WorldWideScience

Sample records for energy deposition

  1. Energy deposition in NSRR test fuels

    International Nuclear Information System (INIS)

    Ohnishi, Nobuaki; Tanzawa, Sadamitsu; Tanzawa, Tomio; Kitano, Teruaki; Okazaki, Shuji

    1978-02-01

    Interpretation of fuel performance data collected during inpile testing in the NSRR requires a knowledge of the energy deposition or enthalpy increase in each sample tested. The report describes the results of absolute measurement of fission products and contents of uranium in irradiated test fuels which were performed to determine the energy deposition. (auth.)

  2. Monte Carlo simulation of energy deposition by low-energy electrons in molecular hydrogen

    Science.gov (United States)

    Heaps, M. G.; Furman, D. R.; Green, A. E. S.

    1975-01-01

    A set of detailed atomic cross sections has been used to obtain the spatial deposition of energy by 1-20-eV electrons in molecular hydrogen by a Monte Carlo simulation of the actual trajectories. The energy deposition curve (energy per distance traversed) is quite peaked in the forward direction about the entry point for electrons with energies above the threshold of the electronic states, but the peak decreases and broadens noticeably as the electron energy decreases below 10 eV (threshold for the lowest excitable electronic state of H2). The curve also assumes a very symmetrical shape for energies below 10 eV, indicating the increasing importance of elastic collisions in determining the shape of the curve, although not the mode of energy deposition.

  3. Enhanced energy deposition symmetry by hot electron transport

    International Nuclear Information System (INIS)

    Wilson, D.; Mack, J.; Stover, E.; VanHulsteyn, D.; McCall, G.; Hauer, A.

    1981-01-01

    High energy electrons produced by resonance absorption carry the CO 2 laser energy absorbed in a laser fusion pellet. The symmetrization that can be achieved by lateral transport of the hot electrons as they deposit their energy is discussed. A K/sub α/ experiment shows a surprising symmetrization of energy deposition achieved by adding a thin layer of plastic to a copper sphere. Efforts to numerically model this effect are described

  4. Thermal energy storage in granular deposits

    Science.gov (United States)

    Ratuszny, Paweł

    2017-10-01

    Energy storage technology is crucial for the development of the use of renewable energy sources. This is a substantial constraint, however it can, to some extent, be solved by storing energy in its various forms: electrical, mechanical, chemical and thermal. This article presents the results of research in thermal properties of granular deposits. Correlation between temperature changes in the stores over a period of time and their physical properties has been studied. The results of the research have practical application in designing thermal stores based on bulk materials and ground deposits. Furthermore, the research results are significant for regeneration of the lower ground sources for heat pumps and provide data for designing ground heat exchangers for ventilation systems.

  5. X-ray amplifier energy deposition scaling with channeled propagation

    International Nuclear Information System (INIS)

    Boyer, K.; Luk, T.S.; McPherson, A.

    1991-01-01

    The spatial control of the energy deposited for excitation of an x-ray amplifier plays an important role in the fundamental scaling relationship between the required energy, the gain and the wavelength. New results concerning the ability to establish confined modes of propagation of sort pulse radiation of sufficiently high intensity in plasmas lead to a sharply reduced need for the total energy deposited, since the concentration of deposited power can be very efficiently organized

  6. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    CERN Document Server

    Bergmann, Benedikt; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik

    2016-01-01

    In this study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. The data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  7. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process

    Science.gov (United States)

    Park, Jun Seok; Park, Joo Hyun; Lee, Min-Gyu; Sung, Ji Hyun; Cha, Kyoung Je; Kim, Da Hye

    2016-05-01

    Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.

  8. Advances in energy deposition theory

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    In light of the fields of radiation protection and dosimetric problems in medicine, advances in the area of microscopic target related studies are discussed. Energy deposition is discussed with emphasis upon track structures of electrons and heavy charged particles and track computer calculations

  9. Science of mineral deposits and economics of energy

    International Nuclear Information System (INIS)

    Mackowsky, M.T.

    1978-01-01

    The availability of fossile energy carriers is investigated with regard to raw material reserves and their know deposits, by means of output and consumption. According to the author's opinion its discussion should have a priority over all discussions concerning energy crisis, energy supply and environmental protection. The author also touches the high measure of political problems beside the geoscientifical and technological problems of raw material supply. He briefly points to the general situation on the energy market with the help of data on stocks and consumption as given by the 10th International Energy Conference 1977 at Istambul and eventually deals with topics on mineral deposits science and uranium production. (HK) [de

  10. Energy-enhanced atomic layer deposition : offering more processing freedom

    NARCIS (Netherlands)

    Potts, S.E.; Kessels, W.M.M.

    2013-01-01

    Atomic layer deposition (ALD) is a popular deposition technique comprising two or more sequential, self-limiting surface reactions, which make up an ALD cycle. Energy-enhanced ALD is an evolution of traditional thermal ALD methods, whereby energy is supplied to a gas in situ in order to convert a

  11. Energy deposition in STARFIRE reactor components

    International Nuclear Information System (INIS)

    Gohar, Y.; Brooks, J.N.

    1985-04-01

    The energy deposition in the STARFIRE commercial tokamak reactor was calculated based on detailed models for the different reactor components. The heat deposition and the 14 MeV neutron flux poloidal distributions in the first wall were obtained. The poloidal surface heat load distribution in the first wall was calculated from the plasma radiation. The Monte Carlo method was used for the calculation to allow an accurate modeling for the reactor geometry

  12. TLD gamma-ray energy deposition measurements in the zero energy fast reactor ZEBRA

    International Nuclear Information System (INIS)

    Knipe, A.D.

    1977-01-01

    A recent study of gamma-ray energy deposition was carried out in the Zebra reactor at AEE Winfrith during a collaborative programme between the UKAEA and PNC of Japan. The programme was given the title MOZART. This paper describes the TLD experiments in the MOZART MZB assembly and discusses the technique and various corrections necessary to relate the measured quantity to the calculated energy deposition

  13. Effects of Energy Deposition Characteristics on Localised Forced Ignition of Homogeneous Mixtures

    Directory of Open Access Journals (Sweden)

    Dipal Patel

    2015-06-01

    Full Text Available The effects of the characteristic width of the energy deposition profile and the duration of energy deposition by the ignitor on localised forced ignition of stoichiometric and fuel-lean homogeneous mixtures have been analysed using simplified chemistry three-dimensional compressible Direct Numerical Simulation (DNS for different values of root-mean-square turbulent velocity fluctuation. The localised forced ignition is modelled using a source term in the energy transport equation, which deposits energy in a Gaussian manner from the centre of the ignitor over a stipulated period of time. It has been shown that the width of ignition energy deposition and the duration over which ignition energy is deposited have significant influences on the success of ignition and subsequent flame propagation. An increase in the width of ignition energy deposition (duration of energy deposition for a given amount of ignition energy has been found to have a detrimental effect on the ignition event, which may ultimately lead to misfire. Moreover, an increase in u′ gives rise to augmented heat transfer rate from the hot gas kernel, which in turn leads to a reduction in the extent of overall burning for both stoichiometric and fuel-lean homogeneous mixtures but the detrimental effects of high values of u′ on localised ignition are particularly prevalent for fuel-lean mixtures.

  14. Mechanical characteristics of a tool steel layer deposited by using direct energy deposition

    Science.gov (United States)

    Baek, Gyeong Yun; Shin, Gwang Yong; Lee, Eun Mi; Shim, Do Sik; Lee, Ki Yong; Yoon, Hi-Seak; Kim, Myoung Ho

    2017-07-01

    This study focuses on the mechanical characteristics of layered tool steel deposited using direct energy deposition (DED) technology. In the DED technique, a laser beam bonds injected metal powder and a thin layer of substrate via melting. In this study, AISI D2 substrate was hardfaced with AISI H13 and M2 metal powders for mechanical testing. The mechanical and metallurgical characteristics of each specimen were investigated via microstructure observation and hardness, wear, and impact tests. The obtained characteristics were compared with those of heat-treated tool steel. The microstructures of the H13- and M2-deposited specimens show fine cellular-dendrite solidification structures due to melting and subsequent rapid cooling. Moreover, the cellular grains of the deposited M2 layer were smaller than those of the H13 structure. The hardness and wear resistance were most improved in the M2-deposited specimen, yet the H13-deposited specimen had higher fracture toughness than the M2-deposited specimen and heat-treated D2.

  15. Evaluation of effective energy deposition in test fuel during power burst experiment in NSRR

    International Nuclear Information System (INIS)

    Ohnishi, Nobuaki; Inabe, Teruo

    1982-01-01

    In an inpile experiment to study the fuel behavior under reactivity-initiated accident conditions, it is of great importance to understand the time-dependent characteristics of the energy deposited in the test fuel by burst power. The evaluation of the time-dependent energy deposition requires the knowledge of the fission rates and energy deposition per fission in the test fuel, both as a function of time. In the present work, the authors attempted to evaluate the relative fission rate change in the test fuel subjected to the power burst testing in the NSRR through the measurements and analyses of the fission power changes in the NSRR. Utilizing a micro fission chamber and a conventional larger fission chamber, they successfully measured the reactor fission power change ranging over a dozen of decades in magnitude and a thousand seconds in time. The measured power transient agreed quite well with calculated results. In addition, the time-dependent energy deposition per fission in the test fuel including the energy contribution from the driver core was analytically evaluated. The analyses indicate that the energy of about 175 MeV/fission is promptly deposited in the test fuel and that the additional energy of about 11 MeV is deposited afterwards. Finally the fractions of energy deposited in the test fuel until various times after power burst were determined by coupling the time-dependent relative fissions and energy deposition per fission in the test fuel. The prompt energy deposition ranges from about 50 to 80% of the total energy deposition for the reactivity insertion between 1.5 and 4.7 $, and the remaining is the delayed energy deposition. (author)

  16. Modeling the energy deposition in the Aurora KrF laser amplifier chain

    International Nuclear Information System (INIS)

    Comly, J.C.; Czuchlewski, S.J.; Greene, D.P.; Hanson, D.E.; Krohn, B.J.; McCown, A.W.

    1988-01-01

    Monte Carlo calculations model the energy depositions by highly energetic electron beams into the cavities of the four KrF laser amplifiers in the Aurora chain. Deposited energy density distributions are presented and studied as functions of e-beam energy and gas pressure. Results are useful for analyzing small signal gain (SSG) measurements and optimizing deposition in future experiments. 7 refs., 7 figs., 1 tab

  17. Simulation of the fluctuations of energy and charge deposited during e-beam exposure

    International Nuclear Information System (INIS)

    Borisov, S. S.; Zaitsev, S. I.; Grachev, E. A.

    2007-01-01

    The stochastic nature of an energy and charge deposition process is examined using a model based on discrete loss approximation (DLA). Deposited energy deviations computed using the continuous slowing down approximation (CSDA) and DLA are compared. It is shown that CSDA underestimates fluctuations in deposited energy

  18. Investigation on the correlation between energy deposition and clustered DNA damage induced by low-energy electrons.

    Science.gov (United States)

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2018-05-01

    This study presents the correlation between energy deposition and clustered DNA damage, based on a Monte Carlo simulation of the spectrum of direct DNA damage induced by low-energy electrons including the dissociative electron attachment. Clustered DNA damage is classified as simple and complex in terms of the combination of single-strand breaks (SSBs) or double-strand breaks (DSBs) and adjacent base damage (BD). The results show that the energy depositions associated with about 90% of total clustered DNA damage are below 150 eV. The simple clustered DNA damage, which is constituted of the combination of SSBs and adjacent BD, is dominant, accounting for 90% of all clustered DNA damage, and the spectra of the energy depositions correlating with them are similar for different primary energies. One type of simple clustered DNA damage is the combination of a SSB and 1-5 BD, which is denoted as SSB + BD. The average contribution of SSB + BD to total simple clustered DNA damage reaches up to about 84% for the considered primary energies. In all forms of SSB + BD, the SSB + BD including only one base damage is dominant (above 80%). In addition, for the considered primary energies, there is no obvious difference between the average energy depositions for a fixed complexity of SSB + BD determined by the number of base damage, but average energy depositions increase with the complexity of SSB + BD. In the complex clustered DNA damage constituted by the combination of DSBs and BD around them, a relatively simple type is a DSB combining adjacent BD, marked as DSB + BD, and it is of substantial contribution (on average up to about 82%). The spectrum of DSB + BD is given mainly by the DSB in combination with different numbers of base damage, from 1 to 5. For the considered primary energies, the DSB combined with only one base damage contributes about 83% of total DSB + BD, and the average energy deposition is about 106 eV. However, the

  19. Study of energy deposition in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mota, V. De La; Abgrall, P.; Sebille, F.; Haddad, F.

    1993-01-01

    An investigation of energy deposition mechanisms in heavy-ion reactions at intermediate energies is presented. Theoretical simulations are performed in the framework of the semi-classical Landau-Vlasov model. They emphasize the influence of the initial non-equilibrium conditions, and the connection with the incident energy is discussed. Characteristic times involved in the energy thermalization process and finite size effects are analyzed. (authors) 20 refs., 4 figs

  20. PRISM -- A tool for modelling proton energy deposition in semiconductor materials

    International Nuclear Information System (INIS)

    Oldfield, M.K.; Underwood, C.I.

    1996-01-01

    This paper presents a description of, and test results from, a new PC based software simulation tool PRISM (Protons in Semiconductor Materials). The model describes proton energy deposition in complex 3D sensitive volumes of semiconductor materials. PRISM is suitable for simulating energy deposition in surface-barrier detectors and semiconductor memory devices, the latter being susceptible to Single-Event Upset (SEU) and Multiple-Bit Upset (MBU). The design methodology on which PRISM is based, together with the techniques used to simulate ion transport and energy deposition, are described. Preliminary test results used to analyze the PRISM model are presented

  1. Abnormal energy deposition on the wall through plasma disruptions

    International Nuclear Information System (INIS)

    Yamazaki, K.; Schmidt, G.L.

    1984-07-01

    The dissipation of plasma kinetic and magnetic energy during sawtooth oscillstions and disruptions in tokamaks is analyzed using Kadomtsev's disruption model and the plasma-circuit equations. New simple scalings of several characteristic times are obtained for sawteeth and for thermal and magnetic energy quenches of disruptions. The abnormal energy deposition on the wall during major or minor disruptions, estimated from this analysis, is compared with bolometric measurements in the PDX tokamak. Especially, magnetic energy dissipation during current termination period is shown to be reduced by the strong coupling of the plasma current with external circuits. These analyses are found to be useful to predict the phenomenological behavior of plasma disruptions in large future tokamaks, and to estimate abnormal heat deposition on the wall during plasma disruptions. (author)

  2. Optimization design of energy deposition on single expansion ramp nozzle

    Science.gov (United States)

    Ju, Shengjun; Yan, Chao; Wang, Xiaoyong; Qin, Yupei; Ye, Zhifei

    2017-11-01

    Optimization design has been widely used in the aerodynamic design process of scramjets. The single expansion ramp nozzle is an important component for scramjets to produces most of thrust force. A new concept of increasing the aerodynamics of the scramjet nozzle with energy deposition is presented. The essence of the method is to create a heated region in the inner flow field of the scramjet nozzle. In the current study, the two-dimensional coupled implicit compressible Reynolds Averaged Navier-Stokes and Menter's shear stress transport turbulence model have been applied to numerically simulate the flow fields of the single expansion ramp nozzle with and without energy deposition. The numerical results show that the proposal of energy deposition can be an effective method to increase force characteristics of the scramjet nozzle, the thrust coefficient CT increase by 6.94% and lift coefficient CN decrease by 26.89%. Further, the non-dominated sorting genetic algorithm coupled with the Radial Basis Function neural network surrogate model has been employed to determine optimum location and density of the energy deposition. The thrust coefficient CT and lift coefficient CN are selected as objective functions, and the sampling points are obtained numerically by using a Latin hypercube design method. The optimized thrust coefficient CT further increase by 1.94%, meanwhile, the optimized lift coefficient CN further decrease by 15.02% respectively. At the same time, the optimized performances are in good and reasonable agreement with the numerical predictions. The findings suggest that scramjet nozzle design and performance can benefit from the application of energy deposition.

  3. Fossil fuel energy resources of Ethiopia: Coal deposits

    Energy Technology Data Exchange (ETDEWEB)

    Wolela, Ahmed [Department of Petroleum Operations, Ministry of Mines and Energy, Kotebe Branch Office, P. O. Box-486, Addis Ababa (Ethiopia)

    2007-11-22

    The gravity of Ethiopian energy problem has initiated studies to explore various energy resources in Ethiopia, one among this is the exploration for coal resources. Studies confirmed the presence of coal deposits in the country. The coal-bearing sediments are distributed in the Inter-Trappean and Pre-Trap volcanic geological settings, and deposited in fluvio-lacustrine and paludal environments in grabens and half-grabens formed by a NNE-SSW and NNW-SSE fault systems. Most significant coal deposits are found in the Inter-Trappean geological setting. The coal and coal-bearing sediments reach a maximum thickness of 4 m and 300 m, respectively. The best coal deposits were hosted in sandstone-coal-shale and mudstone-coal-shale facies. The coal formations of Ethiopia are quite unique in that they are neither comparable to the coal measures of the Permo-Carboniferous Karroo Formation nor to the Late Devonian-Carboniferous of North America or Northwestern Europe. Proximate analysis and calorific value data indicated that the Ethiopian coals fall under lignite to high volatile bituminous coal, and genetically are classified under humic, sapropelic and mixed coal. Vitrinite reflectance studies confirmed 0.3-0.64% Ro values for the studied coals. Palynology studies confirmed that the Ethiopian coal-bearing sediments range in age from Eocene to Miocene. A total of about 297 Mt of coal reserve registered in the country. The coal reserve of the country can be considered as an important alternative source of energy. (author)

  4. The energy deposition of slowing down particles in heterogeneous media

    International Nuclear Information System (INIS)

    Prinja, A.K.; Williams, M.M.R.

    1980-01-01

    Energy deposition by atomic particles in adjacent semi-infinite, amorphous media is described using the forward form of the Boltzmann transport equation. A transport approximation to the scattering kernel, developed elsewhere, incorporating realistic energy transfer is employed to assess the validity of the commonly used isotropic-scattering and straight-ahead approximations. Results are presented for integral energy deposition rates due to a plane, isotropic and monoenergetic source in one half-space for a range of mass ratios between 0.1 and 5.0. Integral profiles for infinite and semi-infinite media are considered and the influence of reflection for different mass ratios is evaluated. The dissimilar scattering properties of the two media induce a discontinuity at the interface in the energy deposition rate the magnitude of which is sensitive to the source position relative to the interface. A comprehensive evaluation of the total energy deposited in the source free medium is presented for a range of mass ratios and source positions. An interesting minimum occurs for off-interface source locations as a function of the source-medium mass ratio, the position of which varies with the source position but is insensitive to the other mass ratio. As a special case, energy reflection and escape coefficients for semi-infinite media are obtained which demonstrates that the effect of a vacuum interface is insignificant for deep source locations except for large mass ratios when reflection becomes dominant. (author)

  5. Abnormal energy deposition on the wall through plasma disruptions

    International Nuclear Information System (INIS)

    Yamazaki, K.; Schmidt, G.L.

    1984-01-01

    The dissipation of plasma kinetic and magnetic energy during sawtooth oscillations and disruptions in tokamak is analyzed using Kadomtsev's disruption model and the plasma-circuit equations. New simple scalings of several characteristic times are obtained for sawteeth and for thermal and magnetic energy quenches of disruptions. The abnormal energy deposition on the wall during major or minor disruptions, estimated from this analysis, is compared with bolometric measurements in the PDX tokamak. Especially, magnetic energy dissipation during the current termination period is shown to be reduced by the strong coupling of the plasma current with external circuits. These analyses are found to be useful to predict the phenomenological behavior of plasma disruptions in large future tokamaks, and to estimate abnormal heat deposition on the wall during plasma disruptions. (orig.)

  6. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    Energy Technology Data Exchange (ETDEWEB)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs.

  7. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    International Nuclear Information System (INIS)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs

  8. Non-local energy deposition: A problem in regional RF hyperthermia

    International Nuclear Information System (INIS)

    Hagmann, M.J.; Levin, R.L.

    1984-01-01

    As the frequency is decreased below 1 GHz, RF applicators can cause deep heating of tissues. However, there is a concomitant problem in that significant energy deposition may occur well beyond the dimensions of the applicator. The BSD Medical Corporation has described to the authors tests with a phantom manequin in which SAR in the neck was significantly greater than that in the abdomen when an Annular Phased Array System (APAS) was positioned for abdominal heating. The authors have obtained numerical solutions for the SAR distribution in a 180-cell inhomogeneous block model of man subjected to r-f irradiation approximating that emanating from various applicators. The solutions agree with the reports of BSD that significant heating in the neck, inner thighs, and back will occur with an abdominally-placed APAS. They suggest that a similar problem will occur with a helical-coil or other applicator for which the electric field is predominantly parallel to the axis of the body. Typically, 70% or more of the total energy will be deposited outside the bounds of an axial applicator when it is placed around the chest or abdomen. The problem is most severe at frequencies for which body parts such as the arm or head may resonate. In such cases, over 90% of the energy may be deposited outside the bounds of applicator. The problem of non-local energy deposition appears to be substantially reduced for non-axial applicators. If the arm extends outward from the side of the body, an axial applicator around it will cause negligible energy deposition in the rest of the body

  9. Modelling of the energy density deposition profiles of ultrashort laser pulses focused in optical media

    International Nuclear Information System (INIS)

    Vidal, F; Lavertu, P-L; Bigaouette, N; Moore, F; Brunette, I; Giguere, D; Kieffer, J-C; Olivie, G; Ozaki, T

    2007-01-01

    The propagation of ultrashort laser pulses in dense optical media is investigated theoretically by solving numerically the nonlinear Schroedinger equation. It is shown that the maximum energy density deposition as a function of the pulse energy presents a well-defined threshold that increases with the pulse duration. As a consequence of plasma defocusing, the maximum energy density deposition is generally smaller and the size of the energy deposition zone is generally larger for shorter pulses. Nevertheless, significant values of the energy density deposition can be obtained near threshold, i.e., at lower energy than for longer pulses

  10. Energy deposition, heat flow, and rapid solidification during laser and electron beam irradiation of materials

    Energy Technology Data Exchange (ETDEWEB)

    White, C.W.; Aziz, M.J.

    1985-10-01

    The fundamentals of energy deposition, heat flow, and rapid solidification during energy deposition from lasers and electron beams is reviewed. Emphasis is placed on the deposition of energy from pulsed sources (10 to 100 ns pulse duration time) in order to achieve high heating and cooling rates (10/sup 8/ to 10/sup 10/ /sup 0/C/s) in the near surface region. The response of both metals and semiconductors to pulsed energy deposition is considered. Guidelines are presented for the choice of energy source, wavelength, and pulse duration time.

  11. Energy storage and deposition in a solar flare

    Science.gov (United States)

    Vorpahl, J. A.

    1976-01-01

    X-ray pictures of a solar flare taken with the S-056 X-ray telescope aboard Skylab are interpreted in terms of flare energy deposition and storage. The close similarity between calculated magnetic-field lines and the overall structure of the X-ray core is shown to suggest that the flare occurred in an entire arcade of loops. It is found that different X-ray features brightened sequentially as the flare evolved, indicating that some triggering disturbance moved from one side to the other in the flare core. A propagation velocity of 180 to 280 km/s is computed, and it is proposed that the geometry of the loop arcade strongly influenced the propagation of the triggering disturbance as well as the storage and site of the subsequent energy deposition. Some possible physical causes for the sequential X-ray brightening are examined, and a magnetosonic wave is suggested as the triggering disturbance. 'Correct' conditions for energy release are considered

  12. Summary and presentation of the international workshop on beam induced energy deposition (issues, concerns, solutions)

    International Nuclear Information System (INIS)

    Soundranayagam, R.

    1991-11-01

    This report discusses: energy deposition and radiation shielding in antriproton source at FNAL; radiation issues/problems at RHIC; radiation damage to polymers; radiation effects on optical fibre in the SSC tunnel; capabilities of the Brookhaven Radiation Effects Facility; the SSC interaction region; the FLUKA code system, modifications, recent extension and experimental verification; energy particle transport calculations and comparisons with experimental data; Los Alamos High Energy Transport code system; MCNP features and applications; intercomparison of Monte Carlo codes designed for simulation of high energy hadronic cascades; event generator, DTUJET-90 and DTUNUC; Preliminary hydrodynamic calculations of beam energy deposition; MESA code calculations of material response to explosive energy deposition; Smooth particle hydrodynamic; hydrodynamic effects and mass depletion phenomena in targets; beam dump: Beam sweeping and spoilers; Design considerations to mitigate effects of accidental beam dump; SSC beam abort and absorbed; beam abort system of SSC options; unconventional scheme for beam spoilers; low β quadrupoles: Energy deposition and radioactivation; beam induces energy deposition in the SSC components; extension of SSC-SR-1033 approach to radioactivation in LHC and SSC detectors; energy deposition in the SSC low-β IR-quads; beam losses and collimation in the LHC; and radiation shielding around scrapers

  13. Energy deposition profile on ISOLDE Beam Dumps by FLUKA simulations

    CERN Document Server

    Vlachoudis, V

    2014-01-01

    In this report an estimation of the energy deposited on the current ISOLDE beam dumps obtained by means of FLUKA simulation code is presented. This is done for both ones GPS and HRS. Some estimations of temperature raise are given based on the assumption of adiabatic increase from energy deposited by the impinging protons. However, the results obtained here in relation to temperature are only a rough estimate. They are meant to be further studied through thermomechanical simulations using the energyprofiles hereby obtained.

  14. Energy deposition model for I-125 photon radiation in water

    International Nuclear Information System (INIS)

    Fuss, M.C.; Garcia, G.; Munoz, A.; Oller, J.C.; Blanco, F.; Limao-Vieira, P.; Williart, A.; Garcia, G.; Huerga, C.; Tellez, M.

    2010-01-01

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  15. Energy deposition model for I-125 photon radiation in water

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C.; Garcia, G. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Caparica (Portugal); Williart, A.; Garcia, G. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Madrid (Spain)

    2010-10-15

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  16. The energy-deposition model. Electron loss of heavy ions in collisions with neutral atoms at low and intermediate energies

    International Nuclear Information System (INIS)

    Shevelko, V.P.; Litsarev, M.S.; Kato, D.; Tawara, H.

    2010-09-01

    Single- and multiple-electron loss processes in collisions of heavy many-electron ions (positive and negative) in collisions with neutral atoms at low and intermediate energies are considered using the energy-deposition model. The DEPOSIT computer code, created earlier to calculate electron-loss cross sections at high projectile energies, is extended for low and intermediate energies. A description of a new version of DEPOSIT code is given, and the limits of validity for collision velocity in the model are discussed. Calculated electron-loss cross sections for heavy ions and atoms (N + , Ar + , Xe + , U + , U 28+ , W, W + , Ge - , Au - ), colliding with neutral atoms (He, Ne, Ar, W) are compared with available experimental and theoretical data at energies E > 10 keV/u. It is found that in most cases the agreement between experimental data and the present model is within a factor of 2. Combining results obtained by the DEPOSIT code at low and intermediate energies with those by the LOSS-R code at high energies (relativistic Born approximation), recommended electron-loss cross sections in a wide range of collision energy are presented. (author)

  17. Experiment study on the thick GEM-like multiplier for X-ray photoelectrons energy deposition gaining

    International Nuclear Information System (INIS)

    Zhu Pengfei; Ye Yan; Long Yan; Cao Ningxiang; Jia Xing; Li Jianfeng

    2009-01-01

    The GEM is a novel detector with high gain,high time and location resolution. Imitating the structure of the GEM, a thick GEM-like multiplier which has the similar function with that of the GEM is designed and manufactured. The characteristics of the thick GEM-like multiplier increasing electron energy deposition in absorbing medium has been experimentally studied. The results indicate that the energy deposition gain of x-ray photoelectron in medium is apparent, and the maximum energy deposition can increase by more than 40%. Some suggestions of further increasing the energy deposition are given, and the future application of the way of increasing the x-ray photoelectron energy deposition by the thick GEM-like multiplier in hard x-ray imaging is prospected. (authors)

  18. Geopressured aquifers - utilization of the energy potential of the Endorf thermal water deposit

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S; Hantelmann, G v

    1984-01-01

    The Endorf thermal water deposit (Rupel, 4229 to 4264 m) belongs to the type of ''geopressured aquifers''. The overall aim of the project is to exploit the energy stored in the deposit in the form of thermal brine (temperature: 115/sup 0/C) and natural gas (96% methane). In this first report on the project state, an overview on prehistory is followed by a description of the currently implemented test programme and its subsequent evaluation which aim at obtaining more exact knowledge concerning the present deposit conditions and, while doing so, indications of the energy content of the deposit in order to determine the energy potential theoretically exploitable at the well head.

  19. Calorimetric sensors for energy deposition measurements

    International Nuclear Information System (INIS)

    Langenbrunner, J.; Cooper, R.; Morgan, G.

    1998-01-01

    A calorimetric sensor with several novel design features has been developed. These sensors will provide an accurate sampling of thermal power density and energy deposition from proton beams incident on target components of accelerator-based systems, such as the Accelerator Production of Tritium Project (APT) and the Spallation Neutron Source (SNS). A small, solid slug (volume = 0.347 cc) of target material is suspended by kevlar fibers and surrounded by an adiabatic enclosure in an insulating vacuum canister of stainless steel construction. The slug is in thermal contact with a low-mass, calibrated, 100-kΩ thermistor. Power deposition caused by the passage of radiation through the slug is calculated from the rate of temperature rise of the slug. The authors have chosen slugs composed of Pb, Al, and LiAl

  20. Hypersonic wave drag reduction performance of cylinders with repetitive laser energy depositions

    International Nuclear Information System (INIS)

    Fang, J; Hong, Y J; Li, Q; Huang, H

    2011-01-01

    It has been widely research that wave drag reduction on hypersonic vehicle by laser energy depositions. Using laser energy to reduce wave drag can improve vehicle performance. A second order accurate scheme based on finite-difference method and domain decomposition of structural grid is used to compute the drag performance of cylinders in a hypersonic flow of Mach number 2 at altitude of 15km with repetitive energy depositions. The effects of frequency on drag reduction are studied. The calculated results show: the recirculation zone is generated due to the interaction between bow shock over the cylinder and blast wave produced by energy deposition, and a virtual spike which is supported by an axis-symmetric recirculation, is formed in front of the cylinder. By increasing the repetitive frequency, the drag is reduced and the oscillation of the drag is decreased; however, the energy efficiency decreases by increasing the frequency.

  1. Energy deposition in a thin copper target downstream and off-axis of a proton-radiography target

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.; Snead, C.L.; Hanson, A.L.; Murray, M.M.

    2002-01-01

    A series of proton energy-deposition experiments was conducted to measure the energy deposited in a copper target located downstream and off-axis of a high-energy proton-radiography target. The proton/target interactions involved low-intensity bunches of protons at 24 GeV/c onto a spherical target consisting of concentric shells of tungsten and copper. The energy-deposition target was placed at five locations downstream of the proton-radiography target, off-axis of the primary beam transport, and was either unshielded or shielded by 5 or 10 cm of lead. Maximum temperature rises measured in the energy-deposition target due to single bunches of 5x10 10 protons on the proton-radiography target were approximately 20 mK per bunch. The data indicated that the scattered radiation was concentrated close to the primary transport axis of the beam line. The energy deposited in the energy-deposition target was reduced by moving the target radially away from the primary transport axis. Placing lead shielding in front of the target further reduced the energy deposition. The measured temperature rises of the energy-deposition target were empirically correlated with the distance from the source, the number of protons incident on the proton-radiography target, the thickness of the lead shielding, and the angle of the energy-deposition target off-axis of the beam line from the proton-radiography target. The correlation of the experimental data that was developed provides a starting point for the evaluation of the shielding requirements for devices downstream of proton-radiography targets such as superconducting magnets

  2. Plasmonic resonance-enhanced local photothermal energy deposition by aluminum nanoparticles

    International Nuclear Information System (INIS)

    Chong Xinyuan; Jiang Naibo; Zhang Zhili; Roy, Sukesh; Gord, James R.

    2013-01-01

    Local energy deposition of aluminum nanoparticles (Al NPs) by localized surface plasmon resonance-enhanced photothermal effects is demonstrated. Low-power light stimuli are efficiently and locally concentrated to trigger the oxidation reactions of Al NPs because of the large ohmic absorption and high reactivity of the Al. Numerical simulations show that both ultraviolet and visible light are more efficient than infrared light for photothermal energy coupling. The natural oxidation layer of alumina is found to have minimum impact on the energy deposition because of its negligible dielectric losses. The near-field distributions of the electric field indicate that slight aggregation induces much higher local enhancement, especially at the interface region of multiple contacting nanoparticles.

  3. Internal energy deposition with silicon nanoparticle-assisted laser desorption/ionization (SPALDI) mass spectrometry

    Science.gov (United States)

    Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.

    2009-06-01

    The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy

  4. On the role of energy deposition in triggering SEGR in power MOSFETs

    International Nuclear Information System (INIS)

    Selva, L.E.; Swift, G.M.; Taylor, W.A.; Edmonds, L.D.

    1999-01-01

    Single event gate rupture (SEGR) was studied using three types of power MOSFET devices with ions having incident linear energy transfers (LETs) in silicon from 26 to 82 MeV·cm 2 /mg. Results are: (1) consistent with Wrobel's oxide breakdown for V DS = 0 volts (for both normal incidence and angle); and (2) when V GS = 0 volts, energy deposited near the Si/SiO 2 interface is more important than the energy deposited deeper in the epi

  5. Effect of electron degeneracy on fast-particles energy deposition in dense plasma systems

    International Nuclear Information System (INIS)

    Johzaki, T.; Nakao, Y.; Nakashima, H.; Kudo, K.

    1997-01-01

    The effects of electron degeneracy on fast-particles energy deposition in dense plasmas are investigated by making transport calculations for the fast particles. It is found that the degeneracy substantially affects the profiles of energy deposition of 3.52-MeV α-particles. On the other hand, the effect on the energy deposition of 14.1-MeV neutrons is negligibly small because the recoil ions, which transfer the neutron energy to the plasma constituents, are produced in a whole plasma volume due to the long mean-free-path of neutrons. The coupled transport-hydrodynamic calculations show that these effects of degeneracy are negligible in the ignition and burn characteristics of central ignition D-T targets. (author)

  6. Numerical study on increasing mass flow ratio by energy deposition of high frequency pulsed laser

    International Nuclear Information System (INIS)

    Wang Diankai; Hong Yanji; Li Qian

    2013-01-01

    The mass flow ratio (MFR) of air breathing ramjet inlet would be decreased, when the Mach number is lower than the designed value. High frequency pulsed laser energy was deposited upstream of the cowl lip to reflect the stream so as to increase the MFR. When the Mach number of the flow was 5.0, and the static pressure and temperature of the flow were 2 551.6 Pa and 116.7 K, respectively, two-dimensional non-stationary compressible RANS equations were solved with upwind format to study the mechanisms of increasing MFR by high frequency pulsed laser energy deposition. The laser deposition frequency was 100 kHz and the average power was 500 W. The crossing point of the first forebody oblique shock and extension line of cowl lip was selected as the expected point. Then the deposition position was optimized by searching near the expected point. The results indicate that with the optimization of laser energy deposition position, the MFR would be increased from 63% to 97%. The potential value of increasing MFR by high frequency pulsed laser energy deposition was proved. The method for selection of the energy deposition position was also presented. (authors)

  7. Magnetic field effects on runaway electron energy deposition in plasma facing materials and components

    International Nuclear Information System (INIS)

    Niemer, K.A.; Gilligan, J.G.

    1992-01-01

    This paper reports magnetic field effects on runaway electron energy deposition in plasma facing materials and components is investigated using the Integrated TIGER Series. The Integrated TIGER Series is a set of time-independent coupled electron/photon Monte Carlo transport codes which perform photon and electron transport, with or without macroscopic electric and magnetic fields. A three-dimensional computational model of 100 MeV electrons incident on a graphite block was used to simulate runawayelectrons striking a plasma facing component at the edge of a tokamak. Results show that more energy from runaway electrons will be deposited in a material that is in the presence of a magnetic field than in a material that is in the presence of no field. For low angle incident runaway electrons in a strong magnetic field, the majority of the increased energy deposition is near the material surface with a higher energy density. Electrons which would have been reflected with no field, orbit the magnetic field lines and are redeposited in the material surface, resulting in a substantial increase in surface energy deposition. Based on previous studies, the higher energy deposition and energy density will result in higher temperatures which are expected to cause more damage to a plasma facing component

  8. Halite depositional facies in a solar salt pond: A key to interpreting physical energy and water depth in ancient deposits?

    Science.gov (United States)

    Robertson Handford, C.

    1990-08-01

    Subaqueous deposits of aragonite, gypsum, and halite are accumulating in shallow solar salt ponds constructed in the Pekelmeer, a sea-level sauna on Bonaire, Netherlands Antilles. Several halite facies are deposited in the crystallizer ponds in response to differences in water depth and wave energy. Cumulate halite, which originates as floating rafts, is present only along the protected, upwind margins of ponds where low-energy conditions foster their formation and preservation. Cornet crystals with peculiar mushroom- and mortarboard-shaped caps precipitate in centimetre-deep brine sheets within a couple of metres of the upwind or low-energy margins. Downwind from these margins, cornet and chevron halite precipitate on the pond floors in water depths ranging from a few centimetres to ˜60 cm. Halite pisoids with radial-concentric structure are precipitated in the swash zone along downwind high-energy shorelines where they form pebbly beaches. This study suggests that primary halite facies are energy and/or depth dependent and that some primary features, if preserved in ancient halite deposits, can be used to infer physical energy conditions, subenvironments such as low- to high-energy shorelines, and extremely shallow water depths in ancient evaporite basins.

  9. Monte Carlo calculation of the energy deposited in the KASCADE GRANDE detectors

    International Nuclear Information System (INIS)

    Mihai, Constantin

    2004-01-01

    The energy deposited by protons, electrons and positrons in the KASCADE GRANDE detectors is calculated with a simple and fast Monte Carlo method. The KASCADE GRANDE experiment (Forschungszentrum Karlsruhe, Germany), based on an array of plastic scintillation detectors, has the aim to study the energy spectrum of the primary cosmic rays around and above the 'knee' region of the spectrum. The reconstruction of the primary spectrum is achieved by comparing the data collected by the detectors with simulations of the development of the extensive air shower initiated by the primary particle combined with detailed simulations of the detector response. The simulation of the air shower development is carried out with the CORSIKA Monte Carlo code. The output file produced by CORSIKA is further processed with a program that estimates the energy deposited in the detectors by the particles of the shower. The standard method to calculate the energy deposit in the detectors is based on the Geant package from the CERN library. A new method that calculates the energy deposit by fitting the Geant based distributions with simpler functions is proposed in this work. In comparison with the method based on the Geant package this method is substantially faster. The time saving is important because the number of particles involved is large. (author)

  10. Low-energy ion-beam deposition apparatus equipped with surface analysis system

    International Nuclear Information System (INIS)

    Ohno, Hideki; Aoki, Yasushi; Nagai, Siro.

    1994-10-01

    A sophisticated apparatus for low energy ion beam deposition (IBD) was installed at Takasaki Radiation Chemistry Research Establishment of JAERI in March 1991. The apparatus is composed of an IBD system and a real time/in-situ surface analysis system for diagnosing deposited thin films. The IBD system provides various kinds of low energy ion down to 10 eV with current density of 10 μA/cm 2 and irradiation area of 15x15 mm 2 . The surface analysis system consists of RHEED, AES, ISS and SIMS. This report describes the characteristics and the operation procedure of the apparatus together with some experimental results on depositing thin carbon films. (author)

  11. Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process

    Science.gov (United States)

    Park, Jun Seok; Lee, Min-Gyu; Cho, Yong-Jae; Sung, Ji Hyun; Jeong, Myeong-Sik; Lee, Sang-Kon; Choi, Yong-Jin; Kim, Da Hye

    2016-01-01

    The directed energy deposition process has been mainly applied to re-work and the restoration of damaged steel. Differences in material properties between the base and the newly deposited materials are unavoidable, which may affect the mechanical properties and durability of the part. We investigated the effect of heat treatment on the characteristics of tool steel deposited by the DED process. We prepared general tool steel materials of H13 and D2 that were deposited onto heat-treated substrates of H13 and D2, respectively, using a direct metal tooling process. The hardness and microstructure of the deposited steel before and after heat treatment were investigated. The hardness of the deposited H13 steel was higher than that of wrought H13 steel substrate, while that of the deposited D2 was lower than that of wrought D2. The evolution of the microstructures by deposition and heat treatment varied depending on the materials. In particular, the microstructure of the deposited D2 steel after heat treatment consisted of fine carbides in tempered martensite and it is expected that the deposited D2 steel will have isotropic properties and high hardness after heat treatment.

  12. Energy deposition patterns within limb models heated with a mini annular phased array (MAPA) applicator

    International Nuclear Information System (INIS)

    Guerquin-Kern, J.L.; Hagmann, M.J.; Charny, C.K.; Levin, R.L.

    1986-01-01

    A series of experiments has been carried out in order to characterize a MAPA applicator prior to possible clinical implementation. The energy deposition patterns were determined in several human limb models of different complexities. The maximum energy deposition observed in a homogeneous cylindrical phantom was found to be at the middle of the applicator. For more realistically shaped, homogeneous limb models, the point of maximum energy deposition was shifted towards a smaller cross-sectional region; this was also the case for isolated human legs. Furthermore, significant heating was observed in the bone of the isolated legs. Such phenomena illustrate the limitation of using classical 2-D numerical models for predicting the energy deposition patterns in heterogeneous bodies

  13. Investigating energy deposition within cell populations using Monte Carlo simulations.

    Science.gov (United States)

    Oliver, Patricia A K; Thomson, Rowan M

    2018-06-27

    In this work, we develop multicellular models of healthy and cancerous human soft tissues, which are used to investigate energy deposition in subcellular targets, quantify the microdosimetric spread in a population of cells, and determine how these results depend on model details. Monte Carlo (MC) tissue models combining varying levels of detail on different length scales are developed: microscopically-detailed regions of interest (>1500 explicitly-modelled cells) are embedded in bulk tissue phantoms irradiated by photons (20 keV to 1.25 MeV). Specific energy (z; energy imparted per unit mass) is scored in nuclei and cytoplasm compartments using the EGSnrc user-code egs_chamber; specific energy mean, <z>, standard deviation, σz, and distribution, f(z,D), are calculated for a variety of macroscopic doses, D. MC-calculated f(z,D) are compared with normal distributions having the same mean and standard deviation. For mGy doses, there is considerable variation in energy deposition (microdosimetric spread) throughout a cell population: e.g., for 30 keV photons irradiating melanoma with 7.5 μm cell radius and 3 μm nuclear radius, σz/<z> for nuclear targets is 170%, and the fraction of nuclei receiving no energy deposition, fz=0, is 0.31 for a dose of 10 mGy. If cobalt-60 photons are considered instead, then σz/<z> decreases to 84%, and fz=0 decreases to 0.036. These results correspond to randomly arranged cells with cell/nucleus sizes randomly sampled from a normal distribution with a standard deviation of 1 μm. If cells are arranged in a hexagonal lattice and cell/nucleus sizes are uniform throughout the population, then σz/<z> decreases to 106% and 68% for 30 keV and cobalt-60,respectively; fz=0

  14. Relationship between energy deposition and shock wave phenomenon in an underwater electrical wire explosion

    Science.gov (United States)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Qiu, Aici; Ding, Weidong; Zhang, Yongmin

    2017-09-01

    An experimental study of pressure waves generated by an exploding copper wire in a water medium is performed. We examined the effects of energy deposited at different stages on the characteristics of the resulting shock waves. In the experiments, a microsecond time-scale pulsed current source was used to explode a 300-μm-diameter, 4-cm-long copper wire with initial stored energies ranging from 500 to 2700 J. Our experimental results indicated that the peak pressure (4.5-8.1 MPa) and energy (49-287 J) of the shock waves did not follow a simple relationship with any electrical parameters, such as peak voltage or deposited energy. Conversely, the impulse had a quasi-linear relationship with the parameter Π. We also found that the peak pressure was mainly influenced by the energy deposited before separation of the shock wave front and the discharge plasma channel (DPC). The decay time constant of the pressure waveform was affected by the energy injection after the separation. These phenomena clearly demonstrated that the deposited energy influenced the expansion of the DPC and affected the shock wave characteristics.

  15. Studies on the high electronic energy deposition in polyaniline thin films

    International Nuclear Information System (INIS)

    Deshpande, N.G.; Gudage, Y.G.; Vyas, J.C.; Singh, F.; Sharma, Ramphal

    2008-01-01

    We report here the physico-chemical changes brought about by high electronic energy deposition of gold ions in HCl doped polyaniline (PANI) thin films. PANI thin films were synthesized by in situ polymerization technique. The as-synthesized PANI thin films of thickness 160 nm were irradiated using Au 7+ ion of 100 MeV energy at different fluences, namely, 5 x 10 11 ions/cm 2 and 5 x 10 12 ions/cm 2 , respectively. A significant change was seen after irradiation in electrical and photo conductivity, which may be related to increased carrier concentration, and structural modifications in the polymer film. In addition, the high electronic energy deposition showed other effects like cross-linking of polymer chains, bond breaking and creation of defect sites. AFM observations revealed mountainous type features in all (before and after irradiation) PANI samples. The average size (diameter) and density of such mountainous clusters were found to be related with the ion fluence. The AFM profiles also showed change in the surface roughness of the films with respect to irradiation, which is one of the peculiarity of the high electronic energy deposition technique

  16. Evaluation of energy deposition by 153Sm in small samples

    International Nuclear Information System (INIS)

    Cury, M.I.C.; Siqueira, P.T.D.; Yoriyaz, H.; Coelho, P.R.P.; Da Silva, M.A.; Okazaki, K.

    2002-01-01

    Aim: This work presents evaluations of the absorbed dose by 'in vitro' blood cultures when mixed with 153 Sm solutions of different concentrations. Although 153 Sm is used as radiopharmaceutical mainly due to its beta emission, which is short-range radiation, it also emits gamma radiation which has a longer-range penetration. Therefore it turns to be a difficult task to determine the absorbed dose by small samples where the infinite approximation is no longer valid. Materials and Methods: MCNP-4C (Monte Carlo N - Particle transport code) has been used to perform the evaluations. It is not a deterministic code that calculates the value of a specific quantity solving the physical equations involved in the problem, but a virtual experiment where the events related to the problems are simulated and the concerned quantities are tallied. MCNP also stands out by its possibilities to specify geometrically any problem. However, these features, among others, turns MCNP in a time consuming code. The simulated problem consists of a cylindrical plastic tube with 1.5 cm internal diameter and 0.1cm thickness. It also has 2.0 cm height conic bottom end, so that the represented sample has 4.0 ml ( consisted by 1 ml of blood and 3 ml culture medium). To evaluate the energy deposition in the blood culture in each 153 Sm decay, the problem has been divided in 3 steps to account to the β- emissions (which has a continuum spectrum), gammas and conversion and Auger electrons emissions. Afterwards each emission contribution was weighted and summed to present the final value. Besides this radiation 'fragmentation', simulations were performed for many different amounts of 153 Sm solution added to the sample. These amounts cover a range from 1μl to 0.5 ml. Results: The average energy per disintegration of 153 Sm is 331 keV [1]. Gammas account for 63 keV and β-, conversion and Auger electrons account for 268 keV. The simulations performed showed an average energy deposition of 260 ke

  17. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    International Nuclear Information System (INIS)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-01-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime

  18. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    Science.gov (United States)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-03-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime.

  19. Cumulative percent energy deposition of photon beam incident on different targets, simulated by Monte Carlo

    International Nuclear Information System (INIS)

    Kandic, A.; Jevremovic, T.; Boreli, F.

    1989-01-01

    Monte Carlo simulation (without secondary radiation) of the standard photon interactions (Compton scattering, photoelectric absorption and pair protection) for the complex slab's geometry is used in numerical code ACCA. A typical ACCA run will yield: (a) transmission of primary photon radiation differential in energy, (b) the spectrum of energy deposited in the target as a function of position and (c) the cumulative percent energy deposition as a function of position. A cumulative percent energy deposition of photon monoenergetic beam incident on simplest and complexity tissue slab and Fe slab are presented in this paper. (author). 5 refs.; 2 figs

  20. Low energy Cu clusters slow deposition on a Fe (001) surface investigated by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shixu [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gong, Hengfeng [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Division of Nuclear Materials Science and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Xuanzhi [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Gongping, E-mail: ligp@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Zhiguang, E-mail: zhgwang@impcas.ac.cn [Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-09-30

    Highlights: • We study the deposition of low energy Cu clusters on Fe (001) surface by molecular dynamics. • The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. • The phenomenon of contact epitaxy of cluster occurred. • The thermal diffusion of cluster atoms was analyzed. - Abstract: The slow deposition of low energy Cu clusters on a Fe (001) surface was investigated by molecular dynamics simulation. A many-body potential based on Finnis–Sinclair model was used to describe the interactions among atoms. Three clusters comprising of 13, 55 and 147 atoms, respectively, were deposited with incident energies ranging from 0.0 to 1.0 eV/atom at various substrate temperatures (0, 300 and 800 K). The rearrangement and the diffusion of cluster can occur, only when the cluster atoms are activated and obtained enough migration energy. The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. In the former, the migration energy originates from the latent heat of binding energy for the soft deposition regime and primarily comes from the incident energy of cluster for the energetic cluster deposition regime. In the latter, the thermal vibration would result in some cluster atoms activated again at medium and high substrate temperatures. Also, the effects of incident energy, cluster size and substrate temperature on the interaction potential energy between cluster and substrate, the final deposition morphology of cluster, the spreading index and the structure parameter of cluster are analyzed.

  1. Neutrons and gamma transport in atmosphere by Tripoli-2 code. Energy deposit and electron current time function

    International Nuclear Information System (INIS)

    Vergnaud, T.; Nimal, J.C.; Ulpat, J.P.; Faucheux, G.

    1988-01-01

    The Tripoli-2 computer code has been adapted to calculate, in addition to energy deposit in matter by neutrons (Kerma) the energy deposit by gamma produced in neutronic impacts and the induced recoil electron current. The energy deposit conduces at air ionization, consequently at a conductibility. This knowledge added at that of electron current permit to resolve the Maxwell equations of electromagnetic field. The study is realized for an atmospheric explosion 100 meters high. The calculations of energy deposit and electron current have been conducted as far as 2.5km [fr

  2. Energy deposition model for low-energy electrons (10-10 000 eV) in air

    International Nuclear Information System (INIS)

    Roldan, A.; Perez, J.M.; Williart, A.; Blanco, F.; Garcia, G.

    2004-01-01

    An energy deposition model for electrons in air that can be useful in microdosimetric applications is presented in this study. The model is based on a Monte Carlo simulation of the single electron scattering processes that can take place with the molecular constituents of the air in the energy range 10-10 000 eV. The input parameters for this procedure have been the electron scattering cross sections, both differential and integral. These parameters were calculated using a model potential method which describes the electron scattering with the molecular constituent of air. The reliability of the calculated integral cross section values has been evaluated by comparison with direct total electron scattering cross-section measurements performed by us in a transmission beam experiment. Experimental energy loss spectra for electrons in air have been used as probability distribution functions to define the electron energy loss in single collision events. The resulting model has been applied to simulate the electron transport through a gas cell containing air at different pressures and the results have been compared with those observed in the experiments. Finally, as an example of its applicability to dosimetric issues, the energy deposition of 10 000 eV by means of successive collisions in a free air chamber has been simulated

  3. Mechanisms of ignition by transient energy deposition: Regimes of combustion wave propagation

    OpenAIRE

    Kiverin, A. D.; Kassoy, D. R.; Ivanov, M. F.; Liberman, M. A.

    2013-01-01

    Regimes of chemical reaction wave propagating in reactive gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied depending on the characteristics of a transient thermal energy deposition localized in a finite volume of reactive gas. Different regimes of the reaction wave propagation are initiated depending on the amount of deposited thermal energy, power of the source, and the size of the hot spot. The main parameters which define regimes of the combustion wave...

  4. Energy deposition measurements in fast reactor safety experiments with fission thermocouple detectors

    International Nuclear Information System (INIS)

    Wright, S.A.; Scott, H.L.

    1979-01-01

    The investigation of phenomena occurring in in-pile fast reactor safety experiments requires an accurate measurement of the time dependent energy depositions within the fissile material. At Sandia Laboratories thin-film fission thermocouples are being developed for this purpose. These detectors have high temperature capabilities (400 to 500 0 C), are sodium compatible, and have milli-second time response. A significant advantage of these detectors for use as energy deposition monitors is that they produce an output voltage which is directly dependent on the temperature of a small chip of fissile material within the detectors. However, heat losses within the detector make it necessary to correct the response of the detector to determine the energy deposition. A method of correcting the detector response which uses an inverse convolution procedure has been developed and successfully tested with experimental data obtained in the Sandia Pulse Reactor (SPR-II) and in the Annular Core Research Reactor

  5. Kinetic-energy induced smoothening and delay of epitaxial breakdown in pulsed-laser deposition

    International Nuclear Information System (INIS)

    Shin, Byungha; Aziz, Michael J.

    2007-01-01

    We have isolated the effect of kinetic energy of depositing species from the effect of flux pulsing during pulsed-laser deposition (PLD) on surface morphology evolution of Ge(001) homoepitaxy at low temperature (100 deg. C). Using a dual molecular beam epitaxy (MBE) PLD chamber, we compare morphology evolution from three different growth methods under identical experimental conditions except for the differing nature of the depositing flux: (a) PLD with average kinetic energy 300 eV (PLD-KE); (b) PLD with suppressed kinetic energy comparable to thermal evaporation energy (PLD-TH); and (c) MBE. The thicknesses at which epitaxial breakdown occurs are ranked in the order PLD-KE>MBE>PLD-TH; additionally, the surface is smoother in PLD-KE than in MBE. The surface roughness of the films grown by PLD-TH cannot be compared due to the early epitaxial breakdown. These results demonstrate convincingly that kinetic energy is more important than flux pulsing in the enhancement of epitaxial growth, i.e., the reduction in roughness and the delay of epitaxial breakdown

  6. Nanostructured Electrodes Via Electrostatic Spray Deposition for Energy Storage System

    KAUST Repository

    Chen, C.

    2014-10-02

    Energy storage systems such as Li-ion batteries and supercapacitors are extremely important in today’s society, and have been widely used as the energy and power sources for portable electronics, electrical vehicles and hybrid electrical vehicles. A lot of research has focused on improving their performance; however, many crucial challenges need to be addressed to obtain high performance electrode materials for further applications. Recently, the electrostatic spray deposition (ESD) technique has attracted great interest to satisfy the goals. Due to its many advantages, the ESD technique shows promising prospects compared to other conventional deposition techniques. In this paper, our recent research outcomes related to the ESD derived anodes for Li-ion batteries and other applications is summarized and discussed.

  7. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage.

    Science.gov (United States)

    Guan, Cao; Wang, John

    2016-10-01

    Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.

  8. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    Science.gov (United States)

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  9. Interaction region design driven by energy deposition

    Science.gov (United States)

    Martin, Roman; Besana, Maria Ilaria; Cerutti, Francesco; Langner, Andy; Tomás, Rogelio; Cruz-Alaniz, Emilia; Dalena, Barbara

    2017-08-01

    The European Strategy Group for High Energy Physics recommends to study collider designs for the post-LHC era. Among the suggested projects there is the circular 100 TeV proton-proton collider FCC-hh. Starting from LHC and its proposed upgrade HL-LHC, this paper outlines the development of the interaction region design for FCC-hh. We identify energy deposition from debris of the collision events as a driving factor for the layout and draft the guiding principles to unify protection of the superconducting final focus magnets from radiation with a high luminosity performance. Furthermore, we offer a novel strategy to mitigate the lifetime limitation of the first final focus magnet due to radiation load, the Q1 split.

  10. Energy deposition at the bone-tissue interface from nuclear fragments produced by high-energy nucleons

    Science.gov (United States)

    Cucinotta, Francis A.; Hajnal, Ferenc; Wilson, John W.

    1990-01-01

    The transport of nuclear fragmentation recoils produced by high-energy nucleons in the region of the bone-tissue interface is considered. Results for the different flux and absorbed dose for recoils produced by 1 GeV protons are presented in a bidirectional transport model. The energy deposition in marrow cavities is seen to be enhanced by recoils produced in bone. Approximate analytic formulae for absorbed dose near the interface region are also presented for a simplified range-energy model.

  11. A Complete Reporting of MCNP6 Validation Results for Electron Energy Deposition in Single-Layer Extended Media for Source Energies <= 1-MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-04

    In this paper, we expand on previous validation work by Dixon and Hughes. That is, we present a more complete suite of validation results with respect to to the well-known Lockwood energy deposition experiment. Lockwood et al. measured energy deposition in materials including beryllium, carbon, aluminum, iron, copper, molybdenum, tantalum, and uranium, for both single- and multi-layer 1-D geometries. Source configurations included mono-energetic, mono-directional electron beams with energies of 0.05-MeV, 0.1-MeV, 0.3- MeV, 0.5-MeV, and 1-MeV, in both normal and off-normal angles of incidence. These experiments are particularly valuable for validating electron transport codes, because they are closely represented by simulating pencil beams incident on 1-D semi-infinite slabs with and without material interfaces. Herein, we include total energy deposition and energy deposition profiles for the single-layer experiments reported by Lockwood et al. (a more complete multi-layer validation will follow in another report).

  12. Lateral particle density reconstruction from the energy deposits of particles in the KASCADE-Grande detector stations

    International Nuclear Information System (INIS)

    Toma, G.; Brancus, I.M.; Mitrica, B.; Sima, O.; Rebel, H.

    2005-01-01

    The study of primary cosmic rays with energies greater than 10 14 eV is done mostly by indirect observation techniques such as the study of Extensive Air Showers (EAS). In the much larger framework effort of inferring data on the mass and energy of the primaries from EAS observables, the present study aims at delivering a versatile method and software tool that will be used to reconstruct lateral particle densities from the energy deposits of particles in the KASCADE-Grande detector stations. The study has been performed on simulated events, by taking into account the interaction of the EAS components with the detector array (energy deposits). The energy deposits have been parametrized for different incident energies and angles. Thus it is possible to reconstruct the particle densities in detectors from the energy deposits. A correlation between lateral particle density and primary mass and primary energy (at ∼ 600 m from shower core) has been established. The study puts great emphasis on the quality of reconstruction and also on the speed of the technique. The data obtained from the study on simulated events will be used soon on real events detected by the KASCADE-Grande array. (authors)

  13. High energy ion range and deposited energy calculation using the Boltzmann-Fokker-Planck splitting of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Mozolevski, I.E.

    2001-01-01

    We consider the splitting of the straight-ahead Boltzmann transport equation in the Boltzmann-Fokker-Planck equation, decomposing the differential cross-section into a singular part, corresponding to small energy transfer events, and in a regular one, which corresponds to large energy transfer. The convergence of implantation profile, nuclear and electronic energy depositions, calculated from the Boltzmann-Fokker-Planck equation, to the respective exact distributions, calculated from Monte-Carlo method, was exanimate in a large-energy interval for various values of splitting parameter and for different ion-target mass relations. It is shown that for the universal potential there exists an optimal value of splitting parameter, for which range and deposited energy distributions, calculated from the Boltzmann-Fokker-Planck equation, accurately approximate the exact distributions and which minimizes the computational expenses

  14. Interaction region design driven by energy deposition

    Directory of Open Access Journals (Sweden)

    Roman Martin

    2017-08-01

    Full Text Available The European Strategy Group for High Energy Physics recommends to study collider designs for the post-LHC era. Among the suggested projects there is the circular 100 TeV proton-proton collider FCC-hh. Starting from LHC and its proposed upgrade HL-LHC, this paper outlines the development of the interaction region design for FCC-hh. We identify energy deposition from debris of the collision events as a driving factor for the layout and draft the guiding principles to unify protection of the superconducting final focus magnets from radiation with a high luminosity performance. Furthermore, we offer a novel strategy to mitigate the lifetime limitation of the first final focus magnet due to radiation load, the Q1 split.

  15. Characteristics of toroidal energy deposition asymmetries in ASDEX

    International Nuclear Information System (INIS)

    Evans, T.E.; Neuhauser, J.; Leuterer, F.; Mueller, E.R.

    1990-01-01

    Large toroidal and poloidal asymmetries with characteristics which are sensitively dependent on q a , the vertical position of the plasma, and the type of additional heating are observed in the energy flow to the ASDEX divertor target plates. The largest asymmetries and total energy depositions are observed during lower hybrid wave injection experiments with approximately 50% of the input energy going to the combined divertor targets and shields. A maximum localized energy density loading of 10 MJ/m 2 is typical under these conditions. Measurements of the asymmetries are consistent with a model in which magnetic islands and ergodicity due to intrinsic magnetic perturbations dominate the energy transpot across the primary magnetic separatrix. The results emphasize the essential role of resonant magnetic perturbations in determining the performance of tokamaks and demonstrate that non-axisymmetric effects caused by small perturbations become increasingly important in determining the transport properties as the injected power is increased. (orig.)

  16. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    Science.gov (United States)

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  17. Dynamic energy spectrum and energy deposition in solid target by intense pulsed ion beams

    Institute of Scientific and Technical Information of China (English)

    Xiao Yu; Xiao-Yun Le; Zheng Liu; Jie Shen; Yu I.Isakova; Hao-Wen Zhong; Jie Zhang; Sha Yan; Gao-Long Zhang; Xiao-Fu Zhang

    2017-01-01

    A method for analyzing the dynamic energy spectrum of intense pulsed ion beam (IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes (MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450 (active MID) and TEMP-4M (passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.

  18. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    International Nuclear Information System (INIS)

    Famiano, M.A.

    1997-01-01

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time (∼1 micros to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, 137 Cs gamma rays, and electrons from a 90 Sr/ 90 Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired

  19. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; Huang Jianjun; Sun Jianfeng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  20. Solar Energy Deposition Rates in the Mesosphere Derived from Airglow Measurements: Implications for the Ozone Model Deficit Problem

    Science.gov (United States)

    Mlynczak, Martin G.; Garcia, Rolando R.; Roble, Raymond G.; Hagan, Maura

    2000-01-01

    We derive rates of energy deposition in the mesosphere due to the absorption of solar ultraviolet radiation by ozone. The rates are derived directly from measurements of the 1.27-microns oxygen dayglow emission, independent of knowledge of the ozone abundance, the ozone absorption cross sections, and the ultraviolet solar irradiance in the ozone Hartley band. Fifty-six months of airglow data taken between 1982 and 1986 by the near-infrared spectrometer on the Solar-Mesosphere Explorer satellite are analyzed. The energy deposition rates exhibit altitude-dependent annual and semi-annual variations. We also find a positive correlation between temperatures and energy deposition rates near 90 km at low latitudes. This correlation is largely due to the semiannual oscillation in temperature and ozone and is consistent with model calculations. There is also a suggestion of possible tidal enhancement of this correlation based on recent theoretical and observational analyses. The airglow-derived rates of energy deposition are then compared with those computed by multidimensional numerical models. The observed and modeled deposition rates typically agree to within 20%. This agreement in energy deposition rates implies the same agreement exists between measured and modeled ozone volume mixing ratios in the mesosphere. Only in the upper mesosphere at midlatitudes during winter do we derive energy deposition rates (and hence ozone mixing ratios) consistently and significantly larger than the model calculations. This result is contrary to previous studies that have shown a large model deficit in the ozone abundance throughout the mesosphere. The climatology of solar energy deposition and heating presented in this paper is available to the community at the Middle Atmosphere Energy Budget Project web site at http://heat-budget.gats-inc.com.

  1. Influence of emitter temperature on the energy deposition in a low-pressure plasma

    International Nuclear Information System (INIS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-01-01

    The influence of emitter temperature on the energy deposition into low-pressure plasma is studied by the self-consistent one-dimensional Particle-in-Cell Monte Carlo Collisions model. Depending on the emitter temperature, different modes of discharge operation are obtained. The mode type depends on the plasma frequency and does not depend on the ratio between the densities of beam and plasma electrons. Namely, plasma is stable when the plasma frequency is small. For this plasma, the energy transfer from emitted electrons to plasma electrons is inefficient. The increase in the plasma frequency results first in the excitation of two-stream electron instability. However, since the thermal velocity of plasma electrons is smaller than the electrostatic wave velocity, the resonant wave-particle interaction is inefficient for the energy deposition into the plasma. Further increase in the plasma frequency leads to the distortion of beam of emitted electrons. Then, the electrostatic wave generated due to two-stream instability decays into multiple slower waves. Phase velocities of these waves are comparable with the thermal velocity of plasma electrons which makes possible the resonant wave-particle interaction. This results in the efficient energy deposition from emitted electrons into the plasma.

  2. Numerical Simulation of Radial and Angular Distribution of γ-Ray's Energy Deposition in Scintillation Optical Fibre

    International Nuclear Information System (INIS)

    Tang Shibiao; Yin Zejie; Tang Yu; Huang Huan

    2006-01-01

    Angular and radial distributions of the energy deposition of γ-ray radiation in scintillation optical fibres are simulated and analysed using the Geant4 system. The results show a linear relation between the energy deposition and the radius of the fibres. The deposition is roughly inversely proportional to sinθ with θ the incident angle relative to the fibre axis. The results could provide corrections to the measurements of the scintillation fibres used in monitoring the γ-ray radiation

  3. Monte Carlo simulations used to calculate the energy deposited in the coronary artery lumen as a function of iodine concentration and photon energy.

    Science.gov (United States)

    Hocine, Nora; Meignan, Michel; Masset, Hélène

    2018-04-01

    To better understand the risks of cumulative medical X-ray investigations and the possible causal role of contrast agent on the coronary artery wall, the correlation between iodinated contrast media and the increase of energy deposited in the coronary artery lumen as a function of iodine concentration and photon energy is investigated. The calculations of energy deposition have been performed using Monte Carlo (MC) simulation codes, namely PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and Monte Carlo N-Particle eXtended (MCNPX). Exposure of a cylinder phantom, artery and a metal stent (AISI 316L) to several X-ray photon beams were simulated. For the energies used in cardiac imaging the energy deposited in the coronary artery lumen increases with the quantity of iodine. Monte Carlo calculations indicate a strong dependence of the energy enhancement factor (EEF) on photon energy and iodine concentration. The maximum value of EEF is equal to 25; this factor is showed for 83 keV and for 400 mg Iodine/mL. No significant impact of the stent is observed on the absorbed dose in the artery for incident X-ray beams with mean energies of 44, 48, 52 and 55 keV. A strong correlation was shown between the increase in the concentration of iodine and the energy deposited in the coronary artery lumen for the energies used in cardiac imaging and over the energy range between 44 and 55 keV. The data provided by this study could be useful for creating new medical imaging protocols to obtain better diagnostic information with a lower level of radiation exposure.

  4. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y. [The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku, Hamamatsu, Shizuoka 431-1202 (Japan); Nonaka, T.; Hattori, T.; Kasamatsu, Y.; Haraguchi, D.; Watanabe, Y.; Uchiyama, K.; Ishikawa, M. [Hamamatsu Photonics K.K. Electron Tube Division, 314-5 Shimokanzo, Iwata, Shizuoka 438-0193 (Japan)

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  5. The penetration, diffusion and energy deposition of high-energy photon in layered media

    International Nuclear Information System (INIS)

    Zhengming, Luo; Chengjun, Gou; Laub, Wolfram

    2002-01-01

    This paper presents a new theory for calculating the transport of high-energy photons and their secondary charged particles. We call this new algorithm characteristic line method, which is completely analytic. Using this new method we can not only accurately calculate the transport behavior of energetic photons, but also precisely describes the transport behavior and energy deposition of secondary electrons, photoelectrons, Compton recoil electrons and positron-electron pairs. Its calculation efficiency is much higher than the Monte Carlo method's. The theory can be directly applied to layered media situation and obtain a pencil-beam-modeled solution. Therefore, it may be applied to clinical applications for radiation therapy

  6. Stopping and energy deposition of hadrons in target nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1983-01-01

    In an analysis of pion-xenon nucleus collisions at 2.34-9 GeV/c momentum events are identified in which incident pions were completely stopped and deposited their energy in target nucleus. Probability of appearance of such ''stopped'' events among any-type pion-xenon collision events depends on the incident pion momentum and is: approximately 0.15 at 2.34 GeV/c, approximately 0.02 at 3.5 GeV/c, and approximately 0 at higher momenta. Formula expressing probability of appearance of the ''stopped'' events is derived. Range-energy relation in nuclear matter for pions and protons is given

  7. Inter-comparison of MARS and FLUKA: Predictions on Energy Deposition in LHC IR Quadrupoles

    CERN Document Server

    Hoa, C; Cerutti, F; Ferrai, A

    2008-01-01

    Detailed modellings of the LHC insertion regions (IR) have earlier been performed to evaluate energy deposition in the IR superconducting magnets [1-4]. Proton-proton collisions at 14 TeV in the centre of mass lead to debris, depositing energy in the IR components. To evaluate uncertainties in those simulations and gain further confidence in the tools and approaches used, inter-comparison calculations have been performed with the latest versions of the FLUKA (2006.3b) [5, 6] and MARS15 [7, 8] Monte Carlo codes. These two codes, used worldwide for multi particle interaction and transport in accelerator, detector and shielding components, have been thoroughly benchmarked by the code authors and the user community (see, for example, recent [9, 10]). In the study described below, a better than 5% agreement was obtained for energy deposition calculated with these two codes - based on different independent physics models - for the identical geometry and initial conditions of a simple model representing the IR5 and ...

  8. Inter-comparison of MARS and FLUKA: Predictions on energy deposition in LHC IR quadrupoles

    International Nuclear Information System (INIS)

    Hoa, Christine; Cerutti, F.; Ferrari, A.; Mokhov, N.V.

    2008-01-01

    Detailed modelings of the LHC insertion regions (IR) have earlier been performed to evaluate energy deposition in the IR superconducting magnets [1-4]. Proton-proton collisions at 14 TeV in the centre of mass lead to debris, depositing energy in the IR components. To evaluate uncertainties in those simulations and gain further confidence in the tools and approaches used, inter-comparison calculations have been performed with the latest versions of the FLUKA (2006.3b) [5, 6] and MARS15 [7, 8] Monte Carlo codes. These two codes, used worldwide for multi particle interaction and transport in accelerator, detector and shielding components, have been thoroughly benchmarked by the code authors and the user community (see, for example, recent [9, 10]). In the study described below, a better than 5% agreement was obtained for energy deposition calculated with these two codes--based on different independent physics models--for the identical geometry and initial conditions of a simple model representing the IR5 and its first quadrupole

  9. Electron energy deposition in a multilayered carbon--uranium--carbon configuration and in semi-infinite uranium

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Miller, G.H.; Halbleib, J.A. Sr.

    1977-10-01

    Absolute measurements of electron energy deposition profiles are reported here for electrons incident on the multilayer configuration of carbon-uranium-carbon. These measurements were for normally incident source electrons at an energy of 1.0 MeV. To complement these measurements, electron energy deposition profiles were also obtained for electrons incident on semi-infinite uranium as a function of energy and angle of incidence. The results are compared with the predictions of a coupled electron/photon Monte Carlo transport model. In general, the agreement between theory and experiment is good. This work was in support of the Reactor Safety Research Equation-of-State Program

  10. Evaluation of burnup characteristics and energy deposition during NSRR pulse irradiation tests on irradiated BWR fuels

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio

    2000-11-01

    Pulse irradiation tests of irradiated fuel are performed in the Nuclear Safety Research Reactor (NSRR) to investigate the fuel behavior under Reactivity Initiated Accident Conditions (RIA). The severity of the RIA is represented by energy deposition or peak fuel enthalpy during the power excursion. In case of the irradiated fuel tests, the energy deposition varies depending both on the amounts and distribution of residual fissile and neutron absorbing fission products generated during the base irradiation. Thus, proper fuel burnup characterization, especially for low enriched commercial fuels, is important, because plutonium (Pu) takes a large part of fissile and its generation depends on the neutron spectrum during the base irradiation. Fuel burnup calculations were conducted with ORIGEN2, RODBURN and SWAT codes for the BWR fuels tested in the NSRR. The calculation results were compared with the measured isotope concentrations and used for the NSRR neutron calculations to evaluate energy depositions of the test fuel. The comparison of the code calculations and the measurements revealed that the neutron spectrum change due to difference in void fraction altered Pu generation and energy deposition in the NSRR tests considerably. With the properly evaluated neutron spectrum, the combined burnup and NSRR neutron calculation gave reasonably good evaluation of the energy deposition. The calculations provided radial distributions of the fission product accumulation during the base irradiation and power distribution during the NSRR pulse irradiation, which were important for the evaluation of both burnup characteristics and fission gas release behavior. (author)

  11. Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa

    DEFF Research Database (Denmark)

    Weihe, Johan Petur; Birger Morillon, Melanie; Lambrechtsen, Jess

    Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa......Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa...

  12. Calorific energy deposited by gamma radiations in a test reactor. Calorimetric measurements and calculations

    International Nuclear Information System (INIS)

    Mecheri, K.-F.

    1977-01-01

    The purpose of this work was to determine the calorific energy deposited by gamma radiations in the experimental devices irradiated in the test reactors of the Grenoble Nuclear Study Centre. A theoretical study briefly recalls to mind the various sorts of nuclear reactions that occur in a reactor, from the special angle of their ability to deposit calorific energy in the materials. A special study with the help of a graphite calorimeter made it possible to show the possible effect of the various parameters intervening in this energy absorption: the nature of the materials, their geometry, the spectrum of the incident gamma rays and the fact that the variation of this spectrum is due to the position of the measuring point with respect to the reactor core or to the presence of structures around the measuring instrument. The results of the calculations made with the help of the Mercury IV and ANISN codes are compared with those of the determinations in order to ascertain that very are adapted to the forecasts of energy deposition in the various materials. The conclusion was reached that in order to calculate with accuracy the depositifs of gamma energy in the experimental devices, it is necessary either to introduce the build-up calculation for the low energy photons, in the Mercury IV calculation code or to associate the DOT code to the ANISN calculation code [fr

  13. Energy deposition and the formation of biologically significant lesions by accelerated ions

    International Nuclear Information System (INIS)

    Kiefer, J.

    1985-01-01

    The assumption that the number of biologically significant lesions depends only on the amount of of energy absorbed in a critical cellular site is not able to explain the increase of RBE with LET and leads to large discrepancies between predicted and measured inactivation cross sections in the LET range between 20 and 200 keV.μm -1 . It has, therefore, to be concluded that not only the amount of energy absorbed but also the spatial pattern of this deposition plays a decisive role. In the model presented it is postulated that two or more energy deposition events in nanometre sites are required for the formation of biologically significant lesions. This cooperative action has to take place in very short times so that only interactions within a single particle track contribute. The mathematical treatment will be outlined and qualitatively shown that the model is able to predict RBE-LET relationships. The calculations use a track structure model based on classical collision mechanics. It is compared with existing experimental results showing good agreement at least for higher particle energies. (author)

  14. Study of Energy Deposition and Activation for the LINAC4 Dump

    CERN Document Server

    Cerutti, F; Mauro, E; Mereghetti, A; Silari, M; CERN. Geneva. AB Department

    2008-01-01

    This document provides estimates of energy deposition and activation for the dump of the future LINAC4 accelerator. Detailed maps of power density deposited in the dump are given, allowing to perform further thermo mechanical studies. Residual dose rates at a few cooling times for different irradiation scenarios have been calculated. Moreover, the air activation has been evaluated and doses to the reference population group and to a worker intervening in the cave at the shutdown have been predicted. Calculations were performed with the Monte Carlo particle transport and interaction code FLUKA.

  15. Nanocomposite oxide thin films grown by pulsed energy beam deposition

    International Nuclear Information System (INIS)

    Nistor, M.; Petitmangin, A.; Hebert, C.; Seiler, W.

    2011-01-01

    Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.

  16. Atmospheric Energy Deposition Modeling and Inference for Varied Meteoroid Structures

    Science.gov (United States)

    Wheeler, Lorien; Mathias, Donovan; Stokan, Edward; Brown, Peter

    2018-01-01

    Asteroids populations are highly diverse, ranging from coherent monoliths to loosely-bound rubble piles with a broad range of material and compositional properties. These different structures and properties could significantly affect how an asteroid breaks up and deposits energy in the atmosphere, and how much ground damage may occur from resulting blast waves. We have previously developed a fragment-cloud model (FCM) for assessing the atmospheric breakup and energy deposition of asteroids striking Earth. The approach represents ranges of breakup characteristics by combining progressive fragmentation with releases of variable fractions of debris and larger discrete fragments. In this work, we have extended the FCM to also represent asteroids with varied initial structures, such as rubble piles or fractured bodies. We have used the extended FCM to model the Chelyabinsk, Benesov, Kosice, and Tagish Lake meteors, and have obtained excellent matches to energy deposition profiles derived from their light curves. These matches provide validation for the FCM approach, help guide further model refinements, and enable inferences about pre-entry structure and breakup behavior. Results highlight differences in the amount of small debris vs. discrete fragments in matching the various flare characteristics of each meteor. The Chelyabinsk flares were best represented using relatively high debris fractions, while Kosice and Benesov cases were more notably driven by their discrete fragmentation characteristics, perhaps indicating more cohesive initial structures. Tagish Lake exhibited a combination of these characteristics, with lower-debris fragmentation at high altitudes followed by sudden disintegration into small debris in the lower flares. Results from all cases also suggest that lower ablation coefficients and debris spread rates may be more appropriate for the way in which debris clouds are represented in FCM, offering an avenue for future model refinement.

  17. Genetic Algorithm-Based Optimization to Match Asteroid Energy Deposition Curves

    Science.gov (United States)

    Tarano, Ana; Mathias, Donovan; Wheeler, Lorien; Close, Sigrid

    2018-01-01

    An asteroid entering Earth's atmosphere deposits energy along its path due to thermal ablation and dissipative forces that can be measured by ground-based and spaceborne instruments. Inference of pre-entry asteroid properties and characterization of the atmospheric breakup is facilitated by using an analytic fragment-cloud model (FCM) in conjunction with a Genetic Algorithm (GA). This optimization technique is used to inversely solve for the asteroid's entry properties, such as diameter, density, strength, velocity, entry angle, and strength scaling, from simulations using FCM. The previous parameters' fitness evaluation involves minimizing error to ascertain the best match between the physics-based calculated energy deposition and the observed meteors. This steady-state GA provided sets of solutions agreeing with literature, such as the meteor from Chelyabinsk, Russia in 2013 and Tagish Lake, Canada in 2000, which were used as case studies in order to validate the optimization routine. The assisted exploration and exploitation of this multi-dimensional search space enables inference and uncertainty analysis that can inform studies of near-Earth asteroids and consequently improve risk assessment.

  18. Comparison between calculation and measurement of energy deposited by 800 MeV protons

    International Nuclear Information System (INIS)

    Loewe, W.E.

    1980-01-01

    The High Energy Transport Code, HETC, was obtained from the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory and altered as necessary to run on a CDC 7600 using the LTSS software in use at LLNL. HETC was then used to obtain calculated estimates of energy deposited, for comparison with a series of benchmark experiments done by LLNL. These experiments used proton beams of various energies incident on well-defined composite targets in good geometry. In this report, two aspects of the comparison between calculated and experimental energy depositions from an 800 MeV proton beam are discussed. Both aspects involve the fact that workers at SAI had previously used their version of HETC to calculate this experiment and reported their comparison with the measured data. The first aspect addressed is that their calculated data and LLNL calculations do not agree, suggesting an error in the conversion process from the RSIC code. The second aspect is not independent of the first, but is of sufficient importance to merit separate emphasis. It is that the SAI calculations agree well with experiments at the detector plate located some distance from the shower plate, whereas the LLNL calculations show a clearcut discrepancy there in comparison with the experiment. A contract was let in January 1980 by LLNL with SAI in order to obtain full details on the two cited aspects of the comparison between calculated and experimental energy depositions from an 800 MeV proton beam. The ensuing discussion is based on the final report of that contracted work

  19. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  20. Imprint reduction in rotating heavy ions beam energy deposition

    International Nuclear Information System (INIS)

    Bret, A.; Piriz, A.R.; Tahir, N.A.

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω

  1. Energy deposition and ion production from thermal oxygen ion precipitation during Cassini's T57 flyby

    Science.gov (United States)

    Snowden, Darci; Smith, Michael; Jimson, Theodore; Higgins, Alex

    2018-05-01

    Cassini's Radio Science Investigation (RSS) and Langmuir Probe observed abnormally high electron densities in Titan's ionosphere during Cassini's T57 flyby. We have developed a three-dimensional model to investigate how the precipitation of thermal magnetospheric O+ may have contributed to enhanced ion production in Titan's ionosphere. The three-dimensional model builds on previous work because it calculates both the flux of oxygen through Titan's exobase and the energy deposition and ion production rates in Titan's atmosphere. We find that energy deposition rates and ion production rates due to thermal O+ precipitation have a similar magnitude to the rates from magnetospheric electron precipitation and that the simulated ionization rates are sufficient to explain the abnormally high electron densities observed by RSS and Cassini's Langmuir Probe. Globally, thermal O+ deposits less energy in Titan's atmosphere than solar EUV, suggesting it has a smaller impact on the thermal structure of Titan's neutral atmosphere. However, our results indicate that thermal O+ precipitation can have a significant impact on Titan's ionosphere.

  2. A novel method of calculating the energy deposition curve of nanosecond pulsed surface dielectric barrier discharge

    International Nuclear Information System (INIS)

    He, Kun; Wang, Xinying; Lu, Jiayu; Cui, Quansheng; Pang, Lei; Di, Dongxu; Zhang, Qiaogen

    2015-01-01

    To obtain the energy deposition curve is very important in the fields to which nanosecond pulse dielectric barrier discharges (NPDBDs) are applied. It helps the understanding of the discharge physics and fast gas heating. In this paper, an equivalent circuit model, composed of three capacitances, is introduced and a method of calculating the energy deposition curve is proposed for a nanosecond pulse surface dielectric barrier discharge (NPSDBD) plasma actuator. The capacitance C d and the energy deposition curve E R are determined by mathematically proving that the mapping from C d to E R is bijective and numerically searching one C d that satisfies the requirement for E R to be a monotonically non-decreasing function. It is found that the value of capacitance C d varies with the amplitude of applied pulse voltage due to the change of discharge area and is dependent on the polarity of applied voltage. The bijectiveness of the mapping from C d to E R in nanosecond pulse volumetric dielectric barrier discharge (NPVDBD) is demonstrated and the feasibility of the application of the new method to NPVDBD is validated. This preliminarily shows a high possibility of developing a unified approach to calculate the energy deposition curve in NPDBD. (paper)

  3. Ion implantation range and energy deposition codes COREL, RASE4, and DAMG2

    International Nuclear Information System (INIS)

    Brice, D.K.

    1977-07-01

    The FORTRAN codes COREL, RASE4 and DAMG2 can be used to calculate quantities associated with ion implantation range and energy deposition distributions within an amorphous target, or for ions incident far from low index directions and planes in crystalline targets. RASE4 calculates the projected range, R/sub p/, the root mean square spread in the projected range, ΔR/sub p/, and the root mean square spread of the distribution perpendicular to the projected range ΔR/sub perpendicular to/. These parameters are calculated as a function of incident ion energy, E, and the instantaneous energy of the ion, E'. They are sufficient to determine the three dimensional spatial distribution of the ions in the target in the Gaussian approximation when the depth distribution is independent of the lateral distribution. RASE4 can perform these calculations for targets having up to four different component atomic species. The code COREL is a short, economical version of RASE4 which calculates the range and straggling variables for E' = 0. Its primary use in the present package is to provide the average range and straggling variables for recoiling target atoms which are created by the incident ion. This information is used by RASE4 in calculating the redistribution of deposited energy by the target atom recoils. The code DAMG2 uses the output from RASE4 to calculate the depth distribution of energy deposition into either atomic processes or electronic processes. With other input DAMG2 can be used to calculate the depth distribution of any energy dependent interaction between the incident ions and target atoms. This report documents the basic theory behind COREL, RASE4 and DAMG2, including a description of codes, listings, and complete instructions for using the codes, and their limitations

  4. Role of temperature and energy density in the pulsed laser deposition of zirconium oxide thin film

    International Nuclear Information System (INIS)

    Mittra, Joy; Abraham, G.J.; Viswanadham, C.S.; Kulkarni, U.D.; Dey, G.K.

    2011-01-01

    Present work brings out the effects of energy density and substrate temperature on pulsed laser deposition of zirconium oxide thin film on Zr-base alloy substrates. The ablation of sintered zirconia has been carried out using a KrF excimer laser having 30 ns pulse width and 600 mJ energy at source at 10 Hz repetition rate. To comprehend effects of these parameters on the synthesized thin film, pure zirconia substrate has been ablated at two different energy densities, 2 J.cm -2 and 5 J.cm -2 , keeping the substrate at 300 K, 573 K and 873 K, respectively. After visual observation, deposited thin films have been examined using Raman Spectroscopy (RS) and X-ray Photo-electron Spectroscopy (XPS). It has been found that the oxide deposited at 300 K temperature does not show good adherence with the substrate and deteriorates further with the reduction in energy density of the incident laser. The oxide films, deposited at 573 K and 873 K, have been found to be adherent with the substrate and appear lustrous black. These indicate that the threshold for adherence of the zirconia film on the Zr-base alloy substrate lies in between 300 K and 573 K. Analysis of Raman spectra has indicated that thin films of zirconia, deposited using pulsed laser, on the Zr-base metallic substrate are initially in amorphous state. Experimental evidence has indicated a strong link among the degree of crystallinity of the deposited oxide film, the substrate temperature and the energy density. It also has shown that the crystallization of the oxide film is dependent on the substrate temperature and the duration of holding at high temperature. The O:Zr ratios of the films, analyzed from the XPS data, have been found to be close to but less than 2. This appears to explain the reason for the transformation of amorphous oxide into monoclinic and tetragonal phases, below 573 K, and not into cubic phase, which is reported to be more oxygen deficient. (author)

  5. Films deposited from reactive sputtering of aluminum acetylacetonate under low energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Battaglin, Felipe Augusto Darriba; Prado, Eduardo Silva; Cruz, Nilson Cristino da; Rangel, Elidiane Cipriano, E-mail: elidiane@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Caseli, Luciano [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil). Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas; Silva, Tiago Fiorini da; Tabacniks, Manfredo Harri [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Films were deposited from aluminum acetylacetonate (Al(acac)3 ) using a methodology involving reactive sputtering and low energy ion bombardment. The plasma was generated by the application of radiofrequency power to the powder containing electrode and simultaneously, negative pulses were supplied to the electrode where the substrates were attached. It was investigated the effect of the duty cycle of the pulses (Δ) on the properties of the coatings. Association of ion bombardment to the deposition process increased film thickness, structure reticulation and organic content. Ions from the deposition environment were implanted at the film-air interface or underneath it. Morphology and topography were altered depending on Δ. Considering the enhancement of Δ, it affected the flux of ions reaching the depositing interface and then the deposition rate, H content, crosslinking degree and surface microstructure. Alumina groups were detected in the infrared spectra, whereas the precipitation of amorphous alumina was confirmed by X-ray diffraction. (author)

  6. Low temperature (< 100 °C) deposited P-type cuprous oxide thin films: Importance of controlled oxygen and deposition energy

    International Nuclear Information System (INIS)

    Li, Flora M.; Waddingham, Rob; Milne, William I.; Flewitt, Andrew J.; Speakman, Stuart; Dutson, James; Wakeham, Steve; Thwaites, Mike

    2011-01-01

    With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p–n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu 2 O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu 2 O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu 2 O films are reported. It is known from previously published work that the formation of pure Cu 2 O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu 2 O thin films (as opposed to CuO or mixed phase CuO/Cu 2 O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu 2 O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a

  7. Measurement of energy deposition near heavy ion tracks

    International Nuclear Information System (INIS)

    Metting, N.F.; Brady, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Wong, M.; Schimmerling, W.; Rapkin, M.

    1985-01-01

    In November of 1982 work was begun in collaboration with Columbia University and Lawrence Berkeley Laboratory to use microdosimetric methods to measure energy deposition of heavy ions produced at LBL's Bevalac Biomedical Facility. Last year the authors reported preliminary results indicating that secondary charged particle equilibrium was probably obtained using this experimental setup, but that there seemed to be poor spatial resolution in the solid state position-sensitive detector. Further analysis of the measurements taken in August 1983 shows that because of this electronic noise in the position-sensitive detector, only the 56 Fe data yielded useful microdosimetric spectra

  8. Scaling of energy deposition in fast ignition targets

    International Nuclear Information System (INIS)

    Welch, Dale R.; Slutz, Stephen A.; Mehlhorn, Thomas Alan; Campbell, Robert B.

    2005-01-01

    We examine the scaling to ignition of the energy deposition of laser generated electrons in compressed fast ignition cores. Relevant cores have densities of several hundred g/cm 3 , with a few keV initial temperature. As the laser intensities increase approaching ignition systems, on the order of a few 10 21 W/cm 2 , the hot electron energies expected to approach 100MeV. Most certainly anomalous processes must play a role in the energy transfer, but the exact nature of these processes, as well as a practical way to model them, remain open issues. Traditional PIC explicit methods are limited to low densities on current and anticipated computing platforms, so the study of relevant parameter ranges has received so far little attention. We use LSP to examine a relativistic electron beam (presumed generated from a laser plasma interaction) of legislated energy and angular distribution is injected into a 3D block of compressed DT. Collective effects will determine the stopping, most likely driven by magnetic field filamentation. The scaling of the stopping as a function of block density and temperature, as well as hot electron current and laser intensity is presented. Sub-grid models may be profitably used and degenerate effects included in the solution of this problem.

  9. 1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

    International Nuclear Information System (INIS)

    Zylstra, A.B.; Barnard, J.J.; More, R.M.

    2009-01-01

    One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of tate (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 o 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.

  10. Theoretical and experimental study of a calorimetric technique for measuring energy deposition in materials caused by complex pile irradiation

    International Nuclear Information System (INIS)

    Mas, P.; Sciers, P.; Droulers, Y.

    1962-01-01

    Calorimetric methods may be used to measure gamma fluxes greater than 10 6 r/h near the cores of swimming pool reactors. The theory, design, and properties of isothermal calorimeters are discussed, and experimental results obtained with two types are presented. Measurement of energy deposition in materials and the long term integration of energy depositions are other uses of these devices. Results of measurements on heat deposition in steel and water are given. Fluxes were also measured. (authors) [fr

  11. Measurements of gamma-ray energy deposition in a heterogeneous reactor experimental configuration and their analysis

    International Nuclear Information System (INIS)

    Calamand, D.; Wouters, R. de; Knipe, A.D.; Menil, R.

    1984-10-01

    An important contribution to the power output of a fast reactor is provided by the energy deposition from gamma-rays, and is particularly significant in the inner fertile zones of heterogeneous breeder reactor designs. To establish the validity of calculational methods and data for such systems an extensive series of measurements was performed in the zero power reactor Masurca, as part of the RACINE programme. The experimental study involved four European laboratories and the measurement techniques covered a range of thermoluminescent dosemeters and an ionization chamber. The present paper describes and compares the gamma-ray energy deposition measurements and analysis

  12. Simulating the energy deposits of particles in the KASCADE-grande detector stations as a preliminary step for EAS event reconstruction

    International Nuclear Information System (INIS)

    Toma, G.; Brancus, I.M.; Mitrica, B.; Sima, O.; Rebel, H.; Haungs, A.

    2005-01-01

    The study of primary cosmic rays with energies higher than 10 14 eV is done mostly by indirect observation techniques such as the study of Extensive Air Showers (EAS). In the much larger framework effort of inferring data on the mass and energy of the primaries from EAS observables, the present study aims at developing a versatile method and software tool that will be used to reconstruct lateral particle densities from the energy deposits of particles in the KASCADE-Grande detector stations. The study has been performed on simulated events, by taking into account the interaction of the EAS components with the detector array (energy deposits). The energy deposits have been simulated using the GEANT code and then the energy deposits have been parametrized for different incident energies and angles of EAS particles. Thus the results obtained for simulated events have the same level of consistency as the experimental data. This technique will allow an increased speed of lateral particle density reconstruction when studying real events detected by the KASCADE-Grande array. The particle densities in detectors have been reconstructed from the energy deposits. A correlation between lateral particle density and primary mass and primary energy (at ∼600 m from shower core) has been established. The study puts great emphasis on the quality of reconstruction and also on the speed of the technique. The data obtained from the study on simulated events creates the basis for the next stage of the study, the study of real events detected by the KASCADE-Grande array. (authors)

  13. Monte carlo calculation of energy deposition and ionization yield for high energy protons

    International Nuclear Information System (INIS)

    Wilson, W.E.; McDonald, J.C.; Coyne, J.J.; Paretzke, H.G.

    1985-01-01

    Recent calculations of event size spectra for neutrons use a continuous slowing down approximation model for the energy losses experienced by secondary charged particles (protons and alphas) and thus do not allow for straggling effects. Discrepancies between the calculations and experimental measurements are thought to be, in part, due to the neglect of straggling. A tractable way of including stochastics in radiation transport calculations is via the Monte Carlo method and a number of efforts directed toward simulating positive ion track structure have been initiated employing this technique. Recent results obtained with our updated and extended MOCA code for charged particle track structure are presented here. Major emphasis has been on calculating energy deposition and ionization yield spectra for recoil proton crossers since they are the most prevalent event type at high energies (>99% at 14 MeV) for small volumes. Neutron event-size spectra can be obtained from them by numerical summing and folding techniques. Data for ionization yield spectra are presented for simulated recoil protons up to 20 MeV in sites of diameters 2-1000 nm

  14. Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.

    Science.gov (United States)

    Yuan, J; Moses, G A; McKenty, P W

    2005-10-01

    A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.

  15. Model of enhanced energy deposition in a Z-pinch plasma

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Davis, J.; Thornhill, J. W.; Giuliani, J. L. Jr.; Rudakov, L. I.; Deeney, C.

    2000-01-01

    In numerous experiments, magnetic energy coupled to strongly radiating Z-pinch plasmas exceeds the thermalized kinetic energy, sometimes by a factor of 2-3. An analytical model describing this additional energy deposition based on the concept of macroscopic magnetohydrodynamic (MHD) turbulent pinch heating proposed by Rudakov and Sudan [Phys. Reports 283, 253 (1997)] is presented. The pinch plasma is modeled as a foam-like medium saturated with toroidal ''magnetic bubbles'' produced by the development of surface m=0 Rayleigh-Taylor and MHD instabilities. As the bubbles converge to the pinch axis, their magnetic energy is converted to thermal energy of the plasma through pdV work. Explicit formulas for the average dissipation rate of this process and the corresponding contribution to the resistance of the load, which compare favorably to the experimental data and simulation results, are presented. The possibility of using this enhanced (relative to Ohmic heating) dissipation mechanism to power novel plasma radiation sources and produce high K-shell yields using long current rise time machines is discussed. (c) 2000 American Institute of Physics

  16. Comparison of feed energy costs of maintenance, lean deposition, and fat deposition in three lines of mice selected for heat loss.

    Science.gov (United States)

    Eggert, D L; Nielsen, M K

    2006-02-01

    Three replications of mouse selection populations for high heat loss (MH), low heat loss (ML), and a nonselected control (MC) were used to estimate the feed energy costs of maintenance and gain and to test whether selection had changed these costs. At 21 and 49 d of age, mice were weighed and subjected to dual x-ray densitometry measurement for prediction of body composition. At 21 d, mice were randomly assigned to an ad libitum, an 80% of ad libitum, or a 60% of ad libitum feeding group for 28-d collection of individual feed intake. Data were analyzed using 3 approaches. The first approach was an attempt to partition energy intake between costs for maintenance, fat deposition, and lean deposition for each replicate, sex, and line by multiple regression of feed intake on the sum of daily metabolic weight (kg(0.75)), fat gain, and lean gain. Approach II was a less restrictive attempt to partition energy intake between costs for maintenance and total gain for each replicate, sex, and line by multiple regression of feed intake on the sum of daily metabolic weight and total gain. Approach III used multiple regression on the entire data set with pooled regressions on fat and lean gains, and subclass regressions for maintenance. Contrasts were conducted to test the effect of selection (MH - ML) and asymmetry of selection [(MH + ML)/2 - MC] for the various energy costs. In approach I, there were no differences between lines for costs of maintenance, fat deposition, or protein deposition, but we question our ability to estimate these accurately. In approach II, selection changed both cost of maintenance (P = 0.03) and gain (P = 0.05); MH mice had greater per unit costs than ML mice for both. Asymmetry of the selection response was found in approach II for the cost of maintenance (P = 0.06). In approach III, the effect of selection (P maintenance cost, but asymmetry of selection (P > 0.17) was not evident. Sex effects were found for the cost of fat deposition (P = 0.02) in

  17. Aluminum-containing dense deposits of the glomerular basement membrane: identification by energy dispersive X-ray analysis

    International Nuclear Information System (INIS)

    Smith, D.M. Jr.; Pitcock, J.A.; Murphy, W.M.

    1982-01-01

    Heavy metals, including gold, mercury, lead, bismuth, and cadmium, have the potential to cause renal disease. With the development of X-ray microanalysis, these heavy metals can now be identified in tissue deposits. This report describes a case of renal failure, probably related to dysproteinemia, in which granular, electron-opaque dense deposits were present in the glomerular basement membranes. Energy dispersive X-ray analysis demonstrated that these dense deposits contained aluminum. An analysis of this patient's history in relation to the current knowledge of aluminum metabolism suggests that the aluminum deposition occurred secondary to previous glomerular injury. This case emphasizes the need to utilize heavy metal identification technology whenever granular, electron-opaque dense deposits are identified and represents, to our knowledge, the first study to document aluminum deposits within the glomerular basement membrane of humans

  18. Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, KIRAMS, Seoul (Korea, Republic of); Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol [Jeonbuk Department of Inhalation Research, Korea Institute of toxicology, KRICT, Jeongeup (Korea, Republic of)

    2016-12-15

    These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.

  19. Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin; Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol

    2016-01-01

    These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.

  20. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy

    International Nuclear Information System (INIS)

    Khandelwal, Himanshu; Singh, Gurbhinder; Agrawal, Khelendra; Prakash, Satya; Agarwal, R.D.

    2013-01-01

    Highlights: ► Hydroxyapatite coating was successfully deposited on stainless steel substrate by pulse laser deposition at different energy levels (i.e. 300 mJ and 500 mJ, respectively). ► Variation in laser energy affects the surface characteristic of hydroxyapatite coating (particle size, surface roughness, uniformity, Ca/P ratio). ► Laser energy between 300 mJ and 500 mJ is the optimal choice for obtaining ideal Ca/P ratio. - Abstract: Hydroxyapatite is an attractive biomaterial mainly used in bone and tooth implants because it closely resembles human tooth and bone mineral and has proven to be biologically compatible with these tissues. In spite of this advantage of hydroxyapatite it has also certain limitation like inferior mechanical properties which do not make it suitable for long term load bearing applications; hence a lot of research is going on in the development of hydroxyapatite coating over various metallic implants. These metallic implants have good biocompatibility and mechanical properties. The aim of the present work is to deposit hydroxyapatite coating over stainless steel grade 316 L by pulse laser deposition technique by varying laser energy. To know the effect of this variation, the coatings were than characterized in detail by X-ray diffraction, finite emission-scanning electron microscope, atomic force microscope and energy dispersive X-ray spectroscopy.

  1. High voltage electrophoretic deposition for electrochemical energy storage and other applications

    Science.gov (United States)

    Santhanagopalan, Sunand

    High voltage electrophoretic deposition (HVEPD) has been developed as a novel technique to obtain vertically aligned forests of one-dimensional nanomaterials for efficient energy storage. The ability to control and manipulate nanomaterials is critical for their effective usage in a variety of applications. Oriented structures of one-dimensional nanomaterials provide a unique opportunity to take full advantage of their excellent mechanical and electrochemical properties. However, it is still a significant challenge to obtain such oriented structures with great process flexibility, ease of processing under mild conditions and the capability to scale up, especially in context of efficient device fabrication and system packaging. This work presents HVEPD as a simple, versatile and generic technique to obtain vertically aligned forests of different one-dimensional nanomaterials on flexible, transparent and scalable substrates. Improvements on material chemistry and reduction of contact resistance have enabled the fabrication of high power supercapacitor electrodes using the HVEPD method. The investigations have also paved the way for further enhancements of performance by employing hybrid material systems and AC/DC pulsed deposition. Multi-walled carbon nanotubes (MWCNTs) were used as the starting material to demonstrate the HVEPD technique. A comprehensive study of the key parameters was conducted to better understand the working mechanism of the HVEPD process. It has been confirmed that HVEPD was enabled by three key factors: high deposition voltage for alignment, low dispersion concentration to avoid aggregation and simultaneous formation of holding layer by electrodeposition for reinforcement of nanoforests. A set of suitable parameters were found to obtain vertically aligned forests of MWCNTs. Compared with their randomly oriented counterparts, the aligned MWCNT forests showed better electrochemical performance, lower electrical resistance and a capability to

  2. First Investigations on the Energy Deposited in a D0 early separation scheme Dipole for the LHC upgrade

    CERN Document Server

    Hoa, C

    2007-01-01

    This note gives the first results of energy deposition calculation on a simplified model for an early scheme separation dipole D0, located at 3.5 m from the IP. The Monte Carlo code FLUKA version 2006.3 has been used for modelling the multi-particle interactions and energy transport. After a short introduction to particle interaction with matter and power deposition processes, the FLUKA modelling is described with bench marked power deposition calculation on the TAS, the absorber located in front of the triplet quadrupoles. The power deposition results for the D0 early scheme are then discussed in details, with the averaged and peak power density, and the variations of the total heat load in the dipole with the longitudinal position and with the aperture diameter.

  3. Dose calculation methods in photon beam therapy using energy deposition kernels

    International Nuclear Information System (INIS)

    Ahnesjoe, A.

    1991-01-01

    The problem of calculating accurate dose distributions in treatment planning of megavoltage photon radiation therapy has been studied. New dose calculation algorithms using energy deposition kernels have been developed. The kernels describe the transfer of energy by secondary particles from a primary photon interaction site to its surroundings. Monte Carlo simulations of particle transport have been used for derivation of kernels for primary photon energies form 0.1 MeV to 50 MeV. The trade off between accuracy and calculational speed has been addressed by the development of two algorithms; one point oriented with low computional overhead for interactive use and one for fast and accurate calculation of dose distributions in a 3-dimensional lattice. The latter algorithm models secondary particle transport in heterogeneous tissue by scaling energy deposition kernels with the electron density of the tissue. The accuracy of the methods has been tested using full Monte Carlo simulations for different geometries, and found to be superior to conventional algorithms based on scaling of broad beam dose distributions. Methods have also been developed for characterization of clinical photon beams in entities appropriate for kernel based calculation models. By approximating the spectrum as laterally invariant, an effective spectrum and dose distribution for contaminating charge particles are derived form depth dose distributions measured in water, using analytical constraints. The spectrum is used to calculate kernels by superposition of monoenergetic kernels. The lateral energy fluence distribution is determined by deconvolving measured lateral dose distributions by a corresponding pencil beam kernel. Dose distributions for contaminating photons are described using two different methods, one for estimation of the dose outside of the collimated beam, and the other for calibration of output factors derived from kernel based dose calculations. (au)

  4. Most critical collimator-mask-magnet sequence in the SPS-to-LHC transfer lines: energy deposition study.

    CERN Document Server

    Marzo, Matteo; Lechner, Anton; Vlachoudis, Vasilis

    2017-01-01

    This technical note refers to a study on the relation between the impact conditions of the SPS 450GeV proton beam and the energy deposited downstream the Target Collimator Dump In- jection Long (TCDIL) collimators [1], in the SPS-to-LHC transfer lines TI2 and TI8. Such an analysis is relevant in order to simulate the worst scenario of failure, in case the beam impacts on the TCDIL collimator’s jaw, in the frame of the LHC Injectors Upgrade (LIU), in view of the High Luminosity LHC (HL-LHC) phase. Previous studies already showed the dependency of the energy deposited in the downstream masks on the collimators-masks distance [2]. In absence of a (realistic) impact parameter, we perform now a study to select the most pessimistic one, trying to understand the origin of the various components responsible for the energy deposition on the downstream mask and magnet. The set up of the Monte Carlo FLUKA [3] [4] simulations and the most relevant results will be presented in this document. A sensitivity analysis was a...

  5. The effect of energy and momentum transfer during magnetron sputter deposition of yttrium oxide thin films

    Science.gov (United States)

    Xia, Jinjiao; Liang, Wenping; Miao, Qiang; Depla, Diederik

    2018-05-01

    The influence of the ratio between the energy and the deposition flux, or the energy per arriving atom, on the growth of Y2O3 sputter deposited thin films has been studied. The energy per arriving atom has been varied by the adjustment of the discharge power, and/or the target-to-substrate distance. The relationship between the energy per arriving atom and the phase evolution, grain size, microstructure, packing density and residual stress was investigated in detail. At low energy per arriving atom, the films consist of the monoclinic B phase with a preferential (1 1 1) orientation. A minority cubic C phase appears at higher energy per arriving atom. A study of the thin film cross sections showed for all films straight columns throughout the thickness, typically for a zone II microstructure. The intrinsic stress is compressive, and increases with increasing energy per atom. The same trend is observed for the film density. Simulations show that the momentum transfer per arriving atom also scales with the energy per arriving atom. Hence, the interpretation of the observed trends as a function of the energy per arriving atom must be treated with care.

  6. Photon beam convolution using polyenergetic energy deposition kernels

    International Nuclear Information System (INIS)

    Hoban, P.W.; Murray, D.C.; Round, W.H.

    1994-01-01

    In photon beam convolution calculations where polyenergetic energy deposition kernels (EDKs) are used, the primary photon energy spectrum should be correctly accounted for in Monte Carlo generation of EDKs. This requires the probability of interaction, determined by the linear attenuation coefficient, μ, to be taken into account when primary photon interactions are forced to occur at the EDK origin. The use of primary and scattered EDKs generated with a fixed photon spectrum can give rise to an error in the dose calculation due to neglecting the effects of beam hardening with depth. The proportion of primary photon energy that is transferred to secondary electrons increases with depth of interaction, due to the increase in the ratio μ ab /μ as the beam hardens. Convolution depth-dose curves calculated using polyenergetic EDKs generated for the primary photon spectra which exist at depths of 0, 20 and 40 cm in water, show a fall-off which is too steep when compared with EGS4 Monte Carlo results. A beam hardening correction factor applied to primary and scattered 0 cm EDKs, based on the ratio of kerma to terma at each depth, gives primary, scattered and total dose in good agreement with Monte Carlo results. (Author)

  7. Spatial correlation of energy deposition events in irradiated liquid water

    International Nuclear Information System (INIS)

    Hamm, R.N.; Wright, H.A.; Turner, J.E.; Ritchie, R.H.

    1978-01-01

    Monte Carlo electron transport computer code is used to study in detail the slowing down of electrons and all of their secondaries with initial energies up to 1.5 MeV in liquid water. The probability distributions for the number of ionizations and for the energy deposited in cubical volume elements from electron tracks in the water are analyzed. Both the electron energies and the sizes of the cubical cells are varied. Results are shown for electron energies between 100 eV and 10 keV and for cell sizes between 40 A and 1500 A. Good general agreement is found with results presented by Paretzke at the last symposium. The code can be used to obtain other basic distributions of importance in microdosimetry. As an example, microdosimetric single-event spectra for 500-eV electrons are computed in cubes with edges that range in size from 40 A to 200 A. The importance of correlations is shown explicitly in a comparison of secondary electrons produced by 60 Co and 50-keV photons

  8. Deposition of thin films and surface modification by pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Yan Pengxun; Yang Size

    2002-01-01

    The use of pulsed high energy density plasma is a new low temperature plasma technology for material surface treatment and thin film deposition. The authors present detailed theoretical and experimental studies of the production mechanism and physical properties of the pulsed plasma. The basic physics of the pulsed plasma-material interaction has been investigated. Diagnostic measurements show that the pulsed plasma has a high electron temperature of 10-100 eV, density of 10 14 -10 16 cm -3 , translation velocity of ∼10 -7 cm/s and power density of ∼10 4 W/cm 2 . Its use in material surface treatment combines the effects of laser surface treatment, electron beam treatment, shock wave bombardment, ion implantation, sputtering deposition and chemical vapor deposition. The metastable phase and other kinds of compounds can be produced on low temperature substrates. For thin film deposition, a high deposition ratio and strong film to substrate adhesion can be achieved. The thin film deposition and material surface modification by the pulsed plasma and related physical mechanism have been investigated. Thin film c-BN, Ti(CN), TiN, DLC and AlN materials have been produced successfully on various substrates at room temperature. A wide interface layer exists between film and substrate, resulting in strong adhesion. Metal surface properties can be improved greatly by using this kind of treatment

  9. Effects of deposited nuclear and electronic energy on the hardness of R7T7-type containment glass

    Energy Technology Data Exchange (ETDEWEB)

    Peuget, S. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France)]. E-mail: sylvain.peuget@cea.fr; Noel, P.-Y. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Loubet, J.-L. [Laboratoire de Tribologie et Dynamique des Systemes, UMR CNRS 5513, Ecole Centrale de Lyon 36, avenue Guy de Collongue, 69134 Ecully Cedex (France); Pavan, S. [Laboratoire de Tribologie et Dynamique des Systemes, UMR CNRS 5513, Ecole Centrale de Lyon 36, avenue Guy de Collongue, 69134 Ecully Cedex (France); Nivet, P. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Chenet, A. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France)

    2006-05-15

    The effects of elastic and inelastic interactions induced by cumulative alpha decay on the hardness of R7T7-type nuclear containment glass were investigated on actinide-doped glass specimens and by external irradiation of inactive glass by light and heavy ions. Vickers microindentation and nanoindentation hardness measurements showed that in the deposited energy range investigated (below 3 x 10{sup 22} keV/cm{sup 3}) inelastic effects have no influence on the plastic response of the glass. Conversely, identical hardness variations versus the nuclear energy deposited in the material were observed on curium-doped glass and on glass irradiated by ion bombardment. The observed hardness variation stabilized after the deposited energy reached about 3 x 10{sup 2} keV{sub nucl}/cm{sup 3}. These findings indicate that the change in the plastic response of the glass is a consequence of ballistic effects.

  10. A Metallurgical Investigation of the Direct Energy Deposition Surface Repair of Ferrous Alloys

    Science.gov (United States)

    Marya, Manuel; Singh, Virendra; Hascoet, Jean-Yves; Marya, Surendar

    2018-02-01

    Among additive manufacturing (AM) processes, the direct energy deposition (DED) by laser is explored to establish its applicability for the repair of ferrous alloys such as UNS G41400 low-alloy steel, UNS S41000 martensitic stainless steel, UNS S17400 precipitation-strengthened martensitic stainless steel, and UNS S32750 super-duplex stainless steel. Unlike plating, thermal spray, and conventional cladding weld, DED laser powder deposition offers potential advantages, e.g., thin deposits, limited dilutions, narrow heat-affected zones (HAZ), potentially improved surface properties. In this investigation, all AM deposits were completed with an IREPA CLAD™ system using a powder feed of UNS N06625, an alloy largely selected for its outstanding corrosion resistance. This investigation first addresses topological aspects of AM deposits (including visual imperfections) before focusing on changes in microstructure, microhardness, chemical composition across AM deposits and base materials. It has been established that dense, uniform, hard ( 300 HVN), crack-free UNS N06625-compliant AM deposits of fine dendritic microstructures are reliably produced. However, except for the UNS S32750 steel, a significant martensitic hardening was observed in the HAZs of UNS G41400 ( 650 HVN), UNS S41000 ( 500 HVN), and UNS S17400 ( 370 HVN). In summary, this investigation demonstrates that the DED laser repair of ferrous parts with UNS N06625 may restore damaged surfaces, but it also calls for cautions and complementary investigations for alloys experiencing a high HAZ hardening, for which industry standard recommendations are exceeded and lead to an increased risk of delayed cracking in corrosive environments.

  11. Energy deposited in the high luminosity inner triplets of the LHC by collision debris

    International Nuclear Information System (INIS)

    Wildner, E.; Broggi, F.; Cerutti, F.; Ferrari, A.; Hoa, C.; Koutchouk, J.-P.; Mokhov, N.V.

    2008-01-01

    The 14 TeV center of mass proton-proton collisions in the LHC produce not only debris interesting for physics but also showers of particles ending up in the accelerator equipment, in particular in the superconducting magnet coils. Evaluations of this contribution to the heat, that has to be transported by the cryogenic system, have been made to guarantee that the energy deposition in the superconducting magnets does not exceed limits for magnet quenching and the capacity of the cryogenic system. The models of the LHC base-line are detailed and include description of, for energy deposition, essential elements like beam-pipes and corrector magnets. The evaluations made using the Monte-Carlo code FLUKA are compared to previous studies using MARS. For the consolidation of the calculations, a dedicated comparative study of these two codes was performed for a reduced setup

  12. Thermally induced dispersion mechanisms for aluminum-based plate-type fuels under rapid transient energy deposition

    International Nuclear Information System (INIS)

    Georgevich, V.; Taleyarkham, R.P.; Navarro-Valenti, S.; Kim, S.H.

    1995-01-01

    A thermally induced dispersion model was developed to analyze for dispersive potential and determine onset of fuel plate dispersion for Al-based research and test reactor fuels. Effect of rapid energy deposition in a fuel plate was simulated. Several data types for Al-based fuels tested in the Nuclear Safety Research Reactor in Japan and in the Transient Reactor Test in Idaho were reviewed. Analyses of experiments show that onset of fuel dispersion is linked to a sharp rise in predicted strain rate, which futher coincides with onset of Al vaporization. Analysis also shows that Al oxidation and exothermal chemical reaction between the fuel and Al can significantly affect the energy deposition characteristics, and therefore dispersion onset connected with Al vaporization, and affect onset of vaporization

  13. The role of Energy Deposition in the Epitaxial Layer in Triggering SEGR in Power MOSFETs

    Science.gov (United States)

    Selva, L.; Swift, G.; Taylor, W.; Edmonds, L.

    1999-01-01

    In these SEGR experiments, three identical-oxide MOSFET types were irradiated with six ions of significantly different ranges. Results show the prime importance of the total energy deposited in the epitaxial layer.

  14. Measurements of the Energy Deposition Profile for 238U Ions with Energy 500 and 950 MEV/U in Stainless Steel and Copper Targets

    CERN Document Server

    Mustafin, Edil; Gnutov, A; Golubev, Alexander; Hofmann, Ingo; Kantsyrev, Alexei; Kunin, Andrey; Latysheva, Ludmila N; Luckjashin, Victor; Panova, Yulia; Schardt, Dieter; Sobolevskiy, Nikolai; Vatulin, Vladimir; Weyrich, Karin

    2005-01-01

    Sub-millimeter wall thickness is foreseen for the vacuum tubes in the magnets of the superconducting dipoles of the SIS100 and SIS300 of the FAIR Project. The Bragg peak of the energy deposition by the U ions in these walls may lie dangerously close to the superconducting cables. Thus the precise knowledge of the dE/dx profile is essential for estimating the heat load by the lost ions in the vicinity of the superconducting wires. Here we present the results of the measurement of the U ion beam energy deposition profile in Cu and stainless steel targets and compare the measured data with the Monte-Carlo simulation using the SHIELD code.

  15. Energy deposition around swift proton tracks in polymethylmethacrylate: How much and how far

    Science.gov (United States)

    Dapor, Maurizio; Abril, Isabel; de Vera, Pablo; Garcia-Molina, Rafael

    2017-08-01

    The use of proton beams in several modern technologies to probe or modify the properties of materials, such as proton beam lithography or ion beam cancer therapy, requires us to accurately know the extent to which the energy lost by the swift projectiles in the medium is redistributed radially around their tracks, since this determines several endpoints, such as the resolution of imaging or manufacturing techniques, or even the biological outcomes of radiotherapy. In this paper, the radial distribution of the energy deposited around swift-proton tracks in polymethylmethacrylate (PMMA) by the transport of secondary electrons is obtained by means of a detailed Monte Carlo simulation. The initial energy and angular distributions of the secondary electrons generated by proton impact, as well as the electronic cross sections for the ejection of these electrons, are reliably calculated in the framework of the dielectric formalism, where a realistic electronic excitation spectrum of PMMA is accounted for. The cascade of all secondary electrons generated in PMMA is simulated taking into account the main interactions that occur between these electrons and the condensed phase target. After analyzing the influence that several angular distributions of the electrons generated by the proton beam have on the resulting radial profiles of deposited energy, we conclude that the widely used Rudd and Kim formula should be replaced by the simpler isotropic angular distribution, which leads to radial energy distributions comparable to the ones obtained from more realistic angular distributions. By studying the dependence of the radial dose on the proton energy we recommend lower proton energies than previously published for reducing proximity effects around a proton track. The obtained results are of relevance for assessing the resolution limits of proton beam based imaging and manufacturing techniques.

  16. Shaping thin film growth and microstructure pathways via plasma and deposition energy: a detailed theoretical, computational and experimental analysis.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Han, Jeon Geon; Kersten, Holger

    2017-02-15

    Understanding the science and engineering of thin films using plasma assisted deposition methods with controlled growth and microstructure is a key issue in modern nanotechnology, impacting both fundamental research and technological applications. Different plasma parameters like electrons, ions, radical species and neutrals play a critical role in nucleation and growth and the corresponding film microstructure as well as plasma-induced surface chemistry. The film microstructure is also closely associated with deposition energy which is controlled by electrons, ions, radical species and activated neutrals. The integrated studies on the fundamental physical properties that govern the plasmas seek to determine their structure and modification capabilities under specific experimental conditions. There is a requirement for identification, determination, and quantification of the surface activity of the species in the plasma. Here, we report a detailed study of hydrogenated amorphous and crystalline silicon (c-Si:H) processes to investigate the evolution of plasma parameters using a theoretical model. The deposition processes undertaken using a plasma enhanced chemical vapor deposition method are characterized by a reactive mixture of hydrogen and silane. Later, various contributions of energy fluxes on the substrate are considered and modeled to investigate their role in the growth of the microstructure of the deposited film. Numerous plasma diagnostic tools are used to compare the experimental data with the theoretical results. The film growth and microstructure are evaluated in light of deposition energy flux under different operating conditions.

  17. Transmission electron microscopy study of ion energy deposition in gold: evidence for a spike threshold

    International Nuclear Information System (INIS)

    Ruault, M.O.; Bernas, H.; Chaumont, J.

    1978-01-01

    Nine different atomic species, from K to Yb, were implanted into gold at energies ranging from 20 to 150 keV. The nature and depth-distribution of the resultant defect clusters were studied by transmission electron microscopy techniques as well as a modification of the '2 1/2-D' stereo technique developed by Mitchell and Bell. The effect of implanted ion dose and sample purity were determined. The cluster depth distributions are in overall agreement with the damage distributions deduced from the energy deposition calculations of Winterbon, Sigmund, and Sanders. The nature of the defect clusters is found to depend on the mass and energy of the incoming ion, in agreement with our previously reported work. These results are suggested to provide evidence for the decisive influence of the deposited energy density on the nature of visible damage. We conclude that it is possible to distinguish between cascade and 'spike' effects, the latter setting in when the average energy per atom in the cascade is approximately 2 eV/atom. All results (obtained -at low doses on pure samples- for a variety of ion species in Au, Al, Cu, W, Mo and Ni) may be related to each other in this way

  18. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi......We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source...... effect of single-layer coatings deposited under different reaction conditions was studied. The coating thickness and the carbon content in the coatings were found to be the critical parameters for the barrier property. The novel barrier coating was applied on different polymeric materials...

  19. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    International Nuclear Information System (INIS)

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-01-01

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''

  20. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    Science.gov (United States)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  1. Optimization of the LHC interaction region with respect to beam-induced energy deposition

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Strait, J.B.

    1996-06-01

    Energy deposition in the superconducting magnets by particles from p- p collisions is a significant challenge for the design of the LHC high luminosity insertions. We have studies the dependence of the energy deposition on the apertures and strengths of insertion magnets and on the placement of absorbers in front of and within the quadrupoles. Monte Carlo simulations were made using the code DTUJET to generate 7x7 TeV p-p events and the code MARS to follow hadronic and electromagnetic cascades induced in the insertion components. The 3D geometry and magnetic field descriptions of the LHC-4.1 lattice were used. With a quadrupole coil aperture ≥70 mm, absorbers can be placed within the magnet bore which reduce the peak power density, at full luminosity, below 0.5 mW/g, a level that should allow the magnets to operate at their design field. The total heat load can be removed by a cooling system similar to that used in the main magnets

  2. Influence of Energy and Temperature in Cluster Coalescence Induced by Deposition

    Directory of Open Access Journals (Sweden)

    J. C. Jiménez-Sáez

    2012-01-01

    Full Text Available Coalescence induced by deposition of different Cu clusters on an epitaxial Co cluster supported on a Cu(001 substrate is studied by constant-temperature molecular dynamics simulations. The degree of epitaxy of the final system increases with increasing separation between the centres of mass of the projectile and target clusters during the collision. Structure, roughness, and epitaxial order of the supported cluster also influence the degree of epitaxy. The effect of energy and temperature is determinant on the epitaxial condition of the coalesced cluster, especially both factors modify the generation, growth and interaction among grains. A higher temperature favours the epitaxial growth for low impact parameters. A higher energy contributes to the epitaxial coalescence for any initial separation between the projectile and target clusters. The influence of projectile energy is notably greater than the influence of temperature since higher energies allow greater and instantaneous atomic reorganizations, so that the number of arisen grains just after the collision becomes smaller. The appearance of grain boundary dislocations is, therefore, a decisive factor in the epitaxial growth of the coalesced cluster.

  3. TH-CD-201-07: Experimentally Investigating Proton Energy Deposition On the Microscopic Scale Using Fluorescence Nuclear Track Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, T [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); University College London, London (United Kingdom); McFadden, C; Sawakuchi, G [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Trenholm, D [Massachusetts General Hospital, Boston, MA (United States); Verburg, J; Paganetti, H; Schuemann, J [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: In order to further understand the interplay between proton physics and radiobiology it is necessary to consider proton energy deposition on the microscopic scale. In this work we used Fluorescent Nuclear Track Detectors (FNTDs) to experimentally investigate proton energy deposition, track-by-track. Methods: We irradiated 8×4×0.5mm{sup 3} FNTD chips (Landauer Inc) at seven water depths along a pristine proton Bragg peak with range=12cm. After irradiation, the FNTDs were scanned using a confocal microscope (FV1200, Olympus) with a high-power red laser and an oil-immersion objective lens (UPLSAPO60XO, NA=1.35). 10 slice image stacks were acquired with a slice-thickness of 2µm at multiple positions across each FNTD. Image-based analyses of track radius and track “mass” (integrated signal intensity) were performed using trackpy. For comparison, Monte Carlo simulated data were obtained using TOPAS and TOPAS-nBio. Results: Excellent correlation was observed between median track mass and TOPAS dose-averaged linear energy transfer. The resolution of the imaging system was determined insufficient to detect a relationship between track radius and exposure depth. Histograms of track mass (i) displayed strong repeatability across positions within an FNTD and (ii) varied in peak position and shape as a function of depth. TOPAS-nBio simulations implemented on the nanometer scale using physics lists from GEANT4-DNA yielded energy deposition distributions for individual protons and electrons scored within a virtual FNTD. Good agreement was found between these simulated datasets and the FNTD track mass distributions. Conclusion: Robust experimental measurements of the integral energy deposited by individual proton tracks can be performed using FNTDs. Monte Carlo simulations offer an exceedingly powerful approach to the quantification of proton energy deposition on the microscopic scale, but whilst they have been well validated at the macroscopic level, their

  4. COREL, Ion Implantation in Solids, Range, Straggling Using Thomas-Fermi Cross-Sections. RASE4, Ion Implantation in Solids, Range, Straggling, Energy Deposition, Recoils. DAMG2, Ion Implantation in Solids, Energy Deposition Distribution with Recoils

    International Nuclear Information System (INIS)

    Brice, D. K.

    1979-01-01

    1 - Description of problem or function: COREL calculates the final average projected range, standard deviation in projected range, standard deviation in locations transverse to projected range, and average range along path for energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. RASE4 calculates the instantaneous average projected range, standard deviation in projected range, standard deviation in locations transverse to projected range, and average range along path for energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. RASE4 also calculates the instantaneous rate at which the projectile is depositing energy into atomic processes (damage) and into electronic processes (electronic excitation), the average range of target atom recoils projected onto the direction of motion of the projectiles, and the standard deviation in the recoil projected range. DAMG2 calculates the distribution in depth of the energy deposited into atomic processes (damage), electronic processes (electronic excitation), or other energy-dependent quality produced by energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. 2 - Method of solution: COREL: The truncated differential equation which governs the several variables being sought is solved through second-order by trapezoidal integration. The energy-dependent coefficients in the equation are obtained by rectangular integration over the Thomas-Fermi elastic scattering cross section. RASE4: The truncated differential equation which governs the range and straggling variables is solved through second-order by trapezoidal integration. The energy

  5. Local energy deposited for alpha particles emitted from inhaled radon daughters

    International Nuclear Information System (INIS)

    Al-affan, I.A.M.; Haque, A.K.M.M.

    1989-01-01

    An analytical method has been developed to calculate the local energy deposited by alpha particles emitted from radon daughters deposited on the mucus surface in the lung airways. For the particular case of 218 Po (Ra A) and 214 Bi (Ra C'), microdose spectra have been evaluated in test spheres of 1 μm diameter which were taken to lie within airways of diameters 18 000, 3500 and 600 μm. In each case, the contributions of the near and far wall were computed separately. The average microdosimetric parameters y-bar F and y-bar D have also been calculated. For the two smaller airways, y-bar F and y-bar D values were found to be about 110 and 135 keV μm -1 for 218 Po and about 87 and 107 keV μm -1 for 214 Bi respectively. The corresponding values were about 10% higher for the largest airway. (author)

  6. Modified energy-deposition model, for the computation of the stopping-power ratio for small cavity sizes

    International Nuclear Information System (INIS)

    Janssens, A.C.A.

    1981-01-01

    This paper presents a modification to the Spencer-Attix theory, which allows application of the theory to larger cavity sizes. The modified theory is in better agreement with the actual process of energy deposition by delta rays. In the first part of the paper it is recalled how the Spencer-Attix theory can be derived from basic principles, which allows a physical interpretation of the theory in terms of a function describing the space and direction average of the deposited energy. A realistic model for the computation of this function is described and the resulting expression for the stopping-power ratio is calculated. For the comparison between the Spencer-Attix theory and this modified expression a correction factor to the ''Bragg-Gray inhomogeneous term'' has been defined. This factor has been computed as a function of cavity size for different source energies and mean excitation energies; thus, general properties of this factor have been elucidated. The computations have been extended to include the density effect. It has been shown that the computation of the inhomogeneous term can be performed for any expression describing the energy loss per unit distance of the electrons as a function of their energy. Thus an expression has been calculated which is in agreement with a quadratic range-energy relationship. In conclusion, the concrete procedure for computing the stopping-power ratio is reviewed

  7. Energy deposition studies for the LBNE beam absorber

    International Nuclear Information System (INIS)

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-01

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system - all with corresponding radiation shielding - was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options. (authors)

  8. Influence of plasma-induced energy deposition effects, the equation of state, thermal ionization, pulse shaping, and radiation on ion-beam-driven expansions of plane metal targets

    International Nuclear Information System (INIS)

    Long, K.A.; Tahir, N.A.

    1986-01-01

    In a previous paper by Long and Tahir [Phys. Fluids 29, 275 (1986)], the motion of plane targets irradiated by ion beams whose energy deposition was assumed to be independent of the ion energy, and the temperature and density of the plasma, was analyzed. In this paper, the analytic solution is extended in order to include the effects of a temperature-and density-dependent energy deposition as a result of electron excitation, an improved equation of state, thermal ionization, a pulse shape, and radiation losses. The change in the energy deposition with temperature and density leads to range shortening and an increased power deposition in the target. It is shown how the analytic theory can be used to analyze experiments to measure the enhanced energy deposition. In order to further analyze experiments, numerical simulations are presented which include the plasma-induced effects on the energy deposition. It is shown that since the change in the range is due to both decrease in density and the increase in temperature, it is not possible to separate these two effects in present experiments. Therefore, the experiments which measure the time-dependent energy of the ions emerging from the back side of a plane target do not as yet measure the energy loss as a function of the density and temperature of the plasma or of the energy of the ion, but only an averaged loss over certain ranges of these physical quantities

  9. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator.

  10. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun

    2016-01-01

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator

  11. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    Science.gov (United States)

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  12. Measurements of poloidal and toroidal energy deposition asymmetries in the ASDEX divertors

    International Nuclear Information System (INIS)

    Evans, T.E.

    1991-03-01

    Energy deposition characteristics in the ASDEX divertors have been analyzed over a wide range of discharges and wall conditions during ohmically heated, additionally heated, or lower hybrid current drive experiments. Changes in discharge operating parameters with high power additional heating produce a diversity of effects on the magnitudes and distributions of the energy absorbed in the divertors. Poloidally and toroidally resolved energy deposition patterns are particularly sensitive to changes in the edge safety factor, the type and power level of additional heating used, and the vertical position of the plasma. In most additionally heated discharges, a large fraction of the incremental divertor loading is found on only one or two target rings. Poloidal in-out asymmetries, which typically favor the low-field side by a factor of 2.5 in ohmic discharges, commonly range between a factor of 2.5 and 4.5 in additionally heated experiments and in extreme cases can be as large as a factor of 5.6. At the same time, toroidal asymmetries on individual target rings are found to range between a factor of 1.4 and 3.8 in typical ICRH and NBI cases with extreme LHCD cases of 4.3. A model, proposed to explain the cause of discharge asymmetries, is compared with the experimental observations. Under some conditions, for example during LHCD experiments, the model is in good agreement with the data. A method is proposed for supressing discharge asymmetries which may generally improve the divertor performance as well. (orig./AH)

  13. Neutron-photon energy deposition in CANDU reactor fuel channels: a comparison of modelling techniques using ANISN and MCNP computer codes

    International Nuclear Information System (INIS)

    Bilanovic, Z.; McCracken, D.R.

    1994-12-01

    In order to assess irradiation-induced corrosion effects, coolant radiolysis and the degradation of the physical properties of reactor materials and components, it is necessary to determine the neutron, photon, and electron energy deposition profiles in the fuel channels of the reactor core. At present, several different computer codes must be used to do this. The most recent, advanced and versatile of these is the latest version of MCNP, which may be capable of replacing all the others. Different codes have different assumptions and different restrictions on the way they can model the core physics and geometry. This report presents the results of ANISN and MCNP models of neutron and photon energy deposition. The results validate the use of MCNP for simplified geometrical modelling of energy deposition by neutrons and photons in the complex geometry of the CANDU reactor fuel channel. Discrete ordinates codes such as ANISN were the benchmark codes used in previous work. The results of calculations using various models are presented, and they show very good agreement for fast-neutron energy deposition. In the case of photon energy deposition, however, some modifications to the modelling procedures had to be incorporated. Problems with the use of reflective boundaries were solved by either including the eight surrounding fuel channels in the model, or using a boundary source at the bounding surface of the problem. Once these modifications were incorporated, consistent results between the computer codes were achieved. Historically, simple annular representations of the core were used, because of the difficulty of doing detailed modelling with older codes. It is demonstrated that modelling by MCNP, using more accurate and more detailed geometry, gives significantly different and improved results. (author). 9 refs., 12 tabs., 20 figs

  14. Residual energy deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm

    Science.gov (United States)

    Ragadio, Jerome N.; Lee, Christian K.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the residual heat deposition during laser ablation at those IR laser wavelengths best suited for the removal of dental caries. The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth, which has the potential for causing damage to the pulp. Optimal laser ablation systems minimize the residual energy deposition in the tooth by transferring deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in the tooth was measured at laser wavelengths of 2.79, 2.94, 9.6 and 10.6 micrometer and pulse widths of 150 ns - 150 microsecond(s) . The residual energy was at a minimum for fluences well above the ablation threshold where it saturates at values from 25 - 70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual energy were measured for short (less than 20 microseconds) CO2 laser pulses at 9.6 micrometer and for Q-switched erbium laser pulses. This work was supported by NIH/NIDCR R29DE12091 and the Center for Laser Applications in Medicine, DOE DEFG0398ER62576.

  15. The Energy Deposition Pattern as the Unconventional Strangelet Signature and its Relevance to the Castor Calorimeter

    International Nuclear Information System (INIS)

    Angelis, A.L.S.; Bartke, J.; Gladysz-Dziadus, E.; Wlodarczyk, Z.

    1998-07-01

    It has been shown, by GEANT simulations, that the energy deposition pattern in deep calorimeters could be the spectacular and unconventional signature of different kinds of stable and unstable strangelets. The CASTOR calorimeter is shown to be the appropriate tool for detection of strongly penetrating objects, such as strangelets possibly produced in the baryon-rich region in central Pb-Pb collisions at LHC energies. (author)

  16. Erosion of pyrolytic carbon under high surface energy deposition from a pulsed hydrogen plasma

    International Nuclear Information System (INIS)

    Bolt, H.

    1992-01-01

    Carbon materials are widely applied as plasma facing materials in nuclear fusion devices and are also the prime candidate materials for the next generation of experimental fusion reactors. During operation these materials are frequently subjected to high energy deposition from plasma disruptions. The erosion of carbon materials is regarded as the main issue governing the operational lifetime of plasma facing components. Laboratory experiments have been performed to study the thermal erosion behaviour of carbon in a plasma environment. In the experiments the surface of pyrolytic carbon specimens was exposed to pulsed energy deposition of up to 3.8 MJ m -2 from a hydrogen plasma. The behaviour of the eroded carbon species in the plasma was measured by time-resolved and space-resolved spectroscopy. Intense line radiation of ionic carbon has been measured in the plasma in front of the carbon surface. The results show that the eroded carbon is immediately ionised in the vicinity of the material surface, with a fraction of it being ionised to the double-charged state. (Author)

  17. Energy deposition by a 106Ru/106Rh eye applicator simulated using LEPTS, a low-energy particle track simulation

    International Nuclear Information System (INIS)

    Fuss, M.C.; Munoz, A.; Oller, J.C.; Blanco, F.; Williart, A.; Limao-Vieira, P.; Borge, M.J.G.; Tengblad, O.; Huerga, C.; Tellez, M.; Garcia, G.

    2011-01-01

    The present study introduces LEPTS, an event-by-event Monte Carlo programme, for simulating an ophthalmic 106 Ru/ 106 Rh applicator relevant in brachytherapy of ocular tumours. The distinctive characteristics of this code are the underlying radiation-matter interaction models that distinguish elastic and several kinds of inelastic collisions, as well as the use of mostly experimental input data. Special emphasis is placed on the treatment of low-energy electrons for generally being responsible for the deposition of a large portion of the total energy imparted to matter. - Highlights: → We present the Monte Carlo code LEPTS, a low-energy particle track simulation. → Carefully selected input data from 10 keV to 1 eV. → Application to an electron emitting Ru-106/Rh-106 plaque used in brachytherapy.

  18. Characterization of space radiation environment in terms of the energy deposition in functionally important volumes

    International Nuclear Information System (INIS)

    Braby, L.A.; Metting, N.F.; Wilson, W.E.; Ratcliffe, C.A.

    1988-01-01

    Since the damage which initiates detrimental effects occurs in a small site (semiconductor junctions, or biological cell nuclei), these differences in spatial distribution of ionization maybe the relevant factor controlling the effectiveness of different radiations. Again, when the appropriate cross section data are available Monte Carlo methods can be used to simulate the positions of all ionizations and excitations produced by a typical charged particle. This calculated track structure must interact with the biological or electronic entity in which it occurs to produce the effect. However, we do not know the mechanisms of this interaction and thus cannot specify which characteristics of the charged particle track are responsible for the relevant damage. From track structure we can obtain the spectrum of energy deposition in small volumes which may be relevant to the processes of concern. This has lead to a new approach to dosimetry, one which emphasizes the stochastic nature of energy deposition in small sites, known as microdosimetry. 6 refs., 4 figs

  19. An ultrahigh vacuum, low-energy ion-assisted deposition system for III-V semiconductor film growth

    Science.gov (United States)

    Rohde, S.; Barnett, S. A.; Choi, C.-H.

    1989-06-01

    A novel ion-assisted deposition system is described in which the substrate and growing film can be bombarded with high current densities (greater than 1 mA/sq cm) of very low energy (10-200 eV) ions. The system design philosophy is similar to that used in III-V semiconductor molecular-beam epitaxy systems: the chamber is an all-metal ultrahigh vacuum system with liquid-nitrogen-cooled shrouds, Knudsen-cell evaporation sources, a sample insertion load-lock, and a 30-kV reflection high-energy electron diffraction system. III-V semiconductor film growth is achieved using evaporated group-V fluxes and group-III elemental fluxes sputtered from high-purity targets using ions extracted from a triode glow discharge. Using an In target and an As effusion cell, InAs deposition rates R of 2 microns/h have been obtained. Epitaxial growth of InAs was observed on both GaSb(100) and Si(100) substrates.

  20. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-01-01

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.

  1. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-01-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  2. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-05-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  3. Reconstruction of Axial Energy Deposition in Magnetic Liner Inertial Fusion Based on PECOS Shadowgraph Unfolds Using the AMR Code FLASH

    Science.gov (United States)

    Adams, Marissa; Jennings, Christopher; Slutz, Stephen; Peterson, Kyle; Gourdain, Pierre; U. Rochester-Sandia Collaboration

    2017-10-01

    Magnetic Liner Inertial Fusion (MagLIF) experiments incorporate a laser to preheat a deuterium filled capsule before compression via a magnetically imploding liner. In this work, we focus on the blast wave formed in the fuel during the laser preheat component of MagLIF, where approximately 1kJ of energy is deposited in 3ns into the capsule axially before implosion. To model blast waves directly relevant to experiments such as MagLIF, we inferred deposited energy from shadowgraphy of laser-only experiments preformed at the PECOS target chamber using the Z-Beamlet laser. These energy profiles were used to initialize 2-dimensional simulations using by the adaptive mesh refinement code FLASH. Gradients or asymmetries in the energy deposition may seed instabilities that alter the fuel's distribution, or promote mix, as the blast wave interacts with the liner wall. The AMR capabilities of FLASH allow us to study the development and dynamics of these instabilities within the fuel and their effect on the liner before implosion. Sandia Natl Labs is managed by NTES of Sandia, LLC., a subsidiary of Honeywell International, Inc, for the U.S. DOEs NNSA under contract DE-NA0003525.

  4. Ion beam deposited epitaxial thin silicon films

    International Nuclear Information System (INIS)

    Orrman-Rossiter, K.G.; Al-Bayati, A.H.; Armour, D.G.; Donnelly, S.E.; Berg, J.A. van den

    1991-01-01

    Deposition of thin films using low energy, mass-separated ion beams is a potentially important low temperature method of producing epitaxial layers. In these experiments silicon films were grown on Si (001) substrates using 10-200 eV 28 Si + and 30 Si + ions at substrate temperatures in the range 273-1073 K, under ultrahigh-vacuum conditions (deposition pressure -7 Pa). The film crystallinity was assessed in situ using medium energy ion scattering (MEIS). Films of crystallinity comparable to bulk samples were grown using 10-40 eV 28 Si + and 30 Si + ions at deposition temperatures in the range 623-823 K. These experiments confirmed the role of key experimental parameters such as ion energy, substrate temperature during deposition, and the surface treatment prior to deposition. It was found that a high temperature in situ anneal (1350-1450 K) gave the best results for epitaxial nucleation, whereas low energy (20-40 eV) Cl + ion bombardment resulted in amorphous film growth. The deposition energy for good epitaxial growth indicates that it is necessary to provide enough energy to induce local mobility but not to cause atomic displacements leading to the buildup of stable defects, e.g. divacancies, below the surface layer of the growing film. (orig.)

  5. Energy accumulating substances for increase of replacement factor of petroleum from layer on Kumkol deposit

    International Nuclear Information System (INIS)

    Yunusov, U.I.; Ospanov, E.S.; Nurabaev, B.K.; Ajshuakov, K.A.; Tursunkulov, Eh.T.

    1997-01-01

    Laboratory researches with using of alloys of energy accumulating substances are carried out with the purpose of petroleum output increase on Kumkol deposit. Factor of petroleum replacement within range from 79.5 to 82.0 % is received by use silico-barium, silico-calcium and ferro-silicium with alkali and aluminium. (author)

  6. Surface free energy of TiC layers deposited by electrophoretic deposition (EPD)

    Science.gov (United States)

    Gorji, Mohammad Reza; Sanjabi, Sohrab

    2018-01-01

    In this study porous structure coatings of bare TiC (i.e. 20 nm, 0.7 µm and 5/45 µm) and core-shell structures of TiC/NiP synthesized through electroless plating were deposited by EPD. Room temperature surface free energy (i.e. γs) of TiC and TiC/NiP coatings were determined via measuring contact angles of distilled water and diiodemethane liquids. The effect of Ni-P shell on spreading behavior of pure copper on porous EPD structures was also investigated by high temperature wetting experiments. According to the results existence of a Ni-P layer around the TiC particles has led to roughness (i.e. at least 0.1 µm), and porosity mean length (i.e. at least 1 µm) increase. This might be related to various sizes of TiC agglomerates formed during electroless plating. It has been observed that room temperature γs changed from 44.49 to 54.12 mJ.m-2 as a consequence of particle size enlargement for TiC. The highest and lowest (67.25 and 44.49 mJ.m-2) γs were measured for TiC nanoparticles which showed 1.5 times increase in surface free energy after being plated with Ni-P. It was also observed that plating Ni-P altered non-spreading (θs > 100 o) behavior of TiC to full-spreading ((θs 0o)) which can be useful for preparation of hard coatings by infiltration sintering phenomenon. Zeta potential of EPD suspensions, morphology, phase structure and topography of as-EPD layers were investigated through Zetasizer, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and atomic force microscopy (AFM) instruments respectively.

  7. Electron energy deposition in the middle atmosphere

    International Nuclear Information System (INIS)

    Vampola, A.L.; Gorney, D.J.

    1983-01-01

    Spectra of locally precipating 36- to 317-keV electrons obtained by instrumentation on the S3-2 satellite are used to calculate energy deposition profiles as a function of latitude, longitude, and altitude. In the 70- to 90-km altitude, mid-latitude ionization due to these precipitating energetic electrons can be comparable to that due to direct solar H Lyman α. At night, the electrons produce ionization more than an order of magnitude greater than that expected from scattered H Lyman α. Maximum precipitation rates in the region of the South Atlantic Anomaly are of the order of 10 -2 erg/cm 2 s with a spectrum of form j(E) = 1.34 x 10 5 E/sup -2.27/ (keV). Southern hemisphere precipitation dominates that in the north for 1.1< L<6 except for regions of low local surface field in the northern hemisphere. Above L = 6, local time effects dominate: i.e., longitudinal effects due to the asymmetric magnetic field which are strong features below L = 6 disappear and are replaced by high-latitude precipitation events which are local time features

  8. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    International Nuclear Information System (INIS)

    Brun, J.; Reynard-Carette, C.; Tarchalski, M.; Pytel, K.; Lyoussi, A.; Fourmentel, D.; Villard, J.F.; Jagielski, J.

    2015-01-01

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for the thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling

  9. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Brun, J.; Reynard-Carette, C. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Tarchalski, M.; Pytel, K. [National Centre for Nuclear Research A. Soltana 7, 05-400 Swierk (Poland); Lyoussi, A.; Fourmentel, D.; Villard, J.F. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Jagielski, J. [National Centre for Nuclear Research A. Soltana 7, 05-400 Swierk (Poland); Institute of Electronic Materials Technolgy, Wolczynska 133, 01-919 Warszawa (Poland)

    2015-07-01

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for the thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling

  10. Energy deposition and radiation quality of radon and radon daughters. Final report

    International Nuclear Information System (INIS)

    Karam, L.R.; Caswell, R.S.

    1996-01-01

    This program was aimed at creating a quantitative physical description, at the micrometer and nanometer levels, of the physical interactions of the alpha particles from radon and its daughters with cells at risk in the bronchial epithelium. The authors calculated alpha-particle energy spectra incident upon the cells and also energy deposition spectra in micrometer- and nanometer-sized sites as a function of cell depth, site size, airway diameter, activities of 218 Po and 214 Po, and other parameters. These data are now being applied, using biophysical models of radiation effects, to predict cell killing, mutations, and cell transformation. The model predictions are then compared to experimental biophysical, biochemical, and biological information. These studies contribute to a detailed understanding of the mechanisms of the biological effectiveness of the radiations emitted by radon and its progeny

  11. On the energy deposition into the plasma for an inverted fireball geometry

    Science.gov (United States)

    Levko, Dmitry; Gruenwald, Johannes

    2017-10-01

    Energy deposition into a plasma for an inverted fireball geometry is studied using a self-consistent two-dimensional Particle-in-Cell Monte Carlo collision model. In this model, the cathode is a pin which injects the fixed electron current and the anode is a hollow metal tube covered with the metal grid. We obtain an almost constant ratio between the densities of plasmas generated in the cathode-grid gap and inside the hollow anode. The results of the simulations show that there is no energy exchange between the beam and plasma electrons at low emission currents. For increasing current, however, we observe the increasing coupling between the electron beam and the thermal plasma electrons. This leads to the heating of plasma electrons and the generation of the so-called supra-thermal electrons.

  12. SU-G-TeP3-13: The Role of Nanoscale Energy Deposition in the Development of Gold Nanoparticle-Enhanced Radiotherapy

    International Nuclear Information System (INIS)

    Kirkby, C; Koger, B; Suchowerska, N; McKenzie, D

    2016-01-01

    Purpose: Gold nanoparticles (GNPs) can enhance radiotherapy effects. The high photoelectric cross section of gold relative to tissue, particularly at lower energies, leads to localized dose enhancement. However in a clinical context, photon energies must also be sufficient to reach a target volume at a given depth. These properties must be balanced to optimize such a therapy. Given that nanoscale energy deposition patterns around GNPs play a role in determining biological outcomes, in this work we seek to establish their role in this optimization process. Methods: The PENELOPE Monte Carlo code was used to generate spherical dose deposition kernels in 1000 nm diameter spheres around 50 nm diameter GNPs in response to monoenergetic photons incident on the GNP. Induced “lesions” were estimated by either a local effect model (LEM) or a mean dose model (MDM). The ratio of these estimates was examined for a range of photon energies (10 keV to 2 MeV), for three sets of linear-quadratic parameters. Results: The models produce distinct differences in expected lesion values, the lower the alpha-beta ratio, the greater the difference. The ratio of expected lesion values remained constant within 5% for energies of 40 keV and above across all parameter sets and rose to a difference of 35% for lower energies only for the lowest alpha-beta ratio. Conclusion: Consistent with other work, these calculations suggest nanoscale energy deposition patterns matter in predicting biological response to GNP-enhanced radiotherapy. However the ratio of expected lesions between the different models is largely independent of energy, indicating that GNP-enhanced radiotherapy scenarios can be optimized in photon energy without consideration of the nanoscale patterns. Special attention may be warranted for energies of 20 keV or below and low alpha-beta ratios.

  13. SU-G-TeP3-13: The Role of Nanoscale Energy Deposition in the Development of Gold Nanoparticle-Enhanced Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kirkby, C [Jack Ady Cancer Centre, Lethbridge, AB (Canada); The University of Calgary, Calgary, AB (Canada); Koger, B [The University of Calgary, Calgary, AB (Canada); Suchowerska, N [Chris O’Brien Lifehouse Camperdown, NSW (Australia); McKenzie, D [University of Sydney, Sydney, NSW (Australia)

    2016-06-15

    Purpose: Gold nanoparticles (GNPs) can enhance radiotherapy effects. The high photoelectric cross section of gold relative to tissue, particularly at lower energies, leads to localized dose enhancement. However in a clinical context, photon energies must also be sufficient to reach a target volume at a given depth. These properties must be balanced to optimize such a therapy. Given that nanoscale energy deposition patterns around GNPs play a role in determining biological outcomes, in this work we seek to establish their role in this optimization process. Methods: The PENELOPE Monte Carlo code was used to generate spherical dose deposition kernels in 1000 nm diameter spheres around 50 nm diameter GNPs in response to monoenergetic photons incident on the GNP. Induced “lesions” were estimated by either a local effect model (LEM) or a mean dose model (MDM). The ratio of these estimates was examined for a range of photon energies (10 keV to 2 MeV), for three sets of linear-quadratic parameters. Results: The models produce distinct differences in expected lesion values, the lower the alpha-beta ratio, the greater the difference. The ratio of expected lesion values remained constant within 5% for energies of 40 keV and above across all parameter sets and rose to a difference of 35% for lower energies only for the lowest alpha-beta ratio. Conclusion: Consistent with other work, these calculations suggest nanoscale energy deposition patterns matter in predicting biological response to GNP-enhanced radiotherapy. However the ratio of expected lesions between the different models is largely independent of energy, indicating that GNP-enhanced radiotherapy scenarios can be optimized in photon energy without consideration of the nanoscale patterns. Special attention may be warranted for energies of 20 keV or below and low alpha-beta ratios.

  14. The development of the Ptolemais lignite deposit, present situation and future perspective of the electrical energy market (Greece)

    International Nuclear Information System (INIS)

    Kavourides, Kostas

    1997-01-01

    PPC is by far the major producer of solid fuels in Greece. Currently the known exploitable reserves of solid fuels, are 4,0 billions tones of lignite and 4 billion cubic meters of peat. Mining of Lignite in Greece started in 1951 at the Aliveri underground mine and was continued at the open cast mines at Ptolemais (1955) and Megalopolis (1919). For more than 45 years. PPC has successfully exploited the Greece Lignite deposit for the production of electricity in order to satisfy the demand in Greece. Today PPC produces 60 million tons of lignite and handles approximately 275 million cubic meters of masses (overburden, lignite and interculated) per year. Lignite is the main energy resource in Greece and its combustion provides 75-80% of the electrical energy consumed in Greece.The Lignite Center of Ptolemais - Amyndeon (LCP-A) operated by the Greece PPC is located in northern Greece, about 110 km west of the city of Thessaloniki. The lignite deposits under exploitation cover an area. of 120 km 2 including 4000 Mt of proven geological reserves and 2700 Mt of exploitable lignite under current economic and technological criteria. Today LCP-A manages six active mines which in 1997 have a rate of handling 245 mil cubic meter of material and producing approx. 48 mil for of lignite. The continuous mining method which employs BWES, conveyors and strackers is the principal mining method used in all the lignite mines at the Ptolemais-Amyndeon Lignite Center. The implementation of selective mining procedures as well as discontinuous and /or combined mining methods differentiates the mining technology at the LCP-A from the respective technology applied in Germany lignite mines. The quality properties suggest that the lignite deposits in Greece are among the world's worst quality deposits exploited for energy production, where approximately 2 kg of lignite are consumed per I kWh of generated power. The main advantages of PPC'S coal orientated development program are the following

  15. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, N G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Gudage, Y G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Ghosh, A [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Vyas, J C [Technical and Prototype Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai (MS) (India); Singh, F [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Tripathi, A [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Sharma, Ramphal [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India)

    2008-02-07

    We have examined the effect of swift heavy ions using 100 MeV Au{sup 8+} ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10{sup -4} {omega} cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications.

  16. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    International Nuclear Information System (INIS)

    Deshpande, N G; Gudage, Y G; Ghosh, A; Vyas, J C; Singh, F; Tripathi, A; Sharma, Ramphal

    2008-01-01

    We have examined the effect of swift heavy ions using 100 MeV Au 8+ ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10 -4 Ω cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications

  17. Topography and surface free energy of DPPC layers deposited on a glass, mica, or PMMA support.

    Science.gov (United States)

    Jurak, Malgorzata; Chibowski, Emil

    2006-08-15

    An investigation of energetic properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on glass, mica, and PMMA (poly(methyl methacrylate)) surfaces was carried out by means of contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide). DPPC was deposited on the surfaces from water (on glass and mica) or methanol (on PMMA) solutions. The topography of the tested surfaces was determined with a help of scanning electron microscopy (SEM) and atomic force microscopy (AFM). Using the measured contact angles, the total apparent surface free energy and its components of the studied layers were determined from van Oss et al.'s (Lifshitz-van der Waals and acid-base components, LWAB) and contact angle hysteresis (CAH) approaches. It allowed us to learn about changes in the surface free energy of the layers (hydrophobicity/hydrophilicity) depending on their number and kind of support. It was found that the changes in the energy greatly depended on the surface properties of the substrate as well as the statistical number of monolayers of DPPC. However, principal changes took place for first three monolayers.

  18. Calculation of neutron radiation energy deposition distribution in subcellular parts of tissue using recombination chamber microdosimetry

    International Nuclear Information System (INIS)

    Golnik, N.; Zielczynski, M.

    1999-01-01

    Recombination chamber microdosimetry was used as an instrument for determination of local neutron radiation energy deposition distribution. The method allows to simulate of subcellular regions of tissue of the order of 70 nm in size. The results obtained qualitatively correspond to relationship between biological efficiency and neutron energy, and show regular differences of distributions achieved by the recombination method and distributions measured using tissue equivalent proportional counters (TEPC), which simulates greater tissue regions of 1 μm in size

  19. High-energy high-rate pulsed-power processing of materials by powder consolidation and by railgun deposition. Technical report (Final), 10 April 1985-10 February 1987

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Marcus, H.L.; Weldon, W.F.

    1987-03-31

    This exploratory research program was initiated to investigate the potential of using pulse power sources for powder consolidation, deposition and other high-energy high-rate processing. The characteristics of the high-energy-high-rate (1MJ/s) powder consolidation using megampere current pulses from a homopolar generator, were defined. Molybdenum Alloy TZM, a nickel-based metallic glass, copper/graphite composites, and P/M aluminum alloy X7091 were investigated. The powder-consolidation process produced high densification rates. Density values of 80% to 99% could be obtained with subsecond high-temperature exposure. Specific energy input and applied pressure were controlling process parameters. Time temperature transformation (TTT) concepts underpin a fundamental understanding of pulsed power processing. Inherent control of energy input, and time-to-peak processing temperature developed to be held to short times. Deposition experiments were conducted using an exploding-foil device (EFD) providing an armature feed to railgun mounted in a vacuum chamber. The material to be deposited - in plasma, gas, liquid, or solid state - was accelerated electromagnetically in the railgun and deposited on a substrate. Deposits of a wide variety of single- and multi-specie materials were produced on several types of substrates. In a series of ancillary experiments, pulsed-skin-effect heating and self quenching of metallic conductors was discovered to be a new means of surface modification by high-energy high-rate-processing.

  20. Optimization of laser energy deposition for single-shot high aspect-ratio microstructuring of thick BK7 glass

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, Valerio; Grigutis, Robertas [Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 11, I-22100 Como (Italy); Jukna, Vytautas [Centre de Physique Theorique, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau (France); LOA, ENSTA-ParisTech, CNRS, Ecole Polytechnique, Université Paris Saclay, F-91762 Palaiseau (France); Couairon, Arnaud [Centre de Physique Theorique, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau (France); Di Trapani, Paolo [Dipartimento di Scienza e Alta Tecnologia, University of Insubria and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy); Jedrkiewicz, Ottavia, E-mail: ottavia.jedrkiewicz@ifn.cnr.it [Istituto di Fotonica e Nanotecnologie, CNR and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy)

    2016-07-07

    We investigate the generation of high aspect ratio microstructures across 0.7 mm thick glass by means of single shot Bessel beam laser direct writing. We study the effect on the photoinscription of the cone angle, as well as of the energy and duration of the ultrashort laser pulse. The aim of the study is to optimize the parameters for the writing of a regular microstructure due to index modification along the whole sample thickness. By using a spectrally resolved single pulse transmission diagnostics at the output surface of the glass, we correlate the single shot material modification with observations of the absorption in different portions of the retrieved spectra, and with the absence or presence of spectral modulation. Numerical simulations of the evolution of the Bessel pulse intensity and of the energy deposition inside the sample help us interpret the experimental results that suggest to use picosecond pulses for an efficient and more regular energy deposition. Picosecond pulses take advantage of nonlinear plasma absorption and avoid temporal dynamics effects which can compromise the stationarity of the Bessel beam propagation.

  1. Depth determination of low-energy photon emitter deposits in tissue by means of high-resolution X-ray spectrometry

    International Nuclear Information System (INIS)

    Schlueter, W.

    1982-01-01

    A method has been developed for ascertaining the depth of low-energy photon emitters deposited in wounds. It is based on the determination of the energy-dependent absorption of the emitted photons by the tissue separating source and detector. The method is applicable to counting for low-energy photon-emitting nuclides that can be characterized by more than one quantum energy. Attenuation coefficients were given for lard, beef, and five tissue- equivalent materials. For spectrometry, a planar Ge(Li) detector proved most suitable. (author)

  2. Effect of water side deposits on the energy performance of coal fired thermal power plants

    International Nuclear Information System (INIS)

    Bhatt, M. Siddhartha

    2006-01-01

    This paper presents the effects of water side deposits in the 210 MW coal fired thermal power plant components (viz., boiler, turbine, feed water heaters, condensers and lube oil coolers) on the energy efficiency of these components and that of the overall system at 100% maximum continuous rating (MCR). The origin, composition and rate of build up of deposits on the water side are presented. A linear growth rate of deposits is assumed for simplicity. The effects of the reduction in heat transfer, increased pressure drop and increased pumping power/reduced power output in the components are quantified in the form of curve fits as functions of the deposit thickness (μm). The reduction in heat transfer in the boiler components is in the range of 0.2-2.0% under normal scaling. The increased pumping power is of the order of 0.6-7.6% in the boiler components, 29% in the BFP circuit, 26% in the LPH circuit, 21% in the HPH circuit and 18% in the lube oil cooler circuits. The effects on the overall coal fired plant is quantified through functional relations between the efficiencies and the notional deposit thickness. The sensitivity indices to the notional deposit thickness are: boiler efficiency: -0.0021% points/μm, turbine circuit efficiency: -0.0037% points/μm, auxiliary power efficiency: -0.00129% points/μm, gross overall efficiency: -0.0039% points/μm and net overall efficiency: -0.0040% points/μm. The overall effect of scale build up is either increased power input of ∼68 kW/μm (at a constant power output) or decreased power output ∼25 kW/μm (at a constant power input). Successful contaminant control techniques are highlighted. Capacity reduction effects due to water side deposits are negligible

  3. Measurement and Simulation of the Variation in Proton-Induced Energy Deposition in Large Silicon Diode Arrays

    Science.gov (United States)

    Howe, Christina L.; Weller, Robert A.; Reed, Robert A.; Sierawski, Brian D.; Marshall, Paul W.; Marshall, Cheryl J.; Mendenhall, Marcus H.; Schrimpf, Ronald D.

    2007-01-01

    The proton induced charge deposition in a well characterized silicon P-i-N focal plane array is analyzed with Monte Carlo based simulations. These simulations include all physical processes, together with pile up, to accurately describe the experimental data. Simulation results reveal important high energy events not easily detected through experiment due to low statistics. The effects of each physical mechanism on the device response is shown for a single proton energy as well as a full proton space flux.

  4. A three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition in graphite components of advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, D.O.; Robinson, A.T.; Allen, D.A.; Picton, D.J.; Thornton, D.A. [TCS, Serco, Rutherford House, Olympus Park, Quedgeley, Gloucester, Gloucestershire GL2 4NF (United Kingdom); Shaw, S.E. [EDF Energy, Barnet Way, Barnwood, Gloucester GL4 3RS (United Kingdom)

    2011-07-01

    This paper describes the development of a three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition (or nuclear heating) throughout the graphite cores of the UK's Advanced Gas-cooled Reactors. Advances in the development of the Monte Carlo radiation transport code MCBEND have enabled the efficient production of detailed fully three-dimensional models that utilise three-dimensional source distributions obtained from Core Follow data supplied by the reactor physics code PANTHER. The calculational approach can be simplified to reduce both the requisite number of intensive radiation transport calculations, as well as the quantity of data output. These simplifications have been qualified by comparison with explicit calculations and they have been shown not to introduce significant systematic uncertainties. Simple calculational approaches are described that allow users of the data to address the effects on neutron damage and nuclear energy deposition predictions of the feedback resulting from the mutual dependencies of graphite weight loss and nuclear energy deposition. (authors)

  5. Absorbed dose calculation of the energy deposition close to bone, lung and soft tissue interfaces in molecular radiotherapy

    International Nuclear Information System (INIS)

    Fernandez, M.; Lassman, M.

    2015-01-01

    Full text of publication follows. Aim: for voxel-based dosimetry in molecular radiotherapy (MRT) based on tabulated voxel S-values these values are usually obtained only for soft tissue. In order to study the changes in the dose deposition patterns at interfaces between different materials we have performed Monte Carlo simulations. Methods: the deposited energy patterns were obtained using the Monte-Carlo radiation code MCNPX v2.7 for Lu 177 (medium-energy) and Y 90 (high-energy). The following interfaces were studied: soft tissue-bone and soft tissue-lungs. For this purpose a volume of soft tissue homogeneously filled with Lu 177 or Y 90 was simulated at the interface to 3 different volumes containing no activity: soft tissue, lungs and bone. The emission was considered to be isotropic. The dimensions were chosen to ensure that the energy deposited by all generated particles was scored. The materials were defined as recommended by ICPR46; the decay schemes of Eckerman and Endo were used. With these data the absorbed dose patterns normalized to the maximum absorbed dose in the source region (soft tissue) were calculated. Results: the absorbed dose fractions in the boundary with soft tissue, bone and lungs are 50%, 47% and 57%, respectively, for Lu 177 and 50%, 47% and 51% for Y 90 . The distances to the interface at which the absorbed fractions are at 0.1% are 1.0, 0.6 and 3.0 mm for Lu 177 and 7.0, 4.0 and 24 mm for Y 90 , for soft tissue, bone and lungs respectively. Conclusions: in MRT, the changes in the absorbed doses at interfaces between soft tissue and bone/lungs need to be considered for isotopes emitting high energy particles. (authors)

  6. Surface engineering of zirconium particles by molecular layer deposition: Significantly enhanced electrostatic safety at minimum loss of the energy density

    Science.gov (United States)

    Qin, Lijun; Yan, Ning; Hao, Haixia; An, Ting; Zhao, Fengqi; Feng, Hao

    2018-04-01

    Because of its high volumetric heat of oxidation, Zr powder is a promising high energy fuel/additive for rocket propellants. However, the application of Zr powder is restricted by its ultra-high electrostatic discharge sensitivity, which poses great hazards for handling, transportation and utilization of this material. By performing molecular layer deposition of polyimide using 1,2,4,5-benzenetetracarboxylic anhydride and ethylenediamine as the precursors, Zr particles can be uniformly encapsulated by thin layers of the polymer. The thicknesses of the encapsulation layers can be precisely controlled by adjusting the number of deposition cycle. High temperature annealing converts the polymer layer into a carbon coating. Results of thermal analyses reveal that the polymer or carbon coatings have little negative effect on the energy release process of the Zr powder. By varying the thickness of the polyimide or carbon coating, electrostatic discharge sensitivity of the Zr powder can be tuned in a wide range and its uncontrolled ignition hazard can be virtually eliminated. This research demonstrates the great potential of molecular layer deposition in effectively modifying the surface properties of highly reactive metal based energetic materials with minimum sacrifices of their energy densities.

  7. Laser-Aided Directed Energy Deposition of Steel Powder over Flat Surfaces and Edges.

    Science.gov (United States)

    Caiazzo, Fabrizia; Alfieri, Vittorio

    2018-03-16

    In the framework of Additive Manufacturing of metals, Directed Energy Deposition of steel powder over flat surfaces and edges has been investigated in this paper. The aims are the repair and overhaul of actual, worn-out, high price sensitive metal components. A full-factorial experimental plan has been arranged, the results have been discussed in terms of geometry, microhardness and thermal affection as functions of the main governing parameters, laser power, scanning speed and mass flow rate; dilution and catching efficiency have been evaluated as well to compare quality and effectiveness of the process under conditions of both flat and edge depositions. Convincing results are presented to give grounds for shifting the process to actual applications: namely, no cracks or pores have been found in random cross-sections of the samples in the processing window. Interestingly an effect of the scanning conditions has been proven on the resulting hardness in the fusion zone; therefore, the mechanical characteristics are expected to depend on the processing parameters.

  8. Energy deposition by a {sup 106}Ru/{sup 106}Rh eye applicator simulated using LEPTS, a low-energy particle track simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida Complutense 22, 28040 Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avenida Complutense, 28040 Madrid (Spain); Williart, A. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica (Portugal); Borge, M.J.G.; Tengblad, O. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid (Spain); Garcia, G., E-mail: g.garcia@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain)

    2011-09-15

    The present study introduces LEPTS, an event-by-event Monte Carlo programme, for simulating an ophthalmic {sup 106}Ru/{sup 106}Rh applicator relevant in brachytherapy of ocular tumours. The distinctive characteristics of this code are the underlying radiation-matter interaction models that distinguish elastic and several kinds of inelastic collisions, as well as the use of mostly experimental input data. Special emphasis is placed on the treatment of low-energy electrons for generally being responsible for the deposition of a large portion of the total energy imparted to matter. - Highlights: > We present the Monte Carlo code LEPTS, a low-energy particle track simulation. > Carefully selected input data from 10 keV to 1 eV. > Application to an electron emitting Ru-106/Rh-106 plaque used in brachytherapy.

  9. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

    Directory of Open Access Journals (Sweden)

    Rachel M. Thorman

    2015-09-01

    Full Text Available Focused electron beam induced deposition (FEBID is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (3, Pt(PF34, Co(CO3NO, and W(CO6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.

  10. FCC-hh final-focus for flat-beams: parameters and energy deposition studies

    CERN Document Server

    AUTHOR|(CDS)2081283; Cruz Alaniz, Emilia; Seryi, Andrei; Van Riesen-Haupt, Leon; Besana, Maria Ilaria

    2017-01-01

    The international Future Circular Collider (FCC) study comprises the study of a new scientific structure in a tunnel of 100 km. This will allow the installation of two accelerators, a 45.6–175 GeV lepton collider and a 100-TeV hadron collider. An optimized design of a final-focus system for the hadron collider is presented here. The new design is more compact and enables unequal ${\\beta}$$^{∗}$ in both planes, whose choice is justified here. This is followed by energy deposition studies, where the total dose in the magnets as a consequence of the collision debris is evaluated.

  11. Advanced Materials Enabled by Atomic Layer Deposition for High Energy Density Rechargeable Batteries

    Science.gov (United States)

    Chen, Lin

    In order to meet the ever increasing energy needs of society and realize the US Department of Energy (DOE)'s target for energy storage, acquiring a fundamental understanding of the chemical mechanisms in batteries for direct guidance and searching novel advanced materials with high energy density are critical. To realize rechargeable batteries with superior energy density, great cathodes and excellent anodes are required. LiMn2O4 (LMO) has been considered as a simpler surrogate for high energy cathode materials like NMC. Previous studies demonstrated that Al2O3 coatings prepared by atomic layer deposition (ALD) improved the capacity of LMO cathodes. This improvement was attributed to a reduction in surface area and diminished Mn dissolution. However, here we propose a different mechanism for ALD Al 2O3 on LMO based on in-situ and ex-situ investigations coupled with density functional theory calculations. We discovered that Al2O 3 not only coats the LMO, but also dopes the LMO surface with Al leading to changes in the Mn oxidation state. Different thicknesses of Al2O 3 were deposited on nonstoichiometric LiMn2O4 for electrochemical measurements. The LMO treated with one cycle of ALD Al2O3 (1xAl 2O3 LMO) to produce a sub-monolayer coating yielded a remarkable initial capacity, 16.4% higher than its uncoated LMO counterpart in full cells. The stability of 1xAl2O3 LMO is also much better as a result of stabilized defects with Al species. Furthermore, 4xAl 2O3 LMO demonstrates remarkable capacity retention. Stoichiometric LiMn2O4 was also evaluated with similar improved performance achieved. All superior results, accomplished by great stability and reduced Mn dissolution, is thanks to the synergetic effects of Al-doping and ALD Al2O 3 coating. Turning our attention to the anode, we again utilized aluminum oxide ALD to form conformal films on lithium. We elaborately designed and studied, for the first time, the growth mechanism during Al2O3 ALD on lithium metal in

  12. The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations

    KAUST Repository

    Wang, N

    2014-05-16

    The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures were simulated by varying the deposition energy of carbon atoms in the range of 1-120 eV. Intrinsic film characteristics (e.g. density and internal stress) were determined after the system reached equilibrium. Short- and intermediate-range carbon atom ordering is examined in the context of atomic hybridization and ring connectivity simulation results. It is shown that relatively high deposition energy (i.e., 80 eV) yields a multilayer film structure consisting of an intermixing layer, bulk film and surface layer, consistent with the classical subplantation model. The highest film density (3.3 g cm-3), sp3 fraction (∼43%), and intermediate-range carbon atom ordering correspond to a deposition energy of ∼80 eV, which is in good agreement with experimental findings. © 2014 IOP Publishing Ltd.

  13. Development of electrostatic supercapacitors by atomic layer deposition on nanoporous anodic aluminium oxides for energy harvesting applications

    Directory of Open Access Journals (Sweden)

    Lucia eIglesias

    2015-03-01

    Full Text Available Nanomaterials can provide innovative solutions for solving the usual energy harvesting and storage drawbacks that take place in conventional energy storage devices based on batteries or electrolytic capacitors, because they are not fully capable for attending the fast energy demands and high power densities required in many of present applications. Here, we report on the development and characterization of novel electrostatic supercapacitors made by conformal Atomic Layer Deposition on the high open surface of nanoporous anodic alumina membranes employed as templates. The structure of the designed electrostatic supercapacitor prototype consists of successive layers of Aluminium doped Zinc Oxide, as the bottom and top electrodes, together Al2O3 as the intermediate dielectric layer. The conformality of the deposited conductive and dielectric layers, together with their composition and crystalline structure have been checked by XRD and electron microscopy techniques. Impedance measurements performed for the optimized electrostatic supercapacitor device give a high capacitance value of 200 µF/cm2 at the frequency of 40 Hz, which confirms the theoretical estimations for such kind of prototypes, and the leakage current reaches values around of 1.8 mA/cm2 at 1 V. The high capacitance value achieved by the supercapacitor prototype together its small size turns these devices in outstanding candidates for using in energy harvesting and storage applications.

  14. Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence

    Science.gov (United States)

    Javanainen, Arto; Galloway, Kenneth F.; Nicklaw, Christopher; Bosser, Alexandre L.; Ferlet-Cavrois, Veronique; Lauenstein, Jean-Marie; Pintacuda, Francesco; Reed, Robert A.; Schrimpf, Ronald D.; Weller, Robert A.; hide

    2016-01-01

    Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence.

  15. Structure of fast ion energy depositions in water. Application to the Monte Carlo study of cellular inactivation

    International Nuclear Information System (INIS)

    Champion, Ch.

    1999-01-01

    In order to understand the physical processes involved in the heavy ion irradiation of biological samples, a Monte Carlo simulation code and a random inventory code for interaction clusters in volumes comparable to those of sensible biological sites like nucleosomes (few nm 3 ) have been developed. It is now well known that macroscopic parameters like the dose rate or the stopping power are not suitable to explain the cellular inactivation induced by heavy ions irradiation. The aim of this work is the development of a mechanistic model based on the identification of primary processes susceptible to be of major importance on the biological aspect. The code developed simulates the creation and transport in water of all secondary particles produced by the impact of heavy ions. Once all energy depositions generated, an algorithm of random inventory of interaction clusters has been built in order to evaluate the type of critical energy deposition which presents a correlation with the experimental data of cellular inactivation. For light ions, like particles, this cluster model has permitted to reproduce the variations of the experimental number of lethal lesions observed, in particular the decay of biological efficiency. However, for heavy ions, these parameters do not allow to reproduce the experimental data of cellular inactivation. Therefore, the concept of ionization clusters described in terms of critical deposition in critical volumes is not sufficient. (J.S.)

  16. Crystalline and amorphous carbon nitride films produced by high-energy shock plasma deposition

    International Nuclear Information System (INIS)

    Bursilll, L.A.; Peng, Julin; Gurarie, V.N.; Orlov, A.V.; Prawer, S.

    1995-01-01

    High-energy shock plasma deposition techniques are used to produce carbon-nitride films containing both crystalline and amorphous components. The structures are examined by high-resolution transmission electron microscopy, parallel-electron-energy loss spectroscopy and electron diffraction. The crystalline phase appears to be face-centered cubic with unit cell parameter approx. a=0.63nm and it may be stabilized by calcium and oxygen at about 1-2 at % levels. The carbon atoms appear to have both trigonal and tetrahedral bonding for the crystalline phase. There is PEELS evidence that a significant fraction of the nitrogen atoms have sp 2 trigonal bonds in the crystalline phase. The amorphous carbon-nitride film component varies from essentially graphite, containing virtually no nitrogen, to amorphous carbon-nitride containing up to 10 at % N, where the fraction of sp 3 bonds is significant. 15 refs., 5 figs

  17. Interaction of protons with the C{sub 60} molecule: calculation of deposited energies and electronic stopping cross sections (v{sub {<=}}5 au)

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P. [Laboratoire CAR, IRSAMC, UMR 5589 CNRS, Universite Paul Sabatier, Toulouse (France)]. E-mail: pmc@irsamc.ups-tlse.fr; Bordenave-Montesquieu, D.; Rentenier, A.; Bordenave-Montesquieu, A. [Laboratoire CAR, IRSAMC, UMR 5589 CNRS, Universite Paul Sabatier, Toulouse (France)

    2001-09-28

    The energy deposited by a proton in a C{sub 60} molecule is calculated over a broad collision velocity range from 0.1 to 5 au, using the free-electron gas model of Lindhard and Winther (1964 Mat. Fys. Medd. K Dan. Vidensk. Selsk. 34) and the C{sub 60} electron density distribution calculated by Puska and Nieminen. The energy lost by the proton is maximum near 1.8 au collision velocity in contrast with the saturation found in the low-velocity regime, in the 0.25-0.5 au velocity range, by Kunert and Schmidt. From the impact parameter dependence we deduce the distributions of deposited energies, the averaged energy losses and the C{sub 60} electronic stopping cross sections. It is found that the C{sub 60} molecule behaves as a carbon foil giving very similar absolute stopping cross sections per atom. (author). Letter-to-the-editor.

  18. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics

    Science.gov (United States)

    Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.

    2016-03-01

    Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on

  19. Effect of Laser Power and Gas Flow Rate on Properties of Directed Energy Deposition of Titanium Alloy

    Science.gov (United States)

    Mahamood, Rasheedat M.

    2018-03-01

    Laser metal deposition (LMD) process belongs to the directed energy deposition class of additive manufacturing processes. It is an important manufacturing technology with lots of potentials especially for the automobile and aerospace industries. The laser metal deposition process is fairly new, and the process is very sensitive to the processing parameters. There is a high level of interactions among these process parameters. The surface finish of part produced using the laser metal deposition process is dependent on the processing parameters. Also, the economy of the LMD process depends largely on steps taken to eliminate or reduce the need for secondary finishing operations. In this study, the influence of laser power and gas flow rate on the microstructure, microhardness and surface finish produced during the laser metal deposition of Ti6Al4V was investigated. The laser power was varied between 1.8 kW and 3.0 kW, while the gas flow rate was varied between 2 l/min and 4 l/min. The microstructure was studied under an optical microscope, the microhardness was studied using a Metkon microhardness indenter, while the surface roughness was studied using a Jenoptik stylus surface analyzer. The results showed that better surface finish was produced at a laser power of 3.0 kW and a gas flow rate of 4 l/min.

  20. Measurement of energy deposition distributions produced in cylindrical geometry by irradiation with 15 MeV neutrons

    International Nuclear Information System (INIS)

    Brandan, M.E.

    1979-01-01

    Cellular survival experiments have shown that the biological damage induced by radiation depends on the density of energy deposition along the trajectory of the ionizing particle. The quantity L is defined to measure the density of energy transfer along a charged particle's trajectory. It is equal to sigma/l, where sigma is the energy transferred to a medium and l is the path length along which the transfer takes place. L is the stochastic quantity whose mean value is the unrestricted linear energy transfer, L/sub infinity/. Measurements of the distribution of L in a thin medium by secondary charged particles from fast neutron irradiation were undertaken. A counter operating under time coincidence between two coaxial cylindrical detectors was designed and built for this purpose. Secondary charged particles enter a gas proportional counter and deposit some energy sigma. Those particles traversing the chamber along a radial trajectory strike a CsI scintillator. A coincidence between both detectors' signals selects a known path length for these events, namely the radius of the cavity. Measurements of L distributions for l = 1 μm in tissue were obtained for 3 and 15 MeV neutron irradiation of a tissue-equivalent target wall and for 15 MeV neutron irradiation of a graphite wall. Photon events were corrected for by measurements with a Pb target wall and 15 MeV neutron irradiation as well as exposure to a pure photon field. The measured TE wall distributions with 15 MeV neutron bombardment show contributions from protons, α-particles, 9 Be and 12 C recoils. The last three comprise the L distribution for irradiation of the graphite wall. The proton component of the measured L distributions at 3 and 15 MeV was compared to calculated LET distributions

  1. Ion-assisted deposition of thin films

    International Nuclear Information System (INIS)

    Barnett, S.A.; Choi, C.H.; Kaspi, R.; Millunchick, J.M.

    1993-01-01

    Recent work on low-energy ion-assisted deposition of epitaxial films is reviewed. Much of the recent interest in this area has been centered on the use of very low ion energies (∼ 25 eV) and high fluxes (> 1 ion per deposited atom) obtained using novel ion-assisted deposition techniques. These methods have been applied in ultra-high vacuum, allowing the preparation of high-purity device-quality semiconductor materials. The following ion-surface interaction effects during epitaxy are discussed: improvements in crystalline perfection during low temperature epitaxy, ion damage, improved homogeneity and properties in III-V alloys grown within miscibility gaps, and changes in nucleation mechanism during heteroepitaxial growth

  2. Experimental investigation on the energy deposition and morphology of the electrical explosion of copper wire in vacuum

    International Nuclear Information System (INIS)

    Shi, Zongqian; Shi, Yuanjie; Wang, Kun; Jia, Shenli

    2016-01-01

    This paper presents the experimental results of the electrical explosion of copper wires in vacuum using negative nanosecond-pulsed current with magnitude of 1–2 kA. The 20 μm-diameter copper wires with different lengths are exploded with three different current rates. A laser probe is applied to construct the shadowgraphy and interferometry diagnostics to investigate the distribution and morphology of the exploding product. The interference phase shift is reconstructed from the interferogram, by which the atomic density distribution is calculated. Experimental results show that there exist two voltage breakdown modes depending on the amount of the specific energy deposition. For the strong-shunting mode, shunting breakdown occurs, leading to the short-circuit-like current waveform. For the weak-shunting mode with less specific energy deposition, the plasma generated during the voltage breakdown is not enough to form a conductive plasma channel, resulting in overdamped declining current waveform. The influence of the wire length and current rate on the characteristics of the exploding wires is also analyzed.

  3. Experimental investigation on the energy deposition and morphology of the electrical explosion of copper wire in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zongqian; Shi, Yuanjie; Wang, Kun; Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shanxi 710049 (China)

    2016-03-15

    This paper presents the experimental results of the electrical explosion of copper wires in vacuum using negative nanosecond-pulsed current with magnitude of 1–2 kA. The 20 μm-diameter copper wires with different lengths are exploded with three different current rates. A laser probe is applied to construct the shadowgraphy and interferometry diagnostics to investigate the distribution and morphology of the exploding product. The interference phase shift is reconstructed from the interferogram, by which the atomic density distribution is calculated. Experimental results show that there exist two voltage breakdown modes depending on the amount of the specific energy deposition. For the strong-shunting mode, shunting breakdown occurs, leading to the short-circuit-like current waveform. For the weak-shunting mode with less specific energy deposition, the plasma generated during the voltage breakdown is not enough to form a conductive plasma channel, resulting in overdamped declining current waveform. The influence of the wire length and current rate on the characteristics of the exploding wires is also analyzed.

  4. Direct formation of thin films and epitaxial overlayers at low temperatures using a low-energy (10-500 eV) ion beam deposition system

    International Nuclear Information System (INIS)

    Zuhr, R.A.; Alton, G.D.; Appleton, B.R.; Herbots, N.; Noggle, T.S.; Pennycook, S.J.

    1987-01-01

    A low-energy ion beam deposition system has been developed at Oak Ridge National Laboratory and has been applied successfully to the growth of epitaxial films at low temperatures for a number of different elements. The deposition system utilizes the ion source and optics of a commercial ion implantation accelerator. The 35 keV mass- and energy-analyzed ion beam from the accelerator is decelerated in a four-element electrostatic lens assembly to energies between 10 and 500 eV for direct deposition onto a target under UHV conditions. Current densities on the order of 10 μA/cm 2 are achieved with good uniformity over a 1.4 cm diameter spot. The completed films are characterized by Rutherford backscattering, ion channeling, cross-section transmission electron microscopy, and x-ray diffraction. The effects of substrate temperature, ion energy, and substrate cleaning have been studied. Epitaxial overlayers which show good minimum yields by ion channeling (3 to 4%) have been produced at temperatures as low as 375 0 C for Si on Si(100) and 250 0 C for Ge on Ge(100) at growth rates that exceed the solid-phase epitaxy rates at these temperatures by more than an order of magnitude

  5. Measurement of simulated lung deposition of radon daughters

    International Nuclear Information System (INIS)

    Jonassen, N.; Jensen, B.

    1992-01-01

    A measurement system for the lung deposition of radon daughters based on respiratory models was suggested by Hopke et al. By choosing suitable mesh size and flow velocities it is possible to design a multiple-wire screen sampler simulating deposition in the respiratory tract of aerosols over the size range 0.5-1000 nm. This paper describes a preliminary investigation where simulated deposition in the nasal tract and in the bronchii (for mouth breathing as well as nasal breathing) is determined. The measurements were performed in atmospheres where the normalised exposure rate (equilibrium factor) was varied by changing the aerosol loading of the air as well as by enhanced electrostatic plateout. The general results of the measurements are that the energy deposited in the nose with nasal breathing and in the bronchii with mouth breathing varies as the calculated dose while the energy deposited in the bronchii with nasal breathing follows the exposure. It is also demonstrated that the energy deposited for a fixed value of the radon concentration may vary by a factor of 2-7 depending on the treatment of the air. (author)

  6. Nanostructure of PDMS–TEOS–PrZr hybrids prepared by direct deposition of gamma radiation energy

    International Nuclear Information System (INIS)

    Lancastre, Joana J.H.; Falcão, António N.; Margaça, Fernanda M.A.; Ferreira, Luís M.; Miranda Salvado, Isabel M.; Almásy, László; Casimiro, Maria H.; Meiszterics, Anikó

    2015-01-01

    Highlights: • Hybrid materials were prepared by direct energy deposition. • The influence of the catalyst content (PrZr) was investigated. • The developed oxide network was found to be strongly dependent on the PrZr content. • A model is proposed for the development of the oxide network in these materials. - Abstract: Organic–inorganic materials have been the object of intense research due to their wide range of properties and therefore innumerous applications. We prepared organic–inorganic hybrid materials by direct energy deposition on a mixture of polydimethylsiloxane silanol terminated (33 wt% fixed content), tetraethylorthosilicate and a minor content of zirconium propoxide that varied from 1 to 5 wt% using gamma radiation from a Co-60 source. The samples, dried in air at room temperature, are bulk, flexible and transparent. Their nanostructure was investigated by small angle neutron scattering. It was found that the inorganic oxide network has fractal structure, which becomes denser as the zirconium propoxide content decreases. The results suggest that oxide nanosized regions grow from the OH terminal group of PDMS which are the condensation seeds. Their number and position remains unaltered with the variation of zirconium propoxide content that only affects their microstructure. A model is proposed for the nanostructure of the oxide network that develops in the irradiation processed hybrid materials.

  7. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  8. Nanostructure of PDMS–TEOS–PrZr hybrids prepared by direct deposition of gamma radiation energy

    Energy Technology Data Exchange (ETDEWEB)

    Lancastre, Joana J.H., E-mail: jlancastre@ctn.ist.utl.pt [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Falcão, António N. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Margaça, Fernanda M.A., E-mail: fmargaca@ctn.ist.utl.pt [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Ferreira, Luís M. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Miranda Salvado, Isabel M. [CICECO & Departamento de Engenharia de Materiais e Cerâmica, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Almásy, László [Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, PO Box 49, 1525 Budapest (Hungary); Casimiro, Maria H. [REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Meiszterics, Anikó [Gedeon Richter Ltd., PO Box 27, H-1475 Budapest (Hungary)

    2015-10-15

    Highlights: • Hybrid materials were prepared by direct energy deposition. • The influence of the catalyst content (PrZr) was investigated. • The developed oxide network was found to be strongly dependent on the PrZr content. • A model is proposed for the development of the oxide network in these materials. - Abstract: Organic–inorganic materials have been the object of intense research due to their wide range of properties and therefore innumerous applications. We prepared organic–inorganic hybrid materials by direct energy deposition on a mixture of polydimethylsiloxane silanol terminated (33 wt% fixed content), tetraethylorthosilicate and a minor content of zirconium propoxide that varied from 1 to 5 wt% using gamma radiation from a Co-60 source. The samples, dried in air at room temperature, are bulk, flexible and transparent. Their nanostructure was investigated by small angle neutron scattering. It was found that the inorganic oxide network has fractal structure, which becomes denser as the zirconium propoxide content decreases. The results suggest that oxide nanosized regions grow from the OH terminal group of PDMS which are the condensation seeds. Their number and position remains unaltered with the variation of zirconium propoxide content that only affects their microstructure. A model is proposed for the nanostructure of the oxide network that develops in the irradiation processed hybrid materials.

  9. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance.

    Science.gov (United States)

    Sharma, Shailesh; Gahan, David; Scullin, Paul; Doyle, James; Lennon, Jj; Vijayaraghavan, Rajani K; Daniels, Stephen; Hopkins, M B

    2016-04-01

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  10. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shailesh, E-mail: shailesh.sharma6@mail.dcu.ie [Dublin City University, Glasnevin, Dublin 9 (Ireland); Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17 (Ireland); Gahan, David, E-mail: david.gahan@impedans.com; Scullin, Paul; Doyle, James; Lennon, Jj; Hopkins, M. B. [Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17 (Ireland); Vijayaraghavan, Rajani K.; Daniels, Stephen [Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2016-04-15

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  11. Energy Deposition Studies for the LHC Insertion Region Upgrade Phase-I

    CERN Document Server

    Cerutti, F; Ferrari, A; Mereghetti, A; Wildner, E

    2010-01-01

    While the Large Hadron Collider (LHC) at CERN is starting operation with beam, aiming to achieve nominal performance in the shortest term, the upgrade of the LHC interaction regions is actively pursued in order to enhance the physics reach of the machine. Its first phase, with the target of increasing the LHC luminosity to 2-3 1034cm-2s-1, relies on the mature Nb-Ti superconducting magnet technology and is intended to maximize the use of the existing infrastructure. The impact of the increased power of the collision debris has been investigated through detailed energy deposition studies, considering the new aperture requirements for the low-ß quadrupoles and a number of other elements in the insertions. Effective solutions in terms of shielding options and design/layout optimization have been envisaged and the crucial factors have been pointed out.

  12. Methods for shifting the pattern of energy deposition with a MAPA

    International Nuclear Information System (INIS)

    Guerquin-Kern, J.L.; Hagmann, M.J.; Levin, R.L.

    1987-01-01

    In earlier work the authors observed local heating in bone when an amputated human leg was treated with a MAPA. For this reason we have experimentally compared several methods for controlling the pattern of energy deposition. These methods include radial displacement of the phantom relative to the MAPA, adjusting phase and magnitude of the currents in the dipole elements, and the use of dielectric spacers between the bolus and parts of the phantom. Cylindrical homogeneous muscle-phantoms have been used in these tests. Both theory and experiments show that greater displacement of the pattern can be obtained using phase-shifting than is possible with radial displacement of the phantom. Dielectric spacers act as a shield by decoupling the phantom from the MAPA. The dielectric spacers are simple to use and give results that are stable and easy to predict

  13. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage

    KAUST Repository

    Ahmed, Bilal

    2016-04-29

    Research on electrochemical energy storage devices including Li ion batteries (LIBs), Na ion batteries (NIBs) and supercapacitors (SCs) has accelerated in recent years, in part because developments in nanomaterials are making it possible to achieve high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine the performance and stability of electrochemical energy storage devices. Despite showing impressive capacities and high energy and power densities, many of the new nanostructured electrode materials suffer from limited lifetime due to severe electrode interaction with electrolytes or due to large volume changes. Hence control of the surface of the electrode material is essential for both increasing capacity and improving cyclic stability of the energy storage devices.Atomic layer deposition (ALD) which has become a pervasive synthesis method in the microelectronics industry, has recently emerged as a promising process for electrochemical energy storage. ALD boasts excellent conformality, atomic scale thickness control, and uniformity over large areas. Since ALD is based on self-limiting surface reactions, complex shapes and nanostructures can be coated with excellent uniformity, and most processes can be done below 200. °C. In this article, we review recent studies on the use of ALD coatings to improve the performance of electrochemical energy storage devices, with particular emphasis on the studies that have provided mechanistic insight into the role of ALD in improving device performance. © 2016 Elsevier Ltd.

  14. Formation of aluminum films on silicon by ion beam deposition: a comparison with ionized cluster beam deposition

    International Nuclear Information System (INIS)

    Zuhr, R.A.; Haynes, T.E.; Galloway, M.D.; Tanaka, S.; Yamada, A.; Yamada, I.

    1991-01-01

    The direct ion beam deposition (IBD) technique has been used to study the formation of oriented aluminum films on single crystal silicon substrates. In the IBD process, thin film growth is accomplished by decelerating a magnetically analyzed ion beam to low energies (10-200 eV) for direct deposition onto the substrate under UHV conditions. The aluminum-on-silicon system is one which has been studied extensively by ionized cluster beam (ICB) deposition. This technique has produced intriguing results for aluminum, with oriented crystalline films being formed at room temperature in spite of the 25% mismatch in lattice constant between aluminum and silicon. In this work, we have studied the formation of such films by IBD, with emphasis on the effects of ion energy, substrate temperature, and surface cleanliness. Oriented films have been grown on Si(111) at temperatures from 40 to 300degC and with ion energies of 30-120 eV per ion. Completed films were analyzed by ion scattering, X-ray diffraction, scanning-electron microscopy, and optical microscopy. Results achieved for thin films grown by IBD are comparable to those for similar films grown by ICB deposition. (orig.)

  15. Simulated Nitrogen Deposition has Minor Effects on Ecosystem Pools and Fluxes of Energy, Elements, and Biochemicals in a Northern Hardwoods Forest

    Science.gov (United States)

    Talhelm, A. F.; Pregitzer, K. S.; Burton, A. J.; Xia, M.; Zak, D. R.

    2017-12-01

    The elemental and biochemical composition of plant tissues is an important influence on primary productivity, decomposition, and other aspects of biogeochemistry. Human activity has greatly altered biogeochemical cycles in ecosystems downwind of industrialized regions through atmospheric nitrogen deposition, but most research on these effects focuses on individual elements or steps in biogeochemical cycles. Here, we quantified pools and fluxes of biomass, the four major organic elements (carbon, oxygen, hydrogen, nitrogen), four biochemical fractions (lignin, structural carbohydrates, cell walls, and soluble material), and energy in a mature northern hardwoods forest in Michigan. We sampled the organic and mineral soil, fine and coarse roots, leaf litter, green leaves, and wood for chemical analyses. We then combined these data with previously published and archival information on pools and fluxes within this forest, which included replicated plots receiving either ambient deposition or simulated nitrogen deposition (3 g N m-2 yr-1 for 18 years). Live wood was the largest pool of energy and all elements and biochemical fractions. However, the production of wood, leaf litter, and fine roots represented similar fluxes of carbon, hydrogen, oxygen, cell wall material, and energy, while nitrogen fluxes were dominated by leaf litter and fine roots. Notably, the flux of lignin via fine roots was 70% higher than any other flux. Experimental nitrogen deposition had relatively few significant effects, increasing foliar nitrogen, increasing the concentration of lignin in the soil organic horizon and decreasing pools of all elements and biochemical fractions in the soil organic horizon except nitrogen, lignin, and structural carbohydrates. Overall, we found that differences in tissue chemistry concentrations were important determinants of ecosystem-level pools and fluxes, but that nitrogen deposition had little effect on concentrations, pools, or fluxes in this mature forest

  16. Monte Carlo benchmark calculations of energy deposition by electron/photon showers up to 1 GeV

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Halbleib, J.A.

    1983-01-01

    Over the past several years the TIGER series of coupled electron/photon Monte Carlo transport codes has been applied to a variety of problems involving nuclear and space radiations, electron accelerators, and radioactive sources. In particular, they have been used at Sandia to simulate the interaction of electron beams, generated by pulsed-power accelerators, with various target materials for weapons effect simulation, and electron beam fusion. These codes are based on the ETRAN system which was developed for an energy range from about 10 keV up to a few tens of MeV. In this paper we will discuss the modifications that were made to the TIGER series of codes in order to extend their applicability to energies of interest to the high energy physics community (up to 1 GeV). We report the results of a series of benchmark calculations of the energy deposition by high energy electron beams in various materials using the modified codes. These results are then compared with the published results of various experimental measurements and other computational models

  17. Simulations about self-absorption of tritium in titanium tritide and the energy deposition in a silicon Schottky barrier diode

    International Nuclear Information System (INIS)

    Li, Hao; Liu, Yebing; Hu, Rui; Yang, Yuqing; Wang, Guanquan; Zhong, Zhengkun; Luo, Shunzhong

    2012-01-01

    Simulations on the self-absorption of tritium electrons in titanium tritide films and the energy deposition in a silicon Schottky barrier diode are carried out using the Geant4 radiation transport toolkit. Energy consumed in each part of the Schottky radiovoltaic battery is simulated to give a clue about how to make the battery work better. The power and energy-conversion efficiency of the tritium silicon Schottky radiovoltaic battery in an optimized design are simulated. Good consistency with experiments is obtained. - Highlights: ► Simulation of the energy conversion inside the radiovoltaic battery is carried out. ► Energy-conversion efficiency in the simulation shows good consistency with experimental result. ► Inadequacy of the present configuration is studied in this work and improvements are proposed.

  18. Creating a database for evaluating the distribution of energy deposited at prostate using simulation in phantom with the Monte Carlo code EGSnrc

    International Nuclear Information System (INIS)

    Resende Filho, T.A.; Vieira, I.F.; Leal Neto, V.

    2009-01-01

    An exposition computational model (ECM) composed of a water tank phantom, a punctual and mono energetic source, emitter of photons, coupled to a Monte Carlo code to simulation the interaction and deposition of energy emitted by I-125, is a tool that presents many advantages to realize dosimetric evaluations in many areas as planning of a brachytherapy treatments. Using the DOSXYZnrc, was possible to construct a data bank allowing the final user estimates previously the space distribution of the prostate dose, being an important tool at the brachytherapy procedure. The results obtained show the fractional energy deposited into the water phantom evaluated on the energies 0.028 MeV and 0.035 MeV both indicated to this procedure, as well the dose distribution at the range between 0.10334 and 0.53156 μGy. The medium error is less than 2%, limited tolerance value considered at radiotherapy protocols. (author)

  19. Ellipsometric study of nanostructured carbon films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Bereznai, M.; Budai, J.; Hanyecz, I.; Kopniczky, J.; Veres, M.; Koos, M.; Toth, Z.

    2011-01-01

    When depositing carbon films by plasma processes the resulting structure and bonding nature strongly depends on the plasma energy and background gas pressure. To produce different energy plasma, glassy carbon targets were ablated by laser pulses of different excimer lasers: KrF (248 nm) and ArF (193 nm). To modify plume characteristics argon atmosphere was applied. The laser plume was directed onto Si substrates, where the films were grown. To evaluate ellipsometric measurements first a combination of the Tauc-Lorentz oscillator and the Sellmeier formula (TL/S) was applied. Effective Medium Approximation models were also used to investigate film properties. Applying argon pressures above 10 Pa the deposits became nanostructured as indicated by high resolution scanning electron microscopy. Above ∼ 100 and ∼ 20 Pa films could not be deposited by KrF and ArF laser, respectively. Our ellipsometric investigations showed, that with increasing pressure the maximal refractive index of both series decreased, while the optical band gap starts with a decrease, but shows a non monotonous course. Correlation between the size of the nanostructures, bonding structure, which was followed by Raman spectroscopy and optical properties were also investigated.

  20. Effect of the ions energy in the physical properties of thin films of CNx deposited by laser ablation

    International Nuclear Information System (INIS)

    Arrieta C, A.; Escobar A, L.; Camps C, E.; Romero H, S.; Mejia H, J.A.; Gonzalez, P.R.; Camacho L, M.A.

    2004-01-01

    Thin films of carbon nitride were deposited using the laser ablation technique starting from a carbon target in atmosphere of N 2 , varying the fluence of the laser and maintaining fixed the distance target-substrate. It was diagnosed the formed plasma, being determined the average kinetic energy of the ions present in the plasma, as well as their density. The characterization of the deposited films includes composition, optical gap, chemical structure and microstructure. They were related the properties of the layers with the plasma parameters with the purpose of clarifying that paper plays in the growth of the layer. Additionally it was studied their thermoluminescent response to being excited with UV radiation. (Author)

  1. Dry deposition models for radionuclides dispersed in air: a new approach for deposition velocity evaluation schema

    Science.gov (United States)

    Giardina, M.; Buffa, P.; Cervone, A.; De Rosa, F.; Lombardo, C.; Casamirra, M.

    2017-11-01

    In the framework of a National Research Program funded by the Italian Minister of Economic Development, the Department of Energy, Information Engineering and Mathematical Models (DEIM) of Palermo University and ENEA Research Centre of Bologna, Italy are performing several research activities to study physical models and mathematical approaches aimed at investigating dry deposition mechanisms of radioactive pollutants. On the basis of such studies, a new approach to evaluate the dry deposition velocity for particles is proposed. Comparisons with some literature experimental data show that the proposed dry deposition scheme can capture the main phenomena involved in the dry deposition process successfully.

  2. Energy deposition in the window of the TOTEM Roman pot for the nominal TOTEM run

    CERN Document Server

    Dimovasili, E

    2005-01-01

    The TOTEM Roman Pot needs to be protected from possible accidents. One of the most serious accident scenarios is the beam loss during an asynchronous abort dump. In this case of dump failure it is possible that a deflected bunch hits the Roman Pot, causing severe damage to its thin window. This technical note discusses the results of FLUKA Monte Carlo studies that have been performed in order to calculate the energy deposition and the temperature increase in the thin window due to the nominal LHC bunch.

  3. Flux and energy deposition distribution studies inside the irradiation room of the portuguese 60Co irradiation facility

    International Nuclear Information System (INIS)

    Portugal, Luis; Oliveira, Carlos

    2008-01-01

    Full text: In December 2003 the irradiator of the Portuguese 60 Co irradiation facility, UTR, was replenished. Eighteen new sources were loaded and the older ones (156) were rearranged. The result was an irradiator with about 10.2 P Bq of total activity. The active area of the irradiator has also increased. Now it uses twenty five of the thirty tubes of the source rack, nine more than in the previous geometry. This facility was designed mainly for sterilisation of medical devices. However it is also used for the irradiation of other products such as cork stoppers, plastics and a limited number of food and feed. The purpose of this work is to perform dosimetric studies inside the irradiation room of a 60 Co irradiation facility, particularly, the flux and energy deposition distributions. The MCNPX code was used for the simulation of the facility. The track average mesh tally capabilities of MCNPX were used to plot the photon flux and energy deposition distributions. This tool provides a fast way for flux and energy deposition mapping. The absorbed dose distribution near the walls of the irradiation room was also calculated. Instead of using meshtallys as before, the average absorbed dose inside boxes lined with the walls was determined and afterwards a plot of its distribution was made. The absorbed dose rates obtained ranged from 5 to 500 Gy.h -1 depending on material being irradiated in process and the location on the wall. These positions can be useful for fixed irradiation purposes. Both dosimetric studies were done considering two different materials being irradiated in the process: cork stoppers and water, materials with quite different densities (0.102 and 1 g.cm-3, respectively). These studies showed some important characteristics of the radiation fields inside the irradiation room, namely its spatial heterogeneity. Tunnelling and shadow effects were enhanced when the product boxes increases its density. Besides a deeper dosimetric understanding of the

  4. CTS and CZTS for solar cells made by pulsed laser deposition and pulsed electron deposition

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt

    This thesis concerns the deposition of thin films for solar cells using pulsed laser deposition (PLD) and pulsed electron deposition (PED). The aim was to deposit copper tin sulfide (CTS) and zinc sulfide (ZnS) by pulsed laser deposition to learn about these materials in relation to copper zinc tin...... time. We compared the results of CZTS deposition by PLD at DTU in Denmark to CZTS made by PED at IMEM-CNR, where CIGS solar cells have successfully been fabricated at very low processing temperatures. The main results of this work were as follows: Monoclinic-phase CTS films were made by pulsed laser...... deposition followed by high temperature annealing. The films were used to understand the double band gap that we and other groups observed in the material. The Cu-content of the CTS films varied depending on the laser fluence (the laser energy per pulse and per area). The material transfer from...

  5. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Science.gov (United States)

    Youroukov, S.; Kitova, S.; Danev, G.

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO2 together with concurrent bombardment with low energy N2+ ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N2+ ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV).

  6. The influences of target properties and deposition times on pulsed laser deposited hydroxyapatite films

    International Nuclear Information System (INIS)

    Bao Quanhe; Chen Chuanzhong; Wang Diangang; Liu Junming

    2008-01-01

    Hydroxyapatite films were produced by pulsed laser deposition from three kinds of hydroxyapatite targets and with different deposition times. A JXA-8800R electron probe microanalyzer (EPMA) with a Link ISIS300 energy spectrum analyzer was used to give the secondary electron image (SE) and determine the element composition of the films. The phases of thin film were analyzed by a D/max-γc X-ray diffractometer (XRD). The Fourier-transform infrared spectroscopy (FT-IR) was used to characterize the hydroxyl, phosphate and other functional groups. The results show that deposited films were amorphous which mainly composed of droplet-like particles and vibration of PO 4 3- groups. With the target sintering temperature deposition times increasing, the density of droplets is decreased. While with deposition times increasing, the density of droplets is increased. With the target sintering temperature and deposition time increasing, the ratio of Ca/P is increasing and higher than that of theoretical value of HA

  7. Ultrasound scans and dual energy CT identify tendons as preferred anatomical location of MSU crystal depositions in gouty joints.

    Science.gov (United States)

    Yuan, Yuan; Liu, Chang; Xiang, Xi; Yuan, Tong-Ling; Qiu, Li; Liu, Yi; Luo, Yu-Bin; Zhao, Y; Herrmann, Martin

    2018-05-01

    The present study was performed to localize the articular deposition of monosodium urate (MSU) crystal in joints. We compare the detection efficiencies of dual-energy CT (DECT) and ultrasound scans. Analyses by DECT and ultrasound were performed with 184 bilateral joints of the lower limbs of 54 consecutive gout patients. All joints were categorized into (1) knee, (2) ankle, (3) MTP1, and (4) MTP2, and sorted into those with and those without detectable MSU deposition. The comparison of the positive rate between DECT and ultrasound and the agreement was performed using the McNemar test and the Cohen's κ coefficient, respectively. Next, we listed the MSU crystal deposition as assessed by ultrasound between the DECT-positive and -negative joints according to their interior structure. We included tendons, synovia, cartilage, subcutaneous tissue, etc. RESULTS: Among all joints, the percentages with MSU crystal deposition detected by DECT (99/184, 53.8%) and ultrasound (106/184, 57.6%) were comparable (P = 0.530 > 0.05). For MTP1 (21/34, 61.8%; 12/34, 35.3%; P efficient, respectively. The data concordance in 46 of 50 joints (92.00%; κ = 0.769, P location of MSU crystal deposition. The tendons are the most frequent anatomical location of MSU crystal depositions. The concordance rate of knee joints and MTP2-5 joints shows good agreement between DECT and ultrasound depending on the location.

  8. Analysis of Precious Stones Deposited in Various Rock Samples of Mogok Region by energy dispersive X-ray Fluorescence Spectrometry

    International Nuclear Information System (INIS)

    Kyi Kyi San; Soe Lwin; Win Win Thar; Sein Htoon

    2004-06-01

    The analysis of precious stones deposited in various rock samples of Mogok region were investigated by the energy dispersive x-ray fluorescence technique. The x-ray machine with Rh target was used to excite the characteristic x-ray from the sample. X-rays emitted from the sample were measured by a high resolution, cooled Si (Li) detector. The calibration was made by the measurement of minerals which composed in each kind of precious stones. The kind of precious stone deposited in the rocks sample was determined by the measurement of minerals from the rock samples compared with those obtained from each kind of precious stones

  9. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Bollani, M; Fedorov, A; Chrastina, D; Sordan, R; Picco, A; Bonera, E

    2010-01-01

    Si 1-x Ge x islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si 1-x Ge x islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by μRaman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s -1 ) and low temperature (650 deg. C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.

  10. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition.

    Science.gov (United States)

    Bollani, M; Chrastina, D; Fedorov, A; Sordan, R; Picco, A; Bonera, E

    2010-11-26

    Si(1-x)Ge(x) islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si(1-x)Ge(x) islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by μRaman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s(-1)) and low temperature (650 °C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.

  11. Laser-induced chemical vapor deposition reactions

    International Nuclear Information System (INIS)

    Teslenko, V.V.

    1990-01-01

    The results of investigation of chemical reactions of deposition of different substances from the gas phase when using the energy of pulse quasicontinuous and continuous radiation of lasers in the wave length interval from 0.193 to 10.6 μm are generalized. Main attetion is paid to deposition of inorganic substances including nonmetals (C, Si, Ge and others), metals (Cu, Au, Zn, Cd, Al, Cr, Mo, W, Ni) and some simple compounds. Experimental data on the effect of laser radiation parameters and reagent nature (hydrides, halogenides, carbonyls, alkyl organometallic compounds and others) on the deposition rate and deposit composition are described in detail. Specific features of laser-chemical reactions of deposition and prospects of their application are considered

  12. Morphology and structural studies of WO_3 films deposited on SrTiO_3 by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kalhori, Hossein; Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael; Ranjbar, Mehdi; Salamati, Hadi

    2016-01-01

    Highlights: • Highly oriented WO_3 stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO_3 films at 700 °C from monoclinic to tetragonal. - Abstract: WO_3 films have been grown by pulsed laser deposition on SrTiO_3 (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  13. Palladium clusters deposited on the heterogeneous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kun, E-mail: cqdxwk@126.com [College of Power Engineering, Chongqing University, Chongqing 400044 (China); Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing 400044 (China); Liu, Juanfang, E-mail: juanfang@cqu.edu.cn [College of Power Engineering, Chongqing University, Chongqing 400044 (China); Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing 400044 (China); Chen, Qinghua, E-mail: qhchen@cqu.edu.cn [College of Power Engineering, Chongqing University, Chongqing 400044 (China); Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing 400044 (China)

    2016-07-15

    Graphical abstract: The site-exchange between the substrate and cluster atoms can result in the formation of the surface alloys and the reconstruction of the cluster structure before the collision system approaching the thermal equilibrium. The deposited cluster adjusted the atom arrangement as possibly as to match the substrate lattice arrangement from bottom to up. The structural reconstruction is accompanied by the system potential energy minimization. - Highlights: • The deposition process can divide explicitly into three stages: adsorption, collision, relaxation. • The local melt does not emerge inside the substrate during the deposition process. • Surface alloys are formed by the site-exchange between the cluster and substrate atoms. • The cluster reconstructs the atom arrangement following as the substrate lattice arrangement from bottom to up. • The structural reconstruction ability and scope depend on the cluster size and incident energy. - Abstract: To improve the performance of the Pd composite membrane prepared by the cold spraying technology, it is extremely essential to give insights into the deposition process of the cluster and the heterogeneous deposition of the big Pd cluster at the different incident velocities on the atomic level. The deposition behavior, morphologies, energetic and interfacial configuration were examined by the molecular dynamic simulation and characterized by the cluster flattening ratio, the substrate maximum local temperature, the atom-embedded layer number and the surface-alloy formation. According to the morphology evolution, three deposition stages and the corresponding structural and energy evolution were clearly identified. The cluster deformation and penetrating depth increased with the enhancement of the incident velocity, but the increase degree also depended on the substrate hardness. The interfacial interaction between the cluster and the substrate can be improved by the higher substrate local temperature

  14. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel J.; Sanche, Léon [Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4 (Canada)

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should

  15. Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bimber, Beth A. [Department of Engineering Science and Mechanics, The Pennsylvania State University, 212 Earth-Engineering Sciences Building, University Park, PA 16802 (United States); Hamilton, Reginald F., E-mail: rfh13@psu.edu [Department of Engineering Science and Mechanics, The Pennsylvania State University, 212 Earth-Engineering Sciences Building, University Park, PA 16802 (United States); Keist, Jayme; Palmer, Todd A. [Applied Research Laboratory, The Pennsylvania State University, State College, PA 16804 (United States)

    2016-09-30

    The microstructure and superelasticity in additive manufactured NiTi shape memory alloys (SMAs) were investigated. Using elementally blended Ni and Ti powder feedstock, Ni-rich build coupons were fabricated via the laser-based directed energy deposition (LDED) technique. The build volumes were large enough to extract tensile and compressive test specimens from selected locations for spatially resolving microconstituents and the underlying stress-induced martensitic phase transformation (SIMT) morphology. In the as-deposited condition, X-ray diffraction identified the B2 atomic crystal structure of the austenitic parent phase in NiTi SMAs, and Ni{sub 4}Ti{sub 3} precipitates were the predominant microconstituent identified through scanning electron microscopy. The microstructure exhibited anisotropy, which was characterized by the Ni{sub 4}Ti{sub 3} precipitate morphology being coarsest nearest the substrate, while a finer morphology was observed farthest from the substrate. In-situ full-field deformation measurements calculated using digital image correlation confirmed that the SIMT predominately occurred in the finer precipitate morphology. Heat treatment reduced the degree of anisotropy, and DIC analysis revealed localized SIMT strains increased compared to the as-deposited condition.

  16. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Science.gov (United States)

    Yan, Ning; Qin, Lijun; Hao, Haixia; Hui, Longfei; Zhao, Fengqi; Feng, Hao

    2017-06-01

    Nanocomposites consisting of iron oxide (Fe2O3) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe2O3 was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe2O3 energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe2O3 composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe2O3 nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe2O3 nanoparticles. The enhanced energy release of rGO/Al@Fe2O3 is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe2O3 composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  17. Results of the studies on energy deposition in IR6 superconducting magnets from continuous beam loss on the TCDQ system

    CERN Document Server

    Bracco, C; Presland, A; Redaelli, S; Sarchiapone, L; Weiler, T

    2007-01-01

    A single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and an iron shield TCDQM, will be installed in front of the superconducting quadrupole Q4 magnets in IR6, in order to protect it and other downstream LHC machine elements from destruction in the event of a beam dump that is not synchronised with the abort gap. The TCDQ will be positioned close to the beam, and will intercept the particles from the secondary halo during low beam lifetime. Previous studies (1-4) have shown that the energy deposited in the Q4 magnet coils can be close to or above the quench limit. In this note the results of the latest FLUKA energy deposition simulations for Beam 2 are described, including an upgrade possibility for the TCDQ system with an additional shielding device. The results are discussed in the context of the expected performance levels for the different phases of LHC operation.

  18. Monte Carlo study of radial energy deposition from primary and secondary particles for narrow and large proton beamlet source models

    International Nuclear Information System (INIS)

    Peeler, Christopher R; Titt, Uwe

    2012-01-01

    In spot-scanning intensity-modulated proton therapy, numerous unmodulated proton beam spots are delivered over a target volume to produce a prescribed dose distribution. To accurately model field size-dependent output factors for beam spots, the energy deposition at positions radial to the central axis of the beam must be characterized. In this study, we determined the difference in the central axis dose for spot-scanned fields that results from secondary particle doses by investigating energy deposition radial to the proton beam central axis resulting from primary protons and secondary particles for mathematical point source and distributed source models. The largest difference in the central axis dose from secondary particles resulting from the use of a mathematical point source and a distributed source model was approximately 0.43%. Thus, we conclude that the central axis dose for a spot-scanned field is effectively independent of the source model used to calculate the secondary particle dose. (paper)

  19. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Youroukov, S; Kitova, S; Danev, G [Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 109, 113 Sofia (Bulgaria)], E-mail: skitova@clf.bas.bg

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO{sub 2} together with concurrent bombardment with low energy N{sub 2}{sup +} ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N{sub 2}{sup +} ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV)

  20. Energy deposition in liquid metals for D-T, D-D and T-T fusion sources

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Zahakaylo, D.

    1983-01-01

    The nuclear performance of candidate liquid metals: lithium, lead, sodium, potassiu, Na(22%) K(78%), Na(56%) K(44%), is estimated with respect to their neutron and gamma-ray heat deposition rates. Three different neutron sources are considered: DT, DD and TT fusion neutrons. This is intended for the cooling of inertial confinement cavities using fusion pellets with internal tritrium breeding that will possibly eliminate the need to breed tritium in a lithium blanket. Compared to lithium with respect to neutron and gamma energy generation, blanket multiplication and pumping power, it appears that the considered metals can be used only if the environmental and safety advantages from the reduction of the tritium inventory and the avoidance of lithium, outweight the lithium advantages in higher energy production and lower pumping requirement by one to two orders of magnitude. (orig.) [de

  1. Deposition of size-selected atomic clusters on surfaces

    International Nuclear Information System (INIS)

    Carroll, S.J.

    1999-06-01

    This dissertation presents technical developments and experimental and computational investigations concerned with the deposition of atomic clusters onto surfaces. It consists of a collection of papers, in which the main body of results are contained, and four chapters presenting a subject review, computational and experimental techniques and a summary of the results presented in full within the papers. Technical work includes the optimization of an existing gas condensation cluster source based on evaporation, and the design, construction and optimization of a new gas condensation cluster source based on RF magnetron sputtering (detailed in Paper 1). The result of cluster deposition onto surfaces is found to depend on the cluster deposition energy; three impact energy regimes are explored in this work. (1) Low energy: n clusters create a defect in the surface, which pins the cluster in place, inhibiting cluster diffusion at room temperature (Paper V). (3) High energy: > 50 eV/atom. The clusters implant into the surface. For Ag 20 -Ag 200 clusters, the implantation depth is found to scale linearly with the impact energy and inversely with the cross-sectional area of the cluster, with an offset due to energy lost to the elastic compression of the surface (Paper VI). For smaller (Ag 3 ) clusters the orientation of the cluster with respect to the surface and the precise impact site play an important role; the impact energy has to be 'focused' in order for cluster implantation to occur (Paper VII). The application of deposited clusters for the creation of Si nanostructures by plasma etching is explored in Paper VIII. (author)

  2. Relationship between the Ca/P ratio of hydroxyapatite thin films and the spatial energy distribution of the ablation laser in pulsed laser deposition

    NARCIS (Netherlands)

    Nishikawa, H.; Hasegawa, T; Miyake, A.; Tashiro, Y.; Hashimoto, Y.; Blank, David H.A.; Rijnders, Augustinus J.H.M.

    2016-01-01

    Variation of the Ca/P ratio in hydroxyapatite (Ca10(PO4)6(OH)2) thin films was studied in relation to the spot size of the ablation laser for two different spatial energy distributions in pulsed laser deposition. One energy distribution is the defocus method with a raw distribution and the other is

  3. Simulation of MeV electron energy deposition in CdS quantum dots absorbed in silicate glass for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baharin, R; Hobson, P R; Smith, D R, E-mail: ruzalina.baharin@brunel.ac.u [Centre for Sensors and Instrumentation, School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)

    2010-09-01

    We are currently developing 2D dosimeters with optical readout based on CdS or CdS/CdSe core-shell quantum-dots using commercially available materials. In order to understand the limitations on the measurement of a 2D radiation profile the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes. Profiles for silica glass and CdS quantum-dot-doped silica glass were then compared.

  4. Simulation of MeV electron energy deposition in CdS quantum dots absorbed in silicate glass for radiation dosimetry

    International Nuclear Information System (INIS)

    Baharin, R; Hobson, P R; Smith, D R

    2010-01-01

    We are currently developing 2D dosimeters with optical readout based on CdS or CdS/CdSe core-shell quantum-dots using commercially available materials. In order to understand the limitations on the measurement of a 2D radiation profile the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes. Profiles for silica glass and CdS quantum-dot-doped silica glass were then compared.

  5. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques

    Science.gov (United States)

    Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.

    2016-05-01

    The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.

  6. The response of gene expression associated with lipid metabolism, fat deposition and fatty acid profile in the longissimus dorsi muscle of Gannan yaks to different energy levels of diets.

    Directory of Open Access Journals (Sweden)

    Chao Yang

    Full Text Available The energy available from the diet, which affects fat deposition in vivo, is a major factor in the expression of genes regulating fat deposition in the longissimus dorsi muscle. Providing high-energy diets to yaks might increase intramuscular fat deposition and fatty acid concentrations under a traditional grazing system in cold seasons. A total of fifteen adult castrated male yaks with an initial body weight 274.3 ± 3.14 kg were analyzed for intramuscular adipose deposition and fatty acid composition. The animals were divided into three groups and fed low-energy (LE: 5.5 MJ/kg, medium-energy (ME: 6.2 MJ/kg and high-energy (HE: 6.9 MJ/kg diets, respectively. All animals were fed ad libitum twice daily at 08:00-09:00 am and 17:00-18:00 pm and with free access to water for 74 days, including a 14-d period to adapt to the diets and the environment. Intramuscular fat (IMF content, fatty acid profile and mRNA levels of genes involved in fatty acid synthesis were determined. The energy levels of the diets significantly (P<0.05 affected the content of IMF, total SFA, total MUFA and total PUFA. C16:0, C18:0 and C18:1n9c account for a large proportion of total fatty acids. Relative expression of acetyl-CoA carboxylase (ACACA, fatty acid synthase (FASN, stearoyl-CoA desaturase (SCD, sterol regulatory element-binding protein-1c (SREBP-1c, peroxisome proliferator-activated receptor γ (PPARγ and fatty acid-binding protein 4 (FABP4 was greater in HE than in LE yaks (P<0.05. Moreover, ME yaks had higher (P<0.05 mRNA expression levels of PPARγ, ACACA, FASN, SCD and FABP4 than did the LE yaks. The results demonstrate that the higher energy level of the diets increased IMF deposition and fatty acid content as well as increased intramuscular lipogenic gene expression during the experimental period.

  7. Dayside pickup oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition and consequences

    International Nuclear Information System (INIS)

    Luhmann, J.G.; Kozyra, J.U.

    1991-01-01

    The fluxes and energy spectra of picked-up planetary O + ions incident on the dayside atmospheres of Venus and Mars are calculated using the neutral exposure models of Nagy and Cravens (1988) and the Spreiter and Stahara (1980) gasdynamic model of the magnetosheath electric and magnetic field. Cold (∼10 eV) O + ions are launched from hemispherical grids of starting points covering the daysides of the planets and their trajectories are followed until they either impact the dayside obstacle or cross the terminator plane. The impacting, or precipitating, ion fluxes are weighted according to the altitude of the hemispherical starting point grid in a manner consistent with the exosphere density models and the local photoion production rate. Maps of precipitating ion number flux and energy flux show the asymmetrical distribution of dayside energy deposition expected from this source which is unique to the weakly magnetized planets. Although the associated heating of the atmosphere and ionsphere is found to be negligible compared to that from the usual sources, backscattered or sputtered neutral oxygen atoms are produced at energies exceeding that needed for escape from the gravitational fields of both planets. These neutral winds, driven by pickup ion precipitation, represent a possibly significant loss of atmospheric constituents over the age of the solar system

  8. Thermal deposition analysis during disruptions on DIII-D using infrared scanners

    International Nuclear Information System (INIS)

    Lee, R.L.; Hyatt, A.W.; Kellman, A.G.; Taylor, P.L.; Lasnier, C.J.

    1995-12-01

    The DIII-D tokamak generates plasma discharges with currents up to 3 MA and auxiliary input power up to 20 MW from neutral beams and 4 MW from radio frequency systems. In a disruption, a rapid loss of the plasma current and internal thermal energy occurs and the energy is deposited onto the torus graphite wall. Quantifying the spatial and temporal characteristics of the heat deposition is important for engineering and physics-related issues, particularly for designing future machines such as ITER. Using infrared scanners with a time resolution of 120 micros, measurements of the heat deposition onto the all-graphite walls of DIII-D during two types of disruptions have been made. Each scanner contains a single point detector sensitive to 8--12 microm radiation, allowing surface temperatures from 20 C to 2,000 C to be measured. A zinc selenide window that transmits in the infrared is used as the vacuum window. Views of the upper and lower divertor regions and the centerpost provide good coverage of the first wall for single and double null divertor discharges. During disruptions, the thermal energy is not deposited evenly onto the inner surface of the tokamak, but is deposited primarily in the divertor region when operating diverted discharges. Analysis of the heat deposition during a radiative collapse disruption of a 1.5 MA discharge revealed power densities of 300--350 MW/m 2 in the divertor region. During the thermal quench of the disruption, the energy deposited onto the divertor region was more than 70% of the stored thermal energy in the discharge prior to the disruption. The spatial distribution and temporal behavior of power deposition during high β disruptions will also be presented

  9. Hardness Enhancement of STS304 Deposited with Yttria Stabilized Zirconia by Aerosol Deposition Method

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Il-Ho; Park, Chun-Kil; Kim, Hyung Sun; Jeong, Dea-Yong [Inha University, Incheon (Korea, Republic of); Lee, Yong-Seok [Sodoyeon Co., Yeoju (Korea, Republic of); Kong, Young-Min [University of Ulsan, Ulsan (Korea, Republic of); Kang, Kweon Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-03-15

    To improve the surface hardness of the STS304, Yttria stabilized zirconia (YSZ) films with nano-sized grain were deposited by an aerosol-deposition (AD) method. Coating layers showed dense structure and had -5µm thickness. When 3 mol% YSZ powders with tetragonal phase were deposited on STS304 substrate, tetragonal structure was transformed to cubic structure due to the high impact energy during the AD process. At the same time, strong impact by YSZ particles allowed the austenite phase in STS304 to be transformed into martensite phase. Surface hardness measured with nano indentor showed that YSZ coated film had 11.5 GPa, which is larger value than 7 GPa of STS304.

  10. Cluster pattern analysis of energy deposition sites for the brachytherapy sources 103Pd, 125I, 192Ir, 137Cs, and 60Co.

    Science.gov (United States)

    Villegas, Fernanda; Tilly, Nina; Bäckström, Gloria; Ahnesjö, Anders

    2014-09-21

    Analysing the pattern of energy depositions may help elucidate differences in the severity of radiation-induced DNA strand breakage for different radiation qualities. It is often claimed that energy deposition (ED) sites from photon radiation form a uniform random pattern, but there is indication of differences in RBE values among different photon sources used in brachytherapy. The aim of this work is to analyse the spatial patterns of EDs from 103Pd, 125I, 192Ir, 137Cs sources commonly used in brachytherapy and a 60Co source as a reference radiation. The results suggest that there is both a non-uniform and a uniform random component to the frequency distribution of distances to the nearest neighbour ED. The closest neighbouring EDs show high spatial correlation for all investigated radiation qualities, whilst the uniform random component dominates for neighbours with longer distances for the three higher mean photon energy sources (192Ir, 137Cs, and 60Co). The two lower energy photon emitters (103Pd and 125I) present a very small uniform random component. The ratio of frequencies of clusters with respect to 60Co differs up to 15% for the lower energy sources and less than 2% for the higher energy sources when the maximum distance between each pair of EDs is 2 nm. At distances relevant to DNA damage, cluster patterns can be differentiated between the lower and higher energy sources. This may be part of the explanation to the reported difference in RBE values with initial DSB yields as an endpoint for these brachytherapy sources.

  11. Morphology and structural studies of WO{sub 3} films deposited on SrTiO{sub 3} by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kalhori, Hossein, E-mail: h.kalhori@ph.iut.ac.ir [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland); Department of Physics, Isfahan University of Technology, Isfahan 84156-8311 (Iran, Islamic Republic of); Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland); Ranjbar, Mehdi; Salamati, Hadi [Department of Physics, Isfahan University of Technology, Isfahan 84156-8311 (Iran, Islamic Republic of)

    2016-12-30

    Highlights: • Highly oriented WO{sub 3} stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO{sub 3} films at 700 °C from monoclinic to tetragonal. - Abstract: WO{sub 3} films have been grown by pulsed laser deposition on SrTiO{sub 3} (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  12. Gas Nozzle Effect on the Deposition of Polysilicon by Monosilane Siemens Reactor

    Directory of Open Access Journals (Sweden)

    Seung Oh Kang

    2012-01-01

    Full Text Available Deposition of polysilicon (poly-Si was tried to increase productivity of poly-Si by using two different types of gas nozzle in a monosilane Bell-jar Siemens (MS-Siemens reactor. In a mass production of poly-Si, deposition rate and energy consumption are very important factors because they are main performance indicators of Siemens reactor and they are directly related with the production cost of poly-Si. Type A and B nozzles were used for investigating gas nozzle effect on the deposition of poly-Si in a MS-Siemens reactor. Nozzle design was analyzed by computation cluid dynamics (CFD. Deposition rate and energy consumption of poly-Si were increased when the type B nozzle was used. The highest deposition rate was 1 mm/h, and the lowest energy consumption was 72 kWh⋅kg-1 in this study.

  13. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ning; Qin, Lijun [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hao, Haixia [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hui, Longfei [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Zhao, Fengqi [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Feng, Hao, E-mail: fenghao98@hotmail.com [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Shaanxi (China)

    2017-06-30

    Highlights: • Energetic rGO/Al@Fe{sub 2}O{sub 3}nanocompositeswerefabricatedbyatomiclayerdepositionapproach. • A novel Al@Fe{sub 2}O{sub 3} unit featuring core-shell structure was decorated on the graphene nanosheet. • RGO/Al@Fe{sub 2}O{sub 3} nanocomposite exhibits superior energy release and reduced electrostatic ignition hazard. - Abstract: Nanocomposites consisting of iron oxide (Fe{sub 2}O{sub 3}) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe{sub 2}O{sub 3} was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe{sub 2}O{sub 3} energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe{sub 2}O{sub 3} composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe{sub 2}O{sub 3} nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe{sub 2}O{sub 3} nanoparticles. The enhanced energy release of rGO/Al@Fe{sub 2}O{sub 3} is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe{sub 2}O{sub 3} composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  14. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    International Nuclear Information System (INIS)

    Yan, Ning; Qin, Lijun; Hao, Haixia; Hui, Longfei; Zhao, Fengqi; Feng, Hao

    2017-01-01

    Highlights: • Energetic rGO/Al@Fe 2 O 3 nanocompositeswerefabricatedbyatomiclayerdepositionapproach. • A novel Al@Fe 2 O 3 unit featuring core-shell structure was decorated on the graphene nanosheet. • RGO/Al@Fe 2 O 3 nanocomposite exhibits superior energy release and reduced electrostatic ignition hazard. - Abstract: Nanocomposites consisting of iron oxide (Fe 2 O 3 ) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe 2 O 3 was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe 2 O 3 energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe 2 O 3 composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe 2 O 3 nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe 2 O 3 nanoparticles. The enhanced energy release of rGO/Al@Fe 2 O 3 is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe 2 O 3 composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  15. Ion-assisted sputter deposition of molybdenum--silicon multilayers

    International Nuclear Information System (INIS)

    Vernon, S.P.; Stearns, D.G.; Rosen, R.S.

    1993-01-01

    X-ray multilayer (ML) structures that are fabricated by the use of magnetron-sputter deposition exhibit a degradation in structural quality as the deposition pressure is increased. The observed change in morphology is attributed to a reduced mobility of surface adsorbed atoms, which inhibits the formation of smooth, continuous layers. The application of a negative substrate bias produces ion bombardment of the growing film surface by sputtering gas ions extracted from the plasma and permits direct control of the energy density supplied to the film surface during thin-film growth. The technique supplements the energy lost to thermalization in high-pressure deposition and permits the fabrication of high-quality ML structures at elevated processing pressures. A threefold improvement in the soft-x-ray normal-incidence reflectance at 130 A results for substrate bias voltages of the order of ∼-150 V for Mo--Si ML's deposited at 10-mTorr Ar

  16. Electromagnetic radiation energy arrangement. [coatings for solar energy absorption and infrared reflection

    Science.gov (United States)

    Lipkis, R. R.; Vehrencamp, J. E. (Inventor)

    1965-01-01

    A solar energy collector and infrared energy reflector is described which comprises a vacuum deposited layer of aluminum of approximately 200 to 400 Angstroms thick on one side of a substrate. An adherent layer of titanium with a thickness of between 800 and 1000 Angstroms is vacuum deposited on the aluminum substrate and is substantially opaque to solar energy and substantially transparent to infrared energy.

  17. Superhydrophobic polytetrafluoroethylene thin films with hierarchical roughness deposited using a single step vapor phase technique

    International Nuclear Information System (INIS)

    Gupta, Sushant; Arjunan, Arul Chakkaravarthi; Deshpande, Sameer; Seal, Sudipta; Singh, Deepika; Singh, Rajiv K.

    2009-01-01

    Superhydrophobic polytetrafluoroethylene films with hierarchical surface roughness were deposited using pulse electron deposition technique. We were able to modulate roughness of the deposited films by controlling the beam energy and hence the electron penetration depth. The films deposited at higher beam energy showed contact angle as high as 166 o . The scanning electron and atomic force microscope studies revealed clustered growth and two level sub-micron asperities on films deposited at higher energies. Such dual-scale hierarchical roughness and heterogeneities at the water-surface interface was attributed to the observed contact angle and thus its superhydrophobic nature.

  18. Superhydrophobic polytetrafluoroethylene thin films with hierarchical roughness deposited using a single step vapor phase technique

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sushant, E-mail: sushant3@ufl.ed [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Arjunan, Arul Chakkaravarthi [Sinmat Incorporated, 2153 SE Hawthorne Road, 129, Gainesville, Florida 32641 (United States); Deshpande, Sameer; Seal, Sudipta [Advanced Material Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816 (United States); Singh, Deepika [Sinmat Incorporated, 2153 SE Hawthorne Road, 129, Gainesville, Florida 32641 (United States); Singh, Rajiv K. [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2009-06-30

    Superhydrophobic polytetrafluoroethylene films with hierarchical surface roughness were deposited using pulse electron deposition technique. We were able to modulate roughness of the deposited films by controlling the beam energy and hence the electron penetration depth. The films deposited at higher beam energy showed contact angle as high as 166{sup o}. The scanning electron and atomic force microscope studies revealed clustered growth and two level sub-micron asperities on films deposited at higher energies. Such dual-scale hierarchical roughness and heterogeneities at the water-surface interface was attributed to the observed contact angle and thus its superhydrophobic nature.

  19. Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane : The role of dissociative ionization and dissociative electron attachment in the deposition process

    NARCIS (Netherlands)

    Ragesh Kumar, T. P.; Hari, S.; Damodaran, Krishna K.; Ingólfsson, Oddur; Hagen, C.W.

    2017-01-01

    We present first experiments on electron beam induced deposition of silacyclohexane (SCH) and dichlorosilacyclohexane (DCSCH) under a focused high-energy electron beam (FEBID). We compare the deposition dynamics observed when growing pillars of high aspect ratio from these compounds and we

  20. Moderate energy ions for high energy density physics experiments

    International Nuclear Information System (INIS)

    Grisham, L.R.

    2004-01-01

    This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target

  1. Structural and Optical Properties of Chemical Bath Deposited Silver Oxide Thin Films: Role of Deposition Time

    Directory of Open Access Journals (Sweden)

    A. C. Nwanya

    2013-01-01

    Full Text Available Silver oxide thin films were deposited on glass substrates at a temperature of 50°C by chemical bath deposition technique under different deposition times using pure AgNO3 precursor and triethanolamine as the complexing agent. The chemical analysis based on EDX technique shows the presence of Ag and O at the appropriate energy levels. The morphological features obtained from SEM showed that the AgxO structures varied as the deposition time changes. The X-ray diffraction showed the peaks of Ag2O and AgO in the structure. The direct band gap and the refractive index increased as the deposition time increased and was in the range of 1.64–1.95 eV and 1.02–2.07, respectively. The values of the band gap and refractive index obtained indicate possible applications in photovoltaic and photothermal systems.

  2. Architectural elements from Lower Proterozoic braid-delta and high-energy tidal flat deposits in the Magaliesberg Formation, Transvaal Supergroup, South Africa

    Science.gov (United States)

    Eriksson, Patrick G.; Reczko, Boris F. F.; Jaco Boshoff, A.; Schreiber, Ute M.; Van der Neut, Markus; Snyman, Carel P.

    1995-06-01

    Three architectural elements are identified in the Lower Proterozoic Magaliesberg Formation (Pretoria Group, Transvaal Supergroup) of the Kaapvaal craton, South Africa: (1) medium- to coarse-grained sandstone sheets; (2) fine- to medium-grained sandstone sheets; and (3) mudrock elements. Both sandstone sheet elements are characterised by horizontal lamination and planar cross-bedding, with lesser trough cross-bedding, channel-fills and wave ripples, as well as minor desiccated mudrock partings, double-crested and flat-topped ripples. Due to the local unimodal palaeocurrent patterns in the medium- to coarse-grained sandstone sheets, they are interpreted as ephemeral braid-delta deposits, which were subjected to minor marine reworking. The predominantly bimodal to polymodal palaeocurrent trends in the fine- to medium-grained sandstone sheets are inferred to reflect high-energy macrotidal processes and more complete reworking of braid-delta sands. The suspension deposits of mudrocks point to either braid-delta channel abandonment, or uppermost tidal flat sedimentation. The depositional model comprises ephemeral braid-delta systems which debouched into a high-energy peritidal environment, around the margins of a shallow epeiric sea on the Kaapvaal craton. Braid-delta and tidal channel dynamics are inferred to have been similar. Fine material in the Magaliesberg Formation peritidal complexes indicates that extensive aeolian removal of clay does not seem applicable to this example of the early Proterozoic.

  3. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.

    Science.gov (United States)

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J

    2015-09-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.

  4. Nanosecond laser ablation and deposition of silver, copper, zinc and tin

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Ettlinger, Rebecca Bolt; Canulescu, Stela

    2014-01-01

    Nanosecond pulsed laser deposition of different metals (Ag, Cu, Sn, Zn) has been studied in high vacuum at a laser wavelength of 355 nm and pulse length of 6 ns. The deposition rate is roughly similar for Sn, Cu and Ag, which have comparable cohesive energies, and much higher for the deposition...... of Zn which has a low cohesive energy. The deposition rate for all metals is strongly correlated with the total ablation yield, i.e., the total mass ablated per pulse, reported in the literature except for Sn, for which the deposition rate is low, but the total ablation yield is high. This may...... be explained by the continuous erosion by nanoparticles during deposition of the Sn films which appear to have a much rougher surface than those of the other metals studied in the present work....

  5. World distribution of uranium deposits

    Science.gov (United States)

    Fairclough, M. C.; Irvine, J. A.; Katona, L. F.; Simmon, W. L.; Bruneton, P.; Mihalasky, Mark J.; Cuney, M.; Aranha, M.; Pylypenko, O.; Poliakovska, K.

    2018-01-01

    Deposit data derived from IAEA UDEPO (http://infcis.iaea.org/UDEPO/About.cshtml) database with assistance from P. Bruneton (France) and M. Mihalasky (U.S.A.). The map is an updated companion to "World Distribution of Uranium Deposits (UDEPO) with Uranium Deposit Classification, IAEA Tech-Doc-1629". Geology was derived from L.B. Chorlton, Generalized Geology of the World, Geological Survey of Canada, Open File 5529 , 2007. Map production by M.C. Fairclough (IAEA), J.A. Irvine (Austrailia), L.F. Katona (Australia) and W.L. Slimmon (Canada). World Distribution of Uranium Deposits, International Atomic Energy Agency, Vienna, Austria. Cartographic Assistance was supplied by the Geological Survey of South Australia, the Saskatchewan Geological Survey and United States Geological Survey to the IAEA. Coastlines, drainage, and country boundaries were obtained from ArcMap, 1:25 000 000 scale, and are copyrighted data containing the intellectual property of Environmental Systems Research Institute (ESRI). The use of particular designations of countries or territories does not imply any judgment by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. Any revisions or additional geological information known to the user would be welcomed by the International Atomic Energy Agency and the Geological Survey of Canada.

  6. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

    Directory of Open Access Journals (Sweden)

    Brett B. Lewis

    2015-04-01

    Full Text Available Platinum–carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IVMe3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top–down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. In addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.

  7. Thermal Vapor Deposition and Characterization of Polymer-Ceramic Nanoparticle Thin Films and Capacitors

    Science.gov (United States)

    Iwagoshi, Joel A.

    Research on alternative energies has become an area of increased interest due to economic and environmental concerns. Green energy sources, such as ocean, wind, and solar power, are subject to predictable and unpredictable generation intermittencies which cause instability in the electrical grid. This problem could be solved through the use of short term energy storage devices. Capacitors made from composite polymer:nanoparticle thin films have been shown to be an economically viable option. Through thermal vapor deposition, we fabricated dielectric thin films composed of the polymer polyvinylidine fluoride (PVDF) and the ceramic nanoparticle titanium dioxide (TiO2). Fully understanding the deposition process required an investigation of electrode and dielectric film deposition. Film composition can be controlled by the mass ratio of PVDF:TiO2 prior to deposition. An analysis of the relationship between the ratio of PVDF:TiO2 before and after deposition will improve our understanding of this novel deposition method. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy were used to analyze film atomic concentrations. The results indicate a broad distribution of deposited TiO2 concentrations with the highest deposited amount at an initial mass concentration of 17% TiO2. The nanoparticle dispersion throughout the film is analyzed through atomic force microscopy and energy dispersive x-ray spectroscopy. Images from these two techniques confirm uniform TiO2 dispersion with cluster size less than 300 nm. These results, combined with spectroscopic analysis, verify control over the deposition process. Capacitors were fabricated using gold parallel plates with PVDF:TiO 2 dielectrics. These capacitors were analyzed using the atomic force microscope and a capacohmeter. Atomic force microscope images confirm that our gold films are acceptably smooth. Preliminary capacohmeter measurements indicate capacitance values of 6 nF and break down voltages of 2.4 V

  8. Vertically aligned carbon nanotube growth by pulsed laser deposition and thermal chemical vapor deposition methods

    International Nuclear Information System (INIS)

    Sohn, Jung Inn; Nam, Chunghee; Lee, Seonghoon

    2002-01-01

    We have grown vertically aligned carbon nanotubes on the various substrates such as a planar p-type Si(1 0 0) wafer, porous Si wafer, SiO 2 , Si 3 N 4 , Al 2 O 3 , and Cr by thermal chemical vapor deposition (CVD) at 800 deg.C, using C 2 H 2 gas as a carbon source and Fe catalyst films deposited by a pulsed laser on the substrates. The Fe films were deposited for 5 min by pulsed laser deposition (PLD). The advantage of Fe deposition by PLD over other deposition methods lies in the superior adhesion of Fe to a Si substrate due to high kinetic energies of the generated Fe species. Scanning electron microscopy (SEM) images show that vertically well-aligned carbon nanotubes are grown on Fe nanoparticles formed from the thermal annealing of the Fe film deposited by PLD on the various substrates. Atomic force microscopy (AFM) images show that the Fe film annealed at 800 deg.C is broken to Fe nanoparticles of 10-50 nm in size. We show that the appropriate density of Fe nanoparticles formed from the thermal annealing of the film deposited by PLD is crucial in growing vertically aligned carbon nanotubes. Using a PLD and a lift-off method, we developed the selective growth of carbon nanotubes on a patterned Fe-coated Si substrate

  9. Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Andrew J; Li Lin [Laser Processing Research Centre, Department of Mechanical, Aerospace and Manufacturing Engineering, University of Manchester Institute of Science and Technology, PO Box 88, Sackville Street, Manchester M60 1QD (United Kingdom)

    2004-07-21

    The additive manufacturing technique of laser direct metal deposition allows multiple tracks of full density metallic material to be built to form complex parts for rapid tooling and manufacture. Practical results and theoretical models have shown that the geometries of the tracks are governed by multiple factors. Original work with single layer cladding identified three basic clad profiles but, so far, models of multiple layer, powder-feed deposition have been based on only two of them. At higher powder mass flow rates, experimental results have shown that a layer's width can become greater than the melt pool width at the substrate surface, but previous analytical models have not been able to accommodate this. In this paper, a model based on this third profile is established and experimentally verified. The model concentrates on mathematical analysis of the melt pool and establishes mass and energy balances based on one-dimensional heat conduction to the substrate. Deposition track limits are considered as arcs of circles rather than of ellipses, as used in most established models, reflecting the dominance of surface tension forces in the melt pool, and expressions for elongation of the melt pool with increasing traverse speed are incorporated. Trends in layer width and height with major process parameters are captured and predicted layer dimensions correspond well to the experimental values.

  10. Effects of laser energy fluence on the onset and growth of the Rayleigh–Taylor instabilities and its influence on the topography of the Fe thin film grown in pulsed laser deposition facility

    International Nuclear Information System (INIS)

    Mahmood, S.; Rawat, R. S.; Wang, Y.; Lee, S.; Tan, T. L.; Springham, S. V.; Lee, P.; Zakaullah, M.

    2012-01-01

    The effect of laser energy fluence on the onset and growth of Rayleigh–Taylor (RT) instabilities in laser induced Fe plasma is investigated using time-resolved fast gated imaging. The snow plow and shock wave models are fitted to the experimental results and used to estimate the ablation parameters and the density of gas atoms that interact with the ablated species. It is observed that RT instability develops during the interface deceleration stage and grows for a considerable time for higher laser energy fluence. The effects of RT instabilities formation on the surface topography of the Fe thin films grown in pulsed laser deposition system are investigated (i) using different laser energy fluences for the same wavelength of laser radiation and (ii) using different laser wavelengths keeping the energy fluence fixed. It is concluded that the deposition achieved under turbulent condition leads to less smooth deposition surfaces with bigger sized particle agglomerates or network.

  11. The thermodynamic approach to boron chemical vapour deposition based on a computer minimization of the total Gibbs free energy

    International Nuclear Information System (INIS)

    Naslain, R.; Thebault, J.; Hagenmuller, P.; Bernard, C.

    1979-01-01

    A thermodynamic approach based on the minimization of the total Gibbs free energy of the system is used to study the chemical vapour deposition (CVD) of boron from BCl 3 -H 2 or BBr 3 -H 2 mixtures on various types of substrates (at 1000 < T< 1900 K and 1 atm). In this approach it is assumed that states close to equilibrium are reached in the boron CVD apparatus. (Auth.)

  12. Energy Balance, Evapo-transpiration and Dew deposition in the Dead Sea Valley

    Science.gov (United States)

    Metzger, Jutta; Corsmeier, Ulrich

    2016-04-01

    The Dead Sea is a unique place on earth. It is a terminal hypersaline lake, located at the lowest point on earth with a lake level of currently -429 m above mean sea level (amsl). It is located in a transition zone of semiarid to arid climate conditions, which makes it highly sensible to climate change (Alpert1997, Smiatek2011). The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric hydrological, and lithospheric processes in the changing environment of the Dead Sea. At the moment the most prominent environmental change is the lake level decline of approximately 1 m / year due to anthropogenic interferences (Gertman, 2002). This leads to noticeable changes in the fractions of the existing terrestrial surfaces - water, bare soil and vegetated areas - in the valley. Thus, the partitioning of the net radiation in the valley changes as well. To thoroughly study the atmospheric and hydrological processes in the Dead Sea valley, which are driven by the energy balance components, sound data of the energy fluxes of the different surfaces are necessary. Before DESERVE no long-term monitoring network simultaneously measuring the energy balance components of the different surfaces in the Dead Sea valley was available. Therefore, three energy balance stations were installed at three characteristic sites at the coast-line, over bare soil, and within vegetation, measuring all energy balance components by using the eddy covariance method. The results show, that the partitioning of the energy into sensible and latent heat flux on a diurnal scale is totally different at the three sites. This results in gradients between the sites, which are e.g. responsible for the typical diurnal wind systems at the Dead Sea. Furthermore, driving forces of evapo-transpiration at the sites were identified and a detailed analysis of the daily evaporation and dew deposition rates

  13. Deformation of Ag clusters deposited on Au(111) - Experiment and molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Miroslawski, Natalie; Groenhagen, Niklas; Hoevel, Heinz [TU Dortmund, Experimentelle Physik I (Germany); Issendorff, Bernd von [Universitaet Freiburg, Fakultaet Physik (Germany); Jaervi, Tommi [Fraunhofer Institut fuer Werkstoffmechanik, Freiburg (Germany); Moseler, Michael [Universitaet Freiburg, Fakultaet Physik (Germany); Fraunhofer Institut fuer Werkstoffmechanik, Freiburg (Germany); Freiburger Materialforschungszentrum (Germany)

    2011-07-01

    Mass selected clusters from Ag{sup +}{sub 55} to Ag{sup +}{sub 147{+-}}{sub 2} were deposited with different deposition energies at 77 K on Au(111) and imaged with STM at 77 K. We observed a deformation of the cluster shape due to the strong metallic interaction between the cluster and the substrate. The clusters became epitaxial and developed a structure composed of several Ag monolayers. The number of these monolayers depends on the number of atoms in the cluster and the deposition energy. The larger the cluster mass the more monolayers the cluster develops on Au(111) and the larger the deposition energy the fewer monolayers occur. These results were verified by molecular dynamic simulations. Additionally the behaviour of Ag{sub N} clusters on Au(111) after different annealing steps was investigated.

  14. CdS films deposited by chemical bath under rotation

    International Nuclear Information System (INIS)

    Oliva-Aviles, A.I.; Patino, R.; Oliva, A.I.

    2010-01-01

    Cadmium sulfide (CdS) films were deposited on rotating substrates by the chemical bath technique. The effects of the rotation speed on the morphological, optical, and structural properties of the films were discussed. A rotating substrate-holder was fabricated such that substrates can be taken out from the bath during the deposition. CdS films were deposited at different deposition times (10, 20, 30, 40 and 50 min) onto Corning glass substrates at different rotation velocities (150, 300, 450, and 600 rpm) during chemical deposition. The chemical bath was composed by CdCl 2 , KOH, NH 4 NO 3 and CS(NH 2 ) 2 as chemical reagents and heated at 75 deg. C. The results show no critical effects on the band gap energy and the surface roughness of the CdS films when the rotation speed changes. However, a linear increase on the deposition rate with the rotation energy was observed, meanwhile the stoichiometry was strongly affected by the rotation speed, resulting a better 1:1 Cd/S ratio as speed increases. Rotation effects may be of interest in industrial production of CdTe/CdS solar cells.

  15. CdS films deposited by chemical bath under rotation

    Energy Technology Data Exchange (ETDEWEB)

    Oliva-Aviles, A.I., E-mail: aoliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico); Patino, R.; Oliva, A.I. [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico)

    2010-08-01

    Cadmium sulfide (CdS) films were deposited on rotating substrates by the chemical bath technique. The effects of the rotation speed on the morphological, optical, and structural properties of the films were discussed. A rotating substrate-holder was fabricated such that substrates can be taken out from the bath during the deposition. CdS films were deposited at different deposition times (10, 20, 30, 40 and 50 min) onto Corning glass substrates at different rotation velocities (150, 300, 450, and 600 rpm) during chemical deposition. The chemical bath was composed by CdCl{sub 2}, KOH, NH{sub 4}NO{sub 3} and CS(NH{sub 2}){sub 2} as chemical reagents and heated at 75 deg. C. The results show no critical effects on the band gap energy and the surface roughness of the CdS films when the rotation speed changes. However, a linear increase on the deposition rate with the rotation energy was observed, meanwhile the stoichiometry was strongly affected by the rotation speed, resulting a better 1:1 Cd/S ratio as speed increases. Rotation effects may be of interest in industrial production of CdTe/CdS solar cells.

  16. Enhancement of deposition rate at cryogenic temperature in synchrotron radiation excited deposition of silicon film

    International Nuclear Information System (INIS)

    Nara, Yasuo; Sugita, Yoshihiro; Ito, Takashi; Kato, Hiroo; Tanaka, Ken-ichiro

    1989-01-01

    The authors have investigated the synchrotron radiation excited deposition of silicon films on the SiO 2 substrate by using SiH 4 /He mixture gas at BL-12C at Photon Factory. They used VUV light from the multilayer mirror with the center photon energy from 97 to 123eV, which effectively excites L-core electrons of silicon. Substrate temperature was widely varied from -178 degree C to 500 degree C. At -178 degree C, the deposition rate was as high as 400nm/200mAHr (normalized at the storage ring current at 200mA). As increasing the substrate temperature, the deposition rate was drastically decreased. The number of deposited silicon atoms is estimated to be 4 to 50% of incident photons, while the number of photo generated species in the gas phase within the mean free path from the surface is calculated as few as about 10 -3 of incident photons. These experimental results show that the deposition reaction is governed by the dissociation of surface adsorbates by the synchrotron radiation

  17. Perspective: Highly stable vapor-deposited glasses

    Science.gov (United States)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  18. The anthracite of Nazar-Ayloksk deposit

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2002-01-01

    In this chapter of book author gives information about anthracites of Nazar-Ayloksk deposit. It was show that heightened and anomalous content of some elements-dirt in these anthracites of deposit create presupposition of using them as complex energy-mineral raw material. In same time at using coal as fuel it is necessary take in to account heightened content such toxic elements as Sb, Hg and As and some others which are ecologically harmful

  19. WC-Co coatings deposited by the electro-thermal chemical spray method

    Energy Technology Data Exchange (ETDEWEB)

    Zhitomirsky, V.N. [Tel Aviv Univ. (Israel). Faculty of Engineering; Wald, S.; Rabani, L.; Zoler, D. [Propulsion Physics Division, SOREQ NRC, 81800, Yavne (Israel); Factor, M.; Roman, I. [School of Applied Sciences, The Hebrew University, 91904, Jerusalem (Israel); Cuperman, S.; Bruma, C. [School of Physics and Astronomy, Tel-Aviv University, 69978, Tel-Aviv (Israel)

    2000-10-02

    A novel thermal spray technology - an electro-thermal chemical spray (ETCS) for producing hard coatings is presented. The experimental coating apparatus consists of a machine gun barrel, a cartridge containing the coating material in powder form, a solid propellant, and a plasma ignition system. The plasma ignition system produces plasma in pulsed mode to ignite the solid propellant. On ignition, the drag force exerted by the combustion gases accelerates the powder particles towards the substrate. Using the ETCS technique, the process of single-shot WC-Co coating deposition on stainless steel substrate was studied. The influence of process parameters (plasma energy, mass of the solid propellant and the coated powder, distance between the gun muzzle and the substrate) on the coating structure and some of its properties were investigated. It was shown that ECTS technique effectively deposited the WC-Co coating with deposition thicknesses of 100-200 {mu}m per shot, while deposition yield of {proportional_to}70% was attained. The WC-Co coatings consisted of carbide particles distributed in amorphous matrix. The powder particle velocity was found to depend on the solid propellant mass and was weakly dependent on the plasma energy, while the particle processing temperature was strongly dependent on the plasma energy and almost independent of the solid propellant mass. Whilst increasing the solid propellant mass from 5 to 7 g, the deposition rate and yield correspondingly increased. When increasing the plasma energy, the temperature of the powder particles increased, the average carbide particle size decreased and their shape became more rounded. The deposition yield and microhardness at first increased and then achieved saturation by increasing the plasma energy. (orig.)

  20. Biological Effects of Particles with Very High Energy Deposition on Mammalian Cells Utilizing the Brookhaven Tandem Van de Graaff Accelerator

    Science.gov (United States)

    Saha, Janapriya; Cucinotta, Francis A.; Wang, Minli

    2013-01-01

    High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of high charge and energy (HZE) nuclei and secondary protons and neutrons, and secondaries from protons in SPE (Solar Particle Event) pose a major health risk to astronauts due to induction of DNA damage and oxidative stress. Experiments with high energy particles mimicking the space environment for estimation of radiation risk are being performed at NASA Space Radiation Laboratory at BNL. Experiments with low energy particles comparing to high energy particles of similar LET are of interest for investigation of the role of track structure on biological effects. For this purpose, we report results utilizing the Tandem Van de Graaff accelerator at BNL. The primary objective of our studies is to elucidate the influence of high vs low energy deposition on track structure, delta ray contribution and resulting biological responses. These low energy ions are of special relevance as these energies may occur following absorption through the spacecraft and shielding materials in human tissues and nuclear fragments produced in tissues by high energy protons and neutrons. This study will help to verify the efficiency of these low energy particles and better understand how various cell types respond to them.

  1. Chromium-doped diamond-like carbon films deposited by dual-pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Písařík, Petr; Jelínek, Miroslav; Kocourek, Tomáš; Zezulová, M.; Remsa, Jan; Jurek, Karel

    2014-01-01

    Roč. 117, č. 1 (2014), s. 83-88 ISSN 0947-8396 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : diamond like carbon * chromium * contact angle * surface free energy * dual laser deposition * zeta potential Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2014

  2. Energy deposition profile for modification proposal of ISOLDE’s HRS Beam Dump, from FLUKA simulations

    CERN Document Server

    Vlachoudis, V

    2014-01-01

    The current ISOLDE HRS beam dump has been found to be unsuitable on previous simulations, due to thermomechanical stresses. In this paper a proposal for modifying HRS dump is studied using FLUKA. The energy deposited in this modified beam dump and the amount of neutrons streaming to the tunnel area are scored and compared with the simulation of current dump. Two versions of the modification have been assessed, determining which of them is more desirable in terms of influence of radiation on ISOLDE’s tunnel. Finally, a rough estimate of temperature raise in the modified dump is shown. Further conclusions on the adequacy of these modifications need to include the thermomechanical calculations’ results, based on those presented here.

  3. Simulation of energy deposit distribution in water for 10 and 25 MeV electron beams

    International Nuclear Information System (INIS)

    Borrell Carbonell, Maria de los Angeles.

    1977-01-01

    The Monte Carlo method was applied to transport simulation of electron beams from the exit window of a linear accelerator till the absorption by a water phantom. The distribution of energy deposit is calculated for ideal apparatus and experimental conditions. Calculations are made for a distance window-water surface of one meter, for 10 and 25 MeV monoenergetic incident electrons, and for different fields (15x15 cm 2 to 4x4 cm 2 ). Comparisons with experimental measurements obtained in comparable conditions with a Sagittaire accelerator (C.G.R.-MeV), show a good agreement concerning radial distribution and depth distribution around isodose 100%. However a certain disagreement appears in the end of depth penetration [fr

  4. Biosensor Applications of MAPLE Deposited Lipase

    Directory of Open Access Journals (Sweden)

    Valeria Califano

    2014-10-01

    Full Text Available Matrix Assisted Pulsed Laser Evaporation (MAPLE is a thin film deposition technique derived from Pulsed Laser Deposition (PLD for deposition of delicate (polymers, complex biological molecules, etc. materials in undamaged form. The main difference of MAPLE technique with respect to PLD is the target: it is a frozen solution or suspension of the (guest molecules to be deposited in a volatile substance (matrix. Since laser beam energy is mainly absorbed by the matrix, damages to the delicate guest molecules are avoided, or at least reduced. Lipase, an enzyme catalyzing reactions borne by triglycerides, has been used in biosensors for detection of β-hydroxyacid esters and triglycerides in blood serum. Enzymes immobilization on a substrate is therefore required. In this paper we show that it is possible, using MAPLE technique, to deposit lipase on a substrate, as shown by AFM observation, preserving its conformational structure, as shown by FTIR analysis.

  5. SEM Investigation of Superheater Deposits from Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Frandsen, Flemming; Hansen, Jørn

    2004-01-01

    , mature superheater deposit samples were extracted from two straw-fired boilers, Masnedø and Ensted, with fuel inputs of 33 MWth and 100 MWth, respectively. SEM (scanning electron microscopy) images and EDX (energy dispersive X-ray) analyses were performed on the deposit samples. Different strategies...

  6. Spallation reactions and energy deposition in heavy target materials comparison of measurements and MC-calculations

    International Nuclear Information System (INIS)

    Filges, D.; Enke, M.; Galin, J.

    2001-01-01

    A renascence of interest for energetic proton induced production of neutrons originates recently by the inception of new projects for target stations of intense spallation neutron sources (like the planned European Spallation Source ESS), accelerator-driven nuclear reactors, nuclear waste transmutation and also the application for radioactive beams. Here we verify the predictive power of transport codes currently on the market by confronting observables and quantities of interest with an exhaustive matrix of benchmark data essentially coming from two experiments being performed at the Cooler Synchrotron COSY at Juelich. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin(!) targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target. While also the observables related to the energy deposition in thick targets are in a good agreement with the model predictions, the production cross section measurements however for light charged particles on thin targets point out that problems exist within these models. (author)

  7. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  8. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  9. Ultraviolet laser deposition of graphene thin films without catalytic layers

    KAUST Repository

    Sarath Kumar, S. R.; Alshareef, Husam N.

    2013-01-01

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  10. Ultraviolet laser deposition of graphene thin films without catalytic layers

    KAUST Repository

    Sarath Kumar, S. R.

    2013-01-09

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  11. Deposition of tin oxide doped with fluorine produced by sol-gel method and deposited by spray-pyrolysis

    International Nuclear Information System (INIS)

    Maia, Paulo Herbert Franca; Lima, Francisco Marcone; Sena, Aline Cosmo de; Silva, Alvaro Neuton; Almeida, Ana Fabiola Leite de; Freire, Francisco Nivaldo Aguiar

    2014-01-01

    Solar energy is one of the most important sources of renewable energy today, but its production is based on silicon cells, expensive and difficult to produce, so the research seek new materials to replace them. This work aims to deposit tin oxide doped with fluorine on the glass substrate using the sol-gel method to provide a working solution and spray pyrolysis technique to perform the deposition. F-SnO2 (FTO) were synthesized by sol-gel method, employing NH_4F and SnCl_2 precursor in an ethanol solution. Before the formation of the gel phase, the entire solution was sprayed, with the aid of a pistol aerographic substrate under heated at 600 °C divided by 50 applications and cooled in the furnace. The substrates had resistances between 10 and 30 S.cm. The energy dispersive x-ray (EDS) revealed the presence of fluorine in the SnO_2 network. (author)

  12. Factorial estimation of energy requirement for egg production

    DEFF Research Database (Denmark)

    Chwalibog, André

    1992-01-01

    Based on balance and respiration measurements with 60 White Leghorns during the laying period from 27 to 48 wk of age, a factorial method for estimating the energy requirement for egg production is proposed. The present experiment showed that the deposition of fat and energy increased during...... the laying period, but protein deposition slightly decreased. It has been shown that the efficiency of ME utilization for fat energy deposition is higher than for protein energy deposition in the egg. Because the proportions of protein and fat differ during the laying period, and because energy utilization...... is different between protein and fat, the ME requirement was calculated as the sum of ME for maintenance and the partial requirements for protein, fat, and carbohydrate deposition. For practical applications, functions for prediction of protein (OP), fat (OF), and energy (OE) in eggs during the laying period...

  13. A simple model for low energy ion-solid interactions

    International Nuclear Information System (INIS)

    Mohajerzadeh, S.; Selvakumar, C.R.

    1997-01-01

    A simple analytical model for ion-solid interactions, suitable for low energy beam depositions, is reported. An approximation for the nuclear stopping power is used to obtain the analytic solution for the deposited energy in the solid. The ratio of the deposited energy in the bulk to the energy deposited in the surface yields a ceiling for the beam energy above which more defects are generated in the bulk resulting in defective films. The numerical evaluations agree with the existing results in the literature. copyright 1997 American Institute of Physics

  14. Materials testing using laser energy deposition

    International Nuclear Information System (INIS)

    Wilcox, W.W.; Calder, C.A.

    1977-01-01

    A convenient method for determining the elastic constants of materials has been devised using the energy from a Q-switched neodymium-glass laser. Stress waves are induced in materials having circular rod or rectangular bar geometries by the absorption of energy from the laser. The wave transit times through the material are recorded with a piezoelectric transducer. Both dilatation and shear wave velocities are determined in a single test using an ultrasonic technique and these velocities are used to calculate the elastic constants of the material. A comparison of the constants determined for ten common engineering materials using this method is made with constants derived using the conventional ultrasonic pulse technique and agreement is shown to be about one percent in most cases. Effects of material geometry are discussed and surface damage to the material caused by laser energy absorption is shown

  15. Effects of deposition and post-annealing conditions on electrical properties and thermal stability of TiAlN films by ion beam sputter deposition

    International Nuclear Information System (INIS)

    Lee, S.-Y.; Wang, S.-C.; Chen, J.-S.; Huang, J.-L.

    2006-01-01

    TiAlN films were deposited by ion beam sputter deposition (IBSD) using a Ti-Al (90/10) alloy target in a nitrogen atmosphere on thermal oxidized Si wafers. Effects of ion beam voltage, substrate temperature (T s ) and post-annealing conditions on electrical properties and oxidation resistance of TiAlN films were studied. According to the experimental results, the proper kinetic energy provided good crystallinity and a dense structure of the films. Because of their better crystallinity and predomination of (200) planes, TiAlN films deposited with 900 V at low T s (50 deg. C) have shown lower resistivity than those at high T s (250 deg. C). They also showed better oxidation resistance. If the beam voltage was too high, it caused some damage to the film surfaces, which caused poor oxidation resistance of films. When sufficient kinetic energy was provided by the beam voltage, the mobility of adatoms was too high due to their extra thermal energy, thus reducing the crystallinity and structure density of the films. A beam voltage of 900 V and a substrate temperature of 50 deg. C were the optimum deposition conditions used in this research. They provided good oxidation resistance and low electrical resistivity for IBSD TiAlN films

  16. Plasma deposition by discharge in powder

    International Nuclear Information System (INIS)

    El-Gamal, H.A.; El-Tayeb, H.A.; Abd El-Moniem, M.; Masoud, M.M.

    2000-01-01

    Different types of material powders have been fed to the breach of a coaxial discharge. The coaxial discharge is powered from a 46.26 mu F, 24 KV capacitor bank. When the discharge takes place at the breach, the powder is heated and ionized to form a sheath of its material. The plasma sheath is ejected from the discharge zone with high velocity. The plasma sheath material is deposited on a glass substrate. It has been found from scanning electron microscope (SEM) analysis that the deposited material is almost homogenous for ceramic and graphite powders. The grain size is estimated to be the order of few microns. To measure the deposited material thickness the microdensitometer and a suitable arrangement of a laser interferometer and an optical microscope are used. It has also been found that deposited material thickness depends on the discharge number of shots and the capacitor bank energy

  17. Quality of Coal in the Deposit Kongora - Tomislavgrad

    International Nuclear Information System (INIS)

    Zivkovic, S.; Nuic, J.; Krasic, D.

    1998-01-01

    The document accepted in Kyoto, signed by the republic of Croatia, oblige the signatory countries in view of the Agreement on reducing emissions of noxious gases. These obligations burden the development of the energy sector by high technological requirements which will make energy even more expensive. The basic part of the energy system constitute fossil fuel driven thermal power plants (presently found less hazardous than the nuclear option). The commitment of the republic of Croatia to build up a basic thermal energy system in the years to come has initiated a series of discussions on energy sources, i.e. on the choice of fossil fuels. Possibilities have been studied as regards the import of gas (Siberia, Algeria), coal (Australia, the USA, Colombia, etc.), while at the same time neglecting the resources in immediate vicinity. Major coal deposits in the Dalmatian hinterland (Bosnia and Herzegovina), 70km from the Adriatic coast, deserve the attention of experts and scientists in surveying energy potential, particularly as it is a question of the low caloric value coal with scant sulphur (under 1 percent). So far the experiences are favourable and point to the coal deposit Kongora as a possible energy potential. (author)

  18. RHEED study of titanium dioxide with pulsed laser deposition

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Pryds, Nini; Schou, Jørgen

    2009-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target...

  19. Approach to the calculation of energy deposition in a container of fuel irradiated by the neutronic codes coupling fluid-dynamics

    International Nuclear Information System (INIS)

    Hueso, C.; Aleman, A.; Colomer, C.; Fabbri, M.; Martin, M.; Saellas, J.

    2013-01-01

    In this work identifies a possible area of improvement through the creation of a code of coupling between deposition energy codes which calculate neutron (MCNP), and data from heading into fluid dynamics (ANSYS-Fluent) or codes thermomechanical, called MAFACS (Monte Carlo ANSYS Fluent Automatic Coupling Software), being possible to so summarize the process by shortening the needs of computing time, increasing the precision of the results and therefore improving the design of the components.

  20. Surface free energy of non-stick coatings deposited using closed field unbalanced magnetron sputter ion plating

    International Nuclear Information System (INIS)

    Sun, C.-C.; Lee, S.-C.; Dai, S.-B.; Tien, S.-L.; Chang, C.-C.; Fu, Y.-S.

    2007-01-01

    Semiconductor IC packaging molding dies require wear resistance, corrosion resistance and non-sticking (with a low surface free energy). The molding releasing capability and performance are directly associated with the surface free energy between the coating and product material. The serious sticking problem reduces productivity and reliability. Depositing TiN, TiMoS, ZrN, CrC, CrN, NiCr, NiCrN, CrTiAlN and CrNiTiAlN coatings using closed field unbalanced magnetron sputter ion plating, and characterizing their surface free energy are the main object in developing a non-stick coating system for semiconductor IC molding tools. The contact angle of water, diiodomethane and ethylene glycol on the coated surfaces were measured at temperature in 20 deg. C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the coatings and their components (dispersion and polar) were calculated using the Owens-Wendt geometric mean approach. The surface roughness was investigated by atomic force microscopy (AFM). The adhesion force of these coatings was measured using direct tensile pull-off test apparatus. The experimental results showed that NiCrN, CrN and NiCrTiAlN coatings outperformed TiN, ZrN, NiCr, CiTiAlN, CrC and TiMoS coatings in terms of non-sticking, and thus have the potential as working layers for injection molding industrial equipment, especially in semiconductor IC packaging molding applications

  1. Power deposition distribution in liquid lead cooled fission reactors and effects on the reactor thermal behaviour

    International Nuclear Information System (INIS)

    Cevolani, S.; Nava, E.; Burn, K. W.

    2001-01-01

    In the framework of an ADS study (Accelerator Driven System, a reactor cooled by a lead bismuth alloy) the distribution of the deposited energy between the fuel, coolant and structural materials was evaluated by means of Monte Carlo calculations. The energy deposition in the coolant turned out to be about four percent of the total deposited energy. In order to study this effect, further calculations were performed on water and sodium cooled reactors. Such an analysis showed, for both coolant materials, a much lower heat deposition, about one percent. Based on such results, a thermohydraulic analysis was performed in order to verify the effect of this phenomenon on the fuel assembly temperature distribution. The main effect of a significant fraction of energy deposition in the coolant is concerned with the decrease of the fuel pellet temperature. As a consequence, taking into account this effect allows to increase the possibilities of optimization at the disposal of the designer [it

  2. Plans for checking hadronic energy depositions in the ATLAS calorimeters with early LHC data using charged particles

    CERN Document Server

    Davidson, N; The ATLAS collaboration

    2009-01-01

    The first data from the ATLAS detector at the Large Hadron Collider (LHC) is due to be collected later this year. This first phase will play a vital role in understanding the detector and its response, in-situ. Jet reconstruction is important for identifying new physics as well as making precision measurements of standard model physics. The fine granularity of the ATLAS calorimeters can be used to gain information about a jet's shape and the classification of energy deposits, which allows a better estimate of the jet energy to be made and in particular correction for the non-compensating nature of the calorimeter using so-called calibration weights. The classification algorithm and weights are presently calculated using simulation. In this presentation we describe an important step in the validation of ATLAS's jet calibration using charged tracks reconstructed in the inner detector and their inter-calibration with the clusters reconstructed in the calorimeters.

  3. Lithofacies and paleo depositional environment of the rocks of ...

    African Journals Online (AJOL)

    IKENNA

    2013-09-20

    Sep 20, 2013 ... The intact shells of bivalves suggest deposition in a low energy protected shoreline where wave action is .... Low energy, protected shoreline where wave action is limited. 5. .... manuscript. We thank our families for giving us a.

  4. Thin and flexible Ni-P based current collectors developed by electroless deposition for energy storage devices

    International Nuclear Information System (INIS)

    Wu, Haoran; Susanto, Amelia; Lian, Keryn

    2017-01-01

    Highlights: • A PET metallized by electroless nickel was developed as flexible current collector. • The Ni-PET current collector showed good conductivity and chemical stability. • The flexible nanocarbon electrodes with Ni-PET exhibited capacitive behavior. • The Ni-PET enabled electrodes performed nicely in liquid and solid supercapacitors. - Abstract: A PET film metalized by electroless nickel deposition was demonstrated as thin and flexible current collector for energy storage devices. The resultant nickel-on-PET film (Ni-PET) can be used both as current collector for electrochemical capacitors and as electrode for thin film batteries. The composition of Ni-PET was characterized by EDX and XPS. The electrochemical performance of the Ni-PET current collector was similar to Ni foil but with less hydrogen evolution at low potential. The Ni-PET film exhibited better flexibility than a metallic Ni foil. Carbon nanotubes were coated on a Ni-PET substrate to form an electrochemical capacitor electrode which exhibited high chemical stability in both liquid and solid electrolytes, showing strong promise for solid energy storage devices.

  5. Thin and flexible Ni-P based current collectors developed by electroless deposition for energy storage devices

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Haoran, E-mail: haoran.wu@mail.utoronto.ca; Susanto, Amelia; Lian, Keryn

    2017-02-01

    Highlights: • A PET metallized by electroless nickel was developed as flexible current collector. • The Ni-PET current collector showed good conductivity and chemical stability. • The flexible nanocarbon electrodes with Ni-PET exhibited capacitive behavior. • The Ni-PET enabled electrodes performed nicely in liquid and solid supercapacitors. - Abstract: A PET film metalized by electroless nickel deposition was demonstrated as thin and flexible current collector for energy storage devices. The resultant nickel-on-PET film (Ni-PET) can be used both as current collector for electrochemical capacitors and as electrode for thin film batteries. The composition of Ni-PET was characterized by EDX and XPS. The electrochemical performance of the Ni-PET current collector was similar to Ni foil but with less hydrogen evolution at low potential. The Ni-PET film exhibited better flexibility than a metallic Ni foil. Carbon nanotubes were coated on a Ni-PET substrate to form an electrochemical capacitor electrode which exhibited high chemical stability in both liquid and solid electrolytes, showing strong promise for solid energy storage devices.

  6. Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass

    Directory of Open Access Journals (Sweden)

    Katherine E Wright

    2013-04-01

    Full Text Available We combined free energy calculations and metagenomic analyses of an elemental sulfur (S0 deposit on the surface of Borup Fiord Pass Glacier in the Canadian High Arctic to investigate whether the energy available from different redox reactions in an environment predicts microbial metabolism. Many S, C, Fe, As, Mn and NH4+ oxidation reactions were predicted to be energetically feasible in the deposit, and aerobic oxidation of S0 was the most abundant chemical energy source. Small subunit ribosomal RNA (SSU rRNA gene sequence data showed that the dominant phylotypes were Sulfurovum and Sulfuricurvum, both Epsilonproteobacteria known to be capable of sulfur lithotrophy. Sulfur redox genes were abundant in the metagenome, but sox genes were significantly more abundant than reverse dsr genes. Interestingly, there appeared to be habitable niches that were unoccupied at the depth of genome coverage obtained. Photosynthesis and NH4+ oxidation should both be energetically favorable, but we found few or no functional genes for oxygenic or anoxygenic photosynthesis, or for NH4+ oxidation by either oxygen (nitrification or nitrite (anammox. The free energy, SSU rRNA gene and quantitative functional gene data are all consistent with the hypothesis that sulfur-based chemolithoautotrophy by Epsilonproteobacteria (Sulfurovum and Sulfuricurvum is the main form of primary productivity at this site, instead of photosynthesis. This is despite the presence of 24-hour sunlight, and the fact that photosynthesis is not known to be inhibited by any of the environmental conditions present. This is the first time that Sulfurovum and Sulfuricurvum have been shown to dominate a sub-aerial environment, rather than anoxic or sulfidic settings. We also found that Flavobacteria dominate the surface of the sulfur deposits. We hypothesize that this aerobic heterotroph uses enough oxygen to create a microoxic environment in the sulfur below, where the Epsilonproteobacteria can

  7. Plasma-polymerized perfluoro(methylcyclohexane) coating on ethylene propylene diene elastomer surface: Effect of plasma processing condition on the deposition kinetics, morphology and surface energy of the film

    International Nuclear Information System (INIS)

    Tran, N.D.; Dutta, N.K.; Choudhury, N. Roy

    2005-01-01

    Plasma polymerization of perfluoro (methylcyclohexane) was carried out under cold plasma process operated at 13.56 MHz to deposit pore-free, uniform, ultra-thin film on an ethylene propylene diene terpolymer (EPDM) substrate in a view to modify the surface characteristics. The plasma fluoropolymeric films were formed at different plasma treatment times (from 20 s to 16 min), applied powers (20 to 100 W) and precursor flow rates to produce high quality films in a controllable yet tunable fashion. Scanning electron microscopy was employed successfully to characterize the evolution of the morphological feature in the film and also to determine the thickness of the coating. The surface energy of the film was determined by sessile drop method using different solvents as probe liquids. It is observed that a pore-free homogeneous plasma polymer thin film is formed within 20 s of treatment time, however, the morphology of the film depends on the plasma processing conditions, such as plasma power, precursor flow rate and deposition time. With increased time and power at a constant flow rate, the morphology of the film progressively changes from flat smooth to globular and rough. The kinetics and activation energy of the plasma polymer film deposition process were also estimated. The surface energy of the EPDM substrate decreased dramatically with plasma coating, however, it appears to be independent of the treatment time

  8. Process maps for plasma spray. Part II: Deposition and properties

    International Nuclear Information System (INIS)

    XIANGYANG, JIANG; MATEJICEK, JIRI; KULKARNI, ANAND; HERMAN, HERBERT; SAMPATH, SANJAY; GILMORE, DELWYN L.; NEISER A, RICHARD Jr.

    2000-01-01

    This is the second paper of a two part series based on an integrated study carried out at the State University of New York at Stony Brook and Sandia National Laboratories. The goal of the study is the fundamental understanding of the plasma-particle interaction, droplet/substrate interaction, deposit formation dynamics and microstructure development as well as the deposit property. The outcome is science-based relationships, which can be used to link processing to performance. Molybdenum splats and coatings produced at 3 plasma conditions and three substrate temperatures were characterized. It was found that there is a strong mechanical/thermal interaction between droplet and substrate, which builds up the coatings/substrate adhesion. Hardness, thermal conductivity, and modulus increase, while oxygen content and porosity decrease with increasing particle velocity. Increasing deposition temperature resulted in dramatic improvement in coating thermal conductivity and hardness as well as increase in coating oxygen content. Indentation reveals improved fracture resistance for the coatings prepared at higher deposition temperature. Residual stress was significantly affected by deposition temperature, although not significant by particle energy within the investigated parameter range. Coatings prepared at high deposition temperature with high-energy particles suffered considerably less damage in wear tests. Possible mechanisms behind these changes are discussed within the context of relational maps which are under development

  9. Tailoring Si(100) substrate surfaces for GaP growth by Ga deposition: A low-energy electron microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Rienäcker, Michael; Borkenhagen, Benjamin, E-mail: b.borkenhagen@pe.tu-clausthal.de; Lilienkamp, Gerhard; Daum, Winfried [TU Clausthal, Institut für Energieforschung und Physikalische Technologien, Leibnizstraße 4, D-38678 Clausthal-Zellerfeld (Germany)

    2015-08-07

    For GaP-on-Si(100) heteroepitaxy, currently considered as a model system for monolithic integration of III–V semiconductors on Si(100), the surface steps of Si(100) have a major impact on the quality of the GaP film. Monoatomic steps cause antiphase domains in GaP with detrimental electronic properties. A viable route is to grow the III–V epilayer on single-domain Si(100) with biatomic steps, but preferably not at the expense of reduced terrace widths introduced by miscut substrates. We have performed in situ investigations of the influence of Ga deposition on the kinetics of surface steps and terraces of Si(100) at substrate temperatures above 600 °C by low-energy electron microscopy. Starting from nearly equally distributed T{sub A} and T{sub B} terraces of a two-domain Si(100) surface, submonolayer deposition of Ga results in a transformation into a surface dominated by T{sub A} terraces and biatomic D{sub A} steps. This transformation is reversible, and Si(100) with monoatomic steps is recovered upon termination of the Ga flux. Under conditions of higher coverages (but still below 0.25 monolayer), we observe restructuring into a surface with T{sub B} dominance, similar to the findings of Hara et al. [J. Appl. Phys. 98, 083515 (2005)]. The occurrence and mutual transformations of surface structures with different terrace and step structures in a narrow range of temperatures and Ga deposition rates is discussed.

  10. Nanostructured Thin Film Synthesis by Aerosol Chemical Vapor Deposition for Energy Storage Applications

    Science.gov (United States)

    Chadha, Tandeep S.

    Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new electrode architectures and synthesis processes. The aerosol chemical vapor deposition (ACVD) process has emerged as a promising single-step approach for nanostructured thin film synthesis directly on substrates. The relationship between the morphology and the operating parameters in the process is complex. In this work, a simulation based approach has been developed to understand the relationship and acquire the ability of predicting the morphology. These controlled nanostructured morphologies of TiO2 , compounded with gold nanoparticles of various shapes, are used for solar water-splitting applications. Tuning of light absorption in the visible-light range along with reduced electron-hole recombination in the composite structures has been demonstrated. The ACVD process is further extended to a novel single-step synthesis of nanostructured TiO2 electrodes directly on the current collector for applications as anodes in lithium-ion batteries, mainly for electric vehicles and hybrid electric vehicles. The effect of morphology of the nanostructures has been investigated via experimental studies and electrochemical transport modelling. Results demonstrate the exceptional performance of the single crystal one-dimensional nanostructures over granular

  11. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N.; Martinez-Landeros, V.; Mejia, I.; Aguirre-Tostado, F.S.; Nascimento, C.D.; Azevedo, G. de M; Krug, C.; Quevedo-Lopez, M.A.

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10 −1 to 10 4 Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10 19 to 10 13 cm −3 and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm 2 /V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10 19 to 10 13 cm −3 . • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied

  12. Control of ordered mesoporous titanium dioxide nanostructures formed using plasma enhanced glancing angle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Child, David, E-mail: david.child@uws.ac.uk [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Song, Shigeng; Zhao, Chao [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Alajiani, Yahya [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Department of Physics, Faculty of Science, Jazan University, Jazan (Saudi Arabia); Waddell, Ewan [Thin Film Solutions Ltd, West of Scotland Science Park, Glasgow, G20 0TH (United Kingdom)

    2015-10-01

    Three dimensional nanostructures of mesoporous (pore diameter between 2-50 nm) nanocrystalline titania (TiO{sub 2}) were produced using glancing angle deposition combined with plasma ion assisted deposition, providing plasma enhanced glancing angle deposition eliminating the need for post-annealing to achieve film crystallinity. Electron beam evaporation was chosen to deposit nanostructures at various azimuthal angles, achieving designed variation in three dimensional nanostructure. A thermionic broad beam hollow cathode plasma source was used to enhance electron beam deposition, with ability to vary in real time ion fluxes and energies providing a means to modify and control TiO{sub 2} nanostructure real time with controlled density and porosity along and lateral to film growth direction. Plasma ion assisted deposition was carried out at room temperature using a hollow cathode plasma source, ensuring low heat loading to the substrate during deposition. Plasma enhanced glancing angle TiO{sub 2} structures were deposited onto borosilicate microscope slides and used to characterise the effects of glancing angle and plasma ion energy distribution function on the optical and nanostructural properties. Variation in TiO{sub 2} refractive index from 1.40 to 2.45 (@ 550 nm) using PEGLAD is demonstrated. Results and analysis of the influence of plasma enhanced glancing angle deposition on evaporant path and resultant glancing angle deviation from standard GLAD are described. Control of mesoporous morphology is described, providing a means of optimising light trapping features and film porosity, relevant to applications such as fabrication of dye sensitised solar cells. - Highlights: • Plasma assistance during glancing angle deposition enables control of morphology. • Ion energy variation during glancing angle deposition varies columnar angle • Column thickness of glancing angle deposition dependant on ion current density • Ion current density variation during

  13. Method for depositing high-quality microcrystalline semiconductor materials

    Science.gov (United States)

    Guha, Subhendu [Bloomfield Hills, MI; Yang, Chi C [Troy, MI; Yan, Baojie [Rochester Hills, MI

    2011-03-08

    A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

  14. Short review on chemical bath deposition of thin film and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mugle, Dhananjay, E-mail: dhananjayforu@gmail.com; Jadhav, Ghanshyam, E-mail: ghjadhav@rediffmail.com [Depertment of Physics, Shri Chhatrapati Shivaji College, Omerga-413606 (India)

    2016-05-06

    This reviews the theory of early growth of the thin film using chemical deposition methods. In particular, it critically reviews the chemical bath deposition (CBD) method for preparation of thin films. The different techniques used for characterizations of the chemically films such as X-ray diffractometer (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Electrical conductivity and Energy Dispersive Spectroscopy (EDS) are discussed. Survey shows the physical and chemical properties solely depend upon the time of deposition, temperature of deposition.

  15. Underpotential deposition-mediated layer-by-layer growth of thin films

    Science.gov (United States)

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  16. Tritium recovery from co-deposited layers using 193-nm laser

    Science.gov (United States)

    Shu, W. M.; Kawakubo, Y.; Nishi, M. F.

    Recovery of tritium from co-deposited layers formed in deuterium-tritium plasma operations of the TFTR (Tokamak Fusion Test Reactor) was investigated by the use of an ArF excimer laser operating at the wavelength of 193 nm. At the laser energy density of 0.1 J/cm2, a transient spike of the tritium-release rate was observed at initial irradiation. Hydrogen isotopes were released in the form of hydrogen-isotope molecules during the laser irradiation in vacuum, suggesting that tritium can be recovered readily from the released gases. In a second experiment, hydrogen (tritium) recovery from the co-deposited layers on JT-60 tiles that had experienced hydrogen-plasma operations was investigated by laser ablation with a focused beam of the excimer laser. The removal rate of the co-deposited layers was quite low when the laser energy density was smaller than the ablation threshold (1.0 J/cm2), but reached 1.1 μm/pulse at the laser energy density of 7.6 J/cm2. The effective absorption coefficient in the co-deposited layers at the laser wavelength was determined to be 1.9 μm-1. The temperature of the surface during the irradiation at the laser energy density of 0.5 J/cm2 was measured on the basis of Planck's law of radiation, and the maximum temperature during the irradiation decreased from 3570 K at the initial irradiation to 2550 K at the 1000th pulse of the irradiation.

  17. Energy research

    International Nuclear Information System (INIS)

    1979-03-01

    Status reports are given for the Danish Trade Ministry's energy research projects on uranium prospecting and extraction, oil and gas recovery, underground storage of district heating, electrochemical energy storage systems, wind mills, coal deposits, coal cambustion, energy consumption in buildings, solar heat, biogas, compost heat. (B.P.)

  18. Energy and dose characteristics of ion bombardment during pulsed laser deposition of thin films under pulsed electric field

    International Nuclear Information System (INIS)

    Fominski, V.Yu.; Nevolin, V.N.; Smurov, I.

    2004-01-01

    Experiments on pulsed laser deposition of Fe films on Si substrates were performed with the aim to analyze the role of factors determining the formation of an energy spectrum and a dose of ions bombarding the film in strong pulsed electric fields. The amplitude of the high-voltage pulse (-40 kV) applied to the substrate and the laser fluence at the Fe target were fixed during the deposition. Owing to the high laser fluence (8 J/cm 2 ) at a relatively low power (20 mJ), the ionization of the laser plume was high, but the Fe vapor pressure near the substrate was low enough to avoid arcing. Electric signals from a target exposed to laser radiation were measured under different conditions (at different delay times) of application of electric pulses. The Si(100) substrates were analyzed using Rutherford ion backscattering/channeling spectrometry. The ion implantation dose occurred to be the highest if the high-voltage pulse was applied at a moment of time when the ion component of the plume approached the substrate. In this case, the implanted ions had the highest energy determined by the amplitude of the electric pulse. An advance or delay in applying a high-voltage pulse caused the ion dose and energy to decrease. A physical model incorporating three possible modes of ion implantation was proposed for the interpretation of the experimental results. If a laser plume was formed in the external field, ions were accelerated from the front of the dense plasma, and the ion current depended on the gas-dynamic expansion of the plume. The application of a high-voltage pulse, at the instant when the front approached the substrate, maintained the mode that was characteristic of the traditional plasma immersion ion implantation, and the ion current was governed by the dynamics of the plasma sheath in the substrate-to-target gap. In the case of an extremely late application of a high-voltage pulse, ions retained in the entire volume of the experimental chamber (as a result of the

  19. The crystallization and properties of sputter deposited lithium niobite

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Joshua C.; Brooks Tellekamp, M.; Alan Doolittle, W., E-mail: alan.doolittle@ece.gatech.edu

    2016-06-30

    Sputter deposition of the thin film memristor material, lithium niobite (LiNbO{sub 2}) is performed by co-deposition from a lithium oxide (Li{sub 2}O) and a niobium target. Crystalline films that are textured about the (101) orientation are produced under room temperature conditions. This material displays memristive hysteresis and exhibits XPS spectra similar to MBE and bulk grown LiNbO{sub 2}. Various deposition parameters were investigated resulting in variations in the deposition rate, film crystallinity, oxygen to niobium ratio, and mean niobium oxidation state. The results of this study allow for the routine production of large area LiNbO{sub 2} films at low substrate temperature useful in hybrid-integration of memristor, optical, and energy storage applications. - Highlights: • Room temperature sputter deposition of crystalline lithium niobite (LiNbO{sub 2}) • Contrast with previous high temperature corrosive growth methods • Analysis of sputter deposition parameters on the chemical and physical properties of the deposited material.

  20. The crystallization and properties of sputter deposited lithium niobite

    International Nuclear Information System (INIS)

    Shank, Joshua C.; Brooks Tellekamp, M.; Alan Doolittle, W.

    2016-01-01

    Sputter deposition of the thin film memristor material, lithium niobite (LiNbO_2) is performed by co-deposition from a lithium oxide (Li_2O) and a niobium target. Crystalline films that are textured about the (101) orientation are produced under room temperature conditions. This material displays memristive hysteresis and exhibits XPS spectra similar to MBE and bulk grown LiNbO_2. Various deposition parameters were investigated resulting in variations in the deposition rate, film crystallinity, oxygen to niobium ratio, and mean niobium oxidation state. The results of this study allow for the routine production of large area LiNbO_2 films at low substrate temperature useful in hybrid-integration of memristor, optical, and energy storage applications. - Highlights: • Room temperature sputter deposition of crystalline lithium niobite (LiNbO_2) • Contrast with previous high temperature corrosive growth methods • Analysis of sputter deposition parameters on the chemical and physical properties of the deposited material

  1. Fracture Analysis of MWCNT/Epoxy Nanocomposite Film Deposited on Aluminum Substrate.

    Science.gov (United States)

    Her, Shiuh-Chuan; Chien, Pao-Chu

    2017-04-13

    Multi-walled carbon nanotube (MWCNT) reinforced epoxy films were deposited on an aluminum substrate by a hot-pressing process. Three-point bending tests were performed to determine the Young's modulus of MWCNT reinforced nanocomposite films. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 21% in the Young's modulus. Four-point-bending tests were conducted to investigate the fracture toughness of the MWCNT/epoxy nanocomposite film deposited on an aluminum substrate with interfacial cracks. Based on the Euler-Bernoulli beam theory, the strain energy in a film/substrate composite beam is derived. The difference of strain energy before and after the propagation of the interfacial crack are calculated, leading to the determination of the strain energy release rate. Experimental test results show that the fracture toughness of the nanocomposite film deposited on the aluminum substrate increases with the increase in the MWCNT content.

  2. Krypton-85 storage in sputter-deposited amorphous metals

    International Nuclear Information System (INIS)

    Tingey, G.L.; McClanahan, E.D.; Lytle, J.M.; Gordon, N.R.; Knoll, R.W.

    1982-06-01

    After comparing options for storing radioactive krypton gas, the United States Department of Energy selected ion implantation of the gas into a sputter-deposited metal matrix as the reference process. This technique is being developed with pilot-scale testing and further characterization of the deposited product. The process involves implanting krypton atoms into a growing deposit during the sputtering process. An amorphous metal deposit of nominal composition Ni 0 81 La 0 09 Kr 0 10 has been selected for further studies because of the high krypton loading, high sputtering yield, relatively low cost of the metallic components, resistance to corrosion, and stability of the product. The krypton release from this amorphous metal is described as an activated diffusion process which increases linearly with the square root of time. Studies of krypton release rate as a function of temperature were completed and an activation energy for the diffusion of 70 kcal/mole obtained. From these data, we estimated that the krypton release during the first ten years would be 0.5% for a maximum temperature of 350 0 C. The actual release of the krypton during storage was projected to be lower by a factor of 10 7 with the maximum temperature only 220 0 C. Thermal analysis studies show two energy releases occurring with krypton-containing alloys: one associated with recrystallization of the amorphous alloy and a second associated with krypton release. The total energy release between 100 and 800 0 C was less than 50 cal/g. Estimates are given for the cost of operation of the ion implantation process for solidification of the krypton-85 from a 2000-tonne heavy metal/year reprocessing plant. The present value costs, in 1981 dollars including capital and operating costs and assuming a 30-year life, are about $26M for the lifetime of the plant. Annual energy consumption of the process was estimated to be 3.9 M kWh/year

  3. Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings

    Science.gov (United States)

    Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin

    2018-03-01

    Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.

  4. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    CERN Document Server

    Nie, Y; Chetvertkova, V; Rosell-Tarrago, G; Burkart, F; Wollmann, D

    2017-01-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post–Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV–50 TeV. Three beam sizes were studied for each energy, corresponding to typical values ...

  5. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation

    OpenAIRE

    Schroeder, Jeremy; Thomson, W.; Howard, B.; Schell, N.; Näslund, Lars-Åke; Rogström, Lina; Johansson-Jöesaar, Mats P.; Ghafoor, Naureen; Odén, Magnus; Nothnagel, E.; Shepard, A.; Greer, J.; Birch, Jens

    2015-01-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (greater than50 keV), high photon flux (greater than10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (less than1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation...

  6. Peat Deposits at Bijoynagar Upazila, Brahmanbaria District, Bangladesh : A Potential Local Source of Energy

    Directory of Open Access Journals (Sweden)

    Md. Nazwanul Haque

    2013-12-01

    Full Text Available Bangladesh with about 160 million people in land of 147,570 square km which is one of the most densely populated countries in the world. With the increase of population and diversifying of economic activities, Bangladesh has become an energy hunger country. Presently, 80% peoples depend on non commercial energy sources living in the rural area. Peat exploration at Bijoynagar Upazila, Brahmanbaria district. Bangladesh has been carried out for reserve estimation and its economic aspect evaluation. Total peat exploration area is about 4000 hectare. In explored area, nine peat bearing locations are identified in which peat deposits are observed from 0.152 to 3.0 meters below the surface. Total reserves are about 32.61 million tons in wet condition and 13.044 million tons in dry conditions. The peat is grayish brown to grayish black, fibrous, less to medium compacted and water content is about 60-80 % in wet condition. Chemical analyses of the peat shows that fixed carbon content is 15-25 %, Sulfur is 0.1 to 0.8 % and calorific value of the peat is 3000-7000 BTU. The peat of the area is medium to good quality. The peat may be extracted by open peat mining because of its surface to near surface position. This peat can be conveniently used for small industrial and domestic purpose as briquette and compressed tablet form to meet the growing energy demand of the area. But most of the people of Bijoynagar area live on agriculture. So, peat extraction and related geo-environmental degradation may change living style of the people. Proper land use planning, environmental management and policy should be taken before peat extraction.

  7. Electrochemical deposition and characterization of platinum on carbon paper and Ni foam

    CSIR Research Space (South Africa)

    Louw, E

    2013-04-01

    Full Text Available There are various methods used to prepare fuel cell (FC) catalysts. The electrochemical deposition method is well known for the fabrication of nanostructured catalysts for energy materials. Electrochemical atomic layer deposition (ECALD) method...

  8. Energy Deposition in Adjacent LHC Superconducting Magnets from Beam Loss at LHC Transfer Line Collimators

    CERN Document Server

    Beavan, S; Kain, V

    2006-01-01

    Injection intensities for the LHC are over an order of magnitude above the damage threshold. The collimation system in the two transfer lines is designed to dilute the beam sufficiently to avoid damage in case of accidental beam loss or mis-steered beam. To maximise the protection for the LHC most of the collimators are located in the last 300 m upstream of the injection point where the transfer lines approach the LHC machine. To study the issue of possible quenches following beam loss at the collimators part of the collimation section in one of the lines, TI 8, together with the adjacent part of the LHC has been modeled in FLUKA. The simulated energy deposition in the LHC for worst-case accidental losses and as well as for losses expected during a normal filling is presented.

  9. Dosimetry and LET spectrometry in C 290 MeV/n and Ne 400 MeV/n HIMAC ion beam by different TLD's, TED based LET spectrometers, and Si energy-deposition spectrometer

    International Nuclear Information System (INIS)

    Spurny, F.; Brabcova, K.; Jadrnickova, I.; Uchihori, Y.; Kitamura, H.; Yasuda, N.; Molokanov, A. G.

    2009-01-01

    The sets of track etched detectors based (TED) spectrometer's of the linear energy transfer (LET) have been, together with two types of thermoluminescent detectors (TLD)and MDU- Liulin energy deposition spectrometer exposed in the C 290 MeV/n and Ne 400 MeV/n ion beams at the HlMAC installation at NIRS, Chiba, Japan. The experiment has been performed in the frame of NPI project 20P241 agreed by HlMAC P AC at the beginning of 2008 year. Up to now, moxstle only results obtained in C-ion beam have been treated and analyzed. Sets of TED spectrometer's and TLD detectors have been exposed in 19 depths in the C-ion beam with expected LET values of primary particles from 13 keV/μm in water, through the Bragg peak area up to two depth behind the Bragg peak. The contribution of fragments to total number of events, and to the energy absorbed in Si has been determined, when possible separately for different fragments. In all cases also total contribution of fragments (and other secondary particles) to the total number of energy deposition events and to the absorbed dose has been estimated. LET and energy deposition spectra obtained will be compared together , a good agreement of data has bee stated. Some of results have been also compared with those obtained by calculation by means of PHITS code. (authors)

  10. Suprathermal-electron generation, transport, and deposition in CO2-laser-irradiated targets

    International Nuclear Information System (INIS)

    Hauer, A.; Goldman, R.; Kristal, R.

    1982-01-01

    Experiments on both axial and lateral energy transport and deposition in spherical targets are described. A variety of diagnostics have been used to measure hot-electron transport and deposition including bremsstrahlung and inner-shell radiation and soft x-ray temperature measurements. Self-generated electric and magnetic fields play an important role in the transport and deposition of the hot electrons. In some cases distinct patterns of surface deposition consistent with magnetic-field configurations have been observed

  11. Fabrication of Nb/Pb structures through ultrashort pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gontad, Francisco; Lorusso, Antonella, E-mail: antonella.lorusso@le.infn.it; Perrone, Alessio [Dipartimento di Matematica e Fisica “E. De Giorgi,” Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Klini, Argyro; Fotakis, Costas [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 100 N. Plastira St., GR 70013 Heraklion, Crete (Greece); Broitman, Esteban [Thin Film Physics Division, IFM, Linköping University, 581-83 Linköping (Sweden)

    2016-07-15

    This work reports the fabrication of Nb/Pb structures with an application as photocathode devices. The use of relatively low energy densities for the ablation of Nb with ultrashort pulses favors the reduction of droplets during the growth of the film. However, the use of laser fluences in this ablation regime results in a consequent reduction in the average deposition rate. On the other hand, despite the low deposition rate, the films present a superior adherence to the substrate and an excellent coverage of the irregular substrate surface, avoiding the appearance of voids or discontinuities on the film surface. Moreover, the low energy densities used for the ablation favor the growth of nanocrystalline films with a similar crystalline structure to the bulk material. Therefore, the use of low ablation energy densities with ultrashort pulses for the deposition of the Nb thin films allows the growth of very adherent and nanocrystalline films with adequate properties for the fabrication of Nb/Pb structures to be included in superconducting radiofrequency cavities.

  12. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Como, N. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Martinez-Landeros, V. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Mejia, I. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Nascimento, C.D.; Azevedo, G. de M; Krug, C. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900 (Brazil); Quevedo-Lopez, M.A., E-mail: mquevedo@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States)

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10{sup −1} to 10{sup 4} Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10{sup 19} to 10{sup 13} cm{sup −3} and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm{sup 2}/V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10{sup 19} to 10{sup 13} cm{sup −3}. • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied.

  13. Flame spray deposition of porous catalysts on surfaces and in microsystems

    DEFF Research Database (Denmark)

    Thybo, Susanne; Jensen, Søren; Johansen, Johnny

    2004-01-01

    Flame spray synthesis is investigated as a method for one step synthesis and deposition of porous catalysts onto surfaces and into microreactors. Using a standard photolithographic lift-off process, catalyst can be deposited on flat surfaces in patterns with sub-millimeter feature sizes....... With shadow masks, porous catalyst layers can be deposited selectively into microchannels. Using Au/TiO$_2$ as test catalyst and CO-oxidation as test reaction, it is found that the apparent activation energy of the deposited catalyst is similar to what is normally seen for supported gold catalysts...

  14. Nuclear-heat deposition for a fusion-like neutron environment

    International Nuclear Information System (INIS)

    Carter, L.L.; Hegberg, D.E.; Wilcox, A.D.

    1981-10-01

    Calculated nuclear heat deposition profiles within the thermal shield of the FMIT facility are sensitive to the cross-section data base - particularly an energy balance consistency between gamma production cross-sections and neutron KERMA factors. Infinite medium calculations were made with the Monte Carlo code to provide integral validations of energy balances relevant to this aspect of the data base. Inconsistencies were found and corrected. There was also concern about the adequacy of the high energy cross sections (10 MeV < E < 30 MeV) for the moderation and transport of the (d,Li) source neutrons. A preliminary analysis of a measurement with a (d,Li) source in the center of an iron block has improved our confidence in the high energy cross section - data base for this application. Monte Carlo calculations have been utilized to calculate three-dimensional profiles of nuclear heat deposition. Representative profiles were displayed for two walls of the FMIT test cell

  15. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials

    International Nuclear Information System (INIS)

    Kattamis, Nicholas T.; Purnick, Priscilla E.; Weiss, Ron; Arnold, Craig B.

    2007-01-01

    Laser forward transfer processes incorporating thin absorbing films can be used to deposit robust organic and inorganic materials but the deposition of more delicate materials has remained elusive due to contamination and stress induced during the transfer process. Here, we present the approach to high resolution patterning of sensitive materials by incorporating a thick film polymer absorbing layer that is able to dissipate shock energy through mechanical deformation. Multiple mechanisms for transfer as a function of incident laser energy are observed and we show viable and contamination-free deposition of living mammalian embryonic stem cells

  16. A review: deposition and resuspension processes

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1979-01-01

    A review chapter was written on deposition and resuspension processes for the forthcoming Department of Energy publication, Atmospheric Sciences and Power Production, edited by D. Randerson. The chapter includes eleven tables and thirteen figures summarizing data from 241 references. The conclusions of that review chapter are given

  17. Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method

    International Nuclear Information System (INIS)

    Laatar, F.; Harizi, A.; Smida, A.; Hassen, M.; Ezzaouia, H.

    2016-01-01

    Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphology and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E_o), dispersion energy (E_d), and static refractive index (n_o) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ_e) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.

  18. Electrochemical investigation of the surface energy: Effect of the HF concentration on electroless silver deposition onto p-Si (1 1 1)

    International Nuclear Information System (INIS)

    Ye Weichun; Chang Yanlong; Ma Chuanli; Jia Bingyu; Cao Guiyan; Wang Chunming

    2007-01-01

    Electroless silver deposition onto p-silicon (1 1 1) from 0.005 mol l -1 AgNO 3 solutions with different HF concentration was investigated by using an electrochemical direct current polarization method and open circuit potential-time (Ocp-t) technique. The fact that three-dimensional (3D) growth of silver onto silicon is favored with increasing the HF concentration was ascribed to the drop of the surface energy and approved by electrochemical direct current polarization, Ocp-t technique and atomic force microscopy (AFM). The drop slope of open-circuit potential, K -ΔE(OCP)/t , was educed from the mixed-potential theory. K -ΔE(OCP)/t as well as the deposition rate determined by an inductively coupled plasma atomic emission spectrometry (ICP-AES), increased with the HF concentration, yet was not a linear function. Results were explained by the stress generation and relaxation mechanisms

  19. Physical vapor deposition of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Kester, D.J.

    1991-01-01

    Cubic boron nitride was successfully deposited using physical vapor-deposition methods. RF-sputtering, magnetron sputtering, dual-ion-beam deposition, and ion-beam-assisted evaporation were all used. The ion-assisted evaporation, using boron evaporation and bombardment by nitrogen and argon ions, led to successful cubic boron nitride growth over the widest and most controllable range of conditions. It was found that two factors were important for c-BN growth: bombardment of the growing film and the presence of argon. A systematic study of the deposition conditions was carried out. It was found that the value of momentum transferred into the growing from by the bombarding ions was critical. There was a very narrow transition range in which mixed cubic and hexagonal phase films were prepared. Momentum-per-atom value took into account all the variables involved in ion-assisted deposition: deposition rate, ion energy, ion flux, and ion species. No other factor led to the same control of the process. The role of temperature was also studied; it was found that at low temperatures only mixed cubic and hexagonal material are deposited

  20. Modeling of the topology of energy deposits created by ionizing radiation on a nano-metric scale in cell nuclei in relation to radiation-induced early events

    International Nuclear Information System (INIS)

    Dos Santos, Morgane

    2013-01-01

    Ionizing radiations are known to induce critical damages on biological matter and especially on DNA. Among these damages, DNA double strand breaks (DSB) are considered as key precursor of lethal effects of ionizing radiations. Understand and predict how DNA double and simple strand breaks are created by ionizing radiation and repaired in cell nucleus is nowadays a major challenge in radiobiology research. This work presents the results on the simulation of the DNA double strand breaks produced from the energy deposited by the irradiation at the intracellular level. At the nano-metric scale, the only method to accurately simulate the topological details of energy deposited on the biological matter is the use of Monte Carlo codes. In this work, we used the Geant4 Monte Carlo code and, in particular, the low energy electromagnetic package extensions, referred as Geant4-DNA processes.In order to evaluate DNA radio-induced damages, the first objective of this work consisted in implementing a detailed geometry of the DNA on the Monte Carlo simulations. Two types of cell nuclei, representing a fibroblast and an endothelium, were described in order to evaluate the influence of the DNA density on the topology of the energy deposits contributing to strand breaks. Indeed, the implemented geometry allows the selection of energy transfer points that can lead to strand breaks because they are located on the backbone. Then, these energy transfer points were analysed with a clustering algorithm in order to reveal groups of aggregates and to study their location and complexity. In this work, only the physical interactions of ionizing radiations are simulated. Thus, it is not possible to achieve an absolute number of strand breaks as the creation and transportation of radical species which could lead to indirect DNA damages is not included. Nevertheless, the aim of this work was to evaluate the relative dependence of direct DNA damages with the DNA density, radiation quality, cell

  1. Theoretical and experimental study of a calorimetric technique for measuring energy deposition in materials caused by complex pile irradiation; Etude theorique et experimentale d'une technique calorimetrique de mesure des depots d'energie dans les materiaux dus au rayonnement complexe de pile

    Energy Technology Data Exchange (ETDEWEB)

    Mas, P; Sciers, P; Droulers, Y [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires, 38 - Grenoble (France)

    1962-07-01

    Calorimetric methods may be used to measure gamma fluxes greater than 10{sup 6} r/h near the cores of swimming pool reactors. The theory, design, and properties of isothermal calorimeters are discussed, and experimental results obtained with two types are presented. Measurement of energy deposition in materials and the long term integration of energy depositions are other uses of these devices. Results of measurements on heat deposition in steel and water are given. Fluxes were also measured. (authors) [French] Une premiere partie traite de la theorie des calorimetres isothermes mis en oeuvre au C.K.N. Grenoble. La puissance deposee dans le calorimetre par les flux de rayonnement echauffe celui-ci. L'echauffement est mesure a l'aide d'un thermocouple. On montre que l'on a ainsi une mesure absolue de cette puissance. Une deuxieme partie traite de l'etude experimentale de: deux types d'appareils utilises: leur construction, les resultats experimentaux, leurs utilisations. Trois de celles-ci sont particulierement interessantes: - la mesure des hauts flux gamma, - la mesure du depot d'energie dans les materiaux, - l'integration pendant une longue duree des depots d'energie (un modele de calorimetre a fonctionne a ce jour 2 500 heures et a integre 9 x 10 puissance 10 rads gamma et 6 x 10 puissance 18 neutrons rapides). La troisieme partie est consacree a l'etude des qualites de l'appareil: robustesse, fidelite, precision, sensibilite, gamme de mesure. Enfin dans la derniere partie sont decrites deux applications de la methode calorimetrique a la mesure du depot d'energie dans un acier special et dans l'eau. (auteurs)

  2. Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane: the role of dissociative ionization and dissociative electron attachment in the deposition process

    Directory of Open Access Journals (Sweden)

    Ragesh Kumar T P

    2017-11-01

    Full Text Available We present first experiments on electron beam induced deposition of silacyclohexane (SCH and dichlorosilacyclohexane (DCSCH under a focused high-energy electron beam (FEBID. We compare the deposition dynamics observed when growing pillars of high aspect ratio from these compounds and we compare the proximity effect observed for these compounds. The two precursors show similar behaviour with regards to fragmentation through dissociative ionization in the gas phase under single-collision conditions. However, while DCSCH shows appreciable cross sections with regards to dissociative electron attachment, SCH is inert with respect to this process. We discuss our deposition experiments in context of the efficiency of these different electron-induced fragmentation processes. With regards to the deposition dynamics, we observe a substantially faster growth from DCSCH and a higher saturation diameter when growing pillars with high aspect ratio. However, both compounds show similar behaviour with regards to the proximity effect. With regards to the composition of the deposits, we observe that the C/Si ratio is similar for both compounds and in both cases close to the initial molecular stoichiometry. The oxygen content in the DCSCH deposits is about double that of the SCH deposits. Only marginal chlorine is observed in the deposits of from DCSCH. We discuss these observations in context of potential approaches for Si deposition.

  3. Effects of the charge-transfer reorganization energy on the open-circuit voltage in small-molecular bilayer organic photovoltaic devices: comparison of the influence of deposition rates of the donor.

    Science.gov (United States)

    Lee, Chih-Chien; Su, Wei-Cheng; Chang, Wen-Chang

    2016-05-14

    The theoretical maximum of open-circuit voltage (VOC) of organic photovoltaic (OPV) devices has yet to be determined, and its origin remains debated. Here, we demonstrate that VOC of small-molecule OPV devices can be improved by controlling the deposition rate of a donor without changing the interfacial energy gap at the donor/acceptor interface. The measurement of external quantum efficiency and electroluminescence spectra facilitates the observation of the existence of charge transfer (CT) states. A simplified approach by reusing the reciprocity relationship for obtaining the properties of the CT states is proposed without introducing complex techniques. We compare experimental and fitting results and propose that reorganization energy is the primary factor in determining VOC instead of either the CT energy or electronic coupling term in bilayer OPV devices. Atomic force microscopy images indicate a weak molecular aggregation when a higher deposition rate is used. The results of temperature-dependent measurements suggest the importance of molecular stacking for the CT properties.

  4. Feature based Weld-Deposition for Additive Manufacturing of Complex Shapes

    Science.gov (United States)

    Panchagnula, Jayaprakash Sharma; Simhambhatla, Suryakumar

    2018-06-01

    Fabricating functional metal parts using Additive Manufacturing (AM) is a leading trend. However, realizing overhanging features has been a challenge due to the lack of support mechanism for metals. Powder-bed fusion techniques like, Selective Laser Sintering (SLS) employ easily-breakable-scaffolds made of the same material to realize the overhangs. However, the same approach is not extendible to deposition processes like laser or arc based direct energy deposition processes. Although it is possible to realize small overhangs by exploiting the inherent overhanging capability of the process or by blinding some small features like holes, the same cannot be extended for more complex geometries. The current work presents a novel approach for realizing complex overhanging features without the need of support structures. This is possible by using higher order kinematics and suitably aligning the overhang with the deposition direction. Feature based non-uniform slicing and non-uniform area-filling are some vital concepts required in realizing the same and are briefly discussed here. This method can be used to fabricate and/or repair fully dense and functional components for various engineering applications. Although this approach has been implemented for weld-deposition based system, the same can be extended to any other direct energy deposition processes also.

  5. Radiofrequency power deposition during magnetic resonance diagnostic examinations

    International Nuclear Information System (INIS)

    Grandolfo, M.; Vecchia, P.

    1988-01-01

    Magnetic Resonance Imaging and Spectroscopy (MRI, MRS) require that subjects be exposed to radiofrequency field, and the corresponding energy absorption leads to tissue heating. The main question, thus, to be considered in connection to safety and health aspects is related to the specific absorption rate (SAR) in the imaged subject and the exposure durations which might put a practical limit on the pulse sequence which can be used. In this paper some models and experimental results for radiofrequency power deposition in MRI and MRS machines are reviewed. Models show that energy dissipation is a function of the frequency, RF incident power density, exposure duration, coupling between the RF coil and the subject, and several properties of the exposed tissue, including conductivity, dielectric constant, specific gravity, size, and orientation relative to the field polarization. The ability of the body's normal thermoregulatory responses to cope with high levels of RF energy deposition must be also taken into account

  6. Wax deposition in crude oil pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Pablo Morelato; Rodrigues, Lorennzo Marrochi Nolding [Universidade Federal do Espirito Santo, Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Engenharia de Petroleo; Romero, Mao Ilich [University of Wyoming, Laramie, WY (United States). Enhanced Oil Recovery Institute], e-mail: mromerov@uwyo.edu

    2010-07-01

    Crude oil is a complex mixture of hydrocarbons which consists of aromatics, paraffins, naphthenics, resins asphaltenes, etc. When the temperature of crude oil is reduced, the heavy components, like paraffin, will precipitate and deposit on the pipe internal wall in the form of a wax-oil gel. The gel deposit consists of wax crystals that trap some amount of oil. As the temperature gets cooler, more wax will precipitate and the thickness of the wax gel will increase, causing gradual solidification of the crude and eventually the oil stop moving inside the offshore pipeline. Crude oil may not be able to be re-mobilized during re-startup. The effective diameter will be reduced with wax deposition, resulting in several problems, for example, higher pressure drop which means additional pumping energy costs, poor oil quality, use of chemical components like precipitation inhibitors or flowing facilitators, equipment failure, risk of leakage, clogging of the ducts and process equipment. Wax deposition problems can become so sever that the whole pipeline can be completely blocked. It would cost millions of dollars to remediate an offshore pipeline that is blocked by wax. Wax solubility decreases drastically with decreasing temperature. At low temperatures, as encountered in deep water production, is easy to wax precipitate. The highest temperature below which the paraffins begins to precipitate as wax crystals is defined as wax appearance temperature (WAT). Deposition process is a complex free surface problem involving thermodynamics, fluid dynamics, mass and heat transfer. In this work, a numerical analysis of wax deposition by molecular diffusion and shear dispersion mechanisms in crude oil pipeline is studied. Diffusion flux of wax toward the wall is estimated by Fick's law of diffusion, in similar way the shear dispersion; wax concentration gradient at the solid-liquid interface is obtained by the volume fraction conservation equation; and since the wax deposition

  7. Impact of biodiesel blend on injector deposit formation

    International Nuclear Information System (INIS)

    Liaquat, A.M.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.

    2014-01-01

    Continued legislative pressure to reduce exhaust emissions from CI (compression ignition) has resulted in the development of advanced fuel injection equipment. This advanced injection system produces higher temperatures and pressures at the injector tip, where deposit formation is initiated. In this research, an endurance test was carried out for 250 h on 2 fuel samples; DF (diesel fuel) as baseline fuel and JB20 (20% jatropha biodiesel and 80% DF) in a single-cylinder CI engine. The effects of JB20 on injector nozzle deposits, engine lubricating oil, and fuel economy and exhaust emissions were investigated during the endurance test. According to the results of the investigation, visual inspection showed some deposit accumulation on injectors for both fuel samples. SEM (scanning electron microscopy) and EDX (energy dispersive X-ray spectroscopy) analysis showed greater carbon deposits on and around the injector tip for JB20 compared to the engine running with DF. Similarly, lubricating oil analysis presented excessive wear metal concentrations and decreased viscosity values when the engine was fueled with JB20. Finally, fuel economy and emission results during the endurance test showed higher BSFC (brake specific fuel consumption) and NO x emissions, and lower HC (hydrocarbons) and CO (carbon monoxide) emissions, for the JB20 blend compared to DF. - Highlights: • Endurance test for 250 h on 2 fuel samples; diesel fuel and JB20. • Investigation on effects of JB20 on the injector deposits and exhaust emissions. • Lubricating oil analysis during endurance test. • SEM (scanning electron microscopy) analysis. • EDX (energy dispersive X-ray spectroscopy) analysis

  8. Depositional architecture and sequence stratigraphy of the Upper Jurassic Hanifa Formation, central Saudi Arabia

    Science.gov (United States)

    El-Sorogy, Abdelbaset; Al-Kahtany, Khaled; Almadani, Sattam; Tawfik, Mohamed

    2018-03-01

    To document the depositional architecture and sequence stratigraphy of the Upper Jurassic Hanifa Formation in central Saudi Arabia, three composite sections were examined, measured and thin section analysed at Al-Abakkayn, Sadous and Maashabah mountains. Fourteen microfacies types were identified, from wackestones to boundstones and which permits the recognition of five lithofacies associations in a carbonate platform. Lithofacies associations range from low energy, sponges, foraminifers and bioclastic burrowed offshoal deposits to moderate lithoclstic, peloidal and bioclastic foreshoal deposits in the lower part of the Hanifa while the upper part is dominated by corals, ooidal and peloidal high energy shoal deposits to moderate to low energy peloidal, stromatoporoids and other bioclastics back shoal deposits. The studied Hanifa Formation exhibits an obvious cyclicity, distinguishing from vertical variations in lithofacies types. These microfacies types are arranged in two third order sequences, the first sequence is equivalent to the lower part of the Hanifa Formation (Hawtah member) while the second one is equivalent to the upper part (Ulayyah member). Within these two sequences, there are three to six fourth-order high frequency sequences respectively in the studied sections.

  9. Effect of deposition temperature on the properties of ZnO-doped indium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Cho, Shin Ho [Silla University, Busan (Korea, Republic of)

    2014-05-15

    ZnO-doped In{sub 2}O{sub 3} (ZIO) thin films were deposited on quartz substrates at various deposition temperatures by radio-frequency magnetron sputtering. All the ZIO thin films showed a significant dependence on the deposition temperature. A strong preferential growth orientation was observed for all samples except the one deposited at 25 .deg. C. As the deposition temperature was increased, the crystalline orientation of the main (222) plane did not change, but the full width at half maximum got smaller and the intensity increased rapidly. The ZIO thin film deposited at 100 .deg. C showed the highest figure of merit with an average particle size of 60 nm, a bandgap energy of 3.51 eV, an electrical resistivity of 2.63 x 10{sup -3} Ωcm, and an electron concentration of 4.99 x 10{sup 20} cm{sup -3}. A blue-shift of optical bandgap energy was observed with increasing deposition temperature. These results suggest that the optimum deposition temperature for growing high-quality ZIO films is 100 .deg. C and that the structural, optical, and electrical properties of ZIO thin films can be modulated by controlling the deposition temperature.

  10. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Sarkar, D.K., E-mail: dsarkar@uqac.ca; Chen, X-Grant

    2015-02-01

    Graphical abstract: - Highlights: • Fabrication of superhydrophobic ZnO thin films surfaces by electrophoretic deposition process on aluminum substrates. • Effect of bath temperature on the physical and superhydrophobic properties of thin films. • The water contact angle of 155° ± 3 with roll off property has been observed on the film that was grown at bath temperatures of 50 °C. • The activation energy for electrophoretic deposition of SA-functionalized ZnO nanoparticle is calculated to be 0.50 eV. - Abstract: Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  11. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Alvarez, F.; Reinoso, M.; Huck, H.; Rosenbusch, M.

    2010-01-01

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp 2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  12. Electro-spark deposition technology

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-12-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The ESD process was developed to produce coatings for use in severe environments where most other coatings fail. Because of the exceptional damage resistance of these coatings, and the versatility of the process to apply a wide variety of alloys, intermetallics, and cermets to metal surfaces, the ESD process has been designated critical to the life and economy of the advanced fossil energy systems as the higher temperatures and corrosive environments exceed the limits of known structural materials to accommodate the service conditions. Developments include producing iron aluminide-based coatings with triple the corrosion resistance of the best previous Fe{sub 3}Al coatings, coatings with refractory metal diffusion barriers and multi layer coatings for achieving functionally gradient properties between the substrate and the surface. A new development is the demonstration of advanced aluminide-based ESD coatings for erosion and wear applications. One of the most significant breakthroughs to occur in the last dozen years is the discovery of a process regime that yields an order of magnitude increase in deposition rates and achievable coating thicknesses. Achieving this regime has required the development of advanced ESD electronic capabilities. Development is now focused on further improvements in deposition rates, system reliability when operating at process extremes, and economic competitiveness.

  13. Preliminary results on adhesion improvement using Ion Beam Sputtering Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yonggi; Kim, Bomsok; Lee, Jaesang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Sputtering is an established technique for depositing films with smooth surfaces and interfaces and good thick control. Ejection of articles from a condensed matter due to impingement of high energy particles, termed as sputtering was observed as early as in 1852, however, it is only recently that the complex process of sputtering system. Coating adhesion and environmental stability of the ion beam sputtering deposition coatings performed very well. High-energy high-current ion beam thin film synthesis of adhesion problems can be solved by using. Enhancement of adhesion in thin film synthesis, using high energy and high current ion beam, of mobile phones, car parts and other possible applications in the related industry Alternative technology of wet chrome plating, considering environment and unit cost, for car parts and esthetic improvement on surface of domestic appliances.

  14. Preliminary results on adhesion improvement using Ion Beam Sputtering Deposition

    International Nuclear Information System (INIS)

    Kim, Yonggi; Kim, Bomsok; Lee, Jaesang

    2013-01-01

    Sputtering is an established technique for depositing films with smooth surfaces and interfaces and good thick control. Ejection of articles from a condensed matter due to impingement of high energy particles, termed as sputtering was observed as early as in 1852, however, it is only recently that the complex process of sputtering system. Coating adhesion and environmental stability of the ion beam sputtering deposition coatings performed very well. High-energy high-current ion beam thin film synthesis of adhesion problems can be solved by using. Enhancement of adhesion in thin film synthesis, using high energy and high current ion beam, of mobile phones, car parts and other possible applications in the related industry Alternative technology of wet chrome plating, considering environment and unit cost, for car parts and esthetic improvement on surface of domestic appliances

  15. Dry deposition on smooth and rough urban surfaces

    International Nuclear Information System (INIS)

    Roed, J.

    1987-01-01

    Following the Chernobyl accident, dry deposition velocities on smooth surfaces indoors and outdoors have been measured in Denmark. Internal wall surfaces gave deposition velocities of 0.0008-0.0009 cm/s for 131I and 0.0001-0.0002 cm/s for 134Cs and 103Ru. Internal floor surfaces gave higher values for the deposition velocities: for 131I, 0.002 cm/s and for 134Cs and 103Ru, 0.0005-0.0013 cm/s. The deposition velocities on vertical and horizontal external surfaces were nearly equal. Those for 131I were found as 0.02-0.03 cm/s and for 137Cs as 0.001-0.002 cm/s. On external rough surfaces such as grass and corrugated roof material the deposition velocities for 134Cs and 103Ru were 0.03-0.05 cm/s. For iodine, however, deposition velocities were higher for clipped grass (2 cm/s) than for roof material (0.2-0.4 cm/s). The results show that internal deposition velocities are considerably lower than those on external smooth surfaces, and that the deposition velocities on rough surfaces are an order of magnitude higher than on smooth surfaces. It was also shown that the deposition velocities of iodine are considerably higher than those of cesium and ruthenium. This work was supported by EEC Radiation Protection Programme No B16-107-DK and by NKA, The Nordic Liaison Committee for Atomic Energy. (author)

  16. Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass.

    Science.gov (United States)

    Wright, Katherine E; Williamson, Charles; Grasby, Stephen E; Spear, John R; Templeton, Alexis S

    2013-01-01

    We combined free enenergy calculations and metagenomic analyses of an elemental sulfur (S(0)) deposit on the surface of Borup Fiord Pass Glacier in the Canadian High Arctic to investigate whether the energy available from different redox reactions in an environment predicts microbial metabolism. Many S, C, Fe, As, Mn, and [Formula: see text] oxidation reactions were predicted to be energetically feasible in the deposit, and aerobic oxidation of S(0) was the most abundant chemical energy source. Small subunit ribosomal RNA (SSU rRNA) gene sequence data showed that the dominant phylotypes were Sulfurovum and Sulfuricurvum, both Epsilonproteobacteria known to be capable of sulfur lithotrophy. Sulfur redox genes were abundant in the metagenome, but sox genes were significantly more abundant than reverse dsr (dissimilatory sulfite reductase)genes. Interestingly, there appeared to be habitable niches that were unoccupied at the depth of genome coverage obtained. Photosynthesis and [Formula: see text] oxidation should both be energetically favorable, but we found few or no functional genes for oxygenic or anoxygenic photosynthesis, or for [Formula: see text] oxidation by either oxygen (nitrification) or nitrite (anammox). The free energy, SSU rRNA gene and quantitative functional gene data are all consistent with the hypothesis that sulfur-based chemolithoautotrophy by Epsilonproteobacteria (Sulfurovum and Sulfuricurvum) is the main form of primary productivity at this site, instead of photosynthesis. This is despite the presence of 24-h sunlight, and the fact that photosynthesis is not known to be inhibited by any of the environmental conditions present. This is the first time that Sulfurovum and Sulfuricurvum have been shown to dominate a sub-aerial environment, rather than anoxic or sulfidic settings. We also found that Flavobacteria dominate the surface of the sulfur deposits. We hypothesize that this aerobic heterotroph uses enough oxygen to create a microoxic

  17. Carbon nanotube forests growth using catalysts from atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Bhardwaj, Sunil [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy); Sincrotone Trieste S.C.p.A., s.s. 14, km 163.4, I-34149 Trieste (Italy); Cepek, Cinzia [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy)

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  18. Effect of ion beam irradiation on the structure of ZnO films deposited by a dc arc plasmatron.

    Science.gov (United States)

    Penkov, Oleksiy V; Lee, Heon-Ju; Plaksin, Vadim Yu; Ko, Min Gook; Joa, Sang Beom; Yim, Chan Joo

    2008-02-01

    The deposition of polycrystalline ZnO film on a cold substrate was performed by using a plasmatron in rough vacuum condition. Low energy oxygen ion beam generated by a cold cathode ion source was introduced during the deposition process. The change of film property on the ion beam energy was checked. It is shown that irradiation by 200 eV ions improves crystalline structure of the film. Increasing of ion beam energy up to 400 eV leads to the degradation of a crystalline structure and decreases the deposition rate.

  19. Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method

    Energy Technology Data Exchange (ETDEWEB)

    Laatar, F., E-mail: fakher8laatar@gmail.com [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Harizi, A. [Photovoltaic and Semiconductor Materials Laboratory, Engineering Industrial Department, ENIT, Tunis El Manar University, BP 37, Le Belvédère, 1002 Tunis (Tunisia); Smida, A. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Hassen, M. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Higher Institute of Applied Science and Technology of Sousse, City Taffala (Ibn Khaldun), 4003 Sousse (Tunisia); Ezzaouia, H. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-06-15

    Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphology and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E{sub o}), dispersion energy (E{sub d}), and static refractive index (n{sub o}) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ{sub e}) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.

  20. Texture orientation of glancing angle deposited copper nanowire arrays

    International Nuclear Information System (INIS)

    Alouach, H.; Mankey, G.J.

    2004-01-01

    Self-assembled copper nanowires were deposited on native oxide Si(100) substrates using glancing angle deposition with and without substrate rotation. Wire morphology, texture and crystallographic orientation are strongly dependent on the deposition parameters. A method for determining the preferred crystal orientation is described. This orientation is found to be different from what is expected from the geometric orientation of the wires. For wires deposited without substrate rotation, the face-centered-cubic (fcc)(111) crystal orientation, which corresponds to the close-packed, low surface energy (111) plane of copper, lies between the long axis of the wire and that normal to the substrate. X-ray diffraction data show that the wires exhibit bundling behavior perpendicular to the plane of incidence. For samples deposited with azimuthal rotation of the substrate, the fcc(111) directions in the wires are evenly distributed in a cone around the long axis of the wires, which point normal to the substrate. When the substrate is rotated during deposition at an angle of 75 deg., the wires exhibit a strong fcc(220) texture. These observations show that wires deposited with substrate rotation are highly textured and have random orientations in the plane of the substrate

  1. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation

    International Nuclear Information System (INIS)

    Rebollo P, B.

    2001-01-01

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp 2 and sp 3 bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  2. Numerical Simulation of Molten Flow in Directed Energy Deposition Using an Iterative Geometry Technique

    Science.gov (United States)

    Vincent, Timothy J.; Rumpfkeil, Markus P.; Chaudhary, Anil

    2018-06-01

    The complex, multi-faceted physics of laser-based additive metals processing tends to demand high-fidelity models and costly simulation tools to provide predictions accurate enough to aid in selecting process parameters. Of particular difficulty is the accurate determination of melt pool shape and size, which are useful for predicting lack-of-fusion, as this typically requires an adequate treatment of thermal and fluid flow. In this article we describe a novel numerical simulation tool which aims to achieve a balance between accuracy and cost. This is accomplished by making simplifying assumptions regarding the behavior of the gas-liquid interface for processes with a moderate energy density, such as Laser Engineered Net Shaping (LENS). The details of the implementation, which is based on the solver simpleFoam of the well-known software suite OpenFOAM, are given here and the tool is verified and validated for a LENS process involving Ti-6Al-4V. The results indicate that the new tool predicts width and height of a deposited track to engineering accuracy levels.

  3. Numerical Simulation of Molten Flow in Directed Energy Deposition Using an Iterative Geometry Technique

    Science.gov (United States)

    Vincent, Timothy J.; Rumpfkeil, Markus P.; Chaudhary, Anil

    2018-03-01

    The complex, multi-faceted physics of laser-based additive metals processing tends to demand high-fidelity models and costly simulation tools to provide predictions accurate enough to aid in selecting process parameters. Of particular difficulty is the accurate determination of melt pool shape and size, which are useful for predicting lack-of-fusion, as this typically requires an adequate treatment of thermal and fluid flow. In this article we describe a novel numerical simulation tool which aims to achieve a balance between accuracy and cost. This is accomplished by making simplifying assumptions regarding the behavior of the gas-liquid interface for processes with a moderate energy density, such as Laser Engineered Net Shaping (LENS). The details of the implementation, which is based on the solver simpleFoam of the well-known software suite OpenFOAM, are given here and the tool is verified and validated for a LENS process involving Ti-6Al-4V. The results indicate that the new tool predicts width and height of a deposited track to engineering accuracy levels.

  4. Calculated microdose spectra for intermediate energy neutrons (1 to 100 keV)

    International Nuclear Information System (INIS)

    Al-Affan, I.A.M.; Watt, D.E.

    1983-01-01

    Basic formulae for calculation of energy deposition events due to insiders, starters, stoppers and crossers, using the continuous slowing down approximation have been modified to allow for the enhanced energy deposition in spherical volumes due to elastic scattering interactions which reduce the penetration depth of the charged particle recoils. Energy deposition spectra have been obtained for energies of 1, 10, 50, 100 keV in 0.2 μm and 1 μm tissue-equivalent spheres. From these, frequency and dose distributions in lineal energy and in specific energy density have been calculated. Also calculated for different neutron energies are values of zeta, the energy average of event size, as a function of the diameter of the sensitive site. The structure of the energy event distributions can be interpreted in terms of the basic physics. The effect of the modifications to the basic formulae is to increase the number of energy deposition events due to insiders and to decrease the number of starters, stoppers and crossers. The degree of the effect increases with decreasing neutron energy, increasing sphere size, and the change is most significant for low energy deposition events. (author)

  5. Calculated microdose spectra for intermediate energy neutrons (1 to 100 keV)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Affan, I.A.M.; Watt, D.E. (Dundee Univ. (UK). Dept. of Medical Biophysics); Colautti, P.; Talpo, G. (Laboratori Nazionali dell' Infn, 35020, Legnaro (Padova) (Italy))

    1983-01-01

    Basic formulae for calculation of energy deposition events due to insiders, starters, stoppers and crossers, using the continuous slowing down approximation have been modified to allow for the enhanced energy deposition in spherical volumes due to elastic scattering interactions which reduce the penetration depth of the charged particle recoils. Energy deposition spectra have been obtained for energies of 1, 10, 50, 100 keV in 0.2 ..mu..m and 1 ..mu..m tissue-equivalent spheres. From these, frequency and dose distributions in lineal energy and in specific energy density have been calculated. Also calculated for different neutron energies are values of zeta, the energy average of event size, as a function of the diameter of the sensitive site. The structure of the energy event distributions can be interpreted in terms of the basic physics. The effect of the modifications to the basic formulae is to increase the number of energy deposition events due to insiders and to decrease the number of starters, stoppers and crossers. The degree of the effect increases with decreasing neutron energy, increasing sphere size, and the change is most significant for low energy deposition events.

  6. Fabrication of electrophoretically deposited, self-assembled three-dimensional porous Al/CuO nanothermite films for highly enhanced energy output

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yanjun [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Li, Xueming, E-mail: xuemingli@cqu.edu.cn [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Shu, Yuanjie [Xi’an Modern Chemistry Research Institute, Xi’an 71000 (China); Guo, Xiaogang; Bao, Hebin; Li, Wulin; Zhu, Yuhua; Li, Yu; Huang, Xinyue [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2017-06-15

    A novel porous Al/CuO nanothermite was successfully synthetized by utilizing the controllable electrophoretic deposition (EPD) method. The morphology and phase composition of the CuO and Al/CuO films were investigated in detail by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). When the pH of the solution was 2.0, the surface area of the Al/CuO film was able to reach 495.6 m{sup 2}/g, which was much higher than that of films grown at pH 1.0, 3.0 or 4.0. Meanwhile, the combustion performance and energy outputs were coincident with the results mentioned above. At pH 2.0, bright flames were observed after ignition, and the released heat of the nanothermite reaction reached 3.49 kJ/g, exhibiting excellent combustion performance and enhanced energy output. - Highlights: • Porous CuO films were synthesized without using templates. • The self-assembled porous Al/CuO nanothermite had a specific surface area of 495.6 m{sup 2}/g. • The energy output and combustion performance of Al/CuO nanothermite were significantly enhanced.

  7. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  8. Theoretical investigation into the feasibility to deposit RF energy centrally in the head-and-neck region

    International Nuclear Information System (INIS)

    Paulides, Margarethus M.; Vossen, Stefan H.J.A.; Zwamborn, Adrianus P.M.; Rhoon, Gerard C. van

    2005-01-01

    Purpose: To investigate the ability to deposit radiofrequency energy centrally in the neck as a function of antenna positions, number of antennas, and operating frequency. Methods and Materials: Power absorption (PA) distributions in a realistic model of the head-and-neck anatomy are calculated in which the head model is irradiated by an array of dipole antennas. The relative PA distributions corresponding to different setups are visualized and analyzed using the ratio of the average PA (aPA) in the target and neck region. Results: Both the PA distributions and aPA ratios indicate an optimal focusing ability of the setups (i.e., the ability to direct energy efficiently into the target region), between 400 and 600 MHz. In this frequency band, the focusing ability depends only moderately on the size of the neck. Finally, it is found that the focusing ability at 433 MHz is increased significantly by increasing the number of antenna elements. Conclusions: The optimal frequency is found to be highly dependent on the size of the target volume; thus, a single optimum is hard to define. However, future clinical research will focus on 433 MHz based on the optimal range of frequencies, as found in this study

  9. Effect of the Ion Mass and Energy on the Response of 70-nm SOI Transistors to the Ion Deposited Charge by Direct Ionization

    International Nuclear Information System (INIS)

    Raine, M.; Gaillardin, M.; Sauvestre, J.E.; Flament, O.; Bournel, A.; Aubry-Fortuna, V.

    2010-01-01

    The response of SOI transistors under heavy ion irradiation is analyzed using Geant4 and Synopsys Sentaurus device simulations. The ion mass and energy have a significant impact on the radial ionization profile of the ion deposited charge. For example, for an identical LET, the higher the ion energy per nucleon, the wider the radial ionization track. For a 70-nm SOI technology, the track radius of high energy ions (≥ 10 MeV/a) is larger than the transistor sensitive volume; part of the ion charge recombines in the highly doped source or drain regions and does not participate to the transistor electric response. At lower energy (≤ 10 MeV/a), as often used for ground testing, the track radius is smaller than the transistor sensitive volume, and the entire charge is used for the transistor response. The collected charge is then higher, corresponding to a worst-case response of the transistor. Implications for the hardness assurance of highly-scaled generations are discussed. (authors)

  10. Growth of different phases and morphological features of MnS thin films by chemical bath deposition: Effect of deposition parameters and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com; Maghraoui-Meherzi, Hager

    2017-03-15

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferential orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like. - Graphical Abstract: We report the preparation of different phases of manganese sulfide thin films (γ, β and α-MnS) by chemical bath deposition method. The effects of deposition parameters such as deposition time and temperature, concentrations of precursors and multi-layer deposition on MnS thin films structure and morphology were investigated. The influence of thermal annealing under nitrogen atmosphere at different temperature on MnS properties was also studied. Different manganese precursors as well as different complexing agent were also used. - Highlights: • γ and β-MnS films were deposited on substrate using the chemical bath deposition. • The effect of deposition parameters on MnS film properties has been investigated. • Multi-layer deposition was also studied to increase film thickness. • The effect of annealing under N{sub 2} at different temperature was investigated.

  11. An analytical–numerical model of laser direct metal deposition track and microstructure formation

    International Nuclear Information System (INIS)

    Ahsan, M Naveed; Pinkerton, Andrew J

    2011-01-01

    Multiple analytical and numerical models of the laser metal deposition process have been presented, but most rely on sequential solution of the energy and mass balance equations or discretization of the problem domain. Laser direct metal deposition is a complex process involving multiple interdependent processes which can be best simulated using a fully coupled mass-energy balance solution. In this work a coupled analytical–numerical solution is presented. Sub-models of the powder stream, quasi-stationary conduction in the substrate and powder assimilation into the area of the substrate above the liquidus temperature are combined. An iterative feedback loop is used to ensure mass and energy balances are maintained at the melt pool. The model is verified using Ti–6Al–4V single track deposition, produced with a coaxial nozzle and a diode laser. The model predictions of local temperature history, the track profile and microstructure scale show good agreement with the experimental results. The model is a useful industrial aid and alternative to finite element methods for selecting the parameters to use for laser direct metal deposition when separate geometric and microstructural outcomes are required

  12. Ion - beam assisted process in the physical deposition of organic thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Dimov, D; Spassova, E; Assa, J; Danev, G [Acad. J .Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.109, 1113 Sofia (Bulgaria); Georgiev, A, E-mail: dean@clf.bas.b [University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd., 1756 Sofia (Bulgaria)

    2010-04-01

    A novel method was developed for physical deposition of thin polyimide layers by applying an argon plasma assisted process. The influence was investigated of the plasma on the combined molecular flux of the two thermally evaporated precursors - oxydianiline and pyromellitic dianhydride. The effects observed on the properties of the deposited films are explained with the increased energy of the precursor molecules resulting from the ion-molecular collisions. As could be expected, molecules with higher energy possess higher mobility and thus determine the modification of the films structure and their electrical properties.

  13. Spatial distribution of the X- and γ- rays induced energy deposition on semi-insulating GaAs:Cr based pixel radiation detector

    International Nuclear Information System (INIS)

    Meneses Gonzalez, Annie; Leyva Fabelo, Antonio; Pinnera Hernandez, Ibrahin; Cruz Inclan, Carlos M.; Abreu Alfonso, Yamiel; Chelkov, Georgy; Zhemchugov, Alexey

    2015-01-01

    Radiation detectors based on Cr compensated GaAs are characterized by high resistivity and good electron transport properties. These characteristics, its high atomic number and good radiation hardness, make GaAs:Cr a promising semiconductor detector within a wide photon energy range. The excellent imaging performance of these detectors for medical and other several applications are already reported in the literature. In this study, the spatial distributions of photon radiation energy deposition on a GaAs:Cr pixel detector with the real device dimensions (900 μm thick, pixels of 45x45 μm 2 and pitch of 55 μm) are presented. The charge carrier distribution profiles generated by the incident photons was additionally determined and discussed. Using the calculated weighting potential for the detector was possible to estimate the percent of charge carriers that shall contribute to the signal generated in the device electrodes. All the calculations were made for the typical photon energies of 241 Am and the energy corresponding to the K α1 characteristic lines of Mo. The MCNPX code system and ARCHIMEDES program were used for mathematical modeling of radiation transport in matter and for semiconductor device simulations respectively. (Author)

  14. Growth, structural, optical and electrical study of ZnS thin films deposited by solution growth technique (SGT)

    Energy Technology Data Exchange (ETDEWEB)

    Sadekar, H K [Arts, Commerce and Science college, Sonai 414105 (M.S.) (India); Thin film and Nanotechnology Laboratory, Department of Physics, Dr. B.A.M. University, Aurangabad 431004 (M.S.) (India); Deshpande, N G; Gudage, Y G; Ghosh, A; Chavhan, S D; Gosavi, S R [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. B.A.M. University, Aurangabad 431004 (M.S.) (India); Sharma, Ramphal [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. B.A.M. University, Aurangabad 431004 (M.S.) (India)

    2008-04-03

    ZnS thin films have been deposited onto glass substrates at temperature 90 deg. C by solution growth technique (SGT). The deposition parameters were optimized. Triethanolamine (TEA) was used as a complexing agent for uniform deposition of the thin films. The elemental composition of the film was confirmed by energy dispersive analysis by X-ray (EDAX) technique. Structure and surface morphology of as-deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), atomic force microscopy (AFM), respectively. XRD patterns reveal that as-deposited thin films were amorphous in nature; while the obtained precipitate powder was polycrystalline in nature. SEM results revealed that deposited ZnS material has {approx}120 {+-} 20 nm average grain size and the spherical grains are distributed over the entire glass substrate. Low surface roughness was found to be 2.7 nm from AFM studies. Transmission spectra indicate a high transmission coefficient ({approx}75%) with direct band gap energy equal to 3.72 eV while indirect band gap was found to be 3.45 eV. A photoluminescence (PL) study of the ZnS at room temperature (300 K) indicates a strong luminescence band at energy 2.02 eV.

  15. 20 CFR 703.306 - Kinds of negotiable securities that may be deposited; conditions of deposit; acceptance of deposits.

    Science.gov (United States)

    2010-04-01

    ... the Act in the amount fixed by the Office under the regulations in this part shall deposit any... deposited; conditions of deposit; acceptance of deposits. 703.306 Section 703.306 Employees' Benefits... negotiable securities that may be deposited; conditions of deposit; acceptance of deposits. A self-insurer or...

  16. Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions.

    Science.gov (United States)

    Jin, Chao; Ren, Carolyn L; Emelko, Monica B

    2016-04-19

    It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces.

  17. Expanding atmospheric acid deposition in China from the 1990s to the 2010s

    Science.gov (United States)

    Yu, Haili; Wang, Qiufeng

    2017-04-01

    Atmospheric acid deposition is considered a global environmental issue. China has been experiencing serious acid deposition, which is anticipated to be more serious with the country's economic development and increasing consumption of fossil fuels in recent decades. By collecting nationwide data on pH and concentrations of sulfate (SO42-) and nitrate (NO3-) in precipitation between 1980 and 2014 in China, we explored the spatiotemporal variations of precipitation acid deposition (bulk deposition) and their influencing factors. Our results showed that average precipitation pH values were 4.86 and 4.84 in the 1990s and 2010s, respectively. This suggests that precipitation acid deposition in China has not seriously changes. Average SO42- deposition declined from 30.73 to 28.61 kg S ha-1 yr-1 but average NO3- deposition increased from 4.02 to 6.79 kg N ha-1 yr-1. Specifically, the area of severe precipitation acid deposition in southern China has shrunk to some extent as a result of decreasing pollutant emissions, whereas the area of moderate precipitation acid deposition has expanded in northern China, associated with rapid industrial and transportation development. Significant positive correlations have been found between precipitation acid deposition, energy consumption, and rainfall. Our findings provide a comprehensive evaluation of the spatiotemporal dynamics of precipitation acid deposition in China over past three decades, and confirm the idea that strategies implemented to save energy and reduce pollutant emissions in China have been effective in alleviating precipitation acid deposition. These findings might be used to demonstrate how developing countries could achieve economic development and environmental protection through the implementation of advanced technologies to reduce pollutant emissions.

  18. The distribution on trees of dry deposited material from the Chernobyl accident

    International Nuclear Information System (INIS)

    Roed, J.

    1988-01-01

    The distribution of material from the Chernobyl accident that has been dry deposited on forest trees near Roskilde (Denmark) and on trees in a suburban area of Roskilde are investigated. The dry deposition velocities on the plan-projected area covered by the trees are found and compared with those on paved surfaces. The conclusion is that the deposited material is distributed fairly uniformly on the trees, and that the deposition velocities on trees are more than 10 times higher than on paved surfaces. A bulk deposition constant is defined and proposed to be used for modelling the deposition on trees in an urban environment. This work was supported by the EEC Radiation Protection Programme under contract No. B16-107-DK and by NKA, the Nordic Liaison Committee for Atomic Energy

  19. Tsunami deposits

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidelines on tsunami deposit survey in JAPAN. In order to prepare the guideline of tsunami deposits survey and evaluation and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, (2) field survey on tsunami deposit, and (3) designing the analysis code of sediment transport due to tsunami. As to (1), we organize the information gained about tsunami deposits in the database. As to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. In addition, as to (3), we design the experimental instrument for hydraulic experiment on sediment transport and sedimentation due to tsunamis. These results are reflected in the guideline on the tsunami deposits survey and evaluation. (author)

  20. Tsunami deposits

    International Nuclear Information System (INIS)

    2013-01-01

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidelines on tsunami deposit survey in JAPAN. In order to prepare the guideline of tsunami deposits survey and evaluation and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, (2) field survey on tsunami deposit, and (3) designing the analysis code of sediment transport due to tsunami. As to (1), we organize the information gained about tsunami deposits in the database. As to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. In addition, as to (3), we design the experimental instrument for hydraulic experiment on sediment transport and sedimentation due to tsunamis. These results are reflected in the guideline on the tsunami deposits survey and evaluation. (author)

  1. Thermal barrier coatings of rare earth materials deposited by electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhenhua [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He Limin, E-mail: he_limin@yahoo.co [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Chen Xiaolong; Zhao Yu [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Cao Xueqiang, E-mail: xcao@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-10-15

    Thermal barrier coatings (TBCs) have very important applications in gas turbines for higher thermal efficiency and protection of components at high temperature. TBCs of rare earth materials such as lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7}, LZ), lanthanum cerate (La{sub 2}Ce{sub 2}O{sub 7}, LC), lanthanum cerium zirconate (La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7}, LZ7C3) were prepared by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, cross-sectional morphology and cyclic oxidation behavior of these coatings were studied. These coatings have partially deviated from their original compositions due to the different evaporation rates of oxides, and the deviation could be reduced by properly controlling the deposition condition. A double ceramic layer-thermal barrier coatings (DCL-TBCs) of LZ7C3 and LC could also be deposited with a single LZ7C3 ingot by properly controlling the deposition energy. LaAlO{sub 3} is formed due to the chemical reaction between LC and Al{sub 2}O{sub 3} in the thermally grown oxide (TGO) layer. The failure of DCL-TBCs is a result of the sintering-induced of LZ7C3 coating and the chemical incompatibility of LC and TGO. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL-TBCs are an important development direction of TBCs.

  2. A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Molina, Rafael [Departamento de Fisica, Centro de Investigacion en Optica y Nanofisica (CIOyN), Universidad de Murcia, E-30100 Murcia (Spain); Abril, Isabel [Departament de Fisica Aplicada, Universitat d' Alacant, E-03080 Alacant (Spain); Heredia-Avalos, Santiago [Departament de Fisica, Enginyeria de Sistemes i Teoria del Senyal, Universitat d' Alacant, E-03080 Alacant (Spain); Kyriakou, Ioanna; Emfietzoglou, Dimitris, E-mail: rgm@um.es [Medical Physics Laboratory, University of Ioannina Medical School, GR-45110 Ioannina (Greece)

    2011-10-07

    We have evaluated the spatial distribution of energy deposition by proton beams in liquid water using the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids), which combines molecular dynamics and Monte Carlo techniques and includes the main interaction phenomena between the projectile and the target constituents: (i) the electronic stopping force due to energy loss to target electronic excitations, including fluctuations due to the energy-loss straggling, (ii) the elastic scattering with the target nuclei, with their corresponding energy loss and (iii) the dynamical changes in projectile charge state due to electronic capture and loss processes. An important feature of SEICS is the accurate account of the excitation spectrum of liquid water, based on a consistent solid-state description of its energy-loss-function over the whole energy and momentum space. We analyse how the above-mentioned interactions affect the depth distribution of the energy delivered in liquid water by proton beams with incident energies of the order of several MeV. Our simulations show that the position of the Bragg peak is determined mainly by the stopping power, whereas its width can be attributed to the energy-loss straggling. Multiple elastic scattering processes contribute slightly only at the distal part of the Bragg peak. The charge state of the projectiles only changes when approaching the end of their trajectories, i.e. near the Bragg peak. We have also simulated the proton-beam energy distribution at several depths in the liquid water target, and found that it is determined mainly by the fluctuation in the energy loss of the projectile, evaluated through the energy-loss straggling. We conclude that a proper description of the target excitation spectrum as well as the inclusion of the energy-loss straggling is essential in the calculation of the proton beam depth-dose distribution.

  3. A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2011-01-01

    We have evaluated the spatial distribution of energy deposition by proton beams in liquid water using the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids), which combines molecular dynamics and Monte Carlo techniques and includes the main interaction phenomena between the projectile and the target constituents: (i) the electronic stopping force due to energy loss to target electronic excitations, including fluctuations due to the energy-loss straggling, (ii) the elastic scattering with the target nuclei, with their corresponding energy loss and (iii) the dynamical changes in projectile charge state due to electronic capture and loss processes. An important feature of SEICS is the accurate account of the excitation spectrum of liquid water, based on a consistent solid-state description of its energy-loss-function over the whole energy and momentum space. We analyse how the above-mentioned interactions affect the depth distribution of the energy delivered in liquid water by proton beams with incident energies of the order of several MeV. Our simulations show that the position of the Bragg peak is determined mainly by the stopping power, whereas its width can be attributed to the energy-loss straggling. Multiple elastic scattering processes contribute slightly only at the distal part of the Bragg peak. The charge state of the projectiles only changes when approaching the end of their trajectories, i.e. near the Bragg peak. We have also simulated the proton-beam energy distribution at several depths in the liquid water target, and found that it is determined mainly by the fluctuation in the energy loss of the projectile, evaluated through the energy-loss straggling. We conclude that a proper description of the target excitation spectrum as well as the inclusion of the energy-loss straggling is essential in the calculation of the proton beam depth-dose distribution.

  4. Electrophoretic Deposition of Gallium with High Deposition Rate

    Directory of Open Access Journals (Sweden)

    Hanfei Zhang

    2014-12-01

    Full Text Available In this work, electrophoretic deposition (EPD is reported to form gallium thin film with high deposition rate and low cost while avoiding the highly toxic chemicals typically used in electroplating. A maximum deposition rate of ~0.6 μm/min, almost one order of magnitude higher than the typical value reported for electroplating, is obtained when employing a set of proper deposition parameters. The thickness of the film is shown to increase with deposition time when sequential deposition is employed. The concentration of Mg(NO32, the charging salt, is also found to be a critical factor to control the deposition rate. Various gallium micropatterns are obtained by masking the substrate during the process, demonstrating process compatibility with microfabrication. The reported novel approach can potentially be employed in a broad range of applications with Ga as a raw material, including microelectronics, photovoltaic cells, and flexible liquid metal microelectrodes.

  5. Geological principles of exploration for sandstone-hosted uranium deposits

    International Nuclear Information System (INIS)

    Le Roux, J.P.

    1982-10-01

    Although the importance of sandstone-hosted uranium deposits has seemingly faded in recent years due to the discovery of large, high -grade deposits elsewhere, a forecasted energy shortage in the near future will probably necessitate a new look at sedimentary basins as a source of uranium. Back-arc basins adjacent to calcalkaline source areas are especially favourable if they are filled with fluvial, post-Devonian sediments. Syn- and post-depositional tectonics play an important role in the sedimentation-mineralisation process and should be investigated. The oxidation-reduction state of the sandstones is a valid prospecting tool. Sedimentological environments govern the permeability and vegetal matter content of sandstones and directly control uranium mineralisation

  6. Chemical bath ZnSe thin films: deposition and characterisation

    Science.gov (United States)

    Lokhande, C. D.; Patil, P. S.; Ennaoui, A.; Tributsch, H.

    1998-01-01

    The zinc selenide (ZnSe) thin films have been deposited by a simple and inexpensive chemical bath deposition (CBD) method. The selenourea was used as a selenide ion source. The ZnSe films have been characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDAX), Rutherford back scattering (RBS), and optical absorption. The as-deposited ZnSe films on various substrates are found to be amorphous and contain O2 and N2 in addition to Zn and Se. The optical band gap of the film is estimated to be 2.9 eV. The films are photoactive as evidenced by time resolved microwave conductivity (TRMC).

  7. Optical properties of electrochemically deposited CuInSe sub 2 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, C; Herrero, J [Inst. de Energias Renovables (CIEMAT), Madrid (Spain)

    1991-11-01

    Polycrystalline thin films of CuInSe{sub 2} within a wide composition range have been electrochemically deposited. Their optical properties in the near-infrared and visible range, 400-2000 nm, have been studied in relation to the deposition potential and film thickness. An absorption coefficient ({alpha}) as high as 10{sup 5} cm{sup -1} is observed at short wavelength ({lambda} < 700 nm), but near the band edge {alpha} has a value about 10{sup 4} cm{sup -1}. The observed absorption coefficient variation is due to an allowed direct transition with an energy in the range 0.88-0.96 eV and an additional forbidden direct transition with an energy in the range 1.32-1.41 eV, where the absorption coefficient depends on the deposition potential, and the possible phase nature of the material, with band gap narrowing when the potential becomes anodic. The values of {alpha} and transition energies also depend on the film thickness for samples up to 0.6 {mu}m thick. (orig.).

  8. Pulsed 1064 nm Nd-YAG Laser Deposition of Titanium on Silicon in a Nitrogen Environment

    Directory of Open Access Journals (Sweden)

    Wilson Garcia

    1999-12-01

    Full Text Available Pulsed laser deposition (PLD technique was demonstrated for the deposition of titanium nitride (TiN thin films on Si (100 substrates. A 1064 nm pulsed Nd-YAG laser is focused on a titanium (99.5% target in a nitrogen environment to generate the atomic flux needed for the film deposition. Spectroscopic analysis of the plasma emission indicates the presence of atomic titanium and nitrogen, which are the precursors of TiN. Images of the films grown at different laser pulse energies show an increase in the number and size of deposited droplets and clusters with increasing laser pulse energy. A decrease in cluster and droplet size is also observed, with an increase in substrate temperature. EDS data show an increase in the titanium peak relative to the silicon as the ambient nitrogen pressure is decreased. An increase in deposition time was found to result in large clusters and irregularly shaped structures on the substrate. Post-deposition annealing of the samples enhanced the crystallinity of the film.

  9. Electron-energy deposition in skin and thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Mei, G.T.Y.

    1986-01-01

    The primary object of this study was to investigate the relations between dosimeter response and skin dose resulting from beta-particle irradiation. This object was achieved by combining evaluation of beta-source energy spectra, calculation of flux energy spectra, and employment of a Monte-Carlo electron-transport computer program for determination of depth-dose distribution in multislab geometries. Intermediate results from three steps of evaluation were compared individually with experimental data or with other theoretical results and showed excellent agreement. The combined method is applicable for the electron agreement. The combined method is applicable for the electron energy range of 1 keV to 5 MeV for both monoenergetic electrons and energy-distributed electrons. Determination of dosimeter response - skin dose relationships for homogeneous atmospheric beta-particle sources and for two specific configurations of LiF TLD's have been carried out in this study. Information based on these calculations is of value in designing beta-particle dosimeters as well as in assessing potential occupational and public health risks associated with the nuclear power industry

  10. Freeform Deposition Method for Coolant Channel Closeout

    Science.gov (United States)

    Gradl, Paul R. (Inventor); Reynolds, David Christopher (Inventor); Walker, Bryant H. (Inventor)

    2017-01-01

    A method is provided for fabricating a coolant channel closeout jacket on a structure having coolant channels formed in an outer surface thereof. A line of tangency relative to the outer surface is defined for each point on the outer surface. Linear rows of a metal feedstock are directed towards and deposited on the outer surface of the structure as a beam of weld energy is directed to the metal feedstock so-deposited. A first angle between the metal feedstock so-directed and the line of tangency is maintained in a range of 20-90.degree.. The beam is directed towards a portion of the linear rows such that less than 30% of the cross-sectional area of the beam impinges on a currently-deposited one of the linear rows. A second angle between the beam and the line of tangency is maintained in a range of 5-65 degrees.

  11. Neutral detergent fibre in piglet diets: digestibility, performance, and deposition of body nutrients

    Directory of Open Access Journals (Sweden)

    RAFAEL C. NEPOMUCENO

    2017-12-01

    Full Text Available ABSTRACT A total 120 piglets with an average live weight of 7.00 kg, weaned at 21 days, were used to evaluate the effect of neutral detergent fibre levels on the digestibility of nutrients and energy from the diets, productive performance, and the composition and rate of deposition of nutrients and energy in the bodies of piglets in the nursery phase. The animals were distributed according to a randomized-block design into five treatments, which consisted of neutral detergent fibre levels, with six replicates and four animals per plot. A quadratic effect was detected for the digestibility coefficients of nutrients and energy, feed intake and weight gain. The increase in fibre level promoted a linear increase in fat content in the carcass, blood, and body, whereas the energy in the carcass, organs, and body showed an inverse response. The results showed a quadratic effect on the nutrient deposition rate in the carcass, organs and body. In conclusion, the best digestibility of nutrients and energy from the diet is obtained with 10-11.5% neutral detergent fibre, as higher weight gain and greater protein deposition in the body are achieved at neutral detergent fibre levels of 10.6% and 10.3%, respectively.

  12. The importance of speculative uranium deposits

    International Nuclear Information System (INIS)

    Kaiser, H.; Roth-Seefrid, H.

    1980-01-01

    Since current known uranium deposits (5 million t U) will either have been exhausted by the end of the century, or must be held in reserve for the thermal converter reactors which will be in operation by that time, the development of nuclear energy after the year 2000 will depend to a large extent on the early availability of speculative uranium deposits. The speculative deposits represent, by definition, the quantities of uranium which are presumed to exist in addition to the 'known' deposits and which can ultimately be exploited according to current technical-economic and ecological standpoints. When viewed critically, however, the US-DOE model used for this purpose projects an over-optimistic picture of uranium supplies and was, therefore, only accepted by the INFCE with a series of limitations and reservations. Overall the model represents a well-founded reassurance for future uranium exploration - nothing more and nothing less. The model clearly shows that due to the long lead-in times considerable expenditure will be required for uranium exploration in the coming years. It is probable that this level of investment will have to be increased several times over in the 1990s as the search moves to greater depths and to less-accessible regions. (orig./UA) [de

  13. Research Update: Enhanced energy storage density and energy efficiency of epitaxial Pb0.9La0.1(Zr0.52Ti0.48O3 relaxor-ferroelectric thin-films deposited on silicon by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Minh D. Nguyen

    2016-08-01

    Full Text Available Pb0.9La0.1(Zr0.52Ti0.48O3 (PLZT relaxor-ferroelectric thin films were grown on SrRuO3/SrTiO3/Si substrates by pulsed laser deposition. A large recoverable storage density (Ureco of 13.7 J/cm3 together with a high energy efficiency (η of 88.2% under an applied electric field of 1000 kV/cm and at 1 kHz frequency was obtained in 300-nm-thick epitaxial PLZT thin films. These high values are due to the slim and asymmetric hysteresis loop when compared to the values in the reference undoped epitaxial lead zirconate titanate Pb(Zr0.52Ti0.48O3 ferroelectric thin films (Ureco = 9.2 J/cm3 and η = 56.4% which have a high remanent polarization and a small shift in the hysteresis loop, under the same electric field.

  14. Buy coal. Deposit markets prevent carbon leakage

    Energy Technology Data Exchange (ETDEWEB)

    Harstad, Baard [Northwestern Univ., Evanston, IL (United States). Kellogg School of Management

    2010-03-15

    If a coalition of countries implements climate policies, nonparticipants tend to consume more, pollute more, and invest too little in renewable energy sources. In response, the coalition's equilibrium policy distorts trade and it is not time consistent. By adding a market for the right to exploit fossil fuel deposits, I show that these problems vanish and the first best is implemented. When the market for deposits clears, the coalition relies entirely on supply-side policies, which is simple to implement in practice. The result illustrates that efficiency can be obtained without Coasian negotiations ex post, if key inputs are tradable ex ante. (orig.)

  15. Structural properties of WO{sub 3} dependent of the annealing temperature deposited by hot-filament metal oxide deposition

    Energy Technology Data Exchange (ETDEWEB)

    Flores M, J. E. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de San Manuel, 72570 Puebla (Mexico); Diaz R, J. [IPN, Centro de Investigacion en Biotecnologia Aplicada, Ex-Hacienda de San Molino Km 1.5 Tepetitla, 90700 Tlaxcala (Mexico); Balderas L, J. A., E-mail: eflores@ece.buap.mx [IPN, Unidad Profesional Interdisciplinaria de Biotecnologia, Av. Acueducto s/n, Col. Barrio la Laguna, 07340 Mexico D. F. (Mexico)

    2012-07-01

    In this work presents a study of the effect of the annealing temperature on structural and optical properties of WO{sub 3} that has been grown by hot-filament metal oxide deposition. The chemical stoichiometry was determined by X-ray photoelectron spectroscopy. By X-ray diffraction obtained that the as-deposited WO{sub 3} films present mainly monoclinic crystalline phase. WO{sub 3} optical band gap energy can be varied from 2.92 to 3.15 eV obtained by transmittance measurements by annealing WO{sub 3} from 100 to 500 C. The Raman spectrum of the as-deposited WO{sub 3} film shows four intense peaks that are typical Raman peaks of crystalline WO{sub 3} (m-phase) that corresponds to the stretching vibrations of the bridging oxygen that are assigned to W-O stretching ({upsilon}) and W-O bending ({delta}) modes, respectively, which enhanced and increased their intensity with the annealing temperature. (Author)

  16. Drag Reduction by Off-Body Energy Deposition

    Data.gov (United States)

    National Aeronautics and Space Administration — What are the key technical challenges? Implementation of non-equilibrium thermochemistry; Accurate energy balance; Dynamic impulse measurements at Mach 2 What is...

  17. Silicon deposition in nanopores using a liquid precursor

    Science.gov (United States)

    Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya

    2016-11-01

    Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.

  18. Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by pulsed plasma arc deposition

    International Nuclear Information System (INIS)

    Xu, F.J.; Lv, Y.H.; Xu, B.S.; Liu, Y.X.; Shu, F.Y.; He, P.

    2013-01-01

    Highlights: ► PPAD Inconel 625 sample deposited with ICS strategy exhibits improved surface quality. ► ICS sample exhibits finer microstructure and improved mechanical properties. ► Higher level γ′ and γ″ phases are precipitated in the ICS sample. ► STA heat treatment reduced the concentration of Nb element. ► STA heat treatment improved the mechanical properties of PPAD Inconel 625. -- Abstract: Pulsed plasma arc deposition (PPAD), which combines pulsed plasma cladding with rapid prototyping, is a promising technology for manufacturing near net shape components due to its superiority in cost and convenience of processing. The aim of this study was to investigate the influences of interpass cooling strategy (ICS) and continuous deposition strategy (CDS) on microstructure and mechanical properties of the PPAD Inconel 625 non-ferrous alloy. The as-deposited samples in the two conditions were subjected to the post heat treatment: 980 °C solution treatment + direct aging (STA). The microstructures and mechanical properties of the samples were characterized by means of scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), micro-hardness and tensile testers. It was found that the as-deposited microstructure exhibited homogenous cellular dendrite structure, which grew epitaxially along the deposition direction. The as-deposited microstructure of ICS sample revealed smaller dendritic arm spacing, less niobium segregation and discontinuous finer Laves phase in the interdendritic regions compared to the case of continuous deposition strategy (CDS). The ICS sample exhibited better mechanical properties than CDS sample. After STA heat treatment, a large amount of Laves particles in the interdendritic regions were dissolved, resulting in the reduction of Nb segregation and the precipitation of needle-like δ (Ni 3 Nb). The tensile and yield strength of the as-deposited samples were

  19. Geothermal energy: the earth, source of heat and electric power

    International Nuclear Information System (INIS)

    Lenoir, D.

    2005-01-01

    This document provides information on the geothermal energy. It presents the different types of geothermal deposits (very low, low and medium energy geothermal energy), the french deposits and the heat production. The electric power production from the geothermal energy is also discussed with the example of Soultz-sous-Forets. The last part deals with the heat pumps. (A.L.B.)

  20. Thermodynamic calculations for chemical vapor deposition of silicon carbide

    International Nuclear Information System (INIS)

    Minato, Kazuo; Fukuda, Kousaku; Ikawa, Katsuichi

    1985-03-01

    The composition of vapor and condensed phases at equilibrium and CVD phase diagrams were calculated for the CH 3 SiCl 3 -H 2 -Ar system using a computer code SOLGASMIX-PV, which is based on the free energy minimization method. These calculations showed that β-SiC, β-SiC+C(s), β-SiC+Si(s), β-SiC+Si(l), Si(s), Si(l), or C(s) would be deposited depending on deposition parameters. In the CH 3 SiCl 3 -Ar system, condensed phase was found to be β-SiC+C(s) or C(s). Comparing the calculated CVD phase diagrams with the experimental results from the literature, β-SiC+C(s) and β-SiC+Si(s) were deposited in the experiments at the high temperature (more than 2000K) and low temperature (less than 1700K) parts of a resion, respectively, where only β-SiC would be deposited in the calculations. These are remakable results to consider the deposition mechanism of silicon carbide. (author)

  1. Comparison of lanthanum substituted bismuth titanate (BLT) thin films deposited by sputtering and pulsed laser deposition

    International Nuclear Information System (INIS)

    Besland, M.P.; Djani-ait Aissa, H.; Barroy, P.R.J.; Lafane, S.; Tessier, P.Y.; Angleraud, B.; Richard-Plouet, M.; Brohan, L.; Djouadi, M.A.

    2006-01-01

    Bi 4-x La x Ti 3 O 12 (BLT x ) (x = 0 to 1) thin films were grown on silicon (100) and platinized substrates Pt/TiO 2 /SiO 2 /Si using RF diode sputtering, magnetron sputtering and pulsed laser deposition (PLD). Stoichiometric home-synthesized targets were used. Reactive sputtering was investigated in argon/oxygen gas mixture, with a pressure ranging from 0.33 to 10 Pa without heating the substrate. PLD was investigated in pure oxygen, at a chamber pressure of 20 Pa for a substrate temperature of 400-440 deg. C. Comparative structural, chemical, optical and morphological characterizations of BLT thin films have been performed by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Photoelectron Spectroscopy (XPS), Spectro-ellipsometric measurements (SE) and Atomic Force Microscopy (AFM). Both sputtering techniques allow to obtain uniform films with thickness ranging from 200 to 1000 nm and chemical composition varying from (Bi,La) 2 Ti 3 O 12 to (Bi,La) 4.5 Ti 3 O 12 , depending on deposition pressure and RF power. In addition, BLT films deposited by magnetron sputtering, at a pressure deposition ranging from 1.1 to 5 Pa, were well-crystallized after a post-deposition annealing at 650 deg. C in oxygen. They exhibit a refractive index and optical band gap of 2.7 and 3.15 eV, respectively. Regarding PLD, single phase and well-crystallized, 100-200 nm thick BLT films with a stoichiometric (Bi,La) 4 Ti 3 O 12 chemical composition were obtained, exhibiting in addition a preferential orientation along (200). It is worth noting that BLT films deposited by magnetron sputtering are as well-crystallized than PLD ones

  2. Sensitivity of ion-induced sputtering to the radial distribution of energy transfers: A molecular dynamics study

    International Nuclear Information System (INIS)

    Mookerjee, S.; Khan, S. A.; Roy, A.; Beuve, M.; Toulemonde, M.

    2008-01-01

    Using different models for the deposition of energy on the lattice and a classical molecular dynamics approach to the subsequent transport, we evaluate how the details of the energy deposition model influence sputtering yield from a Lennard-Jones target irradiated with a MeV/u ion beam. Two energy deposition models are considered: a uniform, instantaneous deposition into a cylinder of fixed radius around the projectile ion track, used in earlier molecular dynamics and fluid dynamics simulations of sputtering yields; and an energy deposition distributed in time and space based on the formalism developed in the thermal spike model. The dependence of the sputtering yield on the total energy deposited on the target atoms is very sensitive to the energy deposition model. To clarify the origin of this strong dependence, we explore the role of the radial expansion of the electronic system prior to the transfer of its energy to the lattice. The results imply that observables such as the sputtering yield may be used as signatures of the fast electron-lattice energy transfer in the electronic energy-loss regime, and indicate the need for more experimental and theoretical investigations of these processes

  3. The heterogeneous nature of mineral matter, fly-ash and deposits

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Pohl, J.H.; Devir, G.P.; Su, S. [R.A. Creelman and Associates, Epping, NSW (Australia)

    2000-07-01

    This paper reports on a series of slagging studies investigating the heterogeneous nature of mineral matter, fly ash and deposits, and how this heterogeneity affects deposition. The data come from low temperature ashing (LTA) of pulverised coal, fly ash from boilers, and deposits from pilot-scale furnaces and boilers. The paper presents optical and scanning electron (SEM) micrographs, electron microprobe analysis (EMPA) and energy dispersive x-ray analysis (EDXRA) of mineral matter, individual fly ash particles, and localised regions of deposits. During combustion, the included mineral matter is transformed into fly ash, melts and partially adheres to the char surface, and may form agglomerated masses. Excluded mineral matter has little chance of encountering another ash particle and agglomerating in the gas phase, but can react with other particles in the wall deposits. Certain fly ash particles adhere to the wall where they can combine with other fly ash particles. Analyses of molten regions of deposits have shown, so far, four mineral phase fields to be responsible for forming difficult deposits with melting points below deposit surface temperatures of 1200 to 1350{sup o}C. These mineral fields include iron cordierite, albite and its silica undersaturated equivalent nepheline, anorthite, and compounds with ratios of Ca to P of 2.3-2.5.

  4. Simulation of depositions of a Lennard-Jones cluster on a crystalline surface

    International Nuclear Information System (INIS)

    Saitoh, Kuniyasu; Hayakawa, Hisao

    2009-01-01

    Depositions of amorphous Lennard-Jones clusters on a crystalline surface are numerically investigated. From the results of the molecular dynamics simulation, we found that the deposited clusters exhibit a transition from multilayered adsorption to monolayered adsorption at a critical incident speed. Employing the energy conservation law, we can explain the behavior of the ratio of the number of atoms adsorbed on the substrate to the cluster size. The boundary shape of the deposited cluster depends strongly on the incident speed, and some unstable modes grow during the spread of the deposited cluster on the substrate. We also discuss the wettability between different Lennard-Jones atoms. (author)

  5. Monte Carlo simulation of electron depth distribution and backscattering for carbon films deposited on aluminium as a function of incidence angle and primary energy

    Science.gov (United States)

    Dapor, Maurizio

    2005-01-01

    Carbon films are deposited on various substrates (polymers, polyester fabrics, polyester yarns, metal alloys) both for experimental and technological motivations (medical devices, biocompatible coatings, food package and so on). Computational studies of the penetration of electron beams in supported thin film of carbon are very useful in order to compare the simulated results with analytical techniques data (obtained by scanning electron microscopy and/or Auger electron spectroscopy) and investigate the film characteristics. In the present paper, the few keV electron depth distribution and backscattering coefficient for the special case of film of carbon deposited on aluminium are investigated, by a Monte Carlo simulation, as a function of the incidence angle and primary electron energy. The simulated results can be used as a way to evaluate the carbon film thickness by a set of measurements of the backscattering coefficient.

  6. Depositional environments as a guide to uranium mineralization in the Chinle formation, San Rafael Swell, Utah

    International Nuclear Information System (INIS)

    Lupe, R.

    1977-01-01

    The sedimentary textures resulting from depositional processes operating in low-energy environments appear to have influenced uranium mineralization. The Chinle consists of three fining-upward, fluvial-lacustrine sequences. Uranium minerals are concentrated in the lower part of the lowest sequence in areas where sediments of low-energy environment are complexly interbedded with sediments of other environments. Areas favorable for uranium exploration exist in the subsurface to the north, west, and south of the Chinle outcrop in the Swell. This determination is based on the spatial distribution of depositional environments and the pattern of Chinle deposition through time. 8 refs

  7. Energy dissipation on ion-accelerator grids during high-voltage breakdown

    International Nuclear Information System (INIS)

    Menon, M.M.; Ponte, N.S.

    1981-01-01

    The effects of stored energy in the system capacitance across the accelerator grids during high voltage vacuum breakdown are examined. Measurements were made of the current flow and the energy deposition on the grids during breakdown. It is shown that only a portion (less than or equal to 40 J) of the total stored energy (congruent to 100 J) is actually dissipated on the grids. Most of the energy is released during the formation phase of the vacuum arc and is deposited primarily on the most positive grid. Certain abnormal situations led to energy depositions of about 200 J on the grid, but the ion accelerator endured them without exhibiting any deterioration in performance

  8. Study on the Deposition Rate Depending on Substrate Position by Using Ion Beam Sputtering Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yonggi; Kim, Bomsok; Lee, Jaesang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ion beams have been used for over thirty years to modify materials in manufacturing of integrated circuits, and improving the corrosion properties of surfaces. Recently, the requirements for ion beam processes are becoming especially challenging in the following areas : ultra shallow junction formation for LSI fabrication, low damage high rate ion beam sputtering and smoothing, high quality functional surface treatment for electrical and optical properties. Ion beam sputtering is an attractive technology for the deposition of thin film coatings onto a broad variety of polymer, Si-wafer, lightweight substrates. Demand for the decoration metal is increasing. In addition, lightweight of parts is important, because of energy issues in the industries. Although a lot of researches have been done with conventional PVD methods for the deposition of metal or ceramic films on the surface of the polymer, there are still adhesion problems.

  9. In-situ deposition of sacrificial layers during ion implantation

    International Nuclear Information System (INIS)

    Anders, A.; Anders, S.; Brown, I.G.; Yu, K.M.

    1995-02-01

    The retained dose of implanted ions is limited by sputtering. It is known that a sacrificial layer deposited prior to ion implantation can lead to an enhanced retained dose. However, a higher ion energy is required to obtain a similar implantation depth due to the stopping of ions in the sacrificial layer. It is desirable to have a sacrificial layer of only a few monolayers thickness which can be renewed after it has been sputtered away. We explain the concept and describe two examples: (i) metal ion implantation using simultaneously a vacuum arc ion source and filtered vacuum arc plasma sources, and (ii) Metal Plasma Immersion Ion Implantation and Deposition (MePIIID). In MePIIID, the target is immersed in a metal or carbon plasma and a negative, repetitively pulsed bias voltage is applied. Ions are implanted when the bias is applied while the sacrificial layer suffers sputtering. Low-energy thin film deposition - repair of the sacrificial layer -- occurs between bias pulses. No foreign atoms are incorporated into the target since the sacrificial film is made of the same ion species as used in the implantation phase

  10. Locating underground uranium deposits

    International Nuclear Information System (INIS)

    Felice, P.E.

    1979-01-01

    Underground uranium deposits are located by placing wires of dosimeters each about 5 to 18 mg/cm 2 thick underground in a grid pattern. Each dosimeter contains a phosphor which is capable of storing the energy of alpha particles. In each pair one dosimeter is shielded from alpha particles with more than 18 mg/cm 2 thick opaque material but not gamma and beta rays and the other dosimeter is shielded with less than 1 mg/cm 2 thick opaque material to exclude dust. After a period underground the dosimeters are heated which releases the stored energy as light. The amount of light produced from the heavily shielded dosimeter is subtracted from the amount of light produced from the thinly shielded dosimeter to give an indication of the location and quantity of uranium underground

  11. Fog deposition to a Tillandsia carpet in the Atacama Desert

    Science.gov (United States)

    Westbeld, A.; Klemm, O.; Grießbaum, F.; Sträter, E.; Larrain, H.; Osses, P.; Cereceda, P.

    2009-09-01

    In the Atacama Desert, one of the driest places on earth, fog deposition plays an important role for the water balance and for the survival of vulnerable ecosystems. The eddy covariance method, previously applied for the quantification of fog deposition to forests in various parts of the world, was used for the first time to measure deposition of fog water to a desert. In this exploratory study we estimate the amount of water available for the ecosystem by deposition and determine the relevant processes driving fog deposition. This is especially important for the species Tillandsia landbecki living in coastal Atacama at the limit of plant existence with fog and dew being the only sources of water. Between 31 July and 19 August 2008 approximately 2.5 L m-2 of water were made available through deposition. Whole-year deposition was estimated as 25 L m-2. Turbulent upward fluxes occurred several times during the evenings and are explained by the formation of radiation fog. In connection with that, underestimates of the deposition are assumed. More detailed studies covering various seasons and all parameters and fluxes contributing to the local energy balance are suggested. This will help to further develop understanding about the processes of (i) deposition of water to the desert, and (ii) intensification of advection fog through additional formation of radiation fog.

  12. Fog deposition to a Tillandsia carpet in the Atacama Desert

    Energy Technology Data Exchange (ETDEWEB)

    Westbeld, A.; Klemm, O.; Griessbaum, F.; Straeter, E. [Muenster Univ. (Germany). Inst. of Landscape Ecology; Larrain, H. [Pontificia Univ. Catolica de Chile (Chile). Atacama Desert Center ADC; Univ. Bolivariana, Iquique (Chile); Osses, P.; Cereceda, P. [Pontificia Univ. Catolica de Chile, Santiago de Chile (Chile). Inst. of Geography

    2009-07-01

    In the Atacama Desert, one of the driest places on earth, fog deposition plays an important role for the water balance and for the survival of vulnerable ecosystems. The eddy covariance method, previously applied for the quantification of fog deposition to forests in various parts of the world, was used for the first time to measure deposition of fog water to a desert. In this exploratory study we estimate the amount of water available for the ecosystem by deposition and determine the relevant processes driving fog deposition. This is especially important for the species Tillandsia landbecki living in coastal Atacama at the limit of plant existence with fog and dew being the only sources of water. Between 31 July and 19 August 2008 approximately 2.5 L m{sup -2} of water were made available through deposition. Whole-year deposition was estimated as 25 L m{sup -2}. Turbulent upward fluxes occurred several times during the evenings and are explained by the formation of radiation fog. In connection with that, underestimates of the deposition are assumed. More detailed studies covering various seasons and all parameters and fluxes contributing to the local energy balance are suggested. This will help to further develop understanding about the processes of (i) deposition of water to the desert, and (ii) intensification of advection fog through additional formation of radiation fog. (orig.)

  13. Fog deposition to a Tillandsia carpet in the Atacama Desert

    Directory of Open Access Journals (Sweden)

    P. Osses

    2009-09-01

    Full Text Available In the Atacama Desert, one of the driest places on earth, fog deposition plays an important role for the water balance and for the survival of vulnerable ecosystems. The eddy covariance method, previously applied for the quantification of fog deposition to forests in various parts of the world, was used for the first time to measure deposition of fog water to a desert. In this exploratory study we estimate the amount of water available for the ecosystem by deposition and determine the relevant processes driving fog deposition. This is especially important for the species Tillandsia landbecki living in coastal Atacama at the limit of plant existence with fog and dew being the only sources of water. Between 31 July and 19 August 2008 approximately 2.5 L m−2 of water were made available through deposition. Whole-year deposition was estimated as 25 L m−2. Turbulent upward fluxes occurred several times during the evenings and are explained by the formation of radiation fog. In connection with that, underestimates of the deposition are assumed. More detailed studies covering various seasons and all parameters and fluxes contributing to the local energy balance are suggested. This will help to further develop understanding about the processes of (i deposition of water to the desert, and (ii intensification of advection fog through additional formation of radiation fog.

  14. Development of atmospheric acid deposition in China from the 1990s to the 2010s

    International Nuclear Information System (INIS)

    Yu, Haili; He, Nianpeng; Wang, Qiufeng; Zhu, Jianxing; Gao, Yang; Zhang, Yunhai; Jia, Yanlong; Yu, Guirui

    2017-01-01

    Atmospheric acid deposition is a global environmental issue. China has been experiencing serious acid deposition, which is anticipated to become more severe with the country's economic development and increasing consumption of fossil fuels in recent decades. We explored the spatiotemporal variations of acid deposition (wet acid deposition) and its influencing factors by collecting nationwide data on pH and concentrations of sulfate (SO 4 2− ) and nitrate (NO 3 − ) in precipitation between 1980 and 2014 in China. Our results showed that average precipitation pH values were 4.59 and 4.70 in the 1990s and 2010s, respectively, suggesting that precipitation acid deposition in China has not seriously worsened. Average SO 4 2− deposition declined from 40.54 to 34.87 kg S ha −1 yr −1 but average NO 3 − deposition increased from 4.44 to 7.73 kg N ha −1 yr −1 . Specifically, the area of severe precipitation acid deposition in southern China has shrunk to some extent as a result of controlling the pollutant emissions; but the area of moderate precipitation acid deposition has expanded in northern China, associated with rapid industrial and transportation development. Furthermore, we found significant positive correlations between precipitation acid deposition, energy consumption, and rainfall. Our findings provide a relatively comprehensive evaluation of the spatiotemporal dynamics of precipitation acid deposition in China over past three decades, and confirm the idea that strategies implemented to save energy and control pollutant emissions in China have been effective in alleviating precipitation acid deposition. These findings might be used to demonstrate how developing countries could achieve economic development and environmental protection through the implementation of advanced technologies to reduce pollutant emissions. - Highlights: • Explore spatial and temporal dynamics of wet acid deposition during three decades in China. • Acid

  15. Silicon oxide barrier films deposited on PET foils in pulsed plasmas: influence of substrate bias on deposition process and film properties

    International Nuclear Information System (INIS)

    Steves, S; Bibinov, N; Awakowicz, P; Ozkaya, B; Liu, C-N; Ozcan, O; Grundmeier, G

    2013-01-01

    A widely used plastic for packaging, polyethylene terephtalate (PET) offers limited barrier properties against gas permeation. For many applications of PET (from food packaging to micro electronics) improved barrier properties are essential. A silicon oxide barrier coating of PET foils is applied by means of a pulsed microwave driven low-pressure plasma. While the adjustment of the microwave power allows for a control of the ion production during the plasma pulse, a substrate bias controls the energy of ions impinging on the substrate. Detailed analysis of deposited films applying oxygen permeation measurements, x-ray photoelectron spectroscopy and atomic force microscopy are correlated with results from plasma diagnostics describing the deposition process. The influence of a change in process parameters such as gas mixture and substrate bias on the gas temperature, electron density, mean electron energy, ion energy and the atomic oxygen density is studied. An additional substrate bias results in an increase in atomic oxygen density up to a factor of 6, although plasma parameter such as electron density of n e = 3.8 ± 0.8 × 10 17 m −3 and electron temperature of k B T e = 1.7 ± 0.1 eV are unmodified. It is shown that atomic oxygen densities measured during deposition process higher than n O = 1.8 × 10 21 m −3 yield in barrier films with a barrier improvement factor up to 150. Good barrier films are highly cross-linked and show a smooth morphology. (paper)

  16. Growth, structural, optical and electrical study of ZnS thin films deposited by solution growth technique (SGT)

    International Nuclear Information System (INIS)

    Sadekar, H.K.; Deshpande, N.G.; Gudage, Y.G.; Ghosh, A.; Chavhan, S.D.; Gosavi, S.R.; Sharma, Ramphal

    2008-01-01

    ZnS thin films have been deposited onto glass substrates at temperature 90 deg. C by solution growth technique (SGT). The deposition parameters were optimized. Triethanolamine (TEA) was used as a complexing agent for uniform deposition of the thin films. The elemental composition of the film was confirmed by energy dispersive analysis by X-ray (EDAX) technique. Structure and surface morphology of as-deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), atomic force microscopy (AFM), respectively. XRD patterns reveal that as-deposited thin films were amorphous in nature; while the obtained precipitate powder was polycrystalline in nature. SEM results revealed that deposited ZnS material has ∼120 ± 20 nm average grain size and the spherical grains are distributed over the entire glass substrate. Low surface roughness was found to be 2.7 nm from AFM studies. Transmission spectra indicate a high transmission coefficient (∼75%) with direct band gap energy equal to 3.72 eV while indirect band gap was found to be 3.45 eV. A photoluminescence (PL) study of the ZnS at room temperature (300 K) indicates a strong luminescence band at energy 2.02 eV

  17. Influence of reactive oxygen species during deposition of iron oxide films by high power impulse magnetron sputtering

    Science.gov (United States)

    Stranak, V.; Hubicka, Z.; Cada, M.; Bogdanowicz, R.; Wulff, H.; Helm, C. A.; Hippler, R.

    2018-03-01

    Iron oxide films were deposited using high power impulse magnetron sputtering (HiPIMS) of an iron cathode in an argon/oxygen gas mixture at different gas pressures (0.5 Pa, 1.5 Pa, and 5.0 Pa). The HiPIMS system was operated at a repetition frequency f  =  100 Hz with a duty cycle of 1%. A main goal is a comparison of film growth during conventional and electron cyclotron wave resonance-assisted HiPIMS. The deposition plasma was investigated by means of optical emission spectroscopy and energy-resolved mass spectrometry. Active oxygen species were detected and their kinetic energy was found to depend on the gas pressure. Deposited films were characterized by means of spectroscopic ellipsometry and grazing incidence x-ray diffraction. Optical properties and crystallinity of as-deposited films were found to depend on the deposition conditions. Deposition of hematite iron oxide films with the HiPIMS-ECWR discharge is attributed to the enhanced production of reactive oxygen species.

  18. Dry-spray deposition of TiO2 for a flexible dye-sensitized solar cell (DSSC) using a nanoparticle deposition system (NPDS).

    Science.gov (United States)

    Kim, Min-Saeng; Chun, Doo-Man; Choi, Jung-Oh; Lee, Jong-Cheon; Kim, Yang Hee; Kim, Kwang-Su; Lee, Caroline Sunyong; Ahn, Sung-Hoon

    2012-04-01

    TiO2 powders were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates for application to the photoelectrode of a dye-sensitized solar cell (DSSC). In the conventional DSSC manufacturing process, a semiconductor oxide such as TiO2 powder requires a sintering process at higher temperature than the glass transition temperature (T(g)) of polymers, and thus utilization of flexible polymer substrates in DSSC research has been constrained. To overcome this restriction related to sintering, we used a nanoparticle deposition system (NPDS) that could produce a thin coating layer through a dry-spray method under atmospheric pressure at room temperature. The powder was sprayed through a slit-type nozzle having a 0.4 x 10 mm2 rectangular outlet. In order to determine the deposited TiO2 thickness, five kinds of TiO2 layered specimens were prepared, where the specimens have single and double layer structures. Deposited powders on the ITO coated PET substrates were observed using FE-SEM and a scan profiler The thicker TiO2 photoelectrode with a DSSC having a double layer structure showed higher energy efficiency than the single layer case. The highest fabricated flexible DSSC displayed a short circuit current density J(sc) = 1.99 mA cm(-2), open circuit voltage V(oc) = 0.71 V, and energy efficiency eta = 0.94%. These results demonstrate the possibility of utilizing the dry-spray method to fabricate a TiO2 layer on flexible polymer substrates at room temperature under atmospheric pressure.

  19. Towards high-energy and durable lithium-ion batteries via atomic layer deposition: elegantly atomic-scale material design and surface modification

    International Nuclear Information System (INIS)

    Meng, Xiangbo

    2015-01-01

    Targeted at fueling future transportation and sustaining smart grids, lithium-ion batteries (LIBs) are undergoing intensive investigation for improved durability and energy density. Atomic layer deposition (ALD), enabling uniform and conformal nanofilms, has recently made possible many new advances for superior LIBs. The progress was summarized by Liu and Sun in their latest review [1], offering many insightful views, covering the design of nanostructured battery components (i.e., electrodes and solid electrolytes), and nanoscale modification of electrode/electrolyte interfaces. This work well informs peers of interesting research conducted and it will also further help boost the applications of ALD in next-generation LIBs and other advanced battery technologies. (viewpoint)

  20. Energy loading effects in the scaling of atomic xenon lasers

    International Nuclear Information System (INIS)

    Ohwa, M.; Kushner, M.J.

    1990-01-01

    The intrinsic power efficiency of the atomic xenon (5d → 6p) infrared (1.73--3.65 μm) laser is sensitive to the rate of pumping due to electron collision mixing of the laser levels. Long duration pumping at moderate power deposition may therefore result in higher energy efficiencies than pumping at higher powers. In this paper the authors examine the consequences of high energy deposition (100's J/1 atm) during long pumping pulses (100's μs) on the intrinsic power and energy efficiency and optimum power deposition of the atomic xenon laser. The dominant effect of high energy loading, gas heating, causes an increase in the electron density and therefore an increase in the electron collision mixing of the laser levels. The optimum power deposition for a given gas density therefore shifts to lower values with increasing gas temperature. For sufficiently long pumping pulses, nonuniform gas heating results in convection and rarification of highly pumped regions. The optimum power deposition therefore shifts to even lower values as the length of the pumping pulse increases. As a result, laser efficiency depends on the spatial distribution of power deposition as well as its magnitude

  1. Structure of ELMs in MAST and the implications for energy deposition

    International Nuclear Information System (INIS)

    Kirk, A; Wilson, H R; Akers, R; Conway, N J; Counsell, G F; Cowley, S C; Dowling, J; Dudson, B; Field, A; Lott, F; Lloyd, B; Martin, R; Meyer, H; Price, M; Taylor, D; Walsh, M

    2005-01-01

    This paper presents a description of the spatial and temporal structure of edge-localized modes (ELMs) observed in the MAST tokamak. Filamentary enhancements of visible light are observed on photographic images of the plasma obtained during ELMs. Comparisons with simulations show that these filaments are consistent with following field lines at the outboard edge of the plasma. The toroidal mode number of these filaments has been extracted from a study of the discrete peaks observed in the ion saturation current recorded by a mid-plane reciprocating probe. A study of the time delay of these peaks with respect to the onset of the ELM has been used to calculate an effective radial velocity for the expansion of the filaments. A comparison of this derived radial velocity as a function of distance from the last closed flux surface with simulations indicates that the filament is accelerating away from the plasma. Evidence for the temporal evolution of the ELM comes from studies of outboard mid-plane Thomson scattering density profiles. In addition, a study of the toroidal velocity as a function of radius shows that during an ELM the strong velocity shear near the edge of the plasma, normally present in H-modes, is strongly reduced. The picture that emerges is that the ELM can be viewed as being composed of filamentary structures that are generated on a 100 μs timescale, accelerate away from the plasma edge, are extended along a field line and have a typical toroidal mode number ∼10. The implications of these filaments for the energy deposition on plasma facing components are discussed

  2. Electrophoretic-deposited CNT/MnO2 composites for high-power electrochemical energy storage/conversion applications

    Science.gov (United States)

    Xiao, Wei; Xia, Hui; Fuh, Jerry Y. H.; Lu, Li

    2010-05-01

    CNT/MnO2 (birnessite-type) composite films have been successfully deposited on Ni-foil substrate via electrophoretic deposition (EPD). The unique EPD CNT/MnO2 composite film electrode shows enhanced electrical conductivity, good contact between composite films and the substrate and open porous structure, which makes the EPD composite films a promising electrode for high-power supercapacitors and lithium ion batteries.

  3. Impact Response of Thermally Sprayed Metal Deposits

    Science.gov (United States)

    Wise, J. L.; Hall, A. C.; Moore, N. W.; Pautz, S. D.; Franke, B. C.; Scherzinger, W. M.; Brown, D. W.

    2017-06-01

    Gas-gun experiments have probed the impact response of tantalum specimens that were additively manufactured using a controlled thermal spray deposition process. Velocity interferometer (VISAR) diagnostics provided time-resolved measurements of sample response under one-dimensional (i . e . , uniaxial strain) shock compression to peak stresses ranging between 1 and 4 GPa. The acquired wave-profile data have been analyzed to determine the Hugoniot Elastic Limit (HEL), Hugoniot equation of state, and high-pressure yield strength of the thermally deposited samples for comparison to published baseline results for conventionally wrought tantalum. The effects of composition, porosity, and microstructure (e . g . , grain/splat size and morphology) are assessed to explain differences in the dynamic mechanical behavior of spray-deposited versus conventional material. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. 20 CFR 703.207 - Kinds of negotiable securities that may be deposited; conditions of deposit; acceptance of deposits.

    Science.gov (United States)

    2010-04-01

    ... amount fixed by the Office under the regulations in this part shall deposit any negotiable securities... deposited; conditions of deposit; acceptance of deposits. 703.207 Section 703.207 Employees' Benefits... AND RELATED STATUTES INSURANCE REGULATIONS Insurance Carrier Security Deposit Requirements § 703.207...

  5. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition.

    Science.gov (United States)

    Gruel, Gaëtan; Villagrasa, Carmen; Voisin, Pascale; Clairand, Isabelle; Benderitter, Marc; Bottollier-Depois, Jean-François; Barquinero, Joan Francesc

    2016-01-01

    Most studies that aim to understand the interactions between different types of photon radiation and cellular DNA assume homogeneous cell irradiation, with all cells receiving the same amount of energy. The level of DNA damage is therefore generally determined by averaging it over the entire population of exposed cells. However, evaluating the molecular consequences of a stochastic phenomenon such as energy deposition of ionizing radiation by measuring only an average effect may not be sufficient for understanding some aspects of the cellular response to this radiation. The variance among the cells associated with this average effect may also be important for the behaviour of irradiated tissue. In this study, we accurately estimated the distribution of the number of radiation-induced γH2AX foci (RIF) per cell nucleus in a large population of endothelial cells exposed to 3 macroscopic doses of gamma rays from 60Co. The number of RIF varied significantly and reproducibly from cell to cell, with its relative standard deviation ranging from 36% to 18% depending on the macroscopic dose delivered. Interestingly, this relative cell-to-cell variability increased as the dose decreased, contrary to the mean RIF count per cell. This result shows that the dose effect, in terms of the number of DNA lesions indicated by RIF is not as simple as a purely proportional relation in which relative SD is constant with dose. To analyse the origins of this observed variability, we calculated the spread of the specific energy distribution for the different target volumes and subvolumes in which RIF can be generated. Variances, standard deviations and relative standard deviations all changed similarly from dose to dose for biological and calculated microdosimetric values. This similarity is an important argument that supports the hypothesis of the conservation of the association between the number of RIF per nucleus and the specific energy per DNA molecule. This comparison allowed us to

  6. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition.

    Directory of Open Access Journals (Sweden)

    Gaëtan Gruel

    Full Text Available Most studies that aim to understand the interactions between different types of photon radiation and cellular DNA assume homogeneous cell irradiation, with all cells receiving the same amount of energy. The level of DNA damage is therefore generally determined by averaging it over the entire population of exposed cells. However, evaluating the molecular consequences of a stochastic phenomenon such as energy deposition of ionizing radiation by measuring only an average effect may not be sufficient for understanding some aspects of the cellular response to this radiation. The variance among the cells associated with this average effect may also be important for the behaviour of irradiated tissue. In this study, we accurately estimated the distribution of the number of radiation-induced γH2AX foci (RIF per cell nucleus in a large population of endothelial cells exposed to 3 macroscopic doses of gamma rays from 60Co. The number of RIF varied significantly and reproducibly from cell to cell, with its relative standard deviation ranging from 36% to 18% depending on the macroscopic dose delivered. Interestingly, this relative cell-to-cell variability increased as the dose decreased, contrary to the mean RIF count per cell. This result shows that the dose effect, in terms of the number of DNA lesions indicated by RIF is not as simple as a purely proportional relation in which relative SD is constant with dose. To analyse the origins of this observed variability, we calculated the spread of the specific energy distribution for the different target volumes and subvolumes in which RIF can be generated. Variances, standard deviations and relative standard deviations all changed similarly from dose to dose for biological and calculated microdosimetric values. This similarity is an important argument that supports the hypothesis of the conservation of the association between the number of RIF per nucleus and the specific energy per DNA molecule. This

  7. Deposit Mariovo geological characteristics coal quality and quantity

    International Nuclear Information System (INIS)

    Andreevski, Borche

    2008-01-01

    Evaluation of the actual situation with energy resources, in a global scale, shows negative trends, which is result from the numerous complex factors influences. Special influence over these trends has increased requirement and consumption of the fossil fuels, driven by the intensive technological development and unplanned long-term exploitation, which causes huge reduction of the available fossil fuels deposits and significant price oscillations. Additional contribution to this tendency has the fact that potential fossil fuels reserves are controlled from limited number of owners, which allows them to have global geo-strategic control over the energy resources, world politics and other types of influences. In such conditions underdevelopment countries will feel the biggest consequences and they will be forced to provide(conditionally, if there is an energy surplus at the market) and to save considerable financial resources for satisfying their needs. Maximal usage of country's own possessed energy raw material bases the only way out from this situation and it is also used by the countries which are at he greatest development level then ours. If we want to incorporate these reserves into the energetic strategy and energy balances they must be exactly defined and determined. According to the presented approach, paper has aim to make synthesis of previous investigations, through argumentation of geological specifics and quantitative-qualitative characteristics of deposit Mariovo coal given in the available documentation, and also has intention to point out its respectable characteristics. (Author)

  8. Deposit Mariovo geological characteristics coal quality and quantity

    International Nuclear Information System (INIS)

    Andreevski, Borche

    2007-01-01

    Evaluation of the actual situation with energy resources, in a global scale, shows negative trends, which is result from the numerous complex factors influences. Special influence over these trends has increased requirement and consumption of the fossil fuels, driven by the intensive technological development and unplanned long-term exploitation, which causes huge reduction of the available fossil fuels deposits and significant price oscillations. Additional contribution to this tendency has the fact that potential fossil fuels reserves are controlled from limited number of owners, which allows them to have global geo-strategic control over the energy resources, world politics and other types of influences. In such conditions underdevelopment countries will feel the biggest consequences and they will be forced to provide(conditionally, if there is an energy surplus at the market) and to save considerable financial resources for satisfying their needs. Maximal usage of country's own possessed energy raw material bases the only way out from this situation and it is also used by the countries which are at he greatest development level then ours. If we want to incorporate these reserves into the energetic strategy and energy balances they must be exactly defined and determined. According to the presented approach, paper has aim to make synthesis of previous investigations, through argumentation of geological specifics and quantitative-qualitative characteristics of deposit Mariovo coal given in the available documentation, and also has intention to point out its respectable characteristics. (Author)

  9. Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media.

    Science.gov (United States)

    Haque, Muhammad Emdadul; Shen, Chongyang; Li, Tiantian; Chu, Haoxue; Wang, Hong; Li, Zhen; Huang, Yuanfang

    2017-11-01

    Although the potential application of biochar in soil remediation has been recognized, the effect of biochar on the transport of clay colloids, and accordingly the fate of colloid-associated contaminants, is unclear to date. This study conducted saturated column experiments to systematically examine transport of clay colloids in biochar-amended sand porous media in different electrolytes at different ionic strengths. The obtained breakthrough curves were simulated by the convection-diffusion equation, which included a first-order deposition and release terms. The deposition mechanisms were interpreted by calculating Derjaguin-Landau-Verwey-Overbeek interaction energies. A linear relationship between the simulated deposition rate or the attachment efficiency and the fraction of biochar was observed ( ≥ 0.91), indicating more favorable deposition in biochar than in sand. The interaction energy calculations show that the greater deposition in biochar occurs because the half-tube-like cavities on the biochar surfaces favor deposition in secondary minima and the nanoscale physical and chemical heterogeneities on the biochar surfaces increase deposition in primary minima. The deposited clay colloids in NaCl can be released by reduction of ionic strength, whereas the presence of a bivalent cation (Ca) results in irreversible deposition due to the formation of cation bridging between the colloids and biochar surfaces. The deposition and release of clay colloids on or from biochar surfaces not only change their mobilizations in the soil but also influence the efficiency of the biochar for removal of pollutants. Therefore, the influence of biochar on clay colloid transport must be considered before application of the biochar in soil remediation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    Science.gov (United States)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  11. Pocket dictionary of energy. Taschenlexikon Energie

    Energy Technology Data Exchange (ETDEWEB)

    Ahlhaus, O; Boldt, G; Gonsior, B; Klein, K; Ziburske, H

    1981-01-01

    The pocket dictionary of energy does not only address the interested amateur but also students, pupils, teachers, scientists, technicians, and polititcians in like manner. The dictionary contains ca. 900 key-words from the fields of energy, consumption, energy types, energy deposits, energy programmes, energy industry, thermal insulation, governmental aids for energy conservation measures, heating cost calculation, energy utilization and energy conservation. The problems of the costs and efficiency of energy conversion, energy pricing, the promotion of research projects, the rentability of heating devices or insulation, the sanitation of old buildings, governmental aids by subsidies or tax abatement according to the modernization and energy conservation law etc., as well as the problem of pollution and the endangering of the environment by exhaust air, waste heat, ash and litter are emphasized particularly. Considering the space available the criterion for the selection of the key-words was not a scientific completeness but the provision of a fundamental understanding of the matter.

  12. Heating of polymer substrate by discharge plasma in radiofrequency magnetron sputtering deposition

    International Nuclear Information System (INIS)

    Sirghi, Lucel; Popa, Gheorghe; Hatanaka, Yoshinori

    2006-01-01

    The substrate used for the thin film deposition in a radiofrequency magnetron sputtering deposition system is heated by the deposition plasma. This may change drastically the surface properties of the polymer substrates. Deposition of titanium dioxide thin films on polymethyl methacrylate and polycarbonate substrates resulted in buckling of the substrate surfaces. This effect was evaluated by analysis of atomic force microscopy topography images of the deposited films. The amount of energy received by the substrate surface during the film deposition was determined by a thermal probe. Then, the results of the thermal probe measurements were used to compute the surface temperature of the polymer substrate. The computation revealed that the substrate surface temperature depends on the substrate thickness, discharge power and substrate holder temperature. For the case of the TiO 2 film depositions in the radiofrequency magnetron plasma, the computation indicated substrate surface temperature values under the polymer melting temperature. Therefore, the buckling of polymer substrate surface in the deposition plasma may not be regarded as a temperature driven surface instability, but more as an effect of argon ion bombardment

  13. Chemical vapor deposition (CVD) of uranium for alpha spectrometry

    International Nuclear Information System (INIS)

    Ramirez V, M. L.; Rios M, C.; Ramirez O, J.; Davila R, J. I.; Mireles G, F.

    2015-09-01

    The uranium determination through radiometric techniques as alpha spectrometry requires for its proper analysis, preparation methods of the source to analyze and procedures for the deposit of this on a surface or substrate. Given the characteristics of alpha particles (small penetration distance and great loss of energy during their journey or its interaction with the matter), is important to ensure that the prepared sources are thin, to avoid problems of self-absorption. The routine methods used for this are the cathodic electro deposition and the direct evaporation, among others. In this paper the use of technique of chemical vapor deposition (CVD) for the preparation of uranium sources is investigated; because by this, is possible to obtain thin films (much thinner than those resulting from electro deposition or evaporation) on a substrate and comprises reacting a precursor with a gas, which in turn serves as a carrier of the reaction products to achieve deposition. Preliminary results of the chemical vapor deposition of uranium are presented, synthesizing and using as precursor molecule the uranyl acetylacetonate, using oxygen as carrier gas for the deposition reaction on a glass substrate. The uranium films obtained were found suitable for alpha spectrometry. The variables taken into account were the precursor sublimation temperatures and deposition temperature, the reaction time and the type and flow of carrier gas. Of the investigated conditions, two depositions with encouraging results that can serve as reference for further work to improve the technique presented here were selected. Alpha spectra obtained for these depositions and the characterization of the representative samples by scanning electron microscopy and X-ray diffraction are also presented. (Author)

  14. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Gritti Claudia

    2016-07-01

    Full Text Available Decorating semiconductor surfaces with plasmonic nanoparticles (NPs is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique. Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of near-infrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface of a high-index semiconductor substrate. Our hypothesis is substantiated by examining the plasmonic response of the electroless-deposited NPs using both electron energy loss spectroscopy and numerical calculations.

  15. Metallization on FDM Parts Using the Chemical Deposition Technique

    Directory of Open Access Journals (Sweden)

    Azhar Equbal

    2014-08-01

    Full Text Available Metallization of ABS (acrylonitrile-butadiene-styrene parts has been studied on flat part surfaces. These parts are fabricated on an FDM (fused deposition modeling machine using the layer-wise deposition principle using ABS as a part material. Electroless copper deposition on ABS parts was performed using two different surface preparation processes, namely ABS parts prepared using chromic acid for etching and ABS parts prepared using a solution mixture of sulphuric acid and hydrogen peroxide (H2SO4/H2O2 for etching. After surface preparations using these routes, copper (Cu is deposited electrolessly using four different acidic baths. The acidic baths used are 5 wt% CuSO4 (copper sulfate with 15 wt% of individual acids, namely HF (hydrofluoric acid, H2SO4 (sulphuric acid, H3PO4 (phosphoric acid and CH3COOH (acetic acid. Cu deposition under different acidic baths used for both the routes is presented and compared based on their electrical performance, scanning electron microscopy (SEM and energy dispersive X-ray spectrometry (EDS. The result shows that chromic acid etched samples show better electrical performance and Cu deposition in comparison to samples etched via H2SO4/H2O2.

  16. Morphological and optical properties changes in nanocrystalline Si (nc-Si) deposited on porous aluminum nanostructures by plasma enhanced chemical vapor deposition for Solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghrib, M., E-mail: mondherghrib@yahoo.fr [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Gaidi, M.; Ghrib, T.; Khedher, N. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Ben Salam, M. [L3M, Department of Physics, Faculty of Sciences of Bizerte, 7021 Zarzouna (Tunisia); Ezzaouia, H. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia)

    2011-08-15

    Photoluminescence (PL) spectroscopy was used to determine the electrical band gap of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous alumina structure by fitting the experimental spectra using a model based on the quantum confinement of electrons in Si nanocrystallites having spherical and cylindrical forms. This model permits to correlate the PL spectra to the microstructure of the porous aluminum silicon layer (PASL) structure. The microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that the structure of the nanocrystalline silicon layer (NSL) is dependent of the porosity (void) of the porous alumina layer (PAL) substrate. This structure was performed in two steps, namely the PAL substrate was prepared using sulfuric acid solution attack on an Al foil and then the silicon was deposited by plasma enhanced chemical vapor deposition (PECVD) on it. The optical constants (n and k as a function of wavelength) of the deposited films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The SE spectrum of the porous aluminum silicon layer (PASL) was modeled as a mixture of void, crystalline silicon and aluminum using the Cauchy model approximation. The specific surface area (SSA) was estimated and was found to decrease linearly when porosity increases. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties.

  17. Morphological and optical properties changes in nanocrystalline Si (nc-Si) deposited on porous aluminum nanostructures by plasma enhanced chemical vapor deposition for Solar energy applications

    International Nuclear Information System (INIS)

    Ghrib, M.; Gaidi, M.; Ghrib, T.; Khedher, N.; Ben Salam, M.; Ezzaouia, H.

    2011-01-01

    Photoluminescence (PL) spectroscopy was used to determine the electrical band gap of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous alumina structure by fitting the experimental spectra using a model based on the quantum confinement of electrons in Si nanocrystallites having spherical and cylindrical forms. This model permits to correlate the PL spectra to the microstructure of the porous aluminum silicon layer (PASL) structure. The microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that the structure of the nanocrystalline silicon layer (NSL) is dependent of the porosity (void) of the porous alumina layer (PAL) substrate. This structure was performed in two steps, namely the PAL substrate was prepared using sulfuric acid solution attack on an Al foil and then the silicon was deposited by plasma enhanced chemical vapor deposition (PECVD) on it. The optical constants (n and k as a function of wavelength) of the deposited films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The SE spectrum of the porous aluminum silicon layer (PASL) was modeled as a mixture of void, crystalline silicon and aluminum using the Cauchy model approximation. The specific surface area (SSA) was estimated and was found to decrease linearly when porosity increases. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties.

  18. Low-Damage Sputter Deposition on Graphene

    Science.gov (United States)

    Chen, Ching-Tzu; Casu, Emanuele; Gajek, Marcin; Raoux, Simone

    2013-03-01

    Despite its versatility and prevalence in the microelectronics industry, sputter deposition has seen very limited applications for graphene-based electronics. We have systematically investigated the sputtering induced graphene defects and identified the reflected high-energy neutrals of the sputtering gas as the primary cause of damage. In this talk, we introduce a novel sputtering technique that is shown to dramatically reduce bombardment of the fast neutrals and improve the structural integrity of the underlying graphene layer. We also demonstrate that sputter deposition and in-situ oxidation of 1 nm Al film at elevated temperatures yields homogeneous, fully covered oxide films with r.m.s. roughness much less than 1 monolayer, which shows the potential of using such technique for gate oxides, tunnel barriers, and multilayer fabrication in a wide range of graphene devices.

  19. Fast waves mode conversion and energy deposition in simulated, pre-heated, neoclassical, tight aspect ratio tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, C.; Komoshvili, K. [Tel Aviv Univ. (Israel). School of Physics and Astronomy; Coll. of Judea and Samaria, Ariel (Israel); Cuperman, S. [Tel Aviv Univ. (Israel). School of Physics and Astronomy

    2000-11-01

    Some basic aspects of wave-plasma interaction of special interest for tight aspect ratio (spherical) tokamaks (ST's) are investigated numerically; these aspects include fast mode conversion and energy deposition. The study is based on the numerical solution of the full electro-magnetic (e.m.) wave equation which includes a quite general two-fluid, resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. A generalized expression for the power absorption appropriate for the above scenario, with consideration of all the basic effects also present in the dielectric tensor-operator, was derived and used. The current-carrying ST-plasma has a circular cross-section and toroidicity effects are simulated by a Grad-Shafranov type, radially dependent axial magnetic field and its shear; however, the Shafranov shift is not considered. Actually, the equilibrium parameters and radial profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. Fast magnetosonic waves are launched from an external antenna into this simulated spherical tokamak plasma; these waves are converted to Alfven waves at points (layers) satisfying the Alfven resonance condition. Quantitative-results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited power are presented. Their dependence on the equilibrium plasma current, neoclassical resistivity and electron inertia as well as on those of the antenna launched wave (wave numbers, frequency and current intensity) is systematically studied and discussed. (orig.)

  20. Fast waves mode conversion and energy deposition in simulated, pre-heated, neoclassical, tight aspect ratio tokamak plasmas

    International Nuclear Information System (INIS)

    Bruma, C.; Komoshvili, K.; Cuperman, S.

    2000-01-01

    Some basic aspects of wave-plasma interaction of special interest for tight aspect ratio (spherical) tokamaks (ST's) are investigated numerically; these aspects include fast mode conversion and energy deposition. The study is based on the numerical solution of the full electro-magnetic (e.m.) wave equation which includes a quite general two-fluid, resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. A generalized expression for the power absorption appropriate for the above scenario, with consideration of all the basic effects also present in the dielectric tensor-operator, was derived and used. The current-carrying ST-plasma has a circular cross-section and toroidicity effects are simulated by a Grad-Shafranov type, radially dependent axial magnetic field and its shear; however, the Shafranov shift is not considered. Actually, the equilibrium parameters and radial profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. Fast magnetosonic waves are launched from an external antenna into this simulated spherical tokamak plasma; these waves are converted to Alfven waves at points (layers) satisfying the Alfven resonance condition. Quantitative-results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited power are presented. Their dependence on the equilibrium plasma current, neoclassical resistivity and electron inertia as well as on those of the antenna launched wave (wave numbers, frequency and current intensity) is systematically studied and discussed. (orig.)

  1. Cobalt—Styles of deposits and the search for primary deposits

    Science.gov (United States)

    Hitzman, Murray W.; Bookstrom, Arthur A.; Slack, John F.; Zientek, Michael L.

    2017-11-30

    Cobalt (Co) is a potentially critical mineral. The vast majority of cobalt is a byproduct of copper and (or) nickel production. Cobalt is increasingly used in magnets and rechargeable batteries. More than 50 percent of primary cobalt production is from the Central African Copperbelt. The Central African Copperbelt is the only sedimentary rock-hosted stratiform copper district that contains significant cobalt. Its presence may indicate significant mafic-ultramafic rocks in the local basement. The balance of primary cobalt production is from magmatic nickel-copper and nickel laterite deposits. Cobalt is present in several carbonate-hosted lead-zinc and copper districts. It is also variably present in Besshi-type volcanogenic massive sulfide and siliciclastic sedimentary rock-hosted deposits in back arc and rift environments associated with mafic-ultramafic rocks. Metasedimentary cobalt-copper-gold deposits (such as Blackbird, Idaho), iron oxide-copper-gold deposits, and the five-element vein deposits (such as Cobalt, Ontario) contain different amounts of cobalt. None of these deposit types show direct links to mafic-ultramafic rocks; the deposits may result from crustal-scale hydrothermal systems capable of leaching and transporting cobalt from great depths. Hydrothermal deposits associated with ultramafic rocks, typified by the Bou Azzer district of Morocco, represent another type of primary cobalt deposit.In the United States, exploration for cobalt deposits may focus on magmatic nickel-copper deposits in the Archean and Proterozoic rocks of the Midwest and the east coast (Pennsylvania) and younger mafic rocks in southeastern and southern Alaska; also, possibly basement rocks in southeastern Missouri. Other potential exploration targets include—The Belt-Purcell basin of British Columbia (Canada), Idaho, Montana, and Washington for different styles of sedimentary rock-hosted cobalt deposits;Besshi-type VMS deposits, such as the Greens Creek (Alaska) deposit and

  2. MAPLE deposition and characterization of SnO2 colloidal nanoparticle thin films

    International Nuclear Information System (INIS)

    Caricato, A P; Martino, M; Romano, F; Tunno, T; Valerini, D; Epifani, M; Rella, R; Taurino, A

    2009-01-01

    In this paper we report on the deposition and characterization of tin oxide (SnO 2 ) nanoparticle thin films. The films were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. SnO 2 colloidal nanoparticles with a trioctylphosphine capping layer were diluted in toluene with a concentration of 0.2 wt% and frozen at liquid nitrogen temperature. The frozen target was irradiated with a KrF (248 nm, τ = 20 ns) excimer laser (6000 pulses at 10 Hz). The nanoparticles were deposited on silica (SiO 2 ) and (1 0 0) Si substrates and submitted to morphological (high resolution scanning electron microscopy (SEM)), structural Fourier transform infrared spectroscopy (FTIR) and optical (UV-Vis transmission) characterizations. SEM and FTIR analyses showed that trioctylphosphine was the main component in the as-deposited films. The trioctylphosphine was removed after an annealing in vacuum at 400 0 C, thus allowing to get uniform SnO 2 nanoparticle films in which the starting nanoparticle dimensions were preserved. The energy gap value, determined by optical characterizations, was 4.2 eV, higher than the bulk SnO 2 energy gap (3.6 eV), due to quantum confinement effects.

  3. Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films

    International Nuclear Information System (INIS)

    Lux, Robert; Heinrich, Andreas; Leitenmeier, Stephan; Koerner, Timo; Herbort, Michael; Stritzker, Bernd

    2006-01-01

    Magneto-optical garnets are attractive because of their high Faraday rotation and low optical loss in the near infrared. Therefore their use is generally in nonreciprocal devices, i.e., as optical isolators in optical communication. In this paper we present data concerning the deposition of Bi 3 Fe 5 O 12 (BIG) thin films on (100) and (111) Gd 3 Ga 5 O 12 substrates using pulsed-laser deposition. Laser-induced processes on the surface of the oxide target used for ablation were analyzed and numerous films were deposited. We found the BIG film quality to be strongly affected by oxygen pressure, laser energy density, and the Bi/Fe film ratio, whereas temperature had a minor influence. We also investigated the BIG-film deposition using a target pressed from metallic Bi and Fe powders and found information on the growth behavior of BIG. We report on details of the film deposition and film properties determined by environmental scanning electron microscopy, energy dispersive x-ray analysis, Rutherford backscattering spectroscopy, and x-ray diffraction. In addition, we determined the Faraday rotation of the films

  4. Measuring the scintillation decay time for different energy deposited by γ-rays and neutrons in a Cs{sub 2}LiYCl{sub 6}:Ce{sup 3+} detector

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xianfei, E-mail: wenxianfei@ufl.edu; Enqvist, Andreas

    2017-05-01

    In nuclear safeguards and homeland security applications, it is greatly beneficial to simultaneously detect γ-rays, thermal neutrons, and fast neutrons using a single detector with reasonable pulse shape discrimination capability, energy resolution comparable with or even better than NaI(Tl) detectors, and high detection efficiency. Cs{sub 2}LiYCl{sub 6}:Ce{sup 3+}(CLYC) scintillation detectors have been proven to be one promising candidate to meet these requirements. In this work, the decay time and fraction of each scintillation component for different energy deposition and incident particle type (γ-ray, thermal neutron, and fast neutron) were investigated based on fitting the PMT anode output with exponential functions. For γ-rays, four components were determined with ultrafast decay time of less than one nanosecond and slow time in the order of magnitude of microsecond. It was found that the dependence on the energy deposited by γ-rays of the fraction as well as the decay time of the three slow components was small. However, significant dependence was observed for the ultrafast component. Two or three components were determined for thermal neutrons and fast neutrons without observing a component with fast decay time. To verify the approach used it was first applied to scintillation pulses induced by γ-rays in a NaI(Tl) detector. The results were consistent with well-known data already published in the literature.

  5. Low-temperature SiON films deposited by plasma-enhanced atomic layer deposition method using activated silicon precursor

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Sungin; Kim, Jun-Rae; Kim, Seongkyung; Hwang, Cheol Seong; Kim, Hyeong Joon, E-mail: thinfilm@snu.ac.kr [Department of Materials Science and Engineering with Inter-University Semiconductor Research Center (ISRC), Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Ryu, Seung Wook, E-mail: tazryu78@gmail.com [Department of Electrical Engineering, Stanford University, Stanford, California 94305-2311 (United States); Cho, Seongjae [Department of Electronic Engineering and New Technology Component & Material Research Center (NCMRC), Gachon University, Seongnam-si, Gyeonggi-do 13120 (Korea, Republic of)

    2016-01-15

    It has not been an easy task to deposit SiN at low temperature by conventional plasma-enhanced atomic layer deposition (PE-ALD) since Si organic precursors generally have high activation energy for adsorption of the Si atoms on the Si-N networks. In this work, in order to achieve successful deposition of SiN film at low temperature, the plasma processing steps in the PE-ALD have been modified for easier activation of Si precursors. In this modification, the efficiency of chemisorption of Si precursor has been improved by additional plasma steps after purging of the Si precursor. As the result, the SiN films prepared by the modified PE-ALD processes demonstrated higher purity of Si and N atoms with unwanted impurities such as C and O having below 10 at. % and Si-rich films could be formed consequently. Also, a very high step coverage ratio of 97% was obtained. Furthermore, the process-optimized SiN film showed a permissible charge-trapping capability with a wide memory window of 3.1 V when a capacitor structure was fabricated and measured with an insertion of the SiN film as the charge-trap layer. The modified PE-ALD process using the activated Si precursor would be one of the most practical and promising solutions for SiN deposition with lower thermal budget and higher cost-effectiveness.

  6. Scanning probe microscopy investigation of gold clusters deposited on atomically flat substrates

    International Nuclear Information System (INIS)

    Vandamme, N; Janssens, E; Vanhoutte, F; Lievens, P; Haesendonck, C van

    2003-01-01

    We systematically studied the influence of the substrate on the shape, mobility, and stability of deposited gold clusters. The Au n clusters were produced in a laser vaporization source and deposited with low kinetic energy (∼0.4 eV/atom) on atomically flat substrates (graphite, mica, and gold and silver films on mica) under UHV conditions. Their size distribution is probed with time-of-flight mass spectrometry and ranges from dimers to several hundreds of atoms. Scanning probe microscopy is used to characterize the deposited clusters and the formation of islands by cluster aggregation. On all substrates, Au n islands can be clearly distinguished and the islands are flattened despite the small impact energy. The shape and size of the island configurations are strongly system dependent. Gold clusters deposited on Au(111) and Ag(111) films grown on mica do not aggregate, but deform due to strong cluster-substrate interactions. The clusters tend to grow epitaxially on these surfaces. On graphite and on mica, deposited clusters do diffuse and aggregate. On the graphite surface, large ramified islands are formed by juxtaposition of small islands and trapping of the clusters at the step edges. On the other hand, the diffusion of the clusters on mica results in a total coalescence of the Au n clusters into compact islands

  7. Deposition of selenium coatings on beryllium foils. Revision 1

    International Nuclear Information System (INIS)

    Erikson, E.D.; Tassano, P.L.; Reiss, R.H.; Griggs, G.E.

    1984-01-01

    A technique for preparing selenium films on 50.8 micrometers thick beryllium foils is described. The selenium was deposited in vacuum from a resistance heated evaporation source. A water-cooled enclosure was used to minimize contamination of the vacuum system and to reduce the exposure of personnel to toxic and obnoxious materials. Profilometry measurements of the coatings indicated selenium thicknesses of 5.5, 12.9, 37.5, 49.8 and 74.5 micrometers. The control of deposition rate and of coating thickness was facilitated using a commercially available closed-loop programmable deposition controller. The x-ray transmission of the coated substrates was measured using a tritiated zirconium source. The transmissivities of the film/substrate combination are presented for the range of energies from 4 to 20 keV

  8. Fitting by a pearson II function of the spatial deposited energy distribution in superconducting YBaCuO samples calculated by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Cruz Inclan, Carlos M.; Leyva Fabelo, Antonio; Alfonso Vazquez, Onexis

    2001-01-01

    The spatial deposited energy distribution inside YBa 2 Cu 3 O 7 superconducting ceramics irradiated with gamma rays were simulated using the codes system EGS4, based on the Monte Carlo method. The obtained distributions evidence a notable inhomogeneity, which may be one of the possible sources of inconsistent results of irradiation studies. The profiles of these distributions show asymmetrical behaviors, which may be fitted satisfactorily through a Pearson II Gamma type function. These fittings are presented in the paper and the behavior of the fitting parameters with the energy of incident photons, its number, and the experimental geometry were studied. The physical signification of each fitting parameters is discussed in the text. The exponent is related to certain mass absorption coefficient when the thick of the sample is sufficiently large

  9. Deposition of metallic nanoparticles on carbon nanotubes via a fast evaporation process

    International Nuclear Information System (INIS)

    Ren Guoqiang; Xing Yangchuan

    2006-01-01

    A new technique was developed for the deposition of colloidal metal nanoparticles on carbon nanotubes. It involves fast evaporation of a suspension containing sonochemically functionalized carbon nanotubes and colloidal nanoparticles. It was demonstrated that metallic nanoparticles with different sizes and concentrations can be deposited on the carbon nanotubes with only a few agglomerates. The technique does not seem to be limited by what the nanoparticles are, and therefore would be applicable to the deposition of other nanoparticles on carbon nanotubes. PtPd and CoPt 3 alloy nanoparticles were used to demonstrate the deposition process. It was found that the surfactants used to disperse the nanoparticles can hinder the nanoparticle deposition. When the nanoparticles were washed with ethanol, they could be well deposited on the carbon nanotubes. The obtained carbon nanotube supported metal nanoparticles were characterized by transmission electron microscopy, energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and cyclic voltammetry

  10. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Oliveira, M. H.; Viana, G. A.; de Lima, M. M.; Cros, A.; Cantarero, A.; Marques, F. C.

    2010-12-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH4) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  11. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Oliveira, M. H. Jr.; Viana, G. A.; Marques, F. C.; Lima, M. M. Jr. de; Cros, A.; Cantarero, A.

    2010-01-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH 4 ) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  12. Characterisation and prediction of deposits in biomass co-combustion

    NARCIS (Netherlands)

    Tortosa Masiá, A.A.

    2010-01-01

    This PhD thesis deals with the theoretical, experimental and modeling work which was performed to study deposition during biomass and waste co-combustion in pulverised coal facilities. Fossil fuels dominate the current energy scenario. Increasing concerns about fossil fuels availability and about

  13. Structural anomalies induced by the metal deposition methods in 2D silver nanoparticle arrays prepared by nanosphere lithography

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shengli, E-mail: huangsl@xmu.edu.cn [Fujian Provincial Key Lab of Semiconductors and Applications, Department of Physics, Xiamen University, Xiamen, Fujian 361005 (China); State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Yang, Qianqian [Fujian Provincial Key Lab of Semiconductors and Applications, Department of Physics, Xiamen University, Xiamen, Fujian 361005 (China); State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Zhang, Chunjing; Kong, Lingqi; Li, Shuping; Kang, Junyong [Fujian Provincial Key Lab of Semiconductors and Applications, Department of Physics, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-06-01

    Silver nanoparticle arrays with 2-dimensional hexagonal arrangement were fabricated on the silicon substrates by nanosphere lithography. The silver film was deposited either by thermal evaporation or by magnetron sputtering under different conditions. The nanostructures of the achieved sphere template and the array units were characterized by scanning electron microscopy and atomic force microscopy, and were found to be anomalous under different deposition parameters. Comparative study indicated that the formation of the various 2-dimensional silver nanoparticle array structures was dominated by the thermal energy (temperature), kinetic energy and deposition direction of the deposited metal atoms as well as the size and nanocurvature of the colloidal particles and the metal clusters. - Highlights: • Silver nanoparticle arrays with different nanostructures on silicon substrates. • Various deposition parameters in arrays formation systematically examined. • Possible mechanisms and optimization of nanostructures formation addressed.

  14. Structural characterization of thin films of titanium nitride deposited by laser ablation

    International Nuclear Information System (INIS)

    Castro C, M.A.; Escobar A, L.; Camps C, E.; Mejia H, J.A.

    2004-01-01

    Thin films of titanium nitride were deposited using the technique of laser ablation. It was studied the effect of the density of laser energy used for ablation the target as well as of the pressure of the work gas about the structure and the hardness of the deposited thin films. Depending on the pressure of the work gas films was obtained with preferential orientation in the directions (200) and (111). At a pressure of 1 x 10 -2 Torr only the direction (200) was observed. On the other hand to the pressure of 5 x 10 -3 Torr the deposited material this formed by a mixture of the orientation (200) and (111), being the direction (111) the predominant one. Thin films of Ti N were obtained with hardness of up to 24.0 GPa that makes to these attractive materials for mechanical applications. The hardness showed an approximately linear dependence with the energy density. (Author)

  15. Deposition of SiC thin films by PECVD

    CERN Document Server

    Cho, N I; Kim, C K

    1999-01-01

    The SiC films were deposited on Si substrate by the decomposition of CH sub 3 SiCl sub 3 (methylthrichlorosilane) molecules in a high frequency discharge field. From the Raman spectra, it is conjectured that the deposited film are formed into the polycrystalline structure. The photon absorption measurement reveal that the band gap of the electron energy state are to be 2.4 eV for SiC, and 2.6 eV for Si sub 0 sub . sub 4 C sub 0 sub . sub 6 , respectively. In the high power density regime, methyl-radicals decompose easily and increases the carbon concentration in plasma and result in the growing films.

  16. Global geothermal energy scenario

    International Nuclear Information System (INIS)

    Singh, S.K.; Singh, A.; Pandey, G.N.

    1993-01-01

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  17. Energy utilization of light and heavy weaned piglets subjected to different dietary energy levels

    Directory of Open Access Journals (Sweden)

    Andréa Machado Leal Ribeiro

    Full Text Available ABSTRACT This study was conducted to evaluate the effects of dietary metabolisable energy (ME: 3.25, 3.40, 3.55, or 3.70 Mcal kg−1 and weaning weight (WW: light 4.0±0.7 kg, and heavy: 6.3±0.6 kg on productive response and energy utilization of weaned piglets. Sixty-four male piglets were housed in 32 metabolic cages (two animals per cage during the first 14 d postweaning. At day 15, only one animal per cage was kept until day 28. Body composition, energy, and nutrient deposition rates and energy utilization efficiency were measured through a comparative slaughter procedure. Piglets with light WW had a poorer feed conversion ratio and lower weight gain and feed intake when expressed per live weight. Increased ME led to greater daily fat deposition in the empty bodies (defined as weighted mean of the carcass + organs + blood, no intestinal content, while light WW piglets had a reduced protein deposition. Light WW piglets increased heat production with increased ME, but no effect was seen for the heavy WW piglets. By contrast, heavy WW piglets increased empty body gross energy as ME increased, while no influence was observed on light WW piglets. Increasing dietary energy levels did not contribute to the subsequent growth performance of piglets that were lighter at weaning. The lack of interaction between weaning weight and dietary ME content on growth performance does not support the hypothesis that light piglets at weaning do not exhibit compensatory growth because of limitations in energy intake.

  18. Pressure dependence of morphology and phase composition of SiC films deposited by microwave plasma chemical vapor deposition on cemented carbide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yu Shengwang, E-mail: bkdysw@yahoo.cn; Fan Pengwei; Tang Weizhong; Li Xiaojing; Hu Haolin; Hei Hongjun; Zhang Sikai; Lu Fanxiu

    2011-11-01

    SiC films were deposited on cemented carbide substrates by employing microwave plasma chemical vapor deposition method using tetramethylsilane (Si(CH{sub 3}){sub 4}) diluted in H{sub 2} as the precursor. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and scratching technique were used to characterize morphology, composition, phases present and adhesion of the films. Experimental results show that the deposition pressure has great influence on morphologies and phase composition of the films. In sequence, SiC films with a cauliflower-like microstructure, granular films with terrace-featured SiC particles coexisting with Co{sub 2}Si compound and clusters of nanometer SiC nanoplatelets appear as a function of the deposition pressure. In terms of plasma density and substrate temperature, this sequential appearance of microstructures of SiC films was explained. Adhesion tests showed that among the three types of films studied, the films with the terrace-featured SiC particles have relatively higher adhesion. Such knowledge will be of importance when the SiC films are used as interlayer between diamond films and cemented carbide substrates.

  19. Pressure dependence of morphology and phase composition of SiC films deposited by microwave plasma chemical vapor deposition on cemented carbide substrates

    International Nuclear Information System (INIS)

    Yu Shengwang; Fan Pengwei; Tang Weizhong; Li Xiaojing; Hu Haolin; Hei Hongjun; Zhang Sikai; Lu Fanxiu

    2011-01-01

    SiC films were deposited on cemented carbide substrates by employing microwave plasma chemical vapor deposition method using tetramethylsilane (Si(CH 3 ) 4 ) diluted in H 2 as the precursor. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and scratching technique were used to characterize morphology, composition, phases present and adhesion of the films. Experimental results show that the deposition pressure has great influence on morphologies and phase composition of the films. In sequence, SiC films with a cauliflower-like microstructure, granular films with terrace-featured SiC particles coexisting with Co 2 Si compound and clusters of nanometer SiC nanoplatelets appear as a function of the deposition pressure. In terms of plasma density and substrate temperature, this sequential appearance of microstructures of SiC films was explained. Adhesion tests showed that among the three types of films studied, the films with the terrace-featured SiC particles have relatively higher adhesion. Such knowledge will be of importance when the SiC films are used as interlayer between diamond films and cemented carbide substrates.

  20. Controlled fluoridation of amorphous carbon films deposited at reactive plasma conditions

    Directory of Open Access Journals (Sweden)

    Yoffe Alexander

    2015-09-01

    Full Text Available A study of the correlations between plasma parameters, gas ratios, and deposited amorphous carbon film properties is presented. The injection of a C4F8/Ar/N2 mixture of gases was successfully used in an inductively coupled plasma system for the preparation of amorphous carbon films with different fluoride doping at room-temperature, using silicon as a substrate. This coating was formed at low-pressure and low-energy using an inductively coupled plasma process. A strong dependence between the ratios of gases during deposition and the composition of the substrate compounds was shown. The values of ratios between Ar (or Ar+N2 and C4F8 - 1:1 and between N2 and Ar - 1:2 in the N2/Ar/C4F8 mixture were found as the best for low fluoridated coatings. In addition, an example of improving the etch-passivation in the Bosch procedure was described. Scanning electron microscopy with energy dispersive spectroscopy options, X-ray diffraction, and X-ray reflectivity were used for quantitative analysis of the deposited films.

  1. Design of Faraday cup ion detectors built by thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Szalkowski, G.A., E-mail: gszalkowski3@gatech.edu [Department of Nuclear Engineering, Georgia Institute of Technology, 770 State St., Atlanta, GA 30332 (United States); Darrow, D.S., E-mail: ddarrow@pppl.gov [Princeton Plasma Physics Laboratory, P. O. Box 451, Princeton, NJ 08543 (United States); Cecil, F.E., E-mail: fcecil@mines.edu [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States)

    2017-03-11

    Thin film Faraday cup detectors can provide measurements of fast ion loss from magnetically confined fusion plasmas. These multilayer detectors can resolve the energy distribution of the lost ions in addition to giving the total loss rate. Prior detectors were assembled from discrete foils and insulating sheets. Outlined here is a design methodology for creating detectors using thin film deposition that are suited to particular scientific goals. The intention is to use detectors created by this method on the Joint European Torus (JET) and the National Spherical Torus Experiment-Upgrade (NSTX-U). The detectors will consist of alternating layers of aluminum and silicon dioxide, with layer thicknesses chosen to isolate energies of interest. Thin film deposition offers the advantage of relatively simple and more mechanically robust construction compared to other methods, as well as allowing precise control of film thickness. Furthermore, this depositional fabrication technique places the layers in intimate thermal contact, providing for three-dimensional conduction and dissipation of the ion-produced heating in the layers, rather than the essentially two-dimensional heat conduction in the discrete foil stack implementation.

  2. Exploring and Monitoring of Methane Hydrate Deposits

    Science.gov (United States)

    Sudac, D.; Obhođaš, J.; Nađ, K.; Valković, V.

    2018-01-01

    Relatively recently, in the last 20 years, it was discovered that methane hydrate (MH) deposits are globally distributed in the permafrost and oceans. Before 1965 when first deposits were discovered in nature, it was believed that MH can occur only in laboratory conditions or in vast parts of the Universe. Presently it is presumed that this solid crystalline compounds in which CH4 molecules occupies the water ice lattices (nominal chemical formula of MH is C4H62O23) can serve as an energy source favorably to the all of the world remaining conventional hydrocarbon sources. The worldwide estimates of MH deposits range from 2x1014 m3 to 3.053x1018 cubic meters. This uncertainty partly results from our limitations in geological understanding of the MH deposits, which is due to the relatively bad quality of data obtained by presently available seismic and electromagnetic techniques. Moreover, MH deposits can become vulnerable to climate changes, which were already occurring in geological past whit tremendous consequences for the global life on Earth. Thus, further development of advanced techniques is needed to enhance our abilities to better characterize, quantify and monitor the MH deposits. In the work presented 14 MeV neutrons and associated alpha particle imaging (API) where used to quantify the amount of MH in the sample. Samples were prepared from sea sediment, quartz sand and MH simulant. MH simulant with chemical formula C4H46O23 was made from sucrose (25 % by mass) and water. MH quantity was measured by measuring the carbon content in the sample [1-8].

  3. Exploring and Monitoring of Methane Hydrate Deposits

    Directory of Open Access Journals (Sweden)

    Sudac D.

    2018-01-01

    Full Text Available Relatively recently, in the last 20 years, it was discovered that methane hydrate (MH deposits are globally distributed in the permafrost and oceans. Before 1965 when first deposits were discovered in nature, it was believed that MH can occur only in laboratory conditions or in vast parts of the Universe. Presently it is presumed that this solid crystalline compounds in which CH4 molecules occupies the water ice lattices (nominal chemical formula of MH is C4H62O23 can serve as an energy source favorably to the all of the world remaining conventional hydrocarbon sources. The worldwide estimates of MH deposits range from 2x1014 m3 to 3.053x1018 cubic meters. This uncertainty partly results from our limitations in geological understanding of the MH deposits, which is due to the relatively bad quality of data obtained by presently available seismic and electromagnetic techniques. Moreover, MH deposits can become vulnerable to climate changes, which were already occurring in geological past whit tremendous consequences for the global life on Earth. Thus, further development of advanced techniques is needed to enhance our abilities to better characterize, quantify and monitor the MH deposits. In the work presented 14 MeV neutrons and associated alpha particle imaging (API where used to quantify the amount of MH in the sample. Samples were prepared from sea sediment, quartz sand and MH simulant. MH simulant with chemical formula C4H46O23 was made from sucrose (25 % by mass and water. MH quantity was measured by measuring the carbon content in the sample [1-8].

  4. Comparison of braided-stream depositional environment and uranium deposits at Saint Anthony underground mine

    International Nuclear Information System (INIS)

    Baird, C.W.; Martin, K.W.; Lowry, R.M.

    1980-01-01

    United Nuclear's Saint Anthony mine, located in the Laguna district, produces uranium ore from the Jackpile sandstone unit of the Morrison Formation. The Jackpile sediments were deposited in a fluvial environment characterized by aridity, gentle slope, distant source area, and limited flow volume. Resultant stratigraphy consists of an intricate assemblage of trough and tabular cross-stratification grading to near massive bedding at some locations. Interbedded with the Jackpile sands are green mudstones and siltstones that commonly display irregular thicknesses of less than 2 ft and that are laterally discontinuous. Major penecontemporaneous and postdepositional alteration of originally deposited sands, silts, and clays includes: 1) infiltration and filling of interstices by kaolinitic clays; 2) mobilization and relocation of organic carbonaceous material; and 3) geochemical alteration of mineral constituents and fixation of uranium ions in organic carbonaceous material. Mineralized zones of economic volume display a spatial relationship to bedding features indicative of loosely packed sand deposited in dune and trough foresets. This relationship indicates possible permeability control by initial stratigraphy upon the flow of mineralizing solutions. Additionally, the low-energy foreset environment facilitates the accumulation of low-specific-gravity carbonaceous material necessary for interaction with mineralizing solutions. Large volumes of loosely packed foreset sands accumulate in transverse bars in braided-stream environments. These structures have a great potential for conducting large volumes of mineralizing fluids and hosting economic quantities of uranium ore

  5. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    Science.gov (United States)

    Nie, Y.; Schmidt, R.; Chetvertkova, V.; Rosell-Tarragó, G.; Burkart, F.; Wollmann, D.

    2017-08-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post-Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV-50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.

  6. Silicon protected with atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Seger, Brian; Tilley, David S.; Pedersen, Thomas

    2013-01-01

    The semiconducting materials used for photoelectrochemical (PEC) water splitting must withstand the corrosive nature of the aqueous electrolyte over long time scales in order to be a viable option for large scale solar energy conversion. Here we demonstrate that atomic layer deposited titanium di...

  7. Preliminary Study on Effect of the Crud Deposits during LBLOCA Condition

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Byung Gil; Lee, Joo Suk; Bang, Young Seok; Oh, Deog Yeon; Woo, Sweng Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-10-15

    The severe crud deposits on fuel rod could result in the increment of the fuel temperature during the operation of nuclear power plants. The crud inhibits heat transfer, causing the cladding temperature to increase due to the low thermal conductivity. In the event of LBLOCA at the NPP operated with heavy crud layers, the peak cladding temperature (PCT) will be higher than it would be if the cladding were clean. Therefore, NRC has been reviewing a petition for rule making to set the limit of crud and/or oxide thickness. Also, it requires that LOCA analysis be calculated by factoring the role of crud. Since the crud deposits caused the stored energy in the fuel to increase, it could influence the following requirement: The Initial Stored Energy in the Fuel in Appendix K to Part 50. ECCS Evaluation Models, to require that the steady-state temperature distribution and stored energy in the fuel at the onset of a postulated LOCA. Also, safety review guidelines in NUREG-0800.

  8. Structural and optical properties of pulse laser deposited Ag2O thin films

    Science.gov (United States)

    Agasti, Souvik; Dewasi, Avijit; Mitra, Anirban

    2018-05-01

    We deposited Ag2O films in PLD system on glass substrate for a fixed partial oxygen gas pressure (70 mili Torr) and, with a variation of laser energy from 75 to 215 mJ/Pulse. The XRD patterns confirm that the films have well crystallinity and deposited as hexagonal lattice. The FESEM images show that the particle size of the films increased from 34.84 nm to 65.83 nm. The composition of the films is analyzed from EDX spectra which show that the percentage of oxygen increased by the increment of laser energy. From the optical characterization, it is observed that the optical band gap appears in the visible optical range in an increasing order from 0.87 to 0.98 eV with the increment of laser energy.

  9. Deposition of dielectric films on silicon using a fore-vacuum plasma electron source

    Energy Technology Data Exchange (ETDEWEB)

    Zolotukhin, D. B.; Tyunkov, A. V.; Yushkov, Yu. G., E-mail: yuyushkov@gmail.com [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2016-06-15

    We describe an experiment on the use of a fore-vacuum-pressure, plasma-cathode, electron beam source with current up to 100 mA and beam energy up to 15 keV for deposition of Mg and Al oxide films on Si substrates in an oxygen atmosphere at a pressure of 10 Pa. The metals (Al and Mg) were evaporated and ionized using the electron beam with the formation of a gas-metal beam-plasma. The plasma was deposited on the surface of Si substrates. The elemental composition of the deposited films was analyzed.

  10. Surface modification of biomaterials by pulsed laser ablation deposition and plasma/gamma polymerization

    Science.gov (United States)

    Rau, Kaustubh R.

    Surface modification of stainless-steel was carried out by two different methods: pulsed laser ablation deposition (PLAD) and a combined plasma/gamma process. A potential application was the surface modification of endovascular stents, to enhance biocompatibility. The pulsed laser ablation deposition process, had not been previously reported for modifying stents and represented a unique and potentially important method for surface modification of biomaterials. Polydimethylsiloxane (PDMS) elatomer was studied using the PLAD technique. Cross- linked PDMS was deemed important because of its general use for biomedical implants and devices as well as in other fields. Furthermore, PDMS deposition using PLAD had not been previously studied and any information gained on its ablation characteristics could be important scientifically and technologically. The studies reported here showed that the deposited silicone film properties had a dependence on the laser energy density incident on the target. Smooth, hydrophobic, silicone-like films were deposited at low energy densities (100-150 mJ/cm2). At high energy densities (>200 mJ/cm2), the films had an higher oxygen content than PDMS, were hydrophilic and tended to show a more particulate morphology. It was also determined that (1)the deposited films were stable and extremely adherent to the substrate, (2)silicone deposition exhibited an `incubation effect' which led to the film properties changing with laser pulse number and (3)films deposited under high vacuum were similar to films deposited at low vacuum levels. The mechanical properties of the PLAD films were determined by nanomechanical measurements which are based on the Atomic Force Microscope (AFM). From these measurements, it was possible to determine the modulus of the films and also study their scratch resistance. Such measurement techniques represent a significant advance over current state-of-the-art thin film characterization methods. An empirical model for

  11. Ge/Si (100) heterojunction photodiodes fabricated from material grown by low-energy plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Osmond, Johann; Isella, Giovanni; Chrastina, Daniel; Kaufmann, Rolf; Kaenel, Hans von

    2008-01-01

    We have fabricated a series of p-i-n Ge/Si heterojunction photodetectors with different thicknesses of the intrinsic Ge layer, different doping levels of the p and n layers and different diode diameters. Epitaxial Ge was deposited on Si(100) using low-energy plasma-enhanced CVD (LEPECVD) followed by cyclic annealing. Dark current values as low as 0.04 mA/cm 2 were achieved for 1 μm thick p-i-n photodiodes on lightly doped substrates at - 1 V bias, and external quantum efficiencies of 56% at 1.30 μm and 44% at 1.55 μm for 3 μm thick p + -i-n + photodiodes on highly doped substrates under 0.5 V reverse bias. For a 30 μm diameter diode a RC frequency of 21 GHz is obtained at a reverse bias of 1 V. With such characteristics, these diodes are attractive for telecommunication and optoelectronic applications

  12. Dermal Titanium Dioxide Deposition Associated With Intralesional Triamcinolone Injection.

    Science.gov (United States)

    Cohen, Brandon E; Bashey, Sameer; Cole, Christine; Abraham, Jerrold L; Ragsdale, Bruce; Ngo, Binh

    2016-12-01

    Cutaneous discoloration secondary to dermal deposition of titanium dioxide (TiO2) particles is recognized but seldom reported in the literature. In this report, the authors describe the case of a 61-year-old gentleman, with a long history of alopecia areata, who presented with numerous, discrete dark blue macules on the scalp. Scanning electron microscopy with energy dispersive x-ray spectroscopy analysis ultimately identified the macules as deposits of TiO2. The patient had a history of intralesional triamcinolone injections for management of alopecia areata. A sample of generic 0.1% triamcinolone acetonide paste was analyzed and found to contain many TiO2 particles analogous to those seen in the patient's biopsy sample. To the authors' knowledge, this is the first reported case of TiO2 deposition in the dermis likely resulting from topical combined with intralesional triamcinolone injection.

  13. Effects of atmospheric deposition of energy-related pollutants on water quality: a review and assessment

    International Nuclear Information System (INIS)

    Davis, M.J.

    1981-05-01

    The effects on surface-water quality of atmospheric pollutants that are generated during energy production are reviewed and evaluated. Atmospheric inputs from such sources to the aquatic environment may include trace elements, organic compounds, radionuclides, and acids. Combustion is the largest energy-related source of trace-element emissions to the atmosphere. This report reviews the nature of these emissions from coal-fired power plants and discusses their terrestrial and aquatic effects following deposition. Several simple models for lakes and streams are developed and are applied to assess the potential for adverse effects on surface-water quality of trace-element emissions from coal combustion. The probability of acute impacts on the aquatic environment appears to be low; however, more subtle, chronic effects are possible. The character of acid precipitation is reviewed, with emphasis on aquatic effects, and the nature of existing or potential effects on water quality, aquatic biota, and water supply is considered. The response of the aquatic environment to acid precipitation depends on the type of soils and bedrock in a watershed and the chemical characteristics of the water bodies in question. Methods for identifying regions sensitive to acid inputs are reviewed. The observed impact of acid precipitation ranges from no effects to elimination of fish populations. Coal-fired power plants and various stages of the nuclear fuel cycle release radionuclides to the atmosphere. Radioactive releases to the atmosphere from these sources and the possible aquatic effects of such releases are examined. For the nuclear fuel cycle, the major releases are from reactors and reprocessing. Although aquatic effects of atmospheric releases have not been fully quantified, there seems little reason for concern for man or aquatic biota

  14. Changes in wetting and energetic properties of glass caused by deposition of different lipid layers

    Energy Technology Data Exchange (ETDEWEB)

    Golabek, Monika [Department of Physical Chemistry - Interfacial Phenomena, Faculty of Chemistry, Maria-Curie Sklodowska University, 20-031 Lublin (Poland); Holysz, Lucyna, E-mail: lucyna.holysz@poczta.umcs.lublin.pl [Department of Physical Chemistry - Interfacial Phenomena, Faculty of Chemistry, Maria-Curie Sklodowska University, 20-031 Lublin (Poland)

    2010-06-15

    An investigation of wetting and energetic properties of different lipid layers deposited on the glass surface was carried out by contact angles measurements and determination of the apparent surface free energy. The topography of the lipid layers was also determined with the help of atomic force microscopy (AFM). Two synthetic phospholipids were chosen for these studies, having the same phosphatidylcholine headgroup bound to the apolar part composed either by two saturated chains (1,2-dipalmitoyl-sn-glycero-3-phospshocholine - DPPC) or two unsaturated chains (1,2-dioleoyl-sn-glycero-3-phosphocholine - DOPC) and one lipid (1,2,3-trihexadecanoyl-sn-glycerol - tripalmitoylglycerol - TPG). The lipid layers, from the 1st to the 5th statistical monolayer, were deposited on the glass surface from chloroform solutions by spreading. The apparent surface free energy of the deposited layers was determined by contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide), and then two concepts of interfacial interactions were applied. In the contact angle hysteresis approach (CAH) the apparent total surface free energy was calculated from the advancing and receding contact angles and surface tension of probe liquids. In the Lifshitz-van der Waals/acid-base approach (LWAB) the total surface free energy was calculated from the determined components of the energy, which were obtained from the advancing contact angles of the probe liquids only. Comparison of the results obtained by two approaches provided more information about the changes in the hydrophobicity/hydrophilicity of the layers depending on the number of monolayers and kind of the lipid deposited on the glass surface. It was found that the most visible changes in the surface free energy took place for the first two statistical monolayers irrespectively of the kind of the lipid used. Additionally, in all cases periodic oscillations from layer-to-layer in the lipid

  15. Long-range transport and deposition of sulfur in Asia

    International Nuclear Information System (INIS)

    Arndt, R.L.; Carmichael, G.R.

    1995-01-01

    The long range transport of sulfur in Asia is analyzed through the use of a multi-dimensional acid deposition model. The air quality of this region is heavily influenced by the combination of Asia's growing population, its expanding economy, and the associated systems of energy consumption and production. These factors combined with a shift to using indigenous coal as the primary fuel source for the region, will result in increased emissions of pollutants into the environment. By the year 2020 sulfur emissions from Asia are projected to exceed the combined emissions from Europe and North America. The authors have estimated sulfur deposition in Asia on a one-by-one degree spatial resolution in the region from Pakistan to Japan and from Indonesia to Mongolia using a 3-layer Lagrangian model. Deposition in excess of 10 g S/m 2 is predicted in south-central China. The relationship between emission source and receptor has been developed into a deposition matrix and examples of the source-receptor relationship are presented. 11 refs., 2 figs., 2 tabs

  16. Niobium thin film coating on a 500-MHz copper cavity by plasma deposition

    Energy Technology Data Exchange (ETDEWEB)

    Haipeng Wang; Genfa Wu; H. Phillips; Robert Rimmer; Anne-Marie Valente; Andy Wu

    2005-05-16

    A system using an Electron Cyclotron Resonance (ECR) plasma source for the deposition of a thin niobium film inside a copper cavity for superconducting accelerator applications has been designed and is being constructed. The system uses a 500-MHz copper cavity as both substrate and vacuum chamber. The ECR plasma will be created to produce direct niobium ion deposition. The central cylindrical grid is DC biased to control the deposition energy. This paper describes the design of several subcomponents including the vacuum chamber, RF supply, biasing grid and magnet coils. Operational parameters are compared between an operating sample deposition system and this system. Engineering work progress toward the first plasma creation will be reported here.

  17. The Coupling Effect Research of Ash Deposition and Condensation in Low Temperature Flue Gas

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-01-01

    Full Text Available Ash deposition is a key factor that deteriorates the heat transfer performance and leads to higher energy consumption of low pressure economizer working in low temperature flue gas. In order to study the ash deposition of heat exchange tubes in low temperature flue gas, two experiments are carried out with different types of heat exchange tubes in different flue gas environments. In this paper, Nusselt Number Nu and fouling factor ε are calculated to describe the heat transfer characteristics so as to study the ash deposition condition. The scanning electron microscope (SEM is used for the analysis of ash samples obtained from the outer wall of heat exchange tubes. The dynamic process of ash deposition is studied under different temperatures of outer wall. The results showed that ash deposition of heat exchanger will achieve a stable state in constant flue gas environment. According to the condition of condensation of acid vapor and water vapor, the process of ash deposition can be distinguished as mere ash deposition, acid-ash coupling deposition, and acid-water-ash coupling deposition.

  18. Electrophoretic deposition (EPD) of hydrous ruthenium oxides with PTFE and their supercapacitor performances

    International Nuclear Information System (INIS)

    Jang, Jong H.; Machida, Kenji; Kim, Yuri; Naoi, Katsuhiko

    2006-01-01

    The effect of PTFE addition was investigated for the electrophoretic deposition (EPD) of hydrous ruthenium oxide electrodes. Mechanical stability of electrode layers, together with deposition yield, was enhanced by using hydrous ruthenium oxide/PTFE dispersions. High supercapacitor performance was obtained for the electrodes prepared with 2% PTFE and 10% water. When PTFE content was higher, the rate capability became poor with low electronic conductivity; higher water content than 10% resulted in non-uniform depositions with poor cycleability and power capability. When electrodes were heat treated at 200 deg. C for 10 h, the specific energy was as high as 17.6 Wh/kg based on single electrode (at 200 W/kg); while utilizable energy was lower with heat treatment time of 1 and 50 h, due to the high resistance and gradual crystallization, respectively. With PTFE addition and heat treatment at 200 deg. C for 10 h, the specific capacitance was increased by 31% (460 → 599 F/g at ca. 0.6 mg/cm 2 ) at 10 mV/s, and the deposition weight was increased up to 1.7 mg/cm 2 with initial capacitance of 350 F/g

  19. Plume-induced stress in pulsed-laser deposited CeO2 films

    International Nuclear Information System (INIS)

    Norton, D.P.; Park, C.; Budai, J.D.; Pennycook, S.J.; Prouteau, C.

    1999-01-01

    Residual compressive stress due to plume-induced energetic particle bombardment in CeO 2 films deposited by pulsed-laser deposition is reported. For laser ablation film growth in low pressures, stresses as high as 2 GPa were observed as determined by substrate curvature and four-circle x-ray diffraction. The amount of stress in the films could be manipulated by controlling the kinetic energies of the ablated species in the plume through gas-phase collisions with an inert background gas. The film stress decreased to near zero for argon background pressures greater than 50 mTorr. At these higher background pressures, the formation of nanoparticles in the deposited film was observed. copyright 1999 American Institute of Physics

  20. Synthesis of dense nano cobalt-hydroxyapatite by modified electroless deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Zaheruddin, K., E-mail: zaheruddin@unimap.edu.my; Rahmat, A., E-mail: azmirahmat@unimap.edu.my; Shamsul, J. B., E-mail: sbaharin@unimap.edu.my; Mohd Nazree, B. D., E-mail: nazree@unimap.edu.my; Aimi Noorliyana, H., E-mail: aimiliyana@unimap.edu.my [School of Materials Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi Universiti Malaysia Perlis, Taman Muhibbah, Jejawi 02600 Arau Perlis (Malaysia)

    2016-07-19

    Cobalt-hydroxyapatite (Co-HA) composites was successfully prepared by simple electroless deposition process of Co on the surface of hydroxyapatite (HA) particles. Co deposition was carried out in an alkaline bath with sodium hypophosphite as a reducing agent. The electroless process was carried out without sensitization and activation steps. The deposition of Co onto HA was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The Co-HA composite powder was compacted and sintered at 1250°C. The Co particles were homogeneously dispersed in the HA matrix after sintering and the mechanical properties of composites was enhanced to 100 % with 3 % wt Co and gradually decreased at higher Co content.

  1. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  2. Simulation of dose deposition in heterogeneities in the human body, using the Penelope code for photons beams of energies of a linear accelerator

    International Nuclear Information System (INIS)

    Cardena R, A. R.; Vega R, J. L.; Apaza V, D. G.

    2015-10-01

    The progress in cancer treatment systems in heterogeneities of human body has had obstacles by the lack of a suitable experimental model test. The only option is to develop simulated theoretical models that have the same properties in interfaces similar to human tissues, to know the radiation behavior in the interaction with these materials. In this paper we used the Monte Carlo method by Penelope code based solely on studies for the cancer treatment as well as for the calibration of beams and their various interactions in mannequins. This paper also aims the construction, simulation and characterization of an equivalent object to the tissues of the human body with various heterogeneities, we will later use to control and plan experientially doses supplied in treating tumors in radiotherapy. To fulfill the objective we study the ionizing radiation and the various processes occurring in the interaction with matter; understanding that to calculate the dose deposited in tissues interfaces (percentage depth dose) must be taken into consideration aspects such as the deposited energy, irradiation fields, density, thickness, tissue sensitivity and other items. (Author)

  3. Security of Europe's energy supply. Russia's role

    International Nuclear Information System (INIS)

    Goffaux, P.

    1994-01-01

    A conference on ''Europe's Energy supplies by Russia'', has been organised march 17th 1994 by the Energy and Raw Materials Geopolitics Centre and the Moscow Energy Club, with participation of the World Energy Council. The round-table on petrol outlined the Eastern Europe dependency and the skepticism of western petroleum companies concerning Russian's deposits. The round table on gas outlined the importance of Russian's gas deposits and the development of its european exportations. The round table on nuclear power stated the heavy costs of security improvements, and argued for the taking off, after year 2000, of a new generation of reactors jointly designed by western and russian engineers. (D.L.). 4 figs., 1 tab

  4. Effects of deposition temperature on electrodeposition of zinc–nickel alloy coatings

    International Nuclear Information System (INIS)

    Qiao, Xiaoping; Li, Helin; Zhao, Wenzhen; Li, Dejun

    2013-01-01

    Highlights: ► Both normal and anomalous deposition can be realized by changing bath temperature. ► The Ni content in Zn–Ni alloy deposit increases sharply as temperature reach 60 °C. ► The abrupt change in coating composition is caused by the shift of cathodic potential. ► The deposition temperature has great effect on microstructure of Zn–Ni alloy deposit. -- Abstract: Zinc–nickel alloy coatings were electrodeposited on carbon steel substrates from the ammonium chloride bath at different temperatures. The composition, phase structure and morphology of these coatings were analyzed by energy dispersive spectrometer, X-ray diffractometer and scanning electron microscopy respectively. Chronopotentiometry and potentiostatic methods were also employed to analyze the possible causes of the composition and structure changes induced by deposition temperature. It has been shown that both normal and anomalous co-deposition of zinc and nickel could be realized by changing deposition temperature under galvanostatic conditions. The abrupt changes in the composition and phase structure of the zinc–nickel alloy coatings were observed when deposition temperature reached 60 °C. The sharply decrease of current efficiency for zinc–nickel co-deposition was also observed when deposition temperature is higher than 40 °C. Analysis of the partial current densities showed that the decrease of current efficiency with the rise of deposition temperature was due to the enhancement of the hydrogen evolution. It was also confirmed that the ennoblement of cathodic potential was the cause for the increase of nickel content in zinc–nickel alloy coatings as a result of deposition temperature rise. The good zinc–nickel alloy coatings with compact morphology and single γ phase could be obtained when the deposition temperature was fixed at 30–40 °C

  5. Influence of processing conditions on the optical properties of chemically deposited zinc sulphide (ZnS) thin film

    Science.gov (United States)

    Igweoko, A. E.; Augustine, C.; Idenyi, N. E.; Okorie, B. A.; Anyaegbunam, F. N. C.

    2018-03-01

    In this paper, we present the influence of post deposition annealing and varying concentration on the optical properties of ZnS thin films fabricated by chemical bath deposition (CBD) at 65 °C from chemical baths comprising NH3/SC(NH2)2/ZnSO4 solutions at pH of about 10. The film samples were annealed at temperatures ranging from 373 K–473 K and the concentration of the film samples vary from 0.1 M–0.7 M. Post deposition annealing and concentration played an important role on the optical parameters investigated which includes absorbance, transmittance, reflectance, absorption coefficient, band gap, refractive index and extinction coefficient. The optical parameters were found to vary with post deposition annealing in one direction and concentration of Zn2+ in the reverse direction. For instance, post deposition annealing increases the band gap from 3.65 eV for as-deposited to 3.70 eV, 3.75 eV and 3.85 eV for annealed at 373 K, 423 K and 473 K respectively whereas concentration of Zn2+ decreases the band gap from 3.95 eV at 0.1 M to 3.90 eV, 3.85 eV and 3.80 eV at 0.3 M, 0.5 M and 0.7 M respectively. The fundamental absorption edge of ZnS thin films shifted toward the highest photon energies (blue shift) after annealing and shifted toward the lowest photon energies (red shift) with increasing Zn ions concentration. A linear relation between band gap energy and Urbach energy was found. After annealing, the Urbach energy increases form 3.10 eV to 3.50 eV and decreases from 3.40 eV to 3.10 eV at varying Zn2+ concentration. The property of wide band gap makes ZnS suitable for buffer layer of film solar cells, permitting more light especially the short wavelength light into absorber layer.

  6. Electrophoretic-deposited CNT/MnO{sub 2} composites for high-power electrochemical energy storage/conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Wei; Xia Hui; Fuh, Jerry Y H; Lu Li, E-mail: luli@nus.edu.s [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2010-05-01

    CNT/MnO{sub 2} (birnessite-type) composite films have been successfully deposited on Ni-foil substrate via electrophoretic deposition (EPD). The unique EPD CNT/MnO{sub 2} composite film electrode shows enhanced electrical conductivity, good contact between composite films and the substrate and open porous structure, which makes the EPD composite films a promising electrode for high-power supercapacitors and lithium ion batteries.

  7. Effects of heat treatment on the microstructure of amorphous boron carbide coating deposited on graphite substrates by chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Siwei; Zeng Bin; Feng Zude; Liu Yongsheng; Yang Wenbin; Cheng Laifei; Zhang Litong

    2010-01-01

    A two-layer boron carbide coating is deposited on a graphite substrate by chemical vapor deposition from a CH 4 /BCl 3 /H 2 precursor mixture at a low temperature of 950 o C and a reduced pressure of 10 KPa. Coated substrates are annealed at 1600 o C, 1700 o C, 1800 o C, 1900 o C and 2000 o C in high purity argon for 2 h, respectively. Structural evolution of the coatings is explored by electron microscopy and spectroscopy. Results demonstrate that the as-deposited coating is composed of pyrolytic carbon and amorphous boron carbide. A composition gradient of B and C is induced in each deposition. After annealing, B 4 C crystallites precipitate out of the amorphous boron carbide and grow to several hundreds nanometers by receiving B and C from boron-doped pyrolytic carbon. Energy-dispersive spectroscopy proves that the crystallization is controlled by element diffusion activated by high temperature annealing, after that a larger concentration gradient of B and C is induced in the coating. Quantified Raman spectrum identifies a graphitization enhancement of pyrolytic carbon. Transmission electron microscopy exhibits an epitaxial growth of B 4 C at layer/layer interface of the annealed coatings. Mechanism concerning the structural evolution on the basis of the experimental results is proposed.

  8. Local deposition of high-purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition

    NARCIS (Netherlands)

    Mackus, A.J.M.; Mulders, J.J.L.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2010-01-01

    An approach for direct-write fabrication of high-purity platinum nanostructures has been developed by combining nanoscale lateral patterning by electron beam induced deposition (EBID) with area-selective deposition of high quality material by atomic layer deposition (ALD). Because virtually pure,

  9. BARZAS DEPOSIT SAPROPELITE COALS: PROSPECTS OF INTEGRATED DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    L. V. Kuznetsova

    2018-03-01

    Full Text Available The urgency of the problem. Sapropelite coals of the Barzas deposit of Kuzbass are good raw materials for producing liquid fuel, lubricating oils, paraffin, etc. Apart from that, they are enriched with molybdenum, niobium, rubidium, yttrium and titanium. The content of these deposits is higher than the minimal content, which determines the industrial importance of coal as a source of ore raw materials. However, until now, the field is not being developed because of the economic inexpediency and the lack of a solution to the problem of recycling of incineration and semi-coking waste, which have high ash content and a large volume. The purpose of the study: to develop the concept of integrated development of the Barzas sapropelite coal deposit on the basis of creating efficient, environmentally friendly and low-waste production. Research methodology. The analysis of geological and mining conditions of the formation, which is called the Main, the results of its geochemical studies of existing technologies of mining and processing the high-ash solid fuels. The promising areas of their development were also considered. Cluster approach to the development of sapropelite coal deposits. Results. Coal mining at the sites with different geological conditions can be carried out with openly-underground mobile means of mechanization. The First mine field can be developed by the underground way on the development system called “Long poles along the strike”. This can be attained by means of the comprehensive mechanization of the Second mine field. Also, “Long poles along strike, take out the strips by the drop” are combined sections of a mechanized roof support with mobile means of cutting and transportation of coal – the Third mine field. The energy-chemical cluster of the Barzas deposit of sapropelite coals is a complex of the enterprises, which are technologically connected among them. They are concentrated on the same territory, which includes

  10. Ultrashort pulse laser deposition of thin films

    Science.gov (United States)

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  11. Energy utilization in Canada

    International Nuclear Information System (INIS)

    Klassen, J.

    1976-04-01

    The situation of the energy supply of Canada is characterized by its geographic location and by the dispersal of the energy consumers over a wide area. At present, the energy supply leaving the successful CANDU nuclear energy programme out of account, is based mainly on crude oil, natural gas, and electricity as well as on coal imported from the USA. The targets of Canadian enery policies and energy research are stated as follows: a) Reducing and optimizing energy consumption, b) introducing district heating, and c) utilizing the extensive local coal deposits. (GG) [de

  12. A quadrupole ion trap as low-energy cluster ion beam source

    CERN Document Server

    Uchida, N; Kanayama, T

    2003-01-01

    Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)

  13. Bipolar performance of the electroplated iron-nickel deposits for water electrolysis

    International Nuclear Information System (INIS)

    Hu, C.-C.; Wu, Y.-R.

    2003-01-01

    The activities of oxygen and hydrogen evolution on Fe-Ni deposits with controllable compositions were systematically compared in the alkaline media. The redox behavior of Fe-Ni deposits prior to oxygen evolution could be generally related to their electrochemical activity for the oxygen evolution reaction meanwhile the activity of hydrogen evolution was found to be generally proportional to the mean roughness factor of deposits. Fe 24 Ni 76 , Fe 76 Ni 24 and Fe 90 Ni 10 deposits simultaneously exhibiting good activities of oxygen and hydrogen evolution were employed as electrode materials for water electrolysis in a bipolar hydrogen-oxygen electrolyzer in the stability test, examined at 50 and 200 mA cm -2 in 5 M KOH for 2 weeks. The morphological, compositional and crystalline information of these three materials before and after the bipolar studies were measured by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD) analysis, respectively. These studies demonstrated the potential applicability of these three deposits in the bipolar electrolyzer for water electrolysis

  14. Evaluating energy

    International Nuclear Information System (INIS)

    Gates, D.M.

    1985-01-01

    Intended as a primer on the relationship between the development and use of various energy resources and resulting ecological consequences, the book is designed for a course that can serve students with or without much background in the biological or physical sciences. A review is presented of the major concepts used in atmospheric science, the general picture of energy principles and laws, the status of energy resources both in the United States and worldwide, and an analysis of how questions of energy demand are approached. Three classes of energy sources are addressed: solar, biomass, and coal. The ecological impacts of carbon dioxide, acid deposition, petroleum, electrical power-generation, and nuclear technology are discussed. Also given is a discussion of alternative technologies in energy production

  15. The combined toroidicity, ellipticity and triangularity effects on the energy deposition of Alfven modes in pre-heated, low aspect ratio tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cuperman, S. [School of Physics and Astronomy, Tel Aviv University, 69978 Tel-Aviv (Israel); Bruma, C. [School of Physics and Astronomy, Tel Aviv University, 69978 Tel-Aviv (Israel) and College of Judea and Samaria, 44837 Ariel (Israel)]. E-mail: edycb@post.tau.ac.il; Komoshvili, K. [School of Physics and Astronomy, Tel Aviv University, 69978 Tel-Aviv (Israel); College of Judea and Samaria, 44837 Ariel (Israel)

    2007-03-05

    The combined plasma non-uniformity effects on the energy deposition of Alfven waves launched by an external antenna in pre-heated spherical tokamaks are investigated. The following relevant physical processes are here possible: (a) the emergence of gaps in the shear Alfven continuum spectrum and the generation of discrete global Alfven eigenmodes with frequencies inside the gaps; (b) multi-wave interactions, interactions of gaps of the same kind (e.g., toroidicity induced) and of different kinds (toroidicity, ellipticity and triangularity induced) as well as of secondary order gaps arising when a pair of modes is coupled to one or more modes through other coupling parameters; (c) basic wave-plasma interactions as propagation, reflection, mode-conversion, tunneling and deposition. Thus, we solved numerically the full 2D wave equations for the vector and scalar potentials, using a quite general two-fluid resistive tensor-operator, without any geometrical limitations. The results obtained indicate the existence of antenna-launched wave characteristics for which the power is most efficiently coupled in outer regions of plasmas, which is of special interest for low aspect ratio tokamaks, e.g., for the generation of non-inductive current drive as well as for turbulence suppression and transport barriers formation.

  16. Energy deposition and GDR emission in inelastic alpha particle scattering

    CERN Document Server

    Viesti, G; Fabris, D; Nebbia, G; Cinausero, M; Fioretto, E; Napoli, D R; Prete, G; Hagel, K; Natowitz, J B; Wada, R; Gonthier, P; Majka, Z; Alfarro, R; Zhao, Y; Mdeiwayeh, N; Ho, T

    1999-01-01

    Neutron fold distributions measured for the reaction sup 2 sup 0 sup 9 Bi(alpha,alpha') at 240 MeV have been analyzed with the help of Statistical Model calculations to determine the distribution of excitation energy in the primary target fragments as a function of the projectile energy loss, EL. Results show that the distributions in excitation energy feature a plateau which extends from the kinematical limit E sub x =EL to very small excitations, suggesting a variety of interactions of the beam particles with the target nucleus. Requiring an additional coincidence with a light charged particle leads to selection of a significant higher average excitation energy. This effect is extrapolated to explore results of previous GDR decay measurements in the case of a sup 2 sup 0 sup 8 Pb target. Corrections of derived GDR parameters due to the partial transfer of excitation energy are suggested.

  17. Finite element modeling of acoustic wave propagation and energy deposition in bone during extracorporeal shock wave treatment

    Science.gov (United States)

    Wang, Xiaofeng; Matula, Thomas J.; Ma, Yong; Liu, Zheng; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-06-01

    It is well known that extracorporeal shock wave treatment is capable of providing a non-surgical and relatively pain free alternative treatment modality for patients suffering from musculoskeletal disorders but do not respond well to conservative treatments. The major objective of current work is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Here, a model of finite element method (FEM) was developed based on linear elasticity and acoustic propagation equations to examine SW propagation and deflection near a mimic musculoskeletal bone. High-speed photography experiments were performed to record cavitation bubbles generated in SW field with the presence of mimic bone. By comparing experimental and simulated results, the effectiveness of FEM model could be verified and strain energy distributions in the bone were also predicted according to numerical simulations. The results show that (1) the SW field will be deflected with the presence of bony structure and varying deflection angles can be observed as the bone shifted up in the z-direction relative to SW geometric focus (F2 focus); (2) SW deflection angels predicted by the FEM model agree well with experimental results obtained from high-speed photographs; and (3) temporal evolutions of strain energy distribution in the bone can also be evaluated based on FEM model, with varied vertical distance between F2 focus and intended target point on the bone surface. The present studies indicate that, by combining MRI/CT scans and FEM modeling work, it is possible to better understand SW propagation characteristics and energy deposition in musculoskeletal structure during extracorporeal shock wave treatment, which is important for standardizing the treatment dosage, optimizing treatment protocols, and even providing patient-specific treatment guidance in clinic.

  18. Alaska's rare earth deposits and resource potential

    Science.gov (United States)

    Barker, James C.; Van Gosen, Bradley S.

    2012-01-01

    Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).

  19. Investigations into the effect of spinel oxide composition on rate of carbon deposition

    International Nuclear Information System (INIS)

    Allen, G.C.; Jutson, J.A.

    1987-11-01

    The deposition of carbon on fuel cladding and other steels results in a reduction in heat transfer efficiency. Methane and carbon monoxide are added to the gaseous coolant in the Advanced Gas Cooled Reactor (AGR) to reduce the radiolytic oxidation of the graphite moderator and this is known to increase the rate of carbon deposition. However, the composition of oxides formed on steel surfaces within the reactor may also influence deposition. In this investigation carefully characterised spinel type oxides of varying composition have been subjected to γ radiation under conditions of temperature, pressure and atmosphere similar to those experienced in the reactor. The rate of carbon deposition has been studied using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDX). (U.K.)

  20. Human serum albumin (HSA) adsorption onto a-SiC:H thin films deposited by hot wire chemical vapor deposition

    International Nuclear Information System (INIS)

    Swain, Bibhu P.

    2006-01-01

    In the present paper, we report the study of the adsorption behavior of human serum albumin (HSA) onto surfaces of a-SiC:H thin films deposited by using the hot wire chemical vapor deposition (HWCVD) technique. The surface composition and surface energy of the various substrates as well as the evaluation of the adsorbed amount of protein has been carried out by means of X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy, AFM and contact angle measurements. At the immediate effect of HSA interaction with a-SiC:H films N is adsorbed on the surface and stabilized after 3 days. Preliminary observation found that Si and O atom are desorbed from the surface while C and N set adsorbed to the surface of the a-SiC:H film