-year PhD project involving three case studies, each pertaining to a typical regional Danish energy planning scheme with regard to the extensive use of low-energy district heating systems, operating at temperatures as low as 55°C for supply and 25°C...

  6. Energy and exergy analysis of low temperature district heating network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand...... energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply.......Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network...

  7. Steady-state heat losses in pipes for low-energy district heating

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2010-01-01

    The synergy between highly energy efficient buildings and low-energy district heating (DH) systems is a promising concept for the optimal integration of energy saving policies and energy supply systems based on renewable energy (RE). Distribution heat losses represent a key factor in the design o...

  8. Energy source completion for geothermal district heating systems

    International Nuclear Information System (INIS)

    Popovski, Kiril

    2000-01-01

    Geothermal district heating systems differs from the others mainly in the part of energy source completion and its connection to the heat distribution systems rather known problem. Even rather known problematic in the countries where geothermal energy is in wide application, new appearances of mistakes are always present due to the fact that necessary literature is difficult to be found. Essentials of the geothermal well completion and connection of geothermal source to the district heating distribution system are summarized in the paper and several examples of geothermal projects in flow are presented. (Author)

  9. Performance of low-temperature district heating for low-energy houses

    DEFF Research Database (Denmark)

    Brand, Marek; Dalla Rosa, Alessandro; Svendsen, Svend

    2010-01-01

    A Low Energy District Heating (LEDH) network supplying district heating water with temperature 50°C was built in Lærkehaven-Lystrup, Denmark, as a part of the ongoing “Energy Technology Development and Demonstration Programme” [EUDP, 2008] focused on “CO2-reduction in low energy buildings and com...

  10. Energy supply and urban planning projects: Analysing tensions around district heating provision in a French eco-district

    International Nuclear Information System (INIS)

    Gabillet, Pauline

    2015-01-01

    Through the analysis of energy supply choices, this article explores the way in which energy priorities and their climate-related features are incorporated into urban public policy. These choices must take account of different factors, as is the case with district heating, which is justified as a vehicle of renewable energy while subject to pressure in eco-districts because its techno-economic balances are destabilised by falls in demand. Our study focuses particularly on the city of Metz (France), which has chosen district heating as the primary source for provision for the municipal area and for its first eco-district. We analyse the tensions within these choices, with particular attention to the way in which they are negotiated inside municipal departments and with the local energy operator. This enables us to explore the tensions in defining the scale that governs decisions and the linkages between energy-related and urban priorities. - Highlights: • Analyses of tensions in the choice of energy supplies for eco-districts. •District heating networks can be vehicles of renewable energy. • District heating networks are threatened by drops in energy consumption. • Energy supply issues oppose urban planning and energy policy in municipal departments. • Technical and financial adjustments can be made by the municipality to justify its energy choices

  11. Smart energy systems and 4th generation district heating

    DEFF Research Database (Denmark)

    Lund, Henrik; Duic, Neven; Østergaard, Poul Alberg

    2016-01-01

    scientific understanding on how we can design and implement a suitable and least-cost transformation into a sustainable energy future. The concept of Smart Energy Systems emphasizes the importance of being coherent and cross-sectoral when the best solutions are to be found and how this also calls......This editorial gives an introduction to the important relationship between Smart Energy Systems and 4th Generation District Heating and presents a number of selected papers from the 1st International Conference on the topic. All of the papers elaborate on or otherwise contribute to the theoretical...... for the active inclusion of the heating and cooling sectors. The concept of 4th Generation District Heating emphasizes that district heating and cooling are both important elements but also technologies that have to be developed further into a 4th generation version to be able to fulfil their roles in future...

  12. Energy cascading in large district heating systems

    International Nuclear Information System (INIS)

    Mayer, F.W.

    1978-01-01

    District heat transfer is the most economical utilization of the waste heat of power plants. Optimum utilization and heat transfer over large distances are possible because of a new energy distribution system, the ''energy cascading system,'' in which heat is transferred to several consumer regions at different temperature ranges. It is made more profitable by the use of heat pumps. The optimum flow-line temperature is 368 0 K, and the optimum return-line temperature is 288 0 K, resulting in an approximately 50% reduction of electric power loss at the power plant

  13. Analysis of energy development sustainability: The example of the lithuanian district heating sector

    International Nuclear Information System (INIS)

    Kveselis, Vaclovas; Dzenajavičienė, Eugenija Farida; Masaitis, Sigitas

    2017-01-01

    Today, sustainable energy development is one of key issues on European development agenda. The article describes one of sustainable energy development promoting tool - the eco-labelling scheme for district heating and cooling systems elaborated within the framework of Intelligent Energy for Europe program project “Ecoheat4cities” and partially funded by European Agency for Competitiveness and Innovation. The scheme is based on measured energy and environmental performance data of the district heating and cooling system and considers primary non-renewable energy usage together with the share of renewable energy and carbon dioxide emissions calculated using life-cycle analysis methodology. The “power bonus” approach is used for performance indicators of the heat generated in cogeneration installations. An analysis of a number of Lithuanian district heating companies using elaborated labelling criteria shows positive trends towards fulfilling Lithuania's energy policy goals. The labelling scheme gives opportunity for policy makers and urban planners to compare different heat supply options and decide upon exploiting district heating advantages and benefits for reaching EU energy and environment policy goals. - Highlights: • Overview of Lithuania's district heating sector was performed via main sustainability criteria. • Developing to greener and more efficient state was disclosed via analysis of three years activity results. • Green labelling may help district heating companies to maintain existing and attract new potential consumers.

  14. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    This report is reviewing different heat driven technologies for the production of cooling. It is shown that the supply of cooling gives the highest fuel utilization if heat from CHP production is used for the production of cooling instead of maximizing the electricity output in a condensing plant. High fuel utilization is reached since the direct production of cooling from heat is a thermodynamic shortcut as compared to the production of electricity as an intermediate product before cooling is produced. At direct production of cooling from heat it is possible to obtain 70 percent of the obtainable cooling of an ideal process. If electricity is produced from heat, 70 percent electricity could be obtained as compared to an ideal process. If this electricity would be used for the production of cooling 70 percent of the obtainable cooling in an ideal process would the result. The total production of cooling from heat with electricity as an intermediate product would therefore give 50 percent cooling as compared to an ideal process. Hence, heat driven cooling will give more cooling for a given fuel input. In the review of the different heat driven cooling options it was found that there are many alternatives suitable for different applications. Absorption cooling is suitable for water distributed cooling if the latent cooling load is low. Desiccant cooling is believed to have a large market in climates (applications) with high latent cooling loads. In the energy efficiency evaluation it is found that the highest fuel utilization is given for a central production of electricity using either district heating or district cooling as the energy carrier to supply cooling. In fact the potential of district heating as the energy carrier is thought to be the largest in large cities with humid climates. Further it is found that the chiller heat sink can contribute significantly to the cost in many applications, especially if water and/or electricity consumption are issues with

  15. Road map for district heating. The role of district heating in the energy system. Main report; Denmark; Roadmap for fjernvarmen. Fjernvarmens rolle i energisystemet. Hovedrapport

    Energy Technology Data Exchange (ETDEWEB)

    Hofmeister, M.; Aabye Moeller, A.; Eggert, A.; Bjerregaard, M. (Fjernvarmens Udviklingscenter, AArhus (Denmark)); Dyrelund, A. (Ramboell, Koebenhavn (Denmark)); OErsted Pedersen, H. (Ea Energianalyse, Koebenhavn (Denmark)); Lund, H. (Aalborg Univ., Aalborg (Denmark))

    2011-07-01

    In the recent years many studies of how Denmark can be fossil free by 2050 it is agreed that district heating will play a crucial role. District heating is an important factor of phasing out fossil fuels in an energy-and cost-effective way. But the future energy supply without fossil fuels poses new requirements for district heating. In the future, district heating shall provide energy for low-energy houses, have low distribution losses and use a variety of heat sources such as geothermal, solar, waste, surplus heat, CHP and various biomass con-version processes. In addition, it must all be done in an energy efficient way and in an active interaction with production of electricity and electricity consumption and, through integration of electricity from wind, solar and wave power. Low temperature, use of heat pumps and the interaction with electricity and biomass will be keywords. It is not only in Denmark we will need an active development of future technologies and systems. Large parts of Europe and many other parts of the world need the same development, and today Denmark has a significant export in the market - an export that has risen sharply, despite the recent economic recession. There is thus a double need to actively promote the development of future district heating technologies. We will partly need the technology development to realize the goal of a fossil free society and secondly because it is necessary to maintain and expand the export. This report contains a number of proposals for concrete actions - a roadmap for the development of district heating. The project is anchored at the District Energy Development Center that will work for an implementation of the concrete project ideas after the project completion. There is a need to increase the activity level for development of district heating. There is therefore a need to ensure financing of this development. We suggest that this can be done by creating an opportunity for a more sustained funding, for

  16. Road map for district heating. The role of district heating in the energy system. Summary report; Denmark; Roadmap for fjernvarmen. Fjernvarmens rolle i energisystemet. Resumerapport

    Energy Technology Data Exchange (ETDEWEB)

    Hofmeister, M.; Aabye Moeller, A.; Eggert, A.; Bjerregaard, M. (Fjernvarmens Udviklingscenter, AArhus (Denmark)); Dyrelund, A. (Ramboell, Koebenhavn (Denmark)); OErsted Pedersen, H. (Ea Energianalyse, Koebenhavn (Denmark)); Lund, H. (Aalborg Univ., Aalborg (Denmark))

    2011-07-01

    In the recent years many studies of how Denmark can be fossil free by 2050 it is agreed that district heating will play a crucial role. District heating is an important factor of phasing out fossil fuels in an energy-and cost-effective way. But the future energy supply without fossil fuels poses new requirements for district heating. In the future, district heating shall provide energy for low-energy houses, have low distribution losses and use a variety of heat sources such as geothermal, solar, waste, surplus heat, CHP and various biomass con-version processes. In addition, it must all be done in an energy efficient way and in an active interaction with production of electricity and electricity consumption and, through integration of electricity from wind, solar and wave power. Low temperature, use of heat pumps and the interaction with electricity and biomass will be keywords. It is not only in Denmark we will need an active development of future technologies and systems. Large parts of Europe and many other parts of the world need the same development, and today Denmark has a significant export in the market - an export that has risen sharply, despite the recent economic recession. There is thus a double need to actively promote the development of future district heating technologies. We will partly need the technology development to realize the goal of a fossil free society and secondly because it is necessary to maintain and expand the export. This report contains a number of proposals for concrete actions - a roadmap for the development of district heating. The project is anchored at the District Energy Development Center that will work for an implementation of the concrete project ideas after the project completion. There is a need to increase the activity level for development of district heating. There is therefore a need to ensure financing of this development. We suggest that this can be done by creating an opportunity for a more sustained funding, for

  17. District heating and energy efficiency in detached houses of differing size and construction

    Energy Technology Data Exchange (ETDEWEB)

    Joelsson, Anna; Gustavsson, Leif [Ecotechnology, Department of Engineering, Physics and Mathematics, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2009-02-15

    House envelope measures and conversion of heating systems can reduce primary energy use and CO{sub 2} emission in the existing Swedish building stock. We analysed how the size and construction of electrically heated detached houses affect the potential for such measures and the potential for cogenerated district heating. Our starting point was two typical houses built in the 1970s. We altered the floor plans to obtain 6 houses, with heated floor space ranging between 100 and 306 m{sup 2}. One of the houses was also analysed for three energy standards with differing heat loss rates. CO{sub 2} emission, primary energy use and heating cost were estimated after implementing house envelope measures, conversions to other heating systems and changes in the generation of district heat and electricity. The study accounted for primary energy, including energy chains from natural resources to useful heat in the houses. We showed that conversion to district heating based on biomass, together with house envelope measures, reduced the primary energy use by 88% and the CO{sub 2} emission by 96%, while reducing the annual societal cost by 7%. The choice of end-use heating system was decisive for the primary energy use, with district heating being the most efficient. Neither house size nor energy standard did significantly change the ranking of the heating systems, either from a primary energy or an economic viewpoint, but did affect the extent of the annual cost reduction after implementing the measures. (author)

  18. District heating and energy efficiency in detached houses of differing size and construction

    International Nuclear Information System (INIS)

    Joelsson, Anna; Gustavsson, Leif

    2009-01-01

    House envelope measures and conversion of heating systems can reduce primary energy use and CO 2 emission in the existing Swedish building stock. We analysed how the size and construction of electrically heated detached houses affect the potential for such measures and the potential for cogenerated district heating. Our starting point was two typical houses built in the 1970s. We altered the floor plans to obtain 6 houses, with heated floor space ranging between 100 and 306 m 2 . One of the houses was also analysed for three energy standards with differing heat loss rates. CO 2 emission, primary energy use and heating cost were estimated after implementing house envelope measures, conversions to other heating systems and changes in the generation of district heat and electricity. The study accounted for primary energy, including energy chains from natural resources to useful heat in the houses. We showed that conversion to district heating based on biomass, together with house envelope measures, reduced the primary energy use by 88% and the CO 2 emission by 96%, while reducing the annual societal cost by 7%. The choice of end-use heating system was decisive for the primary energy use, with district heating being the most efficient. Neither house size nor energy standard did significantly change the ranking of the heating systems, either from a primary energy or an economic viewpoint, but did affect the extent of the annual cost reduction after implementing the measures

  19. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Schmidt, Dietrich; Kallert, Anna; Blesl, Markus

    2017-01-01

    of the building stock. Low temperature district heating (LTDH) can contribute significantly to a more efficient use of energy resources as well as better integration of renewable energy (e.g. geothermal or solar heat), and surplus heat (e.g. industrial waste heat) into the heating sector. LTDH offers prospects......The building sector is responsible for more than one third of the final energy consumption of societies and produces the largest amount of greenhouse gas emissions of all sectors. This is due to the utilisation of combustion processes of mainly fossil fuels to satisfy the heating demand...... for both the demand side (community building structure) and the supply side (network properties or energy sources). Especially in connection with buildings that demand only low temperatures for space heating. The utilisation of lower temperatures reduces losses in pipelines and can increase the overall...

  20. Exergy and Energy Analysis of Low Temperature District Heating Network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    is in line with a pilot project that is carrying out in Denmark with network supply/return temperature at 55oC/25 oC. The consumer domestic hot water (DHW) demand is supplied with a special designed district heating (DH) storage tank. The space heating (SH) demand is supplied with a low temperature radiator......Low temperature district heating (LTDH) with reduced network supply and return temperature provides better match of the low quality building thermal demand and the low quality waste heat supply. In this paper, an exemplary LTDH network was designed for 30 low energy demand residential houses, which....... The network thermal and hydraulic conditions were simulated under steady state with an in-house district heating network design and simulation code. Through simulation, the overall system energetic and exergetic efficiencies were calculated and the exergy losses for the major district heating system...

  1. Low-energy district heating in energy-efficient building areas

    International Nuclear Information System (INIS)

    Dalla Rosa, A.; Christensen, J.E.

    2011-01-01

    This paper presents an innovative low-energy district heating (DH) concept based on low-temperature operation. The decreased heating demand from low-energy buildings affects the cost-effectiveness of traditionally-designed DH systems, so we carried out a case study of the annual energy performance of a low-energy network for low-energy houses in Denmark. We took into account the effect of human behaviour on energy demand, the effect of the number of buildings connected to the network, a socio-economic comparison with ground source heat pumps, and opportunities for the optimization of the network design, and operational temperature and pressure. In the north-European climate, we found that human behaviour can lead to 50% higher heating demand and 60% higher heating power than those anticipated in the reference values in the standard calculations for energy demand patterns in energy-efficient buildings. This considerable impact of human behaviour should clearly be included in energy simulations. We also showed that low-energy DH systems are robust systems that ensure security of supply for each customer in a cost-effective and environmentally friendly way in areas with linear heat density down to 0.20 MWh/(m year), and that the levelized cost of energy in low-energy DH supply is competitive with a scenario based on ground source heat pumps. The investment costs represent up to three quarters of the overall expenditure, over a time horizon of 30 years; so, the implementation of an energy system that fully relies on renewable energy needs substantial capital investment, but in the long term this is sustainable from the environmental and socio-economic points of view. Having demonstrated the value of the low-energy DH concept, we evaluated various possible designs with the aim of finding the optimal solution with regard to economic and energy efficiency issues. Here we showed the advantage of low supply and return temperatures, their effect on energy efficiency and that

  2. Energy recovery from waste incineration: Assessing the importance of district heating networks

    International Nuclear Information System (INIS)

    Fruergaard, T.; Christensen, T.H.; Astrup, T.

    2010-01-01

    Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO 2 accounts showed significantly different results: waste incineration in one network caused a CO 2 saving of 48 kg CO 2 /GJ energy input while in the other network a load of 43 kg CO 2 /GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

  3. The situation of district heating, district cooling and energy supply in Hungary

    International Nuclear Information System (INIS)

    Sigmond, Gy.

    2009-01-01

    District heating represents with 650.000 heated dwellings approximately 15% of the Hungarian residential heating market. Since 1990 there is stagnation at the number of connected dwellings because erection of large settlements with prefab buildings has been stopped, and latter ones represent more than 75% of the dwelling heating market. During the same period, residential heat demand shrunk by 33%, because metering of hot water consumption resulted in changing consumer habits, and because of slowly but step by step refurbishment of buildings and heating systems. In Hungary district heating is present in all large and most of the medium size cities, in 92 cities together. Out of them, there is also a single village with a local district heating system, which heats more than 60% of cottages. The capacity os systems is spreading to a large extent. Approximately 36-36% of all heated dwellings are in Budapest and in 10 large cities in the country, while 148 of the total 202 systems have less than 10 MW capacities. In the fuel structure of district heating it is characteristic the overwhelming role of natural gas consumption, which has exceeded 80% already. Only a few numbers of heating power plants are fuelled by crown coal. The use of renewables is growing continuous, but, together with waste and waste energy, it amounts merely 8% of the total fuel use. Oil consumption is negligible. Currently the most promising DH-market is the service sector (public buildings and commercial consumers). DH-companies can sell their surplus supply capacities on the competitive market. Residential market can be preserved only with better legal conditions and with improving of demand side management. The industrial heat market can be gained when the erection of new power plants will be harmonized with industrial development in the frame of territorial planning. District cooling is just at the beginning in Hungary. Many new commercial and office buildings are erected with air conditioning

  4. Shortage of energy increases profitability of district heating

    International Nuclear Information System (INIS)

    2003-01-01

    Increased demand will cause the price of district heating to increase, but not to the level of the price of electricity. The cheapest heating alternative in Denmark, Norway and Sweden is district heating. In Norway, district heating is developed primarily for commercial buildings and housing cooperatives. Thirty per cent of all buildings under construction are prepared for district heating and the percentage will increase strongly in the coming time. The total net production of district heating in Norway in 2001 was 2000 GWh, which is only a small part of the total potential for district heating

  5. Analyzing variables for district heating collaborations between energy utilities and industries

    International Nuclear Information System (INIS)

    Thollander, P.; Svensson, I.L.; Trygg, L.

    2010-01-01

    One vital means of raising energy efficiency is to introduce district heating in industry. The aim of this paper is to study factors which promote and inhibit district heating collaborations between industries and utilities. The human factors involved showed to affect district heating collaborations more than anything else does. Particularly risk, imperfect and asymmetric information, credibility and trust, inertia and values are adequate variables when explaining the establishment or failure of industry-energy utility collaborations, while heterogeneity, access to capital and hidden costs appear to be of lower importance. A key conclusion from this study is that in an industry-energy utility collaboration, it is essential to nurture the business relationship. In summary, successful collaboration depends more on the individuals and organizations involved in the relationship between the two parties than on the technology used in the collaboration.

  6. The assessment of global thermo-energy performances of existing district heating systems optimized by harnessing renewable energy sources

    Science.gov (United States)

    Şoimoşan, Teodora M.; Danku, Gelu; Felseghi, Raluca A.

    2017-12-01

    Within the thermo-energy optimization process of an existing heating system, the increase of the system's energy efficiency and speeding-up the transition to green energy use are pursued. The concept of multi-energy district heating system, with high harnessing levels of the renewable energy sources (RES) in order to produce heat, is expected to be the key-element in the future urban energy infrastructure, due to the important role it can have in the strategies of optimizing and decarbonizing the existing district heating systems. The issues that arise are related to the efficient integration of different technologies of harnessing renewable energy sources in the energy mix and to the increase of the participation levels of RES, respectively. For the holistic modeling of the district heating system, the concept of the energy hub was used, where the synergy of different primary forms of entered energy provides the system a high degree energy security and flexibility in operation. The optimization of energy flows within the energy hub allows the optimization of the thermo-energy district system in order to approach the dual concept of smart city & smart energy.

  7. District Energy Windsor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This paper presents a summary of how District Energy Windsor operates. It includes a system site map and reasons why it is advantageous to get connected to a district heating system. District Energy Windsor is a division of the Windsor Utilities Commission. It was developed in 1996 and was the first in North America to supply both heating and cooling requirements. It supplies nearly 2 million square feet of heating and cooling for Windsor's city centre. The district energy system produces hot water or chilled water at a central plant. Energy is then piped out to buildings in the area, including the Art Gallery of Windsor, the Royal Bank Business Centre, the Windsor Justice Facility, the Windsor Casino, and Northwind Windsor. The energy, which is transferred through heat exchangers, is used for space heating, domestic hot water heating, and air conditioning. The 8 reasons for getting connected are: (1) less management costs, (2) lower energy costs, (3) lower level of risk management, (4) stable energy rates, (5) better use of building space, (6) reliable service, (7) reduced expansion costs, and (8) a cleaner environment. District heating improves air quality through reduced carbon dioxide and nitrogen oxide emissions. In addition, fuel delivery and storage are eliminated. figs.

  8. Smart energy systems and 4th generation district heating

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Lund, Henrik; Mathiesen, Brian Vad

    2016-01-01

    of Sustainable Energy Planning and Management. The editorial and the volume presents work on district heating system scenarios in Austria, grid optimisation using genetic algorithms and finally design of energy scenarios for the Italian Alpine town Bressanone-Brixen from a smart energy approach. © 2016, Aalborg...

  9. Energy saving and emission reduction of China's urban district heating

    International Nuclear Information System (INIS)

    Chen, Xia; Wang, Li; Tong, Lige; Sun, Shufeng; Yue, Xianfang; Yin, Shaowu; Zheng, Lifang

    2013-01-01

    China's carbon dioxide (CO 2 ) emission ranks highest in the world. China is committed to reduce its CO 2 emission by 40% to 45% from the 2005 levels by 2020. To fulfill the target, China's CO 2 emission reduction must exceed 6995 million tons. Energy consumption and CO 2 emission of China's urban district heating (UDH) are increasing. The current policy implemented to improve UDH focuses on replacing coal with natural gas to reduce energy consumption and CO 2 emission to some extent. This paper proposes that heat pump heating (HPH) could serve as a replacement for UDH to help realize energy-saving and emission-reduction goals to a greater extent. The paper also analyzes the impact of this replacement on the heating and power generation sectors. The results show that replacing coal-based UDH with HPH decreases energy consumption and CO 2 emission by 43% in the heating sector. In the power generation sector, the efficiency of power generation at the valley electricity time increases by 0.512%, and the ratio of peak–valley difference decreases by 16.5%. The decreases in CO 2 emission from the heating and power generation sectors cumulatively account for 5.55% of China's total CO 2 emission reduction target in 2020. - Highlights: ► Replacing urban district heating with heat pump heating. ► Impact of heat pump heating on heating and power generation sectors. ► Potential of energy saving and emission reduction for heat pump heating. ► China should adjust current urban heating strategy

  10. Consumer Unit for Low Energy District Heating Net

    DEFF Research Database (Denmark)

    Paulsen, Otto; Fan, Jianhua; Furbo, Simon

    2008-01-01

    to reduce heat loss in the network. The consumer’s installation is a unit type with an accumulation tank for smoothing the heat load related to the domestic hot water. The building heat load is delivered by an under-floor heating system. The heavy under-floor heating system is assumed to smooth the room...... heat load on a daily basis, having a flow temperature control based on outdoor climate. The unit is designed for a near constant district heating water flow. The paper describes two concepts. The analyses are based on TRNSYS (Klein et al., 2006) simulation, supplied with laboratory verification......A low energy/ low temperature consumer installation is designed and analyzed. The consumer type is a low energy single family house 145 m2 with annual energy consumption in the range of 7000 kWh, incl. domestic hot water in a 2800 degree day climate. The network is an extreme low temperature system...

  11. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  12. Method for optimal design of pipes for low-energy district heating, with focus on heat losses

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2011-01-01

    The synergy between highly energy-efficient buildings and low-energy district heating (DH) systems is a promising concept for the optimal integration of energy-saving policies and energy supply systems based on renewable energy (RE). Network transmission and distribution heat loss is one of the k...

  13. Cost and primary energy efficiency of small-scale district heating systems

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed minimum-cost options for small-scale DHSs under different contexts. • District heat production cost increases with reduced DHS scales. • Fewer technical options are suitable for small-scale DHSs. • Systems with combined technologies are less sensitive to changes in fuel prices. - Abstract: Efficient district heat production systems (DHSs) can contribute to achieving environmental targets and energy security for countries that have demands for space and water heating. The optimal options for a DHS vary with the environmental and social-political contexts and the scale of district heat production, which further depends on the size of the community served and the local climatic conditions. In this study, we design a small-scale, minimum-cost DHS that produces approximately 100 GWh heat per year and estimate the yearly production cost and primary energy use of this system. We consider conventional technologies, such as heat-only boilers, electric heat pumps and combined heat and power (CHP) units, as well as emerging technologies, such as biomass-based organic Rankine cycle (BORC) and solar water heating (SWH). We explore how different environmental and social-political situations influence the design of a minimum-cost DHS and consider both proven and potential technologies for small-scale applications. Our calculations are based on the real heat load duration curve for a town in southern Sweden. We find that the district heat production cost increases and that the potential for cogeneration decreases with smaller district heat production systems. Although the selection of technologies for a minimum-cost DHS depends on environmental and social-political contexts, fewer technical options are suitable for small-scale systems. Emerging technologies such as CHP-BORC and SWH improve the efficiency of primary energy use for heat production, but these technologies are more costly than conventional heat-only boilers. However, systems with

  14. System impact of energy efficient building refurbishment within a district heated region

    International Nuclear Information System (INIS)

    Lidberg, T.; Olofsson, T.; Trygg, L.

    2016-01-01

    The energy efficiency of the European building stock needs to be increased in order to fulfill the climate goals of the European Union. To be able to evaluate the impact of energy efficient refurbishment in matters of greenhouse gas emissions, it is necessary to apply a system perspective where not only the building but also the surrounding energy system is taken into consideration. This study examines the impact that energy efficient refurbishment of multi-family buildings has on the district heating and the electricity production. It also investigates the impact on electricity utilization and emissions of greenhouse gases. The results from the simulation of four energy efficiency building refurbishment packages were used to evaluate the impact on the district heating system. The packages were chosen to show the difference between refurbishment actions that increase the use of electricity when lowering the heat demand, and actions that lower the heat demand without increasing the electricity use. The energy system cost optimization modeling tool MODEST (Model for Optimization of Dynamic Energy Systems with Time-Dependent Components and Boundary Conditions) was used. When comparing two refurbishment packages with the same annual district heating use, this study shows that a package including changes in the building envelope decreases the greenhouse gas emissions more than a package including ventilation measures. - Highlights: • Choice of building refurbishment measures leads to differences in system impact. • Building refurbishment in district heating systems reduces co-produced electricity. • Valuing biomass as a limited resource is crucial when assessing global GHG impact. • Building envelope measures decrease GHG (greenhouse gas) emissions more than ventilation measures.

  15. Efficient district heating in the future energy system. Final report; Effektiv fjernvarme i fremtidens energisystem. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    The purpose of this project is to illustrate how district heating can develop its role in the future Danish energy system, for example by reducing energy losses and the dynamic use of common technologies such as cogeneration and heat storage, and less widespread technologies such as heat pumps, geothermal heating, and cooling. The aim is also to analyse how electricity and district heating can interact more effectively, and to point out how framework conditions are important for district heating's continued development and efficiency. In the project, a linear optimization model is developed and applied as to analyse the interaction between district heating supply on the one hand, and energy savings, CO{sub 2} targets, wind power and the international electricity market on the other hand. Furthermore, more close-case operational analyses of district heating systems have been made in Ringkoebing and the metropolitan area, based on data from the district heating companies. Finally, a wide range of challenges for district heating in the long term were discussed and analysed during meetings with the project's reference group, including the need for development and demonstration projects. (ln)

  16. Industrial excess heat for district heating in Denmark

    International Nuclear Information System (INIS)

    Bühler, Fabian; Petrović, Stefan; Karlsson, Kenneth; Elmegaard, Brian

    2017-01-01

    Highlights: •Method for utilisation potential of industrial excess heat for district heating. •Industrial excess heat from thermal processes is quantified at single production units. •Linking of industrial excess heat sources and district heating demands done in GIS. •Excess heat recovery using direct heat transfer and heat pumps. •5.1% of the Danish district heating demand could be supplied by industrial excess heat. -- Abstract: Excess heat is available from various sources and its utilisation could reduce the primary energy use. The accessibility of this heat is however dependent amongst others on the source and sink temperature, amount and potential users in its vicinity. In this work a new method is developed which analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal processes which equals 5.1% of the current demand. More than half of this heat was found to be usable directly, without the need for a heat pump.

  17. Mapping of potential heat sources for heat pumps for district heating in Denmark

    International Nuclear Information System (INIS)

    Lund, Rasmus; Persson, Urban

    2016-01-01

    The ambitious policy in Denmark on having a 100% renewable energy supply in 2050 requires radical changes to the energy systems to avoid an extensive and unsustainable use of biomass resources. Currently, wind power is being expanded and the increasing supply of electricity is slowly pushing the CHP (combined heat and power) plants out of operation, reducing the energy efficiency of the DH (district heating) supply. Here, large heat pumps for district heating is a frequently mentioned solution as a flexible demand for electricity and an energy efficient heat producer. The idea is to make heat pump use a low temperature waste or ambient heat source, but it has so far been very unclear which heat sources are actually available for this purpose. In this study eight categories of heat sources are analysed for the case of Denmark and included in a detailed spatial analysis where the identified heat sources are put in relation to the district heating areas and the corresponding demands. The analysis shows that potential heat sources are present near almost all district heating areas and that sea water most likely will have to play a substantial role as a heat source in future energy systems in Denmark. - Highlights: • The availability of heat sources for heat pumps in Denmark are mapped and quantified. • A novel methodology for assessment of low temperature industrial excess heat is presented. • There are heat sources available for 99% of district heating networks in Denmark. • The concentration of heat sources is generally bigger around bigger cities than smaller. • Ambient temperature heat sources will be more needed in district heating of big cities.

  18. Techno-economic analysis of energy renovation measures for a district heated multi-family house

    International Nuclear Information System (INIS)

    Gustafsson, Marcus; Gustafsson, Moa Swing; Myhren, Jonn Are; Bales, Chris; Holmberg, Sture

    2016-01-01

    Highlights: • Energy saving measures can be cost-effective as part of a planned renovation. • Primary energy consumption, non-renewable energy consumption and CO_2 emissions are assessed for different electricity mixes. • EAHP can be a cost-effective and environmentally beneficial complement to district heating. • EAHP has lower LCC and significantly shorter payback time than ventilation with heat recovery. • Low-temperature ventilation radiators improve the COP of the heat pump. - Abstract: Renovation of existing buildings is important in the work toward increased energy efficiency and reduced environmental impact. The present paper treats energy renovation measures for a Swedish district heated multi-family house, evaluated through dynamic simulation. Insulation of roof and façade, better insulating windows and flow-reducing water taps, in combination with different HVAC systems for recovery of heat from exhaust air, were assessed in terms of life cycle cost, discounted payback period, primary energy consumption, CO_2 emissions and non-renewable energy consumption. The HVAC systems were based on the existing district heating substation and included mechanical ventilation with heat recovery and different configurations of exhaust air heat pump. Compared to a renovation without energy saving measures, the combination of new windows, insulation, flow-reducing taps and an exhaust air a heat pump gave up to 24% lower life cycle cost. Adding insulation on roof and façade, the primary energy consumption was reduced by up to 58%, CO_2 emissions up to 65% and non-renewable energy consumption up to 56%. Ventilation with heat recovery also reduced the environmental impact but was not economically profitable in the studied cases. With a margin perspective on electricity consumption, the environmental impact of installing heat pumps or air heat recovery in district heated houses is increased. Low-temperature heating improved the seasonal performance factor of the

  19. 4th Generation District Heating (4GDH)

    DEFF Research Database (Denmark)

    Lund, Henrik; Werner, Sven; Wiltshire, Robin

    2014-01-01

    This paper defines the concept of 4th Generation District Heating (4GDH) including the relations to District Cooling and the concepts of smart energy and smart thermal grids. The motive is to identify the future challenges of reaching a future renewable non-fossil heat supply as part...... of the implementation of overall sustainable energy systems. The basic assumption is that district heating and cooling has an important role to play in future sustainable energy systems – including 100 percent renewable energy systems – but the present generation of district heating and cooling technologies will have...

  20. Flexibility of a combined heat and power system with thermal energy storage for district heating

    International Nuclear Information System (INIS)

    Nuytten, Thomas; Claessens, Bert; Paredis, Kristof; Van Bael, Johan; Six, Daan

    2013-01-01

    Highlights: ► A generic model for flexibility assessment of thermal systems is proposed. ► The model is applied to a combined heat and power system with thermal energy storage. ► A centrally located storage offers more flexibility compared to individual units. ► Increasing the flexibility requires both a more powerful CHP and a larger buffer. - Abstract: The trend towards an increased importance of distributed (renewable) energy resources characterized by intermittent operation redefines the energy landscape. The stochastic nature of the energy systems on the supply side requires increased flexibility at the demand side. We present a model that determines the theoretical maximum of flexibility of a combined heat and power system coupled to a thermal energy storage solution that can be either centralized or decentralized. Conventional central heating, to meet the heat demand at peak moments, is also available. The implications of both storage concepts are evaluated in a reference district. The amount of flexibility created in the district heating system is determined by the approach of the system through delayed or forced operation mode. It is found that the distinction between the implementation of the thermal energy storage as a central unit or as a collection of local units, has a dramatic effect on the amount of available flexibility

  1. Performance Analysis of a Hybrid District Heating System

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Duic, Neven

    2015-01-01

    Hybridisation of district heating systems can contribute to more efficient heat generation through cogeneration power plants or through the share increase of renewable energy sources in total energy consumption while reducing negative aspects of particular energy source utilisation. In this work......, the performance of a hybrid district energy system for a small town in Croatia has been analysed. Mathematical model for process analysis and optimisation algorithm for optimal system configuration has been developed and described. The main goal of the system optimisation is to reduce heat production costs....... Several energy sources for heat production have been considered in 8 different simulation cases. Simulation results show that the heat production costs could be reduced with introduction of different energy systems into an existing district heating system. Renewable energy based district heating systems...

  2. District heating

    International Nuclear Information System (INIS)

    Hansen, L.

    1993-01-01

    The environmental risks and uncertainties of a high-energy future are disturbing and give rise to several reservations concerning the use of fossil fuels. A number of technologies will help to reduce atmospheric pollution. In Denmark special importance is attached to the following: Energy conservation. Efficient energy conversion. Renewable energy sources. District heating, combined production of heat and power. Many agree that district heating (DH), produced by the traditional heat-only plant, and combined heat and power (CHP) have enormous potential when considering thermal efficiency and lowered environmental impacts: The basic technology of each is proven, it would be relatively simple to satisfy a substantial part of the energy demand, and their high efficiencies mean reduced pollution including greenhouse gas emissions. This is especially important in high population density areas - the obviously preferred sites for such energy generation. Compared with individual heating DH can provide a community with an operationally efficient and most often also an economically competitive heat supply. This is particularly true under the circumstances where the DH system is supplied from CHP plants. Their use results in very substantial improvements in overall efficiency. Further environmental improvements arise from the reduced air pollution obtainable in reasonably large CHP plants equipped with flue gas cleaning to remove particles, sulphur dioxide, and nitrogen acids. As a consequence of these considerations, DH plays an important role in fulfilling the space and water heating demand in many countries. This is especially the case in Denmark where this technology is utilised to a very great extent. Indeed, DH is one of the reasons why Denmark has relatively good air quality in the cities. (au)

  3. Performance analysis of hybrid district heating system

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Khavin, Gennadii

    2013-01-01

    District heating system could contribute to more efficient heat generation through cogeneration power plants or waste heat utilization facilities and to increase of renewable energy sources share in total energy consumption. In the most developed EU countries, renewable energy sources have been...... as problems related to transportation, storage and environmental impacts of biomass and waste utilisation. Implementation of heat storages in district heating systems could contribute to integration of intermittent energy sources. Hybridisation of heat production facility combines two or more different energy...... more extensively used in district heating systems either separately or as a supplement to traditional fossil fuels in order to achieve national energy policy objectives. However, they are still facing problems such as high intermittences, high energy production costs and low load factors as well...

  4. Improving urban district heating systems and assessing the efficiency of the energy usage therein

    Science.gov (United States)

    Orlov, M. E.; Sharapov, V. I.

    2017-11-01

    The report describes issues in connection with improving urban district heating systems from combined heat power plants (CHPs), to propose the ways for improving the reliability and the efficiency of the energy usage (often referred to as “energy efficiency”) in such systems. The main direction of such urban district heating systems improvement suggests transition to combined heating systems that include structural elements of both centralized and decentralized systems. Such systems provide the basic part of thermal power via highly efficient methods for extracting thermal power plants turbines steam, while peak loads are covered by decentralized peak thermal power sources to be mounted at consumers’ locations, with the peak sources being also reserve thermal power sources. The methodology was developed for assessing energy efficiency of the combined district heating systems, implemented as a computer software product capable of comparatively calculating saving on reference fuel for the system.

  5. District heating in Flensburg

    Energy Technology Data Exchange (ETDEWEB)

    Prinz, W.

    1981-01-01

    The majority of our population, but also of our authorities, are still skeptical or even disapproving towards district heating. The reasons of this negative attitude are partly psychological - e.g. the individualism of the Swiss and their dislike for too centralised structures and ''forced connections'' - but also the existence of finished gas supply networks and the fear of considerable pre-investments and torn streets over years. The following article - held as a speech on the information meeting ''District heating and the possible contribution of nuclear energy'' organised by the Swiss Association for Atomic Energy in Bern shows a practical problem solving at the example of the district heating in Flensburg and deals with these questions.

  6. Modeling Transient Heat Transfer in Small-Size Twin Pipes for End-User Connections to Low-Energy District Heating Networks

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2013-01-01

    The low-energy district heating concept has the potential of increasing the energy and exergy efficiencies of heat supply systems and of exploiting renewable energy, provided technical solutions for its wide application can be developed and implemented. This paper investigates the dynamic behaviour...... of district heating branch pipes in low-temperature operation (supply temperature 50-55°C and return temperature 20-25°C). We looked at state-of-the-art district heating branch pipes, suitable for the connection of a typical single-family house to a substation equipped with a heat exchanger for domestic hot...... water preparation. Experimental measurements of the supply temperature profiles at the outlet of the pipe, i.e. at the inlet to the substation, were compared with detailed simulations based on the finite volume (FV) method. A programming code was developed to model these profiles, and this was validated...

  7. Industrial excess heat for district heating in Denmark

    DEFF Research Database (Denmark)

    Bühler, Fabian; Petrovic, Stefan; Karlsson, Kenneth Bernard

    2017-01-01

    analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate...... the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity...... analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal...

  8. Environmental issues and competitiveness of district heating systems

    International Nuclear Information System (INIS)

    Kypreos, S.

    1991-01-01

    The advantages of district heating systems are evaluated in competition to individual heating for the Swiss markets. The preservation of the environmental quality on the national (clean air concept) and global scale (Toronto recommendation) is formulated as constraint of the energy system. The implications of these constraints for the economic competition of district heating is evaluated. The study estimates the evolution of energy demand in the heating markets and shortly describes the technical possibilities in satisfying demand by a set of conventional heating systems, systems using renewable energy sources, energy conservation measures and district heating systems based on conventional or nuclear energy sources. The main conclusion is that small capacity nuclear district heating systems, if acceptable, could enhance the flexibility of the Swiss energy system in respect to CO 2 control. (author) 3 figs., 4 tabs., 9 refs

  9. Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings: A case study of the Copenhagen district heating area in Denmark

    International Nuclear Information System (INIS)

    Harrestrup, M.; Svendsen, S.

    2014-01-01

    The Danish government plans to make the Danish energy system to be completely free of fossil fuels by 2050 and that by 2035 the energy supply for buildings and electricity should be entirely based on renewable energy sources. To become independent from fossil fuels, it is necessary to reduce the energy consumption of the existing building stock, increase energy efficiency, and convert the present heat supply from fossil fuels to renewable energy sources. District heating is a sustainable way of providing space heating and domestic hot water to buildings in densely populated areas. This paper is a theoretical investigation of the district heating system in the Copenhagen area, in which heat conservation is related to the heat supply in buildings from an economic perspective. Supplying the existing building stock from low-temperature energy resources, e.g. geothermal heat, might lead to oversized heating plants that are too expensive to build in comparison with the potential energy savings in buildings. Long-term strategies for the existing building stock must ensure that costs are minimized and that investments in energy savings and new heating capacity are optimized and carried out at the right time. - Highlights: • We investigate how much heating consumption needs to be reduced in a district heating area. • We examine fossil-fuel-free supply vs. energy conservations in the building stock. • It is slightly cost-beneficial to invest in energy renovation from today for a societal point of view. • It is economically beneficial for district heating companies to invest in energy renovations from today. • The cost per delivered heat unit is lower when energy renovations are carried out from today

  10. Renewable energy in district heating grids. A realistic perspective?; Erneuerbare Energien in Waermenetzen. Eine realistische Perspektive?

    Energy Technology Data Exchange (ETDEWEB)

    Bruns, Elke [Technische Univ. Berlin (Germany). Inst. fuer Landschaftsarchitektur und Umweltplanung; Futterlieb, Matthias; Ohlhorst, Doerte [Technische Univ. Berlin (Germany). Zentrum Technik und Gesellschaft (ZTG); Wenzel, Bernd [Ingenieurbuero fuer neue Energie (IfnE), Teltow (Germany)

    2012-09-15

    The heating sector holds high potentials for cutting CO{sub 2} emissions by using renewable energy. These potentials can be tapped either by substituting fossil fuels in individual heating units or by using renewable energy in district heating networks, which may be more efficient. This paper asks for the options to increase the share of renewable energy in Germany's district heating infrastructure and for the restrictions that are hampering further development in this field. It critically discusses the relevant technical, political and economic challenges and determinants. District heating networks fuelled by renewable energy are not only competing with fossil fuels in individual heating units. They are also facing the more fundamental question regarding the preconditions for a profitable and worthwhile operation of grid-bound heat supply. The economic viability of heat grids has to be analyzed on a case-by-case basis, since it depends predominantly on individual framework conditions. Those include a decreasing heat demand due to improving energy performance of buildings, competing gas grids already in place and the complex interest structures of the actors involved. The growth rates that were observed in the last years were predominantly achieved in small renewably fuelled district heating networks. Even under favourable framework conditions, there is a need for additional supportive measures to increase the share of renewable energy in district heating grids. This mix of policy instruments should encompass measures to increase the implementation rates of municipal heat utilization concepts, measures to decrease the initial investments needed, as well as public relations to improve the user perception of grid-bound heat supply. However, the options to increase the share of renewable heat in existing large-scale grids are considered to be rather limited. (orig.)

  11. Heat demand profiles of energy conservation measures in buildings and their impact on a district heating system

    International Nuclear Information System (INIS)

    Lundström, Lukas; Wallin, Fredrik

    2016-01-01

    Highlights: • Energy savings impact on an low CO 2 emitting district heating system. • Heat profiles of eight building energy conservation measures. • Exhaust air heat pump, heat recovery ventilation, electricity savings etc. • Heat load weather normalisation with segmented multivariable linear regression. - Abstract: This study highlights the forthcoming problem with diminishing environmental benefits from heat demand reducing energy conservation measures (ECM) of buildings within district heating systems (DHS), as the supply side is becoming “greener” and more primary energy efficient. In this study heat demand profiles and annual electricity-to-heat factors of ECMs in buildings are computed and their impact on system efficiency and greenhouse gas emissions of a Swedish biomass fuelled and combined heat and power utilising DHS are assessed. A weather normalising method for the DHS heat load is developed, combining segmented multivariable linear regressions with typical meteorological year weather data to enable the DHS model and the buildings model to work under the same weather conditions. Improving the buildings’ envelope insulation level and thereby levelling out the DHS heat load curve reduces greenhouse gas emissions and improves primary energy efficiency. Reducing household electricity use proves to be highly beneficial, partly because it increases heat demand, allowing for more cogeneration of electricity. However the other ECMs considered may cause increased greenhouse gas emissions, mainly because of their adverse impact on the cogeneration of electricity. If biomass fuels are considered as residuals, and thus assigned low primary energy factors, primary energy efficiency decreases when implementing ECMs that lower heat demand.

  12. Nuclear power for district heating

    International Nuclear Information System (INIS)

    Lyon, R.B.; Sochaski, R.O.

    1975-09-01

    Current district heating trends are towards an increasing use of electricity. This report concerns the evaluation of an alternative means of energy supply - the direct use of thermal energy from CANDU nuclear stations. The energy would be transmitted via a hot fluid in a pipeline over distances of up to 40 km. Advantages of this approach include a high utilization of primary energy, with a consequent reduction in installed capacity, and load flattening due to inherent energy storage capacity and transport delays. Disadvantages include the low load factors for district heating, the high cost of the distribution systems and the necessity for large-scale operation for economic viability. This requirement for large-scale operation from the beginning could cause difficulty in the implementation of the first system. Various approaches have been analysed and costed for a specific application - the supply of energy to a district heating load centre in Toronto from the location of the Pickering reactor station about 40 km away. (author)

  13. Price-structure of electricity and district-heating. A background study for energy conservation programme

    International Nuclear Information System (INIS)

    1994-01-01

    The present report deals with the pricing and price-structure of electricity and district-heating with their effects on energy saving. It constitutes part of the groundwork for the new Government Energy Conservation Programme. The report describes principles for the pricing of electricity and district-heating in Finland, and gives some examples of tariffs in foreign countries, which are interesting from the point of view of energy saving. Different utilities apply quite similar pricing principles but there are big differences in price levels between the utilities. The difference in consumer prices can be almost 100 % in the case of electricity and over 150 % as concerns district-heating. The change in retail prices in the last ten years has not had a big general impact on the consumption of electricity or on energy saving. On the other hand, when the price increases of individual utilities are studied, the impact on energy saving at least in the short term can be seen. It seems that an increase of the fixed charges in relation to energy rates has been as a general trend after 1990. To promote energy saving the changing energy rates should be given special emphasis in determining electricity and district-heating tariffs. The opening of the electricity market means that the electricity suppliers face a new situation also when pricing their products. Customers and their expectations will play an increasingly role. (orig.)

  14. Demonstration of low-energy district heating for low-energy buildings in EnergyFlexHouse. Subreport 1; Demonstration af lavenergifjernvarme til lavenergibyggeri i energyflexhouse. Delrapport 1

    Energy Technology Data Exchange (ETDEWEB)

    Holm Christiansen, C.

    2011-05-15

    This report concerns demonstration of a new concept for low temperature district heating to low energy buildings with district heating flow temperatures on just above 50 deg. C. The concept was developed in a previous energy research project under the EFP-2007-programme supported by the Danish Energy Agency. New types of prototypes for district heating consumer substations and district heating pipes in very small dimensions were developed and manufactured. Demonstration has been carried out in the Danish Technological Institute test houses 'EnergyFlexHouse' with the objective of analyzing and evaluating the performance of the concept in a real low energy house. The EnergyFlexHouse is actually two houses either each designed to be energy neutral with PV's but also fulfilling the Danish building codes low energy class 2015 requirements without the PV's. The two houses are called 'Lab' and 'Family' and are supplied with district heating from a small local distribution network. The tests are carried out in the 'Lab' house connected with a district heating branch twin pipe with two service pipes of just 10 mm inner diameter/14 mm outer diameter and with outer casing diameter of 110 mm corresponding to series 2 insulation. An accumulator consumer substation with a 175 liter storage tank on the primary side (district heating side) has been subject to tests. Tree different tapping patterns of domestic hot water were performed including tapping patterns based on the European standard PrEN50440. Generally the results show that balancing the primary loading flow in relation to actual tapping patterns and domestic hot water consumption is important in order to keep the district heating return temperature as low as possible. Based on the results different options are proposed in order to optimize the operation of the consumer substation. Recently a new project under the EUDP 2010-II has received grant to continue improving and

  15. The role of district heating in future renewable energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Möller, Bernd; Mathiesen, Brian Vad

    2010-01-01

    Based on the case of Denmark, this paper analyses the role of district heating in future Renewable Energy Systems. At present, the share of renewable energy is coming close to 20 per cent. From such point of departure, the paper defines a scenario framework in which the Danish system is converted...... to 100 per cent Renewable Energy Sources (RES) in the year 2060 including reductions in space heating demands by 75 per cent. By use of a detailed energy system analysis of the complete national energy system, the consequences in relation to fuel demand, CO2 emissions and cost are calculated for various...... as in a potential future system based 100 per cent on renewable energy....

  16. Economic and environmental efficiency of district heating plants

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    2005-01-01

    heat, have arbitrary valuation.This study concerns the most developed European district heating and cogeneration system, the Danish.By assessing environmental and economic ef¿ciency, the impact of governmental, market and managerial imperfections are estimated.The principal methodological base......District heating, the conversion of primary energy into distributed thermal energy and possible electric energy, is a challenge to regulate.In addition to the ever present asymmetric information in any suf¿ciently complex activity, some of the inputs for district heating, such as excess process...

  17. Design of energy-efficient buildings using interaction between Building Simulation Programme and Energy Supply Simulations for District Heating

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Dalla Rosa, Alessandro; Nagla, Inese

    potential of the energy saving in the society it is very important to address the decisive involvement of the end-users. The human behaviour is the factor that affects the most the energy use in low-energy buildings and should be included in energy simulations. The results can then be linked to programs...... the implementation of C02 neutral communities. A link between a dynamic energy simulation program for buildings and a simulation program for district heating networks is demonstrated. The results of the investigation give an example of how to analyze a community and make recommendations for applying the low...... in a cost-effective way in areas with linear heat densities down to 0.20 MWh/(m.year). Even in cases where the user behaviour is not optimal, the system is able to deliver heat to each customer. The low-energy district heating concept could be strategic for reaching ambitious energy and climate targets...

  18. Energy efficiency improvements utilising mass flow control and a ring topology in a district heating network

    International Nuclear Information System (INIS)

    Laajalehto, Tatu; Kuosa, Maunu; Mäkilä, Tapio; Lampinen, Markku; Lahdelma, Risto

    2014-01-01

    Heating and cooling have a major role in the energy sector, covering 46% of total final energy use worldwide. District heating (DH) is a significant technology for improving the energy efficiency of heating systems in communities, because it enables waste heat sources to be utilised economically and therefore significantly reduces the environmental impacts of power generation. As a result of new and more stringent construction regulations for buildings, the heat demands of individual buildings are decreasing and more energy-efficient heating systems have to be developed. In this study, the energy efficiency of a new DH system which includes both a new control system called mass flow control and a new network design called a ring network is examined. A topology in the Helsinki region is studied by using a commercial DH network modelling tool, Grades Heating. The district heating network is attached to a wood-burning heat station which has a heat recovery system in use. Examination is performed by means of both technical and economic analysis. The new non-linear temperature programme that is required is adopted for supply and return temperatures, which allows greater temperature cooling and smaller flow rates. Lower district heating water temperatures are essential when reducing the heat losses in the network and heat production. Mass flow control allows smaller pressure drops in the network and thus reduces the pumping power. The aim of this study was to determine the most energy-efficient DH water supply temperatures in the case network. If the ring network design is utilised, the district heating system is easier to control. As a result the total heat consumption within the heating season is reduced compared to traditional DH systems. On the basis of the results, the new DH system is significantly more energy-efficient in the case network that was examined than the traditional design. For example, average energy losses within the constraints (which consist of heat

  19. Lowering district heating temperatures – Impact to system performance in current and future Danish energy scenarios

    DEFF Research Database (Denmark)

    Ommen, Torben; Markussen, Wiebke Brix; Elmegaard, Brian

    2016-01-01

    CHP (Combined heat and power) production in connection with DH (district heating) systems has previously demonstrated a significant reduction in primary energy consumption. With extended installation of intermittent sustainable sources, such as eg. wind turbines rather than thermal units, the cha......CHP (Combined heat and power) production in connection with DH (district heating) systems has previously demonstrated a significant reduction in primary energy consumption. With extended installation of intermittent sustainable sources, such as eg. wind turbines rather than thermal units...

  20. Cost of district heating using geothermal energy; Ist geothermische Waerme wirtschaftlich?

    Energy Technology Data Exchange (ETDEWEB)

    Oppermann, G [GRUNEKO AG, Ingenieure fuer Energiewirtschaft, Basel (Switzerland)

    1997-12-01

    The environmental advantages of a district heating network using geothermal energy are obvious. On the other hand utilizing geothermal energy is considered to be very expensive. The goal of this paper is to compare the costs of geothermal energy with other renewable energy sources. Based on the costs of realized plants and projects the following energy sources have been analysed. Geothermal energy, water of tunnel-drainage, waste heat of a sewage disposal platn and waste wood. All plants have a district heating network. The results are a contribution to the actuel discussion about public subsiding of geothermal energy. (orig.) [Deutsch] Die oekologischen Vorteile einer geothermischen Fernwaermeversorgung sind fuer jeden, der Bohrungen in Erwaegung zieht, unschwer erkennbar. Wie steht es aber mit den Kosten einer geothermischen Nutzung? Hier beleben Horrorzahlen wie auch Wunschdenken die Diskussionen. Der Artikel beabsichtigt einen sachlichen Beitrag zu dieser Diskussion uz liefern. Konkrete Bauprojekte im Megawattbereich der GRUNEKO AG werden kostenmaessig nach gleichen Kriterien analysiert und verglichen. Auf goethermischer Seite wird ein Doublettensystem und eine Tunnelwasserwaermenutzung kostenmaessig analysiert. Als Quervergleich werden ebenfalls GRUNEKO-Projekte mit regenerierbaren Energietraegern herangezogen (Holzschnitzelanlage, Klaeranlagenabwaerme, Seewasser-Abkuehlung). Alle Analgen haben Waermeverteilnetze. Die nachgewiesenen Kostendifferenzen zwischen Geothermie und anderen regenerativen Waermversorgungen koennten einen Beitrag leisten zu der gegenwaertig aktuellen `Ueberpruefung staatlicher Foerderungsmassnahmen zugunsten einer verstaerkten Nutzung der Geothermie`. (orig.)

  1. Energy saving analyses on the reconstruction project in district heating system with distributed variable speed pumps

    International Nuclear Information System (INIS)

    Sheng, Xianjie; Lin, Duanmu

    2016-01-01

    Highlights: • The mathematical model of economic frictional factor based on DVFSP DHS is established. • Influence factors of economic frictional factor are analyzed. • Energy saving in a DVFSP district heating system is presented and analyzed. - Abstract: Optimization of the district heating (DH) piping network is of vital importance to the economics of the whole DH system. The application of distributed variable frequency speed pump (DVFSP) in the district heating network has been considered as a technology improvement that has a potential in saving energy compared to the conventional central circulating pump (CCCP) district heating system (DHS). Economic frictional factor is a common design parameter used in DH pipe network design. In this paper, the mathematical model of economic frictional factor based on DVFSP DHS is established, and influence factors are analyzed, providing a reference for engineering designs for the system. According to the analysis results, it is studied that the energy efficiency in the DH system with the DVFSP is compared with the one in the DH system with conventional central circulating pump (CCCP) using a case based on a district heating network in Dalian, China. The results of the study on the case show that the average electrical energy saved is 49.41% of the one saved by the DH system with conventional central circulating pump in the primary network.

  2. North–South debate on district heating: Evidence from a household survey

    International Nuclear Information System (INIS)

    Guo, Jin; Huang, Ying; Wei, Chu

    2015-01-01

    There has been a long debate on whether South China should supply district heating for the residential sector, a system that is widely used in North China. The major concern is that it may further accelerate China's energy demand. Using a unique urban household level dataset, the China Residential Energy Consumption Survey (CRECS), we investigate residential energy consumption for heating and examine the energy intensity and energy cost of distributed heating in South China and district heating in North China during the 2012 heating season. Our results show that the total energy consumption for distributed heating system users in southern cities is significantly lower than for users of district heating systems in northern cities. However, when accounting for the heating area and heating season, the distributed heating households in the South consumed 32% more energy and paid 189% higher cost per unit area and per hour, but had lower comfort than district heating users in the North. These findings suggest promoting the district heating market in appropriate areas in South China. This not only can improve residential welfare, but also can indirectly reduce energy consumption and financial burdens. - Highlights: • The debate on whether Southern China apply district heating is present. • The household data in 2012 is used to compare the energy efficient and cost. • South resident use more energy and higher cost but less comfort than North. • Government should not prevent the district heating market.

  3. District Heating Expansion Potential with Low-Temperature and End-Use Heat Savings

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Grundahl, Lars

    2018-01-01

    District heating has the potential to play a key role in the transition towards a renewable energy system. However, the development towards reduced heat demands threatens the feasibility of district heating. Despite this challenge, opportunity exists in the form of fourth generation district...... heating, which operates at lower temperatures and enables better renewable integration. This article investigates this challenge by examining the district heating potential within three scenarios: The first is a reference scenario with current heat demand and temperatures, the second includes heat demand...... costs. The models are applied using an example case of The Northern Region of Denmark. The article concludes that the district heating potential is highest in the reference scenario. When heat savings are introduced, district heating expansions, in most cases, will not be feasible. Introducing low...

  4. Swedish district heating - owners, prices and profitability

    International Nuclear Information System (INIS)

    Andersson, Sofie; Werner, S.

    2001-01-01

    Owners, prices and profitability are examined in this report for 152 Swedish district heating companies during 1999. Only public information available has been used: Prices from a national annual consumer study, energy supplied, lengths of district heating pipes installed, and average prices for energy supplied. These companies are responsible for 96 % of all district heat supplied in Sweden. District heating systems owned by municipalities were responsible for 65 % of all district heat supply, while the share of power companies was 34 %. Other private owners accounted for 1 %. Only 12 % of the board members are women and more than 40 % of the companies have no woman in the board. The prices gathered by the annual consumer study are good estimates of the price level of district heating in Sweden. The average revenues are only 4,1 % lower than the effective average of prices gathered. Price of district heating decrease with size and market share. Use of combined heat and power plants decrease prices slightly. Lower prices with size can mainly be explained by lower energy supply costs. Calculated rates of return in relation to calculated replacement values increase slightly by size and are almost independent of age and market share. The purport of these conclusions is that the district heating companies share the cost reduction from size with their customers, while the whole benefit from high market shares is repaid to the customers. Calculated rates of return vary among the owner groups examined. Lower rates are accepted by municipalities, while power companies have higher rates at the average costs used. Total replacement costs for the 152 companies has been estimated to 89 billion Swedish crowns or 10 billion Euro. Only correlation analyses using one dimension have been used in this study. A higher degree of quality can be obtained by using multi-dimensional analyses

  5. Energy, economy and exergy evaluations of the solutions for supplying domestic hot water from low-temperature district heating in Denmark

    International Nuclear Information System (INIS)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    Highlights: • Provided domestic hot water configurations for low-temperature district heating. • Various building typologies and district heating supply temperatures were included. • Different scenarios were evaluated from the energy, economy and exergy aspects. • The benefits of lower return temperature to district heating were investigated. - Abstract: District heating in Denmark is going through the transition from 3rd generation (80/40 °C) to 4th generation (50–55 °C/25 °C) systems in preparation for district heating based completely on renewable fuels by 2035. However, concern about Legionella growth and reduced comfort with low-temperature domestic hot water supply may be discouraging the implementation of low-temperature district heating. Aimed at providing possible solutions, this study modelled various proposals for district heating systems with supply temperatures of 65 °C, 50 °C and 35 °C and for two different building topologies. Evaluation models were built to investigate the energy, economy and exergy performances of the proposed domestic hot water systems in various configurations. The configurations of the devised domestic hot water substations were optimised to fit well with both low and ultra-low-temperature district heating and to reduce the return temperature to district heating. The benefits of lower return temperatures were also analysed compared with the current district heating situation. The evaluation results show that the decentralized substation system with instantaneous heat exchanger unit performed better under the 65 °C and 50 °C district heating scenarios, while the individual micro tank solution consumed less energy and cost less in the 35 °C district heating scenario.

  6. Heat demand mapping and district heating grid expansion analysis: Case study of Velika Gorica

    Directory of Open Access Journals (Sweden)

    Dorotić Hrvoje

    2017-01-01

    Full Text Available Highly efficient cogeneration and district heating systems have a significant potential for primary energy savings and the reduction of greenhouse gas emissions through the utilization of a waste heat and renewable energy sources. These potentials are still highly underutilized in most European countries. They also play a key role in the planning of future energy systems due to their positive impact on the increase of integration of intermittent renewable energy sources, for example wind and solar in a combination with power to heat technologies. In order to ensure optimal levels of district heating penetration into an energy system, a comprehensive analysis is necessary to determine the actual demands and the potential energy supply. Economical analysis of the grid expansion by using the GIS based mapping methods hasn’t been demonstrated so far. This paper presents a heat demand mapping methodology and the use of its output for the district heating network expansion analysis. The result are showing that more than 59% of the heat demand could be covered by the district heating in the city of Velika Gorica, which is two times more than the present share. The most important reason of the district heating's unfulfilled potential is already existing natural gas infrastructure.

  7. Heat demand mapping and district heating grid expansion analysis: Case study of Velika Gorica

    Science.gov (United States)

    Dorotić, Hrvoje; Novosel, Tomislav; Duić, Neven; Pukšec, Tomislav

    2017-10-01

    Highly efficient cogeneration and district heating systems have a significant potential for primary energy savings and the reduction of greenhouse gas emissions through the utilization of a waste heat and renewable energy sources. These potentials are still highly underutilized in most European countries. They also play a key role in the planning of future energy systems due to their positive impact on the increase of integration of intermittent renewable energy sources, for example wind and solar in a combination with power to heat technologies. In order to ensure optimal levels of district heating penetration into an energy system, a comprehensive analysis is necessary to determine the actual demands and the potential energy supply. Economical analysis of the grid expansion by using the GIS based mapping methods hasn't been demonstrated so far. This paper presents a heat demand mapping methodology and the use of its output for the district heating network expansion analysis. The result are showing that more than 59% of the heat demand could be covered by the district heating in the city of Velika Gorica, which is two times more than the present share. The most important reason of the district heating's unfulfilled potential is already existing natural gas infrastructure.

  8. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  9. The role of district heating in decarbonising the EU energy system and a comparison with existing strategies

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2013-01-01

    Many strategies have already been proposed for the decarbonisation of the EU energy system by the year 2050. These typically focus on the expansion of renewable energy in the electricity sector and subsequently, electrifying both the heat and transport sectors as much as possible...... are identified and then, the EU27 energy system is modelled to investigate the impact of district heating. The results indicate that a combination of heat savings, district heating in urban areas, and individual heat pumps in rural areas will enable the EU27 to reach its greenhouse gas emission targets by 2050...

  10. State and development prospects of district heating in the FRG

    International Nuclear Information System (INIS)

    Buch, A.

    1975-12-01

    The study outlines the state of district heating, investigates the preconditions of its increased application and determines the thus obtainable saving in energy consumption. The heat consumption in homes, the energy use and the types of heating for room heating and hot water supply, the covering of the demand for district heating, design of a district heating supply, the regional planning and the production costs of district heating are individually considered. The results are shown clearly in tables, maps and and graphs. (HR/LH) [de

  11. District heating and co-generation in Slovenia

    International Nuclear Information System (INIS)

    Hrovatin, Franc; Pecaric, Marko; Perovic, Olgica

    2000-01-01

    Recent development of district heating systems, gasification and co-generation processes in local communities in Slovenia as well as current status, potentials, possibilities and plans for further development in this sphere are presented. The current status presents energy production, distribution and use in district heating systems and in local gas distribution networks. An analysis of the energy and power generated and distributed in district power systems, made with regard to the size of the system, fuel used, type of consumers and the way of production, is given. Growth in different areas of local power systems in the period of last years is included. Potentials in the sphere of electrical energy and heat co-generation were assessed. Some possibilities and experience in heat energy storage are given and trends and plans for further development are introduced. (Authors)

  12. Upscaling a district heating system based on biogas cogeneration and heat pumps

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; Fink, J.; Smit, Gerardus Johannes Maria; de Wit, Jan B.

    2015-01-01

    The energy supply of the Meppel district Nieuwveense landen is based on biogas cogeneration, district heating, and ground source heat pumps. A centrally located combined heat and power engine (CHP) converts biogas from the municipal wastewater treatment facility into electricity for heat pumps and

  13. A Feasibility Study on District Heating and Cooling Business Using Urban Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Joon; Choi, Byoung Youn; Lee, Kyoung Ho; Lee, Jae Bong [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Yoo, Jae In; Yoon, Jae Ho; Oh, Myung Do; Park, Moon Su; Kang, Han Kee; Yoo, Kyeoung Hoon; Bak, Jong Heon; Kim, Sun Chang; Park, Heong Kee; Bae, Tae Sik [Korea Academy of Industrial Technology, Seoul (Korea, Republic of)

    1996-12-31

    Investigation of papers related to waste heat utilization using heat pump. Estimate of various kinds of urban waste heat in korea. Investigation and study on optimal control of district heating and cooling system. Prediction of energy saving and environmental benefits when the urban waste heat will be used as heat source and sink of heat pump for district heating and cooling. Estimation of economic feasibility on district heating and cooling project utilizing urban waste heat. (author). 51 refs., figs

  14. The Innovative Concept of Cold District Heating Networks: A Literature Review

    Directory of Open Access Journals (Sweden)

    Marco Pellegrini

    2018-01-01

    Full Text Available The development of sustainable and innovative solutions for the production and supply of energy at district level is nowadays one of the main technical challenges. In the past, district heating and cooling networks aimed to achieve greater energy efficiency through the centralization of the energy production process but with relevant losses related to heat transport. Moving towards a higher share of renewables and lower demand of primary energy requires redesign of the energy district networks. The novel concept of cold district heating networks aims to combine the advantages of a centralized energy distribution system with low heat losses in energy supply. This combined effect is achieved through the centralized supply of water at relatively low temperatures (in the range 10–25 °C, which is then heated up by decentralized heat pumps. Moreover, cold district heating networks are also very suitable for cooling delivery, since cold water supplying can be directly used for cooling purposes (i.e., free cooling or to feed decentralized chillers with very high energy efficiency ratio. This paper provides a preliminary literature review of existing cold district heating networks and then qualitatively analyses benefits and drawbacks in comparison with the alternatives currently used to produce heat and cold at district level, including the evaluation of major barriers to its further development.

  15. Integrated multiscale simulation of combined heat and power based district heating system

    International Nuclear Information System (INIS)

    Li, Peifeng; Nord, Natasa; Ertesvåg, Ivar Ståle; Ge, Zhihua; Yang, Zhiping; Yang, Yongping

    2015-01-01

    Highlights: • Simulation of power plant, district heating network and heat users in detail and integrated. • Coupled calculation and analysis of the heat and pressure losses of the district heating network. • District heating is not preferable for very low heat load due to relatively high heat loss. • Lower design supply temperatures of the district heating network give higher system efficiency. - Abstract: Many studies have been carried out separately on combined heat and power and district heating. However, little work has been done considering the heat source, the district heating network and the heat users simultaneously, especially when it comes to the heating system with large-scale combined heat and power plant. For the purpose of energy conservation, it is very important to know well the system performance of the integrated heating system from the very primary fuel input to the terminal heat users. This paper set up a model of 300 MW electric power rated air-cooled combined heat and power plant using Ebsilon software, which was validated according to the design data from the turbine manufacturer. Then, the model of heating network and heat users were developed based on the fundamental theories of fluid mechanics and heat transfer. Finally the combined heat and power based district heating system was obtained and the system performances within multiscale scope of the system were analyzed using the developed Ebsilon model. Topics with regard to the heat loss, the pressure drop, the pump power consumption and the supply temperatures of the district heating network were discussed. Besides, the operational issues of the integrated system were also researched. Several useful conclusions were drawn. It was found that a lower design primary supply temperature of the district heating network would give a higher seasonal energy efficiency of the integrated system throughout the whole heating season. Moreover, it was not always right to relate low design

  16. Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, S.

    2014-01-01

    is a theoretical investigation of the district heating system in the Copenhagen area, in which heat conservation is related to the heat supply in buildings from an economic perspective. Supplying the existing building stock from low-temperature energy resources, e.g. geothermal heat, might lead to oversized......The Danish government plans to make the Danish energy system to be completely free of fossil fuels by 2050 and that by 2035 the energy supply for buildings and electricity should be entirely based on renewable energy sources. To become independent from fossil fuels, it is necessary to reduce...... the energy consumption of the existing building stock, increase energy efficiency, and convert the present heat supply from fossil fuels to renewable energy sources. District heating is a sustainable way of providing space heating and domestic hot water to buildings in densely populated areas. This paper...

  17. Future Services for District Heating Solutions in Residential Districts

    Directory of Open Access Journals (Sweden)

    Hannele Ahvenniemi

    2014-06-01

    Full Text Available The underlying assumption of this study is that in order to retain the competitiveness while reaching for the EU targets regarding low-energy construction, district heating companies need to develop new business and service models. How district heating companies could broaden their perspective and switch to a more service-oriented way of thinking is a key interest of our research. The used methods in our study are house builder interviews and a questionnaire. With the help of these methods we discussed the potential interest in heating related services acquiring a comprehensive understanding of the customer needs. The results indicate the importance of certain criteria when choosing the heating system in households: easiness, comfort and affordability seem to dominate the house builders’ preferences. Also environmental awareness seems to be for many an important factor when making a decision about the heating of the house. Altogether, based on the results of this study, we suggest that the prospects of district heating could benefit from highlighting certain aspects and strengths in the future. District heating companies need to increase flexibility, readiness to adopt new services, to invest in new marketing strategies and improving the communication skills.

  18. District heating and cogeneration in the EU-28: Current situation, potential and proposed energy strategy for its generalisation

    Directory of Open Access Journals (Sweden)

    Enrique Rosales-Asensio

    2016-10-01

    Full Text Available Yearly, EU-28 conventional thermal generating plants reject a greater amount of energy than what ultimately is utilised by residential and commercial loads for heating and hot water. If this waste heat were to be used through district heating networks, given a previous energy valorisation, there would be a noticeable decrease in imported fossil fuels for heating. As a consequence, benefits in the form of an energy efficiency increase, an energy security improvement, and a minimisation of emitted greenhouse gases would occur. Given that it is not expected for heat demand to decrease significantly in the medium term, district heating networks show the greatest potential for the development of cogeneration. However, to make this happen, some barriers that are far from being technological but are mostly institutional and financial need to be removed. The purpose of this review is to provide information on the potential of using waste heat from conventional thermal power plants (subsequently converted into cogeneration plants in district heating networks located in the EU-28. For this, a preliminary assessment is conducted in order to show an estimate of the cost of adopting an energy strategy in which district heating networks are a major player of the energy mix. From this assessment, it is possible to see that even though the energy strategy proposed in this paper, which is based on a dramatic increase in the joint use of district heating networks and cogeneration, is capital-intensive and would require an annual investment of roughly 300 billion euros, its adoption would result in a reduction of yearly fuel expenses in the order of 100 billion euros and a shortening of about 15% of the total final energy consumption, which makes it of paramount interest as an enabler of the legal basis of the “Secure, Clean and Efficient Energy” future enacted by the EU-28 Horizon 2020.

  19. District heating in Switzerland

    International Nuclear Information System (INIS)

    Herzog, F.

    1991-01-01

    District heating has been used in Switzerland for more than 50 years. Its share of the heat market is less than 3% today. An analysis of the use of district heating in various European countries shows that a high share of district heating in the heat market is always dependent on ideal conditions for its use. Market prospects and possible future developments in the use of district heating in Switzerland are described in this paper. The main Swiss producers and distributors of district heating are members of the Association of District Heating Producers and Distributors. This association supports the installation of district heating facilities where ecological, energetical and economic aspects indicate that district heating would be a good solution. (author) 2 tabs., 6 refs

  20. The application of ground source heat pumps to a subdivision-wide district heating system

    International Nuclear Information System (INIS)

    Ciavaglia, L.

    2005-01-01

    Design guidelines for economic ground source heat pumps (GSHP) in district energy systems were presented. The broad economics of using central GSHP in a community district energy system were examined. Design parameters needed to utilize GSHP in district energy system were outlined. The sensitivity of energy prices and the costs of major capital were reviewed. District heating load duration curves were outlined. It was suggested that varying GSHP capacity from 0 to 100 per cent of load was advisable. In addition, capacity should be balanced with gas boiler technology. The amortizing of capital within energy costs was recommended. It was suggested that the best scenario was a minimum of 50 per cent ground energy. Details of pipings and heat exchanger costs were presented, along with costs for gas boilers and gas costs for the district energy system. Charts of current costing and reduction of piping capital were included. It was concluded that GSHP can be a viable component of a district energy system, as a GSHP based district energy system can provide more stable energy prices than conventional fossil fuel systems. It was suggested that sizing of GSHP at, or near, 40 per cent of peak demand provided optimal conditions with respect to energy cost and use of earth energy. tabs., figs

  1. Urban district heating using nuclear heat - a survey

    International Nuclear Information System (INIS)

    Beresovski, T.; Oliker, I.

    1979-01-01

    The use of heat from nuclear power plants is of great interest in connection with projected future expansions of large urban district heating systems. Oil price escalation and air pollution from increased burning of fossil fuels are substantial incentivers for the adoption of nuclear heat and power plants. The cost of the hot water piping system from the nuclear plant to the city is a major factor in determining the feasibility of using nuclear heat. To achieve reasonable costs, the heat load should be at least 1500 MW(th), transport temperatures 125-200 0 C and distances preferably 50 km or less. Heat may be extracted from the turbines of conventional power reactors. Alternatively, some special-purpose smaller reactors are under development which are specially suited to production of heat with little or no power coproduct. Many countries are conducting studies of future expansions of district heating systems to use nuclear heat. Several countries are developing technology suitable for this application. Actual experience with the use of nuclear heat for district heating is currently being gained only in the USSR, however. While district heating appears to be a desirable technology at a time of increasing fossil-fuel costs, the use of nuclear heat will require siting of nuclear plants within transmission radius of cities. The institutional barries toward use of nuclear heating will have to be overcome before the energy conservation potential of this approach can be realized on a significant scale. (author)

  2. Challenges in Smart Low-Temperature District Heating Development

    DEFF Research Database (Denmark)

    Li, Hongwei; Wang, Stephen Jia

    2014-01-01

    Previous research and development shows that low temperature district heating (LTDH) system is economic feasible for low energy buildings and buildings at sparse areas. Coupling with reduced network temperature and well-designed district heating (DH) networks, LTDH can reduce network heat loss by...

  3. Model-based energy performance assessment of the world largest underground seasonal thermal energy storage in a pilot district heating system in Chifeng City

    NARCIS (Netherlands)

    Xu, L.; Torrens Galdiz, J.I.; Guo, F.; Yang, X.; Hensen, J.L.M.

    2017-01-01

    District heating systems play an important role in supporting energy transition by using and storing energy delivered by renewable and other low-grade energy sources such as industrial waste heat. However, this low-grade heat is not always able to satisfy the heating demand, including space heating

  4. Operational Planning of Low-Energy District Heating Systems Connected to Existing Buildings

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2012-01-01

    . The response of the radiator heating systems at different levels of supply temperature was used to form the operational planning of the low-energy DH system, which determined the design parameters of the low-energy DH network in terms of overall mass flow requirement and the return temperature from...... the buildings. Since the existing buildings were considered to be renovated to low-energy class, the operational planning was simultaneously modelled for both present high-demand and future low-demand situations of the same case area.......This article focuses on low-energy District Heating (DH) systems operating in low-temperatures such as 55°C in terms of supply and 25°C in terms of return in connection with existing buildings. Since the heat loss from the network has a significant impact in case of supplying heat to low...

  5. District heating versus local heating - Social supportability

    International Nuclear Information System (INIS)

    Matei, Magdalena; Enescu, Diana; Varjoghie, Elena; Radu, Florin; Matei, Lucian

    2004-01-01

    District heating, DH, is an energy source which can provide a cost-effective, environmentally friendly source of heat and power for cities, but only in the case of well running systems, with reasonable technological losses. The benefits of DH system are well known: environmental friendly, energy security, economic and social advantages. DH already covers 60% of heating and hot water needs in transition economies. Today, 70 % of Russian, Latvian and Belarus homes use DH, and heating accounts for one-third of total Russian energy consumption. Yet a large number of DH systems in the region face serious financial, marketing or technical problems because of the policy framework. How can DH issues be best addressed in national and local policy? What can governments do to create the right conditions for the sustainable development of DH while improving service quality? What policies can help capture the economic, environmental and energy security benefits of co-generation and DH? To address these questions, the International Energy Agency (IEA) hosted in 2002 and 2004 conference focusing on the crucial importance of well-designed DH policies, for exchanging information on policy approaches. The conclusions of the conference have shown that 'DH systems can do much to save energy and boost energy security, but stronger policy measures are needed to encourage wise management and investment. With a stronger policy framework, DH systems in formerly socialist countries could save the equivalent of 80 billion cubic meters of natural gas a year through supply side efficiency improvements. This is greater than total annual natural gas consumption in Italy'. More efficient systems will also decrease costs, reducing household bills and making DH competitive on long-term. This paper presents the issues: -Theoretical benefits of the district heating and cooling systems; - Municipal heating in Romania; - Technical and economic problems of DH systems and social supportability; - How

  6. Decreasing of energy consumption for space heating in existing residential buildings; Combined geothermal and gas district heating systems

    International Nuclear Information System (INIS)

    Rosca, Marcel

    2000-01-01

    The City of Oradea, Romania, has a population of about 230 000 inhabitants. Almost 70% of the total heat demand, including industrial, is supplied by a classical East European type district heating system. The heat is supplied by two low grade coal fired co-generation power plants. The oldest distribution networks and substitutions, as well as one power plant, are 35 years old and require renovation or even reconstruction. The geothermal reservoir located under the city supplies at present 2,2% of the total heat demand. By generalizing the reinjection, the production can be increased to supply about 8% of the total heat demand, without any significant reservoir pressure or temperature decline over 25 years. Another potential energy source is natural gas, a main transport pipeline running close to the city. Two possible scenarios are envisaged to replace the low grade coal by natural gas and geothermal energy as heat sources for Oradea. In one scenario, the geothermal energy supplies the heat for tap water heating and the base load for space heating in a limited number of substations, with peak load being produced by natural gas fired boilers. In the other scenario, the geothermal energy is only used for tap water heating. In both scenarios, all substations are converted into heat plants, natural gas being the main energy source. The technical, economic, and environmental assessment of the two proposed scenarios are compared with each other, as well as with the existing district heating system. Two other possible options, namely to renovate and convert the existing co-generation power plants to natural gas fired boilers or to gas turbines, are only briefly discussed, being considered unrealistic, at least for the short and medium term future. (Author)

  7. Effects of heat and electricity saving measures in district-heated multistory residential buildings

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Dodoo, Ambrose; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed the potential for energy savings in district heated buildings. • Measures that reduce more peak load production give higher primary energy savings. • Efficient appliances increase heat demand but give net primary energy savings. • Efficient appliances give the largest net primary energy savings. - Abstract: The effects of heat and electricity saving measures in district-heated buildings can be complex because these depend not only on how energy is used on the demand side but also on how energy is provided from the supply side. In this study, we analyze the effects of heat and electricity saving measures in multistory concrete-framed and wood-framed versions of an existing district-heated building and examine the impacts of the reduced energy demand on different district heat (DH) production configurations. The energy saving measures considered are for domestic hot water reduction, building thermal envelope improvement, ventilation heat recovery (VHR), and household electricity savings. Our analysis is based on a measured heat load profile of an existing DH production system in Växjö, Sweden. Based on the measured heat load profile, we model three minimum-cost DH production system using plausible environmental and socio-political scenarios. Then, we investigate the primary energy implications of the energy saving measures applied to the two versions of the existing building, taking into account the changed DH demand, changed cogenerated electricity, and changed electricity use due to heat and electricity saving measures. Our results show that the difference between the final and primary energy savings of the concrete-framed and wood-framed versions of the case-study building is minor. The primary energy efficiency of the energy saving measures depends on the type of measure and on the composition of the DH production system. Of the various energy saving measures explored, electricity savings give the highest primary energy savings

  8. Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat

    Directory of Open Access Journals (Sweden)

    Borna Doračić

    2018-03-01

    Full Text Available District heating plays a key role in achieving high primary energy savings and the reduction of the overall environmental impact of the energy sector. This was recently recognized by the European Commission, which emphasizes the importance of these systems, especially when integrated with renewable energy sources, like solar, biomass, geothermal, etc. On the other hand, high amounts of heat are currently being wasted in the industry sector, which causes low energy efficiency of these processes. This excess heat can be utilized and transported to the final customer by a distribution network. The main goal of this research was to calculate the potential for excess heat utilization in district heating systems by implementing the levelized cost of excess heat method. Additionally, this paper proves the economic and environmental benefits of switching from individual heating solutions to a district heating system. This was done by using the QGIS software. The variation of different relevant parameters was taken into account in the sensitivity analysis. Therefore, the final result was the determination of the maximum potential distance of the excess heat source from the demand, for different available heat supplies, costs of pipes, and excess heat prices.

  9. Industrial Heat Pump for a High Temperature District Heating Application

    DEFF Research Database (Denmark)

    Poulsen, Claus Nørgaard

    by excess thermal energy from thermal solar panels. An industrial heat pump system using the natural refrigerant ammonia, is extracting the thermal energy from the storage when needed, and produce hot water at 85°C, for the district heating grid. The heat pump also acts as contributor to electricity grid...

  10. Energy, economy and exergy evaluations of the solutions for supplying domestic hot water from low-temperature district heating in Denmark

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    . Evaluation models were built to investigate the energy, economy and exergy performances of the proposed domestic hot water systems in various configurations. The configurations of the devised domestic hot water substations were optimised to fit well with both low and ultra-low-temperature district heating...... °C and 50 °C district heating scenarios, while the individual micro tank solution consumed less energy and cost less in the 35 °C district heating scenario....

  11. District heating rehabilitation project. Viljandi - Estonia. Final report

    International Nuclear Information System (INIS)

    1998-04-01

    The main objective of the project has been to assist Viljandi Municipality with the rehabilitation of their district heating system, and thereby to support the positive development of the district heating system in Viljandi to a more energy efficient and rational system and to achieve a significantly decrease in the pollution from the production of heat energy in Viljandi. The project has also included technical assistance to Viljandi DH company, in order to make them capable of operation and maintaining of the new substations, and also training of the local operational staff for operation of the complete district heating system. Viljandi is a county and is centrally located in Estonia, which makes Viljandi very suitable as recipient for a demonstration project. One important objective was the projects significantly positive environmental impact in reduction of the generated emissions of CO 2 , NO x and SO 2 , as the project includes installation of more efficient energy systems and supply of heat from the 2 existing district heating plants (both are partly fired with wood chips) instead of heating by very old and worn-out coal fired boilers and inexpedient designed substations with the present operational conditions. (EG)

  12. District heating rehabilitation project. Viljandi - Estonia. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The main objective of the project has been to assist Viljandi Municipality with the rehabilitation of their district heating system, and thereby to support the positive development of the district heating system in Viljandi to a more energy efficient and rational system and to achieve a significantly decrease in the pollution from the production of heat energy in Viljandi. The project has also included technical assistance to Viljandi DH company, in order to make them capable of operation and maintaining of the new substations, and also training of the local operational staff for operation of the complete district heating system. Viljandi is a county and is centrally located in Estonia, which makes Viljandi very suitable as recipient for a demonstration project. One important objective was the projects significantly positive environmental impact in reduction of the generated emissions of CO{sub 2}, NO{sub x} and SO{sub 2}, as the project includes installation of more efficient energy systems and supply of heat from the 2 existing district heating plants (both are partly fired with wood chips) instead of heating by very old and worn-out coal fired boilers and inexpedient designed substations with the present operational conditions. (EG)

  13. Conversion of individual natural gas to district heating

    DEFF Research Database (Denmark)

    Möller, Bernd; Lund, Henrik

    2010-01-01

    Replacing individual natural gas heating with district heating based to increasing shares of renewable energy sources may further reduce CO2-emissions in the Danish Building mass, while increasing flexibility of the energy system to accommodate significantly larger amounts of variable renewable...... energy production. The present paper describes a geographical study of the potential to expand district heating into areas supplied with natural gas. The study uses a highly detailed spatial database of the built environment, its current and potential future energy demand, its supply technologies and its...

  14. Co-operation between Canada and Hungary on the application of the SLOWPOKE energy system to district heating in eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kay, R. E.; Halzl, J.; Sigmond, G.; Takats, F.; Bakacs, I.

    1989-06-15

    The SLOWPOKE Energy System is a nuclear energy source designed to provide up to 10 MWt of heat energy in the form of hot water to medium- and large- size district heating systems. An appropriate grouping of Canadian and Hungarian companies with the support of the Hungarian Ministry of Industry is studying the technical, economic, commercial, and nuclear licensability aspects of the application of the SLOWPOKE Energy System to district heating in Hungary. Results of these studies indicate that there is a significant potential market for SLOWPOKE Energy Systems in existing district heating systems, that the SLOWPOKE Energy System can be readily integrated into such systems, that high capacity factors can be achieved, and that it will be relatively easy to localize the supply of most components and systems.

  15. Co-operation between Canada and Hungary on the application of the SLOWPOKE energy system to district heating in eastern Europe

    International Nuclear Information System (INIS)

    Kay, R.E.; Halzl, J.; Sigmond, G.; Takats, F.; Bakacs, I.

    1989-06-01

    The SLOWPOKE Energy System is a nuclear energy source designed to provide up to 10 MWt of heat energy in the form of hot water to medium- and large- size district heating systems. An appropriate grouping of Canadian and Hungarian companies with the support of the Hungarian Ministry of Industry is studying the technical, economic, commercial, and nuclear licensability aspects of the application of the SLOWPOKE Energy System to district heating in Hungary. Results of these studies indicate that there is a significant potential market for SLOWPOKE Energy Systems in existing district heating systems, that the SLOWPOKE Energy System can be readily integrated into such systems, that high capacity factors can be achieved, and that it will be relatively easy to localize the supply of most components and systems

  16. Interim district energy implementation

    Energy Technology Data Exchange (ETDEWEB)

    Fearnley, R.; Susak, W. [City of Vancouver, BC (Canada); Johnstone, I. [BCG Services Inc., Vancouver, BC (Canada)

    2001-07-01

    The concept of district energy was introduced in the City of North Vancouver, a city of 45,000, in 1997. A preliminary study was completed in 1997, followed by a tour of some district energy facilities in Finland in the same year. In 1999 a large district energy study was completed by a consultant. The study indicated the need for an investment of $15 million to implement district heating in the City. Lack of sufficient financial resources and immediately connectable heat load, the project was considered a non-starter. Some of the other factors leading to shelving the project included no current significant pricing advantages over competing energy sources and no current opportunity for cogeneration, given the low price that BC Hydro is willing to pay for independently produced power. The project, although shelved for the moment, has not been discarded. Planning and exploration are continuing, aided by the City's commitment to energy efficiency and conservation, its long term planning horizon and its significant influence over the development of some prime real estate.

  17. Risk assessment of new pricing strategies in the district heating market. A case study at Sundsvall Energi AB

    International Nuclear Information System (INIS)

    Bjoerkqvist, Olof; Idefeldt, Jim; Larsson, Aron

    2010-01-01

    The price structure of district heating has been no major scientific issue for the last decades in energy-related research. However, today trends in district heating pricing tend to move towards a more customer-oriented approach with predetermined prices under a longer periods, leading to a more complex price structure. If a district heating supplier offers district heating with predetermined prices in order to compete with similar electricity offers, the financial risk of the new price structure is significantly higher than the risk of an ordinary variable cost offer based on short-run marginal cost. In contrary to an electricity seller, the district heating company cannot transfer all of the risk of predetermined prices to the financial market, instead the company is thrown upon its own ability to handle the risk by, e.g., hedging its own energy purchase. However, all uncertainties cannot be coped with in this manner. Thus, there is a need for a methodology that can be used to estimate the financial risk of different price structures and to value different opportunities to reduce the risk. In this article, we propose a methodology, implemented in prototype software, to evaluate the risk associated with new price structures in district heating. (author)

  18. Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings

    International Nuclear Information System (INIS)

    Åberg, M.; Henning, D.

    2011-01-01

    The development towards more energy efficient buildings, as well as the expansion of district heating (DH) networks, is generally considered to reduce environmental impact. But the combined effect of these two progressions is more controversial. A reduced heat demand (HD) due to higher energy efficiency in buildings might hamper co-production of electricity and DH. In Sweden, co-produced electricity is normally considered to displace electricity from less efficient European condensing power plants. In this study, a potential HD reduction due to energy efficiency measures in the existing building stock in the Swedish city Linköping is calculated. The impact of HD reduction on heat and electricity production in the Linköping DH system is investigated by using the energy system optimisation model MODEST. Energy efficiency measures in buildings reduce seasonal HD variations. Model results show that HD reductions primarily decrease heat-only production. The electricity-to-heat output ratio for the system is increased for HD reductions up to 30%. Local and global CO 2 emissions are reduced. If co-produced electricity replaces electricity from coal-fired condensing power plants, a 20% HD reduction is optimal for decreasing global CO 2 emissions in the analysed DH system. - Highlights: ► A MODEST optimisation model of the Linköping district heating system is used. ► The impact of heat demand reduction on heat and electricity production is examined. ► Model results show that heat demand reductions decrease heat-only production. ► Local and global CO 2 emissions are reduced. ► The system electricity-to-heat output increases for reduced heat demand up to 30%.

  19. Local business models for district heat production; Kaukolaemmoen paikalliset liiketoimintamallit

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, L.; Pesola, A.; Vanhanen, J.

    2012-12-15

    Local district heating business, outside large urban centers, is a profitable business in Finland, which can be practiced with several different business models. In addition to the traditional, local district heating business, local district heat production can be also based on franchising business model, on integrated service model or on different types of cooperation models, either between a local district heat producer and industrial site providing surplus heat or between a local district heat producer and a larger district heating company. Locally available wood energy is currently utilized effectively in the traditional district heating business model, in which a local entrepreneur produces heat to consumers in the local area. The franchising model is a more advanced version of the traditional district heating entrepreneurship. In this model, franchisor funds part of the investments, as well as offers centralized maintenance and fuel supply, for example. In the integrated service model, the local district heat producer offers also energy efficiency services and other value-added services, which are based on either the local district heat suppliers or his partner's expertise. In the cooperation model with industrial site, the local district heating business is based on the utilization of the surplus heat from the industrial site. In some cases, profitable operating model approach may be a district heating company outsourcing operations of one or more heating plants to a local entrepreneur. It can be concluded that all business models for district heat production (traditional district heat business model, franchising, integrated service model, cooperative model) discussed in this report can be profitable in Finnish conditions, as well for the local heat producer as for the municipality - and, above all, they produce cost-competitive heat for the end-user. All the models were seen as viable and interesting and having possibilities for expansion Finland

  20. Modeling of District Heating Networks for the Purpose of Operational Optimization with Thermal Energy Storage

    Science.gov (United States)

    Leśko, Michał; Bujalski, Wojciech

    2017-12-01

    The aim of this document is to present the topic of modeling district heating systems in order to enable optimization of their operation, with special focus on thermal energy storage in the pipelines. Two mathematical models for simulation of transient behavior of district heating networks have been described, and their results have been compared in a case study. The operational optimization in a DH system, especially if this system is supplied from a combined heat and power plant, is a difficult and complicated task. Finding a global financial optimum requires considering long periods of time and including thermal energy storage possibilities into consideration. One of the most interesting options for thermal energy storage is utilization of thermal inertia of the network itself. This approach requires no additional investment, while providing significant possibilities for heat load shifting. It is not feasible to use full topological models of the networks, comprising thousands of substations and network sections, for the purpose of operational optimization with thermal energy storage, because such models require long calculation times. In order to optimize planned thermal energy storage actions, it is necessary to model the transient behavior of the network in a very simple way - allowing for fast and reliable calculations. Two approaches to building such models have been presented. Both have been tested by comparing the results of simulation of the behavior of the same network. The characteristic features, advantages and disadvantages of both kinds of models have been identified. The results can prove useful for district heating system operators in the near future.

  1. The strategic role of district heating in renewable energy use; Die strategische Bedeutung der Nahwaerme zur Nutzung erneuerbarer Energien

    Energy Technology Data Exchange (ETDEWEB)

    Nast, M. [Deutsches Zentrum fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany). Abt. Systemanalyse und Technikbewertung; Boehnisch, H. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    1998-02-01

    District heating allows the utilization of biomass in low emission heating plants, the exploitation of solar energy and the seasonal storage of heat. If a sustainable energy supply system is to be created, district heating must not only be the system of choice for new housing districts but must also be retrofitted in existing settlements. The detailed analysis of a rural community shows that large segments of existing buildings can be connected to district heating systems even in regions with predominantly single dwellings and rural housing densities. The conditions necessary for establishing district heating systems are discussed. (orig.) [Deutsch] Nahwaermesysteme ermoeglichen, fossile und biogene Brennstoffe einzusetzen und lassen sich an saisonale Waermespeicher anschliessen. Zum Aufbau einer nachhaltigen Energieversorgung ist Nahwaerme nicht nur in Neubaugebieten notwendig sondern muss auch in den schon laenger genutzten Gebaeudebestand integriert werden. Das Beispiel einer umfassend analysierten Landgemeinde zeigt, dass ein grosser Teil des bestehenden Gebaeudebestandes an Waermenetze angeschlossen werden kann, selbst bei vorherrschender Bebauung mit Einfamilienhaeusern und laendlichen Gebaeudedichten. Die notwendigen Rahmenbedingungen fuer den Aufbau einer Nahwaermeversorgung werden erlaeutert. (orig.)

  2. Flexible use of electricity in heat-only district heating plants

    Directory of Open Access Journals (Sweden)

    Erik Trømborg

    2017-01-01

    Full Text Available European energy systems are in a period of significant transition, with the increasing shares of variable renewable energy (VRE and less flexible fossil-based generation units as predominant factors. The supply-side changes are expected to cause large short-term electricity price volatility. More frequent periods of low electricity prices may mean that electric use in flexible heating systems will become more profitable, and such flexible heating systems may, in turn, improve the integration of increasing shares of VRE. The objective of this study is to analyze the likely future of Nordic electricity price levels and variations and how the expected prices might affect the use of electricity and thermal storage in heat-only district heating plants. We apply the North European energy market model Balmorel to provide scenarios for future hourly electricity prices in years with normal, high, and low inflow levels to the hydro power system. The simulation tool energyPRO is subsequently applied to quantify how these electricity price scenarios affect the hourly use of thermal storage and individual boilers in heat-only district heating plants located in Norway. The two studied example plants use wood chips or heat pump as base load representing common technologies for district heating in Norway. The Balmorel results show that annual differences in inflow is still a decisive factor for Norwegian and Nordic electricity prices in year 2030 and that short-term (daily price variability is expected to increase. In the plant-level simulations, we find that tank storage, which is currently installed in only a few district heating plants in Norway, is a profitable flexibility option that will significantly reduce the use of fossil peak load in both biomass and heat-pump-based systems. Installation of an electric boiler in addition to tank storage is profitable in the heat pump system due to the limited capacity of the heat pump. Electricity will hence, to a

  3. Thermodynamic calculation of a district energy cycle

    International Nuclear Information System (INIS)

    Hoehlein, B.; Bauer, A.; Kraut, G.; Scherberich, F.D.

    1975-08-01

    This paper presents a calculation model for a nuclear district energy circuit. Such a circuit means the combination of a steam reforming plant with heat supply from a high-temperature nuclear reactor and a methanation plant with heat production for district heating or electricity production. The model comprises thermodynamic calculations for the endothermic methane reforming reaction as well as the exothermic CO-hydrogenation in adiabatic reactors and allows the optimization of the district energy circuit under consideration. (orig.) [de

  4. Improving the performance of district heating systems by utilization of local heat boosters

    DEFF Research Database (Denmark)

    Falcone, A.; Dominkovic, D. F.; Pedersen, A. S.

    was to evaluate the possibilities to lower the forward temperature of the heat supply in order to reduce the heat losses of the system. Booster heat pumps are introduced to increase the water temperature close to the final users. A Matlab model was developed to simulate the state of the case study DH network...... was set to minimize the system heat losses. * Corresponding author 0303-1 1 This goal was achieved by lowering the forward temperature to 40°C and relying on the installed heat pumps to boost the water temperature to the admissible value needed for the domestic hot water preparation. Depending......District Heating (DH) plays an important role into the Danish energy green transition towards the future sustainable energy systems. The new, 4 th generation district heating network, the so called Low Temperature District Heating (LTDH), tends to lower the supply temperature of the heat down to 40...

  5. The potential of district heating using geothermal energy. A case study, Greece

    International Nuclear Information System (INIS)

    Agioutantis, Zacharias; Bekas, Athanassios

    2000-01-01

    The purpose of this study is to investigate the possibility of using low-enthalpy geothermal energy from the geothermal field of Sousaki in the province of Korinthos, Greece, to cover the thermal needs of the nearby town of Ag. Theodori. The possibility of developing a system of district heating was examined based on a proposed town model. Total thermal demands were calculated on the basis of a model dwelling and prevailing weather conditions in the area. Subsequently, a heat transfer circuit is proposed, including the distribution network, the heat exchanger, the production and reinjection pumps, and the pumping station. Finally, energy indices are presented, such as demand in tons of equivalent oil and CO 2 emissions. (Author)

  6. Toward 4th generation district heating

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend; Dalla Rosa, Alessandro

    2014-01-01

    In many countries, district heating (DH) has a key role in the national strategic energy planning. However, tighter legislation on new and future buildings requires much less heating demand which subsequently causes relative high network heat loss. This will make current DH system uneconomical co...

  7. Co-sponsored second quarter progress review conference on district heating

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    A summary of the progress review conference on district heating and cooling systems is presented. The agenda and lists of speakers and attendees are presented. A history of district heating and some present needs and future policies are given and an excerpt from the National District Heating Program Strategy (DOE, March 1980) is included. Following the presentation, District Heating and Cooling Systems Program, by Alan M. Rubin, a fact sheet on DOE's Integrated Community Energy Systems Program and information from an oral presentation, District Heating and Cooling Systems for Communities Through Power Plant Retrofit Distribution Network, are given. The Second Quarterly Oral Report to the US DOE on the District Heating and Cooling Project in Detroit; the executive summary of the Piqua, Ohio District Heating and Cooling Demonstration Project; the Second Quarterly Report of the Moorehead, Minnesota District Heating Project; and the report from the Moorehead, Minnesota mayor on the Hot Water District Heating Project are presented.

  8. District heating and heat storage using the solution heat of an ammonia/water system

    International Nuclear Information System (INIS)

    Taube, M.; Peier, W.; Mayor, J.C.

    1976-01-01

    The article describes a model for the optimum use of the heat energy generated in a nuclear power station for district heating and heat storage taking account of the electricity and heat demand varying with time. (HR/AK) [de

  9. Technical assessment of electric heat boosters in low-temperature district heating based on combined heat and power analysis

    DEFF Research Database (Denmark)

    Cai, Hanmin; You, Shi; Wang, Jiawei

    2018-01-01

    This paper provides a technical assessment of electric heat boosters (EHBs) in low-energy districts. The analysis is based on a hypothetical district with 23 terraced single-family houses supplied by both a lowtemperature district heating (LTDH) network and a low-voltage network (LVN). Two case...

  10. Development and demonstration of low-energy district heating for low-energy buildings. Main report and appendices; Udvikling og demonstration af lavenergifjernvarme til lavenergibyggeri. Hovedrapport + bilag

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, C.H.; Paulsen, O.; Boehm, B. (Teknologisk Institut, Taastrup (Denmark)); Thorsen, J.E. (Danfoss A/S, (Denmark)); Ting Larsen, C.; Jepsen, B.K. (LOGSTOR A/S, (Denmark)); Kaarup Olsen, P.; Lambertsen, H.; Hummelshoej, R. (COWI A/S, (Denmark)); Svendsen, Svend; Fan, J.; Furbo, S. (DTU-BYG, Kgs. Lyngby (Denmark)); Worm, J.; Didriksen, J. (Energitjenesten, Copenhagen (Denmark))

    2009-03-15

    The project describes a design concept for district heating supply of low energy houses based on 24 hour equalizing of load and very low district heating flow temperatures. District heating is a very flexible system in terms of utilizing waste heat from CHPplants, refuse incineration and industrial processes as well as renewable energy sources in an energy efficient manner. However, in relation to district heating for low energy houses there are some challenges according to investment costs and costs related to heat loss from distribution network. The objective of the project is to develop a design concept that will reduce these costs and be a 'de facto' standard of district heating to low energy houses. The design concept is based on a new type of consumer station with a domestic hot water plate heat exchanger connected to a tank on the district heating primary side. To specify design and operating parameters a simulation model of the consumer station was developed in TRNSYS. Different parameters were investigated e.g. tank size (60-200 liter) and charge flow (120-14 kg/h). An area of 92 single family houses classified as 'class 1' (42.6 kWh/m2) according to the Danish Building Regulation was chosen as reference area. Hydraulic and thermal analysis in the calculation tool TERMIS were used to lay out the distribution network based on pre-insulated twinpipes (supply and return in same casing pipe) with low-lambda PUR insulation and diffusion barrier. The design concept is compared with 3 other types of district heating systems. For a traditional system with single pipes and high district heating temperatures, the heat loss of the distribution network is calculated to 36%. In comparison, the distribution loss of the design concept can be as low as 12%. The total investment costs are almost equal for the 4 systems. In the new design concept, the cost of distribution network is reduced due to the use of smaller dimensions and twin-pipes. Though, the

  11. Developments to an existing city-wide district energy network – Part I: Identification of potential expansions using heat mapping

    International Nuclear Information System (INIS)

    Finney, Karen N.; Sharifi, Vida N.; Swithenbank, Jim; Nolan, Andy; White, Simon; Ogden, Simon

    2012-01-01

    Highlights: ► Domestic heat loads here are vast: 1.5 GW for current areas and 35 MW for new homes. ► Other heat sinks in Sheffield had a heat load/demand of 54 MW. ► New heat sources could provide additional heat to the network to meet these demands. ► Six ‘heat zones’ for possible district energy network expansions were identified. ► The infrastructure was planned, including energy centres, back-ups and heat pipes. - Abstract: District heating can provide cost-effective and low-carbon energy to local populations, such as space heating in winter and year-round hot/cold water; this is also associated with electricity generation in combined-heat-and-power systems. Although this is currently rare in the UK, many legislative policies, including the Renewable Heat Incentive, aim to increase the amount of energy from such sources; including new installations, as well as extending/upgrading existing distributed energy schemes. Sheffield already has an award-winning district energy network, incorporating city-wide heat distribution. This paper aimed to demonstrate the opportunities for expansions to this through geographical information systems software modelling for an in-depth analysis of the heat demands in the city. ‘Heat maps’ were produced, locating existing and emerging heat sources and sinks. Heat loads (industrial, commercial, educational, health care, council and leisure facilities/complex) total 53 MW, with existing residential areas accounting for ∼1500 MW and new housing developments potentially adding a further 35 MW in the future. A number of current and emerging heat sources were also discovered – potential suppliers of thermal energy to the above-defined heat sinks. From these, six ‘heat zones’ where an expansion to the existing network could be possible were identified and the infrastructure planned for each development.

  12. Influencing Swedish homeowners to adopt district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Akademigatan 1, 831 25 Oestersund (Sweden)

    2009-02-15

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Oestersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey. (author)

  13. Influencing Swedish homeowners to adopt district heating system

    International Nuclear Information System (INIS)

    Mahapatra, Krushna; Gustavsson, Leif

    2009-01-01

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Ostersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey

  14. Influencing Swedish homeowners to adopt district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Akademigatan 1, 831 25 Oestersund (Sweden)

    2009-02-15

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Oestersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey. (author)

  15. District heating in Italy: Extent of use

    International Nuclear Information System (INIS)

    Sacchi, E.

    1992-01-01

    The Author surveys the trend that has been established over the last two decades in the use of district heating in Italy. Comparison with the European situation reveals that Italy is lagging behind. The reason for this the Author states is the Italian public's aversion to unknown risks involved in the utilization of innovative technologies associated with cogeneration/district heating (current preference is given to autonomous methane fuelled building space heating systems), and the current opinion of some misinformed public administrations that cogeneration/district heating plants are too costly. Citing the successful campaign by the natural gas industry to promote the public acceptance of methane as a safe, readily available and competitively priced energy source, he suggests that similar efforts be made to have the public also accept cogeneration (with methane fired gas turbines)/district heating as being safe and environmentally, as well as, economically beneficial

  16. Sensitivity of district heating system operation to heat demand reductions and electricity price variations: A Swedish example

    International Nuclear Information System (INIS)

    Åberg, M.; Widén, J.; Henning, D.

    2012-01-01

    In the future, district heating companies in Sweden must adapt to energy efficiency measures in buildings and variable fuel and electricity prices. Swedish district heating demands are expected to decrease by 1–2% per year and electricity price variations seem to be more unpredictable in the future. A cost-optimisation model of a Swedish local district heating system is constructed using the optimisation modelling tool MODEST. A scenario for heat demand changes due to increased energy efficiency in buildings, combined with the addition of new buildings, is studied along with a sensitivity analysis for electricity price variations. Despite fears that heat demand reductions will decrease co-generation of clean electricity and cause increased global emissions, the results show that anticipated heat demand changes do not increase the studied system's primary energy use or global CO 2 emissions. The results further indicate that the heat production plants and the fuels used within the system have crucial importance for the environmental impact of district heat use. Results also show that low seasonal variations in electricity price levels with relatively low winter prices promote the use of electric heat pumps. High winter prices on the other hand promote co-generation of heat and electricity in CHP plants. -- Highlights: ► A MODEST optimisation model of the Uppsala district heating system is built. ► The impact of heat demand change on heat and electricity production is examined. ► An electricity price level sensitivity analysis for district heating is performed. ► Heat demand changes do not increase the primary energy use or global CO 2 emissions. ► Low winter prices promote use of electric heat pumps for district heating production.

  17. Application of large underground seasonal thermal energy storage in district heating system : a model-based energy performance assessment of a pilot system in Chifeng, China

    NARCIS (Netherlands)

    Xu, L.; Torrens Galdiz, J.I.; Guo, F.; Yang, X.; Hensen, J.L.M.

    Seasonal thermal energy storage (STES) technology is a proven solution to resolve the seasonal discrepancy between heating energy generation from renewables and building heating demands. This research focuses on the performance assessment of district heating (DH) systems powered by low-grade energy

  18. Ground Source Geothermal District Heating and Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, James William [Ball State Univ., Muncie, IN (United States)

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reduce worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx

  19. Vilnius district heating pilot project. Final report. Annex 1-14

    International Nuclear Information System (INIS)

    1995-03-01

    The present energy scenario model is based on the SYSTEM ROERNET energy planning module and includes the energy flows from the energy source to the consumer for space heating and domestic hot water. The energy sources are: District heating of City based on CHP or/and heat-only production. District heating of Naujoji Vilnia based on heat-only production. Local boilers using natural gas or heavy fuel oil. Stoves using kerosene, coke or wood. (Electricity panel might be included, but this has not been the case in the actual analyses). The calculations of the energy model results in estimation of: Annual heat production, especially simulation of the plant production for district heating system with the possibility of integrated pooled operation by giving an order of priority to each plant based on the efficiency of the plant. Annual fuel consumption and the fuel costs for the society. Annual electricity production and its value to the society. Annual operation and maintenance costs including costs connected with consumption of electricity for district heating purposes. The total annual investments due to the set of options applied in the scenario in question. Savings in plant investments if less production capacity is necessary in scenarios where the heat demand is decreasing. The flue gas emissions from the heat and CHP production in the Vilnius area are estimated by CO 2 , SO 3 , NO x and particulates. These emissions are not reduced by the possible savings of electricity production of a reference power-only plant outside Vilnius. (EG)

  20. Utilization of straw in district heating and CHP plants

    International Nuclear Information System (INIS)

    Nikolaisen, L.

    1993-01-01

    In Denmark 64 straw-fired district heating plants and 6 decentral CHP plants have been built since 1980 which are completely or partly straw-fired. The annual straw consumption in the district heating plants is 275,000 tons and in the decentral plants about 200,000 tons. The size of the district heating plants amounts to 0.5 MW - 10 MW and that of the CHP plants to 7 MW - 67 MW heat flow rate. Either whole bales or cut/scarified straw is used for firing. Hesston bales of about 450 kg control the market. The Centre of Biomass Technology is an activity supported 100 % by the Danish Energy Agency with the purpose of increasing the use of straw and wood in the energy supply (orig.)

  1. District heating systems for small scale development areas

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, Rory e-mail: rory.mcdougall@online.no; Jensen, Bjoernulf

    2008-09-15

    Building projects are normally developed without considering integrated heating systems, especially where properties are for further sale. Due to focus on energy efficiency and environmental impact it is worth considering district heating systems, which include several energy carriers. The choice of energy carrier is assessed to optimize energy costs, account for environmental impact and obtain reliable heating supply, thus giving an energy flexible system for several buildings as opposed to individual heating systems in each building

  2. Nuclear district heating. 1. Process heat reactors and transmission and distribution networks

    International Nuclear Information System (INIS)

    Caizergues, R.

    1979-01-01

    Three kinds of production station are considered: joint electricity and heat-producing stations, heat-producing stations with CAS reactors and heat-producing stations with Thermos reactors. The thermal energy supply possibilities of these stations, the cost price of this energy and the cost price per therm produced by the district heating source and conveyed to the user are studied [fr

  3. Design of biomass district heating systems

    International Nuclear Information System (INIS)

    Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George

    2009-01-01

    The biomass exploitation takes advantage of the agricultural, forest, and manure residues and in extent, urban and industrial wastes, which under controlled burning conditions, can generate heat and electricity, with limited environmental impacts. Biomass can - significantly - contribute in the energy supplying system, if the engineers will adopt the necessary design changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this paper is to present a methodology of the design of biomass district heating systems taking into consideration the optimum design of building structure and urban settlement around the plant. The essential energy parameters are presented for the size calculations of a biomass burning-district heating system, as well as for the environmental (i.e. Greenhouse Gas Emissions) and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of the biomass system, the economic details of the boiler, the heating distribution network, the heat exchanger and the Greenhouse Gas Emissions

  4. Nuclear heat for industrial purposes and district heating

    International Nuclear Information System (INIS)

    1974-01-01

    Studies on the various possibilities for the application of heat from nuclear reactors in the form of district heat or process steam for industrial purposes had been made long before the present energy crisis. Although these studies have indicated technical feasibility and economical justification of such utilization, the availability of relatively cheap oil and difficulties in locating a nuclear heat source inside industrial areas did not stimulate much further development. Since the increase of oil prices, the interest in nuclear heat application is reawakened, and a number of new potential areas have been identified. It now seems generally recognized that the heat from nuclear reactors should play an important role in primary energy supply, not only for electricity production but also as direct heat. At present three broad areas of nuclear heat application are identified: Direct heat utilization in industrial processing requiring a temperature above 800 deg. C; Process steam utilization in various industries, requiring a temperature mainly in the range of 200-300 deg. C; Low temperature and waste heat utilization from nuclear power plants for desalination of sea water and district heating. Such classification is mainly related to the type and characteristics of the heat source or nuclear reactor which could be used for a particular application. Modified high temperature reactor types (HTR) are the candidates for direct heat application, while the LWR reactors can satisfy most of the demands for process steam. Production of waste heat is a characteristic of all thermal power plants, and its utilization is a major challenge in the field of power production

  5. Case Studies in Low-Energy District Heating Systems: Determination of Dimensioning Methods for Planning the Future Heating Infrastructure

    DEFF Research Database (Denmark)

    Tol, Hakan; Nielsen, Susanne Balslev; Svendsen, Svend

    suggests a plan for an energy efficient District Heating (DH) system with low operating temperatures, such as 55°C supply and 25°C return; connected to low-energy buildings. Different case studies referring to typical DH planning situations could show the rational basis for the integrated planning...... of the future’s sustainable and energy efficient heating infrastructure. In this paper, a case study which focuses on dimensioning method of piping network of low-energy DH system in a new settlement, located in Roskilde Municipality, Denmark, is presented. In addition to the developed dimensioning method......, results about the optimal network layout and substation type for low-energy DH systems are also pointed out regarding to this case study. A second case study, included in this paper, focuses on technical and economical aspects of replacing natural gas heating system to low-energy DH system in an existing...

  6. Expieriences On Low-Temperature District Heating In Lystrup – Denmark

    DEFF Research Database (Denmark)

    Thorsen, Jan Eric; Christiansen, Christian Holm; Brand, Marek

    2011-01-01

    by implementing Low-temperature district heating systems. Demonstration cases in EnergyFlexHouse and Boligforeningen Ringgården” EUDP 2011. A key challenge for optimum and competitive district heating (DH) system operation is reducing heat loss in networks. Today building regulations in most countries demand...

  7. VII international district heating conference

    International Nuclear Information System (INIS)

    1988-01-01

    The proceedings of the 7th International District Heating Conference contain the full texts of the 89 presented papers of which 11 fall under the INIS Subject Scope. The conference met in seven sessions and dealt with the following problem areas: design and optimization of systems of district heating, integration of the power system and the district heating systems, cooperation of nuclear and fossil burning sources in district heating systems, the use of specific nuclear power plants for heating purposes, questions of the control of systems of district heating, the development of components of heating networks, the reliability and design of heat supply pipes. (Z.M.)

  8. A nuclear reactor for district heating

    International Nuclear Information System (INIS)

    Bancroft, A.R.; Fenton, N.

    1989-07-01

    Global energy requirements are expected to double over the next 40 years. In the northern hemisphere, many countries consume in excess of 25 percent of their primary energy supply for building heating. Satisfying this need, within the constraints now being acknowledged for sustainable global development, provides an important opportunity for district heating. Fuel-use flexibility, energy and resource conservation, and reduced atmospheric pollution from acid gases and greenhouse gases, are important features offered by district heating systems. Among the major fuel options, only hydro-electricity and nuclear heat completely avoid emissions of combustion gases. To fill the need for an economical nuclear heat source, Atomic Energy of Canada Limited has designed a 10 MW plant that is suitable as a heat source within a network or as the main supply to large individual users. Producing hot water at temperatures below 100 degrees C, it incorporates a small pool-type reactor based on AECL's successful SLOWPOKE Research Reactor. A 2 MW prototype for the commercial unit is now being tested at the Whiteshell Nuclear Research Establishment in Manitoba. With capital costs of $7 million (Canadian), unit energy costs are projected to be $0.02/kWh for a 10 MW unit operating in a heating grid over a 30-year period. By keeping the reactor power low and the water temperature below 100 degrees C, much of the complexity of the large nuclear power plants can be avoided, thus allowing these small, safe nuclear heating systems to be economically viable

  9. A new district heating system in the city of Bolanzo

    DEFF Research Database (Denmark)

    Mazzocato, Alessandro; Li, Hongwei; Marchiori, S.

    2014-01-01

    In the context of the EU project “Sinfonia”, that aims to reduce Bolzano’s primary energy consumption up to 40%, SEL AG, an Italian energy company is planning to extend the existing district heating and cooling (DHC) network and explore strategies to improve efficiency, environmental, and economic...... performance. This research aims to assess the potential energy saving of temperature and peak heating load reduction in the Bolzano’s DHC network. Historical performance data from district heating (DH) users were collected and residential building were classified based on construction year and energy...

  10. Competition in the market for space heating. District heating as the infrastructure for competition among fuels and technologies

    International Nuclear Information System (INIS)

    Grohnheit, Poul Erik; Gram Mortensen, Bent Ole

    2003-01-01

    None of the EU directives on liberalisation of the electricity and gas markets are considering the district heating systems, although the district heating networks offer the possibility of competition between natural gas and a range of other fuels on the market for space heating. Cogeneration of electricity and heat for industrial processes or district heating is a technology option for increased energy efficiency and thus reduction of CO 2 emissions. In the mid-1990s less than 10% of the electricity generation in the European Union was combined production with significant variations among Member States. These variations are explained by different national legislation and relative power of institutions, rather than difference in industrial structure, climate or urban physical structure. The 'single energy carrier' directives have provisions that support the development of combined heat and power (CHP), but they do not support the development and expansion of the district heating infrastructure. The article is partly based on a contribution to the Shared Analysis Project for the European Commission DG Energy, concerning the penetration of CHP, energy saving, and renewables as instruments to meet the targets of the Kyoto Protocol within the liberalised European energy market. The quantitative and legal differences of the heat markets in selected Member States are described, and the consequences of the directives are discussed. Finally, we summarise the tasks for a European policy concerning the future regulation of district heating networks for CHP, emphasising the need for rules for a fair competition between natural gas and district heating networks

  11. Comparison of district heating expansion potential based on consumer-economy or socio-economy

    DEFF Research Database (Denmark)

    Grundahl, Lars; Nielsen, Steffen; Lund, Henrik

    2016-01-01

    Recent studies show that a high share of district heating is an important part of a future sustainable energy system or smart energy system with a high renewable energy penetration. These studies also show socio-economic benefits of expanding the district heating coverage. However, in order...... to implement such an expansion, district heating needs to be economically feasible for the heat consumers. This aspect is often not investigated and hence it is unknown if calculations based on consumer-economy, where tax payment is included, will yield the same potential of expansion. This study identifies...... the differences in the expansion potential of district heating calculated with a socio-economic and a consumer-economic approach, respectively, in a case study of Denmark. By also investigating the consumer-economy of expanding district heating, a deeper insight is obtained of possible locations for expanding...

  12. Energy-Recovery Pressure-Reducer in District Heating System

    Directory of Open Access Journals (Sweden)

    Dariusz Borkowski

    2018-06-01

    Full Text Available Already existing man-made infrastructures that create water flow and unused pressure are interesting energy sources to which micro-hydropower plants can be applied. Apart from water supply systems (WSSs, which are widely described in the literature, significant hydropower potential can also be found in district heating systems (DHSs. In this paper, a prototype, a so-called energy-recovery pressure-reducer (ERPR, utilized for a DHS, is presented. It consisted of a pump as a turbine coupled to a permanent magnet synchronous generator (PMSG. The latter was connected to the power grid through the power electronic unit (PEU. The variable-speed operation allowed one to modify the turbine characteristics to match the substation’s hydraulic conditions. The proposed ERPR device could be installed in series to the existing classic pressure reducing valve (PRV as an independent device that reduces costs and simplifies system installation. The test results of the prototype system located in a substation of Cracow’s DHS are presented. The steady-state curves and regulation characteristics show the prototype’s operating range and efficiency. In this study, the pressure-reducer impact on the electrical and hydraulic systems, and on the environment, were analyzed. The operation tests during the annual heating season revealed an average system’s efficiency of 49%.

  13. Study of an innovative ejector heat pump-boosted district heating system

    International Nuclear Information System (INIS)

    Zhang, Bo; Wang, Yuanchao; Kang, Lisha; Lv, Jinsheng

    2013-01-01

    An Ejector heat pump-boosted District Heating (EDH) system is proposed to improve the heating capacity of existing district heating systems with Combined Heat and Power (CHP). In the EDH, two ejector heat pumps are installed: a primary heat pump (HP 1 ) at the heating station and a secondary heat pump (HP 2 ) at the heating substation. With the EDH, the low-grade waste heat from circulating cooling water in the CHP is recycled and the temperature difference between the water supply and the return of the primary heating network is increased. A thermodynamic model was provided. An experimental study was carried out for both HP 1 and HP 2 to verify the predicting performance. The results show that the COP of HP 1 can reach 1.5–1.9, and the return water temperature of the primary heating network could be decreased to 35 °C with HP 2 . A typical case study for the EDH was analyzed. -- Highlights: • An ejector heat pump-boosted district heating (EDH) is proposed. • The 1st ejector heat pump in EDH recycles heat from cooling water of the CHP. • The 2nd ejector heat pump in EDH boosts the thermal energy utilization of the primary heating network. • Modeling and experimental studies are presented

  14. Integration of Building energy and energy supply simulations for low-energy district heating supply to energy-efficient buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro

    2012-01-01

    The future will demand implementation of C02 neutral communities, the consequences being a far more complex design of the whole energy system, since the future energy infrastructures will be dynamic and climate responsive systems. Software able to work with such level of complexity is at present...... a missing link in the development. In this paper is demonstrated how a link between a dynamic Building Simulation Programme (BSP) and a simulation program for District Heating (DH) networks can give important information during the design phase. By using a BSP it is possible to analyze the influence...... of the human behaviour regarding the building and link the results to the simulation program for DH networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand...

  15. Make the heat hotter. - marketing district heating to households in detached houses

    Energy Technology Data Exchange (ETDEWEB)

    Sernhed, Kerstin; Pyrko, Jurek

    2008-09-15

    For district heating (DH) companies, to expand in low heat density areas such as detached houses, it is essential to obtain a high rate of connections to the district-heating network in order to enhance the cost effectiveness. Marketing district heating to house owners is, however, a fairly different matter from selling it to customers in industrial, commercial, and multi-family buildings. Suitable market strategies need to be developed and the need for information about potential customers' preferences and attitudes are of great importance since the house-owners often constitute a heterogeneous group where different households have different requirements. This paper investigates a case of one Swedish district heating company's marketing activities and expansion strategies in a single family house area where the customers were offered conversion of their direct resistive electric heating (DEH) into district heating (DH). 88 out of 111 houses were converted in 2002. Four years later, interviews were carried out with 23 of the households in the area, both with those who had accept-ed the district heating offer and those who had not. The study shows that apart from the economic aspects, thermal comfort, aesthetics and practicalities also affected the buying decision. Since the different economic aspects of the offer were complex, it was very difficult for the households to make a strictly rational economical decision. Statistical analysis confirmed that variables such as age, type of household and energy use level could, to some extent, be related to the decision to convert from electric heating to district heating. Timing, low prices and the total solutions presented to the households were crucial factors in the success of the marketing strategy.

  16. District heating in energetic and environmental politics

    Energy Technology Data Exchange (ETDEWEB)

    di Riscaldamento Urbano, Associazione Italiana

    1989-05-01

    A review is made of what was said at the Third Bi-annual Convention (Reggio Emilia, 24-25/11/88) of AIRU (the Italian Association for District Heating). In general, the seven papers presented dealt with the following points: the technology of primary energy supply, thermal energy production, energy distribution to users, environmental engineering and socio-economic factors. Emphasis was given to the themes: district heating in Italy within the framework of the 1988 National Energy Plan and the impact on energy marketing due to the future free trade system planned for the E.E.C. in 1992. A critical analysis is made of: forecasts of primary energy demand for the year 2000, plans for the reduction of dependency on foreign supplied petroleum, the promotion of the increased use of natural gas and methane and overall energy conservation measures as called for by the National Energy Plan.

  17. District heating rehabilitation project in Kaerdla on Hiiumaa, Estonia. Final report

    International Nuclear Information System (INIS)

    1998-03-01

    The main objective of the project has been to assist Kaerdla Municipality with the rehabilitation of their district heating system with Danish technology, and thereby support and make it possible for the Municipality of Kaerdla to develop the district heating sector in Kaerdla and thereby also to reduce emissions of harmful gases to the environment, as well as making a much more rational and energy efficient system. The project would further on demonstrate the use of pre-insulated pipes, which are fully sealed against penetration of water as well as demonstrate the use of compact units as substations including weather compensation control systems for regulation of heat and hot tap water supply for the district heating consumers. Besides the project gives significantly decreases in energy consumption's and in the pollution from the production of energy, the objective of the project was also to put great stress on providing technical assistance to Kaerdla DH company, in order to make them capable in operation and maintenance of the new district heating system, and also to train the local operational staff in operation of the complete district heating system. The project will have a high demonstration value towards other towns in Estonia with similar problems and configurations of their heating systems. (EG)

  18. District heating rehabilitation project in Kaerdla on Hiiumaa, Estonia. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The main objective of the project has been to assist Kaerdla Municipality with the rehabilitation of their district heating system with Danish technology, and thereby support and make it possible for the Municipality of Kaerdla to develop the district heating sector in Kaerdla and thereby also to reduce emissions of harmful gases to the environment, as well as making a much more rational and energy efficient system. The project would further on demonstrate the use of pre-insulated pipes, which are fully sealed against penetration of water as well as demonstrate the use of compact units as substations including weather compensation control systems for regulation of heat and hot tap water supply for the district heating consumers. Besides the project gives significantly decreases in energy consumption`s and in the pollution from the production of energy, the objective of the project was also to put great stress on providing technical assistance to Kaerdla DH company, in order to make them capable in operation and maintenance of the new district heating system, and also to train the local operational staff in operation of the complete district heating system. The project will have a high demonstration value towards other towns in Estonia with similar problems and configurations of their heating systems. (EG)

  19. District heating from coal cures Germany's oil phobia

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, G.

    1982-04-30

    Germany's firm commitment to district heating, energy conservation and renewable energy was the most striking impression to emerge from this year's Hanover Fair. Despite the present low price of oil, industry and government are resolved to reduce the country's dependence on this fuel. Although oil now accounts for only 44 per cent of German's total energy consumption, compared with 55 per cent in 1972, price rises and economic stagnation mean that its value is now equivalent to some 20 per cent of the country's exports compared with just 6 per cent in 1972. Space and process heating are the biggest oil users. District heating schemes, heat pumps and waste-heat recovery are all being vigorously promoted to reduce the oil demand from these sectors. A recent study by the German Ministry of Research and Technology estimates that 25 per cent of all domestic heat could be delivered economically by district heating, some three times the present installed capacity.

  20. A multicriteria approach to evaluate district heating system options

    Energy Technology Data Exchange (ETDEWEB)

    Ghafghazi, S.; Sowlati, T. [Department of Wood Science, University of British Columbia, 2931-2424 Main Mall, Vancouver, BC (Canada); Sokhansanj, S. [Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC (Canada); Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Melin, S. [Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC (Canada); Delta Research Corporation, Delta, BC (Canada)

    2010-04-15

    District energy systems, in which renewable energy sources may be utilized, are centralized systems to provide energy to residential and commercial buildings. The aim of this paper is to evaluate and rank energy sources available for a case of district heating system in Vancouver, Canada, based on multiple criteria and the view points of different stakeholders, and to show how communication would affect the ranking of alternatives. The available energy sources are natural gas, biomass (wood pellets), sewer heat, and geothermal heat. The evaluation criteria include GHG emissions, particulate matter emissions, maturity of technology, traffic load, and local source. In order to rank the energy options the PROMETHEE method is used. In this paper, two different scenarios were developed to indicate how the communication between the stakeholders would affect their preferences about criteria weights and would change the ranking of alternatives. The result of this study shows that without communication the best energy source for the considered district energy system is different for different stakeholders. While, addressing concerns through efficient communication would result in a general consensus. In this case, wood pellet is the best energy alternative for all the stakeholders. (author)

  1. Economic and environmental benefits of converting industrial processes to district heating

    International Nuclear Information System (INIS)

    Djuric Ilic, Danica; Trygg, Louise

    2014-01-01

    Highlights: • The potential for converting industrial processes to district heating is analyzed. • The study includes 83 manufacturing companies in three Swedish counties. • The energy costs for the companies decrease after the conversions. • The conversion opens up for a reduction of global greenhouse gas emissions. • CHP plants in the local district heating system are better utilized. - Abstract: The aim of this study was to analyse the possibilities of converting industrial processes from electricity and fossil fuels to district heating in 83 companies in three Swedish counties. Effects on the local district heating systems were explored, as well as economic effects and impacts on global emissions of greenhouse gases. The study was conducted considering two different energy market conditions for the year 2030. The results show that there is a potential for increasing industrial district heating use in all analysed counties. The greatest potential regarding percentage is found in Jönköping, where the annual district heating use in the manufacturing companies could increase from 5 GW h to 45 GW h. The annual industrial district heating use could increase from 84 GW h to 168 GW h in Östergötland and from 14 GW h to 58 GW h in Västra Götaland. The conversion of the industrial production processes to district heating would lead to district heating demand curves which are less dependent on outdoor temperature. As a result, the utilization period of the base load plants (above all of the combined heat and power plants) would be prolonged; this would decrease district heating production costs due to the increased income from the electricity production. The energy costs for the industrial companies decrease after the conversions as well. Furthermore, the increased electricity production in the combined heat and power plants, and the decreased electricity and fossil fuel use in the industrial sector opens up a possibility for a reduction of global

  2. Energy, economy and exergy evaluations of the solutions for supplying domestic hot water from low-temperature district heating in Denmark

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    District heating in Denmark is going through the transition from 3rd generation (80/40 °C) to 4th generation (50-55 °C/25 °C) systems in,preparation for district heating based completely on renewable fuels by 2035. However, concern about Legionella growth and reduced comfort with low......-temperature domestic hot water supply may be discouraging the implementation of low-temperature district heating. Aimed at providing possible solutions, this study modelled various proposals for district heating systems with supply temperatures of 65 °C, 50 °C and 35 °C and for two different building topologies....... Evaluation models were built to investigate the energy, economy and exergy performances of the proposed domestic hot water systems in various configurations. The configurations of the devised domestic hot water substations were optimised to fit well with both low and ultra-low-temperature district heating...

  3. Environmental considerations for geothermal energy as a source for district heating

    International Nuclear Information System (INIS)

    Rafferty, K.D.

    1996-01-01

    Geothermal energy currently provides a stable and environmentally attractive heat source for approximately 20 district heating (DH) systems in the US. The use of this resource eliminates nearly 100% of the conventional fuel consumption (and, hence, the emissions) of the loads served by these systems. As a result, geothermal DH systems can rightfully claim the title of the most fuel-efficient DH systems in operation today. The cost of producing heat from a geothermal resource (including capitalization of the production facility and cost for pumping) amounts to an average of $1.00 per million Btu (0.0034 $/kWh). The major environmental challenge for geothermal systems is proper management of the producing aquifer. Many systems are moving toward injection of the geothermal fluids to ensure long-term production

  4. Heat Energy Markets: Trends of Spatial Organization

    Directory of Open Access Journals (Sweden)

    Olga Valeryevna Dyomina

    2016-12-01

    Full Text Available The author reviews competing forms of heat supply. It is shown that in Finland, Denmark, China and Russia the dominant form of heat supply is district heating system; in the United States and Canada the dominant form of heat supply is individual one. Using the countries’ data the author allocates 4 models of heat energy markets. The analysis is based on combinations of the following characteristics: the type of market, the orientation of market, the stage of market development, forms of state support of district heating systems and the approach to pricing. The results identified the failure of the current model of heat energy market in Russia (noncompetitive, manufacturer-oriented and evolved market with massive state support of its district heating system. The ‘target’ model of heat energy market in Russia is a model of noncompetitive, customer-oriented and evolved market with no state support of its district heating system. However, the ‘target’ model takes into account spatial heterogeneity of local heat energy markets in Russia only technically

  5. Air source absorption heat pump in district heating: Applicability analysis and improvement options

    International Nuclear Information System (INIS)

    Wu, Wei; Shi, Wenxing; Li, Xianting; Wang, Baolong

    2015-01-01

    Highlights: • Applicability of air source absorption heat pump (ASAHP) district heating is studied. • Return temperature and energy saving rate (ESR) in various conditions are optimized. • ASAHP is more suitable for shorter distance or lower temperature district heating. • Two options can reduce the primary return temperature and improve the applicability. • The maximum ESR is improved from 13.6% to 20.4–25.6% by compression-assisted ASAHP. - Abstract: The low-temperature district heating system based on the air source absorption heat pump (ASAHP) was assessed to have great energy saving potential. However, this system may require smaller temperature drop leading to higher pump consumption for long-distance distribution. Therefore, the applicability of ASAHP-based district heating system is analyzed for different primary return temperatures, pipeline distances, pipeline resistances, supplied water temperatures, application regions, and working fluids. The energy saving rate (ESR) under different conditions are calculated, considering both the ASAHP efficiency and the distribution consumption. Results show that ASAHP system is more suitable for short-distance district heating, while for longer-distance heating, lower supplied hot water temperature is preferred. In addition, the advantages of NH 3 /H 2 O are inferior to those of NH 3 /LiNO 3 , and the advantages for warmer regions and lower pipeline resistance are more obvious. The primary return temperatures are optimized to obtain maximum ESRs, after which the suitable distances under different acceptable ESRs are summarized. To improve the applicability of ASAHP, the integration of cascaded heat exchanger (CHX) and compression-assisted ASAHP (CASAHP) are proposed, which can reduce the primary return temperature. The integration of CHX can effectively improve the applicability of ASAHP under higher supplied water temperatures. As for the utilization of CASAHP, higher compression ratio (CR) is better in

  6. Comparison of Low-temperature District Heating Concepts in a Long-Term Energy System Perspective

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Østergaard, Dorte Skaarup; Yang, Xiaochen

    2017-01-01

    renewable energy systems. This study compares three alternative concepts for DH temperature level: Low temperature (55/25 °C), Ultra-low temperature with electric boosting (45/25 °C), and Ultra-low temperature with heat pump boosting (35/20 °C) taking into account the grid losses, production efficiencies......District heating (DH) systems are important components in an energy efficient heat supply. With increasing amounts of renewable energy, the foundation for DH is changing and the approach to its planning will have to change. Reduced temperatures of DH are proposed as a solution to adapt it to future...... and building requirements. The scenarios are modelled and analysed in the analysis tool EnergyPLAN and compared on primary energy supply and socioeconomic costs. The results show that the low temperature solution (55/25°C) has the lowest costs, reducing the total costs by about 100 M€/year in 2050....

  7. District heating in Italy

    International Nuclear Information System (INIS)

    Sacchi, E.

    1998-01-01

    The legislative act establishing the electric monopoly virtually shut out the district heating associated with electricity cogeneration, while other laws, issued to counteract the effects of oil shocks, allowed municipal utilities to do so. Thus, district heating has experienced some development, though well below its possibilities. The article analyses the reasons for this lagging, reports district heating data and projects its forecasts against the Kyoto Protocol objectives [it

  8. Steps towards modern trends in district heating

    Directory of Open Access Journals (Sweden)

    Vasek Lubomir

    2017-01-01

    Full Text Available This paper focuses on new trends in district heating a cooling (DHC area and algorithms allowing incorporating new technologies and performing optimal control. Classical district heating usually means huge source (as heating plant and set of pipes which transfer heat energy through a medium, mostly water, across whole town and chilled water is returning back to the plant. Let’s imagine a modern city where buildings are consuming only a fraction of the energy contrary to what buildings required in the past. And especially during sunny or windy days, they have energy to spare. Around of such modern city is not only the one big heating plant, but perhaps solar and wind farms, waste incinerators, industrial companies with energy surpluses. Simply in this modern city are dozens, perhaps hundreds of small energy producers that share pipe network or at least part of it. In such a district energy system, production planning is more difficult. And not only production, modern houses with minimal heat loss and data connections also allow to plan consumption more effectively. The aim is to achieve the best solution evaluated by the objective function, usually determined by minimizing the production and distribution costs and providing meets the needs of energy consumers. The method presented in this paper is based on a simulation using the proposed holonic distributed model. This model also introduces the idea of general prosumers strategy, where all active elements within the modern DHC system are represented by prosumer objects. The prosumers are perceived as objects able to actively participate in the planning and realization of the production and consumption of energy. It is assumed that the general behaviour of the object in DHC is the same, no matter how they differ in size and design. Thus, all the objects are defined by two characteristics - the ability to produce and consume. The model based on this basic principle, of course, with the most

  9. Dedicated low temperature nuclear district heating plants: Rationale and prospects

    International Nuclear Information System (INIS)

    Goetzmann, C.A.

    1997-01-01

    Space heating accounts for a substantial fraction of the end-energy consumption in a large number of industrialized countries. Accordingly, efforts have been under way since many years to utilize nuclear energy as a source for district heating. The paper describes the key technical and institutional issues affecting the implementation of such technology. It is argued that the basic case for nuclear district heating is sound but that its introduction merits and drawbacks strongly depend on local circumstances. (author). 4 figs, 1 tab

  10. Dedicated low temperature nuclear district heating plants: Rationale and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Goetzmann, C A [Division of Nuclear Power, International Atomic Energy Agency, Vienna (Austria)

    1997-09-01

    Space heating accounts for a substantial fraction of the end-energy consumption in a large number of industrialized countries. Accordingly, efforts have been under way since many years to utilize nuclear energy as a source for district heating. The paper describes the key technical and institutional issues affecting the implementation of such technology. It is argued that the basic case for nuclear district heating is sound but that its introduction merits and drawbacks strongly depend on local circumstances. (author). 4 figs, 1 tab.

  11. Introduction of renewable energy sources in the district heating system of Greece

    Directory of Open Access Journals (Sweden)

    Nikolaos Margaritis

    2016-06-01

    Full Text Available The district heating (DH system of Greece, mainly supported from lignite fired stations, is facing lately significant challenges. Stricter emission limits, decreased efficiency due to old age and increased costs are major challenges of the lignite sector and are expected to result in the decommissioning of several lignite-fired units in the coming years. As a result, managers of DH networks are currently investigating alternative scenarios for the substitution of thermal power that it is expected to be lost, through the integration of Renewable Energy Sources (RES into the system. In this paper, the DH systems of Kozani and Ptolemaida are examined regarding possible introduction of RES. The first study examines district heating of Kozani and alternative future options for covering a part of city’s thermal load whereas the second study refers to a biomass CHP plant (ORC technology, 1MWe, 5MWth to be powered from a biomass mixture (wood chips and straw.

  12. Energy Efficiency of Low-Temperature Deaeration of Makeup Water for a District Heating System

    Energy Technology Data Exchange (ETDEWEB)

    Sharapov, V. I., E-mail: vlad-sharapov2008@yandex.ru; Kudryavtseva, E. V. [Ulyanovsk State Technical University (Russian Federation)

    2016-07-15

    It is shown that the temperature of makeup water in district heating systems has a strong effect on the energy efficiency of turbines of thermal power plants. A low-temperature deaeration process that considerably improves the energy efficiency of thermal power plants is developed. The desorbing agent is the gas supplied to the burners of the boiler. The energy efficiency of the process for a typical unit of thermal power plant is assessed.

  13. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren

    that a least‐cost strategy will be to provide approximately 2/3 of the heat demand from district heating and the rest from individual heat pumps. Keywords: Energy Efficiency, Renewable energy, Heating strategy, Heat savings, District heating, Smart energy......One of the important issues related to the implementation of future sustainable smart energy systems based on renewable energy sources is the heating of buildings. Especially, when it comes to long‐term investment in savings and heating infrastructures it is essential to identify long‐term least......‐cost strategies. With Denmark as a case, this paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used. Based on a concrete proposal to implement the Danish governmental long...

  14. The potential to supply low temperature district heating to existing building area

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2013-01-01

    Low-temperature district heating (LTDH) has the advantages as reduced network heat loss, improved quality match between energy supply and energy demand, and increased utilization of low-grade waste heat and renewable energy. The LTDH represents the next generation district heating (DH) system...... to supply existing building areas which are characterized with high heating demand needs to be examined. In this paper, the DH network deliverable capacity to supply LTDH to an existing building area is studied based on building thermal performance and DH network hydraulic performance simulation....

  15. District heating from Forsmark

    International Nuclear Information System (INIS)

    1980-11-01

    The district heating system of Greater Stockholm must be based on other energy sources than oil. Two alternatives are assessed, namely heat from Forsmark or a coal fueled plant in the region of Stockholm. Forsmark 3 can produce both electricity and heat from the year 1988 on. The capacity can be increased by coal fueled blocks. For low electricity use, 115 TWh in the year 1990, the Forsmark alternative will be profitable. The alternative will be profitable. The alternative with a fossile fuelled plant will be profitable when planning for high consumption of electricity, 125 TWh. The Forsmark alternative means high investments and the introduction of new techniques. (G.B.)

  16. Building an eco-effective district heating management system in a city

    Directory of Open Access Journals (Sweden)

    Gitelman Leonid

    2016-01-01

    Full Text Available The goal of making the urban environment safer amid increasing human impact adds to the importance of district heating management. The article outlines the results of a study into the problem of improving the urban environment by implementing two innovative solutions. Technological innovations imply the introduction of modern sustainable tools of reducing emissions in district heating networks, one of them being the combination of district heating and combined heat and power plants (a case study of Turin. Organizational innovations are built upon the management of demand for thermal energy that makes it possible to reduce investment in new construction and to optimize the architecture of heat load schedules for the purpose of alleviating energy and environmental pressure on the city. The authors propose formats and areas of demand side management for thermal energy and methods of offering economic incentives to program participants.

  17. Sudbury District Energy - a public/private partnership model

    International Nuclear Information System (INIS)

    Prudhomme, H.

    1999-01-01

    The issue of public/private partnership as it relates to the Sudbury District Energy Project was discussed. When completed, it will be the first cogeneration-based district heating and cooling project involving private sector/public sector partnership in Canada. The equal partners include Toromont Energy and Sudbury Hydro. Sudbury Hydro is a community owned energy and communications utility. It was the first electric utility in Ontario to retail natural gas in the new competitive market place. The Sudbury District Energy Project began in 1996, when the utility began the development of a community district energy system in partnership with the City of Sudbury. At the time, the downtown district heating/cooling system supplied cold and hot water to Sudbury's Wellness Centre. In 1998, Toromont Energy accepted a 50/50 partnership arrangement between themselves and the public sector partners to form the Sudbury District Energy Corporation. Sudbury Hydro will benefit from the project because it will reduce their peak loads and it will also be an alternate source of revenue. It is expected that the project will displace 39,600 tons of carbon dioxide, a greenhouse gas which contributes to global warming

  18. Opportunities for District Heating Systems in Ukraine. Market survey. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brienen, M.

    2011-12-15

    The market survey should identify the existing and future opportunities for Dutch companies in the district heating sector in Ukraine, facilitate better understanding of the sector specifics by providing a complete picture on the whole district heating chain at specific cities mentioned and surrounding areas, and provide practical information on the best ways to enter this market segment by Dutch companies. The points of special interest are: (a) Analysis of main types of district heating chain in terms of the key stakeholders and their interest; Identification of the cases where the whole chain is under control (if any); Identification of the main directions of change within the existing set-up; (b) Analysis of the pricing model(s) and the procedures for setting up the prices for district heating; Identification of the main influencers on the decision making; (c) Identification of the main opportunities to use renewable energy for heating systems in Ukraine; and (d) Identification of the Dutch clusters with appropriate products, services and knowledge which can be used to achieve optimal results with district heating systems in Ukraine. Another important reason to execute this market survey is the 2g at-sign thereprogramme 'Ukraine-sustainable energy'. One of the consortia supported under the 2g at-sign there programme, is called NUSEP, Netherlands Ukrainian Sustainable Energy Platform. Under this platform 15-20 Dutch companies and institutes have joined forces. All of these companies and institutes are active in the field of(sustainable) energy. In short, the district heating sector in Ukraine offers many opportunities for Dutch companies. This survey will help Dutch companies to do business in Ukraine. The market research has been executed at both national level (where relevant concerns) and is specifically focused on the following cities and surrounding area: Kiev; Poltava; Kamyanets-Podilsky; Kovel; Lviv; Zhytomyr. Since the major developments in

  19. THERMOS, district central heating nuclear reactors

    International Nuclear Information System (INIS)

    Patarin, L.

    1981-02-01

    In order to expand the penetration of uranium in the national energy balance sheet, the C.E.A. has been studying nuclear reactors for several years now, that are capable of providing heat at favourable economic conditions. In this paper the THERMOS model is introduced. After showing the attraction of direct town heating by nuclear energy, the author describes the THERMOS project, defines the potential market, notably in France, and applies the lay-out study to the Grenoble Nuclear Study Centre site with district communal heating in mind. The economic aspects of the scheme are briefly mentioned [fr

  20. Nuclear district heating

    International Nuclear Information System (INIS)

    Ricateau, P.

    1976-01-01

    An economic study of nuclear district heating is concerned with: heat production, its transmission towards the area to be served and the distribution management towards the consumers. Foreign and French assessments show that the high cost of now existing techniques of hot water transport defines the competing limit distance between the site and township to be below some fifty kilometers for the most important townships (provided that the fuel price remain stationary). All studies converge towards the choice of a high transport temperature as soon as the distance is of some twenty kilometers. As for fossile energy saving, some new possibilities appear with process heat reactors; either PWR of about 1000MWth for large townships, or pool-type reactors of about 100MWth when a combination with an industrial steam supply occurs [fr

  1. Procedures for selecting and buying district heating equipment. Sofia district heating. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The aim of this Final Report, prepared for the project `Procedures for Selecting and Buying DistRict Heating Equipment - Sofia District Heating Company`, is to establish an overview of the activities accomplished, the outputs delivered and the general experience gained as a result of the project. The main objective of the project is to enable Sofia District Heating Company to prepare specifications and tender documents, identify possible suppliers, evaluate offers, etc. in connection with purchase of district heating equipment. This objective has been reached by using rehabilitation of sub-stations as an example requested by Sofia DH. The project was originally planned to be finalized end of 1995, but due to the extensions of the scope of work, the project has been prolonged until end 1997. The following main activities were accomplished: Preparation of a detailed work plan; Collection of background information; Discussion and advice about technical specifications and tender documents for sub-station rehabilitation; Input to terms of reference for a master plan study; Input to technical specification for heat meters; Collection of ideas for topics and examples related to dissemination of information to consumers about matters related to district heating consumption. (EG)

  2. Geothermal energy developments in the district heating of Szeged

    OpenAIRE

    Osvald, Máté; Szanyi, János; Medgyes, Tamás; Kóbor, Balázs; Csanádi, Attila

    2017-01-01

    The District Heating Company of Szeged supplies heat and domestic hot water to 27,000 households and 500 public buildings in Szeged. In 2015, the company decided to introduce geothermal sources into 4 of its 23 heating circuits and started the preparation activities of the development. Preliminary investigations revealed that injection into the sandstone reservoir and the hydraulic connection with already existing wells pose the greatest hydrogeological risks, while placement and operation of...

  3. A Comparative Study on Substation Types and Network Layouts in Connection with Low-Energy District Heating Systems

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2012-01-01

    The study deals with low-energy district heating (DH) networks operating in low temperatures such as 55 °C in terms of supply and 25 °C in terms of return. The network layout, additional booster pumps, and different substation types such as storage tanks either equipped or not equipped in domesti...... for end-consumers were also studied, heat loss from these networks and the drop in temperature in the heat-carrier-supply medium being compared.......The study deals with low-energy district heating (DH) networks operating in low temperatures such as 55 °C in terms of supply and 25 °C in terms of return. The network layout, additional booster pumps, and different substation types such as storage tanks either equipped or not equipped in domestic...... hot water production site were examined. Effects of booster pumps on pipe dimensions in the latter case were investigated. Temperature drops during the summer months due to low heat demands of consumers were explored. Use of approaches such as looped networks and branched network layouts with bypasses...

  4. An application of data mining in district heating substations for improving energy performance

    Science.gov (United States)

    Xue, Puning; Zhou, Zhigang; Chen, Xin; Liu, Jing

    2017-11-01

    Automatic meter reading system is capable of collecting and storing a huge number of district heating (DH) data. However, the data obtained are rarely fully utilized. Data mining is a promising technology to discover potential interesting knowledge from vast data. This paper applies data mining methods to analyse the massive data for improving energy performance of DH substation. The technical approach contains three steps: data selection, cluster analysis and association rule mining (ARM). Two-heating-season data of a substation are used for case study. Cluster analysis identifies six distinct heating patterns based on the primary heat of the substation. ARM reveals that secondary pressure difference and secondary flow rate have a strong correlation. Using the discovered rules, a fault occurring in remote flow meter installed at secondary network is detected accurately. The application demonstrates that data mining techniques can effectively extrapolate potential useful knowledge to better understand substation operation strategies and improve substation energy performance.

  5. Analysis of district heating pricing in Finland from the customers' and energy companies perspectives. Final report; Kaukolaemmoen hinnoittelun nykytila ja tulevaisuuden mahdollisuudet. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Sarvaranta, A.; Jaaskelainen, J.; Puolakka, J.; Kouri, P. [AF-Consult, Vantaa (Finland)

    2012-12-15

    The heating market in Finland is changing. Until now, district heating demand has been constantly increasing. However, forecasts predict the demand to drop slightly in the future due to the increasing energy efficiency demands and development of competing heating technologies. Maintaining existing customer base may rise as one of the major challenges of a district heating company in the future. This report covers the topic 'Analysis of district heating pricing in Finland from the customers' and energy companies perspectives'. The report provides a general description of the current challenges and future opportunities of district heating pricing in Finland. Cost and pricing structures are discussed from both the companies and customers' perspectives. The overall objective is to provide an overview of the current state of district heating pricing in Finland and provide information on new pricing opportunities. The conclusions of the report provide information that district heating companies can use in developing their pricing system. Based on the literature and material analysed in this study, district heating pricing currently lacks adequate transparency and therefore should be developed to reflect the cost structure more closely. New metering technologies allow more accurate information on heat consumption and can hence be used to improve the transparency of pricing. Average marginal costs generally vary between seasons. If the goal is to reflect the cost structure taking into account the average variable costs, season dependent pricing becomes desirable. More variability in pricing between seasons may also keep customers from switching completely or partially into other heating systems, as the pricing becomes more cost-effective and easier to understand. Different types of customers wish for different properties in pricing: transparency, freedom of choice, convenience, more dynamic pricing, etc.. While expanding and tailoring the pricing

  6. A Direct Heat Exchanger Unit used for Domestic Hot Water Supply in a Single-family House Supplied by Low Energy District Heating

    DEFF Research Database (Denmark)

    Brand, Marek; Thorsen, Jan Eric; Svendsen, Svend

    2010-01-01

    The increasing number of new and renovated buildings with reduced heating requirements will soon make traditional District Heating (DH) systems uneconomic. To keep DH competitive in the future, the heat loss in DH networks needs to be reduced. One option is to reduce the supply temperature of DH...... as much as possible. This requires a review of the behaviour of the whole domestic hot water (DHW) supply system with focus on the user comfort and overall costs. This paper describes some practical approaches to the implementation of this Low Energy District Heating (LEDH) concept. It reports...... on the testing of the dynamic behaviour of an Instantaneous Heat Exchanger Unit(IHEU) designed for DHW heating and space heating in detached family houses supplied by LEDH ensuring an entry-to-substation temperature of 51 °C. We measured the time it takes for the IHEU to produce DHW with a temperature of 42 °C...

  7. Woodfuel procurement strategies of district heating plants

    International Nuclear Information System (INIS)

    Roos, A.; Bohlin, F.; Hektor, B.; Hillring, B.

    2003-01-01

    Woodfuel use in the Swedish district heating sector increased significantly from 1985 to 1999. This study analysed strategies and considerations concerning woodfuel procurement in district heating plants. Priorities and concerns in the industry involved an increased woodfuel share, ambitions to create an environmental image, cost minimisation, awareness about the role of energy policies for fuel choice, improvement of woodfuel quality and the ambition to maintain a competitive woodfuel market with several suppliers. Factor analysis yielded five dimensions in the woodfuel procurement strategies among the district heating companies: (1) increased woodfuel use; (2) import; (3) spot market woodfuel purchases; (4) focus on refined woodfuels; and (5) using price only when deciding whether to use woodfuels or other fuels. Five clusters were defined along the three strategy dimensions (1)-(3). The clusters differed concerning size, experiences from the introduction of woodfuels, perceptions about woodfuels and strategies employed to date. This paper describes different strategies that the district heating companies apply on the woodfuel market. The conclusion is that policies should consider this diversity in procurement strategies, mitigate their negative side-effects and assist to make them cost-effective. (author)

  8. Estimating the potential for industrial waste heat reutilization in urban district energy systems: method development and implementation in two Chinese provinces

    Science.gov (United States)

    Tong, Kangkang; Fang, Andrew; Yu, Huajun; Li, Yang; Shi, Lei; Wang, Yangjun; Wang, Shuxiao; Ramaswami, Anu

    2017-12-01

    Utilizing low-grade waste heat from industries to heat and cool homes and businesses through fourth generation district energy systems (DES) is a novel strategy to reduce energy use. This paper develops a generalizable methodology to estimate the energy saving potential for heating/cooling in 20 cities in two Chinese provinces, representing cold winter and hot summer regions respectively. We also conduct a life-cycle analysis of the new infrastructure required for energy exchange in DES. Results show that heating and cooling energy use reduction from this waste heat exchange strategy varies widely based on the mix of industrial, residential and commercial activities, and climate conditions in cities. Low-grade heat is found to be the dominant component of waste heat released by industries, which can be reused for both district heating and cooling in fourth generation DES, yielding energy use reductions from 12%-91% (average of 58%) for heating and 24%-100% (average of 73%) for cooling energy use in the different cities based on annual exchange potential. Incorporating seasonality and multiple energy exchange pathways resulted in energy savings reductions from 0%-87%. The life-cycle impact of added infrastructure was small (<3% for heating) and 1.9% ~ 6.5% (cooling) of the carbon emissions from fuel use in current heating or cooling systems, indicating net carbon savings. This generalizable approach to delineate waste heat potential can help determine suitable cities for the widespread application of industrial waste heat re-utilization.

  9. Fiscal 1999 basic research on promotion of joint implementation. Comprehensive feasibility study on efficiency improvement project for heat generation facilities and heat supply networks for district heating at districts in Moscow region, the Russian Federation (2 model districts within the region)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of conserving energy and reducing greenhouse gas, a survey is conducted for district heating facilities of the Khimki district and Voskresensk district in Moscow and for their heat supply networks. Four boilers existing at the Khimki district are all to be replaced by natural gas turbine centralized cogeneration plants, and four boilers existing at the Voskresensk district are all to be replaced by natural gas turbine cogeneration facilities. These projects are designated as Case 1 and Case 2, different from each other in terms of power generation capability and heat supply scale. As for investment, a total of 267-million dollars will be necessary for Case 1, and 208-million dollars for Case 2. As for energy conservation, energy will be saved by approximately 2.8-million tons in total in terms of oil in Case 1, and approximately 2-million tons in terms of oil in Case 2. As for greenhouse gas reduction, there will be a reduction of approximately 6.8-million tons in terms of CO2 in Case 1, and a reduction of approximately 4.9-million tons in terms of CO2 in Case 2. (NEDO)

  10. Geothermal district heating applications in Turkey: a case study of Izmir-Balcova

    Energy Technology Data Exchange (ETDEWEB)

    Hepbasli, A. [Ege Univ., Dept. of Mechanical Engineering, Izmir (Turkey); Canakci, C. [Izmir-Balcova Geothermal Energy Inc., Izmir (Turkey)

    2003-05-01

    Turkey is located on the Mediterranean sector of the Alpine-Himalayan Tectonic Belt and is among the first seven countries in abundance of geothermal resources around the world. However, the share of its potential used is only about 2%. This means that considerable studies on geothermal energy could be conducted in order to increase the energy supply and to reduce atmospheric pollution in Turkey. The main objective in doing the present study is twofold, namely: (a) to overview the status and future aspects of geothermal district heating applications in Turkey and (b) to present the Izmir-Balcova geothermal district heating system, which is one example of the high temperature district heating applications in Turkey. The first geothermal heating application was applied in 1981 to the Izmir-Balcova thermal facilities, where the downhole heat exchanger was also used for the first time. Besides this, the first city based geothermal district heating system has been operated in Balikesir-Gonen since 1987. Recently, the total installed capacity has reached 820 MW{sub t} for direct use. An annual average growth of 23% of the residences connected to geothermal district heating systems has been achieved since 1983 in the country, representing a decrease of 5% in the last three years. Present applications have shown that in Turkey, geothermal energy is much cheaper than the other energy sources, like fossil fuels, and can make a significant contribution towards reducing the emission of greenhouse gases. (Author)

  11. Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen

    DEFF Research Database (Denmark)

    Bach, Bjarne; Werling, Jesper; Ommen, Torben Schmidt

    2016-01-01

    This study analyses the technical and private economic aspects of integrating a large capacity of electric driven HP (heat pumps) in the Greater Copenhagen DH (district heating) system, which is an example of a state-of-the-art large district heating system with many consumers and suppliers....... The analysis was based on using the energy model Balmorel to determine the optimum dispatch of HPs in the system. The potential heat sources in Copenhagen for use in HPs were determined based on data related to temperatures, flows, and hydrography at different locations, while respecting technical constraints...

  12. Simulation Models to Size and Retrofit District Heating Systems

    Directory of Open Access Journals (Sweden)

    Kevin Sartor

    2017-12-01

    Full Text Available District heating networks are considered as convenient systems to supply heat to consumers while reducing CO 2 emissions and increasing renewable energies use. However, to make them as profitable as possible, they have to be developed, operated and sized carefully. In order to cope with these objectives, simulation tools are required to analyze several configuration schemes and control methods. Indeed, the most common problems are heat losses, the electric pump consumption and the peak heat demand while ensuring the comfort of the users. In this contribution, a dynamic simulation model of all the components of the network is described. It is dedicated to assess some energetic, environmental and economic indicators. Finally, the methodology is used on an existing application test case namely the district heating network of the University of Liège to study the pump control and minimize the district heating network heat losses.

  13. Book of abstracts: International Conference on Smart Energy Systems and 4th Generation District Heating

    DEFF Research Database (Denmark)

    , which takes a sole focus on the electricity sector, the smart energy systems approach includes the entire energy system in its identification of suitable energy infrastructure designs and operation strategies. Focusing solely on the smart electricity grid often leads to the definition of transmission......It is a great pleasure to welcome you to the first International Conference on Smart Energy Systems and 4th Generation District Heating at Aalborg University, Copenhagen Campus on 25-26 August 2015. The conference is organised by the 4DH Strategic Research Centre in collaboration with Aalborg...... University and offers more than 70 presentations in 3 parallel sessions with more than 180 participants from 25 countries around the world. The aim is to present and discuss scientific findings and industrial experiences related to the development of Smart Energy Systems and future 4th Generation District...

  14. District heating as the infrastructure for competition among fuels and technologies

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik; Mortensen, Bent Ole Gram

    2016-01-01

    for increased energy efficiency. Additional technologies suitable for small-scale networks are heat pumps, solar panels and local biomass in the form of straw or biogas. For large-scale urban networks, incineration of urban waste and geothermal heat are key technologies. With heat storages district heating...... infrastructure can contribute significantly to balancing the intermittency of wind power. This paper is an update of the authors' article published in Energy Policy in 2003 focusing on the European directives focusing on competition in the electricity and gas network industries and promotion of renewables...... and cogeneration but limited support for the development and expansion of the district heating infrastructure. It was partly based on a contribution to the Shared Analysis Project for the European Commission Directorate-General for Energy, concerning the penetration of combined heat and power (CHP), energy saving...

  15. Efficiency potential in the district heating sector. Final report

    International Nuclear Information System (INIS)

    Agrell, P.; Bogetoft, P.; Fristrup, P.; Munksgaard, J.; Pade, L.L.

    2003-10-01

    This report is the final documentation for the research project 'District heating prices in a liberalised energy market - benchmarking the production of combined heat and power'. The project compares activities for almost 300 companies, members of the Danish District Heating Society. The main aim of the analyses has been to uncover the saving potential by comparing each individual company to the most efficient companies in the sector. The variable costs have been studied, amounting to almost 7 billion Danish kroner a year, and the analyses found saving potential ranging from 5% to 60% dependent on the expectations to flexibility assigned to the individual companies. The data used are not available for the public as they exceed the Danish District Heating Society's annual statistics. (BA)

  16. Effects of boosting the supply temperature on pipe dimensions of low-energy district heating networks

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2015-01-01

    This paper presents a method for the dimensioning of the low-energy District Heating (DH) piping networks operating with a control philosophy of supplying heat in low-temperature such as 55 °C in supply and 25°C in return regularly while the supply temperature levels are being boosted in cold...... winter periods. The performance of the existing radiators that were formerly sized with over-dimensions was analyzed, its results being used as input data for the performance evaluation of the piping network of the low-energy DH system operating with the control philosophy in question. The optimization...

  17. District heating in Switzerland: Giving a survey and studying an example case

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, M; Minder, R

    1981-05-01

    Today it is generally accepted that district-heating has essential adventages in areas which are suitable for it - as opposed to the heating mode which is most widely practiced in Switzerland, i.e. individual oil heating. These advantages shall only be pointed out briefly, here, by mentioning the following key words: economy, exploitation of fuel, safety of supply, and enviromental protection. Principally supporting the expansion of existing district-heating installations or the construction of new ones the authors give their view on the subject concerning the contribution to the total supply of heat which reasonably may be attributed to district-heating; they also give their opinion of the plans of a Swiss municipality as to its energy and district-heating supply.

  18. Primary energy savings using heat storage for biomass heating systems

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2012-01-01

    Full Text Available District heating is an efficient way to provide heat to residential, tertiary and industrial users. The heat storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the heat storage unit makes it possible to heat even when the boiler is not working, thus increasing the heating efficiency. In order to save primary energy (fuel, the boiler operates on nominal load every time it is in operation (for the purpose of this research. The aim of this paper is to analyze the water temperature variation in the heat storage, depending on the heat load and the heat storage volume. Heat load is calculated for three reference days, with average daily temperatures from -5 to 5°C. The primary energy savings are also calculated for those days in the case of using heat storage in district heating.[Projekat Ministarstva nauke Republike Srbije, br. TR 33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  19. Extension and improvement of Central Station District heating budget period 1 and 2, Krakow Clean Fossil Fuels and Energy Efficiency Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    Project aim was to reduce pollution levels in the City of Krakow through the retirement of coal-fired (hand and mechanically-stoked) boiler houses. This was achieved by identifying attractive candidates and connecting them to the Krakow district heating system, thus permitting them to eliminate boiler operations. Because coal is less costly than district hot water, the district heating company Miejskie Przedsiebiorstwo Energetyki Cieplnej S.A., henceforth identified as MPEC, needed to provide potential customers with incentives for purchasing district heat. These incentives consisted of offerings which MPEC made to the prospective client. The offerings presented the economic and environmental benefits to district heating tie-in and also could include conservation studies of the facilities, so that consumption of energy could be reduced and the cost impact on operations mitigated. Because some of the targeted boiler houses were large, the capacity of the district heating network required enhancement at strategic locations. Consequently, project construction work included both enhancement to the district piping network as well as facility tie-ins. The process of securing new customers necessitated the strengthening of MPEC`s competitive position in Krakow`s energy marketplace, which in turn required improvements in marketing, customer service, strategic planning, and project management. Learning how US utilities address these challenges became an integral segment of the project`s scope.

  20. District heating with SLOWPOKE energy systems

    International Nuclear Information System (INIS)

    Lynch, G.F.

    1988-03-01

    The SLOWPOKE Energy System, a benign nuclear heat source designed to supply 10 thermal megawatts in the form of hot water for local heating systems in buildings and institutions, is at the forefront of these developments. A demonstration unit has been constructed in Canada and is currently undergoing an extensive test program. Because the nuclear heat source is small, operates at atmospheric pressure, and produces hot water below 100 degrees Celcius, intrinsic safety features will permit minimum operator attention and allow the heat source to be located close to the load and hence to people. In this way, a SLOWPOKE Energy System can be considered much like the oil- or coal-fired furnace it is designed to replace. The low capital investment requirements, coupled with a high degree of localization, even for the first unit, are seen as attractive features for the implementation of SLOWPOKE Energy Systems in many countries

  1. Uncertainties in the daily operation of a district heating plant

    DEFF Research Database (Denmark)

    Sorknæs, Peter

    Studies have found that district heating (DH) systems should play an important role in future sustainable energy systems, but that DH has to adapt to lower heat demands. This means adapting to reduced operation hours for units essential for DHs integration in other parts of the energy system......, such as CHP. It will therefore likely be increasingly important to increase the value per operation hour. The value can be increased by offering balancing for the electricity system. This in turn increases the uncertainties in the daily operation planning of the DH system. In this paper the Danish DH plant...... Ringkøbing District Heating is used as a case to investigate what costs market uncertainties can incur on a DH plant. It is found that the market uncertainties in a 4 months simulated period increased Ringkøbing District Heatings costs by less than 1%. Several factors are however not included in this paper....

  2. Korean district heating. Part 2: Investigation of the consumption pattern in a substation at Korea District Heating Corporation at the turn of the year 1994/95

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Mats; Olsson, Nils

    1996-05-01

    This thesis, which is the second part of two, analyses the consumption pattern and the conditions for district heating in the Republic of Korea at the turn of the year 1994-95. It is based on a study made in Seoul at Korea District Heating Corporation which is the largest district heating utility in Korea. District heating was introduced in the 80s because of the environmental advantages. In 1994 KDHC provided 340 000 households with district heating. KDHC receives most of its thermal energy from combined heat and power plants which use natural gas as fuel. One substation was chosen for the investigation and temperature, flow, and pressure were measured. A typical Korean substation has heat exchangers connected in parallel in only one step and the apartment complexes use floor heating for internal heating. The space heating load shows a linear relation to the outdoor temperature. The hot tap-water consumption shows a highly varying pattern with peak loads in the morning and evening. There were also an oscillating pattern for some of the temperatures and flows caused by poor regulation. DH suits very well to Korea with its climate and the overpopulated cities. KDHC:s expansion will help to make Korea one of the leading countries in modern district heating. 10 refs, 36 figs, 11 tabs

  3. Korean district heating. Part 1: A general report on Korean district heating 1994/1995; Fjaerrvaerme i Korea. Del 1: En allmaen redovisning av koreansk fjaerrvaerme aarsskiftet 1994/95

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Mats; Olsson, Nils

    1996-02-01

    This thesis describes the conditions for district heating in the Republic of Korea at the turn of the year 1994-95. It is based on a study made in Seoul at Korea District Heating Corporation, which is the largest district heating utility in Korea. The substations were particularly studied. District heating was introduced in Korea in the 80s because of the environmental advantages. KHDC was established in 1985 and in 1994 they provided 340 000 households with district heating. By the year of 2001 KDHC plans to supply 45% of the heating in Seoul with its 12 million inhabitants. KDHC receives most of its thermal energy from combined heat and power plants that use natural gas as fuel. In 1991 KDHC initiated a collaboration with Ekono of Finland to develop more advanced technology in Korea. Therefore the Finnish standard, which is similar to Swedish standard, has left it`s mark on the Korean district heating technology. Typical for the Korean substation is that the heat exchangers are connected in parallel in only one step. KDHC:s expansion will, within a couple of years, help to make Korea one of the leading countries in modern district heating. 9 refs, 3 figs, 2 tabs

  4. District heating for increased biogas production. Technical and economical evaluation of district heating as heating source in biogas processes; Fjaerrvaerme foer utoekad biogasproduktion. Teknisk och ekonomisk utvaerdering av fjaerrvaerme foer uppvaermning av biogasprocesser

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Per (AaF-Consult AB, Stockholm (Sweden))

    2009-11-15

    This report presents a technical evaluation, the potential and an economical evaluation of the increased net biogas production by using district heating as energy supply for different types of biogas production units. The study presents generalized results for different plant sizes. The district heating is considered as replacement of the heat produced by burning biogas in a hot-water boiler. Hence more biogas could be available for upgrading to fuel-gas quality to be used in vehicles as a renewable fuel. The study is aimed at biogas producers, district heating and combined heat and power (CHP) companies. Biogas has a composition of mostly methane (about 65 %) and carbon dioxide (about 35 %) and small amounts of other gases e.g. sulphur dioxide (H{sub 2}S). Biogas up-grading is a process where the methane content is increased to about 97 % by removing most of the other gases in e.g. an absorption unit. The Swedish biogas is mainly produced in several sewage treatment plants and some co-digestion units but is also collected from dumps. Biogas is produced by anaerobic microorganisms at temperatures of about 36 and 55 deg C which correspond to the thermal optimum for mesophile and thermophile bacteria respectively. Co-digestion of animal material which e.g. is contained in collected organic household waste has to be pasteurized at 70 deg C for 1h according to EU-regulations. Such regulations may also be introduced to the sludge from municipal sewage treatment plants. Due to the fact that the process temperature is higher than the temperature of the substrate (sludge or organic waste material) as well as the outdoor temperature, both heating of the incoming substrate and compensation of heat losses are required. Traditionally most of the biogas has been burnt to generate the necessary heat for the process and premises at the plant. The excess gas has been burnt in a torch. In recent years the biogas produced in Sweden has found increased use as a renewable vehicle fuel

  5. Biomass gasification in district heating systems - The effect of economic energy policies

    International Nuclear Information System (INIS)

    Wetterlund, Elisabeth; Soederstroem, Mats

    2010-01-01

    Biomass gasification is considered a key technology in reaching targets for renewable energy and CO 2 emissions reduction. This study evaluates policy instruments affecting the profitability of biomass gasification applications integrated in a Swedish district heating (DH) system for the medium-term future (around year 2025). Two polygeneration applications based on gasification technology are considered in this paper: (1) a biorefinery plant co-producing synthetic natural gas (SNG) and district heat; (2) a combined heat and power (CHP) plant using integrated gasification combined cycle technology. Using an optimisation model we identify the levels of policy support, here assumed to be in the form of tradable certificates, required to make biofuel production competitive to biomass based electricity generation under various energy market conditions. Similarly, the tradable green electricity certificate levels necessary to make gasification based electricity generation competitive to conventional steam cycle technology, are identified. The results show that in order for investment in the SNG biorefinery to be competitive to investment in electricity production in the DH system, biofuel certificates in the range of 24-42 EUR/MWh are needed. Electricity certificates are not a prerequisite for investment in gasification based CHP to be competitive to investment in conventional steam cycle CHP, given sufficiently high electricity prices. While the required biofuel policy support is relatively insensitive to variations in capital cost, the required electricity certificates show high sensitivity to variations in investment costs. It is concluded that the large capital commitment and strong dependency on policy instruments makes it necessary that DH suppliers believe in the long-sightedness of future support policies, in order for investments in large-scale biomass gasification in DH systems to be realised.

  6. Methodological Approach to Determining the Effect of Parallel Energy Consumption on District Heating System

    Science.gov (United States)

    Latosov, Eduard; Volkova, Anna; Siirde, Andres; Kurnitski, Jarek; Thalfeldt, Martin

    2017-05-01

    District heating (DH) offers the most effective way to enhance the efficiency of primary energy use, increasing the share of renewable energy in energy consumption and decreasing the amount of CO2 emissions. According to Article 9 section 1 of the Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings, the Member states of the European Union are obligated to draw up National Plans for increasing the number of nearly zero-energy buildings [1]. Article 2 section 2 of the same Directive states that the energy used in nearly zero-energy buildings should be created covered to a very significant extent by energy from renewable sources, including energy from renewable sources produced on-site or nearby. Thus, the heat distributed by DH systems and produced by manufacturing devices located in close vicinity of the building also have to be taken into account in determining the energy consumption of the building and the share of renewable energy used in the nearly zero-energy buildings. With regard to the spreading of nearly zero-energy and zero-energy houses, the feasibility of on-site energy (heat and/or electricity) production and consumption in DH areas energy (i.e. parallel consumption, when the consumer, connected to DH system, consumes energy for heat production from other sources besides the DH system as well) needs to be examined. In order to do that, it is necessary to implement a versatile methodological approach based on the principles discussed in this article.

  7. Fuzzy comprehensive evaluation of district heating systems

    International Nuclear Information System (INIS)

    Wei Bing; Wang Songling; Li Li

    2010-01-01

    Selecting the optimal type of district heating (DH) system is of great importance because different heating systems have different levels of efficiency, which will impact the system economics, environment and energy use. In this study, seven DH systems were analysed and evaluated by the fuzzy comprehensive evaluation method. The dimensionless number-goodness was introduced into the calculation, the economics, environment and energy technology factors were considered synthetically, and the final goodness values were obtained. The results show that if only one of the economics, environment or energy technology factors are considered, different heating systems have different goodness values. When all three factors were taken into account, the final ranking of goodness values was: combined heating and power>gas-fired boiler>water-source heat pump>coal-fired boiler>ground-source heat pump>solar-energy heat pump>oil-fired boiler. The combined heating and power system is the best choice from all seven systems; the gas-fired boiler system is the best of the three boiler systems for heating purpose; and the water-source heat pump is the best of the three heat pump systems for heating and cooling.

  8. Heat supply to low energy dwellings in district heating areas. Analyses of CO{sub 2} emissions and electricity supply security; Varmeforsyning til lavenergiboliger i omraader med fjernvarmekonsesjon. Analyser av CO{sub 2}-utslipp og forsyningssikkerhet for elektrisitet

    Energy Technology Data Exchange (ETDEWEB)

    Thyholt, Marit

    2006-07-01

    Building low energy dwellings in large development projects is a new situation in Norway. The municipalities have to a little extent analyzed the consequences of this new housing standard with respect to the energy supply to such areas, and how this standard may change the plans for new or extended district heat production. In the provision about the mandatory connection to district heating plants, and the appendant provision related to a heating system that can utilize district heat, the district heat supply and the heat demand are not seen in connection. The objective of this dissertation is to provide the municipalities with a basis for decision making in the processing of applications concerning dispensation from the mandatory connection or the heating system requirement for dwellings with low heat demand. This basis for decision making is based on the national aim of reducing carbon dioxide (CO{sub 2}) emissions and of improving the electricity supply security. This summary provides an abstract from the discussion of the legislation as an incentive or barrier for building low energy dwellings. An abstract from a survey among construction firms concerning the motivation for building low energy dwellings is also included. In addition, the summary provides a comprehensive abstract of the results from the CO{sub 2} emission calculations, and the basis for these calculations. Introductorily a brief background of the national focus on energy savings and increased use of hydronic heating, including district heat, is given.

  9. Modeling hourly consumption of electricity and district heat in non-residential buildings

    International Nuclear Information System (INIS)

    Kipping, A.; Trømborg, E.

    2017-01-01

    Models for hourly consumption of heat and electricity in different consumer groups on a regional level can yield important data for energy system planning and management. In this study hourly meter data, combined with cross-sectional data derived from the Norwegian energy label database, is used to model hourly consumption of both district heat and electrical energy in office buildings and schools which either use direct electric heating (DEH) or non-electric hydronic heating (OHH). The results of the study show that modeled hourly total energy consumption in buildings with DEH and in buildings with OHH (supplied by district heat) exhibits differences, e.g. due to differences in heat distribution and control systems. In a normal year, in office buildings with OHH the main part of total modeled energy consumption is used for electric appliances, while in schools with OHH the main part is used for heating. In buildings with OHH the share of modeled annual heating energy is higher than in buildings with DEH. Although based on small samples our regression results indicate that the presented method can be used for modeling hourly energy consumption in non-residential buildings, but also that larger samples and additional cross-sectional information could yield improved models and more reliable results. - Highlights: • Schools with district heating (DH) tend to use less night-setback. • DH in office buildings tends to start earlier than direct electric heating (DEH). • In schools with DH the main part of annual energy consumption is used for heating. • In office buildings with DH the main part is used for electric appliances. • Buildings with DH use a larger share of energy for heating than buildings with DEH.

  10. Swedish district heating—A system in stagnation: Current and future trends in the district heating sector

    International Nuclear Information System (INIS)

    Magnusson, Dick

    2012-01-01

    This paper argues that Sweden’s old and established district heating sector is heading into a stagnation phase. The aim is to analyse the factors influencing this development as well as the strategies used by involved parties to prevent stagnation. Using large technical system theory, I analyse internal and external factors potentially causing stagnation. The most obvious external factors are: an increase in the number of energy-efficient buildings, in response to stricter energy policies, which reduces the future potential for district heating in new and existing buildings; climate change; competition from other heating systems; and market saturation in the key sector, multi-dwelling buildings. The main internal factor is changed business strategies following electricity market deregulation, when energy companies were supposed to be run on businesslike terms. I also argue that stagnation can be defined as occurring when the key measure feature of a system, in this case, heat load is starting to stagnate or decline, even though the trend is positive in other areas. The strategies for avoiding stagnation are various forms of broadening scope, primarily by focusing more on electricity production by building combined heat and power plants, or using the alternative value of the technical system for new applications. - Highlights: ► The Swedish district heating sector is heading into a stage of stagnation. ► The main reasons are: climate change, competition and energy efficient buildings. ► Strategies to change trend: broadening of scope by focusing on electricity in CHP plants. ► Contribution to Large Technical Systems—theory and the later phases of system development.

  11. District heating and combined heat and power generation from biomass

    International Nuclear Information System (INIS)

    Veski, Rein

    1999-01-01

    An Altener programme seminar District Heating and Combined Heat and Power Generation from Biomass. Minitraining seminar and study tours and also Business forum, Exhibition and Short company presentations were held in Tallinn on March 21-23, 1999. The Seminar was organised by the VTT Energy, the Estonian Bioenergy Association and the Estonian Heat and Power Association in co-operation with the AFB-net. The Agricultural and Forestry Biomass Network (AFB-net) is part of the ALTENER programme. The Network aims at promoting and stimulating the implementation and commercial utilisation of energy from biomass and waste, through the initiation of business opportunities. This includes national and international co-operation and the exchange of the personnel. The Seminar was attended by consulting companies, scientists, municipal authorities and representatives of co-ordinating bodies engaged in renewable energy management as well as DH and CHP plant managers, equipment manufacturers and local energy planners from Finland, Estonia, Latvia, Lithuania, Sweden, Denmark, Belgium, Slovenia and Slovak Republic. At the Seminar minitraining issues were dealt with: the current situation and future trends in biomass DH in the Baltic Sea countries, and biomass DH and CHP in Eastern and Central Europe, planning and construction of biomass-based DH plants, biomass fuel procurement and handling technology, combustion technology, DH networks, financing of biomass projects and evaluating of projects, and case projects in Eastern and Central European countries. The following were presented: boilers with a capacity of 100 kW or more, stoker burners, wood and straw handling equipment, wood fuel harvesters, choppers, pelletisers, district heating pipelines and networks. (author)

  12. CO2-reductions in low energy buildings and communities by implementation of low temperature district heating systems. Demonstration cases in Boligforeningen Ringgaarden and EnergyFlexHouse. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Worm, J.

    2011-05-15

    The project consisted of 3 tasks. In task 1, the aim was, through demonstration in EnergyFlexHouse in Taastrup, to analyse the district heating tank in interaction with a larger low-energy house, and to analyse different patterns of hot water use in order to validate and further develop the concept of low temperature district heating (LTDH). In task 2, the aim was, through demonstration in the housing community Ringgaarden in Lystrup near Aarhus, to show that the low heat losses found in a previous project can be achieved in practice, and to further develop the technology of the concept. In task 3, the aim was to assess the potential for CO{sub 2} reductions and energy conservation in both new and existing district heating distribution systems using the concept of LTDH. Furthermore the aim was to analyse the implementation of LTDH in existing buildings and to analyse optimization of LTDH design. The present report is a summary of the results of the three tasks. Detailed results of each task are presented in three separate reports. (ln)

  13. Analysis and comparison of methods for the preparation of domestic hot water from district heating system, selected renewable and non-renewable sources in low-energy buildings

    Directory of Open Access Journals (Sweden)

    Knapik Maciej

    2018-01-01

    Full Text Available The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.

  14. Analysis and comparison of methods for the preparation of domestic hot water from district heating system, selected renewable and non-renewable sources in low-energy buildings

    Science.gov (United States)

    Knapik, Maciej

    2018-02-01

    The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources) methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.

  15. Planning of the district heating system in copenhagen from an economic perspective comparing energy-savings versus fossil-free supply

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    geothermal heating plants, may lead to oversized heating plants that are too expensive to build compared to implementing energy savings. Therefore reducing heat demand of existing buildings before investing in supply capacity will save society half the investment, indicating the importance of carrying out......The Danish government has adopted a long-term energy policy of being independent of fossil fuels by 2050, and that the energy supply for buildings should be independent of fossil fuels by 2035. Therefore, urgent action is needed to meet the requirements for the future energy system. One way...... of becoming independent of fossil fuels is to energy upgrade the existing building stock and change the energy supply to renewable energy sources. A sustainable way of providing space heating (SH) and domestic hot water (DHW) to buildings in densely populated areas is through the use of district heating (DH...

  16. Comparative study for endenergy supply with nuclear district heating and with nuclear long distance energy

    International Nuclear Information System (INIS)

    Dietrich, G.

    1975-07-01

    The future energy supply of the Federal Republic of Germany will be orientated to secure energy carriers. Moreover economical energy consumption and environmental protection will be a force for an increased application of district heating and nuclear long distance energy. The technics of generation, transport and distribution of the two energy carriers will be discussed, besides a short review of application areas and potentials. The cost comparisons by models show that there are special advantages for both systems. Nevertheless the conclusions from the study can be to favour nuclear long distance energy because of its wide application range in the whole heat market. But there is also the competition with combined heat and power generation on fossil basis, as practised in many industrial companies. As a result of a regional analysis of the area Aachen-Moenchengladbach-Koeln, the cost advantages of the nuclear long distance energy as a parameter of current prices are confirmed. Nuclear long distance energy, in combination with the high temperature reactor and a developed technic of catalysts up to temperatures of 900 K, is an energy source which will be independant of regional necessities, secure, non pollutant and economic. (orig.) [de

  17. District heating development, air quality improvement, and cogeneration in Krakow, Poland

    International Nuclear Information System (INIS)

    Manczyk, H.; Leach, M.D.

    1992-01-01

    Krakow, Poland, is served by a district heating system that includes coal-fired electrical and heating plants and distribution networks and by approximately 200,000 residential coal furnaces. Cogeneration facilities were added in the mid-1970s to supply up to 40% of the regional peak electrical demand and to optimize energy extraction from the low-heating-value coal mined in the region. Several difficulties prevent the district from realizing the potential efficiencies of its technology: the poor condition of the distribution network, the lack of consumption control and metering devices, inadequate plant maintenance, and the lack of economic incentives for operator productivity and energy conservation by users. Environmental concerns have caused the local government and international agencies to plan major improvements to the system. This paper discusses the development of the district heating system, coal use in Poland, cogeneration facilities, environmental concerns and pollution control plans, and improvement strategies

  18. National energy policies: Obstructing the reduction of global CO2 emissions? An analysis of Swedish energy policies for the district heating sector

    International Nuclear Information System (INIS)

    Difs, Kristina

    2010-01-01

    The effect of national energy policies on a local Swedish district heating (DH) system has been studied, regarding the profitability of new investments and the potential for climate change mitigation. The DH system has been optimised regarding three investments: biomass-fuelled CHP (bio CHP), natural gas-fuelled combined cycle CHP (NGCC CHP) and biomass-fuelled heat-only boiler (bio HOB) in two scenarios (with or without national taxes and policy instruments). In both scenarios EU's tradable CO 2 emission permits are included. Results from the study show that when national policies are included, the most cost-effective investment option is the bio CHP technology. However, when national taxes and policy instruments are excluded, the DH system containing the NGCC CHP plant has 30% lower system cost than the bio CHP system. Regardless of the scenario and when coal condensing is considered as marginal electricity production, the NGCC CHP has the largest global CO 2 reduction potential, about 300 ktonne CO 2 . However, the CO 2 reduction potential is highly dependent on the marginal electricity production. Demonstrated here is that national policies such as tradable green certificates can, when applied to DH systems, contribute to investments that will not fully utilise the DH systems' potential for global CO 2 emissions reductions. - Research highlights: →Swedish energy policies are promoting biomass fuelled electricity generating technologies over efficient fossil fuel electricity generating technologies. →An efficient fossil fuel technology like the natural gas combine cycle CHP technology with high power-to-heat ratio has potential to reduce the global CO 2 emissions more than a biomass fuelled electricity generating technology. →Swedish energy policies such as tradable green certificates for renewable electricity can, when applied to district heating systems, contribute to investments that will not fully utilise the district heating systems potential for

  19. The future of the low temperature district heating reactor

    International Nuclear Information System (INIS)

    Lu Yingzhong; Wang Dazhong; Ma Changwen; Dong Duo; Tian Jiafu.

    1984-01-01

    In this paper, the role, development and situation of the low temperature district heating reactor (LTDHR) are briefly summarized. There are four types of LTDHR. They are PWR, reactor with boiling in the chimney, organic reactor and swimming pool reactor. The features of these reactors are introduced. The situation and role of the LTDHR in the future of the energy system are also discussed. The experiment on nuclear district heating with the swimming pool reactor in Qinghua Univ. is described briefly. (Author)

  20. Heating technologies for limiting biomass consumption in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2011-01-01

    district heating enables the use of combined heat and power production (CPH) and other renewable resources than biomass such as large-scale solar thermal, large-heat pumps, geothermal heat, industrial surplus heat etc. which is important for reducing the biomass consumption. Where the energy density......The utilisation of biomass poses large challenges in renewable energy systems and buildings account for a substantial part of the energy supply also in 100% renewable energy systems. The analyses of heating technologies show that district heating systems are especially important in limiting...... the dependence on biomass resources and to create cost effective systems. District heating systems are especially important in renewable energy systems with large amounts of fluctuating renewable energy sources as it enables fuel efficient and lower cost energy systems with thermal heat storages. And also...

  1. Process of optimization of district heat production by utilizing waste energy from metallurgical processes

    Science.gov (United States)

    Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo

    2017-07-01

    In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.

  2. The Forest Energy Chain in Tuscany: Economic Feasibility and Environmental Effects of Two Types of Biomass District Heating Plant

    Directory of Open Access Journals (Sweden)

    Claudio Fagarazzi

    2014-09-01

    Full Text Available The purpose of this study was to examine two biomass district heating plants operating in Tuscany, with a specific focus on the ex-post evaluation of their economic and financial feasibility and of their environmental benefits. The former biomass district heating plant supplies only public users (Comunità Montana della Lunigiana, CML: administrative body that coordinates the municipalities located in mountain areas, the latter supplies both public and private users (Municipality of San Romano in Garfagnana. Ex-post investment analysis was performed to check both the consistency of results with the forecasts made in the stage of the project design and on the factors, which may have reduced or jeopardized the estimated economic performance of the investment (ex-ante assessment. The results of the study point out appreciable results only in the case of biomass district heating plants involving private users and fuelled by biomasses sourced from third parties. In this case, the factors that most influence ex-post results include the conditions of the woody biomass local market (market prices, the policies of energy selling prices to private users and the temporal dynamics of private users’ connection. To ensure the consistency of ex-post economic outcome with the expected results it is thus important to: (i have good knowledge of the woody local market; (ii define energy selling prices that should be cheap for private users but consistent with energy production costs and (iii constrain private users beforehand to prevent errors in the plant design and in the preliminary estimate of return on investment. Moreover, the results obtained during the monitoring activities could help in providing information on the effectiveness of the supporting measures adopted and also to orient future choices of policy makers and particularly designers, to identify the most efficient configuration of district heating organization for improving energy and

  3. Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow

    International Nuclear Information System (INIS)

    Pan, Zhaoguang; Guo, Qinglai; Sun, Hongbin

    2016-01-01

    Highlights: • Interaction mechanisms of district electricity and heating systems are analyzed. • The interaction process is divided into four quasi-steady stages. • A quasi-steady multi-energy flow model is proposed and calculated. • A heating network node type transformation technique is developed. • Attention should be paid on the fast hydraulic process and slow thermal process. - Abstract: Integrated energy systems (IESs) are under development for a variety of benefits. District electricity and heating systems (DEHSs) deliver electricity and heat, the most common energy demands, to end-users. This paper studies the interactions in a DEHS considering the time-scale characteristics. Interaction mechanisms of a DEHS are analyzed. A disturbance in one system influences another system through coupling components, depending on the disturbance, operating characteristics, and control strategies. A model of the main components in DEHSs is presented. The time scale characteristics are studied based on a dynamic comparison of the different components. Then the interaction process is divided into four stages; each is a quasi-steady state. A quasi-steady multi-energy flow model is proposed and calculated, with a heating network node type transformation technique developed. A case study with detailed results and discussion of 3 types of disturbance is presented to verify the methods. The results present the interactions between the electricity and the system. It is suggested that attention should be paid both on the fast hydraulic process and slow thermal process for system security and economic operation.

  4. French know-how in the field of geothermal energy. District heating and electricity generation systems

    International Nuclear Information System (INIS)

    2012-08-01

    This brochure is aimed at presenting the French expertise, public and private, at international level in the field of geothermal energy (district heating and electricity generation systems). It presents a summary of the French public policy framework, measures to support Research and Development, innovation and training and offers from private companies. It has been designed by the ADEME in cooperation with the French ministry for Ecology and Sustainable Development, the French association of geothermal energy professionals, Ubifrance (the French Agency for international business development) and the French renewable energies union

  5. Energy system analysis of a pilot net-zero exergy district

    International Nuclear Information System (INIS)

    Kılkış, Şiir

    2014-01-01

    Highlights: • Östra Sala backe is analyzed as a pilot district for the net-zero exergy target. • An analysis tool is developed for proposing an energy system for Östra Sala backe. • A total of 8 different measures are included and integrated in the energy system. • The exergy produced on-site is 49.7 GW h, the annual exergy consumed is 54.3 GW h. • The average value of the level of exergy match in the supply and demand is 0.84. - Abstract: The Rational Exergy Management Model (REMM) provides an analytical model to curb primary energy spending and CO 2 emissions by means of considering the level of match between the grade/quality of energy resources (exergy) on the supply and demand sides. This model is useful for developing forward-looking concepts with an energy systems perspective. One concept is net-zero exergy districts, which produce as much energy at the same grade or quality as consumed on an annual basis. This paper analyzes the district of Östra Sala backe in Uppsala Municipality in Sweden as a pilot, near net-zero exergy district. The district is planned to host 20,000 people at the end of four phases. The measures that are considered include an extension of the combined heat and power based district heating and cooling network, heat pumps driven on renewable energy, district heating driven white goods, smart home automation, efficient lighting, and bioelectricity driven public transport. A REMM Analysis Tool for net-zero exergy districts is developed and used to analyze 5 scenarios based on a Net-Zero Exergy District Option Index. According to the results, a pilot concept for the first phase of the project is proposed. This integrates a mix of 8 measures considering an annual electricity load of 46.0 GW h e and annual thermal load of 67.0 GW h t . The exergy that is produced on-site with renewable energy sources is 49.7 GW h and the annual exergy consumed is 54.3 GW h. The average value of the level of match between the demand and supply of

  6. Flexibility of Large-Scale Solar Heating Plant with Heat Pump and Thermal Energy Storage

    DEFF Research Database (Denmark)

    Luc, Katarzyna Marta; Heller, Alfred; Rode, Carsten

    2017-01-01

    to decrease biomass use in a district heating system. The paper focuses on the renewable energy-based district heating system in Marstal, Denmark, with heat produced in central solar heating plant, wood pellet boiler, heat pump and bio-oil boiler. The plant has been the object of research and developments...

  7. Energy Neutral Districts in 2050. The Dutch Approach

    Energy Technology Data Exchange (ETDEWEB)

    Jablonska, B.; Roossien, B.; Ruijg, G.J.; Visser, H.; Bakker, E.J. [Energy research Centre of the Netherlands ECN, Petten (Netherlands); Willems, E. [Cauberg-Huygen Raadgevende Ingenieurs, Amsterdam (Netherlands)

    2013-09-15

    According to the EPBD, from the end of 2020 on all new buildings should be built as nearly zero energy buildings. Instead of focusing on buildings only, a district approach to energy supply and consumption can be advantageous as regards the energy performance and economics. The potential of renewable energy technologies can be utilized to a larger extent while fewer energy generators are needed. An example is a so called energy-hub, in which exchange, conversion and seasonal storage of energy can lead to energy neutral districts before 2050. The Dutch study Transition in Energy and Process for a Sustainable District Development (Transep-DGO), financed largely by the AgentschapNL, has shown that this is possible. For energy neutral district development in 2050, six innovative energy concepts have been elaborated and the extent of energy neutrality in 2020, 2035 and 2050 calculated. Three concepts are based on an idea of an energy hub - bio hub, geo hub and a solar hub. Other concepts are all-electric, conventional and hydrogen concepts. Calculations show that implementation of each of the concepts can lead to energy neutral districts in 2050 or even earlier. When personal transport is included, energy neutrality in 2050 is not feasible. Based on the six general concepts, the most optimal energy concepts tailored for four Dutch cities have been elaborated as pilots, in close cooperation with municipality representatives. Solar hub has been dynamically simulated in order to show the added value of the exchange, conversion and storage of energy flows on a district scale. Energy Pattern Generator (EPG) has been applied for simulation of a virtual district with 1,000 dwellings of various categories. A solar hub with collective heat storage can reduce the demanded storage capacity by 26%, and the total required solar collector surface by 30% at maximum compared to individual seasonal heat storage capacity in dwellings that are not connected in an energy hub. Energy hub

  8. Exergetic evaluation of heat pump booster configurations in a low temperature district heating network

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Elmegaard, Brian

    2012-01-01

    In order to minimise losses in a district heating network, one approach is to lower the temperature difference between working media and soil. Considering only direct heat exchange, the minimum forward temperature level is determined by the demand side, as energy services are required at a certai...

  9. Analysis and research on promising solutions of low temperature district heating without risk of legionella

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Fog, Jette M.

    2014-01-01

    Most regulations of domestic hot water supply temperature is around 55-60 oC, which potentially requires higher district heating temperature. However, high supply temperature of district heating causes many problems, such as the high heating loss, and obstacles for applying renewable energy...... resources. The most crucial restriction for applying low temperature district heating is the worry about the breakout of legionella, which exists preferably in low temperature hot water systems. Several novel techniques such as electric tracing and flat station were investigated for such dilemma. The pros...... and cons were compared in this paper. Both the energy and economy saving ratios were analysed comparing with high temperature supply scenario. Furthermore, the viability of the applications in different types of buildings for low temperature district heating (LTDH) was also discussed by using dynamic...

  10. A good year for district heating

    International Nuclear Information System (INIS)

    Bakken, Stein Arne

    2003-01-01

    In Norway, high prices on electric power have caused economic progress for the district heating companies. The price of district heating is determined by the prices of power and fuel oil. However, the government wants to remove the tax on electricity to the industry, which is the district heating companies' major group of customers, along with public buildings. This is likely to entail a great loss of income

  11. District heat, energy for fore-sighted people. Proceedings; Energie fuer Menschen mit Weitblick. Vortragsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The proceedings volume contains a great part of the papers presented, but some are represented only by copies of the overheads which accompanied the papers. The lecture meeting was devoted to the following major topics: Economical and safe supply of district heat, outlook on the future of the district heat supply industry in a liberalized market, customer relationship management taking into account contracting, information and communication via call centers, and other forms of guidance for decision making.(GL) [German] Vortraege vorliegend teils als Manuskript, teils als Folien mit folgenden Schwerpunkten: Die wirtschaftliche und sichere Versorgung durch Fernwaerme, die Zukunft der Fernwaerme im liberalisierten Markt, der Weg zum Kunden im Hinblick auf Contracting, Kommunikation, Betreuung sowie Beratung und Entscheidungsfindung.(GL)

  12. District heating systems - the necessary infrastructure for geothermal energy; Fern- und Nahwaermesysteme - notwendige Infrastruktur fuer die Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, I [Inst. fuer Umwelt-, Sicherheits- und Energietechnik e.V. (UMSICHT), Oberhausen (Germany)

    1997-12-01

    The contribution discusses the future chances of geothermal energy use with cost-optimized systems of geothermal energy + cogeneration + district heating and with the focus on innovation instead of state funding. (orig./AKF) [Deutsch] Der Beitrag bezieht sich auf die zukuenftigen Chancen der Geothermie, die eine kostenoptimierte Systemloesung Geothermie + KWK + Nah-/Fernwaerme sowie durch Mut zur Innovation und nicht durch Foerderung bestimmt werden. (orig./AKF)

  13. Changes in heat load profile of typical Danish multi-storey buildings when energy-renovated and supplied with low-temperature district heating

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2013-01-01

    end-use savings are implemented in buildings concurrent with the application of low-temperature district heating (LTDH), the heat profiles of the buildings will change. Reducing peak loads is important, since this is the dimensioning foundation for future district heating systems. To avoid oversized...

  14. SECURE nuclear district heating plant

    International Nuclear Information System (INIS)

    Nilsson; Hannus, M.

    1978-01-01

    The role foreseen for the SECURE (Safe Environmentally Clean Urban REactor) nuclear district heating plant is to provide the baseload heating needs of primarily the larger and medium size urban centers that are outside the range of waste heat supply from conventional nuclear power stations. The rationale of the SECURE concept is that the simplicity in design and the inherent safety advantages due to the use of low temperatures and pressures should make such reactors economically feasible in much smaller unit sizes than nuclear power reactors and should make their urban location possible. It is felt that the present design should be safe enough to make urban underground location possible without restriction according to any criteria based on actual risk evaluation. From the environmental point of view, this is a municipal heat supply plant with negligible pollution. Waste heat is negligible, gaseous radioactivity release is negligible, and there is no liquid radwaste release. Economic comparisons show that the SECURE plant is competitive with current fossil-fueled alternatives. Expected future increase in energy raw material prices will lead to additional energy cost advantages to the SECURE plant

  15. Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches

    Science.gov (United States)

    Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo

    This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.

  16. Distributed heat generation in a district heating system

    OpenAIRE

    Lennermo, Gunnar; Lauenberg, Patrick

    2016-01-01

    District heating (OH) systems need to be improved  regarding integration  of decentralised  heat generation. Micro production, prosumers and smart grids are terms becoming more and more common  in  connection  to  the  power  grid.  Concerning district  heating,  the  development  is slower, although improving. Today there are a number of such decentralised units for heat generation,  mainly  solar,  that have been partly evaluated.  Previous  studies  have shown  that there is a need to deve...

  17. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    International Nuclear Information System (INIS)

    Persson, Urban; Münster, Marie

    2016-01-01

    Municipal solid waste has seen increasing annual volumes for many decades in contemporary Europe and constitutes, if not properly managed, an environmental problem due to local pollution and greenhouse gas emissions. From an energy perspective, waste is also an alternative fuel for power and heat generation; energy recovery from waste represents an effective measure to reduce landfilling and avoid disposal emissions while simultaneously reducing the equivalent demand for primary energy supply. A key factor for obtaining the full synergetic benefits of this energy recovery is the presence of local heat distribution infrastructures, without which no large-scale recovery and utilisation of excess heat is possible. In this paper, which aims to estimate municipal solid waste volumes available for heat recovery in European district heating systems in 2030, a literature and data review is performed to establish and assess current and future EU (European Union) waste generation and management. Main conclusions are that more heat can be recovered from current Waste-to-Energy facilities operating at low average heat recovery efficiencies, that efficient incineration capacity is geographically concentrated, and that waste available for heat recovery in 2030 is equally determined by total generation volumes by this year as by future EU deployment levels of district heating. - Highlights: • European municipal solid waste time series data analysed from 1995 to 2012. • Review of modelling approaches to assess future European waste generation. • Weather corrected district heat data for EU Member States in 1995 and 2012. • Low average heat recovery efficiency in current European waste incineration. • Future heat recovery efficiencies as determinant as future generation volumes.

  18. District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solutions (SMORES) in Canada: A case study

    DEFF Research Database (Denmark)

    Dalla Rosa, A.; Boulter, R.; Church, K.

    2012-01-01

    better energy delivery performance than high-temperature district heating (HTDH) (Tsupply> 100 C), decreasing the heat loss by approximately 40%. The low-temperature networks (Tsupplyinvestment. The implementation...... in Canada. The paper discusses critical issues and quantifies the performance of design concepts for DH supply to low heat density areas. DH is a fundamental energy infrastructure and is part of the solution for sustainable energy planning in Canadian communities....

  19. Thermodynamic analysis and performance assessment of an integrated heat pump system for district heating applications

    International Nuclear Information System (INIS)

    Soltani, Reza; Dincer, Ibrahim; Rosen, Marc A.

    2015-01-01

    A Rankine cycle-driven heat pump system is modeled for district heating applications with superheated steam and hot water as products. Energy and exergy analyses are performed, followed by parametric studies to determine the effects of varying operating conditions and environmental parameters on the system performance. The district heating section is observed to be the most inefficient part of system, exhibiting a relative irreversibility of almost 65%, followed by the steam evaporator and the condenser, with relative irreversibilities of about 18% and 9%, respectively. The ambient temperature is observed to have a significant influence on the overall system exergy destruction. As the ambient temperature decreases, the system exergy efficiency increases. The electricity generated can increase the system exergy efficiency at the expense of a high refrigerant mass flow rate, mainly due to the fact that the available heat source is low quality waste heat. For instance, by adding 2 MW of excess electricity on top of the targeted 6 MW of product heat, the refrigerant mass flow rate increases from 12 kg/s (only heat) to 78 kg/s (heat and electricity), while the production of 8 MW of product heat (same total output, but in form of heat) requires a refrigerant mass flow rate of only 16 kg/s. - Highlights: • A new integrated heat pump system is developed for district heating applications. • An analysis and assessment study is undertaken through exergy analysis methodology. • A comparative efficiency evaluation is performed for practical applications. • A parametric study is conducted to investigate how varying operating conditions and state properties affect energy and exergy efficiencies.

  20. Twin cities institutional issues study cogenerated hot water district heating

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, R. E.; Leas, R.; Kolb, J. O.

    1979-01-01

    Community district heating, utilizing hot water produced through electrical/thermal cogeneration, is seen as an integral part of Minnesota's Energy Policy and Conservation Plan. Several studies have been conducted which consider the technical and institutional issues affecting implementation of cogenerated district heating in the Minneapolis and St. Paul Metropolitan Area. The state of the technical art of cogenerated hot water district heating is assumed to be transferable from European experience. Institutional questions relating to such factors as the form of ownership, financing, operation, regulation, and product marketability cannot be transferred from the European experience, and have been the subject of an extensive investigation. The form and function of the Institutional Issues Study, and some of the preliminary conclusions and recommendations resulting from the study are discussed.

  1. Exergoeconomic analysis of geothermal district heating systems: A case study

    International Nuclear Information System (INIS)

    Ozgener, Leyla; Hepbasli, Arif; Dincer, Ibrahim; Rosen, Marc A.

    2007-01-01

    An exergoeconomic study of geothermal district heating systems through mass, energy, exergy and cost accounting analyses is reported and a case study is presented for the Salihli geothermal district heating system (SGDHS) in Turkey to illustrate the present method. The relations between capital costs and thermodynamic losses for the system components are also investigated. Thermodynamic loss rate-to-capital cost ratios are used to show that, for the devices and the overall system, a systematic correlation appears to exist between capital cost and exergy loss (total or internal), but not between capital cost and energy loss or external exergy loss. Furthermore, a parametric study is conducted to determine how the ratio of thermodynamic loss rate to capital cost changes with reference temperature and to develop a correlation that can be used for practical analyses. The correlations may imply that devices in successful district heating systems such as the SGDHS are configured so as to achieve an overall optimal design, by appropriately balancing the thermodynamic (exergy-based) and economic (cost) characteristics of the overall systems and their devices

  2. Device for district heating with utilization of waste heat from power plants

    International Nuclear Information System (INIS)

    Korek, J.

    1976-01-01

    In order to utilize the waste heat developing in power plants - especially in nuclear power plants - the author suggests to lead the waste heat of the coolers for oil (which the bearings are lubricated with), hydrogen (which serves for the stator rotor-cooling), and the stator cooling water to the circulating district heating water and to arrange these heat exchangers one behind another or parallel to each other in the water circuit of the district heating system. The oil cooler of the engine transformer is also connected with the circulation of the district heating water. The runback water of the district heating network could thus be heated from approx. 40 0 C up to 65 0 C. (UA) [de

  3. Profitability of heating entrepreneurship from the viewpoint of heating energy buyer, heating energy seller and energy wood seller

    Energy Technology Data Exchange (ETDEWEB)

    Sauvula-Seppaelae, T.; Ulander, E. (Seinaejoki Univ. of Applied Sciences, Ahtari (Finland), School of Agriculture and Forestry), e-mail: tiina.sauvula-seppala@seamk.fi, e-mail: essi.ulander@seamk.fi

    2010-07-01

    The focus of this research was to study the profitability of heating entrepreneurships from the viewpoint of heating energy buyer, seller as well as energy wood seller. The average costs of heat production were Eur 44,8 / MWh and incomes Eur 43,4 /MWh. Energy wood purchase, comminution and long distance transportation formed slightly over a half of the heat production costs. Average net income in the group of the largest heating plants (>1000 kW) was Eur 29000 per year and in the group of the smallest (<200 kW) average net income was slightly over Eur 4000 per year. The net income from selling heat represents only a part of the income a heating entrepreneur receives from heat production. Other, significant parts are formed by income from selling energy wood to the plant as well as compensation for supervision and maintenance of the plant. The average net income of a forest owner from selling energy wood to heating entrepreneurs was Eur 18 / m3. Without state subsidies the net income would have been Eur 4 / m3. The price of the heating energy sold by heating entrepreneurs was very competitive. In 2006 it was Eur 30 / MWh cheaper than oil heat, Eur 34 / MWh cheaper than electric heat and Eur 3 / MWh cheaper than district heating. (orig.)

  4. Pricing district heating by marginal cost

    International Nuclear Information System (INIS)

    Difs, Kristina; Trygg, Louise

    2009-01-01

    A vital measure for industries when redirecting the energy systems towards sustainability is conversion from electricity to district heating (DH). This conversion can be achieved for example, by replacing electrical heating with DH and compression cooling with heat-driven absorption cooling. Conversion to DH must, however, always be an economically attractive choice for an industry. In this paper the effects for industries and the local DH supplier are analysed when pricing DH by marginal cost in combination with industrial energy efficiency measures. Energy audits have shown that the analysed industries can reduce their annual electricity use by 30% and increase the use of DH by 56%. When marginal costs are applied as DH tariffs and the industrial energy efficiency measures are implemented, the industrial energy costs can be reduced by 17%. When implementing the industrial energy efficiency measures and also considering a utility investment in the local energy system, the local DH supplier has a potential to reduce the total energy system cost by 1.6 million EUR. Global carbon dioxide emissions can be reduced by 25,000 tonnes if the industrial energy efficiency measures are implemented and when coal-condensing power is assumed to be the marginal electricity source

  5. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit...... in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. Energy efficiency and thermodynamic performance of these concepts are calculated and compared....... The results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR...

  6. Fault diagnosis methods for district heating substations

    Energy Technology Data Exchange (ETDEWEB)

    Pakanen, J.; Hyvaerinen, J.; Kuismin, J.; Ahonen, M. [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology

    1996-12-31

    A district heating substation is a demanding process for fault diagnosis. The process is nonlinear, load conditions of the district heating network change unpredictably and standard instrumentation is designed only for control and local monitoring purposes, not for automated diagnosis. Extra instrumentation means additional cost, which is usually not acceptable to consumers. That is why all conventional methods are not applicable in this environment. The paper presents five different approaches to fault diagnosis. While developing the methods, various kinds of pragmatic aspects and robustness had to be considered in order to achieve practical solutions. The presented methods are: classification of faults using performance indexing, static and physical modelling of process equipment, energy balance of the process, interactive fault tree reasoning and statistical tests. The methods are applied to a control valve, a heat excharger, a mud separating device and the whole process. The developed methods are verified in practice using simulation, simulation or field tests. (orig.) (25 refs.)

  7. Low-energy district heating in energy-efficient building areas

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Christensen, Jørgen Erik

    2011-01-01

    of a low-energy network for low-energy houses in Denmark. We took into account the effect of human behaviour on energy demand, the effect of the number of buildings connected to the network, a socio-economic comparison with ground source heat pumps, and opportunities for the optimization of the network...... to 0.20 MWh/(m year), and that the levelized cost of energy in low-energy DH supply is competitive with a scenario based on ground source heat pumps. The investment costs represent up to three quarters of the overall expenditure, over a time horizon of 30 years; so, the implementation of an energy...... system that fully relies on renewable energy needs substantial capital investment, but in the long term this is sustainable from the environmental and socio-economic points of view. Having demonstrated the value of the low-energy DH concept, we evaluated various possible designs with the aim of finding...

  8. Renewables and CHP with District Energy in Support of Sustainable Communities

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Chris

    2010-09-15

    This paper addresses the powerful idea of connecting many energy users to environmentally optimum energy sources through integrated community energy systems. Such systems require piping networks for distributing thermal energy, i.e., district heating and cooling (DHC) systems. The possibilities and advantages of the application of integrated energy concepts are discussed, including the economic and environmental benefits of integrating localized electrical generating systems (CHP), transportation systems, industrial processes and other thermal energy requirements. Examples of a number of operating systems are provided. Some of the R and D carried out by the IEA Implementing Agreement on District Heating and Cooling is also described.

  9. CMHC's district heating work may lead to solar power-towers

    Energy Technology Data Exchange (ETDEWEB)

    Peters, W

    1979-11-01

    A four-year study of district heating systems by the Canada Mortgage and Housing Corporation (CMHC) may combine with leadership recognition by the International Energy Agency to allow Canada to join the U.S. as the center for power-tower technology. The application of central receivers to district heating evolved from the district heating study as heliostat technology developed and the economics improved with scale. Based on the Barstow, Calif. prototype, a commercial version is envisioned for the mid-1980s to generate steam for power generation, heating, and cooling. A proponent suggests applying it to a multi-fuel system as a retrofit after the technology is perfected. Land availability and the need for direct sunlight present problems for this type of application in Canada, where much of the light is diffuse. A cautious view is taken by those who feel that cost will be prohibitive and who point out that the U.S. tests have yet to prove viability. (DCK)

  10. Study and optimization of operating regimes of NPP district heating system

    International Nuclear Information System (INIS)

    Bunin, V.S.; Vasil'ev, M.K.; Kudryavtsev, A.A.; Gorbashev, Yu.B.; Gadzhij, V.M.

    1980-01-01

    Thermal tests of the system with two reactors and four turbines have been carried out for the purpose of verification of operating regimes of the NPP district heating system with boiling single-curcuit RBMK-1000 reactors and K-500-65/3000 turbines. The system is designed for heat supply of habitable settlement and industrial site. The data processing have been carried out by the BESM-6 computer representing distributions of heat flow, steam, water and their parameters and determining the main energy indices of the system. Calculations of the system operating regime variables during the year have been carried out with the help of this program. It has been expected that the system provided heat consumption of 232 MW at calculated regime of thermal loading of the district, temperature regime of the system water of 130/170 deg C, relative load of hot water supply of 0.2 and duration of heating period of 4800 h. Calculations demonstrated that distric heat supply by NPP allowed one to supplant about 85 thous. of reference fuel/year of organic fuel. About 63 thous. of reference fuel/year are required for compensation of decrease of electric energy production in a condensation cycle. It has been also shown, that replacing the four-stroke system heaters by one-stroke heaters permits to drop system water underheating 1.5 times and, respectively, electric energy underproduction to 72 mln Mj (20 mln, kWxh). It produces additional economy of 6.6 thous. reference fuel/year. Calculations of its heat system have been conducted in order to determine the influence of water consumption in an intermediate circuit on the system efficiency. It has been shown that with the increase of water consumption energy power losses decrease. Thus, the above studied have demonstrated that the use of the single-circuit NPP district heating systems leads to considerable economy of fuel

  11. District heating/cogeneration application studies for the Minneapolis-St Paul area. Executive summary; overall feasibility and economic viability for a district heating/new cogeneration system in Minneapolis-St. Paul

    Energy Technology Data Exchange (ETDEWEB)

    Margen, P.; Larsson, K.; Cronholm, L.A.; Marklund, J.E.

    1979-08-01

    A study was undertaken to determine the feasibility of introducing a large-scale, hot-water, district-heating system for the Minneapolis-St. Paul area. The analysis was based on modern European hot-water district-heating concepts in which cogeneration power plants supply the base-load thermal energy. Heat would be supplied from converted turbines of existing coal-fired power plants in Minneapolis and St. Paul. Toward the end of the 20-year development period, one or two new cogeneration units would be required. Thus, the district-heating system could use low-grade heat from either coal-fired or nuclear cogeneration power stations to replace the space-heating fuels currently used - natural gas and distillate oil. The following conclusions can be drawn: the concept is technically feasible, it has great value for fuel conservation, and with appropriate financing the system is economically viable.

  12. Boise geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  13. Regulating district heating in Romania: Legislative challenges and energy efficiency barriers

    International Nuclear Information System (INIS)

    Poputoaia, Diana; Bouzarovski, Stefan

    2010-01-01

    Many states in Eastern and Central Europe (ECE) possess extensive district heating (DH) networks that were constructed during the days of communist rule in order to provide a universally accessible energy service that supported Soviet development policies. But the post-communist transition was marked by the exacerbation of the sector's numerous technical, economic, regulatory and environmental problems, accompanied by its abandonment in favour of alternative methods of domestic heating. Recent efforts to increase the use of DH in ECE as a result of environmental and energy security concerns have taken place in an absence of critical, context-sensitive research. The purpose of this paper is to explore the legal aspects of post-communist DH reforms in Romania, with the aim of identifying some of the governance challenges faced by state authorities in managing the sector. In broader terms, we seek to explore the extent to which the Romanian legislative framework is in a position to promote energy efficiency in DH. This has been achieved via an analysis of formal policy documents, government decrees, strategic documents and laws pertaining to this sector, as published and subsequently amended in the Official Gazette. The conclusions of the paper identify the key regulatory issues in the sector-especially with respect to the tariff setting process and the division of competences among different organisations in it-while suggesting a set of policy steps and general restructuring approaches that could help overcome the current situation.

  14. A multi-biofuel, fluidised-bed district heating plant in Sweden

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    At the end of 1984, the city of Haessleholm in Sweden started up a 65 MW district heating plant which included a 14 MW solid fuel plant. The plant included a specially-designed fluidised-bed boiler, capable of burning all grades of solid fuel, including organic fuel of such low grade that no other boilers around Haessleholm could use it. By 1992, the district heating system served some 250 detached houses and 6,000 flats as well as several schools and industrial premises. The biofuel boiler provides almost 60% of the energy required. (UK)

  15. Solar district heating and cooling: A review

    DEFF Research Database (Denmark)

    Perez-Mora, Nicolas; Bava, Federico; Andersen, Martin

    2018-01-01

    and decentralized solar district heating as well as block heating. For the different technologies, the paper describes commonly adopted control strategies, system configurations, types of installation, and integration. Real‐world examples are also given to provide a more detailed insight into how solar thermal...... technology can be integrated with district heating. Solar thermal technology combined with thermally driven chillers to provide cooling for cooling networks is also included in this paper. In order for a technology to spread successfully, not only technical but also economic issues need to be tackled. Hence......Both district heating and solar collector systems have been known and implemented for many years. However, the combination of the two, with solar collectors supplying heat to the district heating network, is relatively new, and no comprehensive review of scientific publications on this topic could...

  16. Proceedings of the Canadian District Energy Association's 9. annual conference and exhibition in association with the Canadian Energy Efficiency Alliance : Create, conserve, connect : District energy and energy efficiency for Canadian communities

    International Nuclear Information System (INIS)

    2004-01-01

    This conference provided an opportunity to demonstrate the latest developments in the supply and delivery of clean and efficient power, heating and cooling, with particular attention to proven energy solutions based on district energy and cogeneration technologies. Opportunities for distributed generation in Canada were presented, along with their associated risks and the impacts they have on business efficiency, communities and the environment. Topics of discussion focused on financing local energy projects, emission reduction implications, developing partnerships, best practices for energy systems, strategies for delivering energy efficiency, and policies that support energy solutions. The latest technological advances in research and development were also reviewed. District energy provides heating and cooling from a central plant to multiple users using piped steam through a series of supply and return pipes. Industrial cogeneration takes advantage of excess thermal capacity and reuses it to generate high-value electric power. Both district energy and cogeneration can save money for users, conserve resources, reduce pollution and offer sustainable energy solutions for the future. The conference featured 32 presentations, all of which were indexed separately for inclusion in this database. tabs., figs

  17. Production of dry wood chips in connection with a district heating plant

    Directory of Open Access Journals (Sweden)

    Yrjölä Jukka

    2004-01-01

    Full Text Available Moisture and its variation in wood chips make the control of burning in small scale heating appliances difficult resulting in emissions and loss of efficiency. If the quality of wood chips would be better, i. e. dried and sieved fuel with more uniform size distribution would be avail able, the burning could be much cleaner and efficiency higher. In addition higher power out put could be obtained and the investment costs of the burning appliances would be lower. The production of sieved and dried wood chip with good quality could be accomplished in connection with a district heating plant. Then the plant would make profit, in addition to the district heat, from the dried wood chips sold to the neighboring buildings and enterprises sep a rated from the district heating net using wood chips in energy production. The peak power of a district heating plant is required only a short time during the coldest days of the winter. Then the excess capacity during the milder days can be used as heat source for drying of wood chips to be marketed. Then wood chips are sieved and the fuel with best quality is sold and the reject is used as fuel in the plant it self. In a larger district heating plant, quality of the fuel does not need to be so high In this paper the effect of moisture on the fuel chain and on the boiler is discussed. Energy and mass balance calculations as a tool of system design is described and the characteristics of proposed dry chips production method is discussed.

  18. Alternative solutions for inhibiting Legionella in domestic hot water systems based on low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2015-01-01

    Abstract District heating is a cost-effective way of providing heat to high heat density areas. Low-temperature district heating (LTDH) is a promising way to make district heating more energy-efficient and adaptable to well-insulated buildings with low heating demand in the future. However, one c...... systems. They have the additional benefit of reducing the heat loss of the hot water system. The alternative design solutions both enrich our options for water sanitation and improve the energy efficiency of our energy systems....... concern is the multiplication of Legionella due to insufficient temperature elevation with low-temperature supply. The aim of this study was to find optimal solutions to this dilemma for specific situations. The solutions were of two types: alternative system designs and various methods of sterilization...... methods, thermal treatment, ionization, chlorine, chlorine dioxide, ultraviolet light, photocatalysis and filtration are discussed as the most frequently used methods in hot water systems. The characteristics, efficacy and operation methods of LTDH using the solutions investigated are documented...

  19. Decentralized substations for low-temperature district heating with no Legionella risk, and low return temperatures

    International Nuclear Information System (INIS)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    To improve energy efficiency and give more access to renewable energy sources, low-temperature district heating (LTDH) is a promising concept to be realized in the future. However, concern about Legionella proliferation restricts applying low-temperature district heating in conventional systems with domestic hot water (DHW) circulation. In this study, a system with decentralized substations was analysed as a solution to this problem. Furthermore, a modification for the decentralized substation system were proposed in order to reduce the average return temperature. Models of conventional system with medium-temperature district heating, decentralized substation system with LTDH, and innovative decentralized substation system with LTDH were built based on the information of a case building. The annual distribution heat loss and the operating costs of the three scenarios were calculated and compared. From the results, realizing LTDH by the decentralized substation unit, 30% of the annual distribution heat loss inside the building can be saved compared to a conventional system with medium-temperature district heating. Replacing the bypass pipe with an in-line supply pipe and a heat pump, the innovative decentralized substation system can reduce distribution heat loss by 39% compared to the conventional system and by 12% compared to the normal decentralized substation system with bypass. - Highlights: • The system of decentralized substations can realize low-temperature district heating without running the risk of Legionella. • Decentralized substations help reduce the distribution heat loss inside the building compared to conventional system. • A new concept that can reduce the return temperature for district heating is proposed and analysed.

  20. The deregulation effects of Finnish electricity markets on district heating prices

    International Nuclear Information System (INIS)

    Linden, Mikael; Peltola-Ojala, Paeivi

    2010-01-01

    This paper investigates an empirical econometric panel data model in order to test deregulation and regional market structure effects on district heating prices in Finland for period 1996-2002. The data was collected from 76 district heating firms throughout Finland. Special emphasis is placed on the modeling of policy-induced competition, which began in year 1999, regional based fuel selection, local market structures, and distribution network sharing effects. The results imply that the local structures of energy production and sales have an important role to play in the formation of market prices and that the price lowering effects of energy market deregulation are permanent. (author)

  1. Is Swedish district heating operating on an integrated market? – Differences in pricing, price convergence, and marketing strategy between public and private district heating companies

    International Nuclear Information System (INIS)

    Åberg, M.; Fälting, L.; Forssell, A.

    2016-01-01

    The deregulation of the Swedish electricity market in 1996 made it possible to operate municipal district heating commercially. Until that time district heating had been organized mainly as municipal utilities. After 1996 district heating is instead expected to function on a market. In competitive and integrated markets, prices are expected to be equal, or converging. To find out if district heating operates on an integrated market the differences in price levels, price convergence, price strategy, and business goals, among municipal, private and state owned district heating companies are investigated. Price statistics was used along with results from a questionnaire that was answered by representatives for 109 Swedish district heating companies. The results show that prices among district heating systems do not converge significantly and that variations in prices among municipal systems are larger than among private and state owned systems. Furthermore, despite the fact that district heating is supposed to be commercial, a vast majority of district heating companies apply cost-based pricing and not market pricing. The municipal companies give priority to political goals before financial goals. The conclusion is that a Swedish integrated market for heat has not yet evolved, and some district heating price-controlling mechanism is necessary. - Highlights: • Price statistics and owner type data were used along with results from a questionnaire. • Results show that prices among district heating systems do not converge. • Municipal district heating companies still apply cost-based pricing to a large extent. • District heating companies are not operating on an integrated market for heat. • Some price-controlling mechanism for district heating is necessary.

  2. Integration of Decentralized Thermal Storages Within District Heating (DH Networks

    Directory of Open Access Journals (Sweden)

    Schuchardt Georg K.

    2016-12-01

    Full Text Available Thermal Storages and Thermal Accumulators are an important component within District Heating (DH systems, adding flexibility and offering additional business opportunities for these systems. Furthermore, these components have a major impact on the energy and exergy efficiency as well as the heat losses of the heat distribution system. Especially the integration of Thermal Storages within ill-conditioned parts of the overall DH system enhances the efficiency of the heat distribution. Regarding an illustrative and simplified example for a DH system, the interactions of different heat storage concepts (centralized and decentralized and the heat losses, energy and exergy efficiencies will be examined by considering the thermal state of the heat distribution network.

  3. Increased system benefit from cogeneration due to cooperation between district heating utility and industry

    Energy Technology Data Exchange (ETDEWEB)

    Danestig, M.; Henning, D. [Division of Energy Systems, Department of Mechanical Engineering, Linkoping Institute of Technology, Linkoping (Sweden)

    2004-07-01

    District heating and steam supply in the town Oernskoeldsvik in northern Sweden is in focus for this study. Low temperature waste heat from pulp manufacturing in the Donisjoe mill is now utilised for district heating production in heat pumps, which dominate district heating supply. Based on this traditional cooperation between the local district heating utility and the pulp industry, the parties discuss a partial outsourcing of the industrial steam supply to the utility, which may enable beneficial system solutions for both actors. The local utility must find a new location for a heating plant because a railway line is being built at the heat pump site. Planning for a new combined heat and power production (CHP) plant has started but its location is uncertain. If the plant can be situated close to the mill it can, besides district heating, produce steam, which can be supplied to adjacent industries. The municipality and its local utility are also considering investing in a waste incineration plant. But is waste incineration suitable for Ornskoeldsvik and how would it interact with cogeneration. Alternative cases have been evaluated with the MODEST energy system optimisation model, which minimises the cost for satisfying district heating and steam demand. The most profitable solution is to invest in a CHP plant and a waste incineration plant. Considering carbon dioxide emissions, the results from applying a local or a global perspective are remarkably different. In the latter case, generated electricity is assumed to replace power from coal condensing plants elsewhere in the North-European power grid. Therefore, minimum global CO{sub 2} emissions are achieved through maximal electricity production in a CHP plant. From this viewpoint, waste incineration should not be introduced because it would obstruct cogeneration. The study is carried out within the program Sustainable municipality run by the Swedish Energy Agency. (orig.)

  4. District heating from a community perspective : the Aboriginal experience

    Energy Technology Data Exchange (ETDEWEB)

    Wapachee, L. [Ouje-Bougoumou First Nation, Ouje-Bougoumou, PQ (Canada)

    2010-07-01

    This presentation discussed an alternative energy system that was incorporated into the planning and development of a new permanent village for the Ouje-Bougoumou Cree. The history of the Ouje-Bougoumou Cree people and its involvement with industry and governmental bodies were described at length. To provide for the long-term financial requirements of the community in a manner in harmony with Cree environmental philosophy, an appropriate alternative energy system was incorporated into the village architecture. Biomass district heating is an alternative energy system that uses a single source of energy to heat the community's houses and buildings. In this case, sawdust fuel is used to heat water, which is pumped through underground pipes to heat buildings before it cycles back to the plant for reheating. This system converts a waste product into usable energy, capturing and recycling energy while replacing conventional sources, such as oil, gas, or hydroelectricity, and creating local employment. Heat is the largest portion of the community's energy requirement. 11 figs., 1 tab.

  5. Design of a low temperature district heating network with supply recirculation

    DEFF Research Database (Denmark)

    Li, Hongwei; Dalla Rosa, Alessandro; Svendsen, Svend

    2010-01-01

    The focus on continuing improving building energy efficiency and reducing building energy consumption brings the key impetus for the development of the new generation district heating (DH) system. In the new generation DH network, the supply and return temperature are designed low in order to sig...... calculates the heat loss in the twin pipe as that in the single pipe. The influence of this simplification on the supply/return water temperature prediction was analyzed by solving the coupled differential energy equations.......-pass system starts to function. The aim of this paper is to investigate the influence of by-pass water on the network return temperature and introduce the concept of supply water recirculation into the network design so that the traditional by-pass system can be avoided. Instead of mixing the by-pass water......The focus on continuing improving building energy efficiency and reducing building energy consumption brings the key impetus for the development of the new generation district heating (DH) system. In the new generation DH network, the supply and return temperature are designed low in order...

  6. Feasibility analysis of geothermal district heating for Lakeview, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-23

    An analysis of the geothermal resource at Lakeview, Oregon, indicates that a substantial resource exists in the area capable of supporting extensive residential, commercial and industrial heat loads. Good resource productivity is expected with water temperatures of 200{degrees}F at depths of 600 to 3000 feet in the immediate vicinity of the town. Preliminary district heating system designs were developed for a Base Case serving 1170 homes, 119 commercial and municipal buildings, and a new alcohol fuel production facility; a second design was prepared for a downtown Mini-district case with 50 commercial users and the alcohol plant. Capital and operating costs were determined for both cases. Initial development of the Lakeview system has involved conducting user surveys, well tests, determinations of institutional requirements, system designs, and project feasibility analyses. A preferred approach for development will be to establish the downtown Mini-district and, as experience and acceptance are obtained, to expand the system to other areas of town. Projected energy costs for the Mini-district are $10.30 per million Btu while those for the larger Base Case design are $8.20 per million Btu. These costs are competitive with costs for existing sources of energy in the Lakeview area.

  7. Optimization of a local district heating plant under fuel flexibility and performance

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; From, Niels

    2011-01-01

    are calculated for various local fuels in energyPRO. A comparison has been made between the reference model and the basis for individual solutions. The greatest reduction in heat price is obtained by replacing one engine with a new biogas where heat production is divided by 66% of biogas, 13% natural gas engines......, an investigation has been made to reduce the use of fossil fuels for district heating system and make use of the local renewable resources (Biogas, Solar and Geothermal) for district heating purpose. In this article, the techno-economic assessment is achieved through the development of a suite of models...

  8. Britain stays cool on district heating

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G

    1982-04-08

    Britain's wealth of energy sources has kept interest in the energy conservation potential of combined heat and power (CHP) and district heating (DH) at a low level. An active lobby for CHP/DH continues to argue against formidable odds. The Marshall group set up in the early days of the oil crisis reported on several strategies for CHP/DH and proposed technologies already proven in other European countries. The economics of abundant natural gas and coal, however, precludes commercial interest until energy prices reach higher levels. The lobbyists point out that this could occur within a short time, and local governments would do well to examine the lead-city concept for application on a national level. The present government's preference for the private sector pursuing development beyond the feasibility-study stage could make CHP/DH more of a political issue as unemployment increases. (DCK)

  9. Financial cost-benefit analysis of investment possibilities in district heating system on wood residues

    Directory of Open Access Journals (Sweden)

    Stošić Ivan

    2017-01-01

    Full Text Available The purpose of this research is to provide feasibility analysis of a long-term sustainable development concept for district heating based on wood residues. In this paper, the experimental study has been conducted starting from the data collected by field researches in municipality of Trstenik (town in Serbia with district heating system currently based on heavy fuel oil and lignite. Using the method of Financial Cost-Benefit Analysis, this study evaluates financial efficiency of investment in district heating plant based on wood residues and energy savings in district heating system. Findings show that such investment could be profitable from the financial point of view: Net Present Value of investment is positive, Financial Rate of Return is high (30.69%, and the pay-back period is relatively favourable (7 years. Moreover, the presented SWOT indicates that there are realistic prospects of implementation of district heating based on wood residues. However, this does not mean everything will go smoothly and easily, keeping in mind a number of challenges that each new concept of district heating contains immanently. Nevertheless, the results of this research could provide useful inputs for the decision makers when selecting appropriate models for improving performance of municipal district heating systems.

  10. Analysis of the location for peak heating in CHP based combined district heating systems

    International Nuclear Information System (INIS)

    Wang, Haichao; Lahdelma, Risto; Wang, Xin; Jiao, Wenling; Zhu, Chuanzhi; Zou, Pinghua

    2015-01-01

    Combined heat and power (CHP) is the main technology for providing the base load of district heating in China. However, CHP is not efficient for providing the peak load; instead, a peak boiler with high efficiency could be used to compensate the peak load. This paper studies how the location of the peak boiler can affect the energy efficiency and economic performance of such CHP based combined district heating system. Firstly, the connection mode and the control strategy for different peak heating locations are analyzed. Then the effect of the peak boiler's location on the initial investment of the network and the cost for distributing heat is studied. The objective is to place the peak boiler in a location where the overall costs are the smallest. Following this rule, the results indicate that the peak boiler should be located at the CHP plant if that allows using cheaper ‘self-use electricity’ in CHP for distributing the heat. However, if the market electricity price is used everywhere, or if energy efficiency is more emphasized, the location of the peak boiler should be closer to the users with dense heat loads. - Highlights: • Location for peak heating in the CHP based combined DH system is studied. • Regulation or control strategies for combined DH are summarized. • The heat load duration curve for combined DH is demonstrated. • Network design for combined DH with peak boiler outside of the CHP is analyzed

  11. Diagnostic information system dynamics in the evaluation of machine learning algorithms for the supervision of energy efficiency of district heating-supplied buildings

    International Nuclear Information System (INIS)

    Kiluk, Sebastian

    2017-01-01

    Highlights: • Energy efficiency classification sustainability benefits from knowledge prediction. • Diagnostic classification can be validated with its dynamics and current data. • Diagnostic classification dynamics provides novelty extraction for knowledge update. • Data mining comparison can be performed with knowledge dynamics and uncertainty. • Diagnostic information refinement benefits form comparing classifiers dynamics. - Abstract: Modern ways of exploring the diagnostic knowledge provided by data mining and machine learning raise some concern about the ways of evaluating the quality of output knowledge, usually represented by information systems. Especially in district heating, the stationarity of efficiency models, and thus the relevance of diagnostic classification system, cannot be ensured due to the impact of social, economic or technological changes, which are hard to identify or predict. Therefore, data mining and machine learning have become an attractive strategy for automatically and continuously absorbing such dynamics. This paper presents a new method of evaluation and comparison of diagnostic information systems gathered algorithmically in district heating efficiency supervision based on exploring the evolution of information system and analyzing its dynamic features. The process of data mining and knowledge discovery was applied to the data acquired from district heating substations’ energy meters to provide the automated discovery of diagnostic knowledge base necessary for the efficiency supervision of district heating-supplied buildings. The implemented algorithm consists of several steps of processing the billing data, including preparation, segmentation, aggregation and knowledge discovery stage, where classes of abstract models representing energy efficiency constitute an information system representing diagnostic knowledge about the energy efficiency of buildings favorably operating under similar climate conditions and

  12. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  13. Integration of Space Heating and Hot Water Supply in Low Temperature District Heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2014-01-01

    pipes, where the water is at the highest temperature. The heat loss may be lowered by decreasing the temperatures in the network for which reason low temperature networks are proposed as a low loss solution for future district heating. However, the heating demand of the consumers involve both domestic......District heating makes it possible to provide heat for many consumers in an efficient manner. In particular, district heating based on combined heat and power production is highly efficient. One disadvantage of district heating is that there is a significant heat loss from the pipes...... to the surrounding ground. In larger networks involving both transmission and distribution systems, the heat loss is most significant from the distribution network. An estimate is that about 80-90 % of the heat loss occurs in the distribution system. In addition, the heat loss is naturally highest from the forward...

  14. Danish heat atlas as a support tool for energy system models

    International Nuclear Information System (INIS)

    Petrovic, Stefan N.; Karlsson, Kenneth B.

    2014-01-01

    Highlights: • The GIS method for calculating costs of district heating expansion is presented. • High socio-economic potential for district heating is identified within urban areas. • The method for coupling a heat atlas and TIMES optimization model is proposed. • Presented methods can be used for any geographical region worldwide. - Abstract: In the past four decades following the global oil crisis in 1973, Denmark has implemented remarkable changes in its energy sector, mainly due to the energy conservation measures on the demand side and the energy efficiency improvements on the supply side. Nowadays, the capital intensive infrastructure investments, such as the expansion of district heating networks and the introduction of significant heat saving measures require highly detailed decision-support tool. A Danish heat atlas provides highly detailed database with extensive information about more than 2.5 million buildings in Denmark. Energy system analysis tools incorporate environmental, economic, energy and engineering analysis of future energy systems and are considered crucial for the quantitative assessment of transitional scenarios towards future milestones, such as EU 2020 goals and Denmark’s goal of achieving fossil free society after 2050. The present paper shows how a Danish heat atlas can be used for providing inputs to energy system models, especially related to the analysis of heat saving measures within building stock and expansion of district heating networks. As a result, marginal cost curves are created, approximated and prepared for the use in optimization energy system model. Moreover, it is concluded that heat atlas can contribute as a tool for data storage and visualisation of results

  15. Towards a Future of District Heating Systems with Low-Temperature Operation together with Non-Fossil Fuel Heat Sources

    DEFF Research Database (Denmark)

    Tol, Hakan; Dinçer, Ibrahim; Svendsen, Svend

    2012-01-01

    This study focused on investigation of non-fossil fuel heat sources to be supplied to low-energy district heating systems operating in low temperature such as 55 C and 25 C in terms of, respectively, supply and return. Vast variety of heat sources classed in categories such as fossil fuel...

  16. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren

    2014-01-01

    This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish...... governmental 2050 fossil-free vision, this paper identifies marginal heat production costs and compares these to marginal heat savings costs for two different levels of district heating. A suitable least-cost heating strategy seems to be to invest in an approximately 50% decrease in net heat demands in new...... buildings and buildings that are being renovated anyway, while the implementation of heat savings in buildings that are not being renovated hardly pays. Moreover, the analysis points in the direction that a least-cost strategy will be to provide approximately 2/3 of the heat demand from district heating...

  17. Achieving low return temperature for domestic hot water preparation by ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Svendsen, Svend

    2017-01-01

    District heating (DH) is a cost-effective method of heat supply, especially to area with high heat density. Ultra-low-temperature district heating (ULTDH) is defined with supply temperature at 35-45 degrees C. It aims at making utmost use of the available low-temperature energy sources. In order...... to achieve high efficiency of the ULTDH system, the return temperature should be as low as possible. For the energy-efficient buildings in the future, it is feasible to use ULTDH to cover the space heating demand. However, considering the comfort and hygiene requirements of domestic hot water (DHW...... lower return temperature and higher efficiency for DHW supply, an innovative substation was devised, which replaced the bypass with an instantaneous heat exchanger and a micro electric storage tank. The energy performance of the proposed substation and the resulting benefits for the DH system...

  18. Waste heat of HTR power stations for district heating

    International Nuclear Information System (INIS)

    Bonnenberg, H.; Schlenker, H.V.

    1975-01-01

    The market situation, the applied techniques, and the transport, for district heating in combination with HTR plants are considered. Analysis of the heat market indicates a high demand for heat at temperatures between 100 and 150 0 C in household and industry. This market for district heating can be supplied by heat generated in HTR plants using two methods: (1) the combined heat and power generation in steam cycle plants by extracting steam from the turbine, and (2) the use of waste heat of a closed gas turbine cycle. The heat generation costs of (2) are negligible. The cost for transportation of heat over the average distance between existing plant sites and consumer regions (25 km) are between 10 and 20% of the total heat price, considering the high heat output of nuclear power stations. Comparing the price of heat gained by use of waste heat in HTR plants with that of conventional methods, considerable advantages are indicated for the combined heat and power generation in HTR plants. (author)

  19. Down-Hole Heat Exchangers: Modelling of a Low-Enthalpy Geothermal System for District Heating

    Directory of Open Access Journals (Sweden)

    M. Carlini

    2012-01-01

    Full Text Available In order to face the growing energy demands, renewable energy sources can provide an alternative to fossil fuels. Thus, low-enthalpy geothermal plants may play a fundamental role in those areas—such as the Province of Viterbo—where shallow groundwater basins occur and conventional geothermal plants cannot be developed. This may lead to being fuelled by locally available sources. The aim of the present paper is to exploit the heat coming from a low-enthalpy geothermal system. The experimental plant consists in a down-hole heat exchanger for civil purposes and can supply thermal needs by district heating. An implementation in MATLAB environment is provided in order to develop a mathematical model. As a consequence, the amount of withdrawable heat can be successfully calculated.

  20. Cogeneration and District Heating. Best Practices for Municipalities

    International Nuclear Information System (INIS)

    Nuorkivi, A.; Constantinescu, T.

    2005-01-01

    District heating (DH) and cogeneration of heat power (CHP) are well known technologies in the energy business and are often included in municipal policies as well. Some of the major benefits of DH and CHP are less known and the barriers faced by further development of DH and CHP are substantial. The main barriers are institutional. Municipalities can play a powerful role in facilitating local DH and CHP development in order to achieve the economic and environmental benefits of DH and CHP. This report is produced to assist municipalities in promoting efficient and environmental beneficial DH and CHP. The focus of the report is on the economies in transition, where the institutional barriers are acute. The report addresses the issues of organisational framework, price regulation and financing, energy demand, rehabilitation of DH systems and benchmarking of DH and CHP. The municipality may influence the DH development by a number of means. The most important means, discussed in the various chapters of the report, are: (1) City planning impacts on the heat load density. A high density is an important factor for the economics of DH and city planning may promote DH in areas with high density and individual heating modes in the areas with low density; (2) Managing the building stock owned by the municipality to join the DH system and paying for the heating services; (3) Setting strategic goals for the District Heating Enterprise (DHE), which they usually own, regarding the quality and the costs of heating. The DHE shall be given sufficient resources to work towards such goals; (4) Providing guarantees for financing DH rehabilitation and development. The DHE may not have access to commercial credits without municipal guarantees; and, (5) Supporting the DHE management by giving operational independence, supervising the management performance regularly and encouraging the co-operation with other DHEs and equipment manufacturers. Examples provided in the report of

  1. Heat Saving Strategies in Sustainable Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Henrik Lund

    2014-06-01

    Full Text Available This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish governmental 2050 fossil-free vision, this paper identifies marginal heat production costs and compares these to marginal heat savings costs for two different levels of district heating. A suitable least-cost heating strategy seems to be to invest in an approximately 50% decrease in net heat demands in new buildings and buildings that are being renovated anyway, while the implementation of heat savings in buildings that are not being renovated hardly pays. Moreover, the analysis points in the direction that a least-cost strategy will be to provide approximately 2/3 of the heat demand from district heating and the rest from individual heat pumps.

  2. Impact of Next Generation District Heating Systems on Distribution Network Heat Losses: A Case Study Approach

    Science.gov (United States)

    Li, Yu; Rezgui, Yacine

    2018-01-01

    District heating (DH) is a promising energy pathway to alleviate environmental negative impacts induced by fossil fuels. Improving the performance of DH systems is one of the major challenges facing its wide adoption. This paper discusses the heat losses of the next generation DH based on the constructed Simulink model. Results show that lower distribution temperature and advanced insulation technology greatly reduce network heat losses. Also, the network heat loss can be further minimized by a reduction of heat demand in buildings.

  3. Application of Predictive Control in District Heating Systems

    DEFF Research Database (Denmark)

    Palsson, Olafur Petur; Madsen, Henrik; Søgaard, Henning Tangen

    1993-01-01

    In district heating systems, and in particular if the heat production cakes place at a combined heat and power (CHP) plant, a reasonable control strategy is to keep the supply temperature from the district heating plant as low as possible. However, the control is subject to some restrictions, for...

  4. Exergoenvironmental analysis for a geothermal district heating system: An application

    International Nuclear Information System (INIS)

    Keçebaş, Ali

    2016-01-01

    Energy sources are of great importance in relation to pollution of the world. The use of renewable energy resources and the creation of more efficient energy systems make great contributions to the prevention of greenhouse gases. Recently, many studies indicate that the energy conversion systems have many advantages in terms of technical and economic point of view. In near future, environmental impact is going to play an important role in the selection/design of such energy resources and systems. In this study, the Afyon GDHS (geothermal district heating system) having actual operating conditions is investigated at the component level in terms of environmental impact by using exergoenvironmental analysis. Moreover, the effects of ambient and wellhead temperatures on the environmental impacts of the system are discussed. The results show that a great part of total environmental impact of the system occurs from the exergy destructions of the components. Therefore, the environmental impacts can be reduced by improving their exergetic efficiencies instead of design changes of the system components. The environmental impacts of the system are reduced when the ambient temperature decreases and the wellhead temperature increases. Thus, it might not be necessary to conduct separately the exergoenvironmental analysis for different ambient temperatures. - Highlights: • Using exergoenvironmental analysis in a geothermal district heating for the first time. • Evaluating environmental impact of a geothermal district heating system. • Discussing the effects of ambient and wellhead temperatures on the environmental impact. • Total environmental impact of the system occurs from exergy destructions of components. • The exergoenvironmental analysis can be done only once for all the ambient temperatures.

  5. Renewable heat: Waste heat, an emerging sector full of resources. An eco-district fed by the heat from a data center; Integrating objectives matching the ambitions, clear and on the long term; High-energy wastes in Brittany: Brest is securing its heat network with multiple energies

    International Nuclear Information System (INIS)

    Richard, Aude

    2017-01-01

    This file on renewable heat contains four articles which themes are: waste heat (from incineration plants or industrial sites) is an emerging sector full of resources, which benefits now of a financial subsidy from ADEME, the French organization for energy and environment; an example is given with Chamtor, a highly energy-consuming cereal transformer. The second article presents an urban eco-district in Paris that is fed by the heat issued by a data center. The third article (Integrating objectives matching the ambitions, clear and on the long term) presents some recommendations from the French Renewable Energy Association (SER) towards a better energy valorization of residual wastes. The fourth article presents two examples of energy valorization of wastes in Brittany, one with the valorization of high-energy solid wastes for supplying heat to a milk farm and greenhouses, the other one concerns the development of a heat network supplied by an incineration plant, with a mix of energy sources such as wastes, wood and gas, and a special juridical scheme

  6. Modeling of a District Heating System and Optimal Heat-Power Flow

    Directory of Open Access Journals (Sweden)

    Wentao Yang

    2018-04-01

    Full Text Available With ever-growing interconnections of various kinds of energy sources, the coupling between a power distribution system (PDS and a district heating system (DHS has been progressively intensified. Thus, it is becoming more and more important to take the PDS and the DHS as a whole in energy flow analysis. Given this background, a steady state model of DHS is first presented with hydraulic and thermal sub-models included. Structurally, the presented DHS model is composed of three major parts, i.e., the straight pipe, four kinds of local pipes, and the radiator. The impacts of pipeline parameters and the environment temperature on heat losses and pressure losses are then examined. The term “heat-power flow” is next defined, and the optimal heat-power flow (OHPF model formulated as a quadratic planning problem, in which the objective is to minimize energy losses, including the heat losses and active power losses, and both the operational constraints of PDS and DHS are respected. The developed OHPF model is solved by the well-established IPOPT (Interior Point OPTimizer commercial solver, which is based on the YALMIP/MATLAB toolbox. Finally, two sample systems are served for demonstrating the characteristics of the proposed models.

  7. Influence of different technologies on dynamic pricing in district heating systems: Comparative case studies

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo; Wahlroos, Mikko; Syri, Sanna

    2018-01-01

    District heating markets are often dominated by monopolies in both Denmark and Finland. The same companies, often owned by local municipalities, are usually operating both supplying plants and district heating networks, while the pricing mechanisms are rigid, often agreed upon for one year...... in advance. The mentioned ownership scheme may cause problems, when one tries to gain a third party access in order to deliver excess heat or heat from cheaper heating plants. In this paper, two case studies were carried out to simulate the district heating systems based on dynamic pricing. Case studies were...... carried out for Sønderborg, Denmark and Espoo, Finland. The results showed that dynamic pricing fosters feeding the waste heat into the grid, as dynamic pricing reduced the total primary energy consumption and CO2 emissions in both case studies. In the best scenarios, the weighted average heat price...

  8. Nuclear and geothermal energy as a direct heat source

    International Nuclear Information System (INIS)

    Field, A.A.

    1976-01-01

    After some remarks on economic aspects, the swimming pool reactor simplified for the purpose of heat generation is described, the core of which supplies heat of 100-120 0 C for district heating. In this context, ways of storing waste heat are discussed. The alternative is pointed out that energy may be transferred by means of hydrogen. In conclusion, it is demonstrated on a French plant how geothermal water can be used directly via heat exchangers for district heating. (UA/LN) [de

  9. The radiation safety assessment of the heating loop of district heating reactors

    International Nuclear Information System (INIS)

    Liu Yuanzhong

    1993-01-01

    The district heating reactors are used to supply heating to the houses in cities. The concerned problems are whether the radioactive materials reach the heated houses through heating loop, and whether the safety of the dwellers can be ensured. In order to prevent radioactive materials getting into the heated houses, the district heating reactors have three loops, namely, primary loop, intermediate loop, and heating loop. In the paper, the measures of preventing radioactive materials getting into the heating loop are presented, and the possible sources of the radioactivity in the water of the intermediate loop and the heating loop are given. The regulatory aim limit of radioactive concentration in the water of the intermediate loop is put forward, which is 18.5 Bq/l. Assuming that specific radioactivity of the water of contaminated intermediate loop is up to 18.5 Bq/l, the maximum concentration of radionuclides in water of the heating loop is calculated for the normal operation and the accident of district heating reactor. The results show that the maximum possible concentration is 5.7 x 10 -3 Bq/l. The radiation safety assessment of the heating loop is made out. The conclusions are that the district heating reactors do not bring any harmful impact to the dwellers, and the safety of the dwellers can be safeguarded completely

  10. Guidelines for District Heating Substations

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-15

    The present guidelines contain a set of recommendations focusing on planning, installation, use and maintenance of district heating (DH) substations within district heating systems throughout Europe. The recommendations were developed in order to enable readers to develop well-functioning substations and an effective heat and domestic warm water delivery. These guidelines are intended to give the most effective overall solutions for various parts of the customer installation. The guidelines are not meant to specify the different components of the substation such as meters or heat exchangers. The guidelines deal with a wide variety of issues concerning both present systems of today and district heating systems of the future. Specific handling and maintenance recommendations are mainly focused on present modern systems but are also intended to cover the future situation as much as is feasible. For this reason, certain existing systems are not dealt with in these guidelines. For instance, these guidelines do not cover steam systems, systems with temperatures exceeding 110 deg C and pressure levels above 1.6 MPa. The guidelines include a chapter on the heat meter, as the meter and especially the meter installation is always installed simultaneously with the rest of the substation. These guidelines aim to provide best-practice and easy-to-handle recommendations for: - those who are responsible for relations between district heating utilities and customers; - those who own or maintain a building connected to the district heating network; - those who manufacture, plan, purchase, test and install substations. These guidelines do not deal with investment or cost aspects, but in general, Euroheat and Power recommends looking at the lifetime cost of all components of the substation, instead of investment costs alone. An example of this is provided in Chapter 7.8. The Guidelines were developed based on the most optimal operating principles of substations and meters

  11. Urban form and heat consumption, a comparative study in Copenhagen districts

    DEFF Research Database (Denmark)

    Mohammadi Dehcheshme, Mostafa; Jensen, Jesper Ole

    Since urban form and land use patterns significantly influence the cities energy needs, the study linkage of energy consumption and urban form is an interdisciplinary issue and one the current central topics of urban planners in recent years. Our concern in this paper, therefore, is to address...... the implications of urban development and form in terms of its impact on energy consumption in ten districts of Copenhagen city. As comparative study, this paper is trying to respond the question: How does urban form impact the heat consumption in households in Copenhagen districts? To respond this question, two...

  12. Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system

    International Nuclear Information System (INIS)

    Jing, Z.X.; Jiang, X.S.; Wu, Q.H.; Tang, W.H.; Hua, B.

    2014-01-01

    This paper presents a comprehensive model of a small-scale integrated energy based district heating and cooling (DHC) system located in a residential area of hot-summer and cold-winter zone, which makes joint use of wind energy, solar energy, natural gas and electric energy. The model includes an off-grid wind turbine generator, heat producers, chillers, a water supply network and terminal loads. This research also investigates an optimal operating strategy based on Group Search Optimizer (GSO), through which the daily running cost of the system is optimized in both the heating and cooling modes. The strategy can be used to find the optimal number of operating chillers, optimal outlet water temperature set points of boilers and optimal water flow set points of pumps, taking into account cost functions and various operating constraints. In order to verify the model and the optimal operating strategy, performance tests have been undertaken using MATLAB. The simulation results prove the validity of the model and show that the strategy is able to minimize the system operation cost. The proposed system is evaluated in comparison with a conventional separation production (SP) system. The feasibility of investment for the DHC system is also discussed. The comparative results demonstrate the investment feasibility, the significant energy saving and the cost reduction, achieved in daily operation in an environment, where there are varying heating loads, cooling loads, wind speeds, solar radiations and electricity prices. - Highlights: • A model of a small-scale integrated energy based DHC system is presented. • An off-grid wind generator used for water heating is embedded in the model. • An optimal control strategy is studied to optimize the running cost of the system. • The designed system is proved to be energy efficient and cost effective in operation

  13. Geothermal district heating in Turkey: The Gonen case study

    International Nuclear Information System (INIS)

    Oktay, Zuhal; Aslan, Asiye

    2007-01-01

    The status of geothermal district heating in Turkey and its future prospects are reviewed. A description is given of the Gonen project in Balikesir province, the first system to begin citywide operation in the country. The geology and geothermal resources of the area, the history of the project's development, the problems encountered, its economic aspects and environmental contributions are all discussed. The results of this and other such systems installed in Turkey have confirmed that, in this country, heating an entire city based on geothermal energy is a significantly cleaner, cheaper option than using fossil fuels or other renewable energy resources. (author)

  14. Metamorphoses of cogeneration-based district heating in Romania: A case study

    International Nuclear Information System (INIS)

    Iacobescu, Flavius; Badescu, Viorel

    2011-01-01

    The paper presents the birth and evolution of the cogeneration-based district heating (DH) system in a medium size city in Romania (Targoviste). The evolution of the industrialization degree was the main factor which controlled the population growth and led to a continuous reconfiguration of the DH system. The DH system assisted by cogeneration emerged as a solution in a certain phase of the demographic development of the city. The political and social changes occurring in Romania after 1990 have had important negative consequences on the DH systems in small towns. In Targoviste the DH system survived but in 2001 the solution based on cogeneration became economically inefficient, due to the low technical quality of the existing equipment and the low gas prices, to the procedure of setting the DH tariffs and the service cost at consumer's level and to some bureaucratic problems. Energy policy measures taken at national and local levels in 2003 and 2005 led to the re-establishment of the cogeneration-based district heating in 2005. However, a different technical solution has been adopted. Details about the present (2009) cogeneration-based DH system in Targoviste are presented together with several technical and economical indicators. The main conclusion is that by a proper amendment of the technical solutions, cogeneration could be a viable solution for DH even in case of abrupt social and demographic changes, such as those occurring in Romania after 1990. - Research Highlights: →Birth and evolution of the cogeneration-based district heating system in a medium size city. →The industrialization degree is the main factor which controlled the reconfiguration of the district heating system. →Each stage of the evolution of district heating system has been a technological leap. →Cogeneration is a solution for district heating even in case of abrupt social changes.

  15. Potentialities and type of integrating nuclear heating stations into district heating systems

    International Nuclear Information System (INIS)

    Munser, H.; Reetz, B.; Schmidt, G.

    1978-01-01

    Technical and economical potentialities of applying nuclear heating stations in district heating systems are discussed considering the conditions of the GDR. Special attention is paid to an optimum combination of nuclear heating stations with heat sources based on organic fuels. Optimum values of the contribution of nuclear heating stations to such combined systems and the economic power range of nuclear heating stations are estimated. Final considerations are concerned with the effect of siting and safety concepts of nuclear heating stations on the structure of the district heating system. (author)

  16. Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating

    DEFF Research Database (Denmark)

    Bühler, Fabian; Petrović, Stefan; Holm, Fridolin Müller

    2018-01-01

    detailed analysis of the most suitable types of industries and the costs is required, allowing a targeted exploitation of this resource. This work extends the spatial and thermodynamic analysis, to account for the temporal match between industrial excess heat and district heating demands, as well...... as the costs for implementation and operation of the systems. This allows the determination of cost-effective district heating potentials, as well as the analysis of different industries and technological requirements. The results show that the temporal mismatch between excess heat and district heating demand...... and lack of demand, reduces the theoretical substitution potential by almost 30%. If heat storages are introduced, the total potential is reduced by only 10%. A majority of the excess heat can be utilised at socio-economic heating costs lower than the average Danish district heating price and the cost...

  17. Energetic and Exergetic Analysis of Low and Medium Temperature District Heating Network Integration

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    In this paper, energetic and exergetic approaches were applied to an exemplary low temperature district heating (LTDH) network with supply/return water temperature at 55oC/25 oC. The small LTDH network is annexed to a large medium temperature district heating (MTDH) network. The LTDH network can ...... will reduce the amount of water supply from the MTDH network and improve the system energy conversion efficiency. Through the simulation, the system energetic and exergetic efficiencies based on the two network integration approaches were calculated and evaluated.......In this paper, energetic and exergetic approaches were applied to an exemplary low temperature district heating (LTDH) network with supply/return water temperature at 55oC/25 oC. The small LTDH network is annexed to a large medium temperature district heating (MTDH) network. The LTDH network can...... be supplied through upgrading the return water from the MTDH network with a small centralized heat pump. Alternatively, the supply and return water from the MTDH network can be mixed with a shunt at the junction point to supply the LTDH network. Comparing with the second approach, the heat pump system...

  18. Biomass fuels in district heating systems. Final report. Biobrensel i fjernvarmesystem. Sluttrapport

    Energy Technology Data Exchange (ETDEWEB)

    Otterstad, B.

    1987-02-01

    The report deals with an energy conservation project on district heating. The project gives a cost comparison between a biomass fuelled system for the local water heating/electric power supply and the development of hydroelectric power. The computer program ESENTRAL is used in the simulation. 3 drawings.

  19. Improving district heating in Kiev

    International Nuclear Information System (INIS)

    Salminen, P.

    2000-01-01

    The district heating modernisation project currently under way in Kiev, the capital of the Ukraine, is the largest project of its type financed by the World Bank. The budget for the five-year project is some USD 250 million of which USD 200 million is financed by the World Bank loan. The target of the project is to improve the city's district heating system, which is owned and operated by Kyivenergo. Consultancy services for the Project Implementation Unit are being provided by Electrowatt-Ekono and financed by the Finnish government

  20. Improvising innovation in UK urban district heating: The convergence of social and environmental agendas in Aberdeen

    International Nuclear Information System (INIS)

    Webb, Janette

    2015-01-01

    Research on district heating has focused on technical-economic appraisal of its contribution to energy and carbon saving in urban centres. There is however lack of analysis of political and social processes which govern its actual take up. This paper examines these processes through a case study of Aberdeen, Scotland. Interviews and documentary analysis are used to examine the 2002 development of Aberdeen Heat and Power (AHP), an independent energy services company (ESCo). Technical-economic feasibility was a necessary component of appraisal, but not sufficient to govern decision-making. In the UK centralised energy market, DH investment is unattractive to commercial investors, and local authorities lack capacity and expertise in energy provision. In Aberdeen, the politics of fuel poverty converged with climate politics, creating an a-typical willingness to innovate through improvisation. The welfare priority resulted in creation of a non-profit locally-owned ESCo, using cost- rather than market-based heat tariffs. AHP has developed three combined heat and power energy centres and heat networks, supplying 34 MWh/pa of heat. Carbon savings are estimated to be 45% in comparison with electric heating, and heating costs are reduced by a similar amount. The conclusion outlines potential policy improvements. - Highlights: • UK policy proposes district heating for urban low carbon heat. • Technical and economic feasibility are insufficient to drive take-up. • In Aberdeen convergence of social and environmental goals gave impetus to improvisation. • The resulting non-profit ESCo has three CHP and district heat networks, supplying 34 MWh of heat pa. • Carbon and cost savings are 45% in comparison with electric heating

  1. Innovative system for delivery of low temperature district heating

    OpenAIRE

    Ianakiev, A; Cui, JM; Garbett, S; Filer, A

    2017-01-01

    An innovative low temperature district heating (LTDH) local network is developed in Nottingham, supported by the REMOURBAN project, part of the H2020 Smart City and Community Lighthouse scheme. It was proposed that a branch emanating from the return pipe of the existing district heating system in Nottingham would be created to use low temperature heating for the first time on such scale in the UK. The development is aimed to extract unused heat from existing district heating system and to mak...

  2. Combined generation of electric and heating energy in future development of Yugoslav energy sector until 2000

    International Nuclear Information System (INIS)

    Djajic, Nenad; Zivanovic, Vladimir

    2000-01-01

    Development of the district heating system in the FR Yugoslavia, beside the combined generation of electric and heating energy presents a necessity for energy, economic and ecological reasons. Although the structure of energy reserves is rather unfavourable considering that the lignite is being predominantly used, available reserves of energy raw material are able to ensure the long-term development of Yugoslav energy sector, and to offer real possibilities for considerable substitution of foreign good quality fuels, especially in district heating systems. Their further development will depend, among other things: on the implementation of new technological solutions for the exploitation of local energy resources; need of reconstruction, revitalisation and transformation of old condensing thermal power plants into the cogeneration plants; installation of remote controlled transmission of heating energy as well as on development of heating plants and smaller co-generation plants based on local energy resources. (Authors)

  3. Combined Heat and Power Dispatch Considering Heat Storage of Both Buildings and Pipelines in District Heating System for Wind Power Integration

    Directory of Open Access Journals (Sweden)

    Ping Li

    2017-06-01

    Full Text Available The strong coupling between electric power and heat supply highly restricts the electric power generation range of combined heat and power (CHP units during heating seasons. This makes the system operational flexibility very low, which leads to heavy wind power curtailment, especially in the region with a high percentage of CHP units and abundant wind power energy such as northeastern China. The heat storage capacity of pipelines and buildings of the district heating system (DHS, which already exist in the urban infrastructures, can be exploited to realize the power and heat decoupling without any additional investment. We formulate a combined heat and power dispatch model considering both the pipelines’ dynamic thermal performance (PDTP and the buildings’ thermal inertia (BTI, abbreviated as the CPB-CHPD model, emphasizing the coordinating operation between the electric power and district heating systems to break the strong coupling without impacting end users’ heat supply quality. Simulation results demonstrate that the proposed CPB-CHPD model has much better synergic benefits than the model considering only PDTP or BTI on wind power integration and total operation cost savings.

  4. Energy policy strategies of the Baltic Sea Region for the post-Kyoto period - focusing on electricity and district heating generation

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    This study presents a comprehensive analysis of energy policy strategies for the Baltic Sea Region for the post-Kyoto period. To this aim, the study provides scenarios for the region in order to develop a both secure and climate-compatible energy system for the year 2020 and beyond. The long-term development of the energy systems in the Baltic Sea Region is analysed, i.e. in Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Norway, Poland, Sweden, and the north western part of Russia. The study focuses on the electricity and district heating sectors. The Baltic Sea Region is comprised of countries with very different economies and characteristics. Hydropower is an important source of electricity generation in Norway, Sweden, Finland and Latvia. Biomass resources are significant throughout the region, deriving from both agricultural residues and large forested areas. Wind power already contributes considerably to electricity generation in countries such as Denmark and Germany, and is likely to play a much greater role in the region in the years to come, both onshore and offshore. In the longer term (2030 and beyond), solar power and geothermal energy could also provide notable contributions to the overall energy supply. The study shows that it is technically possible to reduce greenhouse gas emissions in the electricity and district heating sectors of the Baltic Sea Region by close to 100% using mainly renewable energy sources. The results indicate that this is a challenging, but manageable task. The associated costs are moderate and can be further decreased through regional cooperation. Once the various production technologies have the possibility to interact with district heating and flexible electricity consumption, and transmission connections are optimally utilised, it becomes realistic to integrate e.g. large volumes of wind power into the energy system as a whole. Furthermore, the hydro power reservoirs, particularly in Norway, play a key role in

  5. Design and System Analysis of Quad-Generation Plant Based on Biomass Gasification Integrated with District Heating

    DEFF Research Database (Denmark)

    Rudra, Souman

    alternative by upgrading existing district heating plant. It provides a generic modeling framework to design flexible energy system in near future. These frameworks address the three main issues arising in the planning and designing of energy system: a) socio impact at both planning and proses design level; b...... in this study. The overall aim of this work is to provide a complete assessment of the technical potential of biomass gasification for local heat and power supply in Denmark and replace of natural gas for the production. This study also finds and defines the future areas of research in the gasification......, it possible to lay a foundation for future gasification based power sector to produce flexible output such as electricity, heat, chemicals or bio-fuels by improving energy system of existing DHP(district heating plant) integrating gasification technology. The present study investigate energy system...

  6. District heating systems' control for cost effective and environmentally compatible operation

    International Nuclear Information System (INIS)

    Balati, J.

    1999-01-01

    District heating systems are being developed in accordance with the growing of large European cities. These systems are formed by enlarging networks of heat distribution from heat sources to heat consumers and, simultaneously, by gradually connecting newly built heat sources. District heating control consists in optimum control of the output of heat sources and in control of heat distribution and consumption. The aim of the paper is to inform about the works in the field of creating a mathematical-physical model of extensive hot water and steam supply circle network and heat sources for the purpose of creating unconventional control algorithms for the complex control of the technological sequence ''heat production distribution- consumption''. For the optimum control algorithms the artificial intelligence methods are also utilised. The aim of the complex access to the solution of new control algorithms will be to decrease the cost of the consumed heat unit and increase environmental protection. The function of the Extensive Heating System District Heating System (DHS) is to ensure permanently the economically justified requirements of heat supply for all consumers with minimum cost per heat supply unit and with enhanced level of environmental protection. The requirements of heat consumers have to be in harmony with the requirements of the maximum possible economy of the whole DHS when adhering to the required qualitative parameters of supplied energy. Therefore, it offers the application of optimised control methods as artificial intelligence methods for the control of the operational circle of DHS heat networks. It is obvious that a higher level of DHS control is required from the technological, economic and ecological point of view. (author)

  7. Regulatory aspects, an important factor for geothermal energy application for district heating development. European insurance scheme to cover geological risk related to geothermal operations

    International Nuclear Information System (INIS)

    Popovski, Kiril

    2000-01-01

    District heating is one of the most interesting fields of geothermal energy application development in Europe. However, besides the technical/technological/economical and organizational aspects of the problem in question, the related legal and regulatory aspects influence very much the real possibilities for wider introduction of this energy source in the state energy balances in most of the countries. Based on the official EU report for the State-of-the-art of the problem of the insurance to cover geological risks and necessary aspects to be developed and resolved in a better and 'common' way in order to enable higher investments in bigger projects (district heating) development, the paper presents the situation in different European countries in relation to the Macedonian one. Conclusions extracted should give a positive contribution to the process of the Macedonian laws accommodation to the common EU practice. (Author)

  8. The design of integrated cooling processes in district heating systems; Kylprocessers design i fjaerrvaermesystem

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Viktoria [Royal Inst. of Technology, Stockholm (SE). Dept. of Chemical Engineering and Technology; Setterwall, Fredrik [Fredrik Setterwall Konsult AB, Sollentuna (Sweden); Andersson, Mikael [AB Berglunds Rostfria, Boden (Sweden)

    2005-07-01

    This report presents the results from an investigation regarding the design of integrated cooling processes in district heating systems. Increasing investment levels in district heating networks combined with expanding comfort cooling demand makes heat-driven cooling processes extremely interesting. This solution has a great potential tbe cost effective. At the same time, the problem with the environmentally harmful refrigerants used in conventional vapor compression chillers is avoided. In many cases it is beneficial for the district heating provider to lower the supply and/or return temperatures in the network, at least for part of the year. In combined heat and power generation (CHP) a lower supply temperature means that the electricity yield increases. In this context, it is important to consider that conventional absorption chillers are designed to run on 120 deg C heat. However,they can work on heat with temperature as low as 80 deg C if a chiller with a large enough generator area is used, although this has a negative impact on the dimensions of other components and leads ta lower coefficient of performance. For these reasons low temperature driven absorption chillers have been developed in recent years. Two concepts (from different manufacturers) are now available on the market. Factors that affect the choice of district heat-integrated cooling processes have been investigated in this study. Key system aspects that embody a holistic view on the production of heating, cooling and power are especially highlighted. Important tasks have been: To quantify the following effects on the design of an integrated cooling process: the temperatures in the district heating net, available cooling water temperature (to cool the absorber and condenser), electricity price, and the composition of the energy system (e.g. fuel and CHP or power-only mode of operation). To analyze the potential of the low temperature driven chiller concept with regards to energy and cost

  9. Kaliningrad regional district heating network 2004-2006. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This report concerns: Kaliningrad Regional District Heating Network project which was implemented from 2004 to 2006. The task of the project was to establish and operate an association for district heating companies in the region in order to transfer and distribute district heating know-how to the sector and through activities strengthen the sector. The long term aim was to contribute to establishment of an association to continue as a real association for the heat supply companies in the region. (au)

  10. Testing, development and demonstration of large scale solar district heating systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Perers, Bengt

    2015-01-01

    In 2013-2014 the project “Testing, development and demonstration of large scale solar district heating systems” was carried out within the Sino-Danish Renewable Energy Development Programme, the so called RED programme jointly developed by the Chinese and Danish governments. In the project Danish...... know how on solar heating plants and solar heating test technology have been transferred from Denmark to China, large solar heating systems have been promoted in China, test capabilities on solar collectors and large scale solar heating systems have been improved in China and Danish-Chinese cooperation...

  11. Technoeconomic analysis of a biomass based district heating system

    International Nuclear Information System (INIS)

    Zhang, H.; Ugursal, V.I.; Fung, A.

    2005-01-01

    This paper discussed a proposed biomass-based district heating system to be built for the Pictou Landing First Nation Community in Nova Scotia. The community centre consists of 6 buildings and a connecting arcade. The methodology used to size and design heating, ventilating and air conditioning (HVAC) systems, as well as biomass district energy systems (DES) were discussed. Annual energy requirements and biomass fuel consumption predictions were presented, along with cost estimates. A comparative assessment of the system with that of a conventional oil fired system was also conducted. It was suggested that the design and analysis methodology could be used for any similar application. The buildings were modelled and simulated using the Hourly Analysis Program (HAP), a detailed 2-in-1 software program which can be used both for HVAC system sizing and building energy consumption estimation. A techno-economics analysis was conducted to justify the viability of the biomass combustion system. Heating load calculations were performed assuming that the thermostat was set constantly at 22 degrees C. Community centre space heating loads due to individual envelope components for 3 different scenarios were summarized, as the design architecture for the buildings was not yet finalized. It was suggested that efforts should be made to ensure air-tightness and insulation levels of the interior arcade glass wall. A hydronic distribution system with baseboard space heating units was selected, comprising of a woodchip boiler, hot water distribution system, convective heating units and control systems. The community has its own logging operation which will provide the wood fuel required by the proposed system. An outline of the annual allowable harvest covered by the Pictou Landing Forestry Management Plan was presented, with details of proposed wood-chippers for the creation of biomass. It was concluded that the woodchip combustion system is economically preferable to the

  12. Heat pumps as a way to Low or Zero Emission district heating systems

    Directory of Open Access Journals (Sweden)

    Jadwiszczak Piotr

    2017-01-01

    In traditional district heating (DH system heat is generated from fossil fuel (FF combustion in heating only boilers (HOB or in combined heat and power (CHP plants. It results in greenhouse gases and other pollutants emission. The reduction of emission is one of the main target in EU climate policy. Among the alternative technologies in DH heat pumps (HP play a crucial role and enable to decrease or even eliminate emission to create a low or zero emission (LZE DH system. The emission reduction effect of integration the large scale HP units into DH systems can by defined by four groups of factors: the share of HP in the heat demand, the heat source for HP, the driving energy for HP and heat sink for HP. This paper illustrates the main options for large scale HP units application for LZE DH based on HP technology.

  13. Design of serially connected ammonia-water hybrid absorption-compression heat pumps for district heating with the utilisation of a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2016-01-01

    District heating (DH) can reduce the primary energy consumption in urban areas with significant heat demands. The design of a serially connected ammonia-water hybrid absorption-compression heat pump system was investigated for operation in the Greater Copenhagen DH network in Denmark, in order...... to supply 7.2 MW heat at 85 °C utilizing a geothermal heat source at 73 °C. Both the heat source and heat sink experience a large temperature change over the heat transfer process, of which a significant part may be achieved by direct heat exchange. First a generic study with a simple representation...

  14. Environmental Aspects as Assessment Criteria in Municipal Heat Energy Decisions - Case of Eno Energy Cooperative

    Energy Technology Data Exchange (ETDEWEB)

    Puhakka, Asko [North Karelia Univ. of Applied Sciences, Joensuu (Finland)

    2006-07-15

    The aim of this paper is to provide information whether it is possible to consider the sustainable development perspectives in the decision making of the district energy decision. The new EU-directives concerning public procurements allow the use of environmental aspects as selection criteria. The focus here is on small-scale district heating systems and their fuel-supply chains. The comparable fuels included the analysis are forest chips, heavy fuel oil, light fuel oil and peat. The paper focuses to the concept of the sustainable development and establishes the indicators for ecological-, social- and economical aspects of the district heating. The indicators are utilized in the case study on the Eno Energy Cooperative. The equivalent CO{sub 2} emissions from the production and the combustion of the fuel, the employment impacts of the fuel production and the formation of the price of energy for the consumers are considered. After presenting the sustainable development indicators in the case of Eno Energy Cooperative, the investment models of heat entrepreneurship business are discussed. Finally, we also raise an attention into important aspects to be considered when establishing a local district heating scheme. The indicators used in this presentation show that the use of forest chips in energy production has positive effect through the reduced greenhouse gases. The use of wood in energy production also provides employment opportunities and is more favourable to consumers, because of the steady fuel price when compared to other alternative fuels.

  15. Report on survey for environment harmonizing type energy community project for Chubu International Airport. District heat supply facilities using large-scale cogeneration systems; Chubu kokusai kuko kankyo chowagata energy community jigyo chosa hokokusho. Daikibo cogeneration chiiki netsu kyokyu shisetsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The Chubu International Airport is positioned as a hub airport scheduled to start its use in the early part of the 21st century, to which introduction of large-scale cogeneration systems was discussed. Structuring an energy supply system conscious of the 21st century is intended, that is friendly to the environment, is attached with importance on the economy, and has high reliability and safety. The systems have cogeneration capacity from 4,500 to 6,000 kW, and utilize high-pressure waste heat from the cogeneration system as the heat source. The system uses the high pressure waste heat, stored heat, and gas at the same time to achieve high economic performance brought about by heat storage and the best energy source mix, while attempting cascade utilization of the heat. Considerations were given to suppress the environmental and energy load on the district as low as possible for the coexistence with the district, and to build framework and coordination to return the merits to the district. Subsidy introduction also has a great effect to assure the economic performance. The optimal specific construction of the system was found in combining the utilization of energy generated from temperature difference in sea water as a heat source system, the topping system utilizing the high pressure waste heat available in the system, high-efficiency heat pumps, and the heat storing system utilizing electric power available at late night. (NEDO)

  16. Design of serially connected district heating heat pumps utilising a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    The design of two heat pumps (HP), connected in series, was investigated for operation in the district heating (DH) network of the Greater Copenhagen area, Denmark. The installation was dimensioned to supply 7.2 MW of heat at a temperature of 85 °C. The heat pumps utilise a geothermal heat source...

  17. District Heating at Power Failures - Final Report; Fjaerrvaerme vid Elavbrott - Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Lauenburg, Patrick; Johansson, Per-Olof

    2008-11-15

    Our society is vulnerable to prolonged power cuts. In cold weather interrupted heating is one of the most serious threats. District heating is available at most locations in Sweden and if heat can be transferred to the connected buildings at a power failure, it is of great importance for securing energy supply. In this work it was found that there are good opportunities for upholding heat supply at a power failure through self-circulation in connected radiator system, which has previously been overlooked. Self Circulation occurs when there is a sufficiently large temperature difference between forward and return line in the radiator system. The control and circulation in radiator systems will fail, but if the district heating water can continue to pass through the heat exchangers of the radiator systems self-circulation can occur. A prerequisite for self-circulation in the individual buildings to work is therefore to district heating network can operate at a power failure. District heating supply must have back to maintain the production and distribution of district heating, which is not always the case. Our studies show that there is every reason to this. Moreover there are customers that have their own reserve aggregates, such as hospitals, which are dependent on the district heating network function. In an extensive power failure, it may be desirable to establish a smaller grid, separate from backbone, using local electricity generation. The establishment of such a network requires there is local production which can start to loose voltage networks and has necessary control equipment for the frequency approach. In Malmoe, it is now possible to establish a such a network with the help of local production units. A prerequisite is that there are consumption of heating. It is not unusual for power plants (which produce both electricity and heat) is dependent on the pipe system for cooling the production of electricity. One can from the results also argue that every

  18. Economic potentials of CHP connected to district heat systems in Germany. Implementation of the EU Efficiency Directive

    International Nuclear Information System (INIS)

    Eikmeier, Bernd

    2015-01-01

    The EU Efficiency Directive (2012/27/EU) is requiring all member states to carry out an evaluation of the potential for highly efficient CHP and the efficient use of district heating and cooling by December 2015. The German Federal Ministry of Economic Affairs and Energy appointed this task to the Fraunhofer Institute for Manufacturing and Advanced Materials, division for Energy Systems Analysis (formerly Bremer Energie Institut) in conjunction with other partners. The results for the sector district- and communal heating with CHP, sub-sectors private households, trade and services industry, are presented in this article.

  19. Customer perspectives on district heating price models

    Directory of Open Access Journals (Sweden)

    Kerstin Sernhed

    2017-01-01

    Full Text Available In Sweden there has been a move towards more cost reflective price models for district heating in order to reduce economic risks that comes with variable heat demand and high shares of fixed assets. The keywords in the new price models are higher shares of fixed cost, seasonal energy prices and charging for capacity. Also components that are meant to serve as incentives to affect behaviour are introduced, for example peak load components and flow components. In this study customer responses to these more complex price models have been investigated through focus group interviews and through interviews with companies that have changed their price models. The results show that several important customer requirements are suffering with the new price models. The most important ones are when energy savings do not provide financial savings, when costs are hard to predict and are perceived to be out of control.

  20. Feasibility study on rehabilitation and improvement of thermal power plants, district heating and heat supply system in Botosani City

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Discussions have been given on the improvement and modification project intended of saving energies and reducing greenhouse gas emission in the Botosani district heating and heat supplying facilities in Romania. Thirty years have elapsed since the building of the Botosani district heating and heat supplying facilities, whereas noticeable energy loss has occurred due to aged deterioration, such as thermal efficiency decrease, performance decrease, and hot water leakage due to piping corrosion. The present project is intended to improve the heat production and power generation facility efficiencies, and reduce the heat loss in heat transportation and distribution to less than 5%. The improvements will be implemented by replacing and rehabilitating the existing boilers, replacing the turbine generators, and replacing the transportation and distribution pipelines and heat exchangers. As a result of the discussions, the present project is estimated to result in annual fuel conservation of 35,820 tons of crude oil equivalent, and annual reduction of the greenhouse gas emission of 110,835 t-CO2. The total amount of the initial investment for the project would be 11.369 billion yen, and the payback period would be 12 years. The project will produce profit of 31.358 billion yen in 20 years, thus the project is financially feasible. (NEDO)

  1. Heat Roadmap Europe 1

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    2012-01-01

    Heat Roadmap Europe (Pre-study 1) investigates the role of district heating in the EU27 energy system by mapping local conditions across Europe, identifying the potential for district heating expansion, and subsequently simulating the potential resource in an hourly model of the EU27 energy system....... In 2010, approximately 12% of the space heating demand in Europe is met by district heating, but in this study four alternative scenarios are considered for the EU27 energy system: 1. 2010 with 30% district heating 2. 2010 with 50% district heating 3. 2030 with 30% district heating 4. 2050 with 50......% district heating These scenarios are investigated in two steps. Firstly, district heating replaces individual boilers by converting condensing power plants to combined heat and power plants (CHP) to illustrate how district heating improves the overall efficiency of the energy system. In the second step...

  2. The Exergetic, Environmental and Economic Effect of the Hydrostatic Design Static Pressure Level on the Pipe Dimensions of Low-Energy District Heating Networks

    Directory of Open Access Journals (Sweden)

    Hakan İbrahim Tol

    2013-01-01

    Full Text Available Low-Energy District Heating (DH systems, providing great energy savings by means of very low operating temperatures of 55 °C and 25 °C for supply and return respectively, were considered to be the 4th generation of the DH systems for a low-energy future. Low-temperature operation is considered to be used in a low-energy DH network to carry the heat produced by renewable and/or low grade energy sources to low-energy Danish buildings. In this study, a comparison of various design considerations with different levels of maximum design static pressures was performed, and their results evaluated in terms of energetic, exergetic, economic, and environmental perspectives.

  3. Improved district heating substation efficiency with a new control strategy

    International Nuclear Information System (INIS)

    Gustafsson, Jonas; Delsing, Jerker; Deventer, Jan van

    2010-01-01

    In this paper, we describe a new alternative control approach for indirectly connected district heating substations. Simulations results showed that the new approach results in an increased ΔT across the substation. Results were obtained for both ideal and non-ideal operation of the system, meaning that less water must be pumped through the district heating network, and a higher overall fuel efficiency can be obtained in the district heating power plants. When a higher fuel efficiency is achieved, the usage of primary fuel sources can be reduced. Improved efficiency also increases the effective heat transfer capacity of a district heating network, allowing more customers to be connected to an existing network without increasing the heating plant or network capacity. Also, if combined heat and power plants are used to produce the heat, the increased ΔT will result in a further improved overall fuel efficiency, as more electricity can be produced with colder cooling water. The idea behind the new control method is to consider the temperature of the water supplying the district heating substation with heat, often referred to as the primary supply temperature. This represents a logical next step, as currently, the only parameter generally taken into account or measured when controlling the temperature level of the radiator circuit is the local outdoor temperature. In this paper we show how the primary supply temperature together with thermodynamic knowledge of the building can be used to maximize the ΔT across the district heating substation.

  4. Energetic, exergetic, economic and environmental evaluations of geothermal district heating systems: An application

    International Nuclear Information System (INIS)

    Keçebaş, Ali

    2013-01-01

    Highlights: ► Applying exergy, economic, environment and sustainability analyses to the GDHSs. ► Assessing energy and exergy efficiencies, economic and environmental impacts. ► Calculating the energy and exergy efficiencies of 34.86% and 48.78%, respectively. ► Proposing GDHSs as the most economic heating system. ► Providing a significant contribution towards reducing the emissions of air pollution. - Abstract: This study deals with an energetic and exergetic analysis as well as economic and environmental evaluations of Afyon geothermal district heating system (AGDHS) in Afyon, Turkey. In the analysis, actual system data are used to assess the district heating system performance, energy and exergy efficiencies, specific exergy index, exergetic improvement potential and exergy losses. And, for economic and environmental evaluations, actual data are obtained from the Technical Departments. The energy and exergy flow diagrams are clearly drawn to illustrate how much destructions/losses take place in addition to the inputs and outputs. For system performance analysis and improvement, both energy and exergy efficiencies of the overall AGDHS are determined to be 34.86% and 48.78%, respectively. The efficiency improvements in heat and power systems can help achieving energy security in an environmentally acceptable way by reducing the emissions that might otherwise occur. Present application has shown that in Turkey, geothermal energy is much cheaper than the other energy sources, like fossil fuels, and makes a significant contribution towards reducing the emissions of air pollution.

  5. Market opening and third party access in district heating networks

    International Nuclear Information System (INIS)

    Soederholm, Patrik; Warell, Linda

    2011-01-01

    The purpose of this paper is to analyse the possible effects of introducing TPA in district heating networks by identifying and scrutinizing a number of possible scenarios for increased competition. The analysis builds on a theoretical discussion of economic efficiency in district heating operations, and the possible impacts on consumer prices of a market opening. An important conclusion is that regulated TPA may have small positive effects on competition, and at the same time it can have a negative impact on the possibility to run the integrated district heating operations in a cost-effective manner. This conclusion stems in part from the observation that most district heating networks are local in scope. Moreover, district heating operations are highly interdependent in, for instance, that the level of the return temperature of the water will affect the efficiency of combined heat and power plants. For these reasons, the introduction of the so-called single-buyer model or, perhaps even more preferable, an extended and more transparent producer market could represent more efficient market designs. Moreover, in networks with clear natural monopoly characteristics an ex ante price regulation must be considered. - Research Highlights: →The paper analyses the possible effects of TPA in district heating networks. → Four possible scenarios for increased competition are identified and scrutinized. → A conclusion is that regulated TPA have only small positive effects on competition. → District heating operations are highly interdependent and separation can be costly.

  6. Monitoring of the energy performance of a district heating CHP plant based on biomass boiler and ORC generator

    International Nuclear Information System (INIS)

    Prando, Dario; Renzi, Massimiliano; Gasparella, Andrea; Baratieri, Marco

    2015-01-01

    More than seventy district heating (DH) plants based on biomass are operating in South Tyrol (Italy) and most of them supply heat to residential districts. Almost 20% of them are cogenerative systems, thus enabling primary energy savings with respect to the separate production of heat and power. However, the actual performance of these systems in real operation can considerably differ from the nominal one. The main objectives of this work are the assessment of the energy performance of a biomass boiler coupled with an Organic Rankine Cycle (i.e. ORC) generator under real operating conditions and the identification of its potential improvements. The fluxes of energy and mass of the plant have been measured onsite. This experimental evaluation has been supplemented with a thermodynamic model of the ORC generator, calibrated with the experimental data, which is capable to predict the system performance under different management strategies of the system. The results have highlighted that a decrease of the DH network temperature of 10 °C can improve the electric efficiency of the ORC generator of one percentage point. Moreover, a DH temperature reduction could decrease the main losses of the boiler, namely the exhaust latent thermal loss and the exhaust sensible thermal loss, which account for 9% and 16% of the boiler input power, respectively. The analysis of the plant has pointed out that the ORC pump, the flue gases extractor, the thermal oil pump and the condensation section fan are the main responsible of the electric self-consumption. Finally, the negative effect of the subsidisation on the performance of the plant has been discussed. - Highlights: • Energy performance of a biomass boiler coupled to an ORC turbine in real operation. • Potential improvements of a CHP plant connected to a DH network. • Performance prediction by means of a calibrated ORC thermodynamic model. • Influence of the DH temperature on the electric efficiency. • Impact of the

  7. Utilizing thermal building mass for storage in district heating systems: Combined building level simulations and system level optimization

    DEFF Research Database (Denmark)

    Dominkovic, D. F.; Gianniou, P.; Münster, M.

    2018-01-01

    on the energy supply of district heating. Results showed that longer preheating time increased the possible duration of cut-off events. System optimization showed that the thermal mass for storage was used as intra-day storage. Flexible load accounted for 5.5%–7.7% of the total district heating demand...

  8. District heating by the Bohunice nuclear power plant

    International Nuclear Information System (INIS)

    Metke, E.; Skvarka, P.

    1984-01-01

    Technical and economical aspects of district heating by the electricity generating nuclear plants in Czechoslovakia are discussed. As a first stage of the project, 240 MW thermal power will be supplied using bleeding lines steam from the B-2 nuclear power plant at Jaslovske Bohunice to heat up water at a central station to 130 grad C. The maximal thermal power that can be produced for district heating by WWER type reactors with regular condensation turbines is estimated to be: 465 MW for a WWER-440 reactor with two 220 MWe turbines and 950 MW for a WWER-1000 reactor with a Skoda made 1000 MWe turbine using a three-stage scheme to heat up water from 60 grad C to 150 grad C. The use of satelite heating turbines connected to the steam collector is expected to improve the efficiency. District heating needs will de taken into account for siting of the new power plants

  9. Opening of the markets increases the risks of district heating business

    International Nuclear Information System (INIS)

    Silvennoinen, A.

    2001-01-01

    Maintenance of the technical operation conditions of district heating is the main requirement of community to the district heating business. Infrastructure of district heating, including the heat generation and distribution plants, equipment and devices, requires relatively large investments. Total process from fuel purchase to heat delivery does not occur in a closed limited area, but it penetrates the total market area (heat distribution network) and even larger via fuel purchase and transport. E.g. the fuels are combustible and might explode. Oil-spills into the environment may have catastrophic effects. Large leakage of hot district heating water is both environmentally hazardous and forms also a health hazard, and they stop the delivery of district heat. Dominant position on the markets is also followed closely by the authorities. On the other hand competition with other heating forms require efficient operation. The author reviews in the article the basics of risk management, and especially in the district heating business. The risk management process is discussed in the risk analysis and determination of the significance of the risks, the effects of realization of the risks, planning of the measures to be taken to avoid risks, and preparations against the risks

  10. Exergy and exergoeconomic analysis of a Compressed Air Energy Storage combined with a district energy system

    International Nuclear Information System (INIS)

    Bagdanavicius, Audrius; Jenkins, Nick

    2014-01-01

    Highlights: • CAES and CAES with thermal storage systems were investigated. • The potential for using heat generated during the compression stage was analysed. • CAES-TS has the potential to be used both as energy storage and heat source. • CAES-TS could be a useful tool for balancing overall energy demand and supply. - Abstract: The potential for using heat generated during the compression stage of a Compressed Air Energy Storage system was investigated using exergy and exergoeconomic analysis. Two Compressed Air Energy Storage systems were analysed: Compressed Air Energy Storage (CAES) and Compressed Air Energy Storage combined with Thermal Storage (CAES-TS) connected to a district heating network. The maximum output of the CAES was 100 MWe and the output of the CAES-TS was 100 MWe and 105 MWth. The study shows that 308 GW h/year of electricity and 466 GW h/year of fuel are used to generate 375 GW h/year of electricity. During the compression of air 289 GW h/year of heat is generated, which is wasted in the CAES and used for district heating in the CAES-TS system. Energy efficiency of the CAES system was around 48% and the efficiency of CAES-TS was 86%. Exergoeconomic analysis shows that the exergy cost of electricity generated in the CAES was 13.89 ¢/kW h, and the exergy cost of electricity generated in the CAES-TS was 11.20 ¢/kW h. The exergy cost of heat was 22.24 ¢/kW h in the CAES-TS system. The study shows that CAES-TS has the potential to be used both as energy storage and heat source and could be a useful tool for balancing overall energy demand and supply

  11. The 'Gruessen' district heating scheme in Pratteln, Switzerland; Waermeverbund Gruessen Pratteln. HT-Abwaerme aus ARA Rhein

    Energy Technology Data Exchange (ETDEWEB)

    Lessing, R.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes a high-temperature district heating scheme in Pratteln, Switzerland that uses waste heat from a regional wastewater treatment plant to provide the basis for a district heating system that provides heating energy for commercial facilities. These include a food distribution centre, various industrial facilities, a school and a hotel. Additional heating power is provided, when necessary, by conventional boilers at the wastewater treatment plant and two of the industrial partners. The report describes the original project and the installations actually built. Total-energy balance, transport losses as well as electrical power requirements are discussed, as is the further development of the scheme, which foresees the integration of a waste-fermentation / biogas facility and a motorway restaurant in the vicinity.

  12. Solar-assisted biomass-district heating: projects in Austria and operational data; Solarunterstuetzte Biomasse-Fernwaermeversorgung: Projekte in Oesterreich und Betriebsdaten

    Energy Technology Data Exchange (ETDEWEB)

    Faninger, G. [Institut fuer Interdisziplinaere Forschung und Fortbildung der Universitaeten Klagenfurt, Innsbruck und Wien (IFF), Klagenfurt (Austria)

    1998-12-31

    In recent years small-volume biomass district heating systems (district heat grids) have attracted increasing interest in Austria. By the end of 1997 some 359 biomass-district heating systems with an overall capacity of approximately 483 MW were in operation. If a biomass-district heating plant and a solar plant are combined the solar plant can supply most of the heat required outside the heating season. At present Austria runs 12 solar-assisted biomass-district heating grids with collector areas between 225 square metres and 1,250 square metres. In order to run these biomass-district heating systems in an economically and technically efficient way it is necessary to assure high quality in terms of planning, construction and operation. A list of criteria is set up on the basis of first operational data in order to evaluate energy efficiency and economic performance. These criteria should be applied in order to ensure that energy, environment and economy are equally considered in the planning and construction of solar-assisted biomass-district heating plants. They should also be helpful for the approval procedures of projects. (orig.) [Deutsch] Kleinraeumige Biomasse-Fernwaermeanlagen (Nahwaermenetze) fanden in den letzten Jahren zunehmendes Interesse in Oesterreich. So waren Ende 1997 insgesamt 359 Biomasse-Fernwaermeanlagen mit einer installierten Gesamtleistung von etwa 483 MW in Betrieb. Die Kombination einer Biomasse-Fernwaermeanlage mit einer Solaranlage bringt den Vorteil, dass die Waermebereitstellung ausserhalb der Heizsaison zu einem hohen Anteil ueber die Solaranlage vorgenommen werden kann. Derzeit werden in Oesterreich 12 solarunterstuetzte Biomasse-Nahwaermenetze mit Kollektorflaechen von 225 m{sup 2} bis 1.250 m{sup 2} betrieben. Um einen moeglichst effizienten und damit auch wirtschaftlichen Betrieb von solarunterstuetzten Biomasse-Fernwaermeanlagen zu gewaehrleisten, werden hohe Anforderungen an Planung, Ausfuehrung und Betrieb gestellt. Auf der

  13. Danish heat atlas as a support tool for energy system models

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2014-01-01

    In the past four decades following the global oil crisis in 1973, Denmark has implemented remarkable changes in its energy sector, mainly due to the energy conservation measures on the demand side and the energy efficiency improvements on the supply side. Nowadays, the capital intensive infrastru......In the past four decades following the global oil crisis in 1973, Denmark has implemented remarkable changes in its energy sector, mainly due to the energy conservation measures on the demand side and the energy efficiency improvements on the supply side. Nowadays, the capital intensive...... infrastructure investments, such as the expansion of district heating networks and the introduction of significant heat saving measures require highly detailed decision-support tool. A Danish heat atlas provides highly detailed database with extensive information about more than 2.5 million buildings in Denmark...... society after 2050. The present paper shows how a Danish heat atlas can be used for providing inputs to energy system models, especially related to the analysis of heat saving measures within building stock and expansion of district heating networks. As a result, marginal cost curves are created...

  14. Industrial waste heat utilization for low temperature district heating

    International Nuclear Information System (INIS)

    Fang, Hao; Xia, Jianjun; Zhu, Kan; Su, Yingbo; Jiang, Yi

    2013-01-01

    Large quantities of low grade waste heat are discharged into the environment, mostly via water evaporation, during industrial processes. Putting this industrial waste heat to productive use can reduce fossil fuel usage as well as CO 2 emissions and water dissipation. The purpose of this paper is to propose a holistic approach to the integrated and efficient utilization of low-grade industrial waste heat. Recovering industrial waste heat for use in district heating (DH) can increase the efficiency of the industrial sector and the DH system, in a cost-efficient way defined by the index of investment vs. carbon reduction (ICR). Furthermore, low temperature DH network greatly benefits the recovery rate of industrial waste heat. Based on data analysis and in-situ investigations, this paper discusses the potential for the implementation of such an approach in northern China, where conventional heat sources for DH are insufficient. The universal design approach to industrial-waste-heat based DH is proposed. Through a demonstration project, this approach is introduced in detail. This study finds three advantages to this approach: (1) improvement of the thermal energy efficiency of industrial factories; (2) more cost-efficient than the traditional heating mode; and (3) CO 2 and pollutant emission reduction as well as water conservation. -- Highlights: •We review situation of industrial waste heat recovery with a global perspective. •We present a way to analyze the potential to utilize industrial waste heat for DH. •Northern China has huge potential for using low-grade industrial waste heat for DH. •A demonstration project is introduced using the universal approach we propose. •It proves huge benefits for factories, heat-supply companies and the society

  15. Load Management in District Heating Operation

    OpenAIRE

    Li, Hongwei; Wang, Stephen Jia

    2015-01-01

    Smooth operation of district heating system will avoid installation of expensive peak heat boilers, improve plant partial load performance, increase the system redundancy for further network expansion and improve its resilience to ensuresecurity of supply during severe heating seasons. The peak heating load can be reduced through building demand side management. The building thermal mass can be used to shift the heating supply under the circumstance withoutjeopardizing the consumer thermal co...

  16. An enviro-economic function for assessing energy resources for district energy systems

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Reddy, Bale V.; Rosen, Marc A.

    2014-01-01

    District energy (DE) systems provide an important means of mitigating greenhouse gas emissions and the significant related concerns associated with global climate change. DE systems can use fossil fuels, renewable energy and waste heat as energy sources, and facilitate intelligent integration of energy systems. In this study, an enviro-economic function is developed for assessing various energy sources for a district energy system. The DE system is assessed for the considered energy resources by considering two main factors: CO 2 emissions and economics. Using renewable energy resources and associated technologies as the energy suppliers for a DE system yields environmental benefits which can lead to financial advantages through such instruments as tax breaks; while fossil fuels are increasingly penalized by a carbon tax. Considering these factors as well as the financial value of the technology, an analysis approach is developed for energy suppliers of the DE system. In addition, the proposed approach is modified for the case when thermal energy storage is integrated into a DE system. - Highlights: • Developed a function to assess various energy sources for a district energy system. • Considered CO 2 emissions and economics as two main factors. • Applied renewable energy resources technologies as the suppliers for a DE system. • Yields environmental benefits can lead to financial benefits by tax breaks. • Modified enviro-economic function for the TES integrated into a DE system

  17. Geothermal energy and district heating in Ny-Ålesund, Svalbard

    OpenAIRE

    Iversen, Julianne

    2013-01-01

    This thesis presents the possibilities for using shallow geothermal energy for heating purposes in Ny-Ålesund. The current energy supply in Ny-Ålesund is a diesel generator, which does not comply with the Norwegian government and Ny-Ålesund Science Managers Committee’s common goal to maintain the natural environment in Ny-Ålesund. Ny-Ålesund has a potential for replacing the heat from the current diesel based energy source with geothermal energy. Geothermal energy is considered to have low im...

  18. Large heat storage tank for load management nd implementation of ambient heat. District heating networks based on combined heat and power; Grosswaermespeicher zum Lastmanagement und zur Einbindung von Umweltenergie. Auf KWK basierende Fernwaermenetze

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Sebastian; Rhein, Martin; Ruehling, Karin [Technische Universitaet Dresden (Germany). Inst. fuer Energietechnik

    2013-06-15

    The district heating based on combined heat and power is a transitional technology on the way to the supply of Germany with renewable energy. In the next years, this transitional technology can only be maintained and expanded when marketability is given. Therefore an appropriate combination has to be found from investment measures. Together with new aspects in the management strategy, these investment measures should significantly improve the marketability. The investment measures also aims to enable a primary energetic, appropriate combination of natural gas-based combined heat and power, renewable energy sources (solar thermal energy, ambient heat) and heat pump technology.

  19. District heating and cooling systems for communities through power plant retrofit distribution network. Final report, September 1, 1978-May 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-10-01

    This Final Report (Volume 2) of Phase 1 of District Heating for Communities Through Power Plant Retrofit Distribution Network contains 3 tasks: (1) Demonstration Team; (2) Identify Thermal Energy Sources and Potential Service Areas; and (3) Energy Market Analysis. Task 2 consists of estimating the thermal load within 5 and 10 miles of Public Service Electric and Gas Company steam power plants, Newark, New Jersey; estimating the costs of supplying thermal services to thermal loads of varying densities; a best case economic analysis of district heating for single-family homes; and some general comments on district-heating system design and development. Task 3 established the potential market for district heating that exists within a 5-mile radius of the selected generating stations; a sample of the questionnaire sent to the customers are shown. (MCW)

  20. Costs for district heating development. Status 2010; Kostnader for fjernvarmeutbygging. Status 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    The report 'Costs of district heating development' presents the costs for district heating based on bioenergy primarily as base load. The report aims to be a tool for the heating developer to set up the investment budget and implement pilot projects. The project is funded by the Norwegian District Heating with support from Enova SF and implemented in close cooperation with the Norwegian district heating. (AG)

  1. Natural refrigerants. Future heat pumps for district heating; Naturliga koeldmedier. Framtida vaermepumpar foer fjaerrvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Ingvarsson, Paul; Steen Ronnermark, Ingela [Fortum Teknik och Miljoe AB, Stockholm (Sweden); Eriksson, Marcus [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Engineering and Environmental Science

    2004-01-01

    improvement in components, system and external preconditions. In the future it might be more interesting to use turbine driven heat pumps instead of electric motors. The absorption process is not considered to be an alternative to replace present heat pumps, but there is a certain niche where heat source and driving energy, considering temperature levels, are more suitable for district heating. A technique that seems to be an alternative to the compression cycle is a combination of compression and absorption. Using the media pair water and ammonia might be an interesting solution and should be compared to the alternative using carbon dioxide. A further study is recommended on this subject.

  2. Local or district heating by natural gas: Which is better from energetic, environmental and economic point of views?

    International Nuclear Information System (INIS)

    Lazzarin, R.; Noro, M.

    2006-01-01

    Generally, a CHP plant coupled with district heating is considered more efficient than traditional local heating systems from an economic and environmental point of view. This is certainly true for municipal waste CHP plants, but for plants fuelled by natural gas the important developments of the last years regarding both boilers (premixed and modulating burners, condensing boilers, etc.) and mechanical vapour compression and absorption heat pumps can change the traditional view. At the same time also district heating plants improved. Therefore it is worth to analyse the whole matter comparing advantages and disadvantages of the different alternatives, with a wide difference between them. The paper reports on the analysis of major district heating natural gas based technologies (vapour and gas turbines, internal combustion engine, combined cycles); the cost of heat and power produced in these plants is compared to the cost of producing the same quantity of electrical energy by a reference GTCC-Gas Turbine Combined Cycle (actually the most efficient technology for pure electrical production) and the cost of heat production by modern local heating technologies using natural gas as fuel (condensing boilers, electrical, gas engine and absorption heat pumps). Regarding energy efficiency and emissions, modern local heating turns out to be more efficient than district heating for most CHP technologies. However, the same does not happen from an economic point of view, because in Italy natural gas used by cogeneration plants is subjected to a much lower taxation than local heating technologies

  3. Development of an integrated energy benchmark for a multi-family housing complex using district heating

    International Nuclear Information System (INIS)

    Jeong, Jaewook; Hong, Taehoon; Ji, Changyoon; Kim, Jimin; Lee, Minhyun; Jeong, Kwangbok

    2016-01-01

    Highlights: • The energy benchmarks for MFHC using district heating were developed. • We consider heating, hot water, electricity, and water energy consumption. • The benchmarks cover the site EUI, source EUI, and CO_2 emission intensity. • The benchmarks were developed through data mining and statistical methodologies. • The developed benchmarks provide fair criteria to evaluate energy efficiency. - Abstract: The reliable benchmarks are required to evaluate building energy efficiency fairly. This study aims to develop the energy benchmarks and relevant process for a multi-family housing complex (MFHC), which is responsible for huge CO_2 emissions in South Korea. A database, including the information on building attributes and energy consumption of 503 MFHCs, was established. The database was classified into three groups based on average enclosed area per household (AEA) through data mining techniques. The benchmarks of site energy use intensity (EUI), source EUI, and CO_2 emission intensity (CEI) were developed from Groups 1, 2, and 3. Representatively, the developed benchmarks of CEI for Groups 1, 2, and 3 were 28.17, 24.16, and 20.96 kg-CO_2/m"2 y, respectively. A comparative analysis using the operational rating identified that the developed benchmarks could solve the irrationality of the original benchmarks from overall database. In the case of the original benchmarks, 93% of small-AEA-groups and 16% of large-AEA-groups received lower grades. In the case of the developed benchmark, the upper and lower grades in Groups 1–3 were both adjusted to 50%. The proposed process for developing energy benchmark is applicable to evaluate the energy efficiency of other buildings, in other regions.

  4. Report on feasibility study of district energy-saving and waste heat utilization for City of Iwai; Iwai-shi chiiki sho energy hainetsu riyo kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    As part of the (district energy-saving visions for City of Iwai), the feasibility study is implemented for citizen community facilities which utilize waste heat discharged from factories in the city. More concretely, those items studied include a heated pool, other community facilities and botanical garden of tropical plants which utilize waste heat of exhaust gas cooling water heated to around 70 degrees C by a desulfurization unit at a pulp factory. Case 1 includes the citizen community facilities (e.g., heated pool and bath facilities), and Case 2 includes a green house botanical garden, involving studies on facility scales, requirements of heat and recycling water, hot water supply, air conditioning, bath systems, and heating systems for green houses. It is estimated that the citizen community facilities have an energy saving effect of 640kL/y as fuel oil, which corresponds to saving of around 29 million yen/y, and CO2 abatement effect of 471t/y as carbon, and that the green house botanical garden has an energy saving effect of 669kL/y as fuel oil, which corresponds to saving of around 30 million yen/y, and CO2 abatement effect of 492t/y as carbon. (NEDO)

  5. Feasibility study for retrofitting biogas cogeneration systems to district heating in South Korea.

    Science.gov (United States)

    Chung, Mo; Park, Hwa-Choon

    2015-08-01

    A feasibility study was performed to assess the technical and economic merits of retrofitting biogas-based cogeneration systems to district heating networks. Three district heating plants were selected as candidates for accommodating heat recovery from nearby waste treatment stations, where a massive amount of biogas can be produced on a regular basis. The scenario involves constructing cogeneration systems in each waste treatment station and producing electricity and heat. The amounts of biogas production for each station are estimated based on the monthly treatment capacities surveyed over the most recent years. Heat produced by the cogeneration system is first consumed on site by the waste treatment system to keep the operating temperature at a proper level. If surplus heat is available, it will be transported to the nearest district heating plant. The year-round operation of the cogeneration system was simulated to estimate the electricity and heat production. We considered cost associated with the installation of the cogeneration system and piping as initial investments. Profits from selling electricity and recovering heat are counted as income, while costs associated with buying biogas are expenses. Simple payback periods of 2-10 years were projected under the current economic conditions of South Korea. We found that most of the proposed scenarios can contribute to both energy savings and environmental protection. © The Author(s) 2015.

  6. Promotional study for joint implementation program. Energy conservation and efficiency improvement for district heating system in Tashkent, Uzbekistan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions, a study was carried out for repair/improvement of the district heating system in Tashkent City, the Republic of Uzbekistan. In the project, the following were studied: heightening of electrical insulation of the total pipeline, improvement in efficient utilization of heat energy in the thermal plant. As to the existing pipeline, heat loss is improved by 0-5% by changing it to electrical insulation pipe. In relation to the thermal plant, studied were cogeneration facility A using three 4MW gas turbines and combined cycle cogeneration facility B using two 40MW gas turbines. As a result, the amount of energy saving was 11,370 toe/y in pipeline, 12,750 toe/y in facility A and 69,000 toe/y in facility B. Further, the reduction amount of greenhouse effect gas emissions was 27,200t-CO2/y in pipeline, 30,500t-CO2/y in facility A and 164,900t-CO2/y in facility B. (NEDO)

  7. Book of abstracts: 3rd International Conference on Smart Energy Systems and 4th Generation District Heating

    DEFF Research Database (Denmark)

    This year the conference is organised by two research centres/projects in collaboration with Aalborg University. The first is the 4DH Strategic Research Centre and the other is the project RE-INVEST, both supported financial by the Danish Innovation Fund. After the previous two year´s success...... everyone for your valuable contributions. The aim is to present and discuss scientific findings and industrial experiences related to the development of Smart Energy Systems and future 4th Generation District Heating Technologies and Systems (4GDH). This development is fundamental to the implementation...

  8. Reactor waste heat utilization and district heating reactors. Nuclear district heating in Sweden - Regional reject heat utilization schemes and small heat-only reactors

    International Nuclear Information System (INIS)

    Hannerz, K.; Larsson, Y.; Margen, P.

    1977-01-01

    A brief review is given of the current status of district heating in Sweden. In future, district heating schemes will become increasingly interesting as a means of utilizing heat from nuclear reactors. Present recommendations in Sweden are that large reactors should not be located closer than about 20 km from large population centres. Reject heat from such reactors is cheap at source. To minimize the cost of long distance hot water transmission large heat rates must be transmitted. Only areas with large populations can meet this requirement. The three areas of main interest are Malmoe/Lund/Helsingborg housing close to 0.5 million; Greater Stockholm housing 1 to 1.5 million and Greater Gothenburg housing about 0.5 million people. There is an active proposal that the Malmoe/Lund/Helsingborg region would be served by a third nuclear unit at Barsebaeck, located about 20 km from Malmoe/Lund and supplying 950 MW of base load heat. Preliminary proposals for Stockholm involve a 2000 MW heat supply; proposals for Gothenburg are more tentative. The paper describes progress on these proposals and their technology. It also outlines technology under development to increase the economic range of large scale heat transport and to make distribution economic even for low heat-density family housing estates. Regions apart from the few major urban areas mentioned above require the adoption of a different approach. To this end the development of a small, simple low-temperature reactor for heat-only production suitable for urban location has been started in Sweden in close contact with Finland. Some results of the work in progress are presented, with emphasis on the safety requirements. An outline is given in the paper as to how problems of regional heat planning and institutional and legislative issues are being approached

  9. Calculating the marginal costs of a district-heating utility

    International Nuclear Information System (INIS)

    Sjoedin, Joergen; Henning, Dag

    2004-01-01

    District heating plays an important role in the Swedish heat-market. At the same time, the price of district heating varies considerably among different district-heating utilities. A case study is performed here in which a Swedish utility is analysed using three different methods for calculating the marginal costs of heat supply: a manual spreadsheet method, an optimising linear-programming model, and a least-cost dispatch simulation model. Calculated marginal-costs, obtained with the three methods, turn out to be similar. The calculated marginal-costs are also compared to the actual heat tariff in use by the utility. Using prices based on marginal costs should be able to bring about an efficient resource-allocation. It is found that the fixed rate the utility uses today should be replaced by a time-of-use rate, which would give a more accurate signal for customers to change their heat consumptions. (Author)

  10. How low can the low heating load density district heating be? Environmental aspects on low heating load density district heating of the present generation compared to a domestic oil burner; Hur vaermegles kan den vaermeglesa fjaerrvaermen vara? Miljoeaspekter paa vaermegles fjaerrvaerme med dagens teknik jaemfoerd med villaoljepanna

    Energy Technology Data Exchange (ETDEWEB)

    Froeling, Morgan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Environmental Science

    2005-07-01

    In Sweden we can see an increase of district heating networks in residential areas with low heat density. For the customer the economy is normally the most important argument when deciding to choose district heating. For many customers, however, arguments regarding environmental friendliness are important complimentary arguments. When district heating systems are built with decreased heat density, the environmental impacts from use of district heating will increase, depending on such as increased need of pipes and increased heat losses from the distribution system. The purpose of this study is to investigate if there is a limit, a lowest heat density when it is not any longer beneficial to build district heating when district heating replaces local oil furnace heating. Life cycle inventory data for district heating distribution systems in areas with low heat density has been compared with the use of oil furnaces. The environmental impacts are categorized into Global Warming Potential, Acidification Potential, Eutrofication Potential and Use of Finite Resources. To enhance the assessment three single point indicators have also been used: EcoIndicator99, EPS and ExternE. The economics of using district heating in areas with low heat density has not been regarded in this study. A model comparing the space heating of a single family home with an oil furnace or with district heating has been created. The home has an annual heat need of 20 MWh. The district heating distribution network is characterized by its linear heat density. The linear heat density is a rough description of a district heating network, and thus also the results from the model will be general. Still it can give us a general idea of the environmental limit for district heating in areas with low heat density. An assessment of all results indicate that with the type of technology used at present it is not environmentally beneficial to use district heating with lower linear heat density than 0,2 MWh/m. At

  11. The development of a new district heating concept: Network design and optimization for integrating energy conservation and renewable energy use in energy sustainable communities

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Rosa, A.

    2012-07-01

    PART I of this doctoral thesis consists of 6 chapters. Chapter 1 summarizes the main issues caused by the use of energy resources. They involve ecological, economic, demographical and socio-political topics that are linked together and define the background of the thesis. Chapter 2 describes the state-of-the-art of District Heating (DH) systems, with focus on the present and future situation in Denmark. The core of the thesis consists of the development of a new DH paradigm, the ''Low- Temperature District Heating (LTDH)'', the study of its potential, and investigations of technical options which improve its applicability in terms of energy performance and socio-economy. Chapter 3 describes the whole idea about LTDH. Chapter 4 presents the hypotheses of the studies, draws the boundaries between the focus area of the thesis and other relevant aspects of the subject, describes the limitations of the work and lists the methods which were used. Chapter 5 explains the results of the scientific content reported in the articles in PART II. Article I introduces the technical and organizational strategies that can facilitate the establishment of a successful energy planning in a community. It analyses the state-of-the-art in community energy planning, discusses critical issues, and points at the role of DH in moving towards sustainable heat supply. The articles II and III aim at providing science-based knowledge for the development of improved solutions for the DH networks; they focus on the performance simulation of DH pipelines through models for assessing the energy performance of innovative pipe geometries, materials or system configurations. The models were validated against experimental measurements on real DH pipes. Article II considers the detailed steady-state modelling and analysis of heat losses in pre-insulated DH pipes. Article III focuses on the modelling and computation of the transient heat transfer in service pipes, which are important

  12. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    DEFF Research Database (Denmark)

    Persson, Urban; Münster, Marie

    2016-01-01

    Municipal solid waste has seen increasing annual volumes for many decades in contemporary Europe and constitutes, if not properly managed, an environmental problem due to local pollution and greenhouse gas emissions. From an energy perspective, waste is also an alternative fuel for power and heat...... to establish and assess current and future EU (European Union) waste generation and management. Main conclusions are that more heat can be recovered from current Waste-to-Energy facilities operating at low average heat recovery efficiencies, that efficient incineration capacity is geographically concentrated...... heat distribution infrastructures, without which no large-scale recovery and utilisation of excess heat is possible. In this paper, which aims to estimate municipal solid waste volumes available for heat recovery in European district heating systems in 2030, a literature and data review is performed...

  13. A Modelica based computational model for evaluating a renewable district heating system

    NARCIS (Netherlands)

    Soons, F.F.M.; Torrens Galdiz, J.I.; Hensen, J.L.M.; Schrevel, R.A.M. de

    2014-01-01

    District heating (DH) systems are considered a viable method for mitigating long-term climate change effects, through reduction of CO2 emissions, their high conversion efficiencies and their ability to be integrated with renewable energy sources (RES). The current evolution towards sustainable DH,

  14. District heating system of Belgrade supplied from the co-generation plant 'Obrenovac' (Yugoslavia)

    International Nuclear Information System (INIS)

    Tomic, P.; Dobric, Z.; Studovic, M.

    2000-01-01

    The paper presents most relevant technical and economic features of the Project called 'System for supplying Belgrade with heat' (SDGB) from the thermal power plant 'Obrenovac', based on domestic coal and reconstruction of condensing power plant for combined generation of electricity and heat for the needs of municipal energy consumption. The system is designed for transport thermal energy, with capacity of 730 MJ/s from the Thermal Power Plant 'Nikola Tesla' / A to the existing heat plant 'Novi Beograd' based on the natural gas. The paper also gives the comparison of most important technical and economic features of 'SDGB' Project with the similar Project of District Heating System for supplying Prague with the thermal energy from Thermal Power Plant Melnik. (Author)

  15. Biomass universal district heating systems

    Science.gov (United States)

    Soltero, Victor Manuel; Rodríguez-Artacho, Salvador; Velázquez, Ramón; Chacartegui, Ricardo

    2017-11-01

    In mild climate regions Directive 27/2012 EU application for developing sustainable district heating networks in consolidated urban nucleus is a challenge. In Spain most of the municipalities above 5,000 inhabitants have a reliable natural gas network and individual heating systems at homes. In this work a new heating network paradigm is proposed, the biomass universal heating network in rural areas. This model involves all the economic, legal and technical aspects and interactions between the different agents of the systems: provider company, individual and collective end-users and local and regional administration. The continental region in Spain has 588 municipalities with a population above 1,500 inhabitants close to forest biomass with renewable use. In many of these cases the regulation identifies the ownership of the forest resources use. The universal heating networks are a great opportunity for energy saving of 2,000 GWh, avoiding 2.7 million tons of CO2 emissions and with a global annual savings for end users of 61.8 million of euros. The presented model is easily extrapolated to other small municipalities in Europe. The real application of the model is presented for three municipalities in different locations of Spain where Universal Heating Networks are under development. The analysis show the interest of the integrated model for the three cases with different structural agents and relationships between them. The use of sustainable forest resources, extracted and managed by local companies, strengths circular economy in the region with a potential global economic impact above 200 M€.

  16. Remote Sensing-Based Characterization of Settlement Structures for Assessing Local Potential of District Heat

    Directory of Open Access Journals (Sweden)

    Michael Nast

    2011-07-01

    Full Text Available In Europe, heating of houses and commercial areas is one of the major contributors to greenhouse gas emissions. When considering the drastic impact of an increasing emission of greenhouse gases as well as the finiteness of fossil resources, the usage of efficient and renewable energy generation technologies has to be increased. In this context, small-scale heating networks are an important technical component, which enable the efficient and sustainable usage of various heat generation technologies. This paper investigates how the potential of district heating for different settlement structures can be assessed. In particular, we analyze in which way remote sensing and GIS data can assist the planning of optimized heat allocation systems. In order to identify the best suited locations, a spatial model is defined to assess the potential for small district heating networks. Within the spatial model, the local heat demand and the economic costs of the necessary heat allocation infrastructure are compared. Therefore, a first and major step is the detailed characterization of the settlement structure by means of remote sensing data. The method is developed on the basis of a test area in the town of Oberhaching in the South of Germany. The results are validated through detailed in situ data sets and demonstrate that the model facilitates both the calculation of the required input parameters and an accurate assessment of the district heating potential. The described method can be transferred to other investigation areas with a larger spatial extent. The study underlines the range of applications for remote sensing-based analyses with respect to energy-related planning issues.

  17. The energy-effective redesign of district heat supply for the city of Eisenach; Energiewirtschaftliche Neugestaltung der Fernwaermeversorgung fuer die Stadt Eisenach

    Energy Technology Data Exchange (ETDEWEB)

    Stich, J. [Eproplan GmbH, Stuttgart (Germany)

    1996-09-01

    The present contribution describes the optimal heat generation for the district heat area ``North`` of the city of Eisenach and economic redesign of this district heat network. The district heat network is operated by the public utility of Eisenach (Eisenacher Versorgungs-Betriebe GmbH (EVB)), which also runs the heating station, that used to be fuelled with coal. (orig./GL) [Deutsch] Der vorliegende Beitrag befasst sich mit der optimalen Waermeerzeugung fuer das Fernwaerme-Versorgungsgebiet `Nord` der Stadt Eisenach und mit der wirtschaftlichen Umgestaltung dieses Fernwaermenetzes. Das Fernwaermenetz wird durch die Eisenacher Versorgungs-Betriebe GmbH (EVB) betrieben, wie auch das ehemalige kohlegefeuerte Heizwerk. (orig./GL)

  18. Innovative system for delivery of low temperature district heating

    Directory of Open Access Journals (Sweden)

    Anton Ivanov Ianakiev

    2017-01-01

    Full Text Available An innovative Low Temperature District Heating (LTDH local network is developed in Nottingham, supported by REMOURBAN project, part of the H2020 Smart City and Community Lighthouse scheme. It was proposed that a branch emanating from the return pipe of the of the existing district heating system in Nottingham would be created to use low temperature heating for the first time in UK. The development is aimed to extract wasted (unused heat from existing district heating system and make it more efficient and profitable. Four maisonette blocks of 94 low-raised flats, at Nottingham demo site of the REMOURBAN project will be connected to this new LTDH system. The scheme will provide a primary supply of heat and hot water at approximately 50oC to 60oC. Innovated solutions have been put forward to overcome certain barriers, such as legionella related risks and peak loads during extreme heating seasons and occasional maintenance.

  19. Optimising corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.; Andersen, A.

    2002-01-01

    A three-year project - financially supported by the Nordic Industrial Fund - on monitoring of corrosion in district heating systems has been initiated with participation of researchers and industrial partners in Denmark, Finland, Iceland, Norway and Sweden. The primary objective of the project...... is to improve the quality control in district heating systems by corrosion monitoring. In Danish systems electrochemical impedance spectroscopy (EIS), linear polarisation resistance (LPR), high-sensitive electrical resistance (ER) technology, crevice corrosion probes, as well as weight loss coupons...

  20. District heat in the environmental model city Vienna; Fernwaerme in der Umweltmusterstadt Wien

    Energy Technology Data Exchange (ETDEWEB)

    Wischinka, A. [Fernwaerme Wien Gesellschaft mbH, Wien (Austria)

    1998-10-01

    Thanks to the extension of its district heating system and the integration of low-emission waste incineration plants, Vienna possesses one of the most environment friendly energy systems. This makes Vienna an environmental model city. Goals for the year 2000 are: - 2,000 MW operated heat peak load, - 200,000 district-heated dwellings, - 4,000 special sales contracts, - 1,000 km network length (500 km primary network, 500 km secondary network), - heat sales of 5,000 GWh, - ATS 5 billion sales. (orig.) [Deutsch] Durch den Ausbau des Fernwaermesystems unter Einbeziehung der emissionsarmen Muellverbrennungsanlagen hat Wien eines der umweltfreundlichsten Energiesysteme. Das macht Wien zu einer Umweltmusterstadt. Die Ziele fuer das Jahr 2000 lauten: - 2 000 MW gefahrene Waermehoechstlast, - 200 000 fernwaermeversorgte Wohnungen, - 4000 Sonderabnehmer, 1 000 km Netzlaenge (500 km Primaernetz, 500 km Sekundaernetz), - 5000 GWh Waermeverkauf, - 5 Milliarden ATS Umsatz. (orig.)

  1. District heating demonstration project. Swiecie, Poland. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    In January 1997 the district heating company in Swiecie, Poland, was donated DKK 1.3 Mio. as a part of the environmental related energy sector programme by the Danish government for a demonstration project. The Danish consultancy company Carl Bro a/s was appointed to conduct the work. The project was finished in January 1999. The present final report outlines the activities of the demonstration project. The activities of the project were several. Carl Bro a/s elaborated tender documents and procured 79 heat meters for all the substrations in the city in order to prepare for the new energy law and a changed tariff system which was introduced in January 1999. Carl Bro a/s further supported ZEC Swiecie in the development of their new tariff system through information from Danish district heating companies. The demonstration project was designed in the first phase of the project. During the design period one engineer from Swiecie participated in a study tour to Denmark to learn about technical solutions to present problems in Poland. The training course focused on preparation of hot tap water. The site for the demonstation project was in the centre of Swiecie in a housing society located in Wojska Polskiego. The blocks 75 and 75A were selected for modernisation of the substations, and block no. 73 was appointed as a reference block in which only a heat meter was installed. Further, block 75A was equipped with thermostatic valves at all the radiators in the flats. The registered savings during the monitoring period were between 7% and 14%, and an increased comfort in the flats was observed. The housing society`s board of directors were so pleased with the project that by their initiative block no. 77 was refurbished in the same way as the blocks covered by the demonstration project. However, the activities were extended with individual heat meters and the introduction of a new tariff system for the block. The energy savings from this project were substantial, and today

  2. Renewable-based heat supply of multi-apartment buildings with varied heat demands

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Dodoo, Ambrose; Gustavsson, Leif

    2015-01-01

    This study investigates the cost and primary energy use to heat an existing multi-apartment building in Sweden, before and after deep energy efficiency renovation, with different types of renewable-based systems. District heating systems of different scales as well as local heat production based on bioelectric boilers, ground-source bioelectric heat pumps and wood pellet boilers with or without solar heating are considered. The annual energy demand of the building, calculated hour by hour, with and without energy efficiency improvements, are matched against the renewable-based heat supply options by techno-economic modeling to minimize cost for each considered heat supply option. The results show that the availability of heating technologies at the building site and the scale of the building's heat demand influence the cost and the primary energy efficiency of the heating options. District heat from large-scale systems is cost efficient for the building without energy-efficiency improvement, whereas electric heat pumps and wood pellet boilers are more cost efficient when implementing energy-efficiency improvement. However, the cost difference is small between these alternatives and sensitive to the size of building. Large-scale district heating with cogeneration of power is most primary energy efficient while heat pumps and medium-scale district heating are nearly as efficient. - Highlights: • Heating technologies influence costs and primary energy use of a building. • Large-scale district heating with cogeneration of power is primary energy efficient. • Large-scale district heating is cost efficient for buildings with large heat demand. • Heat pumps and pellet boilers are cost competitive in energy-efficient buildings.

  3. A cold end to the district heating year

    International Nuclear Information System (INIS)

    Talsi, M.

    2003-01-01

    According to preliminary data from the Finnish District Heating Association, a total of 29.5 TWh of district heat was sold in Finland in 2002. Low temperatures in October, November, and December boosted sales over the year as a whole to virtually normal levels, despite the exceptionally warm early part of the year. Sales were up some 4 % on 2001 and totalled EUR 1.09 billion

  4. Barriers for district heating as a source of flexibility for the electricity system

    DEFF Research Database (Denmark)

    Skytte, Klaus; Olsen, Ole Jess; Soysal, Emilie Rosenlund

    2017-01-01

    of wind power. Power-to-heat technologies, electric boilers and heat pumps are blocked by high tariffs and taxes. A calculation of the heat costs of different DH technologies demonstrates that, under the present price and tax conditions in Denmark and Sweden, CHP and power-to-heat are unable to compete......The Scandinavian countries Denmark, Norway and Sweden currently deploy large amounts of variable renewable energy (VRE) sources, especially wind power. This calls for additional flexibility in the power market. The right coupling to the underlying national and local district heating (DH) markets...

  5. EFFECTS OF IMPLEMENTATION OF CO-GENERATION IN THE DISTRICT HEATING SYSTEM OF THE FACULTY OF MECHANICAL ENGINEERING IN NIŠ

    Directory of Open Access Journals (Sweden)

    Mladen M Stojiljković

    2010-01-01

    Full Text Available Implementation of co-generation of thermal and electrical energy in district heating systems often results with higher overall energy efficiency of the systems, primary energy savings and environmental benefits. Financial results depend on number of parameters, some of which are very difficult to predict. After introduction of feed-in tariffs for generation of electrical energy in Serbia, better conditions for implementation of co-generation are created, although in district heating systems barriers are still present. In this paper, possibilities and effects of implementation of natural gas fired co-generation engines are examined and presented for the boiler house that is a part of the district heating system owned and operated by the Faculty of Mechanical Engineering in Niš. At the moment, in this boiler house only thermal energy is produced. The boilers are natural gas fired and often operate in low part load regimes. The plant is working only during the heating season. For estimation of effects of implementation of co-generation, referent values are taken from literature or are based on the results of measurements performed on site. Results are presented in the form of primary energy savings and greenhouse gasses emission reduction potentials. Financial aspects are also considered and triangle of costs is shown.

  6. Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System

    Science.gov (United States)

    He, Xiaoning

    Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings. To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system. A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density

  7. Heat pumps in district heating networks

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... and strategic planning in the energy sector. The paper presents a case study of optimal implementation of heat pumps in the present energy system of the Copenhagen area. By introduction of the correct capacity of heat pumps, a 1,6 % reduction in fuel consumption for electricity and heat production can...

  8. The small-scale production of hydrogen, with the co-production of electricity and district heat, by means of the gasification of municipal solid waste

    International Nuclear Information System (INIS)

    Hognert, Johannes; Nilsson, Lars

    2016-01-01

    Highlights: • Outline of a process for handling municipal solid waste potentially leading to reduced use of fossil transportation fuels. • The integration of waste gasification into a district heat plant leads to excellent energy efficiency. • Analysis based on actual production data from a district heat plant over the period of one year. • Simulation of a plant with productions of heat, power and gaseous hydrogen. - Abstract: Reducing the use of fossil fuels and increasing the recycling of waste are two important challenges for a sustainable society. Fossil fuels contribute to global warming whilst waste causes the pollution of land, water and air. Alternative fuels and innovative waste management systems are needed to address these issues. In this study a gasification process, fuelled with municipal solid waste, was assumed to be integrated into a heat plant to produce hydrogen, electricity and district heat. A whole system, which includes a gasification reactor, heat plant, steam cycle, pressure swing adsorption, gas turbine and compressors was modelled in Microsoft Excel and an energy balance of the system was solved. Data from the scientific literature were used when setting up the heat and mass balances of the gasification process as well as for assessment of the composition of the syngas. The allocation of energy of the products obtained in the process is 29% hydrogen, 26% electricity and 45% district heat. A significant result of the study is the high energy efficiency (88%) during the cold period of the year when the produced heat in the system is utilized for district heat. The system also shows a competitive energy efficiency (56.5%) all year round.

  9. Multi-objective optimization for the maximization of the operating share of cogeneration system in District Heating Network

    International Nuclear Information System (INIS)

    Franco, Alessandro; Versace, Michele

    2017-01-01

    Highlights: • Combined Heat and Power plants and civil/residential energy uses. • CHP plant supported by auxiliary boilers and thermal energy storage. • Definition of optimal operational strategies for cogeneration plants for District Heating. • Optimal-sized Thermal Energy Storage and a hybrid operational strategy. • Maximization of cogeneration share and reduction of time of operation of auxiliary boilers. - Abstract: The aim of the paper is to define optimal operational strategies for Combined Heat and Power plants connected to civil/residential District Heating Networks. The role of a reduced number of design variables, including a Thermal Energy Storage system and a hybrid operational strategy dependent on the storage level, is considered. The basic principle is to reach maximum efficiency of the system operation through the utilization of an optimal-sized Thermal Energy Storage. Objective functions of both energetic and combined energetic and economic can be considered. In particular, First and Second Law Efficiency, thermal losses of the storage, number of starts and stops of the combined heat and power unit are considered. Constraints are imposed to nullify the waste of heat and to operate the unit at its maximum efficiency for the highest possible number of consecutive operating hours, until the thermal tank cannot store more energy. The methodology is applied to a detailed case study: a medium size district heating system, in an urban context in the northern Italy, powered by a combined heat and power plant supported by conventional auxiliary boilers. The issues involving this type of thermal loads are also widely investigated in the paper. An increase of Second Law Efficiency of the system of 26% (from 0.35 to 0.44) can be evidenced, while the First Law Efficiency shifts from about 0.74 to 0.84. The optimization strategy permits of combining the economic benefit of cogeneration with the idea of reducing the energy waste and exergy losses.

  10. Implementing Geothermal Plants in the Copenhagen District Heating System

    DEFF Research Database (Denmark)

    Jensen, Louise Overvad; Hallgreen, Christine Erikstrup; Larsen, Esben

    2003-01-01

    of geothermal energy in Denmark as well as the Danish potential, which, in former investigations, has been found to be around 100.000 PJ annually, and the economical potential is less, about 15 PJ/year. Since a considerable amount of the Danish power supply is tied to weather and the demand for heating......The possibility of implementing geothermal heating in the Copenhagen district-heating system is assessed. This is done by building up general knowledge on the geological factors that influence the development of useable geothermal resources, factors concerning the exploration and utilization......, an increasing demand for flexibility has been raised. Implementing geothermal heating would improve the flexibility in the Eastern Danish power system. Based on this information, as well as, on the hourly values of the expected production and consumption in 2010 and 2020, a model of the Copenhagen power...

  11. Heat extraction from turbines of Czechoslovak nuclear power plants for district heating

    International Nuclear Information System (INIS)

    Drahy, J.

    1985-01-01

    Two design are described of SKODA extraction turbines for Czechoslovak nuclear power plants with WWER-440 and WWER-1000 reactors. 220 MW steam turbines were originally designed as pure condensation turbines with uncontrolled steam extraction. Optimal ways are now being sought for their use for heating hot water for district heating. For district heating of the town of Trnava, the nuclear power plant at Jaslovske Bohunice will provide a two-step heating of water from 70 to 120 degC with a heat supply of 60 MW th from one turbine unit. The ratio of obtained heat power to lost electric power is 5.08. Investigations showed the possibility of extracting 85 MW th of heat from uncontrolled steam extraction, this at three-step water heating from 60 to 145 degC, the ratio of gained and lost power being 7.14. Information is presented on the SKODA 220 MW turbine with steam extraction for heat supply purposes and on the 1000 MW turbine with 893 MW th heat extraction. The specifications of both types are given. (Pu)

  12. Corrosion Fatigue in District Heating Water Tanks

    DEFF Research Database (Denmark)

    Maahn, Ernst Emanuel

    1996-01-01

    Three candidate materials for construction of buffer tanks for district heating water have been tested for corrosion fatigue properties in a district heating water environment. The investigation included Slow Strain Rate Testing of plain tensile specimens, crack initiation testing by corrosion...... fatigue of plain tensile specimens and crack growth rate determination for Compact Tensile Specimens under corrosion fatigue conditions. The three materials are equal with respect to stress corrosion sensibility and crack initiation. Crack growth rate is increased with a factor of 4-6 relative to an inert...

  13. Load Management in District Heating Operation

    DEFF Research Database (Denmark)

    Li, Hongwei; Wang, Stephen Jia

    2015-01-01

    Smooth operation of district heating system will avoid installation of expensive peak heat boilers, improve plant partial load performance, increase the system redundancy for further network expansion and improve its resilience to ensure security of supply during severe heating seasons. The peak...... heating load can be reduced through building demand side management. The building thermal mass can be used to shift the heating supply under the circumstance without jeopardizing the consumer thermal comfort. In this paper, the multi-agent framework is applied to a simplified building dynamic model...

  14. Optimisation models for decision support in the development of biomass-based industrial district-heating networks in Italy

    International Nuclear Information System (INIS)

    Chinese, Damiana; Meneghetti, Antonella

    2005-01-01

    A system optimisation approach is proposed to design biomass-based district-heating networks in the context of industrial districts, which are one of the main successful productive aspects of Italian industry. Two different perspectives are taken into account, that of utilities and of policy makers, leading to two optimisation models to be further integrated. A mixed integer linear-programming model is developed for a utility company's profit maximisation, while a linear-programming model aims at minimising the balance of greenhouse-gas emissions related to the proposed energy system and the avoided emissions due to the substitution of current fossil-fuel boilers with district-heating connections. To systematically compare their results, a sensitivity analysis is performed with respect to network size in order to identify how the optimal system configuration, in terms of selected boilers to be connected to a multiple energy-source network, may vary in the two cases and to detect possible optimal sizes. Then a factorial analysis is adopted to rank desirable client types under the two perspectives and identify proper marketing strategies. The proposed optimisation approach was applied to the design of a new district-heating network in the chair-manufacturing district of North-Eastern Italy. (Author)

  15. Optimal dimensioning of low-energy district heating networks with operational planning

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2012-01-01

    in design stage resulted in satisfaction of heat demand of the house in low temperature operation. In this paper the operational planning of the low-energy DH systems was investigated to reduce the dimensions of the distribution network with consideration given both to current high-heat and future low......-heat demand situations. The operational planning was based on boosting (increasing) the supply temperature at peak-demand situations which occur rarely over a year period. Hence optimal pipe dimensions of low-energy DH systems were investigated based on the dynamic response of in-house heating systems...... of operational planning in comparison to DH network dimensioned according to high heat demand situation....

  16. Clustering-based analysis for residential district heating data

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Liu, Xiufeng; Heller, Alfred

    2018-01-01

    The wide use of smart meters enables collection of a large amount of fine-granular time series, which can be used to improve the understanding of consumption behavior and used for consumption optimization. This paper presents a clustering-based knowledge discovery in databases method to analyze r....... These findings will be valuable for district heating utilities and energy planners to optimize their operations, design demand-side management strategies, and develop targeting energy-efficiency programs or policies.......The wide use of smart meters enables collection of a large amount of fine-granular time series, which can be used to improve the understanding of consumption behavior and used for consumption optimization. This paper presents a clustering-based knowledge discovery in databases method to analyze...... residential heating consumption data and evaluate information included in national building databases. The proposed method uses the K-means algorithm to segment consumption groups based on consumption intensity and representative patterns and ranks the groups according to daily consumption. This paper also...

  17. Environmental performance of Miscanthus as a fuel alternative for district heat production

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Sperling, K.; Dalgaard, Tommy

    2015-01-01

    scenarios: (i) in Combined Heat and Power (CHP) plant and (ii) in a Boiler (producing heat only). Biomass conversion to heat is also compared with the conversion of natural gas (NG). The environmental impact categories considered for the assessment are: Global Warming Potential (GWP), Non-Renewable Energy......This study discusses about the environmental performance of Miscanthus conversion to district heat. Life Cycle Impact Assessment (LCIA) is used as a tool to assess the environmental impacts related to the biomass conversion to heat. Energy conversion of Miscanthus is compared in two combustion...... (NRE) use and Land use (LU). The current study revealed that for 1 MJ of heat production, Miscanthus fired in the CHP plant would lead to a GWP at −0.071 kg CO2-eq, an NRE use −0.767-MJ primary, and LU 0.09 m2-a (square metre-annual). For the same heat output, Miscanthus fired in the boiler would lead...

  18. An equivalent marginal cost-pricing model for the district heating market

    International Nuclear Information System (INIS)

    Zhang, Junli; Ge, Bin; Xu, Hongsheng

    2013-01-01

    District heating pricing is a core element in reforming the heating market. Existing district heating pricing methods, such as the cost-plus pricing method and the conventional marginal-cost pricing method, cannot simultaneously provide both high efficiency and sufficient investment cost return. To solve this problem, the paper presents a new pricing model, namely Equivalent Marginal Cost Pricing (EMCP) model, which is based on the EVE pricing theory and the unique characteristics of heat products and district heating. The EMCP model uses exergy as the measurement of heating product value and places products from different district heating regions into the same competition platform. In the proposed model, the return on investment cost is closely related to the quoted cost, and within the limitations of the Heating Capacity Cost Reference and the maximum compensated shadow capacity cost, both lower and higher price speculations of heat producers are restricted. Simulation results show that the model can guide heat producers to bid according to their production costs and to provide reasonable returns on investment, which contributes to stimulate the role of price leverage and to promote the optimal allocation of heat resources. - Highlights: • Presents a new district heating pricing model. • Provides both high market efficiency and sufficient investment cost return. • Provides a competition mechanism for various products from different DH regions. • Both of lower and higher price speculations are restricted in the new model

  19. Zero Energy Districts

    Energy Technology Data Exchange (ETDEWEB)

    Polly, Benjamin J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-05-04

    This presentation shows how NREL is approaching Zero Energy Districts, including key opportunities, design strategies, and master planning concepts. The presentation also covers URBANopt, an advanced analytical platform for district that is being developed by NREL.

  20. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2014-01-01

    compared to 1990 levels. None of these scenarios involve the large-scale implementation of district heating, but instead they focus on the electrification of the heating sector (primarily using heat pumps) and/or the large-scale implementation of electricity and heat savings. In this paper, the potential...... for district heating in the EU between now and 2050 is identified, based on extensive and detailed mapping of the EU heat demand and various supply options. Subsequently, a new ‘district heating plus heat savings’ scenario is technically and economically assessed from an energy systems perspective. The results...... indicate that with district heating, the EU energy system will be able to achieve the same reductions in primary energy supply and carbon dioxide emissions as the existing alternatives proposed. However, with district heating these goals can be achieved at a lower cost, with heating and cooling costs...

  1. District heating systems between competition protection and climate protection; Die Fernwaermenetze zwischen Wettbewerbs- und Klimaschutz

    Energy Technology Data Exchange (ETDEWEB)

    Koerber, Torsten [Goettingen Univ. (Germany). Lehrstuhl fuer Buergerliches Recht, Kartellrecht, Versicherungs-, Gesellschafts- und Regulierungsrecht

    2012-10-15

    In principle, district heating systems come in the application area of paragraph 19 sect. 4 no. 4 GWB (law against competitive restrictions). However, this regulation has to be interpreted with respect to the legislation of the Court of Justice of the European Union (Luxemburg) to 'essential facilities'. According to this, the claim for antitrust access can be affirmed only in exceptional circumstances. Within the application of this regulation, property rights, competition protection, investment competition, innovation competition as well as energy political evaluations of the energy law under special consideration of ecologic and climate political targets are considered. This has to occur within the testing of the reasonability with respect to paragraph 19 sect. 4 no. 2 GWB. The particularities of the district heating.

  2. Design of SES-10 nuclear reactor for district heating

    International Nuclear Information System (INIS)

    Cuttler, J.M.

    1991-03-01

    The SES-10 units are unpressurized, pool-type nuclear reactors of 10MW rating, designed for supplying energy to hot water district heating systems, economically and without pollution. Water for heat distribution is brought to a maximum temperature of 85 degrees C. Conventional heating units supplement the output from SES-10 units for peak load and during maintenance. The SES-10 is housed in a low-cost building, with a double-walled pool in the ground. A naturally circulating primary system and a pumped secondary system transport heat from the reactor to the distribution system. The unit is fully automated and easy to maintain. Because of the many active and passive safety features, it is feasible to license the SES-10 for operation in a city and easy to explain it to the public for their acceptance. The core lasts approximately 43 months at a capacity factor of 70%, and the cost of heat is expected to be 2 to 2.5 cents/kWh

  3. A cost-effective evaluation of biomass district heating in rural communities

    International Nuclear Information System (INIS)

    Hendricks, Aaron M.; Wagner, John E.; Volk, Timothy A.; Newman, David H.; Brown, Tristan R.

    2016-01-01

    Highlights: • Develop a cost-effective model using secondary data examining delivering heat through Biomass District Heating (BDH). • Eight of ten rural villages studied could cost-effectively deliver heat through BDH below the 2013 price of heating oil. • 80% of the annual cost of BDH was attributable to capital expenses. • Erratic fuel oil prices substantially impact future feasibility. • Village level feasibility is highly-influenced by the presence of large heat demanders. - Abstract: The economic feasibility of Biomass District Heating (BDH) networks in rural villages is largely unknown. A cost-effective evaluation tool is developed to examine the feasibility of BDH in rural communities using secondary data sources. The approach is unique in that it accounts for all the major capital expenses: energy center, distribution network, and energy transfer stations, as well as biomass procurement. BDH would deliver heat below #2 fuel oil in eight of the ten rural study villages examined, saving nearly $500,000 per year in heating expenses while demanding less than 5% of the forest residues sustainably available regionally. Capital costs comprised over 80% of total costs, illuminating the importance of reaching a sufficient heat density. Reducing capital costs by 1% lowers total cost by $93,000 per year. Extending capital payment period length five years or lowering interest rates has the next highest influence decreasing delivered heat price 0.49% and 0.35% for each 1% change, respectively. This highlights that specific building heat is a strong determinant of feasibility given the relative influence of high-demanding users on the overall village heat-density. Finally, we use a stochastic analysis projecting future #2 fuel oil prices, incorporating historical variability, to determine the probability of future BDH feasibility. Although future oil prices drop below the BDH feasibility threshold, the villages retain a 22–53% probability of feasibility after

  4. Regulatory Barriers for Flexible Coupling of the Nordic Power and District Heating Markets

    DEFF Research Database (Denmark)

    Skytte, Klaus; Olsen, Ole Jess

    2016-01-01

    that the choice of technologies for heat generation is mainly driven by outdated policies and tax conditions that create barriers for additional flexibility in the overall energy system. However, the balancing markets may be a main driver for introducing more electric boilers into DH and thereby increase its......Large share of variable renewable energy sources (VRE) is being deployed in the Nordic countries, especially wind power. This calls for additional flexibility of the power market. With the right coupling to the underlying national and local district heating (DH) markets, large shares of flexibility...

  5. Diagnosis of district potential in terms of renewable energies. Report 1 - Present situation: Assessment of renewable energy production, Identification and quantification of territory's potentialities in terms of renewable energies

    International Nuclear Information System (INIS)

    2010-10-01

    After a presentation of the Gers district context (geography, administrative organisation, demography, housing, economy, expertise), the report presents the energy situation, an overview of the solar thermal sector (installations and installers), of the solar photovoltaic sector (existing and projected installations, installers), of hydroelectricity, of wood-energy (individual heating, industrial heating plants, planned installations), of wind energy, of biogas, and of geothermal energy (existing and planned installations). It proposes an assessment of these energies as a whole. Then, after an overview of the district situation with respect to national objectives and to other districts of the region, the study reports an identification and quantification of potentialities in terms of theoretical resources for different energy sources (solar, wind, hydraulic, wood, methanization, valorizable biomass, geothermal, and agri-fuels). Avoided CO 2 emissions are assessed

  6. Proposal for a district heat supply system

    International Nuclear Information System (INIS)

    Alefeld, G.

    1976-01-01

    A district heating scheme is proposed which makes it possible to use the waste heat from power stations for the supply of households and industry. The heat is stored by evaporation of ammonia salts or liquids with dissolved salts. Both substances are transported on existing rail- or waterways to heating stations near the consumers, and the heat recovered by reaction of the two components. Then the product of reaction is transported back to the power stations, and reactivated by heat again. Based on a cost estimation, it can be shown that the proposed heat transport with heat trains or ships, at distances up to 100 km, results in heat costs which are to-day already below that of heat from fuel oil. The investment required for the heat transport system is unusually low due to the use of transport ways which already exist. The district heating system is not only favourable in respect of the environment, but actually reduces its present strain, both at the consumer and at the power stations. The technical advantages of the suggested concept, especially the possibility of introducing it in stages, are discussed. The consequences for the national economy regarding the safety of supply and the trade balance, as well as for the public transport undertakings, are obvious, and therefore not included in the paper. (orig.) [de

  7. Limiting biomass consumption for heating in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2012-01-01

    -scale solar thermal, large heat pumps, geothermal heat, industrial surplus heat, and waste incineration. Where the energy density in the building stock is not high enough for DH to be economical, geothermal heat pumps can be recommended for individual heating systems, even though biomass consumption is higher......The utilisation of biomass poses large challenges in renewable energy systems while buildings account for a substantial part of the energy supply even in 100% renewable energy systems. In this paper the focus is on how the heating sector can reduce its consumption of biomass, thus leaving biomass...... for other sectors, but while still enabling a 100% renewable energy system. The analyses of heating technologies shows that district heating (DH) systems are important in limiting the dependence on biomass and create cost effective solutions. DH systems are especially important in renewable energy systems...

  8. Technoeconomic analysis of a biomass based district heating system. Paper no. IGEC-1-ID01

    International Nuclear Information System (INIS)

    Zhang, H.; Ugursal, V.I.; Fung, A.

    2005-01-01

    District energy systems (DES) that produce steam, hot water or chilled water at a central plant and then distribute that energy to buildings in the district for space heating, domestic hot water heating and air conditioning provide opportunities for increasing energy efficiency and reducing greenhouse gas (GHG) emissions. Use of biomass, such as wood, wood byproducts and wastes, fast-growing trees, agricultural crops and waste, in place of conventional fossil fuels to produce the thermal energy needed by a DES, presents further opportunities for reducing green house gas emissions as well as providing rural employment, and local solutions to rural and remote energy needs. In this paper, a technoeconomic analysis of a biomass based DES for a community center in Nova Scotia, Canada is presented. The methodology used to size and design the heating and ventilating system, as well as the biomass based DES is discussed. Annual energy requirement and biomass fuel consumption predictions are presented along with cost estimates. A comparative assessment of the economic feasibility of the system vis-a-vis a conventional oil fired system is conducted. While the results are specific to the particular application, the design and analysis methodology that is presented in the paper can be used for any similar application. (author)

  9. Heat transport analysis in a district heating and snow melting system in Sapporo and Ishikari, Hokkaido applying waste heat from GTHTR300

    International Nuclear Information System (INIS)

    Kasahara, Seiji; Kamiji, Yu; Terada, Atsuhiko; Yan Xing; Inagaki, Yoshiyuki; Murata, Tetsuya; Mori, Michitsugu

    2015-01-01

    A district heating and snow melting system utilizing waste heat from Gas Turbine High temperature Gas Reactor of 300 MW_e (GTHTR300), a heat-electricity cogeneration design of high temperature gas-cooled reactor, was analyzed. Application areas are set in Sapporo and Ishikari, the heavy snowfall cities in Northern Japan. The heat transport analyses are carried out by modeling the components in the system; pipelines of the secondary water loops between GTHTR300s and heat demand district and heat exchangers to transport the heat from the secondary water loops to the tertiary loops in the district. Double pipe for the secondary loops are advantageous for less heat loss and smaller excavation area. On the other hand, these pipes has disadvantage of more electricity consumption for pumping. Most of the heat demand in the month of maximum requirement can be supplied by 2 GTHTR300s and delivered by 9 secondary loops and around 5000 heat exchangers. Closer location of GTHTR300 site to the heat demand district is largely advantageous economically. Less decrease of the distance from 40 km to 20 km made the heat loss half and cost of the heat transfer system 22% smaller. (author)

  10. Straw fired district heating plants in Denmark. Facts and figures

    International Nuclear Information System (INIS)

    1996-05-01

    A series of analyses and comparisons of technical, operational and financial and environmental conditions relating to straw-fired district heating and cogeneration plants in Denmark during the period of May 1993 to June 1995. The report provides an insight into the potentials of straw as a source of energy, particularly in the case of countries where the cultivation of cereals represents a major part of the agricultural economy. (AB)

  11. Thermal Energy Corporation Combined Heat and Power Project

    Energy Technology Data Exchange (ETDEWEB)

    Turner, E. Bruce [Thermal Energy Corporation, Houston, TX (United States); Brown, Tim [Thermal Energy Corporation, Houston, TX (United States); Mardiat, Ed [Burns and McDonnell Engineering Company, Inc., Kansas City, MI (United States)

    2011-12-31

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nation's best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission providing top quality medical care and instruction without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power

  12. A transition perspective on alternatives to coal in Chinese district heating

    Directory of Open Access Journals (Sweden)

    Jingjing Zhang

    2015-06-01

    Full Text Available China accounts for half of the world’s annual coal consumption. Coal is the primary energy source for heating in urban areas, particularly in northern China. This causes significant challenges for urban air quality problems in China and greenhouse gases emissions. Urban district heating (DH systems penetration is very high in northern China. It supplies space heating to more than 80% of urban buildings in the area. Unlike the electricity and transportation sectors, the heating sector has received little attention from policy makers and researchers in China, DH systems are an enabling infrastructure which facilitates energy efficiency improvements and the use of renewable energy sources. This study explores the dynamics and possibility to expand alternative energy sources (natural gas, biomass, direct geothermal heat, ground-source heat pump, municipal waste heat, industrial waste heat for DH in China. We apply an analytical framework largely based on the multi-level perspective in socio-technical transitions theory, in which transitions are interpreted as the result of the functioning of niche, regime and landscape elements, and interactions between them. The study provides an integrated picture of the socio-technical structure and functioning of DH in China. The results show that an energy transition in Chinese DH systems has barely started. The system is characterised by stability of the coal-based DH regime, while a number of alternative niches are struggling to emerge. Among these, natural gas is the most successful example. However, at local level different niches present opportunities in terms of physical availability, economic viability and technical capacity to address changes in landscape pressures. A sustainable heat roadmap based on integrated energy planning and policy attention at the national level could be developed as one mechanism for instigating a much needed energy transition in DH in China.

  13. Comprehensive Assessment of the Potential for Efficient District Heating and Cooling and for High-Efficient Cogeneration in Austria

    Directory of Open Access Journals (Sweden)

    Richard Büchele

    2016-12-01

    Full Text Available In accordance with the EU Energy Efficiency Directive all Member States have to develop a comprehensive assessment of the potential for high-efficient CHP and efficient district heating and cooling by the end of 2015. This paper describes the approach and methodology used to determine the district heating potentials for Austria. In a first step actual and future heating and cooling demand in the building sector is evaluated using the techno-economic bottom-up model Invert/EE-Lab. Relevant infrastructure probably existing in 2025 is investigated and included into the analysis. Technical potentials for efficient technologies are calculated. After a classification of relevant regions into main and secondary regions a country-level cost-benefit-analysis is performed. The results indicate that there is a reasonable additional potential for district heating by the year 2025 under our central scenario assumptions and within sensitivity scenarios. Only in scenarios with high CO2-price or low gas price, CHP is an economically efficient solution to supply district heat.

  14. Production and Distribution Planning in District Heating Systems; Produktions- och distributionsplanering av fjaerrvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Kvarnstroem, Johan; Dotzauer, Erik; Dahlquist, Erik

    2006-12-15

    To produce heat and power is costly. Therefore it is important for the district heating companies to plan and optimize the production. The aim with the present project is to find out how also the distribution of heat can be considered in the planning. The principal procedure is to first construct a prediction of the heat demand, and then, given the demand prediction, construct the production plan. Due to the complexity of the problem, the need for mathematical models is obvious. The report gives a survey introduction to production planning in district heating systems and presents a model for the purpose. The model is developed for one of the district heating systems in Stockholm owned by the energy company Fortum. Traditionally, models for production planning do not consider the distribution network. In such models, usually the methodology Mixed Integer Programming (MIP) is used. The report suggests how the distribution network can be modeled as a MIP; it shall be possible to link the network model to existing software that models the production plants as MIP. The model is developed in the programming language GAMS. Analysis and results are presented. The results show that the suggested plans vary depending on if the distribution network is considered or not. The report also suggests how a simple sensitivity analysis of the production plans can be performed. This is necessary since there are always uncertainties associated with weather- and load predictions.

  15. Prospects of SMSNR development in Switzerland and the influence of the evolution of district heating networks

    International Nuclear Information System (INIS)

    Foskolos, K.; Brogli, R.

    1992-01-01

    Small dedicated heating reactors have been developed in Switzerland between 1985 and 1988. Two technological lines (HTGR and LWR) were under consideration. Although air pollution and particularly CO 2 emission are recognized as critical mid-term environmental problems, no break-through has been achieved for nuclear district heating current; centralized heat supply shares only an insignificant part of the heat market. The main criteria for selection of energy supply systems are still of financial nature, and the high investment connected to heat distribution networks makes district heating less attractive to customers and investors. SMSNR will have a chance to enter the heat market, if heating networks are already widely established. To achieve this, a shift of public opinion towards more general criteria has to take place, encouraged by governmental intervention. Size and nature of heating networks will be a decisive factor for the definition of the optimum plant size of a SMSNR. (orig.)

  16. Prospects of SMSNR development in Switzerland and the influence of the evolution of district heating networks

    International Nuclear Information System (INIS)

    Foskolos, K.; Brogli, R.

    1991-01-01

    Small dedicated heating reactors have been developed in Switzerland in the last five years. Two technological lines (HTGR and LWR) are still under consideration. Although air pollution and particularly CO 2 emission are recognized as critical midterm environmental problems, no breakthrough has been achieved for nuclear district heating; centralized heat supply shares only an insignificant part of the heat market. The main criteria for selection of energy supply systems are still of financial nature, and the high investment connected to heat distribution networks makes district heating less attractive to customers and investors. MSNR will have a chance to enter the heat market, if heating networks are already widely established. To achieve this, a shift of public opinion towards more general criteria has to take place, encouraged by governmental intervention. Size and nature of heating networks will be a decisive factor for the definition of the optimum plant size of a SMSNR. (author)

  17. Dynamic behavior of district heating systems

    International Nuclear Information System (INIS)

    Kunz, J.

    1994-01-01

    The goal of this study is to develop a simulation model of a hot water system taking into account the time dependent phenomena which are important for the operational management of such a system. A state of the art literature review has shown that there is no such model considering all parts from the generation of the heat at the plant to its consumption in the connected buildings so far. First, an exhaustive list of all dynamic phenomena occurring in district heating systems has been drawn and analyzed. Considering this list, this thesis proposes that a model which satisfies the criteria listed above can be developed by superposing four sub-models which are a dynamic model of the heat generation plant, a steady state model of the hydraulic calculation of the distribution network, a dynamic model of the thermal behavior of the network and a dynamic model of the heat consumers. The development of the four sub-models starts from the fundamental conservation equations for fluid systems, i.e. the conservation of mass, momentum and energy. The transformations of those general equations into simple calculation formulas show and justify the hypotheses made in the modeling process. The heat generation plant model itself is a set of sub-models: the models for steam boilers, hot water boilers and heat accumulators which take account of the dynamic evolution of the water temperature by a simple form of the energy conservation equation, as well as the steady state models for circulation pumps and pressurizers. Since the velocities in the network pipes are small, a consideration of steady states is adopted. A network model allowing to calculate the hydraulic variables in every point is adopted from the graph theory. The pressures and flow rates in the network are calculated at discrete time steps and they are considered to be constant for the duration between the time steps. (author) figs., tabs., refs

  18. Case Study of a Low-Energy District Heating Network in Energy-Efficient Settlements in Denmark

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Christensen, Jørgen Erik

    for low-energy houses in Denmark was investigated. We considered the influence of the human behavior on the energy demand, the importance of the degree of buildings connected to the network and a socio-economical comparison with ground source heat pumps. In the North European climate, the human behavior...... customer in a cost-effective and environmentally friendly way in areas with linear heat density down to 0.20 MWh/(m.year). This suggests that the mandatory connection of low-energy buildings to DH in specific areas, by means of detailed energy planning, would improve the energy efficiency and the overall...... socio-economy and it is strategic for effective energy policy. The levelised cost of energy in case of low-energy DH supply is competitive with the scenario based on ground source heat pumps. The investment costs represent up to three quarters of the overall expenditure, over a time horizon of 30 years...

  19. Predicting the Heat Consumption in District Heating Systems using Meteorological Forecasts

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg, orlov 31.07.2008; Madsen, Henrik

    that meteorological forecasts are available on-line. Such a service has recently been introduced by the Danish Meteorological Institute. However, actual meteorological forecasts has not been available for the work described here. Assuming the climate to be known the mean absolute relative prediction error for 72 hour......Methods for on-line prediction of heat consumption in district heating systems hour by hour for horizons up to 72 hours are considered in this report. Data from the district heating system Vestegnens Kraftvarmeselskab I/S is used in the investigation. During the development it has been assumed......, this is somewhat contrary to practice. The work presented is a demonstration of the value of the so called gray box approach where theoretical knowledge about the system under consideration is combined with information from measurements performed on the system in order to obtain a mathematical description...

  20. Design and safety aspects of nuclear district heating reactors

    International Nuclear Information System (INIS)

    Brogli, R.; Mathews, D.; Pelloni, S.

    1989-01-01

    Extensive studies on the rationale, the potential and the technology of nuclear district heating have been performed in Switzerland. Beside economics the safety aspects were of primary importance. Due to the high costs to transport heat the heating reactor tend to be small and therefore, minimally staffed and located close to population centers. Stringed safety rules are therefore applying. Gas cooled reactors are well suited as district heating reactors since they have due to their characteristics several inherent features, significant safety margins and a remarkable radioactivity retention potential. Some ways to mitigate the effects of water ingress and graphite corrosion are under investigation. (author). 5 refs, 3 figs

  1. The impact of lignocellulosic ethanol yields in polygeneration with district heating – A case study

    International Nuclear Information System (INIS)

    Starfelt, Fredrik; Daianova, Lilia; Yan, Jinyue; Thorin, Eva; Dotzauer, Erik

    2012-01-01

    Highlights: ► We model a system with ethanol, power and district heating production. ► Different ethanol yields are investigated from an overall system perspective. ► Yields of ethanol production have less importance for the profitability of the plant. -- Abstract: The development towards high energy efficiency and low environmental impact from human interactions has led to changes at many levels of society. As a result of the introduction of penalties on carbon dioxide emissions and other economic instruments, the energy industry is striving to improve energy efficiency and climate mitigation by switching from fossil fuels to renewable fuels. Biomass-based combined heat and power (CHP) plants connected to district heating networks have a need to find uses for the excess heat they produce in summer when the heat demand is low. On the other hand, the transport sector makes a substantial contribution to the increasing CO 2 emissions, which have to be reduced. One promising alternative to address these challenging issues is the integration of vehicle fuel production with biomass-based CHP plants. This paper presents the configuration and operating profits in terms of electricity, heat and ethanol fuel from cellulosic biomass. A case study of a commercial small scale CHP plant was conducted using simulation and modeling tools. The results clearly show that electricity production can be increased when CHP production is integrated with cellulosic ethanol production. The findings also show that the economic benefits of the energy system can be realized with near-term commercially available technology, and that the benefits do not rely solely on ethanol yields.

  2. Fiscal 1999 edition. Guidebook for introducing new energies in Kinki District; Kinki chiiki shin energy donyu guide book

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The captioned guidebook is composed of the following subjects: (1) the current status and problems of new energies (the energy status and the current status of new energies in Japan, and approaches to new energies in Japan); (2) the status of introduction and works in Kinki District (the outline of introduction and works in Kinki District on photovoltaic electric power generation, solar heat utilization, wind power generation, wastes power generation, clean energy fueled automobiles, cogeneration, fuel cells, unused energies, and other reproducible energies); (3) NEDO related supportive institutions (new energy introduction promotion projects by NEDO, and the outline of different supportive institutions); (4) new energy introduction flow (total flow leading to the introduction, and introduction flow by new energies); (5) the grand new energy prize in Kinki District (what is the grand new energy prize? and cases of prizes awarded in Kinki District); (6) new energy related supportive institutions (a list of the related institutions, and the outline of different supportive institutions); and (7) new energy consultation windows and contacts (consultation windows and contacts for general new energy aspects and the government related supportive institutions, and consultation windows by new energies). The grand new energy prize is awarded by New Energy Foundation as the 'institution for public recognition of new energy devices of the 21st century type'. (NEDO)

  3. Fiscal 1999 edition. Guidebook for introducing new energies in Kinki District; Kinki chiiki shin energy donyu guide book

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The captioned guidebook is composed of the following subjects: (1) the current status and problems of new energies (the energy status and the current status of new energies in Japan, and approaches to new energies in Japan); (2) the status of introduction and works in Kinki District (the outline of introduction and works in Kinki District on photovoltaic electric power generation, solar heat utilization, wind power generation, wastes power generation, clean energy fueled automobiles, cogeneration, fuel cells, unused energies, and other reproducible energies); (3) NEDO related supportive institutions (new energy introduction promotion projects by NEDO, and the outline of different supportive institutions); (4) new energy introduction flow (total flow leading to the introduction, and introduction flow by new energies); (5) the grand new energy prize in Kinki District (what is the grand new energy prize? and cases of prizes awarded in Kinki District); (6) new energy related supportive institutions (a list of the related institutions, and the outline of different supportive institutions); and (7) new energy consultation windows and contacts (consultation windows and contacts for general new energy aspects and the government related supportive institutions, and consultation windows by new energies). The grand new energy prize is awarded by New Energy Foundation as the 'institution for public recognition of new energy devices of the 21st century type'. (NEDO)

  4. On sizing of flow meters used in customer accounting devices in district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Ingimundarson, Ari; Wollerstrand, J.; Arvastson, Lars

    1998-12-31

    The paper deals with accuracy problems when heat energy consumption in district heating (DH) systems is calculated by measuring the DH water flow rate and its cooling. An investigation on the influence that sizing of flow meters used has on the accuracy of DH water flow measurements in a typical DH subscriber station is presented. Furthermore the consequences of the choice of flow meter size on energy metering accuracy is studied. The goal is to determine rules leading to optimal sizing of the flow meters 9 refs, 14 figs

  5. Heat-pump-centered integrated community energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzle, W.J.; Brett, C.E.; Seppanen, M.S.

    1979-12-01

    The heat-pump-centered integrated community energy system (HP-ICES) supplies district heating and cooling using heat pumps and a thermal energy storage system which is provided by nature in underground porous formations filled with water, i.e., aquifers. The energy is transported by a two-pipe system, one for warm water and one for cool water, between the aquifers and the controlled environments. Each energy module contains the controlled environments, an aquifer, wells for access to the aquifer, the two pipe water distribution system and water source heat pumps. The heat pumps upgrade the energy in the distribution system for use in the controlled environments. Economically, the system shows improvement on both energy usage and capital costs. The system saves over 60% of the energy required for resistance heating; saves over 30% of the energy required for most air-source heat pumps and saves over 60% of the energy required for gas, coal, or oil heating, when comparing to energy input required at the power plant for heat pump usage. The proposed system has been analyzed as demonstration projects for a downtown portion of Louisville, Kentucky, and a section of Fort Rucker, Alabama. The downtown Louisville demonstration project is tied directly to major buildings while the Fort Rucker demonstration project is tied to a dispersed subdivision of homes. The Louisville project shows a payback of approximately 3 y, while Fort Rucker is approximately 30 y. The primary difference is that at Fort Rucker new heat pumps are charged to the system. In Louisville, either new construction requiring heating and cooling systems or existing chillers are utilized. (LCL)

  6. Heat Roadmap Europe 2

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    Many strategies have already been proposed for the decarbonisation of the EU energy system by the year 2050. These typically focus on the expansion of renewable energy in the electricity sector and subsequently, electrifying both the heat and transport sectors as much as possible. In these strate......Many strategies have already been proposed for the decarbonisation of the EU energy system by the year 2050. These typically focus on the expansion of renewable energy in the electricity sector and subsequently, electrifying both the heat and transport sectors as much as possible....... In these strategies, the role of district heating has never been fully explored system, nor have the benefits of district heating been quantified at the EU level. This study combines the mapping of local heat demands and local heat supplies across the EU27. Using this local knowledge, new district heating potentials...... are identified and then, the EU27 energy system is modelled to investigate the impact of district heating. The results indicate that a combination of heat savings, district heating in urban areas, and individual heat pumps in rural areas will enable the EU27 to reach its greenhouse gas emission targets by 2050...

  7. Design of SES-10 nuclear reactor for district heating

    International Nuclear Information System (INIS)

    Cuttler, J.M.

    1991-01-01

    The SES-10 units are unpressurized, pool-type nuclear reactors of 10 MW rating, designed for supplying energy to hot water district heating systems, economically and without pollution. Water for heat distribution is brought to a maximum temperature of 85 o C. Conventional heating units supplement the output from SES-10 units for peak load and during maintenance. The SES-10 is housed in a low-cost building, with a double-walled pool in the ground. A naturally circulating primary system and a pumped secondary system transport heat from the reactor to the distribution system. The unit is fully automated and easy to maintain. Because of the many active and passive safety features, it is feasible to license the SES-10 for operation in a city and easy to explain it to the public for their acceptance. The core lasts approximately 43 months at a capacity factor of 70%, and the cost of heat is expected to be 2 to 2.5 cents/kWh. (author) 8 figs

  8. Design of A District Heating System Including The Upgrading of Residual Industrial Waste Heat

    NARCIS (Netherlands)

    Falcao, P.W.; Mesbah, A.; Suherman, M.V.; Wennekes, S.

    2005-01-01

    This study was aimed to evaluate the feasibility of using a waste heat stream from DSM for a District Heating System. A conceptual design was carried out with emphasis on the unit for upgrading the residual waste heat. Having reviewed heat pump technology, mechanical heat pump was found to be the

  9. Low-temperature nuclear heat applications: Nuclear power plants for district heating

    International Nuclear Information System (INIS)

    1987-08-01

    The IAEA reflected the needs of its Member States for the exchange of information in the field of nuclear heat application already in the late 1970s. In the early 1980s, some Member States showed their interest in the use of heat from electricity producing nuclear power plants and in the development of nuclear heating plants. Accordingly, a technical committee meeting with a workshop was organized in 1983 to review the status of nuclear heat application which confirmed both the progress made in this field and the renewed interest of Member States in an active exchange of information about this subject. In 1985 an Advisory Group summarized the Potential of Low-Temperature Nuclear Heat Application; the relevant Technical Document reviewing the situation in the IAEA's Member States was issued in 1986 (IAEA-TECDOC-397). Programme plans were made for 1986-88 and the IAEA was asked to promote the exchange of information, with specific emphasis on the design criteria, operating experience, safety requirements and specifications for heat-only reactors, co-generation plants and power plants adapted for heat application. Because of a growing interest of the IAEA's Member States about nuclear heat employment in the district heating domaine, an Advisory Group meeting was organized by the IAEA on ''Low-Temperature Nuclear Heat Application: Nuclear Power Plants for District Heating'' in Prague, Czechoslovakia in June 1986. The information gained up to 1986 and discussed during this meeting is embodied in the present Technical Document. 22 figs, 11 tabs

  10. Regional energy system optimization - Potential for a regional heat market

    International Nuclear Information System (INIS)

    Karlsson, Magnus; Gebremedhin, Alemayehu; Klugman, Sofia; Henning, Dag; Moshfegh, Bahram

    2009-01-01

    Energy supply companies and industrial plants are likely to face new situations due to, for example, the introduction of new energy legislation, increased fuel prices and increased environmental awareness. These new prerequisites provide companies with new challenges but also new possibilities from which to benefit. Increased energy efficiency within companies and increased cooperation between different operators are two alternatives to meet the new conditions. A region characterized by a high density of energy-intensive processes is used in this study to find the economic potential of connecting three industrial plants and four energy companies, within three local district heating systems, to a regional heat market, in which different operators provide heat to a joint district heating grid. Also, different investment alternatives are studied. The results show that the economical potential for a heat market amounts to between 5 and 26 million EUR/year with payback times ranging from two to eleven years. However, the investment costs and the net benefit for the total system need to be allotted to the different operators, as they benefit economically to different extents from the introduction of a heat market. It is also shown that the emissions of CO 2 from the joint system would decrease compared to separate operation of the systems. However, the valuation of CO 2 emissions from electricity production is important as the difference of emitted CO 2 between the accounting methods exceeds 650 kton/year for some scenarios

  11. Preliminary business plan: Plzen district heating system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The district heating system of the City of Plzen, Czech Republic, needs to have physical upgrades to replace aging equipment and to comply with upcoming environmental regulations. Also, its ownership and management are being changed as a result of privatization. As majority owner, the City has the primary goal of ensuring that the heating needs of its customers are met as reliably and cost-effectively as possible. This preliminary business plan is part of the detailed analysis (5 reports in all) done to assist the City in deciding the issues. Preparation included investigation of ownership, management, and technology alternatives; estimation of market value of assets and investment requirements; and forecasting of future cash flow. The district heating system consists of the Central Plzen cogeneration plant, two interconnected heating plants [one supplying both hot water and steam], three satellite heating plants, and cooperative agreements with three industrial facilities generating steam and hot water. Most of the plants are coal-fired, with some peaking units fired by fuel oil.

  12. Dream aim reached: 1300 operational district heating supply connections

    Energy Technology Data Exchange (ETDEWEB)

    Handl, K H

    1988-11-01

    Only four years after the beginning of operation of the first consumer station at Klingnau on October 19, 1984, the Regional District Heating Supply in the Lower Aare Valley (Refuna) can already show 1295 operational district heating connections. There are almost 300 more than one year ago and about 20% more than originally foreseen during this short construction time. As in recent years, the number of consumers has significantly increased during a 'connection boom' in the first autumn weeks. The total heat supply power amounts to 51500 kilowatts. This is 70% of the power foreseen in the final stage. 3 figs., 1 tab.

  13. Integration of biomass into urban energy systems for heat and power. Part I: An MILP based spatial optimization methodology

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of multi-biomass supply chains and biomass to biofuel processing technologies. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents a mixed integer linear programming (MILP) approach to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the representation of the relationships between the biomass processing and biofuel energy conversion steps, and on the trade-offs between centralized district heating plants and local heat generation systems. After a description of state of the art and research trends in urban energy systems and bioenergy modelling, an application of the methodology to a generic case study is proposed. With the assumed techno-economic parameters, biomass based thermal energy generation results competitive with natural gas, while district heating network results the main option for urban areas with high thermal energy demand density. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  14. Playing Hot and Cold: How Can Russian Heat Policy Find Its Way Toward Energy Efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Roshchanka, Volha; Evans, Meredydd

    2012-09-15

    The Russian district heating has a large energy-saving potential, and, therefore, need for investments. The scale of needed investments is significant: the government estimates that 70 percent of the district heating infrastructure needs replacement or maintenance, a reflection of decades of under investment. Government budgets will be unable to cover them, and iInvolvingement ofthe private industry will be critical to attracting the necessary investementis necessary. For private parties to invest in district heating facilities across Russia, and not only in pockets of already successful enterprises, regulators have to develop a comprehensive policy that works district heating systems under various conditionscost-reflective tariffs, metering, incentives for efficiency and social support for the neediest (instead of subsidies for all).

  15. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    International Nuclear Information System (INIS)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    This study investigated the performances of five different substation configurations in single-family houses supplied with ULTDH (ultra-low-temperature district heating). The temperature at the heat plant is 46 °C and around 40 °C at the substations. To avoid the proliferation of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic performance of the substations, separate models were built based on standard assumptions. The relative heat and electricity delivered for preparing DHW were calculated. The results showed that substations with storage tanks and heat pumps have high relative electricity demand, which leads to higher integrated costs considering both heat and electricity for DHW preparation. The substations with in-line electric heaters have low relative electricity usage because very little heat is lost due to the instantaneous DHW preparation. Accordingly, the substations with in-line electric heaters would have the lowest energy cost for DHW preparation. To achieve optimal design and operation for the ULTDH substation, the electricity peak loads of the in-line electric heaters were analysed according to different DHW-heating strategies. - Highlights: • Five different substations supplied with ultra-low-temperature district heating were measured. • The relative heat and electricity delivered for DHW preparation were modelled for different substations. • The levelized cost of the five substations in respect of DHW preparation was calculated. • The feasibility of applying instantaneous electric heater with normal power supply was tested.

  16. Space heating with ultra-low-temperature district heating - a case study of four single-family houses from the 1980s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2017-01-01

    . These benefits can be maximized if district heating temperatures are lowered as much as possible. In this paper we report on a project where 18 Danish single-family houses from the 1980s were supplied by ultra-low temperature district heating with a supply temperature as low as 45 degrees C for the main part...... of the year. The houses were heated by the existing hydraulic radiator systems, while domestic hot water was prepared by use of district heating and electric boosting. This paper evaluated the heating system temperatures that were necessary in order to maintain thermal comfort in four of the houses. First...... the four houses were modelled in the building simulation tool IDA ICE. The simulation models included the actual radiator sizes and the models were used to simulate the expected thermal comfort in the houses and resulting district heating return temperatures. Secondly measurements of the actual district...

  17. A final report to investigate the state-of-the-art of district heating metering systems

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    This study investigates the existing heat meters and metering schemes utilized to measure the amount of energy extracted from a district heating hot water supply by a heat exchanger in domestic applications. Various types of commercially available heat meters are tabulated, including a recently developed Dutch device which output an analogue signal proportional to the energy extracted. Discussions outline methods of potentially cost effective multimetering concepts for use in new housing and apartment applications, as well as single family dwelling units. Data retrieval systems, with potential metering/monitoring schemes are discussed, including a proposed network for remote sensing, central integrating and tabulating function applicable to multi-dwelling unit installations. 5 refs., 9 figs., 1 tab.

  18. Prospects for development of heat supply systems in high-rise districts

    Science.gov (United States)

    Zhila, Viktor; Solovyeva, Elena

    2018-03-01

    The article analyzes the main advantages and disadvantages of centralized and decentralized heat supply systems in high-rise districts. The main schemes of centralized heat supply systems are considered. They include centralized heat supply from boiler houses, centralized heat supply from autonomous heat sources, heat supply from roof boiler houses and door-to-door heating supply. For each of these variant, the gas distribution systems are considered and analyzed. These systems vary depending on the heat source location. For each of these systems, technical and economic indicators are taken into account, the analysis of which allows choosing the best option for districts where high-rise buildings predominate.

  19. Electricity eliminates rust from district heat pipes. The new deoxidation method works on radiators

    Energy Technology Data Exchange (ETDEWEB)

    Sonninen, R.; Leisio, C.

    1996-11-01

    Oxygen dissolving in district heating water through district heat pipes and pipe joints made of plastic corrodes many small and medium-size district heating systems, resulting in heat cuts in the buildings connected to these systems. IN some cases, corrosion products have even circulated back to district heating power plants, thus hampering heat generation in the worst of cases. People residing in blocks of flats where some radiator components are made of plastic also face a similar problem, though on a smaller scale. A small and efficient electrochemical deoxidation cell has now been invented to eliminate this nuisance, which occurs particularly in cold winter weather. (orig.)

  20. Development, validation and application of a fixed district heating model structure that requires small amounts of input data

    International Nuclear Information System (INIS)

    Aberg, Magnus; Widén, Joakim

    2013-01-01

    Highlights: • A fixed model structure for cost-optimisaton studies of DH systems is developed. • A method for approximating heat demands using outdoor temperature data is developed. • Six different Swedish district heating systems are modelled and studied. • The impact of heat demand change on heat and electricity production is examined. • Reduced heat demand leads to less use of fossil fuels and biomass in the modelled systems. - Abstract: Reducing the energy use of buildings is an important part in reaching the European energy efficiency targets. Consequently, local energy systems need to adapt to a lower demand for heating. A 90% of Swedish multi-family residential buildings use district heating (DH) produced in Sweden’s over 400 DH systems, which use different heat production technologies and fuels. DH system modelling results obtained until now are mostly for particular DH systems and cannot be easily generalised. Here, a fixed model structure (FMS) based on linear programming for cost-optimisaton studies of DH systems is developed requiring only general DH system information. A method for approximating heat demands based on local outdoor temperature data is also developed. A scenario is studied where the FMS is applied to six Swedish DH systems and heat demands are reduced due to energy efficiency improvements in buildings. The results show that the FMS is a useful tool for DH system optimisation studies and that building energy efficiency improvements lead to reduced use of fossil fuels and biomass in DH systems. Also, the share of CHP in the production mix is increased in five of the six DH systems when the heat demand is reduced

  1. Heat savings in buildings in a 100% renewable heat and power system in Denmark with different shares of district heating

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Balyk, Olexandr

    2014-01-01

    levels of heat savings, which can be implemented by reducing heat transmission losses through building elements and by installing ventilation systems with heat recovery, in different future Danish heat and power system scenarios. Today almost 50% of heat demand in Denmark is covered by district heating......The paper examines implementation of heat saving measures in buildings in 2050, under the assumption that heat and power supply comes solely from renewable resources in Denmark.Balmorel – a linear optimisation model of heat and power sectors in Denmark is used for investigating economically viable....... A further expansion of district heating network in Denmark is assessed and penetration of heat savings is analysed in this context.If all heat saving measures, included in the model, are implemented, heat demand in Danish buildings in 2050 could be reduced by around 40%. Results show that it is cost...

  2. Urban Greening as part ofDistrict Energy Services

    OpenAIRE

    MELIN, Sébastien

    2017-01-01

    Work carried out during this master’s thesis is about urban greening and its close integration with district energy systems. Urban greening is the fact to develop green infrastructures (parks, street trees, ...) instead of grey infrastructures (buildings, roads, ...) in cities. Despite that the actual economic value of green infrastructure is less appreciated at first glance and very difficult to valorize, urban greening has many undeniable advantages such as reducing pollution and heat islan...

  3. Primary Energy of the District city and Suburb

    Science.gov (United States)

    Pitonak, Anton; Lopusniak, Martin; Bagona, Miloslav

    2017-10-01

    In member states of the European Union, portion of buildings in the total consumption of energy represents 40 %, and their share in CO2 emissions represents 35 %. Taking into account the dependence of the European Union on import of energy, this represents a large quantity of energy and CO2 in spite of the fact that effective solutions for the reduction of energy demand of buildings exist. The European Union adopted three main commitments for fulfilment of criteria by year 2020 in the 20-20-20 Directive. Based on this Directive Slovakia declares support for renovating the building stock. The goal of the paper was to prove that renovation of the building stock is environmentally and energy preferably as construction of new buildings. In the paper, the settlement unit with the suburban one were compared. Both territories are dealt with in Kosice city, in Slovakia. The settlement units include apartment dwelling houses, amenities, parking areas and green. Suburban part contains family houses. The decisive factor for the final assessment of the buildings was global indicator. Global indicator of the energy performance is primary energy. The new building must meet minimum requirements for energy performance and it must be classified to energy class A1 since 2016, and to energy class A0 since 2020. The paper analyses the effects of the use of different resources of heat considering the global indicator. Primary energy was calculated and based on comparable unit. The primary energy was accounted for on the built-up area, area corresponding to district city and suburb, number of inhabitants. The study shows that the lowest values of global indicator are achieved by using wood. The highest values of global indicator are achieved by using electricity or district heating as an energy source. The difference between the highest and lowest value is 87 %. Primary energy based on inhabitant is 98 % lower in settlement unit compared to the suburban one.

  4. Renewable energy options in the Hradec Kralove and Pardubice districts, Eastern Bohemia

    International Nuclear Information System (INIS)

    Boye Olesen, G.; Beranovski, J.

    1993-06-01

    A detailed evaluation of a number of potential renewable energy sources in the districts of Hradec Kralove and Pardubice in Northern Bohemia ( Czech Republic). The possible uses of solar energy in relation to solar water heating and district heating were analyzed. The use of wind power by connecting wind turbines to the grid was not considered to be cost effective owing to low wind resources in this area (mean wind speed at 10m height is below 3 m/s). Possibilities for producing methane were investigated in relation to manures, sewage sludges and wet organic household and industrial wastes. Biomass fuel resources were examined from the point of view of straw, wood chips and biomass crops. Hydroelectric plants already exist and there are some resources of geothermal heat at a lower temperature. Estimates are given of renewable energy potentials dealt with, showing current available resources and potential resources if 50% of household wastes are sorted in organic and inorganic fractions, if 20% of sugar wastes is used for producing methane, if use of wood chips significantly increases and if waste water plants are contructed in Hradec Kralove and Novy Bydzov. These changes could take place before the year 2000. Animal manures, straw and wood resources cover 80% of renewable energy resources potential, excluding solar energy and biomass crops. The compiled data also gives information on estimated investment and running costs. (AB)

  5. Feasibility Study on Solar District Heating in China

    DEFF Research Database (Denmark)

    Huang, Junpeng; Fan, Jianhua; Furbo, Simon

    This paper analyzes the feasibility of developing solar district heating (SDH) in China from the perspective of incentive policy, selections of technical route, regional adaptability and economic feasibility for clean heating. Based on the analyzation, this proposes a road map for the development...

  6. Miscellaneous investigations. Subreport 3; CO{sub 2}-reductions in low-energy buildings and communities by implementation of low-temperature district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Brand, M. (DTU-BYG, Kgs. Lyngby (Denmark)); Kaarup Olsen, P. (COWI A/S, Kgs. Lyngby (Denmark))

    2011-05-15

    The report focuses on possibilities of how to further decrease CO{sub 2} emissions by implementation of low-temperature district heating (LTDH) in areas with new low-energy buildings as well as in areas with existing buildings. In the first chapter, three different sites where LTDH is considered are reported. The first site is in Solbjerg near Aarhus, where 104 low-energy single-family houses are planned to be built. Calculations for a LTDH network (60/30 deg. C) have been made in the program TERMIS. The results show that depending on the houses being built as low-energy class 1 or 2, a cost saving potential of 6-13% can be achieved compared to traditional district heating (DH). The CO{sub 2}-reduction potential is 4.4-7.5 tonnes per year. The second reported site is an area with single-family houses built in the 1970s in Skjoldhoejparken in Tilst near Aarhus. Eight single-family houses have been investigated. Refurbishment can reduce the heat demand and make the houses more suitable for LTDH, but even with subsidy it is difficult to motivate the building owners to make energy saving initiatives. Analyses show that if the DH supply temperature is lowered gradually from 80 deg. C to 60 deg. C, depending on the outdoor temperature, the heat loss in the existing pipe network for the eight houses can be reduced by 20%. An even larger potential can be achieved with replacement of the existing pipe system. The third site is neighbourhood in Soenderby in Hoeje Taastrup with 75 single-family houses from the 1990s. The existing DH network is poor and has a heat loss of more than 40%. With LTDH it will be possible to reduce the network heat loss to 15% or lower. The CO{sub 2}-emission could be reduced by about 66 tonnes per year. In the second chapter are described existing district heating systems in Aarhus and Hoeje Taastrup. The average DH temperature is currently 80-77/47-42 deg. C, so there is a potential for LTDH. The network heat loss in the DH systems is 15

  7. Potentials of district heating grids for climate protection up to the year 2020; Potenziale von Nah- und Fernwaermenetzen fuer den Klimaschutz bis zum Jahr 2020

    Energy Technology Data Exchange (ETDEWEB)

    Fischedick, Manfred; Schuewer, Dietmar; Venjakob, Johannes; Merten, Frank; Mitze, Dirk [Wuppertal Inst. fuer Klima, Umwelt, Energie GmbH (Germany); Nast, Michael; Schillings, Christoph; Krewitt, Wolfram [Deutsches Zentrum fuer Luft- und Raumfahrt (Germany). Inst. fuer Technische Thermodynamik; Bohnenschaefer, Werner; Lindner, Klaus [Institut fuer Energetik und Umwelt, Leipzig (Germany)

    2007-12-15

    District heat is one of Germany's traditional end use energy sources, with a connected capacity of about 57,000 MWth. The heat is distributed via 1,400 grids with a total length of about 19,000 km. The number of households supplied with district heat increased from 9.7 percent in 1993 to 13.7 percent in 2003. About 550 out of about 1,000 German utilities provide district heat to households. During the past few years, the connected capacity of district heating has been stagnating. This is the result of thermal insulation measures, dismantling and abandonment of supply grids, but also of changes on the demand side that can still be compensated by concentration and expansion potentials.

  8. Simulating conditions for combined heat and power in the Swedish district heating sector

    International Nuclear Information System (INIS)

    Knutsson, David

    2005-01-01

    The most important issues in the European energy sector today are how to increase competitiveness on the energy markets, reduce both CO2 emissions and dependence on imported fuels. These issues are also important aspects of Swedish energy policy. In Sweden, the district heating (DH) sector has commonly been used to achieve Swedish energy policy goals. However, the ongoing integration and deregulation of the energy markets in Europe now means that the Swedish DH sector can also play an important role in achieving international targets. This thesis investigates the extent to which the Swedish DH sector can contribute to compliance with current energy policy targets, both international and Swedish. The study consisted of simulations of the Swedish DH sector response to various policy instruments in a model that takes the local features of virtually all Swedish DH systems into account. The findings show, for example, that there is great potential for combined heat and power (CHP) generation in the Swedish DH sector. By exporting this CHP electricity to other European countries with less effective and fossil dependent power generation plants, the CO2 emissions from the European energy sector could be substantially reduced. This would also result in increased security of supply and competitiveness in the EU, since fuel use would be more effective. In Sweden, increased CHP generation would also be a way of maintaining an effective national security of supply of power

  9. A study of a small nuclear power plant system for district heating

    International Nuclear Information System (INIS)

    Imamura, Mitsuru; Sato, Kotaro; Narabayashi, Tadashi; Shimazu, Yoichiro; Tsuji, Masashi

    2008-01-01

    We have studied nuclear power plant for district heating. Already some towns and villages in Hokkaido have requested small reactor for district heating. Using existing technology allows us to shorten development period and to keep a lid on development cost. We decided to develop new reactor based on 'MUTSU' reactor technology. 'MUTSU' had already proved its safety. And 'MUTSU' reactor was boron free reactor. It allows plant system to become more compact and simple. And load following capability by core reactivity become bigger. It means to reduce control rod movement. It leads to dependability enhancement. We calculated burn-up calculation of erbium addition fuel. In the result the core life became about 10 years. In the district heating system, there are not only district heating but also snow melting with warm water. It uses steam condenser's heat, which are only discharged now. This small plant has passive safety system. It is natural cooling of containment vessel. In case of loss of coolant accident, decay heat can remove by natural convection air cooling after 6 hours. Decay heat within 6 hours can remove by evaporative heat transfer of pool on containment vessel. (author)

  10. High-Temperature Thermal Energy Storage for electrification and district heating

    DEFF Research Database (Denmark)

    Pedersen, A. Schrøder; Engelbrecht, K.; Soprani, S.

    stability upon thermal cycling. The most promising material consists of basalt, diabase, and magnetite, whereas the less suited rocks contain larger proportions of quartz and mica. An HT-TES system, containing 1.5 m3 of rock pieces, was constructed. The rock bed was heated to 600 ˚C using an electric heater......The present work describes development of a High Temperature Thermal Energy Storage (HT-TES) system based on rock bed technology. A selection of rocks was investigated by thermal analysis in the range 20-800 ˚C. Subsequently, a shortlist was defined primarily based on mechanical and chemical...... to simulate thermal charging from wind energy. After complete heating of the rock bed it was left fully charged for hours to simulate actual storage conditions. Subsequently the bed discharging was performed by leading cold air through the rock bed whereby the air was heated and led to an exhaust. The results...

  11. The Economics of Connecting of Small Buildings to Geothermal District Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2003-03-01

    Many of the communities co-located with geothermal resources are very small and as a result the buildings they contain tend to be small as well. Generally, small buildings (10,000 ft2) use heating systems which are not hot water based. Since geothermal district heating systems deliver hot water, the costs associated with the conversion of small building heating systems to use hot water for heating is an issue of great influence in terms of the potential development of such systems. This paper examines the typical retrofit costs associated with conversion of small buildings and the level of savings necessary to attract the interest of owners. In general, the prospects for connection of such buildings based only on energy savings is not positive.

  12. The economics of connecting of small buildings to geothermal district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2001-01-01

    Many of the communities co-located with geothermal resources are very small and as a result the buildings they contain tend to be small as well. Generally, small buildings (10,000 ft2) use heating systems which are not hot water based. Since geothermal district heating systems deliver hot water, the costs associated with the conversion of small building heating systems to use hot water for heating is an issue of great influence in terms of the potential development of such systems. This paper examines the typical retrofit costs associated with conversion of small buildings and the level of savings necessary to attract the interest of owners. In general, the prospects for connection of such buildings based only on energy savings is not positive.

  13. Performance assessment of a novel hybrid district energy system

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2012-01-01

    In this paper, a new hybrid system for improving the efficiency of geothermal district heating systems (GDHSs) is proposed. This hybrid system consists of biogas based electricity production and a water-to-water geothermal heat pump unit (GHPU), which uses the waste heat for both heating and domestic hot water purposes. Electricity generated by the biogas plant (BP) is utilized to drive the GDHS's pumps, BP systems and the heat pump units. Both the biogas reactor heating unit and the heat pump unit utilize the waste heat from the GDHS and use the system as a heat source. The feasibility of utilizing a hybrid system in order to increase the overall system (GDHS + BP + GHPU) efficiency is then investigated for possible efficiency improvements. The Edremit GDHS in Turkey, which is selected for investigation in this case study, reinjects 16.8 MW of thermal power into the river at a low temperature; namely at 40 °C. Such a temperature is ideal for mesophilic bacterial growth in the digestion process during biogas production. 1.45 MW of biogas based electricity production potential is obtainable from the waste heat output of the Edremit GDHS. The average overall system efficiencies through the utilization of this kind of hybridized system approach are increased by 7.5% energetically and 13% for exergetically. - Highlights: ► A new hybrid system is proposed for improving the efficiency of geothermal district heating systems (GDHSs). ► The average overall system efficiencies are increased by 7.5% for energy and 13% for exergy, respectively. ► Various energetic and exergetic parameters are studied.

  14. Performance of ultra low temperature district heating systems with utility plant and booster heat pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Thorsen, Jan Eric; Markussen, Wiebke Brix

    2017-01-01

    The optimal integration of booster heat pumps in ultra low temperature district heating (ULTDH) was investigated and compared to the performance of low temperature district heating. Two possible heat production technologies for the DH networks were analysed, namely extraction combined heat...... temperature and the heat consumption profile. For reference conditions, the optimal return of ULTDH varies between 21 °C and 27 °C. When using a central HP to supply the DH system, the resulting coefficient of system performance (COSP) was in the range of 3.9 (-) to 4.7 (-) for equipment with realistic...... component efficiencies and effectiveness, when including the relevant parameters such as DH system pressure and heat losses. By using ULTDH with booster HPs, performance improvements of 12% for the reference calculations case were found, if the system was supplied by central HPs. Opposite results were found...

  15. High resolution heat atlases for demand and supply mapping

    DEFF Research Database (Denmark)

    Möller, Bernd; Nielsen, Steffen

    2014-01-01

    Significant reductions of heat demand, low-carbon and renewable energy sources, and district heating are key elements in 100% renewable energy systems. Appraisal of district heating along with energy efficient buildings and individual heat supply requires a geographical representation of heat...... demand, energy efficiency and energy supply. The present paper describes a Heat Atlas built around a spatial database using geographical information systems (GIS). The present atlas allows for per-building calculations of potentials and costs of energy savings, connectivity to existing district heat......, and current heat supply and demand. For the entire building mass a conclusive link is established between the built environment and its heat supply. The expansion of district heating; the interconnection of distributed district heating systems; or the question whether to invest in ultra-efficient buildings...

  16. Heat production thanks to waste water; Produire de l'energie grace aux eaux usees

    Energy Technology Data Exchange (ETDEWEB)

    Wellstein, J.

    2009-07-01

    The district heating of a large residential compound in Rheinfelden, Switzerland has been refurbished and extended in order to include new buildings and take advantage of the heat from the municipal waste water treatment plant. The initial system was built in 1976 and delivered heat to 3000 people in 1050 housing units, from three natural gas fired boilers with a total power of 3 MW. In 1993, a study supported by the Swiss Federal Office of Energy identified considerable possible energy savings. Some operational measures were implemented immediately. The recent extension of the district heating to a second residential compound in the neighbourhood increased the heat demand by about 50%. In the course of the planning process it was recognized that waste water from the joint municipal treatment plant of Rheinfelden and Magden - a second city located in the vicinity - has to be cooled by 5 K before being rejected into the Rhine River. This water is now used after filtration as the heat source for two big heat pumps (total 2.5 MW; working fluid: ammonia) supplying the refurbished and extended district heating. Peak heat demand is covered by natural gas boilers (total 9 MW) that can operate alone or in parallel with the heat pumps. Provision has been made to later connect another waste heat source to the district heating network: the municipal skating rink and swimming pool sport facility.

  17. Energetic and exergetic efficiencies of coal-fired CHP (combined heat and power) plants used in district heating systems of China

    International Nuclear Information System (INIS)

    Liao, Chunhui; Ertesvåg, Ivar S.; Zhao, Jianing

    2013-01-01

    The efficiencies of coal-fired CHP (combined heat and power) plants used in the district heating systems of China were analyzed with a thermodynamic model in the Hysys program. The influences of four parameters were evaluated by the Taguchi method. The results indicated that the extraction steam flow rate and extraction steam pressure are the most important parameters for energetic and exergetic efficiencies, respectively. The relations between extraction steam flow rate, extraction steam pressure and the energetic and exergetic efficiencies were investigated. The energetic and exergetic efficiencies were compared to the RPES (relative primary energy savings) and the RAI (relative avoided irreversibility). Compared to SHP (separate heat and power) generation, the CHP systems save fuel energy when extraction ratio is larger than 0.15. In the analysis of RAI, the minimum extraction ratio at which CHP system has advantages compared with SHP varies between 0.25 and 0.6. The higher extraction pressure corresponds to a higher value. Two of the examined plants had design conditions giving RPES close to zero and negative RAI. The third had both positive RPES and RAI at design conditions. The minimum extraction ratio can be used as an indicator to design or choose CHP plant for a given district heating system. - Highlights: • Extraction flow rate and extraction pressure are the most important parameters. • The exergetic efficiency depends on the energy to exergy ratio and system boundary. • The minimum extraction ratio is a key indicator for CHP plants. • Program Hysys and Taguchi method are used in this research

  18. Ontario Power Authority district energy research report : final report

    International Nuclear Information System (INIS)

    2010-02-01

    This paper presented an analysis of the technical and economic characteristics of district energy in Ontario. The market context for district energy was evaluated, and institutional issues that may influence the future development and operation of district energy systems in Ontario were explored. Technical, economic, and environmental analyses of district energy based on different neighbourhood sizes, types, and district energy systems were presented. Three case studies were included to demonstrate real world district energy applications. A set of interviews conducted with representatives of the province's district energy supply chain was also provided in order to provide a framework for district energy opportunities and challenges within the province. 22 tabs., 16 figs.

  19. Potentials of district heating grids for climate protection up to the year 2020; Potenziale von Nah- und Fernwaermenetzen fuer den Klimaschutz bis zum Jahr 2020

    Energy Technology Data Exchange (ETDEWEB)

    Fischedick, Manfred; Schuewer, Dietmar; Venjakob, Johannes; Merten, Frank; Mitze, Dirk [Wuppertal Inst. fuer Klima, Umwelt, Energie GmbH (Germany); Nast, Michael; Schillings, Christoph; Krewitt, Wolfram [Deutsches Zentrum fuer Luft- und Raumfahrt (Germany). Inst. fuer Technische Thermodynamik; Bohnenschaefer, Werner; Lindner, Klaus [Institut fuer Energetik und Umwelt, Leipzig (Germany)

    2007-12-15

    District heat is one of Germany's traditional end use energy sources, with a connected capacity of about 57,000 MWth. The heat is distributed via 1,400 grids with a total length of about 19,000 km. The number of households supplied with district heat increased from 9.7 percent in 1993 to 13.7 percent in 2003. About 550 out of about 1,000 German utilities provide district heat to households. During the past few years, the connected capacity of district heating has been stagnating. This is the result of thermal insulation measures, dismantling and abandonment of supply grids, but also of changes on the demand side that can still be compensated by concentration and expansion potentials.

  20. Geothermal district heating system feasibility analysis, Thermopolis, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Goering, S.W.; Garing, K.L.; Coury, G.; Mickley, M.C.

    1982-04-26

    The purpose of this study is to determine the technical and economic feasibility of constructing and operating a district heating system to serve the residential, commercial, and public sectors in Thermopolis. The project geothermal resource assessment, based on reviews of existing information and data, indicated that substantial hot water resources likely exist in the Rose Dome region 10 miles northeast of Thermopolis, and with quantities capable of supporting the proposed geothermal uses. Preliminary engineering designs were developed to serve the space heating and hot water heating demands for buildings in the Thermopolis-East Thermopolis town service area. The heating district design is based on indirect geothermal heat supply and includes production wells, transmission lines, heat exchanger units, and the closed loop distribution and collection system necessary to serve the individual customers. Three options are presented for disposal of the cooled waters-reinjection, river disposal, and agricultural reuse. The preliminary engineering effort indicates the proposed system is technically feasible. The design is sized to serve 1545 residences, 190 businesses, and 24 public buildings. The peak design meets a demand of 128.2 million Btu at production rates of 6400 gpm.

  1. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2013-01-01

    In this paper, the configuration of a district heating network which connects from the heating plant to the end users is optimized. Each end user in the network represents a building block. The connections between the heat generation plant and the end users are represented with mixed integer...... and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...... and it is optimized in terms of the net present cost. The optimization results indicates that the optimal DH network configuration is determined by multiple factors such as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding the pressure and temperature...

  2. Heat-pump-centered integrated community energy systems: system development summary

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1980-02-01

    An introduction to district heating systems employing heat pumps to enable use of low-temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service-water heating, and other thermal services. Otherwise-wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. These sources are abundant, and their use would conserve scarce resources and reduce adverse environmental impacts. More than one-quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less-scarce resources not practical in smaller, individual-building systems. Seven studies performed for the system development phase of the Department of Energy's Heat-Pump-Centered Integrated Community Energy Systems Project and to related studies are summarized. A concluding chapter tabulates data from these separately published studies.

  3. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.

    2005-01-01

    be applicable, and if on-line monitoring could improve the quality control. Water quality monitoring was applied as well as corrosion rate monitoring with linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), electrical resistance (ER) technique, mass loss and a crevice corrosion......Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...... cell for localized corrosion risk estimation. Important variations in corrosion rate due to changes in make-up water quality were detected with the continuous monitoring provided by ER and crevice cell, while LPR gave unreliable corrosion rates. The acquisition time of two-three days for EIS...

  4. High resolution heat atlases for demand and supply mapping

    Directory of Open Access Journals (Sweden)

    Bernd Möller

    2014-02-01

    Full Text Available Significant reductions of heat demand, low-carbon and renewable energy sources, and district heating are key elements in 100% renewable energy systems. Appraisal of district heating along with energy efficient buildings and individual heat supply requires a geographical representation of heat demand, energy efficiency and energy supply. The present paper describes a Heat Atlas built around a spatial database using geographical information systems (GIS. The present atlas allows for per-building calculations of potentials and costs of energy savings, connectivity to existing district heat, and current heat supply and demand. For the entire building mass a conclusive link is established between the built environment and its heat supply. The expansion of district heating; the interconnection of distributed district heating systems; or the question whether to invest in ultra-efficient buildings with individual supply, or in collective heating using renewable energy for heating the current building stock, can be based on improved data.

  5. Increasing RES Penetration and Security of Energy Supply by Use of Energy Storages and Heat Pumps in Croatian Energy System

    DEFF Research Database (Denmark)

    Krajačić, Goran; Mathiesen, Brian Vad; Duić, Neven

    2010-01-01

    electricity, heat and transport demands, and including renewable energy, power plants, and combined heat and power production (CHP) for district heating. Using the 2007 energy system the wind power share is increased by two energy storage options: Pumped hydro and heat pumps in combination with heat storages....... The results show that such options can enable an increased penetration of wind power. Using pumped hydro storage (PHS) may increase wind power penetration from 0.5 TWh, for existing PHS installations and up to 6 TWh for very large installations. Using large heat pumps and heat storages in combination...... with specific regulation of power system could additionally increase wind penetration for 0.37 TWh. Hence, with the current technologies installed in the Croatian energy system the installed pumped hydro-plant may facilitate more than 10% wind power in the electricity system. Large-scale integration of wind...

  6. Life Cycle Assessment of Miscanthus as a Fuel Alternative in District Heat Production

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Dalgaard, Tommy; Nguyen, T Lan T

    2013-01-01

    ) plant. Alternatively, we have simulated the combustion process of Miscanthus in a boiler, where only heat is produced. For NG similar scenarios are examined. Life Cycle Assessment (LCA) in relation to 1 MJ of heat production with Miscanthus fired in a CHP would lead to a Global Warming Potential (GWP......This study assesses the environmental performance of district heat production based on Miscanthus as a fuel input and compares it with Natural Gas (NG). As a baseline scenario, we assume that the process of energy conversion from Miscanthus to heat takes place in a Combined Heat and Power (CHP......) of -0.071 kg CO2-eq, a Non-Renewable Energy (NRE) use of -0.767 MJ primary, and 0.09 m2 Land Use (LU). In contrast, production of 1 MJ of heat with Miscanthus fired in a boiler would lead to a GWP of 0.005 kg CO2-eq, NRE use 0.172 MJ primary, and land use 0.063 m2-a. Miscanthus fired in a CHP performs...

  7. A Tale of Three District Energy Systems: Metrics and Future Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Pass, Rebecca Zarin; Wetter, Michael; Piette, Mary Ann

    2017-08-01

    Improving the sustainability of cities is crucial for meeting climate goals in the next several decades. One way this is being tackled is through innovation in district energy systems, which can take advantage of local resources and economies of scale to improve the performance of whole neighborhoods in ways infeasible for individual buildings. These systems vary in physical size, end use services, primary energy resources, and sophistication of control. They also vary enormously in their choice of optimization metrics while all under the umbrella-goal of improved sustainability. This paper explores the implications of choice of metric on district energy systems using three case studies: Stanford University, the University of California at Merced, and the Richmond Bay campus of the University of California at Berkeley. They each have a centralized authority to implement large-scale projects quickly, while maintaining data records, which makes them relatively effective at achieving their respective goals. Comparing the systems using several common energy metrics reveals significant differences in relative system merit. Additionally, a novel bidirectional heating and cooling system is presented. This system is highly energy-efficient, and while more analysis is required, may be the basis of the next generation of district energy systems.

  8. SODHA. A data program for minimizing the cost function of a solar farm with storage connected to a district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, R; Rolandsson, S

    1982-05-03

    SODHA is a program for minimizing the investment needed for a solar plant supplying a district heating system. The plant consists of a solar farm, storage and a heat exchanger connected to a district heating network. By using SODHA it is possible to optimize solar collector area storage volume, insulation thickness and magnitude of heat exchanger. The calculation gives the best estimated configuration of the system, within given margins and specified regulation principles. The program can be used for an arbitrary period, e.g. one season (year). This work is financed by NE, the National Swedish Board for Energy Source Development.

  9. A method of determining the thermal power demand of buildings connected to the district heating system with usage of heat accumulation

    Directory of Open Access Journals (Sweden)

    Turski Michał

    2017-01-01

    Full Text Available The paper presents a new method of determining the thermal power demand of buildings connected to the district heating system, which included the actual heat demand and the possibility of balancing the thermal power using the thermal storage capacity of district heating network and internal heat capacity of buildings. Moreover, the analysis of the effect of incidence of external air temperature and duration of episodes with the lowest outdoor temperatures on the thermal power demand of district heating system was conducted.

  10. Life Cycle Assessment of Miscanthus as a Fuel Alternative in District Heat Production

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Dalgaard, Tommy; Nguyen, Thu Lan Thi

    2013-01-01

    better than in the boilerfrom the stand point of GWP and savings in fossil fuels, but leads to a higher LU.A comparison between Miscanthus and NG shows that the former in spite of possessing advantage in reducing GWP and NRE use,additional land required for it could be seen as a disadvantage. Key words......This study assesses the environmental performance of district heat production based on Miscanthus as a fuel input and compares it with Natural Gas (NG). As a baseline scenario, we assume that the process of energy conversion from Miscanthus to heat takes place in a Combined Heat and Power (CHP...

  11. Optimal usage of low temperature heat sources to supply district heating by heat pumps

    DEFF Research Database (Denmark)

    Pieper, Henrik; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a theoretical study on the optimal usage of different low temperature heat sources to supply district heating by heat pumps. The study is based on data for the Copenhagen region. The heat sources were prioritized based on the coefficient of performance calculated for each hour...... and the covered demand of each heat source as well as required peak unit capacity. The results showed that heat pumps using different heat sources yield better performance than a heat pump based on a single one. The performance was influenced by the composition of the different heat sources. It was found that 78......% groundwater, 22% seawater and 0% air resulted in highest COP of 3.33 for the given heat demand. Furthermore, the implementation of rule based short term storage made peak units redundant. The variation in base load capacity showed that heat pumps utilizing the analyzed heat sources could perform very...

  12. Energy-efficient and cost-effective in-house substations bypass for improving thermal and DHW (domestic hot water) comfort in bathrooms in low-energy buildings supplied by low-temperature district heating

    DEFF Research Database (Denmark)

    Brand, Marek; Dalla Rosa, Alessandro; Svendsen, Svend

    2014-01-01

    temperature and additional cooling of bypass water by 3.9 °C, reducing the heat loss from the DH network by 13% and covering 40% of the heat used in the bathroom FH. The use of the bypass flow in bathroom FH is a cost-effective solution exploiting the heat that would otherwise be lost in the DH network......Using a bypass to redirect a small flow through the in-house DH (district heating) substation directly to the return pipe is a commonly used but energy-inefficient solution to keep the DH network “warm” during non-heating seasons. Instead, this water can be redirected to the bathroom FH (floor...... heating) to cool down further and thus reduce the heat lost from bypass operation while tempering the bathroom floor and guaranteeing fast provision of DHW (domestic hot water). We used the commercial software IDA-ICE to model a reference building where we implemented various solutions for controlling...

  13. Nuclear source of district heating in the north-east region of Russia

    International Nuclear Information System (INIS)

    Dolgov, V.V.

    1998-01-01

    The operation of the Bilibin Nuclear Co-generation Plant (BNCP) as a local district heating source is reviewed in this paper. Specific features of the BNCP power unit are given with special emphases on the components of the technological scheme, which are involved in the heat production and supply to the consumers. The scheme of steam extraction from the turbine, the flow diagram of steam in the turbine, as well as the three circuit heat removal system are described. The numerical characteristics of the nuclear heat supply system in various operating modes are presented. The real information characterizing current radiological conditions in the vicinity of the heat generation and distribution equipment is also presented in the paper. The BNCP technical and economical characteristics are compared with those of conventional energy sources. Both advantages and some problems revealed during the twenty-year experience of the BNCP nuclear heat utilization are generally assessed. Safety and reliability characteristics of the reactor and the heat supply system are also described. (author)

  14. The analysis of thermal network of district heating system from investor point of view

    Science.gov (United States)

    Takács, Ján; Rácz, Lukáš

    2016-06-01

    The hydraulics of a thermal network of a district heating system is a very important issue, to which not enough attention is often paid. In this paper the authors want to point out some of the important aspects of the design and operation of thermal networks in district heating systems. The design boundary conditions of a heat distribution network and the requirements on active pressure - circulation pump - influencing the operation costs of the centralized district heating system as a whole, are analyzed in detail. The heat generators and the heat exchange stations are designed according to the design heat loads after thermal insulation, and modern boiler units are installed in the heating plant.

  15. Heat Roadmap Europe: Identifying strategic heat synergy regions

    International Nuclear Information System (INIS)

    Persson, U.; Möller, B.; Werner, S.

    2014-01-01

    This study presents a methodology to assess annual excess heat volumes from fuel combustion activities in energy and industry sector facilities based on carbon dioxide emission data. The aim is to determine regional balances of excess heat relative heat demands for all third level administrative regions in the European Union (EU) and to identify strategic regions suitable for large-scale implementation of district heating. The approach is motivated since the efficiency of current supply structures to meet building heat demands, mainly characterised by direct use of primary energy sources, is low and improvable. District heating is conceived as an urban supply side energy efficiency measure employable to enhance energy system efficiency by increased excess heat recoveries; hereby reducing primary energy demands by fuel substitution. However, the importance of heat has long been underestimated in EU decarbonisation strategies and local heat synergies have often been overlooked in energy models used for such scenarios. Study results indicate that 46% of all excess heat in EU27, corresponding to 31% of total building heat demands, is located within identified strategic regions. Still, a realisation of these rich opportunities will require higher recognition of the heat sector in future EU energy policy. - Highlights: • EU27 energy and industry sector heat recycling resources are mapped and quantified. • Target regions for large-scale implementation of district heating are identified. • 46% of total EU27 excess heat volume is seized in 63 strategic heat synergy regions. • Large urban zones have lead roles to play in transition to sustainability in Europe. • Higher recognition of heat sector is needed in future EU energy policy for realisation

  16. High-power condensation turbine application to district heating

    International Nuclear Information System (INIS)

    Virchenko, M.A.; Arkad'ev, B.A.; Ioffe, V.Yu.

    1982-01-01

    In general outline the role of condensation turbines in NPP district heating is considered. The expediency of expansion of central heating loading of turbines of operating as well as newly designed condensation power plants on the basis of the WWER-1000-type reactors is shown. The principle heat flowsheet of the 1000 MW power turbine is given. An advantage in using turbines with uncontrolled steam bleeding is pointed out [ru

  17. LeBreton Flats district heating: Institutional issues

    Energy Technology Data Exchange (ETDEWEB)

    Gerow, L.B.; Bernstein, H.

    1981-12-01

    Despite the growing popularity in Europe of district heating as an alternative to conventional systems, a number of institutional barriers blocked the road to its successful implementation in Canada. These hurdles include questions of ownership, operation/administration, consumer accountability, financial arrangements, and general consumer acceptance of a new technology. In deciding on ownership, the major issues were legal. Provincial laws to be complied with included The Municipal Franchises Act, The Public Utilities Act, The Municipal Act and The Ontario Municipal Board Act. The operation and administration of the project were also beset with legal complications. The relevant laws were The Boilers and Pressure Vessels Act, and The Environmental Assessment Act. How to charge individual users (consumer accountability) raised a number of technical problems including metering and rate-setting for hot water distribution, and heat borrowing between units. The report recommends that groups planning to implement district heating are advised to allow plenty of lead time for obtaining approvals and franchising arrangements so as not to jeopardize construction schedules. 3 refs.

  18. Evaluation of European District Heating Systems for Application to Army Installations in the United States

    Science.gov (United States)

    2006-07-01

    of the conurbation, the effectiveness of the investments as well as the plant’s management and the owner’s return requirements ( Energia 2004...37 p. Design Manual of ThermoNet Systems. 32 p. (In Finnish). ECONET Manual. 2005. Fläktwoods. Energia 2004. Energy year 2004. “District Heating...Pulliainen, K. 2005. Helsingin Energia . Oral source. Seppänen, O. 1995. ISBN 951-97233-1-5. Heating of Buildings. Publisher Suomen LVI- yhdistyken

  19. Report on achievements in fiscal 1999. Environment harmonizing energy community survey project for Public Yatsushika Hospital area (large-scale cogeneration district heat supplying facility); Koritsu Yatsushika byoin chiku kankyo chowagata energy community chosa jigyo chosa hokokusho. Daikibo cogeneration chiiki netsu kyokyu shisetsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This survey is intended to utilize cogeneration to promote structuring a system to effectively utilize potential energy in a district. In connection with the total rebuilding plan for Yatsushika Hospital, a proposal was made on a cogeneration district heat supply system that could be introduced to six facilities in total including the hospital, its three ancillary facilities, and two neighboring facilities. The proposal is intended to evaluate energy conservation performance, environmentality, and economic performance of the system, and structure an optimal system. Two gas engines having the same capacity were selected as the driving source of the cogeneration system. The waste heat recovering system adopted the 'hot water plus steam recovery system'. Generators were selected that have high energy saving and overall cogeneration efficiency, power dependence, heat dependence, and waste heat utilization factor. As the countermeasures for heat load that cannot be taken care by the waste heat recovery alone, discussions were given on the cogeneration plus gas-burning absorption type cold-hot water device system (the system 1) and the cogeneration plus heat pump heat storing system (the system 2). As a result, the system 2 was selected as the optimal system because it uses both of LNG and commercial electric power effectively, and has stability against variation in fuel prices and excellent environmentality. (NEDO)

  20. Direct Heat

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  1. The role of policy instruments for promoting combined heat and power production with low CO2 emissions in district heating systems

    International Nuclear Information System (INIS)

    Marbe, A.; Harvey, S.

    2005-01-01

    Policy instruments clearly influence the choice of production technologies and fuels in large energy systems, including district heating networks. Current Swedish policy instruments aim at promoting the use of biofuel in district heating systems, and at promoting electric power generation from renewable energy sources. However, there is increasing pressure to harmonize energy policy instruments within the EU. In addition, natural gas based combined cycle technology has emerged as the technology of choice in the power generation sector in the EU. This study aims at exploring the role of policy instruments for promoting the use of low CO 2 emissions fuels in high performance combined heat and power systems in the district heating sector. The paper presents the results of a case study for a Swedish district heating network where new large size natural gas combined cycle (NGCC) combined heat and power (CHP) is being built. Given the aim of current Swedish energy policy, it is assumed that it could be of interest in the future to integrate a biofuel gasifier to the CHP plant and co-fire the gasified biofuel in the gas turbine unit, thereby reducing usage of fossil fuel. The goals of the study are to evaluate which policy instruments promote construction of the planned NGCC CHP unit, the technical performance of an integrated biofuelled pressurized gasifier with or without dryer on plant site, and which combination of policy instruments promote integration of a biofuel gasifier to the planned CHP unit. The power plant simulation program GateCycle was used for plant performance evaluation. The results show that current Swedish energy policy instruments favour investing in the NGCC CHP unit. The corresponding cost of electricity (COE) from the NGCC CHP unit is estimated at 253 SEK MWh -1 , which is lower than the reference power price of 284 SEK MWh -1 . Investing in the NGCC CHP unit is also shown to be attractive if a CO 2 trading system is implemented. If the value of

  2. Individual Heating systems vs. District Heating systems: What will consumers pay for convenience?

    International Nuclear Information System (INIS)

    Yoon, Taeyeon; Ma, Yongsun; Rhodes, Charles

    2015-01-01

    For Korea's two most popular apartment heating systems – Individual Heating (IH) and District Heating (DH), – user convenience rests heavily on location of the boiler, availability of hot water, administration of the system, and user control of indoor temperature. A double-bounded dichotomous choice method estimates consumer value for convenience, in a hypothetical market. Higher-income more-educated consumers in more expensive apartments prefer DH. Cost-conscious consumers, who use more electrical heating appliances and more actively adjust separate room temperatures, prefer IH. With willingness-to-pay (WTP) defined as the price ratio between IH and DH, 800 survey respondents indicate a WTP of 4.0% for DH over IH. IH users unfamiliar with DH expect little greater convenience (0.1% WTP), whereas the WTP for DH users runs to 7.9%, demonstrating consumer loyalty. Quantified estimates of consumer preference and convenience can inform design of a full-cost-plus pricing system with a price cap. Results here indirectly predict the effect of abolishing regulations that exclusively establish district heating zones. Strategies to foster the many external benefits of DH systems should stress not their lower cost, but convenience, comfort, and safety. Higher installation costs still hamper DH expansion, so policy-makers could set policies to lower cost barriers to entry. - Highlights: • District Heating (DH) and Individual Heating (IH) systems differ in user convenience. • Difference of convenience is evaluated by a double-bounded dichotomous choice method. • Consumers are willing to pay a 4.03–12.52% higher rate to use DH rather than IH. • Consumers with high living standards prefer DH to IH, and show high consumer loyalty. • Strategies to foster DH systems should stress DH convenience over its lower cost.

  3. Renewable energy in the Lithuanian heating sector

    International Nuclear Information System (INIS)

    Konstantinaviciute, Inga; Bobinaite, Viktorija; Tarvydas, Dalius; Gatautis, Ramunas

    2013-01-01

    The paper analyses the role of renewable energy sources (RES) in the Lithuanian heating sector and the existing support measures. RES consumption has been continuously growing in Lithuania. During the period of 2000–2009, RES used for heat production in the district heating sector increased more than 4 times. Wood and wood products have been the most widely used RES for heat production (RES-H). The lower prices were one of the main reasons which motivated district heating companies to switch fuel to biomass. At the same time subsidies, soft loans, EU Structural Funds for 2007–2013 and some fiscal measures, which are currently available for RES-H promotion, also have some impact on the increase of RES consumption. However, seeking to achieve a 23% national RES target, additional support measures are essential. A qualitative analysis based on the selected set of criteria and consultation with stakeholders showed that energy policy package for RES promotion in the Lithuanian heating sector could encompass the following measures: tax relieves (differentiated VAT and personal income tax breaks), subsidies, soft loans, standardization, support for research, development and demonstration. These measures are market-oriented and meet cost efficiency and low transaction costs criteria. - Highlights: • Existing support measures are not strongly motivating market players. • In order to meet ambitious 23% targets consistent promotion policy package is required. • The proposed package could consist of 4 instruments: tax related, soft loans, standardization and support for RD and D. • The proposed support measures are market oriented and meets cost efficiency and low transaction costs criteria. • There is no single measure that is fairly suitable to support RES-H

  4. Restructuring and regulating district heating and cogeneration in transition economies

    International Nuclear Information System (INIS)

    Brendow, Klaus

    2004-01-01

    In summer 2004, the World Energy Council published a Study on 'Regulating district heating and cogeneration in central and eastern Europe'2, prepared by representatives from eleven economies in transition and two Nordic countries. The Task Force analysed twelve regulatory issues, country-by-country, on all internationally comparable basis. Regulatory progress on the road to more efficient, profitable, competitive and service-oriented heat supplies was described. Common concerns were identified: the need for independence of the regulator from policy and industry, improved coordination between central and local regulators and between environmental and energy authorities, access to grids, and a 'fair' sharing of CHP benefits among heat and electricity generation. Looking forward, the Task Force advocated a continued dialogue between decision makers, regulators, regulated industries and customers on: 1)the internalisation of DH/CHP benefits; 2)the future reduction of the density of regulation; 3) Joint implementation; 4)the compensation for public service obligations; 5)the elimination of old debt and stranded investments; 6) DH/CHP taxation; 7)privatisation; 8)the integration of DH/CHP in urban planning. A concluding WEC workshop in Moscow in March 2004 addressed recommendations to policy makers('Moscow Statement'). (Author)

  5. Demonstration of low-energy district heating for low-energy buildings in the housing community Ringgaarden's section 34 in Lystrup. Subreport 2; Denmark; Demonstration af lavenergifjernvarme til lavenergibyggeri i boligforeningen Ringgaardens afd. 34 i Lystrup. Delrapport 2

    Energy Technology Data Exchange (ETDEWEB)

    Holm Christiansen, C.

    2011-05-15

    The project has completed the first demonstration of a new concept for energy efficient district heating (DH) for low energy buildings where the supplied district heating temperature delivered at the consumer is down to 50 deg. C. The concept involves new types of DH building substations and DH twin pipes in very small dimensions. Demonstration area is Dept. 34 of the housing association Boligforeningen Ringgaarden near Aarhus in Denmark, which consists of 7 row houses with in total 40 dwellings, low-energy building, class 1 according to the Danish building code and built 2009-2010. The purpose of the demonstration was to show that the concept works in practice and to further develop and refine the technology behind the concept. A large measurement program was conducted during weeks 26-47, 2010 focusing on 1) consumption and operation temperatures, 2) simultaneity and simultaneity factors and 3) heat loss from district heating network and electricity consumption of network booster pump. DH consumption of the individual consumer is measured and combined with measurements of temperature in individual homes, it is confirmed that it is reasonable to assume a room temperature of at least 22 deg. C in the calculation of heating demand. Based on an energy signature the annual consumption per dwelling was estimated to approx. 5.8 MWh for a reference year, corresponding to a measured heat density of 0.3 MWh/m network line and 14 kWh/m2 field. The results also show that it is possible to supply customers with temperature just above 50 deg. C, with a DH supply temperature to the area of approx. 56 deg. C. Detailed measurements show that the domestic hot water can be produced at temperature of just 3 deg. C below the primary supply temperature, e.g. 47 deg. C at a DH supply temperature of 50 deg. C.. The simultaneity factors of 2 types of DH building substations, district heating tank unit (FVB) with reservoirs at primary side and unit with instantaneous water heater (GVV) is

  6. District heating for Switzerland - Project development; Projektentwicklung Fernwaerme Schweiz - Abwaermenutzung aus (de)zentralen Quellen der Industrie und Umwelt (Schlussbericht Projektphase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Oppermann, G. [Verband Fernwaerme Schweiz, Niederrohrdorf (Switzerland); Gutzwiller, S. [Eicher und Pauli AG, Planer fuer Energie- und Gebaeudetechnik, Liestal (Switzerland); Mueller, E. A. [EnergieSchweiz fuer Infrastrukturanlagen, Berne (Switzerland)

    2010-05-15

    This final report for 2010 for the Swiss Federal Office of Energy (SFOE) deals with the achievements of the first phase of a project concerning district heating systems in Switzerland. The Swiss District Heating Association (VFS) aims to initiate district heating projects using a four-phase project. Phase 1 involved the identification of potential projects: Locations for the use of waste heat, environmental heat, wood and biomass were identified. The further phases will involve possible investors, the development of concrete projects and, finally, their realisation. The report describes work to be done, the project organisation, presents basic data needed for the project phases, discusses regional planning aspects, reviews aids such as GPS data and 'excel' spread sheets and geographic aspects. Further topics addressed in the report include results achieved, the search for investors and external communication. The report is completed with recommendations and four appendices.

  7. Renovation and rehabilitation of Didi Digomi District Heat Supply Plant (No.48) in Tbilisi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An investigational study was conducted on the project for energy conservation and reduction in greenhouse effect gas emission at the existing district heating plant in Tbilisi City, Georgia. In the project, the following are conducted for the district heating plants in the Didi-Digomi section and Saburtalo section: renewal/higher efficiency of boiler equipment, adoption of cogeneration using gas turbine, improvement of hot water pipeline and improvement of equipment at heat users. As a result of the study, one plan for cogeneration of 2 units x 6MW class in each section was good in terms of economical efficiency and expenses vs. effects, and the other plan for cogeneration of 17 units (8 units and 9 units) x 6MW class was good in terms of the generated output and regional needs. The amount of energy conservation to be made by the former plan totaled 22,678 toe/y in both sections. The amount of greenhouse effect gas reduction is 70,170 t-CO2/y. The internal earning rate is 1.707% in the Didi-Digomi section and 2.249% in the Saburtalo section. The project profit is lower than the initial investment cost, and therefore, it is necessary to consider the profit from the CO2 emission right. (NEDO)

  8. Quantitative thermography and methods for in-situ determination of heat losses from district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, B. [ed.

    1996-11-01

    The course and seminar summarizing application of infrared thermography in district heating systems control gathered Danish specialists with 5 contributions on the subject. Maintenance of the heat distribution pipelines and thermographic inspection of the systems are essential in order to avoid heat losses. (EG)

  9. HEAT PUMP STATION WITH CARBON DIOXIDE AS A WORKING FLUID ENERGY EFFICIENCY GROWTH IN COMBINED DISTRICT HEATING SYSTEM DUE TO ITS CONTROL SYSTEM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Sit B.M.

    2008-04-01

    Full Text Available A diagram of the heat pump station (HPS for the central heat supply station of the district heating system, which gets the power from the CHP plant is examined. A block diagram of the control of the system and compressor pressure control system are examined. The description of the control laws of evaporator at the variable heat load of the HPS and control laws of the gas cooler taking into account the goal of achieving the maximum of COP of HPS is shown as well.

  10. Design of an automatic control system of a district heating nuclear plant

    International Nuclear Information System (INIS)

    Zebiri, Abderrahim.

    1980-06-01

    This paper presents the synthesis of the control system of a nuclear/oil fuelled district heating plant. Operating criteria take into account the economical background of the problem. Nuclear reactor control loops were specially conceived, due to the specific perturbations to which is submitted a district heating plant [fr

  11. Seon heats with geothermal energy

    International Nuclear Information System (INIS)

    Hawkins, A.C.

    2001-01-01

    This article describes the combined use of ground water for the supply of drinking water for the municipality of Seon, Switzerland and as the basis for a district heating system. The use of the water, pumped up from a depth of 300 meters and exhibiting a temperature of 19.5 o C, as the heat source for heat pumps is described. The history of the project is discussed and figures are given on the district heating system that provides heat for an indoor swimming pool complex, industry and living accommodation in the village. Operational strategies used to make optimum use of tariff structures are described. The role played by local initiative in this innovative project is emphasised

  12. The transformative potential of geothermal heating in the U.S. energy market: A regional study of New York and Pennsylvania

    International Nuclear Information System (INIS)

    Reber, Timothy J.; Beckers, Koenraad F.; Tester, Jefferson W.

    2014-01-01

    Enhanced Geothermal Systems (EGS) could supply a significant fraction of the low-temperature (<125 °C) thermal energy used in the United States through Geothermal District Heating (GDH). In this study we develop a regional model to evaluate the potential for EGS district heating in the states of New York and Pennsylvania by simulating an EGS district heating network at each population center within the study region and estimating the levelized cost of heat (LCOH) from GDH for each community. LCOHs were then compiled into a supply curve from which several conclusions could be drawn. Our evaluation revealed that EGS district heating has the potential to supply cost-effective energy for space and water heating in several New York and Pennsylvania communities in the near future. To realize wider deployment, modest improvements in EGS technology, escalation of natural gas prices, and/or government incentives will likely be required to enable GDH to compete with other heating alternatives today. EGS reservoir flow rates, drilling costs, system lifetimes, and fluid return temperatures have significant effects on the LCOH of GDH and thus will provide the highest return on R and D investment, while creative implementation strategies can help EGS district heating overcome initial cost barriers that exist today. - Highlights: • EGS district heating potential evaluated for 2894 towns in New York and Pennsylvania. • Supply curves developed using estimated levelized cost of heat (LCOH) for each town. • Geothermal district heating has cost-saving potential in NY, PA and the US. • Initial candidate communities, R and D targets, and deployment strategies identified

  13. A modular approach to inverse modelling of a district heating facility with seasonal thermal energy storage

    DEFF Research Database (Denmark)

    Tordrup, Karl Woldum; Poulsen, Uffe Vestergaard; Nielsen, Carsten

    2017-01-01

    We use a modular approach to develop a TRNSYS model for a district heating facility by applying inverse modelling to one year of operational data for individual components. We assemble the components into a single TRNSYS model for the full system using the accumulation tanks as a central hub conn...

  14. Planning study 'District Heating' Oberhausen/Western Ruhr district. Short version. Planstudie Fernwaermeversorgung Oberhausen/westliches Ruhrgebiet. Kurzfassung

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    After a brief description of how the heat demand was assessed, the heat demand now and up to 1990 is assessed as well as the possibility to meet it. The possibilities of heat decoupling from thermal power plants are outlined as well as the future heat transport and the future heat distribution in the planning area. Proposals are made for development stages of the district heating grid, and results of rentability calculations are presented.

  15. Comparing electricity, heat and biogas storages’ impacts on renewable energy integration

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2012-01-01

    -inclusive 100% renewable energy scenario developed for the Danish city Aalborg based on wind power, bio-resources and low-temperature geothermal heat. The article investigates the system impact of different types of energy storage systems including district heating storage, biogas storage and electricity......Increasing penetration of fluctuating energy sources for electricity generation, heating, cooling and transportation increase the need for flexibility of the energy system to accommodate the fluctuations of these energy sources. Controlling production, controlling demand and utilising storage...... options are the three general categories of measures that may be applied for ensuring balance between production and demand, however with fluctuating energy sources, options are limited, and flexible demand has also demonstrated limited perspective. This article takes its point of departure in an all...

  16. Annex to Solar heat storages in district heating networks. Comprehensive list of Danish literature and R and D projects

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This annex relates to the report 'Solar heat storages in district heating networks', which has been elaborated to inform about the Danish experiences and findings on the use of central solar heating plants in district heating networks, especially with the focus on the development of the storage part of the systems. The report has been funded as part of the IEE PREHEAT cooperation and by Energinet.dk, project no. 2006-2-6750. (au)

  17. Utilization of waste heat from Vienna waste incinerators for the operation of a district cooling grid. Effects on the primary energy efficiency of district heating and district cooling in Vienna; Nutzung der Abwaerme aus den Wiener Abfallverbrennungsanlagen fuer den Betrieb eines Fernkaeltenetzes. Auswirkungen auf die Primaerenergieeffizienz der Fernwaerme und Fernkaelte in Wien

    Energy Technology Data Exchange (ETDEWEB)

    Schindelar, F.; Wallisch, A. [Fernwaerme Wien GmbH, Vienna (Austria)

    2007-07-01

    The need of coldness increases and has to be covered efficiently as well as ecologically. At optimal constellation and mode of operation, the establishment of refrigeration plants from absorption refrigerators and compression refrigerators seems to be economically more competitive than decentralized plants. The optimal constellation is present, if: (a) ecologically and economically favourable waste heat are available; (b) Electricity from the domestic production with waste energy is present; (c) Resources-conserving recirculation cooling possibilities exist; (d) cooling water tanks and/or hot water tanks are available for top coverage; (e) a high grid density exists; (f) in-building station corresponds to the technical conditions. If these fundamental conditions are present, then the district coldness offers a good chance for waste incineration plants to use a safe heat consumer also in summer and to utilize optimally the existing energy.

  18. A study of a small nuclear power plant system for district heating

    International Nuclear Information System (INIS)

    Imamura, Mitsuru; Sato, Kotaro; Narabayashi, Tadashi; Shimazu, Yoichiro; Tsuji, Masashi

    2009-01-01

    We have studied nuclear power plant for district heating. Already some towns and villages in Hokkaido have requested small reactor for district heating. Using existing technology allows us to shorten development period and to keep a lid on development cost. We decided to develop new reactor based on 'MUTSU' reactor technology because 'MUTSU' had already proved its safety. And this reactor was boron free reactor. It allows plant system to reduce the chemical control system. And moderator temperature coefficient is deeply negative. It means to improve its operability and leads to dependability enhancement. We calculated burn-up calculation of erbium addition fuel. In the result, the core life became about 10 years. And we adapt the cassette type refueling during outagein in order to maintain nonproliferation. In the district heating system, a double heat exchanger system enables to response to load change in season. To obtain the acceptance of public, this system has a leak prevention system of radioactive materials to public. And road heating system of low grade heat utilization from turbine condenser leads to improve the heat utilization efficiency. We carried out performance evaluation test of district heating pipeline. Then the heat loss of pipeline is estimated at about 0.440degC/km. This result meets general condition, which is about 1degC/km. This small plant has passive safety system. It is natural cooling of containment vessel. In case of loss of coolant accident, decay heat can remove by natural convection air cooling after 6 hours. Decay heat within 6 hours can remove by evaporative heat transfer of pool on containment vessel. (author)

  19. A system design for distributed energy generation in low temperature district heating (LTDH) networks

    OpenAIRE

    Jones, Sean; Gillott, Mark C.; Boukhanouf, Rabah; Walker, Gavin S.; Tunzi, Michele; Tetlow, David; Rodrigues, Lucélia Taranto; Sumner, M.

    2017-01-01

    Project SCENIC (Smart Controlled Energy Networks Integrated in Communities) involves connecting properties at the University of Nottingham’s Creative Energy Homes test site in a community scale, integrated heat and power network. Controls will be developed to allow for the most effective heat load allocation and power distribution scenarios. Furthermore, the system will develop the prosumer concept, where consumers are both buyers and sellers of energy in both heat and power systems. \\ud \\ud ...

  20. Feasibility of a single-purpose reactor plant for district heating in Finland

    International Nuclear Information System (INIS)

    Tarjanne, R.; Vuori, S.; Eerikaeinen, L.; Saukkoriipi, L.

    A feasibility study of a single-purpose reactor for district heating is presented. The reactor chosen is of an ordinary pressurized water reactor type with a thermal output of 100 to 200 MW. Primary circuit steam generators employed in ordinary PWR's are replaced by water-water heat exchangers. For safety reasons an intermediate circuit separates the primary from the network water. The conditions of the district heating systems in Finland were taken into account, which led to the choice of an average temperature of 160 0 C for the reactor coolant and a pressure of 13.5 bar. This, coupled with minimal control requirements helped design a considerably simple reactor plant. On condition, the reactor satisfies the basic heat demand in a district heating system, the effective annual full-power operation time of the heating reactor is from 5000 h to 7000 h. Economic comparisons indicated that the heating reactor may be competitive if the operation period is of this order. As the reactor has to be sited near the heat consumption area for reasons of economy, the safety aspects are of major importance and may in themselves preclude the realization of the heating idea. (author)

  1. Facility with a nuclear district heating reactor

    International Nuclear Information System (INIS)

    Straub, H.

    1988-01-01

    The district heating reactor has a pressure vessel which contains the reactor core and at least one coolant conducting primary heat carrier surrounded by a heat sink. The pressure vessel has two walls with a space between them. This space is connected with a container which contains air as heat isolating medium and water as heat conducting medium. During the normal reactor operation the space is filled by air from the container with the aid of a blower, whereas in the case of a break-down of the cooling system it is filled by water which flows out of the container by gravity after the blower has been switched off. The after-heat, generated in the reactor core during cooling break-down, is removed into the heat sink surrounding the pressure vessel in a safe and simple way. 6 figs

  2. Building Modelling Methodologies for Virtual District Heating and Cooling Networks

    Energy Technology Data Exchange (ETDEWEB)

    Saurav, Kumar; Choudhury, Anamitra R.; Chandan, Vikas; Lingman, Peter; Linder, Nicklas

    2017-10-26

    District heating and cooling systems (DHC) are a proven energy solution that has been deployed for many years in a growing number of urban areas worldwide. They comprise a variety of technologies that seek to develop synergies between the production and supply of heat, cooling, domestic hot water and electricity. Although the benefits of DHC systems are significant and have been widely acclaimed, yet the full potential of modern DHC systems remains largely untapped. There are several opportunities for development of energy efficient DHC systems, which will enable the effective exploitation of alternative renewable resources, waste heat recovery, etc., in order to increase the overall efficiency and facilitate the transition towards the next generation of DHC systems. This motivated the need for modelling these complex systems. Large-scale modelling of DHC-networks is challenging, as it has several components interacting with each other. In this paper we present two building methodologies to model the consumer buildings. These models will be further integrated with network model and the control system layer to create a virtual test bed for the entire DHC system. The model is validated using data collected from a real life DHC system located at Lulea, a city on the coast of northern Sweden. The test bed will be then used for simulating various test cases such as peak energy reduction, overall demand reduction etc.

  3. On-line Corrosion Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Richter, Sonja; Thorarinsdottir, R.I.; Hilbert, Lisbeth Rischel

    2005-01-01

    The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress, ......, precipitation of deposits or crevices. The authors describe methods used for on-line monitoring of corrosion, cover the complications and the main results of a Nordic project.......The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress...

  4. District space heating potential of low temperature hydrothermal geothermal resources in the southwestern United States. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, P.K.; Rao, C.R.

    1978-10-01

    A computer simulation model (GIRORA-Nonelectric) is developed to study the economics of district space heating using geothermal energy. GIRORA-Nonelectric is a discounted cashflow investment model which evaluates the financial return on investment for space heating. This model consists of two major submodels: the exploration for and development of a geothermal anomaly by a geothermal producer, and the purchase of geothermal fluid by a district heating unit. The primary output of the model is a calculated rate of return on investment earned by the geothermal producer. The results of the sensitivity analysis of the model subject to changes in physical and economic parameters are given in this report. Using the results of the economic analysis and technological screening criteria, all the low temperature geothermal sites in Southwestern United States are examined for economic viability for space heating application. The methodology adopted and the results are given.

  5. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic......This study investigated the performances of five different substation configurations in single-family houses supplied with ULTDH (ultra-low-temperature district heating). The temperature at the heat plant is 46 degrees C and around 40 degrees C at the substations. To avoid the proliferation...... performance of the substations, separate models were built based on standard assumptions. The relative heat and electricity delivered for preparing DHW were calculated. The results showed that substations with storage tanks and heat pumps have high relative electricity demand, which leads to higher integrated...

  6. Industrial waste heat for district heating

    International Nuclear Information System (INIS)

    Heitner, K.L.; Brooks, P.P.

    1982-01-01

    Presents 2 bounding evaluations of industrial waste heat availability. Surveys waste heat from 29 major industry groups at the 2-digit level in Standard Industrial Codes (SIC). Explains that waste heat availability in each industry was related to regional product sales, in order to estimate regional waste heat availability. Evaluates 4 selected industries at the 4-digit SIC level. Finds that industrial waste heat represents a significant energy resource in several urban areas, including Chicago and Los Angeles, where it could supply all of these areas residential heating and cooling load. Points out that there is a strong need to evaluate the available waste heat for more industries at the 4-digit level. Urges further studies to identify other useful industrial waste heat sources as well as potential waste heat users

  7. Space heating with ultra-low-temperature district heating - A case study of four single-family houses from the 1980s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    . These benefits can be maximized if district heating temperatures are lowered as much as possible. In this paper we report on a project where 18 Danish single-family houses from the 1980s were supplied by ultra-low-temperature district heating with a supply temperature as low as 45 °C for the main part...... the four houses were modelled in the building simulation tool IDA ICE. The simulation models included the actual radiator sizes and the models were used to simulate the expected thermal comfort in the houses and resulting district heating return temperatures. Secondly measurements of the actual district...... heating return temperatures in the houses were analysed for different times of the year. The study found that existing Danish single-family houses from the 1980s can be heated with supply temperatures as low as 45 °C for the main part of the year. Both simulation models and test measurements showed...

  8. Modelling and multi-scenario analysis for electric heat tracing system combined with low temperature district heating for domestic hot water supply

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    Low temperature district heating (LTDH) is a cost-efficient way of supplying space heating and domestic hot water (DHW) for buildings in urban areas. However, there is concern that the potential hygiene problems (Legionella) might occur if LTDH is implemented, especially for large buildings...... performance on heat loss saving, and it also gave benefits to district heating network by sharing part of the heating load....

  9. The costs and profitability of heat-energy entrepreneurship

    International Nuclear Information System (INIS)

    Solmio, H.

    1998-01-01

    Heat-energy entrepreneurs are responsible for the supply of fuel to and the labour input required by heating of buildings in their locality. An individual heat-energy entrepreneur or a consortium of them, a company or a co-operative is paid for the work according to the amount of heat-energy produced. In Finland there are about 50 operational heating targets and about 100 in planning stage. TTS-Institute has studied the activities of heat-energy entrepreneurs since 1993 in connection with research projects included in the national Bioenergy research programme. This study covered 10 heating plants with capacities 60 - 1000 kW, two of which are district heating plants. Five of the targets (60 - 370 kW) were included in the previous heat-energy entrepreneurs follow-up study conducted in 1993 - 1995 and five (80 - 1000 kW) were new. The main fuel used in all the targets was wood chips with light fuel oil reserve or auxiliary fuel. All but one of the entrepreneurs, supplying these heating targets located in Central and Southern Finland, are farmers, who procure the fuelwood and take care of heating and its supervision. Transportation of wood chips, topping up of the silo and heating work and working path consumed 0.12-0.78 h of time/MWh. When compared to the five study targets' follow-up results of the years 1993 - 1995, the results of the present study show reduction in labour consumption on part of the heat-energy entrepreneurs in all these targets. Profit margins of the entrepreneurs supplying heating energy were 73 - 132 FIM/h (excluding the interest on the equipment acquisition (agricultural tractor and associated equipment), and insurance and storage costs). When these costs were also taken into account, the resulting profit margin was 71 - 127 FIM/h. The margin included the entrepreneurs' earnings incl. monitoring of the heating plant, social security costs connected to earnings and entrepreneur's risk. When compared to the previous follow-up study, also the

  10. Algorithmic acquisition of diagnostic patterns in district heating billing system

    International Nuclear Information System (INIS)

    Kiluk, Sebastian

    2012-01-01

    An application of algorithmic exploration of billing data is examined for fault detection, diagnosis (FDD) based on evaluation of present state and detection of unexpected changes in energy efficiency of buildings. Large data sets from district heating (DH) billing systems are used for construction of feature space, diagnostic rules and classification of the buildings according to their energy efficiency properties. The algorithmic approach automates discovering knowledge about common, thus accepted changes in buildings’ properties, in equipment and in habitants’ behavior reflecting progress in technology and life style. In this article implementation of Data Mining and Knowledge Discovery (DMKD) method in supervision system with exemplary results based on real data is presented. Crucial steps of data processing influencing diagnostic results are described in details.

  11. A new hydraulic regulation method on district heating system with distributed variable-speed pumps

    International Nuclear Information System (INIS)

    Wang, Hai; Wang, Haiying; Zhu, Tong

    2017-01-01

    flow rate of one substation varied according to its heat demand and the flow rates of other substations maintained their original values. And in Scenario II, the flow rates of all substations varied synchronously with the same relative rate. The results of the both scenarios indicated that all pumps could be properly adjusted to their designated flow rates by the proposed method with a high frequency adjustment resolution as 0.001 Hz. In scenario I, compared with the district heating system with distributed variable-speed-pumps configuration, the power consumption would be 26.6–66.8% less than that of the conventional central circulating pump configuration during the 4 rounds of regulations. In scenario II, the energy saving ratio of the district system with distributed variable-speed-pumps configuration would be 36.1–90.3% less than that of the conventional central circulating pump configuration during the 5 rounds of regulations.

  12. Geothermal District Heating System City of Klamath Falls

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J; Rafferty, Kevin

    1991-12-01

    The city of Klamath Falls became interested in the possibility of a establishing geothermal district heating system for downtown government buildings in January 1977. Since that time, the project has undergone some controversial and interesting developments that may be of educational value to other communities contemplating such a project. The purpose and content of this article is to identify the historical development of the project; including the design of the system, well owner objections to the project, aquifer testing, piping failure, and future expansion and marketing incentives. The shallow geothermal reservoir in Klamath falls extends for at least 6.8 miles in a northwest-southeast direction, as shown on Figure 1, with a width of about 2 miles. More than 550 thermal wells ranging in depth from about 10 to 2,000 ft, and obtaining or contacting water from 70 to 230oF, have been drilled into the reservoir. The system is not geologically homogeneous. Great variations in horizontal permeability and many vertical discontinuities exist because of stratigraphy and structure of the area. Basalt flows, eruptive centers, fluvial and lacustrine deposits, diatomite and pyroclastic materials alternate in the rock column. Normal faults with large throw (estimated up to 1,700 ft) are spaced less than 3,300 ft apart and appear to be the main avenue of vertical movement of hot fluids. In order to more effectively utilize this resource, the city of Klamath Falls decided in 1978 to apply for a federal grant (Program Opportunity Notice to cost share field experiment projects) to construct a geothermal district heating system that would deliver geothermal fluids to areas not located on the resource. In 1977, several Geo-Heat Center staff members visited Reykjavik, Iceland, to study the design of their geothermal district heating systems. This was in part the basis for the conceptual design and feasibility study (Lund, 1979) of a downtown commercial district. The main difference

  13. Master plan study - District heating Kohtla-Jaerve and Johvi municipalities. Estonia. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The main deficiencies of the district heating system in Kohtla-Jaerve, Ahtme and Johvi (Estonia) were identified as being: Inefficiency of the heat and power production plants; Lack of means for the consumers to control their consumption of energy due to the existing constant flow system; The environmental impact from heat and power production based on oil shale; Water and heat losses from the network; Low heat intensity in the Johvi area. Investigations indicate that improvement should have first priority at the Kohtla-Jaerve power plant, total investment is estimated at US D 60,3 million, of which US D 48 million are foreign costs. The cash flow will be negative in the first half of the projects lifetime. Estii Energia should be involved in the financing of the project. At the present price level, introduction of variable flow does not significantly improve the financial viability of the project, and the improvement of the district heating system might be carried out at a later stage, when the tariff has found a more stable level and the financial viability will be more significant. Implementation of new boilers in the Kohtla-Jaerve power plant. Circulating Fluidized Bed boilers, as well as electrostatic filters and estimated to reduce the environmental impact considerably. A more in depth study of the environmental impact from utilisation of oil shale should be carried out, also in order to inform possible investors of risk of investing in the oil shale industry. It will be more expensive to supply Johvi as an independent district heating system than if Johvi is supplied from Ahtme. The results arrived at are based on a range of the crucial assumptions that: the price of oil shale is expected to reach 75% of the price of coal, the sales price of electricity from plants is 62% of the consumer price, the exchange rate of the Estonian currency is kept constant to the DEM and that the inflation is Estonia will decline from 21% to 2,3% in 2005. (ARW)

  14. Link between intermittent electrical energy sources and district heating sector

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo

    2016-01-01

    Energy has always been one of the key challenges in planning of societies' development worldwide. The COP conference in Paris in December 2015 has shown unprecedented mutual understanding of harmful consequences climate change can cause. Integrating power and heating sectors in an efficient way...

  15. District heating in case of power failure

    International Nuclear Information System (INIS)

    Lauenburg, P.; Johansson, P.-O.; Wollerstrand, J.

    2010-01-01

    Power failures in combination with harsh weather conditions during recent years have led to an increased focus on a safe energy supply to our society. Many vital functions are dependent on electricity; e.g., lighting, telephony, medical equipment, lifts, alarm systems, payment, pumps for town's water and, perhaps the most critical of all, heating systems. In Sweden, district heating (DH) is the most common type of heating for buildings in town centres. Therefore, it is of great interest to investigate what happens in DH systems during a power failure. The present study shows that, by maintaining the DH production as well as the operation of the DH network, possibilities to supply connected buildings with space heat are surprisingly good. This is due to the fact that natural circulation will most often take place in radiator systems. In Sweden, and in many other countries, so-called indirect connection (heat supply across heat exchangers) of DH substations is applied. If a DH network operation can be maintained during a power failure, DH water will continue to pass the radiator system's heat exchanger (HEX), provided that the control valve does not close. The radiator circulation pump will stop, causing the radiator water to attain a relatively high temperature in the HEX, which promotes a natural circulation in the hydronic heating system, due to an increased water density differential at different temperatures. Several field tests and computer simulations have been performed and have displayed that almost all buildings can achieve a space heat supply corresponding to 40-80% of the amount prior to the interruption. A sufficient heat load in the DH network can be vital in certain cases: e.g., for 'island-operation' of an electric power plant to be performed during a power failure. Furthermore, for many combined heat and power stations, a requirement involves that the DH network continues to provide a heat sink when no other cooling is available. Based on the

  16. Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Terry [Townsend Engineering, Inc., Davenport, IA (United States); Slusher, Scott [Townsend Engineering, Inc., Davenport, IA (United States)

    2017-04-24

    The Tennessee Energy Efficient Schools Initiative (EESI) Hybrid-Water Source Heat Pump (HY-GSHP) Program sought to provide installation costs and operation costs for different Hybrid water source heat pump systems’ configurations so that other State of Tennessee School Districts will have a resource for comparison purposes if considering a geothermal system.

  17. Thermal Heat and Power Production with Models for Local and Regional Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Sturla

    1999-07-01

    The primary goal of this thesis is the description and modelling of combined heat and power systems as well as analyses of thermal dominated systems related to benefits of power exchange. Large power plants with high power efficiency (natural gas systems) and heat production in local heat pumps can be favourable in areas with low infrastructure of district heating systems. This system is comparable with typical combined heat and power (CHP) systems based on natural gas with respect to efficient use of fuel energy. The power efficiency obtainable from biomass and municipal waste is relatively low and the advantage of CHP for this system is high compared to pure power production with local heat pumps for heat generation. The advantage of converting pure power systems into CHP systems is best for power systems with low power efficiency and heat production at low temperature. CHP systems are divided into two main groups according to the coupling of heat and power production. Some CHP systems, especially those with strong coupling between heat and power production, may profit from having a thermal heat storage subsystem. District heating temperatures direct the heat to power ratio of the CHP units. The use of absorption chillers driven by district heating systems are also evaluated with respect to enhancing the utilisation of district heating in periods of low heat demand. Power exchange between a thermal dominated and hydropower system is found beneficial. Use of hydropower as a substitute for peak power production in thermal dominated systems is advantageous. Return of base load from the thermal dominated system to the hydropower system can balance in the net power exchange.

  18. Master plan study - District heating Kohtla-Jaerve and Johvi municipalities. Estonia. Final report. Appendices for chapter 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The appendices to chapter nine of the final report of the master plan study on district heating in the municipalities of Kohtla-Jarve and Johvi municipalities (Estonia) present extensive data relating to economic, financial and environmental calculations, fuel consumption, energy balance and prices. (ARW)

  19. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: San Juan National Forest - Dolores Ranger District, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, Alicen J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kiatreungwattana, Kosol [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-26

    This report summarizes the results from an energy efficiency, water efficiency, and renewable energy site assessment of the Dolores Ranger District in the San Juan National Forest in Colorado. A team led by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) conducted the assessment with United States Forest Service (USFS) personnel on August 16-17, 2016, as part of ongoing efforts by USFS to reduce energy and water use and implement renewable energy technologies. The assessment is approximately an American Society of Heating, Refrigerating, and Air-Conditioning Engineers Level 2 audit and meets Energy Independence and Security Act requirements.

  20. Demonstration project in Volgograd on transfer of know-how from the district heating sector in Denmark to Russia. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    A demonstration project on district heating know-how has been financed by the Danish Technical Assistance Programme administrated by the Danish Energy Agency. A demonstration project in Volgograd was approved, with a budget of only 200.000 DKK (180.000 Rbl). The administration of the project, from fact finding to the final report, has been very efficient in particular to other technical assistance programmes. Although the total budget is low only around 15% of the manpower has been used on administration. The transfer of specific technical experience can be summarized in the following: Installation of small decentralized heat exchanger units for preparation of hot water; Construction of low-cost decentralized heat exchanger installations for preparation of hot water; Installation of thermostatic valves; Installation of small substations for heating and hot water; Use of drain pumps for draining under constructions of district heating pipes to prevent outside corrosion; Design principles for construction and rehabilitation of concrete duct systems with internal and outside draining; Design principles for preinsulated pipes; Principles for monitoring the quality of supply in a local district heating network at the lowest costs by monitoring the critical differential pressure. (EG)

  1. Conventional heating systems is heating with geothermal water, v. 15(60)

    International Nuclear Information System (INIS)

    Hadzhimishev, Dimitar; Gashteovski, Ljupcho; Shami, Jotso

    2007-01-01

    The Geothermal Energy (GE) is a new renewable energy source with many advantages and specifics. Present mainly application of GE is in agriculture. In Geothermal System Kochani the GE uses for district heating and industrial uses also. There are many problems to solve before using the geothermal energy for district heating: direct application feasibility for heating rooms and industrial using existing heating installation system (90/70°C); the level of heating needs covering without installation reconstruction; techno-economical justification of this reconstruction ; covering of pike heating needs. The answers of these enigmas you have in this written effort. The results were practically justified in about ten object in Kochani. (Author)

  2. Conventional heating systems is heating with geothermal water, v. 15(59)

    International Nuclear Information System (INIS)

    Hadzhimishev, Dimitar; Gashteovski, Ljupcho; Shami, Jotso

    2007-01-01

    The Geothermal Energy (GE) is a new renewable energy source with many advantages and specifics. Present mainly application of GE is in agriculture. In Geothermal System Kochani the GE uses for district heating and industrial uses also. There are many problems to solve before using the geothermal energy for district heating: direct application feasibility for heating rooms and industrial using existing heating installation system (90/70°C); the level of heating needs covering without installation reconstruction; techno-economical justification of this reconstruction ; covering of pike heating needs. The answers of these enigmas you have in this written effort. The results were practically justified in about ten object in Kochani. (Author)

  3. On-line corrosion monitoring in geothermal district heating systems

    DEFF Research Database (Denmark)

    Richter, S.; Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2006-01-01

    General corrosion rates in the geothermal district heating systems in Iceland are generally low, of the magnitude 1 lm/y. The reason is high pH (9.5), low-conductivity (200 lm/y) and negligible dissolved oxygen. The geothermal hot water is either used directly from source or to heat up cold ground...

  4. Policy incentives for flexible district heating in the Baltic countries

    DEFF Research Database (Denmark)

    Sneum, Daniel Møller; Sandberg, Eli; Koduvere, Hardi

    2018-01-01

    This study analyzes the impacts of taxes, subsidies, and electricity transmission and distribution tariffs and heat storage on the operation and economic feasibility of district heating plants with different flexibility potentials in the Baltic countries. Under 2016 conditions, the lowest levelized...

  5. The Swiss heating reactor (SHR) for district heating of small communities

    International Nuclear Information System (INIS)

    Burgsmueller, P.; Jacobi, A.Jr.; Jaeger, J.F.; Klaentschi, M.J.; Seifritz, W.; Vuillemier, F.; Wegmann, F.

    1987-01-01

    With fossil fuel running out in a foreseeable future, it is essential to develop substitution strategies. Some 40-50 % of the heat demand in industrial countries is below 120 degrees C, for space heating and warm water production, causing a corresponding fraction of air pollution by SO 2 and to a lesser extent NO x if fossil fuels are used. Yet, contemporary LWR technology makes it feasible to supply a district heating network without basically new reactor development. Units in the power range 10-50 MW are most suitable for Switzerland, both in respect of network size and of the democratic decision making structure. A small BWR for heating purpose is being developed by parts of the Swiss Industry and the Swiss Federal Institute for Reactor Research (EIR). The economic target of 100-120 SFr/MWh heat at the consumer's seems achievable. (author)

  6. Integration of biomass into urban energy systems for heat and power. Part II: Sensitivity assessment of main techno-economic factors

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • Application of a MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents the application of a mixed integer linear programming (MILP) methodology to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the assessment of the trade-offs between centralized district heating plants and local heat generation systems, and on the decoupling of the biomass processing and biofuel energy conversion steps. After a brief description of the methodology, which is presented in detail in Part I of the research, an application to a generic urban area is proposed. Moreover, the influence of energy demand typologies (urban areas energy density, heat consumption patterns, buildings energy efficiency levels, baseline energy costs and available infrastructures) and specific constraints of urban areas (transport logistics, air emission levels, space availability) on the selection of optimal bioenergy pathways for heat and power is assessed, by means of sensitivity analysis. On the basis of these results, broad considerations about the key factors influencing the use of bioenergy into urban energy systems are proposed. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  7. Geospatial Analysis of the Building Heat Demand and Distribution Losses in a District Heating Network

    Directory of Open Access Journals (Sweden)

    Tobias Törnros

    2016-11-01

    Full Text Available The district heating (DH demand of various systems has been simulated in several studies. Most studies focus on the temporal aspects rather than the spatial component. In this study, the DH demand for a medium-sized DH network in a city in southern Germany is simulated and analyzed in a spatially explicit approach. Initially, buildings are geo-located and attributes obtained from various sources including building type, ground area, and number of stories are merged. Thereafter, the annual primary energy demand for heating and domestic hot water is calculated for individual buildings. Subsequently, the energy demand is aggregated on the segment level of an existing DH network and the water flow is routed through the system. The simulation results show that the distribution losses are overall the highest at the end segments (given in percentage terms. However, centrally located pipes with a low throughflow are also simulated to have high losses. The spatial analyses are not only useful when addressing the current demand. Based on a scenario taking into account the refurbishment of buildings and a decentralization of energy production, the future demand was also addressed. Due to lower demand, the distribution losses given in percentage increase under such conditions.

  8. A Materials and Equipment Review of Selected U.S. Geothermal District Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K D [P.E.

    0000-12-30

    Geothermal district heating systems are now quite common in the western U.S. A recent survey identified a total of 17 such systems. The performance of materials and equipment in 13 of these systems is reviewed in this paper. Specific areas covered include: production facilities, central plants, distribution, customer connection, metering and disposal. Those areas: characterized by the highest incidence of problems include: production well pumps, customer branch piping and energy metering.

  9. Change in heat load profile for typical Danish multi-storey buildings when energy-renovated and supplied with low-temperature district heating

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2013-01-01

    ) supply. When end-use-savings are implemented in buildings concurrent with the application of low-temperature district heating (DH) (supply=55°C, return=25°C) the heat demand profiles for the individual buildings will change. The reduction in peak load is important since it is the dimensioning foundation...... for the future DH-systems and in order to avoid oversized RE-based capacity, a long-term perspective needs to be taken. The results show that it is possible to design the DH-plants based on an average value of the 5 days with highest daily average loads without compromising with indoor thermal comfort. Applying...

  10. Comparative analysis of the district heating systems of two towns in Croatia and Denmark

    DEFF Research Database (Denmark)

    Čulig-Tokić, Dario; Krajačić, Goran; Doračić, Borna

    2015-01-01

    This paper compares district heating systems in Zagreb and Aalborg in order to see their similarities and differences from which conclusions are drawn on how to improve the systems. The method chosen is the comparative analysis. Data is organized and structured so to allow clear and concise...... comparison. The results of the comparative analysis show that the district heating system in Aalborg is more advanced than the district heating system in Zagreb. This advantage is prominent in aspects of supply, demand, distribution and economic spheres. Some of the possible improvements include lowering...

  11. Evolution of metering and control equipment in district heating house substations. Smaller, smarter and unchangingly robust; Mess- und Regelungstechnik fuer Fernwaermehausstationen im Wandel der Zeit. Kleiner, intelligenter, unveraendert robust

    Energy Technology Data Exchange (ETDEWEB)

    Hesse, Wolfgang; Hilbig, Thomas [Samson AG, Frankfurt am Main (Germany)

    2011-07-15

    The technical evolution of house substations in hot water networks reflects the trend towards greater efficiency. Changes are to be seen above all in the requirements placed on the measurement and control technology used in the energy management functions of the electronic district heating controller as well as on safety equipment. Here DDC (Direct Digital Control) technology has created possibilities for optimising energy consumption. The authors relate the evolution of drinking water heating, self-operated regulators, electrical actuators and of electronic district heating controllers.

  12. Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes

    International Nuclear Information System (INIS)

    Brand, Marek; Thorsen, Jan Eric; Svendsen, Svend

    2012-01-01

    Traditional district heating (DH) systems are becoming uneconomic as the number of new and renovated buildings with reduced heating requirements increases. To keep DH competitive in the future, heat losses in DH networks need to be reduced. One option is to reduce the supply temperature of DH as much as possible. This requires a review and improvement of a DH network, in-house substations, and the whole domestic hot water (DHW) supply system, with the focus on user comfort, hygiene, overall cost and energy efficiency. This paper describes some practical approaches to the implementation of low-temperature district heating (LTDH) with an entry-to-substation temperature around 50 °C. To this end we developed a numerical model for an instantaneous LTDH substation that takes into consideration the effect of service pipes. The model has been verified and can be used for the further optimization of the whole concept as well for individual components. The results show that the way that the service pipe is operated has a significant effect on waiting time for DHW, heat loss, and overall cost. Furthermore, the service pipe should be kept warm by using a bypass in order to fulfil the comfort requirements for DHW instantaneously prepared. -- Highlights: ► Describes and justifies concept of low-temperature district heating with supply temperature of 50 °C. ► Focuses on DHW preparation in low-temperature district heating in-house substations, considering comfort and Legionella. ► Verified numerical model reports on dynamic performance of an in-house substation, considering operation of service pipes. ► Bypass is needed for instantaneous type of district heating substations to fulfil comfort requirements of users. ► The model developed can be used for future optimization of low-temperature substations and whole district heating networks.

  13. Returns and solvency in the Norwegian district heating sector 2010; Avkastning og soliditet i fjernvarmebransjen 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    On behalf of Enova Pareto conducted an analysis of returns and solvency in the district heating sector for fiscal years 2009 and 2010. The analysis focuses on a representative sample of the largest district heating companies in Norway. A total of 26 companies have been analyzed. These companies provide a total of ~ 80% of the district heating in Norway. (eb)

  14. The Sydvaerme project: District heating from the Barsebeck nuclear power plant

    International Nuclear Information System (INIS)

    Josefsson, L.

    1977-01-01

    The paper presents a summary report of a study on district heating from Barsebeck Nuclear Power Plant in Sweden, prepared cooperatively by the cities of Malmoe, Lund, Helsingborg, Landskrona and the electric power company Sydkraft. A future number 3 generating set at the Barsebeck nuclear power station could be designed for combined production of heat and electric power. The generating set could be completed after 1983, and could then supply about 65% of total district heating requirements. The first stage of the investigation includes a proposal for a technically feasible solution, sufficiently detailed to permit both technical and economic evaluation of the project. (author)

  15. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance with the a......A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance...... with the actual heat demand. This results in 15-30% of the total supplied heat being lost. This paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-set thermostatic radiator valves combined with automatic balancing valves. Those devices establish hydraulic balance...... that once the hydraulic balance is achieved and indoor temperatures are controlled with this integrated approach, 17% heat savings and 42.8% pump electricity savings can be achieved. The energy savings will also have a positive environmental effect with seasonal reductions of 11 kg CO2, 0.1 kg SO2, and 0...

  16. Current contributions on the technical thermodynamics, power engineering and district heating supply. Special publication; Aktuelle Beitraege zur technischen Thermodynamik, Energietechnik und Fernwaermeversorgung. Sonderveroeffentlichung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-03-15

    Within the special publication under consideration, the German Heat and Power Association (Frankfurt (Main), Federal Republic of Germany) presents the following current contributions on the technical thermodynamics, power engineering and district heating supply: (1) Cellular metallic materials for innovative latent heat accumulator technologies (Jens Meinert); (2) Compressed air storage - technology, chances and problems (Rutger Kretschmer); (3) KWK electricity - Identification and evaluation (Matthias Krause); (4) Investigation of the storage ability of district heating grids and implementation into the optimized planning of heat generators (Sebastian Gross); (5) Autarcic thermal densification to the combined heat and power and cooling production? - A fundamental thermodynamic consideration (Torben Moeller); (6) Modelling of cogeneration power plants - Investigation of the transformation opportunity of existing district heating systems in LowEx grids (Martin Rhein); (7) Discrete building model for the dynamic thermohydraulic simulation of district heating (Dominik Haas); (8) Ventilation and degasification of solar power plants (Karin Ruehling); (9) Integral simulation of district heating with TRNSYS-TUD (Steffen Robbi); (10) Theoretical analyses of return temperatures in building heating networks (Andreas Meinzenbach); (11) Municipal energy efficiency as an important contribution to the reduction of greenhouse gas emissions (Matthias Mischke); (12) Investigation of the latent heat storage system PK 6 for use in air-conditioning installations (Sebastian Pinnau); (13) The role of the thermodynamics in the electromobility (Lars Schinke); (14) Flow and heat transfer in cooling channels with methane (Andre Schlott); (15) Numerical calculations of stoves fired with wooden logs (Ulf Senechal); (16) Supply of thermodynamic substance data for working fluids of power engineering (Hans-Joachim Kretzschmar); (17) Cyclic pipe-ground interaction in solar-thermal heat grids

  17. Master plan study - District heating Sillamaee municipality. Estonia. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The main deficiencies of the district heating system in Sillamae (Estonia) were identified as being inefficiency of the heat and power production plant, which has a very low capacity, lack of means for consumers to control their energy consumption due to the existing constant flow system, pollution from heat and power production based on oil shale, water and heat losses from the network and unclear agreements between the Silmet factory and Sillamae municipality. The available capital for funding is limited. It was investigated where in the system investments would have the greatest effect. A scenario where heat is supplied from individual gas-fired boilers was calculated. A financially viable scenario would be to change from cogeneration of heat and power (CHP) based on oil shale to either individual natural gas supply or peat-fueled heat production. The Sillamae municipality and the Estonian government should agree on a solution for Sillamae. There will be a cash flow problem if the project is implemented. This can be partly solved by introducing a longer loan period. it is expected that there will be no substantial changes in the consumers` heat demand in the `do nothing`scenario, and in other scenarios ca. 520 Tj/p.a. from the Solmet factory, 530 Tj/p.a. from the town and 260 Tj/p.a. as heat losses, totaling 1310 Tj/p.a.. In another scenario - the introduction of natural gas - the town`s heat demand will be 530 Tj/p.a. and there will be no heat losses. More detailed studies of environmental impacts should be undertaken. (ARW)

  18. Master plan study - District heating Sillamaee municipality. Estonia. Final report

    International Nuclear Information System (INIS)

    1997-03-01

    The main deficiencies of the district heating system in Sillamae (Estonia) were identified as being inefficiency of the heat and power production plant, which has a very low capacity, lack of means for consumers to control their energy consumption due to the existing constant flow system, pollution from heat and power production based on oil shale, water and heat losses from the network and unclear agreements between the Silmet factory and Sillamae municipality. The available capital for funding is limited. It was investigated where in the system investments would have the greatest effect. A scenario where heat is supplied from individual gas-fired boilers was calculated. A financially viable scenario would be to change from cogeneration of heat and power (CHP) based on oil shale to either individual natural gas supply or peat-fueled heat production. The Sillamae municipality and the Estonian government should agree on a solution for Sillamae. There will be a cash flow problem if the project is implemented. This can be partly solved by introducing a longer loan period. it is expected that there will be no substantial changes in the consumers' heat demand in the 'do nothing'scenario, and in other scenarios ca. 520 Tj/p.a. from the Solmet factory, 530 Tj/p.a. from the town and 260 Tj/p.a. as heat losses, totaling 1310 Tj/p.a.. In another scenario - the introduction of natural gas - the town's heat demand will be 530 Tj/p.a. and there will be no heat losses. More detailed studies of environmental impacts should be undertaken

  19. Improving thermal performance of an existing UK district heat network: a case for temperature optimization

    DEFF Research Database (Denmark)

    Tunzi, Michele; Boukhanouf, Rabah; Li, Hongwei

    2018-01-01

    This paper presents results of a research study into improving energy performance of small-scale district heat network through water supply and return temperature optimization technique. The case study involves establishing the baseline heat demand of the estate’s buildings, benchmarking...... the existing heat network operating parameters, and defining the optimum supply and return temperature. A stepwise temperature optimization technique of plate radiators heat emitters was applied to control the buildings indoor thermal comfort using night set back temperature strategy of 21/18 °C....... It was established that the heat network return temperature could be lowered from the current measured average of 55 °C to 35.6 °C, resulting in overall reduction of heat distribution losses and fuel consumption of 10% and 9% respectively. Hence, the study demonstrates the potential of operating existing heat...

  20. Subcooled compressed air energy storage system for coproduction of heat, cooling and electricity

    International Nuclear Information System (INIS)

    Arabkoohsar, A.; Dremark-Larsen, M.; Lorentzen, R.; Andresen, G.B.

    2017-01-01

    Highlights: •A new configuration of compressed air energy storage system is proposed and analyzed. •This system, so-called subcooled-CAES, offers cogeneration of electricity, heat and cooling. •A pseudo-dynamic energy, exergy and economic analysis of the system for an entire year is presented. •The annual power, cooling and heat efficiencies of the system are around 31%, 32% and 92%. •The overall energy and exergy performance coefficients of the system are 1.55 and 0.48, respectively. -- Abstract: Various configurations of compressed air energy storage technology have received attention over the last years due to the advantages that this technology offers relative to other power storage technologies. This work proposes a new configuration of this technology aiming at cogeneration of electricity, heat and cooling. The new system may be very advantageous for locations with high penetration of renewable energy in the electricity grid as well as high heating and cooling demands. The latter would typically be locations with district heating and cooling networks. A thorough design, sizing and thermodynamic analysis of the system for a typical wind farm with 300 MW capacity in Denmark is presented. The results show a great potential of the system to support the local district heating and cooling networks and reserve services in electricity market. The values of power-to-power, power-to-cooling and power-to-heat efficiencies of this system are 30.6%, 32.3% and 92.4%, respectively. The exergy efficiency values are 30.6%, 2.5% and 14.4% for power, cooling and heat productions. A techno-economic comparison of this system with two of the most efficient previous designs of compressed air energy storage system proves the firm superiority of the new concept.